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Abstract

This thesis is about the optimization of a parity game solving algorithm. The parity game solv-
ing algorithm which will be optimized in this thesis is Zielonka’s recursive algorithm with SCC
decomposition. Two optimizations for this algorithm are investigated. The first optimization is
partial re-decomposition, in which only the part of the graph containing vertices of SCCs which
have 1 or more vertices removed will be re-decomposed. The second optimization is dynamic
SCC maintenance, which builds an SCC tree for each SCC and then maintains those when ver-
tices or edges are removed from the graph. An implementation in Java is made for 3 versions of
Zielonka’s algorithm: the first version is Zielonka’s algorithm with Tarjan’s algorithm as described
in literature. The second version is Zielonka’s algorithm with the use of partial re-decomposition.
The third version is Zielonka’s algorithm with dynamic SCC maintenance. The 3 versions are
tested on various games. The conclusion from the tests is that Zielonka’s algorithm with partial
re-decomposition gives the best improvement.
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Chapter 1

Introduction

In software engineering there is an increasing focus on the use of formal models for the specification
and verification of software [3]. The promise that formal models brings to software engineering
is that their use results in more reliable software. A technique is to model the behavior with a
transition system like a Kripke structure. Figure 1.1 provides an example of such a model for the
behavior of a double light switch system.

Such a transition system describes the different states of the system as nodes. Each of these
nodes can have one or multiple labels such as a switch being on or off: the presence of S1 when
light 1 is on, or the absence when light 1 is off. Once such a model is made of the behavior, one
can verify if all requirements on the behavior are fulfilled, using linear temporal logic (LTL). With
LTL a requirement on the system can be transformed to a formula. For example, the requirement
"The system shall not have the lights on if both switches are off", can be transformed to a formula
G(¬(L ∧ ¬S1 ∧ ¬S2)). In this formula G, which is a temporal operator, expresses that the
formula must always hold, so in all states either the light is off or one of or both of the switches
are on. LTL has many more of such temporal modal operators to be able to express a lot of
different requirements, such as "nexttime": X, "sometimes": F etc[2]. An even more expressive
formal language is µ-calculus, which adds a greatest fixed point operator (ν) and least fixed point
operator (µ) [2].

In small systems such as the double light switch system it is easy to verify whether the require-
ments or formulas hold or not. We can check the states one by one or check all possible paths. But
if there are a few million states and more complex requirements, then this is no longer possible.
One way to check the correctness of the µ-calculus formulas is to transform the combination of
Kripke structure and formula together into a parity game as shown in [16], which can be done in
polynomial time. Such a parity game, an example is shown in Figure 3.1, is a 2 player turn based
game. In such a game each vertex is won by exactly one player. Section 3.1 will elaborate more
on how exactly parity games work. By solving the parity game it is possible to determine whether
the µ-calculus formula holds for a state in the transition system.

As µ-calculus formulas can be transformed to parity games in polynomial time, it is beneficial
to formal model checking to be able to solve parity games very fast. There are many algorithms
to do this. One of these algorithms is Zielonka’s algorithm [6], which will be used in this thesis to
solve the parity games. This algorithm will be discussed in section 3.4. Some of the parity game
solving algorithms, including Zielonka’s Algorithm, can be sped up using a decomposition of the
game into strongly connected components (SCCs), sets of vertices such that each vertex in the set
can reach each other vertex. Chapter 3 will give an introduction to parity games and SCCs as well
as the parity game solving algorithm Zielonka’s algorithm and the SCC decomposition algorithm
Tarjan’s algorithm.

This thesis will focus on optimizing the SCC decomposition part of parity game solvers, with
Zielonka’s algorithm in particular, using dynamic SCC maintenance or partial re-decomposition.
Chapter 4 will give a more detailed description of the research questions answered in this thesis.
The main research questions are: what is the impact in practice of using an existing algorithm
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CHAPTER 1. INTRODUCTION

{∅} {S1, L}

{S2, L} {S1, S2}

Figure 1.1: A Kripke structure of a light system with 2 switches S1 and S2. If S1 or S2 holds in
a state, then that switch is on. If L holds in a state then the light is on.

for dynamic SCC maintenance with Zielonka’s algorithm? and what is the impact in practice of
using partial re-decomposition with Zielonka’s algorithm.

Partial re-decomposition is a heuristic we develop to speed up the repeated SCC decomposition
in Zielonka’s algorithm and will be described in detail in chapter 5. In short the idea is that when at
the end of an iteration of Zielonka’s algorithm the whole leftover graph is decomposed into SCCs,
it may be faster to only decompose the vertices of SCCs of which vertices have been removed into
SCCs.

Dynamic SCC maintenance [9] is an algorithm that first makes a dynamic SCC decomposition
which consists of an SCC tree for each SCC in the game. The maintenance of this dynamic SCC
decomposition consists of an algorithm which can update these trees to delete edges or vertices.
The dynamic SCC maintenance could replace the repeated SCC decomposition in Zielonka’s al-
gorithm and update the dynamic SCC decomposition instead. Chapter 6 explores all details about
dynamic SCC maintenance that were investigated for this thesis in order to implement and use
this mechanism in Zielonka’s algorithm in practice.

The experiments executed to answer the research questions are described in chapter 7. They
test for good ways to build the SCC trees, testing the decrease in the number of vertices decom-
posed by partial re-decomposition and testing the impact in practice of partial re-decomposition
and dynamic SCC maintenance by measuring the runtime.

The last chapter, chapter 9, gives a summary of the answers to the research questions and
discusses several threats to validity. It will show that using partial re-decomposition with Zielonka’s
algorithm has a positive impact. Especially when Zielonka’s algorithm has many iterations. The
number of vertices decomposed into SCCs is sometimes even decreased by more than a factor
100. Using dynamic SCC maintenance with Zielonka’s algorithm most of the time had a negative
impact. The dynamic decomposition of a lot of games contain very long SCC trees, and especially
for these games using dynamic SCC maintenance has a big negative impact as more time is spend
building the trees than solving the game. For games whose dynamic decomposition contains short
trees, and Zielonka’s algorithm has a lot of iterations, the use of dynamic SCC decomposition still
had a positive impact, but only compared to running Zielonka’s algorithm normally where the
whole leftover graph is decomposed into SCCs at the end of each iteration of Zielonka’s algorithm.
When compared to partial re-decomposition, dynamic SCC maintenance is always slower.

2 Optimising parity game solvers using dynamic SCC maintenance



Chapter 2

Related Work

There are many algorithms capable of solving parity games, each with their own tactics and
complexity. The algorithm used in this thesis, Zielonka’s algorithm, was tested to be the best
parity game solving algorithm in practice by Friedman and Lange in [4]. In this paper they tested
3 algorithms, namely Zielonka’s algorithm, the small progress measures algorithm of Jurdziński [7]
and the strategy improvement algorithm [15]. This paper made a generic solver in which the parity
game was decomposed into SCCs and each final SCC was solved with any of the algorithms. These
were then implemented in a tool named PGSolver. With the PGSolver tool the runtime results
were measured for several different sets of games. These results showed that Zielonka’s recursive
algorithm was much better than the other 2 algorithms in solving large parity games efficiently
in practice. Another observation made was that SCC decomposition was highly profitable for
any of the algorithms. Although this thesis only tests the effect of dynamic SCC maintenance
on Zielonka’s algorithm, it might be possible for these other algorithms which profit from SCC
decomposition to also profit from dynamic SCC maintenance.

Van Dijk also did practical experiments with several algorithms in [14]. In this paper Zielonka’s
algorithm and the priority promotion algorithm were compared with several variations of the newly
introduced Tangle learning algorithm. The Tangle learning algorithm as described in [14] makes
use of the notion of tangles. A tangle is an SCC such that a player α ∈ {0, 1} has a strategy to win
all cycles in the tangle and therefore the other player is forced to escape from this tangle if she is
to win vertices in the tangle. For the comparison between the algorithms, the various algorithms
were implemented in C++ in a parity game solver named Oink. Each algorithm was then tested
against a set of Random games and a set of model checking and equivalence checking games. The
results showed that Zielonka’s algorithm and the priority promotion algorithm performed better
for the model checking and equivalence checking games, but worse for large random games.

Di Stasio et al introduced several improvements to the implementation of Zielonka’s algorithm
in [12]. These improvements saved up to two orders of magnitude in running time compared
to the formerly described PGSolver tool [4]. Their main improvement was the change of pro-
gramming language. Instead of the OCaml language, they used the Scala programming language.
This language allowed them to make a heavily optimized implementation. They tested several
games produced by the PGSolver tool, such as random games, clique games, ladder games and
Jurdzinksi’s games, both with the PGSolver tool and the new implementation in Scala. The res-
ults of these tests showed the improvements in running time up to two orders of magnitude. The
implemented version of Zielonka’s algorithm in this Scala implementation does not make use of
SCC decomposition however. They claim that "these improvements often do not show the desired
performance".

Considering SCC related literature, Bernstein in [1] introduced an improved version of the
in this thesis discussed dynamic SCC maintenance algorithm. Although the algorithm is more
complicated, it has an update time of Õ(m), so near linear as Õ suppresses logarithmic factors.
The algorithm makes use of so called GES-trees and uses these GES-trees to maintain SCCs.
Although our findings point out that the dynamic SCC maintenance algorithm from [9] does
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not seem to have a positive influence on the performance of Zielonka’s algorithm, perhaps this
algorithm from [1] with improved update time could speed up the updates. However building the
GES-trees still takes O(m∗log2n) time on each level, so it not unlikely that still too much time is
spent building the GES-trees at the start of Zielonka’s algorithm.

4 Optimising parity game solvers using dynamic SCC maintenance



Chapter 3

Preliminaries

The thesis focuses on using a dynamic strongly connected component maintenance algorithm to
optimize parity game solving algorithms. This chapter starts with an explanation of what parity
games are in section 3.1. Then in section 3.2 we explain what strongly connected components
(SCCs) are and we discuss an algorithm, Tarjan’s algorithm [13], which can decompose a graph
into SCCs in section 3.3. The last section, section 3.4, will discuss Zielonka’s algorithm, which is
an algorithm which can solve parity games.

3.1 Parity Games

Definition 1 (Parity game). A parity game is a structureG = (V,E, pr, (V0, V1)). In the structure,
V is the set of vertices of the graph and E the set of edges such that ∀v∈V ∃w∈V : (v, w) ∈ E. In
this graph every vertex v ∈ V has a priority pr(v) ∈ {0, 1, ..., d} and is owned by either player 0
or player 1. V0 ⊆ V contains the vertices owned by player 0, and V1 ⊆ V contains the vertices
owned by player 1.

We visualize a parity game as a graph, where vertices owned by player 1 will be presented as
a square and vertices owned by player 0 will be presented as a circle. The priority will be denoted
inside the vertex and the name of the vertex just outside the vertex. See, e.g. Figure 3.1 where
vertices v1, v3 and v4 are owned by player 1 and vertices vertices v2 and v5 are owned by player
0. Vertex v3 in this figure has priority 6.

The priority of a set of vertices U ⊆ V is the highest priority of any vertex v ∈ U , so pr(U) =
max{pr(v)|v ∈ U}.

In a game a token is placed on a starting vertex v ∈ V after which the token is passed around
indefinitely.

Definition 2 (Play). A play is an infinite path of vertices v0, v1, v2... such in which the token is
passed from vertex vi to vi+1 for i ∈ N, and for each vi, vi+1 we have that (vi, vi+1) ∈ E.

4

v1

2

v2

6

v3

1

v4

2

v5

Figure 3.1: A parity game
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Definition 3 (Winner of a play). The winner of a play is determined by the highest priority that
occurs infinitely often in the play. If this highest priority is even, the play is won by player 0. If
this highest priority is odd, then the play is won by player 1.

An example of a play would be, v1, (v2, v5, v4)ω which is a play over the game in Figure 3.1. For
this play we have that priorities 1 and 2 occur infinitely often, 2 is the highest priority therefore
the winner of this play is player 0. Priority 4 is not considered since it does not occur infinitely
often. At each position in the play the next vertex is decided by the owner of the current vertex
the token is at. So if the token is at vertex v2 in Figure 3.1 then player 0 gets to decide whether
to pass the token to v3 or v5. This choice is called a strategy.

Definition 4 (Strategy). A memoryless strategy σα for player α ∈ {0, 1} is a partial function
σα : Vα −→ V .

A play conforms to a strategy if all choices in the play are made according to the strategy,
so if for a player α ∈ {0, 1} we have that if vj ∈ Vα is in the play and σα(vj) is defined, then
vj+1 = σα(vj). If σα(vj) is not defined then (vj , vj+1) ∈ E is accepted. We denote all plays
starting in a vertex v ∈ U , U ⊆ V that conform to a strategy σ as Plays(U, σ).

Definition 5 (Winning strategy). A winning strategy σα for a node v ∈ V and a player α ∈ {0, 1}
is a strategy such that every play in Plays({v}, σα) is won by player α.

Definition 6 (Winner). Player α is the winner of a game G starting in vertex v if there exists a
winning strategy σα for G starting at v.

The computation of a winner can be used to solve the parity game. Solving a parity game
means computing the winner of the game for every vertex v ∈ V . To compute the winner of the
game for every vertex the computation of the attractor set is needed. An attractor set of a set
of vertices U ⊆ V for a player α ∈ {0, 1} contains all vertices such that if the vertex belongs to
player α then player α can move towards U and if the vertex belongs to player 1 − α then that
player has no choice but to move towards U . E.g. in Figure 3.1 the attractor set of U = {v2, v5}
for player 0 contains vertices v1, v2 and v5. In vertex v1 player 1 can only move towards v2 ∈ U .
Vertex v4 for example is not part of the attractor set because player 1 can choose to keep moving
to v4 and stay away from U . The the attractor set can be defined formally as follows [4]:

Definition 7 (AttrGα (U)). The attractor AttrGα (U), of player α towards set U ⊆ V is defined as
AttrGα (U) :=

⋃
k∈N

Attrkα(U), where:

Attr0α(U) := U
Attrk+1

α (U) := Attrkα(U) ∪ {v ∈ Vα|∃w∈Attrkα(U) : (v, w) ∈ E}∪
{v ∈ V1−α|∀w∈V : (v, w) ∈ E =⇒ w ∈ Attrkα(U)}

Sometimes while calculating the attractor set, the algorithm which uses the attractor set is
also needs to know in the strategy which α uses to get to or stay in U . In this case every time
a new vertex v ∈ Vα is added to the attractor set, the w ∈ U for which (v, w) ∈ E is added to
the strategy. In this document Attr0α(U) is used in 2 ways, either with return argument the set of
vertices in the attractor set when the algorithm is not interested in the strategies, or with return
argument the set of vertices in the attractor set and the strategy for player α.

Another property of the attractor set is that when an attractor set A is removed from a
parity game G, then the remainder is still a valid parity game: G\A is a parity game [17],
where G′ = G\A = (V ′, E′, pr, (V ′0 , V

′
1)) is the game G′ such that all vertices in A have been

removed from G and all edges with an endpoint in A have been removed as well. So V ′ = V \A,
E′ = {(v, w) ∈ E|v /∈ A ∧ w /∈ A}, V ′0 = V0\A and V ′1 = V1\A.

Definition 8 (dominion[14]). A dominion D ⊆ V is a set of vertices for a player α ∈ {0, 1} such
that α has a winning strategy σα such that all plays consistent with σα stay in D .

A game is a paradise for player α ∈ {0, 1} if player α has a winning strategy for every vertex
v ∈ V .

6 Optimising parity game solvers using dynamic SCC maintenance
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4

v1

2

v2

6

v3

1

v4

2

v5

Figure 3.2: The topological order of the SCCs of a parity game

3.2 Strongly connected components

A graph can be partitioned in strongly connected components (SCCs). An SCC is a maximal non
empty subset of vertices such that any vertex in the subset can reach any other vertex in the subset.
Or formally: a maximal subset C ⊆ V such that ∀v,w∈C : vE∗w where E∗ is the reflexive transitive
closure of E. In Figure 3.2, for example, we would have the SCCs: C1 = {v2, v4, v5}(black),
C2 = {v1} (blue) and C3 = {v3} (red).

SCCs can be topologically ordered such that for two SCCs Ci and Cj , i 6= j we have that
Ci −→ Cj iff ∃v∈Ci,w∈Cj : (v, w) ∈ E. A final SCC is an SCC in the topological order which does
not have an outgoing edge. Every graph must have at least one final SCC, because if not then the
graph would be one big SCC, which would make it a final SCC in itself.

Example 1. As an example of a topological order of SCCs take the game in Figure 3.2. As
mentioned before it has SCCs: C1 = {v1} (black) , C2 = {v2, v4, v5} (blue), and C3 = {v3} (red).
The vertex v1 in SCC C1 (black) has an edge to vertex v2 in SCC C2 (blue). Therefore in the
topological order C1 (black) is placed before C2 (blue). The vertex v2 in SCC C2 (blue) has an
edge to vertex v3 in SCC C3 (red). Therefore in the topological order C2 (blue) is placed before
C3 (red). So the game of Figure 3.2 would have the following topological order: C1 −→ C2 (black
−→ blue) and C2 −→ C3 (blue −→ red). The only SCC that does not have a vertex with an edge to
another vertex outside the SCC is SCC C3 (red), so this SCC is a final SCC.

SCCs are useful for parity games because it is possible to solve parity games SCC wise. An
SCC C of a parity game G is also a parity game in itself: G ∩ C is a parity game. [6].

Definition 9 (G ∩ C). If G = (V,E, pr, (V0, V1)) and C ⊆ V is an SCC, then G′ = G ∩ C =
(V ′, E′, pr, (V ′0 , V

′
1)) with V ′ = {v ∈ V |v ∈ C}, E′ = {(v, w) ∈ E|(v, w) ∈ C}, V ′0 = {v ∈ V0|v ∈

C} and V ′1 = {v ∈ V1|v ∈ C}.

Every game will eventually get trapped in an SCC and the winner will also depend only on the
priorities in the SCC. This information can be used to speed up algorithms as SCC decomposition
uses only O(|E|) time [4]. It is for example used to speed up Zielonka’s Recursive algorithm in [6]
or as an optimization in a generic solver in [4]. Zielonka’s algorithm with the use of SCCs will be
further discussed in section 3.4.

3.3 Tarjan’s Algorithm

One of the simplest and most efficient algorithms to decompose a graph G in SCCs is Tarjan’s
algorithm [13]. The algorithm which works similarly to a depth first search (DFS). The algorithm
will be discussed in more detail in appendix A which also includes the pseudocode.

Theorem 1. The recursive version of Tarjan’s algorithm, Tarjan(G), returns the SCC decom-
position of the graph G in O(|V |+ |E|) time.

Optimising parity game solvers using dynamic SCC maintenance 7
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This theorem has been proven by R.E. Tarjan in [13].
One of the possible problems with running Tarjan’s algorithm on big graphs in practice is

that there might be a lot of recursions of the algorithm stored on the program stack at the same
time. To solve this W.R.M. Schols described an iterative version of Tarjan’s algorithm in his
master thesis [11] and showed its correctness. The pseudocode of the iterative version of Tarjan’s
algorithm is included in appendix A.

Theorem 2. The iterative version of Tarjan’s algorithm, TarjanItter(G), returns the SCC
decomposition of the graph G in O(|V |+ |E|) time.

In [11] W.R.M. Schols has proven that the iterative version works correctly and just like the
recursive version also has a complexity of O(|V |+ |E|).

3.4 Zielonka’s Recursive Algorithm
There are a lot of different algorithms which solve parity games using different tactics. One of these
parity game solvers is Zielonka’s recursive algorithm [6] which will be described in this section.
Zielonka’s recursive algorithm is proven to have an exponential worst case complexity of O(mnd),
where m is the number of edges, n the number of vertices and d the number of different priorities
[6]. There are several other parity games with a better complexity than Zielonka’s algorithm,
such as for example the small progress measures algorithm by M. Jurdzinski with a complexity
of O(dm · ( n

bd/2c )
b d2 c) [7]. However O. Friendman and M. Lange showed in [4] that in practice

Zielonka’s recursive algorithm is faster than other parity game solving algorithms. An improved
version of the algorithm with SCC decomposition is shown to run in polynomial for several special
classes of "simple" parity games for which the original algorithm would require exponentially many
recursive calls [6].

The Zielonka’s recursive algorithm without SCC decomposition is shown in Algorithm 1. It is
a divide and conquer algorithm that makes use of the fact that higher priorities dominate lower
priorities and that forced revisit is beneficial to the player with the same parity as the priority. It
constructs winning regions for both players out of the solution of subgames with fewer different
priorities and fewer vertices and removes the vertices with the highest priority from the game and
its attractor set.

Example 1. When Zielonka’s Algorithm is run on the parity game shown as the left-most graph
in Figure 3.3 the following happens. The highest priority is 3, so vertices with this priority are
beneficial for player 1. The vertices with this priority are v3 and v4. The vertices that are attracted
to these 2 vertices by player 1 are {v0, v1, v3, v4}. So the algorithm recurses on the parity game
from which these vertices have been removed. This leftover parity game is shown in the middle
graph of Figure 3.3 as G\A. In this game G\A the highest priority is 2, and since all vertices
belong to player 0 all vertices are added to the attractor set. After recursing on an empty parity
game the algorithm will return that {v2, v5, v6, v7} are all won by player 0 for game G\A. Then
back in the algorithm for game G the attractor set of {v2, v5, v6, v7} shows that player 0 can have
a strategy such that for all vertices except v1 it can send the game to {v2, v5, v6, v7} and thereby
win the play. The algorithm therefore recurses on the subgame of just v1 which is shown as the
rightmost graph in Figure 3.3 as G\B. This game has highest priority 1 and is the only vertex so
the algorithm returns that this vertex is won by player 1. The algorithm on graph G now knows
this vertex v1 is won by player 1 and already knew all other vertices are won by player 0 so it
reports this as the answer. So the vertices in the set {v0, v2, v3, v4, v5, v6, v7} are won by player 0
and the vertices in the set {v1} are won by player 1.

Zielonka’s recursive algorithm with SCC decomposition, described by Gazda and Willemse in
[6], is shown in Algorithm 2. It first decomposes the game into SCCs and then uses the steps
Zielonka’s algorithm performs on the final SCCs. Afterwards the final SCCs and their attractor
sets are removed, breaking the SCCs down in smaller SCCs. Because each infinite play will
eventually stay in an SCC, the winner of such play is determined by only vertices of that SCC. So
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Algorithm 1 Zielonka’s recursive algorithm

function Zielonka(G = (V,E, pr, (V0, V1)))
if V = ∅ then

(W0,W1)←− (∅, ∅)
else

m←− max{pr(v)|v ∈ V }
α←− m mod 2
α←− 1− α
U ←− {v ∈ V |pr(v) = m}
A←− AttrGα (U)
(W ′0,W

′
1)←− Zielonka(G\A)

B ←− AttrGα (W ′α)
if B =W ′α then

(Wα,Wα)←− (A ∪W ′α, B)
else

(W ′0,W
′
1)←−Zielonka(G\B)

(Wα,Wα)←− (W ′α,W
′
α ∪B)

end if
end if
return (W0,W1)

end function

2
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Figure 3.3: Different stages of running Zielonka’s recursive algorithm on parity game G

Optimising parity game solvers using dynamic SCC maintenance 9



CHAPTER 3. PRELIMINARIES

first looking at the winning regions of final SCCs from which plays cannot leave and their attractor
sets should give a much more efficient algorithm. An attractor set for a player α that stays within
an SCC H and thus can only include vertices that are present in H is denoted by AttrHα .

Algorithm 2 Optimized Zielonka’s recursive algorithm1

1: function Zielonka_SCC(G)
2: (WG

0 ,W
G
1 )←− (∅, ∅)

3: while G\(WG
0 ∪WG

1 ) 6= ∅ do
4: S ←− SCC_Graph_Decomposition(G\(WG

0 ∪WG
1 ))

5: for all final SCC C ∈ S do
6: H ←− G ∩ C
7: m←− max{pr(v)|v ∈ C}
8: α←− m mod 2
9: α←− 1− α

10: U ←− {v ∈ C|pr(v) = m}
11: A←− AttrHα (U)
12: (W ′0,W

′
1)←− Zielonka_SCC(H\A)

13: B ←− AttrHα (W ′α)
14: if B =W ′α then
15: (Wα,Wα)←− (A ∪W ′α, B)
16: else
17: (W ′0,W

′
1)←−Zielonka_SCC(H\B)

18: (Wα,Wα)←− (W ′α,W
′
α ∪B)

19: end if
20: (WG

0 ,W
G
1 )←− (WG

0 ∪W ′0,WG
1 ∪W ′1)

21: end for
22: (WG

0 ,W
G
1 )←− (AttrG0 (W

G
0 ), AttrG1 (W

G
1 ))

23: end while
24: return (WG

0 ,W
G
1 )

25: end function

Example 2. As an example where using SCC decomposition might increase the effectiveness
of Zielonka’s recursive algorithm, the flow of the algorithm with SCC decomposition is shown in
Figure 3.3. The first SCC decomposition when running Zielonka’s recursive algorithm with SCC
decomposition on parity game G of Figure 3.3 is shown in the leftmost game in Figure 3.4. The
algorithm starts with SCC decomposition. Each SCC in Figure 3.4 is given its own color. The
only final SCC is the one with the purple color, so this one is picked for the first iteration and
shown in isolation as H1. The highest priority is 2 and since all vertices of H1 belong to player 0
all vertices are attracted. The algorithm then checks for all of G which vertices are attracted to
the vertices won by either player in H1. Since player 1 did not win any vertices none are attracted,
but for player 0 vertices v0, v2, v3, v4, v5, v6 and v7 are. So these vertices are all added as winning
vertices for player 0. After all these vertices have been removed from G this leaves only v1 which is
just a single SCC called H2. This vertex is won by player 1 and attracts only itself. After removal
of this vertex the graph will be empty so the algorithm is done.

Even in this small example first looking at vertices with the highest priority in the final SCC
instead of the overall graph, already saved some computations. The algorithm without SCC
decomposition was executed 3 times, not counting the recursions on empty games. The algorithm
with SCC decomposition executed the same calculations only twice, once for the final SCC and
once for that last vertex.

1Some changes have been made to the algorithm starting from this line which speeds up the algorithm with
several magnitudes. These changes are trivial and most likely intended by the author of the paper containing the
algorithm.
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Figure 3.4: Different stages of running Zielonka’s recursive algorithm with SCC decomposition on
parity game G. Each SCC is shown in a different color.





Chapter 4

Problem statement

In Zielonka’s algorithm optimized with the SCC decomposition, in each iteration and recursion
the graph is decomposed into SCCs. Can Zielonka’s algorithm be improved by decomposing in
a smarter way? This idea is the basis for the research questions answered in this thesis. This
chapter defines those research questions.

In Zielonka’s recursive algorithm the addition of SCC decomposition is useful for speeding
up the algorithm. The graph is decomposed in SCCs at 2 points in the algorithm. First at the
start of the algorithm to find the SCCs. Secondly, at the end of each iteration of the loop when
the winning region of both players is removed from the graph. This is needed since the winning
regions not only contain vertices of the final SCC considered in this iteration, but also vertices of
the attractor set over the whole graph. When those vertices are removed, the SCC they were part
of might possibly split into multiple new SCCs.

In Zielonka’s recursive algorithm optimized with SCC decomposition it is always the case that
at the end of the iteration, the whole graph G\(WG

0 ∪WG
1 ) is decomposed into SCCs. This might

however not always be necessary. There might be SCCs in the old decomposition from which
no vertex or edge was removed. These SCCs will not change even if the graph is decomposed
into SCCs again. The Zielonka’s algorithm does not use this property. The following example
illustrates this idea:

Example 1. Take as an example the game depicted in Figure 4.1. In this game every set of 3
vertices with the same priority form an SCC. When taking the final SCC, no other vertices are
attracted to it as it is more beneficial for the player of the preceding SCC not to enter this final
SCC. So only vertices of the final SCC are removed from the game in every iteration of the loop.
Zielonka’s recursive algorithm will again decompose the graph into SCCs, resulting in basically
the same SCC decomposition, just without that final SCC which was processed that last iteration.

We observe that a lot of computations could be saved when only the graph containing vertices
of the SCCs from which some vertices have been removed has to be decomposed into SCCs. Not
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Figure 4.1: A triangle parity game
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having to decompose the unchanged SCCs again might save a lot of time as Tarjan’s algorithm
can run on a much smaller graph. Or Tarjan’s algorithm might not have to be called at all after
some iterations if all SCCs either have no or all vertices removed. This idea leads to the following
2 research questions:

1. What is the impact on the runtime of Zielonka’s recursive algorithm of only recalculating
SCCs whose vertices have been removed from the graph instead of recalculating all SCCs?

2. What is the difference in the total number of vertices decomposed into SCCs when recalcu-
lating SCCs whose vertices have been removed from the graph compared of recalculating all
SCCs?

These questions can be answered theoretically or practically. In this thesis, we focus on answering
the questions in the practical sense by implementing both ways and assessing their runtime on
the benchmarks described in [10]. The process of how to decompose only the graph containing
vertices of SCCs of which some vertices have been removed (partial decomposition) is described
in chapter 5.

Another approach would be to, instead of decomposing the graph into SCCs over and over
again, to dynamically keep track of the SCC decomposition under edge or vertex deletion. A
way of dynamically keeping track of SCCs under edge deletion is described by Łącki in [9]. He
proposes to store each SCC in an SCC tree, which can be updated under edge deletion. Chapter 6
will describe how Łącki proposes to store the SCC decomposition in SCC trees and the process of
updating these SCC trees. Dynamically keeping track of the SCC decomposition might in practice
improve the runtime of Parity game solving algorithms. This also can be seen from the former
example. If the game of Figure 4.1 consisted of n of these games connected by a single edge to
continue the same pattern, then every iteration only 3 vertices are removed while for example after
the first iteration n− 1 SCCs that did not change have to be recalculated. It might save a lot of
time to dynamically remove these vertices. This leads to the next research question:

3. What is the impact on the runtime of Zielonka’s algorithm of using dynamic SCC mainten-
ance instead of recalculating the SCCs after each iteration?

4. Does the size of the SCC tree matter for the runtime of Zielonka’s algorithm with dynamic
SCC maintenance? And if so, what is the relation between size and runtime?

5. How many nodes in the SCC tree are updated during the entire run of Zielonka’s recursive
algorithm in comparison the number of vertices decomposed by partial decomposition or
decomposition of the whole graph.

In chapters 5 and 6 we describe both approaches in more detail, and in chapter 7, we report on
the experiments we conducted with implementations of both approaches and answer the research
questions listed above.
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Chapter 5

Partial re-decomposition

At the end of the Optimized Zielonka’s recursive algorithm (Algorithm 2) in line 21, vertices, whose
winner is known, are removed from the graph and the remainder of the graph is decomposed into
SCCs. However in the old SCC decomposition there might be SCCs from which none of the
vertices are removed. When the graph is decomposed again, these SCCs will stay exactly the
same. In this chapter, we will develop a novel algorithm to decompose the part of the graph of
the SCCs that did have vertices removed.

Example 1. Take as an example the graph on the left in Figure 5.1. When removing v5 from
this graph, it suffices to re-decompose the sub graph of the blue SCC that v5 is part of. The SCC
in the orange square will not change. When decomposing the sub graph of vertices v1, v2, v3 and
v6, 2 new SCCs are found. These new SCCs are shown in the graph on the right in the purple and
green square. This graph on the right shows the resulting SCC decomposition after removing v5

Algorithm 3 Partial re-decomposition

1: function Partial(Graph G = (V,E), SCC decomposition S, X ⊆ V )
2: V ′ ←− ∅
3: for all vertex v ∈ X do
4: C ←− SCC(v)
5: if C ∈ S then
6: Remove C from S
7: V ′ ←− V ′ ∪ {C\X}
8: end if
9: end for

10: S′ ←− SCC_Graph_Decomposition((V ′, {(v, w) ∈ E|v, w ∈ V ′}))
11: return S ∪ S′
12: end function

In Algorithm 3 the function Partial(G,S,X) takes a graph G, its SCC decomposition S and
a set of vertices X that have to be removed from G. For any vertex x ∈ X it removes SCC(x)
from S. The vertices in SCC(x) that are not in X will have to be assigned to a new SCC, so
they are added to the set V ′. So after construction of V ′, the sub graph made from the vertices
in V ′ is decomposed into SCCs. This new collection of SCCs is then merged with the SCCs in S
that did not have a vertex in X and returned. So the returned SCC decomposition is the SCC
decomposition of the graph G\X.

Theorem 3. The function Partial(G,S,X) returns the SCC decomposition of the graph G\X,
given a graph G = (V,E), the SCC decomposition S of G and a set of vertices X ⊆ V .

Proof. To prove that Partial(G,S,X) returns the SCC decomposition of G\X assuming that S
is a correct SCC decomposition of G we need to prove the following:
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1. Each vertex v ∈ V \X is part of exactly 1 SCC

2. Any vertex x ∈ X is not a member of any SCC in the returned SCC decomposition

3. For each SCC: any vertex in the SCC can reach every other vertex in the SCC

4. For each SCC: the SCC is maximal

We first show property 1. To prove that each vertex v ∈ V \X is part of exactly 1 SCC we
need to distinguish 2 cases:

• In S, the SCC v is part of does not contain any vertex in the set X. In this case
SCC(v) will not be removed from S and any SCC not removed from S is present in the
returned SCC decomposition. So v is present in at least 1 SCC. Because the SCC does not
contain any vertex in X, no vertex of SCC(v) will be added to V ′. So since v will not be
present in V ′ it will not be in an SCC in S′ and therefore v is present in at most 1 SCC.

• In S, the SCC v is part of does contain a vertex in the set X. Because v is part of
an SCC that does contain a vertex in the set X, SCC(v) is removed from S and v is added
to V ′. So S no longer contains an SCC which has v as member. Because v ∈ V ′ it will be a
member of 1 SCC in S′ since the decomposition algorithm returns a correct decomposition.
So v is a member of exactly 1 SCC in the returned SCC decomposition.

We next show the second property. To prove that any vertex x ∈ X is not a member of any
SCC in the returned SCC decomposition we assume that x is a member of an SCC in the returned
SCC decomposition and prove a contradiction. If x is a member of an SCC in the returned SCC
decomposition then either SCC(x) ∈ S or SCC(x) ∈ S′. If, upon termination, SCC(x) ∈ S, then
SCC(x) should not be removed from S in the loop in lines 3 to 11. But this loop removes the SCC
of any vertex in X and x ∈ X. So this path reaches a contradiction. If SCC(x) ∈ S′ then x ∈ V ′
since S′ contains the decomposition of the graph (V ′, {(v, w) ∈ E|v, w ∈ V ′}). However lines 7 to
9 only adds vertices in the set C\X to V ′, and since x ∈ X, it cannot be the case that x ∈ C\X,
so a contradiction is reached on this path as well. So since SCC(x) /∈ S or SCC(x) /∈ S′ we have
proven that x is not a member of any SCC in the returned SCC decomposition.

For property 3, to prove that for each SCC C, any vertex in C can reach every other vertex in
C, we again use a case distinction:

• At line 13 C ∈ S. This case is trivial since the assumption was that S was a correct SCC
decomposition of G and since C is still in S at line 13 it means that no vertices or edges
have been removed and thus all paths still exist.

• At line 13 C ∈ S′. This case is trivial as well since the call to the decomposition algorithm
returns a correct SCC decomposition.

So no matter if C ∈ S or C ∈ S′ we have that any vertex in C can reach every other vertex in C.
Finally for property 4, to prove that for each SCC C: C is maximal, we again use a case

distinction:

• At line 13 C ∈ S. Assume that C is not maximal. Then there exists a vertex w ∈ V \X
such that all vertices in C can reach w and can be reached from w. But since w ∈ V \X we
also have that w ∈ V , so this would mean that C ∈ S was already not maximal as input
argument. Since S is a correct SCC decomposition of G, and C ∈ S implies C ∩X = ∅, C
is maximal.

• At line 13 C ∈ S′. This case is trivial since the call to the decomposition algorithm returns
a correct SCC decomposition and S is a correct SCC decomposition of G at time of input.

So no matter if C ∈ S or C ∈ S′ we have that C is maximal.
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v0 v1 v2 v3

v4 v5 v6

v0 v1 v2 v3

v4 v6

Figure 5.1: Example of a partial re-decomposition.

Theorem 4. The function Partial(G,S,X) returns the SCC decomposition of the graph G\X,
given a graph G = (V,E), the SCC decomposition S of G and a set of vertices X ⊆ V , in
O(|V |+ |E|) time.

Proof. The complexity of O(|V |+ |E|) can be seen from the steps of algorithm 3. First the SCCs
of the vertices in X are removed. Considering S to be a set of SCCs, removing an SCC will take
O(1) time. There are at most |V | vertices in X, so removing the SCCs of the vertices in X takes
O(|V |) time. Then the vertices in the removed SCCs that are not in X are added to the set of
vertices V ′. Since each vertex in V is in exactly 1 SCC, there are at most |V | vertices added to
V ′, taking O(|V |) time. Then the sub graph (V ′, {(v, w) ∈ E|v, w ∈ V ′}) is decomposed in SCCs,
which takes O(|V ′|+ |{(v, w) ∈ E|v, w ∈ V ′}|) = O(|V |+ |E|) time. All these steps together take
O(|V |+ |V |+ |V |+ |E|) = O(|V |+ |E|) time.
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Chapter 6

Dynamic SCC Maintenance

This chapter describes a combination of algorithms and a data structure which make it possible
to dynamically keep track of the SCCs of a graph under edge deletion. The input for this chapter
is a paper by Łącki [9]. The algorithms from [9], can process a sequence of edge deletions in the
data structure in O(mn) time and can check if there is a path between 2 vertices in O(1) time,
where m is the number of edges and n the number of vertices.

The data structure which can dynamically keep track of the SCCs of a graph under edge
deletion is called an SCC tree. The SCC tree will be described in section 6.1 together with some
functions that are needed to describe this structure as well as how to build it.

How this data structure keeps track of the SCCs under edge deletion is described in section
6.2. Next to the function for edge deletion which is described in the paper by Łącki, section 6.2
also describes 2 functions which together can maintain the SCC trees while removing vertices from
the graph.

6.1 SCC tree initialization

Each SCC of a given input graph is stored in an SCC tree, a data structure in which each leaf
node represents a vertex of the SCC and each non leaf node represents a sub graph of the SCC
such that this sub graph on its own is also an SCC of the subgraph and contains all vertices of
the leaf nodes in the sub tree rooted at this non leaf node.

Definition 10 (SCC tree). Formally an SCC tree is a tuple (TN, (I, L, S), E, r), where TN is a
set of nodes, (I, L, S) is a partition of TN into inner nodes (I), leaf nodes (L) and split nodes
(S), E ⊆ I × TN is a set of edges and r ∈ TN the root of the tree, where we require that
¬∃w∈TN : (w, r) ∈ E. E

To to build an SCC tree the functions split(G, d) and condense(G) are needed. These 2
functions are described in subsections 6.1.1 and 6.1.2. Then subsection 6.1.3 will follow with a
detailed explanation of the SCC tree data structure and how to build an SCC tree. It will also
give the complexity for building this SCC tree and the space complexity to store the SCC tree in
memory.

6.1.1 Split

The function split(G, d) takes a vertex d ∈ V in a graph G = (V,E) and splits it into 2 fresh
vertices, a vertex that inherits the incoming edges (v, d) ∈ E (inedges) of d and a vertex that gets
the outgoing edges (d, v) ∈ E (outedges) of d.

The splitting of d into 2 vertices follows the following steps. First it adds 2 new vertices to V
which are called din and dout. The vertex d itself is removed from V . Then all inedges of d are
removed and each edge (v, d) is replaced by the corresponding edge (v, din). All outedges of d are
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Figure 6.1: The graph on the right shows visualisation of the effect of the function split(G, v1),
on the graph on the left

also removed and this time each edge (d, v) is replaced by the corresponding (dout, v) edge. The
function split(G, d) returns the modified version of the graph.

Definition 11 (Split). Formally the graph returned by split(G, d) is the graph G′ = (V ′, E′)
with V ′ = (V \{d}) ∪ {din, dout} and E′ = (E\{(v, w)|v = d ∨ w = d}) ∪ {(v, din)|(v, d) ∈
E\{(d, d)}} ∪ {(dout, w)|(d,w) ∈ E\{(d, d)}} ∪ {(dout, din)|(d, d) ∈ E}.

Figure 6.1 visualizes the effect of the split(G, d) function. In the graph on the left the
vertex v1 is split into v1in and v1out . Vertex v1 itself is removed. The inedge (v2, v1) of v1
is replaced by (v2, v1in), and the outedges (v1, v3) and (v1, v4) are replaced by (v1out , v3) and
(1out, v4) respectively.

6.1.2 Condense
The graph G′ = (V ′, E′), with V ′ ⊆ 2V and E′ ⊆ V ′ × V ′ × V × V , returned by the function
Condense(G) described in [9] is a condensation of G = (V,E). In a condensation the SCCs of
the graph are replaced by a single vertex which gets all edges going in and out of the SCC. The
edges in a condensed graph are tuples which contain both the condensed vertices and the original
endpoints of the edge. In this chapter the graph G′ returned by Condense(G) will be called a
condensed graph and its vertices condensed vertices.

In the set of condensed vertices V ′ returned by Condense(G) each condensed vertex v′ ∈ V ′
represents a unique SCC in G. Every edge (a, b, y, v) ∈ E′, a 6= b, is an edge between condensed
vertices a, b ∈ V ′ annotated by a pair (y, v), representing an edge in G. In these edges a is the
condensed vertex representing the SCC containing y and b is the condensed vertex representing
the SCC containing v. There can be multiple edges between the same condensed vertices in V ′

each labeled with a different edge from G. When removing an edge (a, b, y, v) from E′, this will
sometimes be shortened to removing (y, v) from E′, which is a unique label.

Definition 12 (condense). Let SCC(x) denote the SCC x ∈ V is part of. Then the condensed
graph G′ = (V ′, E′), with V ′ ⊆ 2V and E′ ⊆ V ′ × V ′ × V × V , returned by the function
Condense(G) can be described by V ′ = {SCC(v)|v ∈ V } and E′ = {(a, b, c, d)|a, b ∈ V ′ ∧ a 6=
b ∧ c ∈ a ∧ d ∈ b ∧ (c, d) ∈ E}.

Example 1. Figure 6.2 shows the effect of Condense(G) on a graph. The graph on the left of
Figure 6.2 has 3 SCCs: {v2}, {v1, v3, v4} and {v5, v6}. So for these SCCs the condensed vertices
{v2}, {v1, v3, v4} and {v5, v6} are added to V ′. The edges which have endpoints in different SCCs
are (v2, v1), (v3, v5), (v4, v6), so for each of these edges an edge between the condensed vertices
is added, resulting in E′ = {({v2}, {v1, v3, v4}, v2, v1), ({v1, v3, v4}, {v5, v6}, v3, v5), ({v1, v3, v4},
{v5, v6}, v4, v6)}. There are 2 edges between condensed vertices {v1, v3, v4} and {v5, v6} in E′

because there were 2 edges between vertices in the SCC {v1, v3, v4} and {v5, v6}, but both are
annotated with different edges from G. The condensed graph is shown in the graph on the right
in Figure 6.2. In a condensed graph, an edge (a, b, c, d) ∈ E′ is shown as an arrow from a to b with
a label (c, d).

20 Optimising parity game solvers using dynamic SCC maintenance



CHAPTER 6. DYNAMIC SCC MAINTENANCE

v1

v2

v3

v4

v5

v6

{v2} {v1, v3, v4} {v5, v6}
(v2, v1) (v4, v6)

(v3, v5)

Figure 6.2: The graph on the right shows visualisation of the effect of the function condense(G),
on the graph on the left
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Next to condense, [9] also describes the function splitAndCondense(G, d), which applies the
condense function after the split function, i.e. splitAndCondense(G, d)= condense(split(G, d)).
An application of this function results in a condensed directed acyclic graph as if there had been
cycles these would be in the same SCC and thus condensed.

Example 2. As an example, condensed graph GRb in Figure 6.4 on page 25 shows the result of
applying splitAndCondense on the graph depicted in the top left of Figure 6.4.

6.1.3 SCC tree

Using the splitAndCondense function an SCC tree, which is the data structure used in [9], can
be built. An SCC tree represents exactly one SCC. If the input graph consists of multiple SCCs,
each of these SCCs will get their own SCC tree. To explain the structure of an SCC tree the graph
G in the left top corner of Figure 6.4 will be used, which will result in the SCC tree in the right
top corner. Algorithm 4 shows the pseudocode outlining how to build an SCC tree.

For an overview of a graphical representation of the terms regarding SCC trees see Figure 6.3.
We refer to the input graph as the original graph. The vertices of the original graph are called
vertices, the vertices of the SCC tree are called nodes.

Recall that an SCC tree is a tuple (TN, (I, L, S), E, r), Where each node N ∈ TN represents an
SCC. We associate a unique name NC for a node representing SCC C ⊆ V ; as convention we write
Nv when C = {v}. The SCCs represented by the nodes in TN do either not overlap, or one is a
subset of the other. So ∀NC1

6=NC2
∈TN : (C1∩C2 = ∅)∨(C1 ⊂ C2)∨(C2 ⊂ C1). It also must be the

case that for each inner node NC ∈ I there is a path from NC to Nv ∈ L for each vertex v ∈ C and
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this leaf node must exist. So ∀NC∈I∀v∈C : Nv ∈ L and ∀NC∈I∀Nv∈L : v ∈ C =⇒ (NC , Nv) ∈ E∗
where E∗ is the transitive closure of E.

Definition 13 (G(NC)). For a node NC , G(NC) denotes the subgraph of G restricted to C, i.e.
G(NC) = G ∩ C.

For each inner node NC ∈ I, there are at least 2 edges in E. Of all outedges of NC exactly 1
edge is to a split node Nd ∈ S. The targets of all other outedges of NC have to be inner or leaf
nodes, so are part of the set TN\S. For each edge (N1, N2) ∈ E the node N2 is called the child
of node N1 and N1 is the parent of node N2.

Definition 14 (p(N)). Given an SCC tree and node N ∈ TN with N 6= r, p(N) stands for the
parent node of N . So p(N) is the node NP ∈ TN such that (NP , N) ∈ E and there is only 1 such
node. For root node r, p(r) is not defined.

Definition 15 (D(NC)). Given an SCC tree and an inner nodeNC ∈ TN ,D(NC) is the condensed
graph generated by SplitAndCondense(G(NC), d), with d ∈ C, Nd ∈ S and (NC , Nd) ∈ E.

The condensed graph D(NC) = (V ′, E′) consists of several condensed vertices each of which
represent an SCC. The set TN contains a vertexNCV for each condensed vertex CV ∈ V ′\{{din}, {dout}.
Additionally there is an edge (NC , NCV ) ∈ E. In future algorithms V (D(NC)) = V ′ is the set of
condensed vertices in D(NC) and E(D(NC)) = E′ is the set of edges in D(NC).

The building of the SCC tree (TN, (I, L, S), E, r) for an SCC C with more than 1 vertex as
described in algorithm 4 approximately follows the following process:

1. A node NC represents the whole SCC C. This is the root node r, and since C has more
than 1 vertex, NC is included in both TN and I.

2. A function call is made to SplitAndCondense(G(NC), d) for some randomly selected vertex
d ∈ C.

3. For the condensed vertices {din} and {dout} a single node Nd is added to TN and S. Since
Nd is a child of NC , an edge (NC , Nd) is added to E.

4. For each condensed vertex CV :

a) If the SCC represented by that vertex has only 1 vertex, then the node NCV is a leaf
node and added to TN and L. Since NCV is a child of NC , an edge (NC , NCV ) is added
to E.

b) If the condensed vertex CV represents an SCC with multiple vertices, then the node
NCV is an inner node and added to TN and I. Since NCV is a child of NC , an edge
(NC , NCV ) is added to E. Since NCV is an inner node, it will have children of its own,
so the process returns to step 2 where now NC is set to NCV .

The loop in steps 2 to 4 continues until the whole tree is built. The tree is built in such way
because, as stated by [9], by tracing the connectivity of splitAndCondense(G(NC), d) one can
retrieve information about the connectivity of G(NC). This means that as long as every condensed
vertex in splitAndCondense(G(NC), d) can reach {dout} and can be reached from {din}, it also
is the case that any vertex in G(NC) can reach any other vertex in (NC) making G(NC) a strongly
connected component. Once a condensed vertex in splitAndCondense(G(NC), d) cannot reach
{dout} or cannot be reached from {din}, it means that all vertices in the SCC represented by that
condensed vertex cannot reach d or cannot be reached from d, which means that G(NC) is no
longer an SCC.

Example 3. An example of how an SCC tree is formed using the splitAndCondense function
is shown in Figure 6.4. To save space in the figure, the inner nodes NC have been shortened to a
single letter. The root R = N{v1,v2,v3,v4,v5,v6,v7,v8} is added to the set of nodes and inner nodes.
Since the SCC contains multiple vertices, splitAndCondense(G(R), v1) is called. It has 2 split
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Algorithm 4 Building an SCC tree

1: function Dynamic_SCC_Decomposition(Graph G)
2: DSD ←− {:} empty Map, SCC tree root node to SCC tree
3: EBT ←− ∅ empty Set of edges between SCC trees
4: V TR←− {:} empty Map of vertex to SCC tree root node
5: D ←− SCC_Graph_Decomposition(G)
6: for all SCC C ∈ D do
7: if |C| = 1 then
8: pick v ∈ C
9: V TR[v]←− NC

10: DSD[NC ]←− {({NC}, (∅, {NC}, ∅), ∅, NC)}
11: else
12: (TN, (I, L, S), E, r)←− BuildTree(G,C)
13: for all vertex v ∈ C do
14: V TR[v]←− r
15: end for
16: DSD[r]←− (TN, (I, L, S), E, r)
17: end if
18: EBT ←− EBT ∪ {(v, w) ∈ E|v ∈ C ∧ w /∈ C}
19: end for
20: return (DSD,EBT, V TR)
21: end function
22:
23: function BuildTree(Graph G, SCC C)
24: TN ←− {NC}, I ←− {NC}, L←− ∅, S ←− ∅, E ←− ∅, r ←− NC
25: queue←− [NC ]
26: while queue is not empty do
27: N ←− queue.dequeue
28: (V,E)←− G(N)
29: pick d ∈ V
30: (V ′, E′)←− SplitAndCondense(G(N), d)
31: for all condensed vertices CV ∈ V ′\{{din}, {dout}} do
32: TN ←− TN ∪ {NCV }
33: E ←− E ∪ {(N,NCV )}
34: if |CV | = 1 then
35: L←− L ∪ {NCV }
36: else
37: I ←− I ∪ {NCV }
38: queue.enqueue(NCV )
39: end if
40: end for
41: TN ←− TN ∪ {Nd}
42: E ←− E ∪ {(N,Nd)}
43: S ←− S ∪ {Nd}
44: end while
45: return (TN, (I, L, S), E, r)
46: end function
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nodes and 2 condensed vertices representing SCCs containing more than 1 vertex. Thus in the
first layer of the SCC tree, the root R has 3 children: split node N{v1}, and 2 children that are
both inner nodes: A = N{v2,v3,v5,v7} and B = N{v4,v6,v8}. The split node N{v1} is added to S and
inner nodes A and B are added to I. For each child an edge is introduced from R to the child. The
steps are repeated for both inner nodes: splitAndCondense(G(A), v2) is called for node A. The
condensed graph D(A) has 2 split nodes and a condensed vertex representing more than 1 vertex.
So A has 2 children: split node N{v2} and inner node C = N{v3,v5,v7}. The split node N{v2} is
added to S, inner nodes c is added to I and an edge is introduced from A to both children. Since
C is an inner node, the steps are repeated: splitAndCondense(G(C), v3) is called and now only
contains 2 split nodes and 2 condensed vertices representing SCCs with only a single vertex. Now
C has 3 children: split node N{v3} and leaf nodes N{v5} and N{v7}. The split node N{v3} is added
to S and leaf nodes N{v5} and N{v7} are added to L. An edge is introduced from C to each child.
Since C has no inner node children the process stops here. The process for inner node B is similar
to the process of inner node C.

The dynamic SCC decomposition of graph G = (V,E), which contains an SCC tree for each
SCC of G also stores some auxiliary variables needed for ease of access by the maintenance al-
gorithms. For each vertex v ∈ V it stores the root of the SCC tree which contains leaf node Nv.
Each edge (v, w) ∈ E is stored in D(N) of the least common ancestor N of Nv and Nw. The
dynamic SCC decomposition stores this least common ancestor for each edge, so it can be found
in constant time when this edge might need to be deleted. Lastly the dynamic SCC decomposition
stores the edges between SCC trees, so the edges in E whose endpoints are part of different SCCs
of G.

Theorem 5. According to [9], an SCC tree can be constructed for an SCC C of a graph G in
O(mδ) time, where δ is the height of the tree and m the number of edges in G ∩ C, and requires
O(n+m) space, with n the number of vertices in G ∩ C.

Below, a short proof that these complexities can be met will be given. In appendix D.1 the
implementation of the process of building SCC trees for a given input graph is given with a more
detailed proof that constructing an SCC tree in such way can be done in O(mδ) time in practice.
Appendix F shows how the implementation stores the SCC tree with a more detailed proof that
this implementation meets the O(n+m) space complexity requirement. It also makes some details
which were omitted in [9] more explicit.

Proof. We first address the space complexity. That an SCC tree can store an SCC C in O(n+m)
space can be reasoned as follows: each inner node has at least 2 children, 1 of which is a leaf (split)
node. Therefore there can be at most O(|C|) inner nodes and at most O(2 ∗ |C|) = O(|C|) nodes
in an SCC tree in total. Each node, except the root node, stores its parent, so the parent is stored
at most O(|C|) times. A node is a child of at most 1 other node. By storing the children of a node
in a list in the node, storing the children will take O(|C|) space over all nodes in total. Each edge
in G ∩ C = (C,E) is stored in 1 inner node. By storing the edges in lists the total storage space
needed to store the edges is O(|E|). Lastly the auxiliary variables. The root has to be stored
for each vertex. Storing this information in a hashmap takes at most O(|C|) space, considering a
constant load factor. The same goes for storing in which inner node each edge is stored. Storing
this information for each edge in the SCC in a hashmap takes at most O(|E|) space, considering
a constant load factor. So in total to store the SCC tree takes O(|C|+ |E|) = O(m+ n) space.

Next, we consider the runtime complexity. To construct an SCC tree for SCC C, with G∩C =
(V,E), in O(mδ) time, each layer cannot take more than O(m) time. For each inner node NC ,
with G(NC) = (V ′, E′), splitAndCondense needs to find the SCCs after splitting. This would
take O(|C| + |E′|) time with an algorithm like Tarjan’s algorithm per inner node. For all inner
nodes in a layer of the tree together this would take at most O(|V |+ |E|) time as the sub graphs
of these SCCs do not overlap. Aside from these for every inner, leaf or split node a constant
number of items, such as corresponding edges to children, need to be added to a set. Adding
items to a set takes constant time, and since there are at most O(|C|) inner nodes, this will
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Figure 6.4: Example of storing the graph of an SCC as an SCC tree. The graph G on the left top
corner is stored in the SCC tree on the right top corner.
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take O(|C|) for all inner nodes together. So all together to create a layer of the SCC tree takes
O(|C|+ |E|) = O(|E|) = O(m) time.

6.2 SCC tree maintenance

To delete an edge from the SCC tree the functions called merge(G, d1, d2, d) and findUnreach-
able(G,S,w) are needed to determine the impact of the edge deletion on the SCC. Subsection
6.2.1 will first describe the functionality of the merge(G, d1, d2, d) function. Subsection 6.2.2
will then describe how the findUnreachable(G,S,w) function works and its complexity. Then
subsection 6.2.3 will show how to delete an edge from the SCC tree and the complexity for this
action.

The information about the functions split(G, d), condense(G), merge(G, d1, d2, d), findUn-
reachable(G,S,w) and deleteEdge(T, e) is taken from [9]. Next to these functions subsec-
tion 6.2.4 describes how to remove vertices from an SCC tree which we created based on how
deleteEdge(T, e) updates an SCC tree after edge deletion. Deleting vertices will be necessary for
Zielonka’s algorithm as after every iteration the vertices in the attractor sets have to be removed
from the decomposition and to remove them from the decomposition they have to be removed from
the SCC tree they are in first. Lastly section 6.2.5 shows which variables have to be updated when
a full SCC tree is deleted from a dynamic SCC decomposition. These 2 new functions together
allow the action of removing vertices from a graph.

6.2.1 Merge

The merge(G, d1, d2, d) function is basically a function which reverses the effect of split(G, d).
It removes the vertices d1 and d2 from the vertices of G and replaces these with vertex d. The
edges of G remain the same except for those with source d1, those will emerge from d, and hiwch
with target d2, which will be directed to d.

When merge(G) is used instead of merge(G, d1, d2, d), on a graph which was split by split(G, d)
before, then din will be used for d1, dout will be used for d2 and the d from split is used as input
for the d of merge. The input graph G for merge(G, d1, d2, d) or merge(G) can either be a nor-
mal graph, in which case d1, d2 and d are vertices, or a condensed graph where d1, d2 and d are
condensed vertices.

Definition 16 (Merge). Formally the graph G′ = (V ′, E′) returned by merge(G, d1, d2, d) can
be described as V ′ = (V \{d1, d2} ∪ {d}) and E′ = (E\{(v, w)|v = d1 ∨ w = d2}) ∪
{(v, d)|(v, d2) ∈ E} ∪ {(d, v)|(d1, v) ∈ E}. In case G was a condensed graph, the condensed graph
G′ = (V ′, E′) returned by merge(G, d1, d2, d) can be described as V ′ = (V \{d1, d2) ∪ {d}} and
E′ = (E\{(v, w, a, b)|v = d1 ∨ w = d2}) ∪ {(v, d, a, b)|(v, d2, a, b) ∈ E} ∪ {(d, v, a, b)|(d1, v, a, b) ∈
E}.

Example 1. As an illustration using Figure 6.1, a call to merge(G) on the graph on the right
would take v1in for d1, v1out for d2 and v1 for d as these are the vertices used and produced by
calling the function split(G, v1) on the graph on the left. So a call to merge(G) on the graph
on the right would result in the graph on the left.

6.2.2 Find unreachable

When in an SCC an edge of the SCC is deleted, it might have an effect on the inner node which
stored this edge and possibly on this inner node’s ancestors as well. The reason is that an inner
node represents an SCC and deleting an edge might cause this SCC to no longer be strongly
connected. In this case an update of the SCC tree would be required to make sure the SCC tree
is again really an SCC tree of the graph.
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The function findUnreachable(G,S) receives as input a condensed graph G = D(NC) of the
SCC C represented by the inner node NC from which an edge was deleted. It also receives a
list S which contains the condensed vertices in G that might have become a sink or a source as
a consequence of the edge deletion in an inner node. A source is a (condensed) vertex with no
inedges and a sink a (condensed) vertex with no outedges.

The function findUnreachable(G,S) will find all condensed vertices and their in and outedges
(incident edges) in G that cannot reach the split node of G or cannot be reached from the split
node. As long as all condensed vertices in G can reach {din} and can be reached from {dout}, with
d ∈ C, Nd ∈ S and (NC , Nd) ∈ E, then the SCC represented by the inner node is still an SCC.
The output of findUnreachable(G,S) is a minimal set of condensed vertices and their incident
edges such that if you remove these condensed vertices, G will again be an SCC. According to [9]
findUnreachable(G,S) will find this set of condensed vertices and edges in O(|S| + |V | + |E|)
time, with G = (V,E) the input condensed graph.

The findUnreachable(G,S) function, of which the pseudocode is described in algorithm 5,
taken from [9], makes use of 2 helper functions:

• findUnreachableDown(G,S,w) returns all condensed vertices and their incident edges in
G which cannot be reached from source w = {din}. The input graph G is the condensed
graph D(NC) of the SCC C represented by inner node NC . The list S contains all condensed
vertices in G that could possibly be a source. Any endpoint of any edge which was deleted
from G has the possibility to become a source and will therefore be present in S. The
condensed vertex w is the source split node of G.

• findUnreachableUp(G,S,w) returns all condensed vertices and their incident edges in G
which cannot reach sink w = {dout}. The input graph G is the condensed graph D(NC) of
the SCC C represented by inner node NC . The list S contains all condensed vertices in G
that could possibly be a sink. Any endpoint of any edge which was deleted from G has the
possibility to become a sink and will therefore be present in S. The condensed vertex w is
the source split node of G.

To find all condensed vertices which cannot be reached from w, the findUnreachableDown(G,S,w)
function first checks all condensed vertices in S. If the vertex is w, or if it still has inedges then it
is still possible that the condensed vertex might be reachable from w. If neither is the case then
the condensed vertex really is a source and thus cannot be reached from w and is added to the
queue. The function uses this queue to process the vertices that cannot be reached from w in
order, it contains those found by the function and that are not yet processed. Each vertex in the
queue is added to the set of unreachable vertices, and its incident edges are added to the set of
edges. Then it removes all its outgoing edges from G and checks if the target condensed vertex of
any of these edges now has become a source as well. If so it is not reachable from w. If the target
condensed vertex has become a source then it is added to the queue as well. This continues until
the queue contains no more sources. All vertices that are not in the set of unreachable vertices
can be reached from w.

Finding all vertices which cannot reach w with the findUnreachableUp(G,S,w) function is
similar to the process of findUnreachableDown(G,S,w). Instead of looking for sources, it now
checks for sinks and instead of removing outgoing edges, the incoming edges are removed. When
the source condensed vertex of such edge has become a sink it is added to the queue, since a sink
cannot reach any other vertex and thus cannot reach w.

Example 2. As an example, consider running findUnreachableDown(G, {{v1in}, {v3}, {v4}})
on condensed graph G in Figure 6.5. This could be a condensed graph of an SCC of which edges
({v1in}, {v3}, v1, v3) and ({v3}, {v4}, v3, v4) have been deleted. The list S = {{v1in}, {v3}, {v4}}
with the affected condensed vertices contains an actual source {v3}, the split node and a condensed
vertex which is not a source. The algorithm would first sift through these. Condensed vertex {v1in}
is not added to the queue since it is a split node, {v3} has no inedges so it is added to the queue,
while {v4} is not because it has an inedge. It takes a condensed vertex from the queue, {v3},
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{v3} {v2}

{v1in} {v4} {v1out}

(v3, v2)

(v1, v4) (v4, v1)

(v2, v1)

Figure 6.5: Running findUnreachableDown(G, {{v1in}, {v3}, {v4}}) on this condensed graph
G will yield unreachable vertices v3 and v2 with their incident edges ({v3}, {v2}, v3, v2) and
({v2}, {v1out}, v2, v1).

adds it to the list of unreachable vertices, adds its outgoing edge ({v3}, {v2}, v3, v2) to the list of
incident edges and removes the outgoing edge from G. It checks the target of this outgoing edge
and finds that now {v2} no longer has any inedges, thus {v2} is added to the queue. The next
condensed vertex that is taken from the queue is {v2}, again it is added to the list of unreachable
vertices, and its outgoing edge ({v2}, {v1out}, v2, v1) to the list of incident edge. Its outgoing edge
is removed from G. The target condensed vertex of this edge still has inedges so the algorithm
is done. The unreachable condensed vertices found are {v3} and {v2} which can indeed not be
reached from {v1in}.

6.2.3 Deleting an edge from an SCC tree

After deleting an edge from an inner node of an SCC tree it might be the case that the SCC
represented by the inner node no longer is an SCC tree. The function deleteEdge(T, e) is re-
sponsible for deleting an edge e ∈ E from SCC tree T and updating the SCC tree such that after
the function is done every inner node of T again represents an SCC.

Example 3. As an example of the 3 terms, take Figure 6.6. In the graph in this figure p(Z) = T .
In the left bottom rectangle G(Z) of node Z is shown and the condensed graph D(T ) of node T
is shown in the middle black square.

An edge that is deleted from the graph is either part of an SCC, in which case it is stored in
one of the inner nodes of the corresponding SCC tree, or an edge between SCCs. When the edge
is an edge between SCCs it can just be deleted without affecting any SCC trees. This is not the
case for an edge that is part of an SCC. Algorithm 6 describes how to delete an edge from an SCC
tree. According to [9], this algorithm can delete an edge and update the SCC tree in O(mn) time.

Deleting an edge from an SCC tree can be divided in 2 cases: deleting an edge from the root
node of the SCC tree or deleting an edge from a non root inner node of the SCC tree. In case of
deleting an edge from a non root inner node, possible children that have to be migrated upwards
in the tree are added to the parent of the node. In case of deleting an edge from a root inner
node, those children are not added to the parent but have to be transformed into new separate
SCC trees.

After deleting an edge from a root node B, findUnreachable is called on D(B) to check which
children and edges have to be removed from B to make B a valid SCC tree. If none then nothing
has to be done. If any, the nodes of the condensed vertices returned by findUnreachable have to
be removed to make sure G(B) again is an SCC. These nodes will be made into independent SCC
trees since they still represent an SCC. The incident edges of vertices in the SCC represented by
this node have been returned by findUnreachable, these are removed from B as well and now
have become vertices between SCCs. If B now only has the split node left as its child, then B is
replaced by a single leaf node representing the vertex that was stored in the split node. Either
way B again is an SCC and so are the children that have been turned into independent SCC trees
based on how the SCC tree is built.
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Algorithm 5 Helper function of UpdateSCC-Tree

1: function FindUnreachable((V,E), s)
2: (Udown, Idown)←− FindUnreachableDown((V,E), S, dout)
3: (Uup, Iup)←− findunreachableUp((V,E), S, din)
4: return (Udown ∪ Uup, Idown ∪ Iup)
5: end function
6:
7: function FindUnreachableDown((V,E), S, w)
8: U ←− {:} empty set
9: I ←− {:} empty set

10: Q←− [] empty queue
11: for all x ∈ S\{w} do
12: if x has no in edges then
13: Enqueue(Q, x)
14: end if
15: end for
16: while Q 6= empty queue do
17: v ←− Dequeue(Q)
18: U ←− U ∪ {v}
19: I ←− I∪IncidentEdges(v)
20: for all (v, x) ∈ E do
21: E ←− E\{(v, x)}
22: if x has no in edges then
23: Enqueue(Q, x)
24: end if
25: end for
26: end while
27: return (U, I)
28: end function
29:
30: function FindUnreachableUP((V,E), S, w)
31: U ←− {:} empty set
32: I ←− {:} empty set
33: Q←− [] empty queue
34: for all x ∈ S\{w} do
35: if x has no out edges then
36: Enqueue(Q, x)
37: end if
38: end for
39: while Q 6= empty queue do
40: v ←− Dequeue(Q)
41: U ←− U ∪ {v}
42: I ←− I∪IncidentEdges(v)
43: for all (x, v) ∈ E do
44: E ←− E\{(x, v)}
45: if x has no out edges then
46: Enqueue(Q, x)
47: end if
48: end for
49: end while
50: return (U, I)
51: end function
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Deleting an edge from a non root inner node of the tree is similar but takes a few more steps,
but still after deleting the edge from an inner node I, findUnreachable is called on D(I) to check
which children have to be removed such that the sub-tree rooted at I is again a valid SCC tree.
If none, nothing has to be done, since the whole tree is fine. If any, the nodes of the condensed
vertices returned by findUnreachable have to be moved elsewhere, outside of I, to make sure I
again is an SCC. So those nodes are added to the parent of I: p(I). The incident edges of vertices
in the SCC represented by any of the moved nodes have to be moved to p(I) as well. If I now
only has the split node left as its child, then I is replaced by a single leaf node representing the
vertex that was stored in the split node. So now I is fine and again an SCC, but this might not be
the case for p(I). So now findUnreachable is called on D(P (I)) to find if any nodes have to be
removed from p(I) to ensure p(I) stays an SCC, and in this case move those nodes and incident
edges up to p(p(I)) and then do the same, until either the ancestor is found to still be an SCC or
the root node is reached.

Example 4. As an example of deleting an edge between vertices in an SCC, edge (v6, v7) is
deleted from the graph Gold in the top left corner of Figure 6.7. Edge (v6, v7) is stored in node
Z as this is the lowest common ancestor between leaf nodes v6 and v7. In the red rectangle in
Figure 6.7 D(Z) is shown with the edge to be deleted in red. After (v6, v7) has been deleted,
findUnreachable will find that condensed vertex {v7}, with incident edge ({v7}, {v4in}, v7, v4)
now has become unreachable. So yielding corresponding leaf node v7 is moved to P (Z) = T , as
well as the incident edge, giving the new version of the SCC tree T and condensed graph D(T )
shown in the black rectangle in Figure 6.7. The node Z now is fine as without v7, G(Z) again is an
SCC. Now, it has to be checked for T if this is the case as well. The function findUnreachable will
find that condensed vertex {v7}, with incident edge ({v7}, {v4, v5, v6}, v7, v4) is still unreachable
in D(T ) as well. This time T is a root node, so instead of moving leaf node v7 to P (T ), it will
become an independent SCC tree, and (v7, v4) becomes an edge between SCC trees. The bottom
of Figure 6.7 shows Gnew which is the graph of Gold where (v6, v7) is deleted and the resulting
SCC trees which indeed represent the SCCs of Gnew.

6.2.4 Deleting a set of vertices from an SCC tree

in [9] only an algorithm which deletes a single edge from a tree is given. This section will describe a
function removeVerticesFromTree(D,T,X) which deletes edges of vertices in the set X in SCC
tree T and updates the SCC tree T and the dynamic SCC decomposition D with as goal to remove
any leaf node representing a vertex in X from T . This extra function is needed for Zielonka’s
algorithm where, after each iteration, the vertices in the attractor set have to be removed from the
decomposition. To remove vertices from the decomposition their leaf nodes should be in an SCC
tree of which all leaf nodes represent vertices that have to be removed. The function achieves this
by removing leaf nodes of vertices which have to be removed, which are present in X, from the
SCC tree T which also contains vertices that should stay.

The function removeVerticesFromTree, described in Alg 7, makes use of how the UpdateSCC-Tree
function updates a node for the deleteEdge function. When vertices need to be removed from
the dynamic SCC decomposition it will be necessary to first separate the leaf nodes representing
these vertices from trees which also contain vertices that should not be removed. Assume there
is a subtree rooted at node S in an SCC tree such that all leaf node descendants of S represent
vertices that should be removed. Then removing all edges of vertices in the set X in the parent
of S will make S unreachable in D(P (S)). By then moving S to the parent of the parent of S
and repeating these steps, the subtree rooted at S is propagated upwards in the SCC tree until it
becomes an independent tree in the decomposition. This independent tree with root node S can
then be removed as a whole from the decomposition D.

The UpdateSCC-Tree function updates a tree bottom up. It starts at the changed node, and
then updates all ancestors until there are no changes. For the removeVerticesFromTree func-
tion to be able to use this bottom up approach as well, it uses the function topologicalSort-
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Algorithm 6 Deleting an edge from an SCC tree

1: function DeleteEdge(SCC-Tree T , (u, v) ∈ E)
2: N ←− the node of T containing (u, v)
3: remove (u, v) from D(N)
4: UpdateSCC-Tree(N, {u, v})
5: end function
6:
7: function UpdateSCC-Tree(SCC-Tree node N , A ⊆ V (D(N)))
8: (U, I)←− FindUnreachable(D(N), A)
9: if U = ∅ then

10: return
11: end if
12: d←− the split vertex for N
13: U ′ ←− Merge(D(N))
14: remove (U ′, I) from D(N)
15: if D(N) = ({din}, {dout}}, ∅) then
16: D(N)←− Merge(D(N))
17: end if
18: S ←− subtrees of N corresponding to elements of U ′
19: if N is not the root node then
20: add U ′ and I to D(p(N))
21: for all P ∈ S do
22: set parent of P to p(N)
23: end for
24: for all u ∈ U ′ do
25: for all x ∈ u do
26: cv[x]←− vertex in D(p(N)) corresponding to u
27: end for
28: end for
29: for all v ∈

⋃
U ′ do

30: for all (u, v) ∈ E(G) do
31: if for some endpoint x ∈ (u, v), x /∈ U ′ then
32: update edge (u, v) in D(p(N)) replacing endpoint x with cv[x]
33: end if
34: end for
35: end for
36: vN ←− the vertex in D((N)) corresponding to N
37: UpdateSCC-Tree(p(N), U ∪ {vN})
38: else
39: for all P ∈ S do
40: disconnect P from N and make a separate tree out of it
41: VP ←− vertices of the subgraph represented by P
42: for all v ∈ VP do
43: SCC[v]←− P
44: end for
45: end for
46: end if
47: end function
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Figure 6.6: The black squares show G(N) and D(N) for every inner node N of the SCC trees.
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Algorithm 7 Remove a set of vertices from an SCC tree

1: function removeVerticesFromTree(Dynamic Decomposition D, SCC-Tree T , X ⊆ V )
2: queue←− TopologicalSortAffected(root node of T , X)
3: while queue is not empty do
4: (p,M, r, l)←− queue.dequeue()
5: for all x ∈ X do
6: for all (x, v) ∈ E do
7: if M contains (x, v) then
8: remove (x, v) from D(M)
9: l←− l ∪ {x, v}

10: end if
11: end for
12: for all (v, x) ∈ E do
13: if M contains (v, x) then
14: remove (v, x) from D(M)
15: l←− l ∪ {x, v}
16: end if
17: end for
18: end for
19: if p 6= null then
20: UpdateSCC-TreeNode(D,M, l, p.l)
21: else
22: UpdateSCC-TreeNode(D,M, l,null)
23: end if
24: end while
25: end function

Affected(N,X) to make a topological ordering of SCC tree with root node N . The pseudo-
code of topologicalSortAffected(N,X) is described in Algorithm 8. The topological-
SortAffected(N,X) function removes any node of the topological ordering that either does
not have a leaf node descendant representing a vertex in X or nodes for which all leaf node des-
cendants represent vertices in X. The first can be removed because nodes only propagate upwards
so they will not need to be updated. If all descendants of a node represent vertices in X then
the subtree rooted at such node can be removed as a whole, so the node itself does not need to
be updated, only its parent. Then the removeVerticesFromTree function uses the topological
ordering to update the nodes with the UpdateSCC-TreeNode function starting at the end of the
ordering. Algorithm 9 describes the UpdateSCC-TreeNode pseudocode. In this way it can be
ensured that it is always the case that the nodes of descendants are updated before any nodes of
their ancestors. Edges are always stored in the least common ancestor of both endpoints of the
edge, so this means that subtrees that do not have a descendant representing a vertex in set X
will be unaffected.

Example 5. As an example consider removing a set of vertices from the graph in the top left
conder of Figure 6.8. If one would want to remove vertices v2, v7, v8 and v9 from the SCC tree
of G, inner nodes A, B and R might have to be updated. Node C is unaffected since it does not
contain any leaf node descendant representing v2, v7, v8 or v9. Node D contains only leaf nodes
representing v2, v7, v8 or v9 so D does not need to be updated either since by updating B and R
the subtree rooted at D will be removed from the tree as a whole.

To filter out those unaffected inner nodes that are not an ancestor of any of the vertices, the
topological sort first executes a breath-first search on T starting at the root of T . During this
breath-first search it stores a tuple (p,M, r, l, c) for each inner node M of T in the stack. Where
p is a pointer to the tuple of the parent of M , r is a boolean which is set to true if the vertex of
any of its leaf node children is present in X and c is the number of children of M for which all leaf
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Algorithm 8 Make a topological sort of the nodes that should be updated to remove a set of
vertices from the SCC tree
1: function TopologicalSortAffected(SCC-Tree node N , (X ⊆ V )
2: stack ←− [] empty stack
3: queue←− {(null, N, false, [], 0)} fifo queue
4: while queue is not empty do
5: (p,M, r, l, c)←− queue.dequeue()
6: stack.push(p,M, r, l, c)
7: for all subtrees C of M do
8: (V,E) = G(C)
9: if |V | = 1 and V ⊆ X then

10: r ←− true
11: c←− c+ 1
12: else if |V | > 1 then
13: queue.enqueue((p,M, r, l, c), C, false, [], 0)
14: end if
15: end for
16: end while
17: while stack is not empty do
18: (p,M, r, l, c)←− stack.pop()
19: if r then
20: if c = nr of subtrees of M then
21: if p 6= null then
22: p.r ←− true
23: p.c←− p.c+ 1
24: end if
25: else
26: if p 6= null then
27: p.r ←− true
28: end if
29: queue.enqueue((p,M, r, l, c))
30: end if
31: end if
32: end while
33: return queue
34: end function
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Algorithm 9 Update a single node and find the affected nodes of the parent

1: function UpdateSCC-TreeNode(Dynamic Decomposition D, SCC-Tree node N , A ⊆
V (D(N)), L)

2: (U, I)←− FindUnreachable(D(N), A)
3: if U = ∅ then
4: return
5: end if
6: d←− the split vertex for N
7: U ′ ←− Merge(D(N))
8: remove (U ′, I) from D(N)
9: if D(N) = ({din}, {dout}}, ∅) then

10: D(N)←− Merge(D(N))
11: end if
12: S ←− subtrees of N corresponding to elements of U ′
13: if N is not the root node then
14: add U ′ and I to D(p(N))
15: for all P ∈ S do
16: set parent of P to p(N)
17: end for
18: for all u ∈ U ′ do
19: for all x ∈ u do
20: cv[x]←− vertex in D(p(N)) corresponding to u
21: end for
22: end for
23: for all v ∈

⋃
U ′ do

24: for all (u, v) ∈ E(G) do
25: if for some endpoint x ∈ (u, v), x /∈ U ′ then
26: update edge (u, v) in D(p(N)) replacing endpoint x with cv[x]
27: end if
28: end for
29: end for
30: vN ←− the vertex in D((N)) corresponding to N
31: L←− L ∪ U ∪ {vN}
32: else
33: for all P ∈ S do
34: disconnect P from N and make a separate tree out of it in D
35: VP ←− vertices of the subgraph represented by P
36: for all v ∈ VP do
37: SCC[v]←− P
38: end for
39: end for
40: end if
41: end function
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node descendants of the subtree rooted at the child represent vertices in X. Lastly l is an empty
ListSetPair which can later be used to store the children of M that have been changed after an
update on any of the children, or because of edge removal. Because of the breath-first traversal
through the tree, popping items from the stack will always pop a child before any ancestor of the
child. The tuples are popped one by one and for each tuple (p,M, r, l, c) if r is true then M is an
ancestor of a leaf node in the set of vertices. If c is equal to the number of children of M then all
leaf node descendants represent vertices in X, so increment p.c. If c is not equal then add the tuple
to the queue. Since children are popped before their ancestors, they are also added to the queue
before their ancestors, so they will be dequeued from the queue before their ancestors. Since M
is an ancestor, p.M is an ancestor as well, so set p.r to true so that it is recognized as one by the
time p is popped from the stack. If r is not true it means it is not an ancestor of a leaf node in the
set of vertices because if it was, then either r would be true because it has the leaf node as child,
or any of its children which are all popped earlier would have set r to true by transitivity. So by
filling the queue in this way, topologicalSortAffected returns a queue of inner nodes such that
any inner node in the tree which has leaf nodes descendants representing vertices that are in X
and that aren’t in X are present in the queue and any descendant is present before its ancestor.

Using this queue returned by topologicalSortAffected all relevant nodes can be updated
bottom up. For each tuple (p,M, r, l, c) in the queue, first all edges in M that either have as
source or as target a vertex in the set X are removed. The children of M that contain any of the
endpoints of the removed edges are added to l. Then UpdateSCC-TreeNode(D,M,A,L) is called
to update M . This function works exactly the same as UpdateSCC-Tree except that instead of
recursing on arguments p(N), U ∪{vN} it adds U ∪{vN} to L. Here L is p.l of the tuple, the list of
changed vertices of its parent. Once it is time to dequeue the tuple of the parent the parent node
will be updated. This way all nodes in the queue will be updated until all ancestors are updated
and any subtree with leaf node descendants representing vertices in the set of vertices that have
to be removed that were present in T have all become independent trees in X.

Example 6. As an example of the process of removing a set of vertices a graph,consider removing
the vertices v2, v7, v8 and v9 from the SCC tree of graph G in Figure 6.8.

• First for the topological sort, a tuple for each inner node breath-first would be added to a
stack, so the stack contains tuples for the inner nodes R, A, B, C and D with the tuple of
D on top. The tuples of A and D would have r set equal to true since they contain the leaf
node of one of the vertices. The tuple of D would be the only tuple for which c is equal
to its number of children. When popping the tuple of D it will not be added to the queue
since c is equal to its number of children so this whole subtree can be removed. Increment
p.c and set p.r, which is the tuple of B, to true. When C is popped next, r is false, so it is
not added to the queue. Then the tuple of B is popped, r has become true for this tuple, so
it is added to the queue and p.r which is the tuple of R will be set to true. Next the tuple
of A is popped, r is true so it is added to the queue and p.r which is the tuple of R will be
set to true. Lastly the tuple of R is popped, which has value true for r so it is added to the
queue as well, but because it is the root node it has no parent tuple so no other r to set to
true. In this way the queue ends with the tuples of nodes B, A and R in that order.

• Next these tuples are dequeued one by one, the edges are removed and the nodes are updated.

– First the tuple (p,B, true, []) is dequeued. The inner node B stores the edges {({v6}
, D, v6, v7), (D, {v6}, v8, v6)}. Both edges have an endpoint in {v2, v7, v8, v9} so they
removed and added to l = [{v6}, D]. Then B is updated with l = [{v6}, D] resulting in
the tree in the black square in Figure 6.8. In the update all vertices were unreachable,
so the inner node D was moved to the parent R and since B had only the split node
left it was replaced with a leaf node for v6. These 2 nodes are then added to p.l, the
ListSetPair of affected vertices of B.

– Second the tuple (p,A, true, []) is dequeued. The inner node A stores the edges {({v2}
, C, v2, v3), (C, {v2}, v4, v2)}. All these edges have an endpoint in {v2, v7, v8, v9} so all

Optimising parity game solvers using dynamic SCC maintenance 37



CHAPTER 6. DYNAMIC SCC MAINTENANCE

are removed, and all children are added to l. Then B is updated with l = [{v2}, C]
resulting in the tree in the red square in Figure 6.8. In the update all vertices were
unreachable, so the subtree C was moved to the parent R and since A had only the
split node left it was replaced with a leaf node for v2. These 2 nodes are then added to
p.l, the ListSetPair of affected vertices of B.

– Last the tuple (null, R, true, [{v6}, D, {v2}], C]) is dequeued. The inner node R stores
the edges {({v1}, {v6}, v1, v6), ({v2}, {v1}, v2, v1), (D,C, v7, v4)}. Only ({v2}, {v1}, v2, v1)
and (D,C, v7, v4) have an endpoint in {v2, v7, v8, v9} so they are removed and the en-
dpoints are added to l. Then R is updated with l = [{v6}, C,D, {v2}] resulting in the
trees in the purple square in Figure 6.8. In the update all vertices were unreachable so
they are all made into separate trees in the decomposition. Since R only has its split
node left it was replaced with a leaf node for v1.

After R is updated all nodes that have to be update in the tree are updated, so the decom-
position has reached its final state for this call to removeVerticesFromTree. In Figure 6.8
the final state of the decomposition is the one in the purple square where the decomposition
now contains single leaf node trees for v1, v2 and v6 and 2 SCC trees with root C and root
D. Now there are no longer leaf nodes representing vertices in {v2, v7, v8, v9} in the same
tree as leaf nodes representing vertices not in {v2, v7, v8, v9}.

Theorem 6. The removeVerticesFromTree(D,T,X) function can run in O(|X||E|δ) time.

Here a short proof of this complexity is given and in subsection D.3 an implementation of
removeVertices- FromTree(D,T,X) is described with a more detailed proof that this imple-
mentation meets the complexity.

Proof. The removeVerticesFromTree(D,T,X) first makes a call to topologicalSortAffected.
This function considers every node in the tree twice. Once to order them and once to check if they
are an ancestor of a leaf node representing a vertex that should be removed. All actions done for
each node take constant time and there are at mostO(|V |) nodes, so the topologicalSortAffected
function will return a topological order in O(|V |) time. There will be at most O(|X|δ) nodes in the
queue since every leaf node representing a vertex in X has at most δ ancestors and non ancestors
have not been added to the queue by topologicalSortAffected. For every node in the queue
all edges with endpoints in X are removed. To remove the edges all edges in the node need to be
checked. To remove all edges for all nodes in the queue will take O(|E|) time. Each node then
needs to be updated with UpdateSCC-TreeNode which just like UpdateSCC-Tree takes O(|E|) time
per node. So updating all nodes takes O(|X||E|δ) time which is the most expensive step. So the
removeVerticesFromTree(D,T,X) runs in O(|X||E|δ) time.

6.2.5 Deleting an SCC tree from a dynamic SCC decomposition
When an SCC tree is deleted from a dynamic SCC decomposition, several maps that store auxiliary
values for the decomposition have to be updated. This section gives a short description on which
values have to be updated when removing an SCC tree from a dynamic SCC decomposition.

First the SCC itself is removed from the dynamic SCC decomposition. The decomposition
stores for each vertex the root of the SCC tree in a hashmap. So for each vertex in an SCC tree
this value has to be deleted.

If the SCC tree has inner nodes, these might store edges. There is a hashmap that stores for
each edge in which inner node they are present. Since the tree is to be deleted, these edges will
no longer be stored anywhere so they have to be deleted from this hashmap.

There might be edges between SCC trees that have an endpoint in this SCC tree. These edges
need to be removed as well since the vertices in this SCC tree will no longer exist.
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Figure 6.8: When deleting the edges of vertices v2, v7, v8 and v9 inner nodes A, B and R might
have to be updated while C is unaffected.
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Chapter 7

Experimental evaluation

Several experiments were executed to answer the research questions defined in chapter 4. These
experiments and their results are described in this chapter.

In the experiments 3 versions of Zielonka’s algorithm were compared:

• Zielonka’s algorithm with Tarjan’s algorithm as described in the literature. (version Tarjan)

• Zielonka’s algorithm with partial re-decomposition, using Tarjan’s algorithm for SCC de-
composition. (version partial)

• Zielonka’s algorithm with dynamic SCC maintenance, using Tarjan’s algorithm to build the
SCC trees. (version dynamic)

Each version was implemented in Java. A detailed description of the implementation can be found
in Appendix D and E. In Appendix C a description how to use the program with commandline or
unit tests is given.

The game data sets used for the experiment is described first in section 7.1. The first ex-
periment, described in section 7.2 is an experiment which explores different possible choices that
can be made to build the tree. The outcome of this experiment will be used to build the tree in
the experiments described in sections 7.3 and 7.4. Section 7.3 takes a look at the difference in
the number of vertices decomposed when running Zielonka’s algorithm with Tarjan’s algorithm
or partial re-decomposition and also makes a comparison with the number of nodes updated in
the SCC trees. The last experiment, described in section 7.4 measures the runtime differences
between running Zielonka’s algorithm with Tarjan’s algorithm for SCC decomposition, partial
re-decomposition or using dynamic SCC maintenance.

The experiments were executed using unit tests in IntelliJ. They were executed on a laptop with
Java 12, windows 10, 8GB RAM and Intel(R) Core(TM) i7-6700 HQ CPU @ 2.60GHz 2.59GHz.

7.1 Game data sets
Most games tested in the experiments came from the benchmark of Keiren, described in [8], from
now on called the benchmark. This benchmark contains the equivalence checking benchmark,
MLSolver benchmark, modelchecking benchmark and PGSolver benchmark. Depending on the
experiment some or all of the games in the benchmark will be tested and their result put in
the digital repository Zenodo (https://doi.org/10.5281/zenodo.5338737). The result section
will show a selection of the results of each benchmark to support the conclusions described in
subsections 7.2.3, 7.3.3 and 7.4.3.

The data sets chosen for the result section are chosen based on 2 characteristics: the size
(depth) of the tree and the number of Zielonka recursions/iterations. The size of the tree was
divided in short trees, usually just depth 1, so an inner node with a bunch of leaf nodes, and long
trees which were usually over depth 100. Data sets were chosen for the combinations:
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• Short trees and few Zielonka recursions.

• Short trees with many Zielonka recursions.

• Long trees with few Zielonka recursions.

• Long trees with many Zielonka recursions.

The first set of games are the random games. A part of these games came from the PGSolver
benchmark[8] and a part was made using the PGSolver tool [5]. Random games usually only have
a few (< 10) Zielonka iterations. These games were chosen because in the PGSolver tool it is
possible to control the minimum and maximum number of outedges. By choosing the maximum
number of outedges as 1, games with very short trees are created. Increasing the maximum number
of outedges to 2 already gives a long tree, but by increasing the maximum number outedges even
more creates even longer trees. The games that were created for this experiment either have a
maximum of 1, 2, 5 or 20 outedges and their sizes are 1k, 5k, 10k and 50k vertices. The games with
a maximum of 20 outedges came from the benchmark, the others were created with the PGSolver
tool. Since these games are random, 25 games of each type were created with the PGSolver tool,
and the results shown in any result section are the average of these 25 games.

The second set of games are the equivalence games, a few games taken from the Equivalence
checking benchmark. This benchmark encodes the problem of testing if 2 processes L1 and L2

are process equivalent. Four types of equivalences are considered: branching bisimulation, branch-
ing simulation, strong bisimulation and weak bisimulation. The equivalence is tested for several
protocols and data sizes [8]. The protocols can be found in the name of the games. From this
benchmark 9 games were chosen for the result section of the "number of vertices decomposed"
experiment and "runtime differences" experiment. All chosen games have long (100+) trees, 4
games have very few (2) Zielonka recursions/iterations, and 5 games with slightly more (10-40)
Zielonka recursions/iterations.

The third set of games are the PGSolver games, which are taken from the PGSolver bench-
mark. The games taken are the modelcheckerladder games. The dynamic SCC decomposition
of these games consists of a single SCC tree of size 1, so a very short tree. So this tree is a
single inner node with all vertices as leaf node children. These games have very few (2) Zielonka
recursions/iterations.

The fourth set of games are the modelchecking games, which are taken from the mod-
elchecking benchmark. The games in this benchmark encode the problem which checks if a model
L satisfies a property ϕ. The models considered come, among other things, from a number of
communication protocols. The properties are fairness, liveness and safety properties [8]. Of this
benchmark 9 games were chosen for the result section of the "number of vertices decomposed"
and "runtime differences" experiment. Of these the dynamic SCC decomposition of 4 games had
relatively short (3-27) trees and 5 games had very long (1000+) games. Of the first 4 games, 2
games had very few (2) Zielonka recursions/iterations and 2 games slightly more (18). Of the
latter 5 games had many (40+) zielonka iterations. The "split node choice" experiment used a
different set of games from this benchmark to limit the time needed for this experiment. The
games for this experiment had medium sized trees (7-449) in the dynamic SCC decomposition and
slightly more (7-24) Zielonka recursions/iterations.

The fifth set of games are the MLSolver games, which are taken from the MLSolver bench-
mark. The games chosen from this benchmark all have slightly more Zielonka recursions/iterations
than the size of the tree.

The sixth and last set of games are the triangle games. These games follow the structure of
the game shown in Figure 4.1 in the problem statement. For every priority there are 3 vertices in
a cycle and owned by player 0 if priority is even and owned by player 1 is the priority is odd. In
every triangle there is 1 vertex with an inedge from a vertex with a lower priority and an outedge
to a vertex with a higher priority. The other 2 vertices in the triangle only have edges within the
triangle. These games should have short trees of 3 nodes and as many Zielonka iterations as there
are triangles. Increasing the number of triangles should show the beneficial effect of both partial
re-decomposition and dynamic SCC maintenance.
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7.2 Experiment: split node choice

The paper [9] does not explicitly tell which vertex to choose for the split node to build a shorter
tree. In the experiment in this section we will explore several options in choice of split node. First
subsection 7.2.1 will describe the details of the experiment. Subsection 7.2.2 shows the results and
subsection 7.2.3 discusses these results.

7.2.1 Experiment description

This experiment will explore several options in choosing the vertex to become the split node of
an inner node. First the options are described and a rationale is provided why these options were
chosen. This is followed by a description of the aspects that were measured and the games that
were used for the measurements.

Experiment description: options

This experiment tested 4 options for choosing a vertex for the split node:

• The vertex that is first in the list.

• The vertex with the highest priority.

• The most connected vertex.

• A combination of the previous two: the most connected vertex with the highest priority.

Each of these choices will be discussed as for why they were chosen.
The first choice of split node is to just take whichever vertex happens to be first in the list of

vertices of inner node and take this vertex for the split node. This is a fast and easy deterministic
choice which can be executed in O(1) time.

The second choice of split node is to take a vertex with the highest priority. The reason for
this choice would be that Zielonka’s algorithm always first removes the vertices with the highest
priority and the vertices in the attractor set from the tree. Therefore if vertices with a higher
priority are located higher in the tree, less inner nodes will need an update when these vertices
are removed. Taking the vertex with highest priority was done by checking the priority of each
vertex, thus taking O(|V |) time. This is still in line with the O(m) time allowed to build a layer
of the tree.

The third choice of split node is to take the most connected vertex, so the vertex with the most
inedges+outedges. The idea behind this choice is that if a vertex is very connected, splitting this
vertex would most likely leave the graph in an inner node less connected and therefore splitting
it apart in more smaller SCCs which will result in a smaller SCC tree. Like with choosing the
vertex with the highest priority, choosing the most connected vertex takes O(|V |) time as the
connectivity of each vertex in the graph of the inner node will have to be checked.

The fourth choice was added based on the test results of the first 3 options. As can be read in
subsections 7.2.2 and 7.2.3, both choosing the vertex with the highest priority and choosing the
most connected vertex give good results. A last and fourth choice of split node is to combine these
2 options. Since choosing the most connected vertex gave the best results, the fourth choice of
split node first chooses the most connected vertex, and if a vertex with the same connectivity but
with a higher priority is found then that vertex is chosen instead. This choice of split node still
only takes a single iteration over all vertices in the graph of the inner node, thus taking O(|V |)
time. This fourth choice of split node is considered the second iterations of this experiment as it
was added based on the results of the other 3 choices. In the result section it will only be compared
to the results of choosing the most connected vertex as the first part of this experiment showed
that this was the best option.
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Experiment description: measurements

The experiment measures effect of the choice of the split node on the following aspects:

• The size of the tree.

• The number of nodes updated.

• The time the algorithm spents building the tree.

• The time the algorithm spents updating the dynamic decomposition, which consists of both
the time to update the nodes and the time to remove trees from the decomposition.

• The total runtime of Zielonka’s algorithm with dynamic SCC maintentance, when the SCC
trees in the dynamic decomposition are built using a specific option for selecting the vertex
for the split node.

Because choosing the most connected vertex as the split node was expected to result in smaller
trees the size of the tree was chosen as measurement. This choice no longer takes a constant time
to choose the vertex but might make up in time because of the size of the tree so fewer layers will
be built. Therefore the time the algorithm spents building the tree is measured as well.

The idea behind choosing the vertex with the highest priority was that fewer updates of the
tree might be needed. For this the number of nodes that are updated and the time the algorithm
spents on updating the decomposition are chosen as measurement. These numbers might also be
smaller when choosing the most connected vertex if it really has smaller trees, since there are fewer
ancestors to update when a vertex is removed.

The last and most general measurement is the total runtime of Zielonka’s algorithm. This
measurement is the overall goal: to make Zielonka’s algorithm run as fast as possible. For games
with very short running times where this measurement measures with millisecond precision, the
running time might be influenced by the Java garbage collector or just-in-time compilation. There-
fore for runs with runtime less than 1 minute, the game is solved 10 times and the average of the 6
fastest runs will be taken to exclude any influences of Java on the outcome. For a runtime between
1-3 minutes the game is solved 5 times and the average of the 3 fastest runs is taken. If the run
time is over 3 minutes the game will just be solved once since a difference of 1 or 2 second becomes
trivial here.

Experiment description: data sets

This experiment was a preliminary experiment whose results would be used in the other 2 experi-
ments, so not the whole benchmark was tested. The sets used for this experiment were a subset of
the random games, MLSolver games and modelchecking games. These sets were chosen for their
gradual increase in tree size in the dynamic SCC decomposition with the increase of the size of
the game. This allows to see the effect of the split node choice for different tree sizes for similar
games. Next to these sets a subset of games of the PGSolver games was used as well because
the trees of these games have a size of 1. This allows to check if a bad choice of split node could
increase their tree size.

7.2.2 Results
For the random games, table 7.1 will show the results of measurements:

• Whichever vertex happens to be first in the list. (F)

• The vertex with the highest priority. (P)

• The most connected vertex. (C)

And table 7.2 show the results of measurements for the split node choices:
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Figure 7.1: The results of the split node experiment for the MLSolver (1st column), modelchecking
(2nd column) and PGSolver games (3rd column). Whenever the red is not visible it is hidden behind
black. Whenever blue is not visible it is hidden behind green.

• The most connected vertex (C) which had the best results in the first part, and

• A combination of the two: the most connected vertex with the highest priority. (CP)

The combined results of the other games are shown in Figure 7.1.

7.2.3 Conclusions
In this section we first look at the effect of the split node choice on the size of the tree and the
decomposition time. Then we take a look at the effect on the number of nodes updated and the
total decomposition time. Lastly we look at the effect of the split node choice on the runtime of
Zielonka’s algorithm.

Conclusions part 1: size of the tree

It was expected that by choosing the most connected vertex as the split node, the size of the trees
would be shortest and that saving the time to build those extra layers compensates the extra time
to choose the vertex.

The PGSolver games were included in this experiment to see if any choice would make very
short trees longer. As Figure 7.1 shows, none of the choices of split node gives a tree longer than
1, so clearly such thing did not happen. The decomposition time was roughly the same as well,
so going through all vertices once when making the table did not really take extra time. So in
terms of tree size and decomposition time for games with only very short trees in
their dynamic SCC decomposition it does not matter which vertex is chosen as split
node.

The other sets of games tested in this experiment had trees of varying sizes. The set of random
games were games without any particular structure. The set of MLSolver games and the set of
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Random games
general information avg size longest tree avg decomposition time

max
#outedges

#vertices avg
#trivial
SCCs

avg
#non
trivial
SCCs

F P C F P C

1 1000 971 3 1 1 1 0.002s 0.002s 0.002s
2 1000 415 2 227 105 81 0.027s 0.016s 0.013s
5 1000 62 1 695 416 295 0.133s 0.090s 0.064s
20 1000 0 1 920 797 617 0.3s 0.292s 0.230s
1 5000 4902 4 1 1 1 0.006s 0.006s 0.007s
2 5000 2082 2 1175 525 415 0.694s 0.324s 0.244s
5 5000 296 1 3557 2093 1516 4.014s 2.991s 1.851s
20 5000 0 1 4629 3978 3078 9.239s 15.113s 7.236s
1 10000 9858 4 1 1 1 0.01s 0.014s 0.01s
2 10000 4171 1 2362 1044 836 3.098s 2.591s 1.146s
5 10000 591 1 7145 4191 3038 29.381s 21.731s 9.019s
1 50000 49747 5 1 1 1 0.064s 0.09s 0.066s
2 50000 20805 1 11996 5301 4223 3m7s 1m26s 53.184s

avg #nodes updated avg time update decomposition avg runtime Zielonka
max
#outedges
(vertices)

F P C F P C F P C

1 (1000) 0 0 0 0.001s 0.001s 0.001s 0.004s 0.004s 0.004s
2 (1000) 278 136 102 0.037s 0.023s 0.018s 0.067s 0.041s 0.034s
5 (1000) 1373 835 593 0.335s 0.213s 0.169s 0.474s 0.311s 0.240s
20 (1000) 1814 1571 1218 0.278s 0.258s 0.266s 0.586s 0.559s 0.505s
1 (5000) 0 0 0 0.003s 0.003s 0.003s 0.014s 0.014s 0.017s
2 (5000) 2319 1071 826 1.003s 0.43s 0.31s 1.724s 0.774s 0.569s
5 (5000) 7201 4281 3122 8.885s 6.041s 4.35s 12.959s 9.086s 6.25s
20 (5000) 9167 7886 6087 6.816s 9.269s 6.012s 16.125s 24.496s 13.325s
1 (10000) 0 0 0 0.004s 0.006s 0.005s 0.022s 0.031s 0.024s
2 (10000) 4824 2192 1706 4.233s 3.135s 1.391s 7.382s 5.783s 2.585s
5 (10000) 14227 8466 6065 1m7s 41.44s 20.249s 1m37s 1m3s 29.408s
1 (50000) 0 0 0 0.025s 0.037s 0.026s 0.142s 0.207s 0.144s
2 (50000) 17073 7460 6126 3m13s 1m19s 48.672s 6m18s 2m45s 1m42s

Table 7.1: The average results of the split node experiment part 1 for the random games.
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Random games
general information avg size longest tree avg decomposition time

max
#outedges

#vertices avg
#trivial
SCCs

avg
#non
trivial
SCCs

C CP C CP

1 1000 971 3 1 1 0.002s 0.001s
2 1000 415 2 81 72 0.013s 0.011s
5 1000 62 1 295 274 0.064s 0.063s
20 1000 0 1 617 610 0.230s 0.238s
1 5000 4902 4 1 1 0.007s 0.004s
2 5000 2082 2 415 385 0.244s 0.231s
5 5000 296 1 1516 1419 1.851s 1.78s
20 5000 0 1 3078 3051 7.236s 10.071s
1 10000 9858 4 1 1 0.01s 0.009s
2 10000 4171 1 836 780 1.146s 1.036s
5 10000 591 1 3038 2882 9.019s 12.146s
1 50000 49747 5 1 1 0.066s 0.112s
2 50000 20805 1 4223 3965 53.184s 58.433s

avg #nodes updated avg time update decomposition avg runtime Zielonka
max
#outedges

#vertices C CP C CP C CP

1 1000 0 0 0.001s 0s 0.004s 0.003s
2 1000 102 90 0.018s 0.015s 0.034s 0.030s
5 1000 593 553 0.169s 0.156s 0.240s 0.226s
20 1000 1218 1207 0.266s 0.262s 0.505s 0.510s
1 5000 0 0 0.003s 0.001s 0.017s 0.009s
2 5000 826 770 0.31s 0.291s 0.569s 0.536s
5 5000 3122 2943 4.35s 4.136s 6.25s 5.957s
20 5000 6087 6036 6.012s 8.635s 13.325s 18.817s
1 10000 0 0 0.005s 0.005s 0.024s 0.021s
2 10000 1706 1586 1.391s 1.288s 2.585s 2.355s
5 10000 6065 5770 20.249s 25.895s 29.408s 38.211s
1 50000 0 0 0.026s 0.044s 0.144s 0.253s
2 50000 6126 5676 48.672s 47.294s 1m42s 1m46s

Table 7.2: The average results of the split node experiment part 2 for the random games.

Optimising parity game solvers using dynamic SCC maintenance 47



CHAPTER 7. EXPERIMENTAL EVALUATION

modelchecking games should follow a particular structure to solve their corresponding problems.
First we look at the results of the tree size and tree build time of the MLSolver games and
modelchecking games in Figure 7.1. For the modelchecking games the red line is hidden right
behind the black line and the blue line is hidden right behind the green line. As expected choosing
the most connected vertex gave the shortest trees. Sometimes with huge differences, up to 11K
layers, compared to just choosing the first vertex in the list as split node. For example for the
game Nestern=6_compact of the MLSolver games, choosing the first vertex gave a maximum tree
size of 11693, while the largest tree when choosing the most connected vertex had only size 323. So
a reduction of tree size by 97%. Surprisingly choosing the vertex with the maximum priority also
sometimes reduces the tree size, but not as much as choosing the most connected node. When
looking at the decomposition time, the benefits in tree size when choosing the most connected
node outweigh the extra time spent to find this vertex. The decomposition time is almost always
lowest when the most connected vertex is chosen as split node, and when not it is only a few
1/100th of a second off. So in terms of tree size and decomposition time for games with
structure with varying tree sizes in their dynamic SCC decomposition choosing the
most connected vertex clearly is the best choice.

The set of random games (table 7.1) shows similar results to the MLSolver games and mod-
elchecking games. In this set of games where the outedge varied, the size of the trees varied as well.
This shows for games with the same size that a higher out degree increases the size of the longest
tree. Although the benefit of choosing the most connected vertex as split node can be seen for
these random games as well, it is not as large as for the MLSolver games and modelchecking games,
though a decrease of tree size by more than half can still be seen. The tree size when choosing the
vertex with the highest priority gives shorter trees compared to choosing the first vertex in the
list as well, but these trees are still larger than when choosing the most connected vertex. The
benefit is seen in the decomposition time as well: the larger the difference in tree sizes, the larger
the differences in decomposition time can be seen as well. So the extra time spent in choosing
the vertex is not a problem at all. So in terms of tree size and decomposition time for
games without structure with varying tree sizes in their dynamic SCC decomposition
choosing the most connected vertex clearly is the best choice.

Conclusion. So in conclusion when considering choosing the first vertex in the list, choosing the
vertex with the highest priority and choosing the most connected vertex as split node, choosing the
most connected vertex is the best choice when considering the size of the tree and the decomposition
time.

Conclusions part 1: update and runtime

It was expected that choosing the vertex with the highest priority as a split node would give
the least number of nodes updated. This was because in Zielonka’s algorithm the highest priority
vertices (and their attractor set) are always removed first from the SCC. So if those highest priority
vertices are higher up in the tree then fewer ancestors have to be updated when they are removed.
Choosing the most connected vertex as split node was expected to rank second in number of nodes
updated, since shorter trees will give fewer ancestors to update.

When looking at the results of the sets of games with short trees (size 1), the PGSolver games
Figure 7.1, no nodes are removed. So the short trees seem to be removed in their entirety and so
no nodes are updated there. The time to update the decomposition, which contains both updating
the nodes and removing the trees is almost equal for any of the vertex choices for the split node.
The same goes for the runtime of Zielonka’s algorithm. All 3 choices have about the same runtime.
So in terms of number of nodes updated, update time and Zielonka runtime, for games
with only very short trees in their dynamic SCC decomposition it does not matter
which vertex is chosen as split node.

The other sets of games tested in this experiment had trees of varying sizes. The set of
random games were games without any particular structure. The set of MLSolver games and
the set of modelchecking games should follow a particular structure to solve their corresponding
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problems. First we look at the results of the MLSolver games and modelchecking games in Figure
7.1. Although the games in the modelchecking set have longer sized trees (length 21-33 for C
or 166-11K for F) in their dynamic SCC decomposition, no nodes are updated during Zielonka’s
algorithm. So the trees are removed as a whole and therefore no big changes in the update time
can be seen for any choice. The runtime of Zielonka’s algorithm still does show a preference for
choosing the most connected vertex because of the time saved when making the decomposition.
For the modelchecking games when choosing the most connected vertex, Zielonka’s algorithm saves
between 18% and 69% in runtime compared to choosing the first vertex, with the exception of the
outlier, the smallest game which has an increase in runtime of 13%, or 3 milliseconds. The games
in the MLSolver set do have a lot of nodes updated during Zielonka’s algorithm. Here the effect of
the difference in tree size can be clearly seen. The bigger the difference in tree size the bigger the
difference in the number of nodes updated. Choosing the most connected vertex, 82 to 93% less
nodes need to be updated compared to choosing the first vertex. It was expected that choosing
the vertex with the highest priority would result in the least number of nodes updated, however
this effect is either overshadowed by the differences in tree size or not present at all. Choosing
the vertex with the highest priority only gives a decrease between 59 to 67% in the number of
nodes updated compared to choosing the first vertex. This difference in number of nodes updated
can also be seen in the update time. For example for Nestern=6_compact, choosing the first
vertex causes almost 70K nodes to be updated, taking roughly 7 minutes, while choosing the
most connected vertex causes only 5K nodes to need an update taking only 39 seconds. The time
saved when updating the decomposition and the time saved when building a decomposition with
shorter trees, also clearly reflects in a decrease in runtime of Zielonka’s algorithm when choosing
the most connected vertex. So in terms of number of nodes updated, update time and
Zielonka runtime, for games with structure with varying tree sizes in their dynamic
SCC decomposition, choosing the most connected vertex is the best choice out of the
3.

For the random games (table 7.1) the choice of split node has a less big effect. The number of
nodes updated is still least when choosing the most connected vertex, but the differences are not
as big as for the MLSolver games. The decrease in number of nodes updated for the random games
is only between 32 and 64%. This also reflects in the update time, where the update time is clearly
least when choosing the most connected vertex, but it only saves seconds at most, not minutes
like with the MLSolver games. The decrease in update time is highest for the random graphs with
a maximum of 5 or more outedges, with a decrease of more than 50% in update time compared
to choosing the first vertex. When looking at the runtime, the combined effect of some decrease
in decomposition time and some decrease in update time, still shows a clear decrease in runtime
of Zielonka’s algorithm when choosing the most connected vertex. So in terms of number of
nodes updated, update time and Zielonka runtime, for games without structure with
varying tree sizes in their dynamic SCC decomposition, choosing the most connected
vertex is the best choice out of the 3.

Conclusion. In conclusion when considering choosing the first vertex in the list, choosing the
vertex with the highest priority and choosing the most connected vertex as split node, choosing the
most connected vertex is the best choice when considering the number of nodes updated, update
time and runtime of Zielonka’s algorithm.

Conclusions part 2: size of the tree

Because both choosing the most connected vertex and choosing the vertex with the highest priority
performed better than choosing the first vertex, another option was added: first choosing the most
connected vertex, and then between all vertices with this highest connectivity choose the one with
the highest priority. This new option will be called the mixed option in the rest of the discussion.

There was still no impact on the size of the short trees in the PGSolver games (Figure 7.1)
and no real difference in the decomposition time for these games as well. The highest difference
was 6 milliseconds. For the random games choosing the mixed option still gives slightly shorter
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trees. With the mixed option the size of the trees of the random games decrease between 0 and
258 nodes, or 0 to 11% with an average of 4%. The decomposition time does not really give any
differences, sometimes choosing the most connected vertex is slightly faster and sometimes the
mixed option is slightly faster, with differences up to 20% for both sides. But still this is talking
about milliseconds. It seems that the time saved on building those extra few layers is about the
same as any extra time spent on checking 2 parameters. The same is the case for the MLSolver and
modelchecking games (Figure 7.1). For these, with the exception of 1 game, the mixed option
performs a bit better both in terms of tree size, with a decrease between 0 and 15%,
and decomposition time, with on average a decrease of 20%..

Conclusion. In conclusion, just looking at the size of the longest tree and the decomposition
time the mixed option would be the better choice but not by much.

Conclusions part 2: update and runtime

Choosing the mixed option gives a slight decrease in number of nodes updated for the random
games and MLSolver games. This is a decrease between 0 and 300 nodes, or 0 and 7% with on
average a decrease of 3%. The impact on the average time to update the decomposition is very
small, most of the time the mixed option performs slightly better, with the exception of 3 games in
the random games and the differences are really small. When the mixed option performs better,
there is a decrease between 2 and 66%, with a decrease of 16% on average. So for updating
the dynamic SCC decomposition choosing the mixed option seems to have a slight
advantage for some games but not by a lot.

Comparing the runtime of Zielonka’s algorithm for the sets of games there again does not
seem to be a big difference between choosing the most connected vertex and the mixed option.
For the random games one time the first is slightly faster and another time the second. These
differences range between a increase of 30% and a decrease of 15%, with as median a decrease of
5%, when comparing the mixed option to the most connected vertex option. For the MLSolver
and modelchecking games, the mixed option always performs a bit better, with the exception of 1
game. The decrease in the runtime of Zielonka’s algorithm with the mixed option for these games
is between 2 and 67%, with on average a decrease of 30%. The exception happened to be a game
where the tree size did not decrease for the mixed option but stayed the same. So in terms of
the runtime of Zielonka’s algorithm, choosing the mixed option performs a bit better.

Conclusion. In conclusion the option of choosing the most connected vertex and the mixed
option perform about the same, but most of the time choosing the mixed option performs just
a bit better. For the rest of the experiments the mixed option will be used because this option
performed best in case of the longest tree size and did not perform worse than the most connected
vertex in case of runtime.

7.3 Experiment: number of vertices decomposed

The experiment in this section was done to answer the following research questions:

RQ2 What is the difference in the total number of vertices decomposed into SCCs when recalcu-
lating SCCs whose vertices have been removed from the graph compared to recalculating all
SCCs?

RQ5 How many nodes in the SCC tree are updated during the entire run of Zielonka’s recursive
algorithm in comparison to the number of vertices decomposed by partial decomposition or
decomposition of the whole graph.

First subsection 7.3.1 will describe the details of the experiment. Subsection 7.3.2 shows the results
and subsection 7.3.3 discusses these results.
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7.3.1 Experiment description

To answer research questions 2 and 5 this experiment is divided into 2 parts. The first part of the
experiment will measure the number of vertices decomposed into SCCs during the run of Zielonka’s
algorithm. The second part will measure the total number of nodes that are updated in any of
the SCC trees during the run of Zielonka’s algorithm.

Experiment description: measuring the number of vertices

The idea behind partial re-decomposition (partial) was that by only running Tarjan’s algorithm
on the SCCs of which vertices have been removed, a lot of the work of Tarjan’s algorithm can be
saved. There is also some extra work however to find the vertices of those SCCs that should be
re-decomposed. If this extra work takes longer than just running Tarjan’s algorithm then partial
re-decomposition is not worth it. So to compare these 2 methods and to answer research question
2 the following 5 points are measured:

• The cumulative number of vertices in graphs received by any call to Tarjan’s algorithm when
not using partial re-decomposition.

• The cumulative number of vertices in graphs received by any call to Tarjan’s algorithm when
using partial re-decomposition.

• The time spent on SCC decomposition when not using partial re-decomposition.

• The time spent on preparing the graph for the SCC decomposition when using partial re-
decomposition.

• The time spent on the actual SCC decomposition when using partial re-decomposition.

Experiment description: measuring the number of nodes

When dynamic SCC maintenance is used, SCC decomposition is no longer required after every
iteration or recursion of Zielonka’s algorithm. However the SCC trees will need to be built for
the game and updated during the run of Zielonka’s algorithm. When updating an SCC tree
node N , no specific vertices are addressed, just other nodes or condensed vertices of D(N) so
the measurement of the number of vertices cannot be used here. To see if using dynamic SCC
maintenance is beneficial we measure the following aspects and compare them to the results of the
first half of this experiment:

• The cumulative number of nodes updated of any SCC tree during the run of Zielonka’s
algorithm with dynamic SCC maintenance.

• The time it takes to build all SCC trees for the game.

• The total time dynamic SCC maintenance spends on the maintenance, which includes both
the time to update nodes in trees and the time to delete trees.

Experiment description: data sets

This experiment was execute on all games of the benchmark. Because there are too many games to
discuss in this report, the results of all games in the benchmark that could be tested are uploaded
to the digital repository Zenodo (https://doi.org/10.5281/zenodo.5338737). In section 7.3.2
scatter plots of the results of games with more than 1000 vertices will be shown. Next to the
games in the benchmark the set of random games generated by PGSolver was also tested, as well
as the set of triangle games.
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Figure 7.2: The results for all games with more than 1000 vertices for the "number of vertices
decomposed" experiment, comparing partial re-decomposition with Tarjan.

Figure 7.3: The results for all games with more than 1000 vertices for the "number of vertices
decomposed" experiment, comparing partial dynamic SCC maintenance with Tarjan.

52 Optimising parity game solvers using dynamic SCC maintenance



CHAPTER 7. EXPERIMENTAL EVALUATION

Triangle games
#triangles $|V|$ #trivial

SCC
#non
trivial
SCC

size
longest
tree

#tarjan
calls

#vertices
tarjan

#vertices
Partial

#nodes
updated

50 150 0 50 1 51 3,8K 150 0
100 300 0 100 1 101 15K 300 0
500 1,5K 0 500 1 501 376K 1,5K 0
1000 3K 0 1K 1 1K 1,5M 3K 0
5000 15K 0 5K 1 5K 38M 15K 0
10000 30K 0 10K 1 10K 150M 30K 0
30000 90K 0 30K 1 30K 1350M 90K 0
100000 300K 0 100K 1 na na 300K 0
300000 900K 0 300K 1 na na na na

#triangles $|V|$ size
longest
tree

#tarjan
calls

time
make
tree

time
update
decom-
position

time
tarjan

time
partial
prep

time
partial
tarjan

50 150 1 51 0,001s 0,001s 0,005s 0s 0s
100 300 1 101 0,002s 0,001s 0,018s 0,001s 0,001s
500 1,5K 1 501 0,006s 0,003s 0,128s 0,002s 0,001s
1000 3K 1 1K 0,005s 0,002s 0,445s 0,006s 0,001s
5000 15K 1 5K 0,034s 0,007s 13,332s 0,184s 0,009s
10000 30K 1 10K 0,093s 0,017s 57,96s 0,816s 0,03s
30000 90K 1 30K 0,629s 0,093s 15m 9,708s 0,19s
100000 300K 1 na 8,518s 1,027s na 5m7s 11,097s
300000 900K 1 na 1m7s na na na na

Table 7.3: The average results of the number of vertices decomposed experiment for the triangle
games.
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7.3.2 Results
Figures 7.2 and 7.3 show the results of measurements for the "number of vertices decomposed"
experiment.

7.3.3 Conclusions
In this section we first look at the effect of using partial re-decomposition with Zielonka’s algorithm
on the number of vertices decomposed into SCCs. Then we check if the preparation work of partial
re-decomposition does not take too much time to be beneficial. Then we compare the former
results with the results of using dynamic SCC maintenance with Zielonka’s algorithm to see if
building SCC trees and updating the dynamic decomposition is beneficial compared to simply
using Tarjan’s algorithm and using partial re-decomposition.

In the upper 2 scatter plots of Figure 7.2 we compare the number of vertices decomposed
with using partial re-decomposition to the number of vertices decomposed when using Tarjan’s
algorithm. Since partial re-decomposition was expected to decrease the number of vertices decom-
posed, these figures show the percentage of vertices saved:

(#vertices decomposed Tarjan − #vertices decomposed partial)

#vertices decomposed Tarjan
∗ 100

In the top figure his decrease in vertices decomposed is compared to the number of vertices in the
game, to see if there is a higher decrease for bigger games. It can be seen that there is no relation
between the decrease in number of vertices decomposed and the number of vertices in the game.
There are small games with a decrease of almost 100% in the number of vertices, but also small
games with no decrease at all. The same goes for big games, there are games with a decrease of
over 90% but also games with no decrease at all. This effect of a high decrease can be seen most
clearly in the triangle games (table 7.3), which regardless of size, 150 to 900K vertices, all have a
decrease of more than 99% in the number of vertices decomposed. The towersofhanoi games from
the PGSolver benchmark are the exact opposite, these games have 0.9K to 708K vertices, but a
decrease of 0%. So there is no relation between the number of vertices in the game and
the decrease in number of vertices decomposed into SCCs during Zielonka’s algorithm
when using partial re-decomposition compared to Tarjan’s algorithm.

Since there was no relation between the decrease in the number of vertices decomposed with
the number of vertices in the game, the second plot shows the relation between the decrease in the
number of vertices decomposed and the number of iterations/recursions of Zielonka’s algorithm
needed to solver the game, up to 100 iterations. These results can be divided in 3 parts. The
games with few iterations (0-10) show the least and most fluctuating decrease. The decrease is
mostly between 0 and 60%. The games with some more iterations (10-20) only still contain a few
games which show no decrease at all. The games that do show a decrease have a decrease between
20 and 90%. The games with a lot of iterations (20-100) always show a decrease in the number
of vertices decomposed, and this decrease is between 20 and almost 100%. The decrease shows a
tendency to increase with a higher number of iterations. So with the increase of the number
of iterations/recursions of Zielonka’s algorithm there is an increase in the decrease
in number of vertices decomposed into SCCs during Zielonka’s algorithm when using
partial re-decomposition compared to Tarjan’s algorithm.

Since there is a decrease in the number of vertices decomposed, we also need to check if the
preparation work of partial re-decomposition does not take too much time to be beneficial even
when there is a decrease. For this the scatter plots in the bottom row of Figure 7.2 were made.
The results were divided in 3 scatter plots to be able to scale the results better. The plots show
the decrease in time spent on decomposing SCCs in percentages:

(decomposition time Tarjan − decomposition time partial)

decomposition time Tarjan
∗ 100

The first scatter plot with 0 to 10 iterations shows that with so few iterations, it is better for most
games to just use Tarjan. The decrease in the number of vertices decomposed is not enough to
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outweigh the time spent on preparation in partial re-decomposition even if the actual time spent
on preparation is very small. In the second plot which shows the results for games with 10 to 20
iterations, the shift is already visible. There are much fewer games where partial re-decomposition
increases the time spent on decomposition, and when it does the relative increase is much smaller.
Like with the decrease in number of vertices decomposed, with the increase of iterations there is
also an increase in the relative decrease in time spent on decomposing SCCs. This trend is even
more clear on the third figure, which shows the results for 20-100 iterations. There are only 5
games with a small increase in decomposition time, and a trend that shows an increase in the
decrease if time spent on decomposing SCCs with partial re-decomposition. So for games which
take less than 10 iterations to solve, the preparation of partial re-decomposition often
takes to much time to be beneficial, but for games which take more than 10 iterations
to solve the time saved by decrease in the number of vertices decomposed is more
than enough to outweigh the time spent on preparation.

To compare the former results with the results of using dynamic SCC maintenance with
Zielonka’s algorithm Figure 7.3 shows several scatter plots for comparing dynamic SCC mainten-
ance with the use of Tarjan’s algorithm. For dynamic SCC maintenance, the total decomposition
time is split between the time spent to build all SCC trees, which is done at the start of the first
iteration of Zielonka’s algorithm, and the time spent to update the dynamic SCC decomposition.
Since both building has a factor δ, so size of the tree, in its complexity, the first plot of Figure 7.3
shows the relation between size of the tree and the time spent on building the SCC trees. Here
it can be seen that indeed the longer the size of the longest SCC tree, the more time spent on
building these trees. The time seems to stop increasing after a tree size of 3∗104, but this is not the
case. This is the effect of the cut off time, after 2 hours the program will stop attempting to build
the tree and the time measured will be set to 2h+. The results of the games whose SCC trees took
more than 2 hours to build are not shown in the plot and therefore it just looks like the building
time won’t increase for even longer trees. So with an increase of the size of the longest tree,
there also is an increase in time to build the dynamic SCC decomposition.

Since after deleting an edge, or when removing vertices, all ancestors of some nodes have to be
updated, it was expected that for long trees there should be more nodes updated which will cost
more time. To test this the second plot of Figure 7.3 shows the relation between the size of the tree
and the number of nodes updated during Zielonka’s algorithm and the third plot shows the relation
between the size of the tree and the time spent on updating the dynamic SCC decomposition. Both
plots are shown on log scale. In both plots can be seen that the expectations were both true. There
were a few exceptions, for example there were a few games with very short trees but with high
update times. These usually took many iterations of Zielonka’s algorithm to solve. For example
the game DemriKillerFormulan=2 of the MLSolver benchmark which 34K vertices, a longest tree
size of only 6, 121 trees with at least 1 inner node and took 37 iterations/recursions of Zielonka’s
algorithm to solve. However during Zielonka’s algorithm it had to update 319 nodes. This is
most likely caused by the recursion calls. Before the recursion call, a copy is made of the SCC
tree of the SCC of that iteration, and attractor set A or B has to be removed from this copy to
pass the updated dynamic SCC decomposition to the recursive call. But without a few outliers,
an increase in the size of the longest tree gives an increase in the number of nodes
updated and the time spent on updating the dynamic SCC decomposition.

The last row of plots in Figure 7.3 takes the total decomposition time of dynamic SCC main-
tenance, so the time spent to build the tree and the time spent on updating the decomposition. It
then compares the decrease in decomposition time when using dynamic SCC maintenance com-
pared to Tarjan’s algorithm to the longest tree size, the number of iterations and the number of
vertices in the game. From all 3 plots it can be clearly seen that there rarely is a decrease in
decomposition time. For a few games with very short trees (<5) and many iterations (>20), using
dynamic SCC maintenance gives a slight decrease in decomposition time. For games with long
trees, the longer the tree the higher the increase in decomposition time when using
dynamic SCC maintenance. When looking at the relationship between the number of
iterations/recursions of Zielonka’s algorithm and the decrease in decomposition time,
it can be clearly seen that the lower the number of iterations, the higher the increase
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in decomposition time when using dynamic SCC maintenance. The same goes for the
number of vertices in the game, the lower the number of vertices the more relative increase of the
decomposition time when using dynamic SCC maintenance. The conclusions of these last 3 plots
can be influenced by the cut off time however. Games with took more than 2 hours to solve are
left out from these plots. Especially in the last plot, there could be a set of large games with large
trees that just took to much time to build or update, but these can’t be seen.

Conclusion. In conclusion, compared to Zielonka’s algorithm with Tarjan’s algorithm, dynamic
SCC maintenance might be beneficial for games which result in very short trees and have many
iterations. For all other games the use of partial re-decomposition clearly gives the best option
and can save a lot of decomposition time.

7.4 Experiment: runtime differences

The experiment in this section was done to answer the following research questions:

RQ1 What is the impact on the runtime of Zielonka’s recursive algorithm of only recalculating
SCCs whose vertices have been removed from the graph instead of recalculating all SCCs?

RQ3 What is the impact on the runtime of Zielonka’s algorithm of using dynamic SCC mainten-
ance instead of recalculating the SCCs after each iteration?

RQ4 Does the size of the SCC tree matter for the runtime of Zielonka’s algorithm with dynamic
SCC maintenance? And if so, what is the relation between size and runtime?

First subsection 7.4.1 will describe the details of the experiment. Subsection 7.4.2 shows the results
and subsection 7.4.3 discusses these results.

7.4.1 Experiment description

To answer research questions 1, 3 and 4 Zielonka’s algorithm was run with the normal SCC
decomposition with Tarjan’s algorithm, with partial re-decomposition and with dynamic SCC
maintenance.

To answer research question 4, the height of the tree of the tree is also measured while building
the tree. Next to these the number of trivial and non trivial SCCs is measured. A trivial SCC
being an SCC existing just of 1 vertex. If the trees takes more than 2 hours to build the value
"na" will be shown instead.

Experiment description: data sets

This experiment was execute on all games of the benchmark. Because there are too many games to
discuss in this report, the results of all games in the benchmark that could be tested are uploaded
to the digital repository Zenodo (https://doi.org/10.5281/zenodo.5338737). Some interesting
games, the ones discussed in section 7.1, of these are chosen as summary and will be shown in
the results in subsection 7.4.2. Next to the games in the benchmark the set of random games
generated by PGSolver was also tested, as well as the set of triangle games.

7.4.2 Results

Tables 7.6 to 7.5 show the of the results of measurements for the runtime differences experiment
together with several characteristics of the games. For the random games the average of 25 games
will be shown. The standard deviation and median will be included in appendix G When the
runtime of Zielonka’s algorithm is longer than 2 hours, the measurements belonging to that run
will be set to na. The exception to this are the number of trivial and non trivial SCCs, the size
of the longest tree and the decomposition time. These come from the run of Zielonka’s algorithm
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with dynamic SCC maintenance. If the dynamic decomposition is completed within 2 hours
these results will still be shown even if the game was not solved in 2 hours with dynamic SCC
maintentance. If the dynamic decomposition was not completed within 2 hours, its result will be
set to 2h+ and the size of the longest tree to na.

7.4.3 Conclusions
The runtime differences experiment shows similar results as the number of vertices decomposed
experiment.

First we look at the games whose dynamic decomposition have only short trees, which are
the PGSolver and triangle games. In the PGSolver games with only a few iterations/recursions of
Zielonka’s algorithm all results are similar, but the run with just using Tarjan’s algorithm normally
scores best. Most likely for these games there are simply not enough iterations to compensate for
the extra work done to build the trees and the preparation work of the partial re-decomposition.
The triangle games, which do have a lot of iterations/recursions of Zielonka’s algorithm, do show
clear differences. For these games partial re-decomposition scores best, followed by dynamic SCC
maintenance. In the "number of vertices decomposed" experiment, the dynamic SCC maintenance
did score better for the triangle games with regards to the time to build and update the dynamic
SCC decomposition compared to the time preparation and SCC decomposition of partial re-
decomposition. We hypothesize that even though time was saved on that aspect, it might take
more time in the dynamic SCC decomposition to find the final SCC or to get the list of vertices
in the SCC, which is needed to calculate the attractor set, from a tree since you have to walk
through the whole tree.

The games whose dynamic SCC decomposition does have long trees are the random games, ML-
Solver games, equivalence games and modelchecking games. When the games next to long trees also
have many iterations/recursions of Zielonka’s algorithm, partial re-decomposition clearly performs
best. This can be best seen in the Onebitdatasize=3_infinitely_often_read_write game
where Zielonka’s algorithm with partial re-decomposition only takes 8 seconds, while Zielonka’s
algorithm without partial re-decomposition takes 24 seconds, and Zielonka’s algorithm with dy-
namic SCC maintenance takes over 2 hours. So using partial re-decomposition has a big advantage
for these games. In the random games, which have only a few iterations/recursions of Zielonka’s
algorithm, these advantages are no longer clearly visible. Here especially dynamic SCC mainten-
ance scores worse because of the cost of building those long trees. Zielonka’s algorithm with or
without partial re-decomposition performs about the same, so most likely the preparation overhead
is small enough here not to show any disadvantages.

Conclusion. In conclusion, for games with very few iterations, Zielonka’s algorithm with Tarjan’s
algorithm has the shortest runtime. For all other games partial re-decomposition has the shortest
runtime.
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Pgsolver games
name |V | #trivial

SCC
#non
trivial
SCC

size
longest
tree

#tarjan
calls

Zielonka+
tarjan
runtime

Zielonka+
partial
runtime

Zielonka+
dynamic
runtime

modelcheckerladder(100) 301 0 1 1 2 0,001s 0,002s 0,003s
modelcheckerladder(200) 601 0 1 1 2 0,002s 0,002s 0,005s
modelcheckerladder(500) 1,5K 0 1 1 2 0,003s 0,003s 0,005s
modelcheckerladder(1000) 3K 0 1 1 2 0,003s 0,003s 0,006s
modelcheckerladder(2000) 6K 0 1 1 2 0,007s 0,005s 0,013s
modelcheckerladder(5000) 15K 0 1 1 2 0,039s 0,041s 0,059s
modelcheckerladder(10000) 30K 0 1 1 2 0,045s 0,035s 0,074s
modelcheckerladder(20000) 60K 0 1 1 2 0,092s 0,096s 0,197s

Mlsolver games
name |V | #trivial

SCC
#non
trivial
SCC

size
longest
tree

#tarjan
calls

Zielonka+
tarjan
runtime

Zielonka+
partial
runtime

Zielonka+
dynamic
runtime

Nestern=3_compact 1,6K 409 9 22 34 0,004s 0,003s 0,024s
Nestern=4_compact 6,8K 1,6K 12 42 91 0,015s 0,017s 0,24s
Nestern=5_compact 29K 6,1K 13 127 211 0,071s 0,075s 3,724s
Nestern=6_compact 110K 23K 19 272 557 0,415s 0,387s 43,733s
Nestern=7_compact 426K 86K 20 704 1,4K 2,875s 2,488s 29m
ParityAndBuechin=3 34K 17K 132 17 110 0,112s 0,084s 0,296s
ParityAndBuechin=4 1M 576K 915 95 1,4K 13,323s 9,712s 1m58s

Equivalence games
protocol (data size) |V | #trivial

SCC
#non
trivial
SCC

size
longest
tree

#tarjan
calls

Zielonka+
tarjan
runtime

Zielonka+
partial
runtime

Zielonka+
dynamic
runtime

Buffer SWP (2) 2,3K 74 1 111 13 0,005s 0,003s 0,21s
Par SWP (2) 40K 218 74 3K 14 0,325s 0,242s 2m17s
Par SWP (4) 108K 866 290 4,3K 14 1,215s 0,872s 14m
CABP SWP (4) 788K 1 3,7K na 28 21,546s 18,955s 2h+
Buffer Onebit (3) 2,1M 58K 1 na 32 38,25s 28,992s 2h+
Buffer CABP (2) 3,5K 1 1 203 2 0,006s 0,005s 0,234s
ABP CABP (2) 58K 1 1 3,9K 2 0,151s 0,162s 3m2s
ABP CABP (4) 134K 1 1 2,1K 2 0,421s 0,501s 5m31s
SWP SWP (3) 489K 1 1 na 2 1,707s 1,82s 2h+

Table 7.4: The results of the runtime experiment for the PGSolver, MLSolver and equivalence
games. These games all had capacity 1 and windowsize 1 with branching-bisim equivalence.
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Modelchecking games
name |V | #trivial

SCC
#non
trivial
SCC

size
longest
tree

#tarjan
calls

Zielonka+
tarjan
runtime

Zielonka+
partial
runtime

Zielonka+
dynamic
runtime

Pardatasize=8 infinitely often
enabled then infinitely often
taken

11K 5,6K 16 3 18 0,027s 0,029s 0,039s

ABP(BW)datasize=8 infinitely
often enabled then infinitely of-
ten taken

12K 5,9K 16 3 18 0,013s 0,017s 0,036s

Lift (Correct) nlifts=4 liveness 2
2

45K 14K 52 27 4 0,578s 0,454s 0,652s

BRPdatasize=4 nodeadlock 49K 1 1 6 2 0,049s 0,063s 0,287s
SWPdatasize=2 windowsize=4
no generation of messages

95K 563 1,4K 3,7K 44 0,313s 0,228s 3m31s

Onebitdatasize=2 infinitely of-
ten read write

171K 1 1 16K 66 0,19s 0,189s 2h+

Onebitdatasize=2 no duplication
of messages

258K 12K 10K 16K 70 7,289s 2,156s 25m

Onebitdatasize=3 infinitely of-
ten read write

608K 1 1 na 66 24,771s 8,822s 2h+

Onebitdatasize=3 no duplication
of messages

1,2M 51K 39K na 70 2,52s 2,632s 2h+

Triangle games
#triangles |V | #trivial

SCC
#non
trivial
SCC

size
longest
tree

#tarjan
calls

Zielonka+
tarjan
runtime

Zielonka+
partial
runtime

Zielonka+
dynamic
runtime

50 150 0 50 1 51 0,006s 0,001s 0,005s
100 300 0 100 1 101 0,019s 0,002s 0,008s
500 1,5K 0 500 1 501 0,132s 0,01s 0,037s
1000 3K 0 1K 1 1K 0,455s 0,026s 0,071s
5000 15K 0 5K 1 5K 13,811s 0,609s 1,338s
10000 30K 0 10K 1 10K 1m0s 2,596s 6,834s
30000 90K 0 30K 1 30K 15m 35,517s 1m49s
100000 300K 0 100K 1 na 2h+ 15m 47m

Table 7.5: The results of the runtime experiment for the modelchecking and triangle games.
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Random games
max
#out-
edges

|V | avg
#trivial
SCC

avg
#non
trivial
SCC

avg size
longest
tree

avg
#tar-
jan
calls

avg
Zielonka+
tarjan
runtime

avg
Zielonka+
partial
runtime

avg
Zielonka+
dynamic
runtime

1 1K 971 3 1 2 0,002s 0,002s 0,003s
2 1K 415 2 72 6 0,003s 0,003s 0,030s
5 1K 62 1 274 7 0,006s 0,006s 0,226s
20 1K 0 1 610 6 0,010s 0,010s 0,510s
1 5K 4,9K 4 1 2 0,006s 0,007s 0,009s
2 5K 2,1K 2 385 7 0,014s 0,016s 0,536s
5 5K 296 1 1,4K 7 0,041s 0,043s 5,957s
20 5K 0 1 3,1K 6 0,100s 0,103s 18,817s
1 10K 9,9K 4 1 2 0,013s 0,017s 0,021s
2 10K 4,2K 1 780 7 0,037s 0,039s 2,355s
5 10K 591 1 2,9K 7 0,146s 0,149s 38,211s
20 10K 1 1 6,1K 6 0,327s 0,327s 1m56s
1 50K 50K 5 1 2 0,133s 0,183s 0,253s
2 50K 21K 1 4K 5 0,293s 0,305s 1m46s
5 50K 3K 1 14K 7 1,399s 1,407s 33m
20 50K 2 1 31K 6 2.077s 2.093s 1h12m

Table 7.6: The average results of the runtime experiment for the random games.



Chapter 8

Threats to validity

In this thesis there are 3 threats to the validity. The first one is that all observations of runtime
measurements are based on the best of our capabilities to program them. We tried to keep the
part of the program that runs Zielonka’s algorithm as similar as possible for all 3 versions, with
the exception of the part that decomposes or keeps track of the SCCs. However it is possible that
somewhere in the code some computations are done in linear time even though they could have
been done in constant time. This might have caused deviations in the observations made.

The second one is that all observations and implementations of dynamic SCC maintenance are
based on our interpretation of the paper describing this mechanism. The paper however left out
a lot of details which were filled in by us to meet all complexity details, but the author might
originally have had a different idea. So it could be that we interpreted some details wrongly which
might influence any of the measurements of Zielonka’s algorithm with dynamic SCC maintenance
and therefore those conclusions as well. However our implementation did meet all complexity
requirements.

The third threat is a bug in the code which could cause some games to give the wrong answer.
To test the correctness of the program as much as possible, we took a random selection of a set of
games of each benchmark. These games were then solved by our program and by PGSolver and
the solutions given by both solvers were compared to see if both were the same. The solutions of
this set of games were all the same. However not all possible games were tested and checked so it
is still possible for there to be a bug which causes a game to be solved incorrectly.
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Conclusions

In this thesis we looked at 2 optimizations for Zielonka’s algorithm with SCC decomposition.
The first was partial re-decomposition, in which only the part of the graph containing vertices
of SCCs which had 1 or more vertices removed is re-decomposed. The second optimization was
dynamic SCC maintenance, which builds an SCC tree for each SCC and then maintains those
when vertices or edges have to be removed from the graph. Then we executed 3 experiments: the
"split node choice" experiment, the "number of vertices decomposed" experiment and the "runtime
differences" experiment. The first experiment tested several options of choosing the vertex for the
split node, which is an essential point when building the tree. This experiment concluded that
first choosing the most connected vertex, and of these vertices the vertex with the highest priority,
gave the best results. Then in the "number of vertices decomposed" experiment, the decrease in
the number of vertices decomposed during Zielonka’s algorithm with partial re-decomposition was
tested, along with the time spent decomposing. The time spent decomposing was also compared
with the time spent on building and maintaining the SCC trees. The last experiment, the "runtime
differences" experiment tested the difference in runtime of Zielonka’s algorithm for all 3 versions.
The last 2 experiments came to the following conclusions for the research questions:

1. What is the impact on the runtime of Zielonka’s recursive algorithm of only recalculating
SCCs whose vertices have been removed from the graph instead of recalculating all SCCs?

• There is a positive impact. The runtime either decreases or does not increase.

2. What is the difference in the total number of vertices decomposed into SCCs when recalcu-
lating SCCs whose vertices have been removed from the graph compared of recalculating all
SCCs?

• There is a positive impact especially for runs with many iterations/recursions of Zielonka’s
algorithm. The number of vertices decomposed into SCCs when only recalculating SCCs
whose vertices have been removed from the graph is much less than the number of ver-
tices decomposed into SCCs when recalculating all SCCs. Sometimes this decrease in
number of vertices decomposed is more than 99%.

3. What is the impact on the runtime of Zielonka’s algorithm of using dynamic SCC mainten-
ance instead of recalculating the SCCs after each iteration?

• It depends on the game. For games with many iterations/recursions of Zielonka’s
algorithm and decompositions with very short trees there is a clear positive impact.
But for games that do not have these characteristics the impact is negative and the
overhead of building the dynamic SCC decomposition is too large.

4. Does the size of the SCC tree matter for the runtime of Zielonka’s algorithm with dynamic
SCC maintenance? And if so, what is the relation between size and runtime?
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• The size of the longest SCC tree definitely matters for the runtime of Zielonka’s al-
gorithm with dynamic SCC maintenance. Dynamically keeping track of SCCs is only
effective for short SCC trees and not for long ones. An increment in the size of the
longest tree gives an increment in the runtime.

5. How many nodes in the SCC tree are updated during the entire run of Zielonka’s recursive
algorithm in comparison the number of vertices decomposed by partial decomposition or
decomposition of the whole graph.

• The number of nodes in the SCC tree that are updated is usually less than the number
of vertices decomposed by partial decomposition or decomposition of the whole graph.
Sometimes for short trees of only height 1, no nodes will be updated and such trees will
be deleted as a whole from the decomposition.

To conclude from these research questions and the results, which version of Zielonka’s algorithm
would be the best performing one overall, it would be the version that only recalculates SCCs whose
vertices have been removed, so partial re-decomposition. This version performs well in any type
of graph. Even if it does not perform the best it performs close to the best. When there are few
iterations in Zielonka’s algorithm the best choice would be to just recalculate all SCCs, but this
number of iterations is not known beforehand, so a solver would not be able to use this knowledge
to choose a version.

A future work could be to see if Tarjan’s algorithm could be adapted such that what it is running
it could already see any non maximal SCCs inside the SCCs in the decomposition. These then
might be useful in building the SCC trees and thereby speed up the dynamic SCC decomposition
and maybe break this bottleneck.

Next to these it might be interesting to test an implementation of the improved dynamic SCC
maintenance algorithm in [1] and compare this to the version used in this thesis that came from
[9]. Especially in terms of building the tree, would the GES trees used by the improved version
still take as much time to build as the SCC trees? If not then the improved version might be more
useful in combination with Zielonka’s algorithm.
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Appendix A

Tarjan’s Algorithm

One of the simplest and most efficient algorithms to decompose a graph G in SCCs is Tarjan’s
algorithm [13]. The algorithm which works similarly to a depth first search (DFS) is shown in
algorithm 10.

Algorithm 10 Tarjan’s algorithm

function Tarjan(G = (V,E))
i←− 0
S ←− empty stack
for all v ∈ V do

number(v)←−∞
end for
while ∃v∈V : number(v) =∞ do

pick v ∈ {w ∈ V | number(w) =∞}
Strongconnect(G,S, v, i)

end while
end function

function Strongconnect(G = (V,E), S, v, i)
lowlink(v)←− i
number(v)←− i
i←− i+ 1
S.push(v)
for all (v, w) ∈ E do

if number(w) =∞ then
Strongconnect(G,S,w, i)
lowlink(v)←− min{lowlink(v), lowlink(w)}

else if number(w) < number(v) ∧ S.contains(w) then
lowlink(v)←− min{lowlink(v), lowlink(w)}

end if
end for
if lowlink(v) = number(v) then

while number(S.peek()) ≥ number(v) do
S.pop()

end while
end if

end function

In Tarjan’s algorithm the DFS is executed starting from a random vertex, which has not yet
been assigned to an SCC, in the graph. Then for each vertex v ∈ V in the DFS it is first given a
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number and a lowlink and stored on the stack of visited vertices in this DFS. Then like in DFS
the algorithm checks its outgoing edges. For the target w of each edge (v, w) ∈ E:

• If w has not been visited then the algorithm recurses on w, so in this call v = w instead of
a random v. When the recursion call returns, the lowlink of v is set to the minimum of the
newly acquired lowlink of w and the lowlink of v. By storing the lowest lowlink it stores
the earliest vertex in the DFS which can be reached by v.

• If w was already visited and is not on the stack we do nothing. In this case the vertex w
was not in this DFS and has already been assigned to a different SCC. If v had been in an
SCC with w then during the DFS from w, v would have been explored.

• If w was already visited and is on the stack, then again the lowlink is set to the minimum
lowlink of v and w.

After all targets of edges of v have been visited, v can be in 2 situations:

• The lowlink of v still is equal to its number. In this case no cycle to a vertex earlier in the
DFS has been found so v is the root of an SCC and all other vertices of the SCC have been
explored and will have the same lowlink value. These are then removed from the stack so
that they will not change the lowlink values of other not visited vertices that might have an
edge to this SCC but are not part of it.

• The lowlink of v is lower than its number. In this case v is part of an SCC with a root at
a vertex earlier in the DFS.

If after exploring the whole DFS there still are vertices that have not been visited we pick another
random vertex from these and start over. When the algorithm ends and all vertices have been
visited, we can construct the SSCs by looking at the lowlink values. Vertices with the same
lowlink value belong to the same SCC. An example of running Tarjan’s algorithm on a graph is
shown in Appendix B.

Theorem 7. The recursive version of Tarjan’s algorithm, Tarjan(G), returns the SCC decom-
position of the graph G in O(|V |+ |E|) time.

This theorem has been proven by R.E. Tarjan in [13].
One of the possible problems with running Tarjan’s algorithm on big graphs in practice is that

there might be a lot of recursions of the algorithm stored on the program stack at the same time.
To solve this W.R.M. Schols described an iterative version of Tarjan’s algorithm in his master
thesis [11] and showed its correctness. This iterative version of Tarjan’s algorithm is also given in
Algorithm 11. Because some graphs of the parity games considered in the experiments later will
be very big, the iterative version of Tarjan’s algorithm will be used for the SCC decomposition in
Zielonka’s algorithm.

Theorem 8. The iterative version of Tarjan’s algorithm, TarjanItter(G), returns the SCC
decomposition of the graph G in O(|V |+ |E|) time.

In [11] W.R.M. Schols has proven that the iterative version works correctly and just like the
recursive version also has a complexity of O(|V |+ |E|).
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Algorithm 11 Tarjan’s algorithm iterative version

function TarjanItter(G = (V,E))
stack, result←− [] empty stack
low, disc←− {:} empty map
for all u ∈ V do

if u /∈ low then
Strongconnect(G,S, u, low, disc, result)

end if
end for
return result

end function

function StrongconnectItter(G = (V,E), S, u0, low, disc, result)
work ←− [(u0, 0)]
while |work| > 0 do

(u, j)←− work.pop()
if j = 0 then

k ←− |disc|
disc[u], low[u]←− k
stack.push(u)

end if
recurse←− false
for i = j to |successors(u)| − 1 do

v ←− successors(u)[i]
if v /∈ low then

work.push((u, i+ 1))
work.push((v, 0))
recurse←− true
break

else if v ∈ stack then
low[u]←− min(low[u], disc[v])

end if
end for
if ¬recurse then

if low[u] = disc[u] then
comp←− []
while true do

v ←− stack.pop()
comp.push(v)
if v = u then

break
end if

end while
result.push(comp)

end if
if |work| > 0 then

v ←− u
(u, j)←− work.peep()
low[u]←− min(low[u], low[v]

end if
end if

end while
end function
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Example of running Tarjan’s
algorithm

As an example of Tarjan’s algorithm, the following steps are produced when running it on the
graph in the left topmost corner of Figure B.1. When referring to a graph corresponding to one
of the steps in the figure, we will number them as (r, c) where r is the row and c is the column.

(1, 1) Shows the graph G.

(1, 2) A random vertex is chosen and given the number (in the vertex) and a lowlink value 0 and
added to the stack.

(1, 3) An outgoing edge is chosen to the right, this vertex is unvisited, so it recurses on it and
which is then given the number and a lowlink value 1 and added to the stack.

(2, 1) An outgoing edge is chosen to the top, this vertex is unvisited, so it recurses on it and which
is then given the number and a lowlink value 2 and added to the stack.

(2, 2) An outgoing edge is chosen to the vertex with number 0, this vertex was already visited and
is on the stack, so the lowlink value of the vertex with number 2 is set to the minimum of
0 and 2, which is 0.

(2, 3) The vertex with number 2 has no other outgoing edges so the function returns and the vertex
with number 1 is set to the minimum of 0 and 1, which is 0.

(3, 1) The vertex with number 1 has no other outgoing edges so the function returns and the vertex
with number 0 is set to the minimum of 0 and 0, which is 0.

(3, 2) The vertex with number 0 has no other outgoing edges. Its number is equal to its lowlink
value so the vertices with numbers 0, 1, and 2 are removed from the stack.

(3, 3) There still are unvisited edges in G so a random vertex is chosen from the unvisited edges
and given the number and a lowlink value 3 and added to the stack.

(4, 1) An outgoing edge is chosen to the right, this vertex is unvisited, so it recurses on it and
which is then given the number and a lowlink value 4 and added to the stack.

(4, 2) An outgoing edge is chosen to the bottom, this vertex is unvisited, so it recurses on it and
which is then given the number and a lowlink value 5 and added to the stack.

(4, 3) An outgoing edge is chosen to the right, this vertex has already been visited and is not on
the stack so we ignore it. Another outgoing edge is chosen to the top right, this vertex is
unvisited, so it recurses on it and which is then given the number and a lowlink value 6 and
added to the stack.
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(5, 1) An outgoing edge is chosen to the right, this vertex has already been visited and is not on
the stack so we ignore it. A second outgoing edge is chosen to the bottom, this vertex also
has already been visited and is not on the stack so we ignore it as well. The last outgoing
edge is to the left, this vertex was already visited and is on the stack, so the lowlink value
of the vertex with number 6 is set to the minimum of 4 and 6, which is 4.

(5, 2) The vertex with number 6 has no other outgoing edges so the function returns and the vertex
with number 5 is set to the minimum of 4 and 5, which is 4.

(5, 3) The vertex with number 5 has no other outgoing edges so the function returns and the vertex
with number 4 is set to the minimum of 4 and 4, which is 4.

(6, 1) The vertex with number 4 has no other outgoing edges. Its number is equal to its lowlink
value so the vertices with numbers 4, 5, and 6 are removed from the stack. The vertex with
number 3 is not removed as its lowlink value is smaller than 4.

(6,2) The vertex with number 3 has another outgoing edge to the bottom, this vertex is unvisited,
so it recurses on it and which is then given the number and a lowlink value 7 and added to
the stack.

(6, 3) An outgoing edge is chosen to the vertex with number 3, this vertex was already visited and
is on the stack, so the lowlink value of the vertex with number 7 is set to the minimum of
3 and 7, which is 3.

(7, 1) The vertex with number 7 has no other outgoing edges so the function returns and the vertex
with number 3 is set to the minimum of 3 and 3, which is 3.

(7, 2) The vertex with number 3 has no other outgoing edges. Its number is equal to its lowlink
value so the vertices with numbers 3 and 7 are removed from the stack. All vertices have
been visited. As can be seen in this last graph there are 3 SCCs that can be distinguised by
their lowlink values.
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Figure B.1: Steps of tarjans algorithm, read from left to right.
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Program

This chapter describes the input and the way the use the program made for the experiments
which includes all before described implementations and can be used to solve a game with any
of the 3 versions of Zielonka’s algorithm. Section C.1 will first describe the format of the input
files. There are 2 ways to use the program. The first way is to compile the code and start
the program with command line commands. The commands and output will be described in
section C.2. The second way is to import the code in an IDE like Intelij and then run the code
using Junit tests. This way will be described in section C.3. The code itself can be found at:
https://github.com/Odonja/MasterThesis-final and requires maven to compile.

C.1 Program input file format
The program only accepts .gm files. These files must have the following format:

• The first line is:

parity X;

, where X is the number of the highest vertex

• Optionally the second line can have the format:

start Y;

with Y any number. This line will be ignored by the program.

• Then there is a line for each vertex in the game of the format:

index parity owner outedges "optional label";

– The index must increment by 1 each line, so 0 in the first line, 1 in the second line, 2
in the third line etc.

– The parity can have at most 8 digits, if the parity is larger than 8 digits only the
smallest 8 digits will be used.

– The owner can either be 0 or 1
– The outedges are a list of outedges of the format 1,2,3,4,5,etc of comma separated

target vertices without or without spaces in between.
– The "optional label" is a label that can be present, but will not be used by the

program. It must be put between quotes.

• Optionally the last line can be of the format:

timeout....

where .... can be replaced with anything. Any line starting with timeout will be ignored.
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C.2 Program with command line
To use the program with command line, first navigate to the MasterThesis folder and open the
command line. Compile with the following command:

mvn package

Then the code can be executed with the following command:

java −cp " . \ z i e l onka \ ta r g e t \ z i e l onka −1.0−SNAPSHOT. j a r ; . \ common\ ta r g e t \common−1.0−
SNAPSHOT. j a r " org . anhu . App l i ca t ion severalArguments yourFilOrFolderURL

In this line severalArguments can be replaced with one or more arguments with spaces in between.
The following arguments can be used:

• a: print the answer of the game

• i: print all additional information

• t: print the timing of Zielonka’s algorithm

• h: print all commands

• F: file specified is a folder, runs all .gm files found in the specified folder

• D: run Zielonka’s algorithm with dynamic SCC maintenance

• P: run Zielonka’s algorithm with partial re-decomposition

• T: run Zielonka’s algorithm with Tarjan’s algorithm

The yourFilOrFolderURL argument can be replaced by the URL of the game, or the URL of a
folder if F is present in severalArguments.

C.3 Program with Junit
The second option is to import the code into an IDE and use Junit tests to solve the games. All
experiments used the Junit test method. This second method does not have as many options as
the command line version. It always runs all 3 versions of Zielonka’s algorithm on the game. When
solving all games in a folder it will solve them in order of size and cut them off if they take more
than roughly 2 hours. When solving just a single game the game will not be cut off after 2 hours.

To run the code in an IDE using Junit:

• Go to Zielonka\src\test\Application

• To run a single file enter the file URL in the file variable and run the runFile() test case.

• To run all .gm files in a folder enter the folder URL in the folder variable and run the
runAllFilesInFolder() test case In this test case. When using this test case there must
be a folder named _results present in which the results will be stored.

Either test case will print the timing and statistics used in the experiments. Next to these
it will write the answer to _results\Answer_dateTime.txt, the statistic details are written
to _results\dateTime.txt and _results\Excel_dateTime.txt will contain the same results
but in a line that can be copied into excel with variables in the following order: name #ver-
tices #trivial_SCC #non_trivial_SCC size_longest_tree #tarjan_calls #vertices_tarjan #ver-
tices_partial #nodes_updated time_tarjan time_partial_prep time_partial_tarjan time_make_tree
time_update_decomposition runtime_tarjan runtime_partial runtime_dynamic
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Dynamic SCC Maintenance
Implementation

This chapter describes for each of the functions described in chapter 6 the implementation of
that function. An overview of the datastructures used in the implementations are given in Figure
F.1. Together with the implementation, an analysis of the complexity is given to show that these
implementation meet the runtime requirements. The analysis might make use of some operations
on the data structures. An overview of the operations on the data structures and their complexity
is presented in Table F.1. In chapter F a more detailed description of the datastructures and their
operations is given.

D.1 SCC tree implementation
This subsection describes the implementation of the process which builds the dynamic SCC de-
composition for a graph, the Dynamic_SCC_decomposition(G) function described in Algorithm
4. The data structures which are the input for the process of building the SCC tree are:

• the original graph G = (V,E) with V = {0, 1, ..., n} stored as as a Graph object.

• A boolean array vertexInGame of size n which has the value true for each vertex present in
the graph.

• The number of vertices currently in the graph, stored in an integer nrOfVerticesInGame.

Using this input, the process first needs to find the SCCs of the input graph for which SCC trees
need to be build and then call a function to turn these SCCs into an SCC tree. The process of
finding these SCCs follows the following steps, where the line numbers correspond to the numbers
as shown in algorithm 4:

(2-4) Create a DynamicSCCDecomposition to store all trees and information in. Creating an empty
object takes O(1) time.

(5) The input graph may exist of multiple SCCs, so first run the iterative version of Tarjan’s
algorithm on the input graph to find the SCC for which an SCC tree has to be made. The
result is stored in SCCdecomposition. Running Tarjan’s algorithm takes O(|V |+ |E|) time.

(6) Then an SCC tree for each SCC TemporarySCC in
SCCdecomposition.TemporarySCCList has to be created. Iterating over the list
SCCdecomposition.TemporarySCCList gives O(|TemporarySCCList|) iterations.

(7-8) If TemporarySCC.members contains only 1 member then the SCC tree is a single node.
Create a leafNode object. This step takes O(1) time as its just the creation of an
object.
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(12) If TemporarySCC.members contains more than 1 member then the SCC will be an SCC
tree with an innerNode object as root. A stack containing a new innerNode for the root
with as split node the first vertex in TemporarySCC.members is created as argument in
O(1) time. Then the function which creates an SCC tree for an SCC is called, which
takes O(|ESCC |δ) time.

(10, 16) Add leafNode or innerNode that was created this to the DynamicSCCDecomposition.
Adding a node to a DynamicSCCDecomposition object takes O(1) time.

(9, 13-15) For each vertex in the SCC store the created leafNode or innerNode as the root of its
SCC tree: for each vertex in TemporarySCC.members add the leafNode or innerNode
in the DynamicSCCDecomposition as root. Adding a node as root for a vertex in a
DynamicSCCDecomposition object takes O(1) time.

(18) Store the edges that go from vertices in this SCC to vertices in other SCCs which are
present in TemporarySCC.outgoingEdges in the DynamicSCCDecomposition as edges
between trees. Adding an edge between trees to an DynamicSCCDecomposition object
takes O(1) time. So adding all the edges in the list for all iterations takes O(|E|) time.

So the whole process of creating a dynamic SCC decomposition with SCC trees for a graph takes
O(1 + |V | + |E| + |TemporarySCCList| ∗ (|ESCC |δ + 1 + 1) + |E|) = O(|V | + |E|δ) = O(|E|δ)
since every vertex has at least 1 outgoing edge in a parity game.

Building an SCC tree for an SCC with more than 1 vertex is a recursive process. To build an
SCC tree in O(|ESCC |δ) time each recursion should not take more than O(|ESCC |) time so that
each layer of the tree can be created in O(|ESCC |) time. The function that builds the SCC tree
for an SCC, which is described in BuildTree(G,C) function in Algorithm 4, receives the vertices
of the SCC in a list members, the DynamicSCCDecomposition to store the node where edges in the
SCC are stored and a stack containing the root inner node. It then follows the following process
where the line numbers correspond to the numbers as shown in algorithm 4, steps without line
numbers contain details omitted in the algorithm:

(24-25) These steps are omitted since they are received as argument.

(26) Check that there still are inner nodes to be created on the stack if not then return. Since
there are at most as many inner nodes as vertices, this step takes O(|VSCC |) time for all
recursions together.

(27) Get the current inner node to be created from the stack in O(1) time, or O(|VSCC |) time for
all recursions together.

(28-30) A boolean array of size nrOfVertices is created, which is initialized to false and set to true
for each vertex in members. Then a vertex d is chosen in O(|VSCC |) time and set to false in
the boolean array. This symbolizes the split function, since after the first vertex is split,
the created vertices both get their own SCC. Iterating over a list of at most O(|VSCC |) items
and setting the value in the boolean array takes O(|VSCC |) time.

(28-30) The graph of the SCC without the first vertex, expressed by the boolean array, is then again
decomposed into SCCs using the iterative version of Tarjan’s algorithm. The resulting SCCs
found can be seen as the condensed vertices for which a node in the tree has to be made. The
result is stored in SCCdecomposition. Running Tarjan’s algorithm takes O(|VSCC |+|ESCC |)
time.

1. A hashmap sccToNode is created to be able to store for each returned TemporarySCC in
SCCdecomposition.TemporarySCCList which object this SCC was stored in. This map can
later be used to map the endpoints of the edges to child nodes they are stored in. Creating
a hashmap takes O(1) time.

(31) Then a child node has to be created in the innerNode object for each SCC TemporarySCC
in SCCdecomposition.TemporarySCCList:
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(34-35) If TemporarySCC.members contains only 1 member then the child is a leaf node. Create
a leafNode object. Checking the size of a list and creating an object take O(1) time.

(36-38, 41-43) If TemporarySCC.members contains more than 1 member then the SCC will be an SCC
tree with an innerNode object as root. Add a new innerNode to the stack for this SCC
with as split node a vertex in TemporarySCC.members. Creating an item and adding it
to the stack takes O(1) time, the rest of the time is for the next layer.

(32-33) Add the created leafNode or innerNode child to the innerNode object. Adding a child
node to an innerNode takes O(1) time.

(a) Store which child the TemporarySCC is stored in in the hashmap sccToNode. Adding
an item to a hashmap takes O(1) time.

2. Get the list of outgoing and incoming edges of the split node from the Game object. Getting
an object from a hashmap takes O(1) time.

3. Iterate over the list of outgoing edges of the vertex of the split node to add all outgoing
edges of the split node to other vertices in the SCC to the innerNode object object. To
know if the target of the edge is in the SCC the earlier created boolean array can be used to
check. Iterating over this list of outgoing edges with a check will give less than O(|ESCC |)
iterations.

(a) Find the node where the target of the edge is stored in O(1) time:
targetNode = sccToNode.get(SCCdecomposition.vertexToSCC.get(edge.target)).

(b) Add the edge to the innerNode object. Adding an edge to a innerNode object takes
O(1) time.

(c) Store where the edge is stored. Adding the storage place of an edge to a DynamicSCCDecomposition
object takes O(1) time.

4. Iterate over the list of incoming edges of the vertex of the split node to add all incoming
edges of the split node to other vertices in the SCC to the innerNode object object. To
know if the target of the edge is in the SCC the earlier created boolean array can be used to
check. Iterating over this list of outgoing edges with a check will give less than O(|ESCC |)
iterations.

(a) Find the node where the source of the edge is stored in O(1) time:
sourceNode = sccToNode.get(SCCdecomposition.vertexToSCC.get(edge.source)).

(b) Add the edge to the innerNode object. Adding an edge to a innerNode object takes
O(1) time.

(c) Store where the edge is stored. Adding the storage place of an edge to a DynamicSCCDecomposition
object takes O(1) time.

5. Then the other edges between TemporarySCCs, so between the children, have to be stored
in the inner node. All edges between children of this inner node are stored in 1 of the lists
TemporarySCC.outgoingEdges. Iterate over all the edges in these lists will give O(|ESCC |)
iterations at most. For each edge do:

(a) Find the node where the source of the edge is stored in O(1) time:
sourceNode = sccToNode.get(SCCdecomposition.vertexToSCC.get(edge.source)).

(b) Find the node where the target of the edge is stored in O(1) time:
targetNode = sccToNode.get(SCCdecomposition.vertexToSCC.get(edge.target)).

(c) Add the edge to the innerNode object. Adding an edge to a innerNode object takes
O(1) time.

(d) Store where the edge is stored. Adding the storage place of an edge to a DynamicSCCDecomposition
object takes O(1) time.
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6. This innernode is now completed so the process can start over at the start if there are still
inner nodes in the stack.

In the step of creating a single layer of the the SCC tree, the step with highest complexity is
O(|VSCC |+ |ESCC |) = O(|ESCC |) = O(m), meeting the time requirements. So to create an SCC
tree with δ layers takes O(mδ) time.

D.1.1 Find unreachable implementation
This subsection explains how findUnreachable(G,S) was implemented such that it can find the
minimal set of condensed vertices and their incident edges such that if you remove these condensed
vertices, G will again be an SCC, in O(|S|+ |VSCC |+ |ESCC |) time.

The data structures that are the input for the implementation of findUnreachable(G,S) are:

• A DAG object of the condensed graph of the SCC represented by the node.

• A list of Node objects, which contain the possible sources and sinks.

First the implementation of findUnreachable(G,S) will be discussed, followed by the imple-
mentation of its 2 helper functions. The line numbers correspond to the numbers as shown in the
algorithm.

() Before making the call to findUnreachableDown and findUnreachableUp a Unreachables
object is created, which can be passed to those functions as argument so that in line 4 the
found nodes and edges don’t have to be merged. Creating an object takes O(1) time.

(2-3) These lines make calls to the helper functions findUnreachableDown and findUnreachableUp
to find the nodes that cannot be reached from or cannot reach the split node. Each
call as will be shown below takes O(|S| + |VSCC | + |ESCC |) time. So lines 2 and 3 take
O(|S|+ |VSCC |+ |ESCC |) time.

(4) In the pseudocode the results of findUnreachableDown and findUnreachableUp are merged.
However in the implementation the Unreachables object was passed as argument to both of
them, and the ListSetPair made sure that there will not be any doubles present, so line 4
does not need to merge anything and can just return the Unreachables object, which takes
O(1) time.

So the implementation of findUnreachable(G,S) takes O(|S| + |VSCC | + |ESCC |) time as long
as findUnreachableDown and findUnreachableUp take O(|S|+ |VSCC |+ |ESCC |) time.

The implementation of findUnreachableDown of Algorithm 5 will be discussed first. Next to
the arguments of findUnreachable(G,S) it also receives an Unreachables object to which it
will add U and I. Again the line numbers correspond to the numbers as shown in the algorithm.

(8-10) The sets do not have to be created, as the Unreachables object from the argument will be
used instead. An empty queue is created to store sources which have not yet been processed.
An object can be created in O(1) time.

(11-15) These lines check for the list of possible sources given in the argument, if the elements of the
list indeed are sources and if so adds them to the queue to be processed. Iterating over the
list of possible sources S takes O(1) time per element x. Checking if x is the split node w
can be done by checking its class which can be done in O(1) time. The number of inedges
of x can be received from the DAG and then comparing this value to 0. Both these actions
take O(1) time as well. Finally if needed x is added the the queue, which can also be done
in O(1) time. So all actions in the for loop take O(1) and there are O(|S|) iterations. So
lines 11 to 15 take O(|S|) time.

(16) Checking if there are still sources that need processing can be done in O(1) time, and this
will be checked at most |VSCC |+ 1 times.
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(17-18) Taking a source node from the queue for processing and adding it to the Unreachables
object both take O(1) time. Each condensed vertex can be added the the queue at most
once, so lines 17 and 18 are executed at most |VSCC | times resulting in complexity O(|VSCC |)
for lines 17 and 18 in the whole function.

(19) Adding the incident edges of the source means only adding outedges, since sources do not
have inedges. Since each edge can only be an outedge of a single condensed vertex and each
condensed vertex is processed at most once, it means that in line 19 at most |ESCC | edges
can be added to the set of incident edges. So over the whole function, line 19 will take at
most O(|ESCC |) time as adding an edge to an Unreachables object takes O(1) time..

(20-25) This loop removes the outedges of the source to check if the target vertices of these edges
now have become sources. The algorithm does not care which inedges the target has, only
if it has still inedges left to see if it became a source. So to save time in the implementation,
edges are not really deleted, but the counter incomingEdgesCount in the DAG keeps track
for each condensed vertex (Node object) how many inedges a condensed vertex still has. So
the loop in lines 20 to 25 is implemented as follows: iterating over the list of outedges of the
source, which can be retrieved from the DAG, decrement incomingEdgesCount by 1 for each
target and check if the new count has become 0. In this case the target has become a source
so add it the the queue. Getting the list of outgoing edges from the DAG takes O(1) time,
decrementing the number of inedges in the DAG takes O(1) time, doing a comparison to 0 and
adding an object to the queue takes O(1) as well. Iterating over the list of outgoing edges
takes O(1) time per edge. As with line 19 each edge will only be processed in 1 iteration of
this for loop, so in the whole duration of the function, there will be at most |ESCC | iterations,
resulting in a complexity of O(|ESCC |) for this loop for the whole function.

(27) The sets U and I do not have to be returned since they were passed in the argument.

So this results in a complexity of O(1 + |S| + |VSCC | + |VSCC | + |ESCC | + |ESCC |) = O(|S| +
|VSCC | + |ESCC |) for findUnreachableDown. The steps for findUnreachableUp as described in
the pseudocode of Algorithm 5 are very similar:

(31-33) The sets do not have to be created, as the Unreachables object from the argument will be
used instead. An empty queue is created to store sources which have not yet been processed.
An object can be created in O(1) time.

(34-38) These lines check for the list of possible sinks given in the argument, if the elements of the
list indeed are sinks and if so adds them to the queue to be processed. Iterating over the
list of possible sinks S takes O(1) time per element x. Checking if x is the split node w can
be done by checking its class which can be done in O(1) time. The number of outedges of x
can be received from the DAG and then comparing this value to 0. Both these actions take
O(1) time as well. Finally if needed x is added the the queue, which can also be done in
O(1) time. So all actions in the for loop take O(1) and there are O(|S|) iterations. So lines
34 to 38 take O(|S|) time.

(39) Checking if there are still sinks that need processing can be done in O(1) time, and this will
be checked at most |VSCC |+ 1 times.

(40-41) Taking a sink from the queue for processing and adding it to the Unreachables object both
take O(1) time. Each condensed vertex can be added the the queue at most once, so lines
17 and 18 are executed at most |VSCC | times resulting in complexity O(|VSCC |) for lines 40
and 41 in the whole function.

(42) Adding the incident edges of the sink means only adding inedges, since sinks do not have
outedges. Since each edge can only be an inedge of a single condensed vertex and each
condensed vertex is processed at most once, it means that in line 42 at most |ESCC | edges
can be added to the set of incident edges. So over the whole function, line 42 will take at
most O(|ESCC |) time as adding an edge to an Unreachables object takes O(1) time..
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(43-48) This loop removes the inedges of the source to check if the source vertices of these edges now
have become sinks. The algorithm does not care which outedges the target has, only if it has
still outedges left to see if it became a sink. So to save time in the implementation, edges
are not really deleted, but the counter outgoingEdgesCount in the DAG keeps track for each
condensed vertex (Node object) how many outedges a condensed vertex still has. So the loop
in lines 20 to 25 is implemented as follows: iterating over the list of inedges of the source,
which can be retrieved from the DAG, decrement outgoingEdgesCount by 1 for each source
and check if the new count has become 0. In this case the source has become a sink so add it
the the queue. Getting the list of incoming edges from the DAG takes O(1) time, decrementing
the number of outedges in the DAG takes O(1) time, doing a comparison to 0 and adding an
object to the queue takes O(1) as well. Iterating over the list of incoming edges takes O(1)
time per edge. As with line 19 each edge will only be processed in 1 iteration of this for loop,
so in the whole duration of the function, there will be at most |ESCC | iterations, resulting
in a complexity of O(|ESCC |) for this loop for the whole function.

(50) The sets U and I do not have to be returned since they were passed in the argument.

So this results in a complexity of O(1+|S|+|VSCC |+|VSCC |+|ESCC |+|ESCC |) = O(|S|+|VSCC |+
|ESCC |) for findUnreachableUp just like findUnreachableDown. And since both of them have
this complexity, findUnreachable meets the complexity constraint of O(|S| + |VSCC | + |ESCC |)
as well.

D.2 Edge deletion implementation

This subsection explains how deleteEge(T, e) was implemented such that it can delete the edge
e and update SCC tree T in O(mn) time.

In the pseudocode of DeleteEdge the function receives an SCC tree T , in the implementa-
tion however when an edge is deleted from a root node and some of the children become inde-
pendent SCC trees, the function will need access to the whole decomposition. To facilitate this
instead of an SCC tree T the whole dynamic SCC decomposition is passed as an argument as an
DynamicSCCDecomposition object. This object contains all information needed by DeleteEdge,
such as node in which the edge is stored or the place to store the newly independent SCC trees.
Aside from an DynamicSCCDecomposition object the function also receives an Edge object con-
taining the edge to be deleted.

After deleting the edge from the corresponding node, the DeleteEdge makes a call to the
UpdateSCC-Tree function to update the tree. The UpdateSCC-Tree function receives as argu-
ments:

• The Node object N which has to be updated.

• The list of children of N which might have been modified A, for example because of edge
deletion or because they have been added to this node in a former iteration.

• The DynamicSCCDecomposition object in case some children of the root node become inde-
pendent SCC trees.

When deleting an edge from the lowest inner node of an SCC tree, it might be the case that all
ancestors of this inner node have to be updated. An SCC tree has at most height n, so to meet the
O(mn) update time after edge deletion, each call to UpdateSCC-Tree should not take more than
O(m) time, and the steps of deleting the edge in DeleteEdge should not take more than O(mn).

When n is very large there might be very deep trees. To prevent heap becomming full because
there are to many recursions, the UpdateSCC-Tree function was turned recursive. There is a
boolean recurse which is true at the start, and will be set to false when normally the function
would return instead of recurse. When the function normally would recurse, which is all the way
the end when the function would have no more actions, the input node is set to its parent and
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the list of children that have been modified in the argument is changed to U ∪ {vN}. This way
while recurse is true it keeps looping over the whole content of UpdateSCC-Tree mimicking the
recursions.

First the implementation of the steps of deleting the edge in DeleteEdge will be discussed.
The line numbers correspond to the numbers as shown in algorithm 6.

(2) First the place where the edge is stored has to be found, this location can be retrieved
from the DynamicSCCDecomposition object received as argument. First it checks if it is
an edge between trees, if so the implementation just deletes it and it is done as no trees
have to be adapted. Checking if an edge is an edge between trees an removing an edge
between trees both take O(1) time in an DynamicSCCDecomposition object. If the edge is
not an edge between SCCs, the node N where the edge is stored can be retrieved from the
DynamicSCCDecomposition in O(1) time. So line 2 takes O(1) time.

(3) If line 3 is reached the edge is an edge in an SCC stored in a node. Removing this node from
an Node object takes O(|ESCC |) time.

(4) To call UpdateSCC-Tree the list of affected children is needed. When removing the edge
from Node in line 3, the NodeEdge is returned. This NodeEdge stores which children of N
contain the source and target vertices of the edge, so the affected children can be found in
O(1) time, and adding them to a list takes O(1) time as well. So all preparations for the
call to UpdateSCC-Tree take O(1) time.

So the steps of deleting an edge without yet updating the tree take O(1+ |ESCC |+1) = O(|ESCC |)
time. Next to be discussed are the steps of updating a single inner Node of the tree, so a single
run of UpdateSCC-Tree.

(8) To call find unreachable the DAG D(N) has to be created. A DAG can be created from an
InnerNode in O(|VSCC | + |ESCC |) time. Then findUnreachable is called which as shown
in subsection D.1.1 takes O(|S|+ |VSCC |+ |ESCC |) time. So in total line 8 can be executed
in O(|VSCC |+ |ESCC |+ |S|+ |VSCC |+ |ESCC |) = O(|S|+ |VSCC |+ |ESCC |) time.

(9-11) If all condensed vertices are still reachable, then the node still represents an SCC, no
changes have to be made so the function is done. Checking if unreachableVertices.list
in Unreachables is empty can be done in O(1) time.

(12-14) The goal of these steps is to first remove the split node from the list of unreachableVertices
if it was in there, since it should not be removed from the inner node, and then to remove
all nodes of unreachable condensed vertices and incident edges from N . The split node is
stored in the inner node, so it can easily be found. Removing an node from a Unreachables
object takes O(size of list) = O(|VSCC |) time. Removing the children and their incident
edges present in the Unreachables object takes O(|VSCC | + |ESCC |) time. So steps 12-14
can be execute4d in O(1 + |VSCC |+ |VSCC |+ |ESCC |) = O(|VSCC |+ |ESCC |) time.

(15-17) In these steps the algorithm checks if N still has any children aside from the split node. If
not it will remove the inner node with split node and replace it with a leaf node representing
the vertex of the split node. Checking if there are still children aside from the split node
can be done by comparing the size of the list of children to 1 in O(1) time. If there are
no other children then a leaf node is created with the vertex of the split node, which takes
O(1) time. If N is a root node then the leaf node replaces the old inner node in the
DynamicSCCDecomposition in O(1) time. If N is not a root node, then the leaf node
replaces the old inner node in the parent Node also in O(|VSCC | + |ESCC |) time. So steps
15-17 will take either O(1) time or O(|VSCC |+ |ESCC |) time.

• A step which is needed for the implementation but was not present in the algorithm is to
create a hashmap vertexToChild which will store for each vertex in unreachableVertices
as well as the split node in which child of P (N) it is stored. Creating an hashmap takes
O(1) time.
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(18) Step 18 can be omitted in the implementation as those subtrees, the children, of N were
directly used as condensed vertices in findUnreachable, so they are already present in
unreachableVertices.

(19) This step checks if N is the root node, which can be checked by checking if parent is equal
to 0, in O(1) time.

(20-23) If N is not a root node, the nodes and edges previously removed from N are added to
P (N) and their parent is changed. Iterating over the list unreachableVertices.list takes
O(1) per item, adding them to the parent Node and setting their parent takes O(1) per
item as well. So handling the vertices takes O(|VSCC |) time. Iterating over the list of
incidentEdges.list takes O(1) per item and adding them to the parent Node also takes
O(1), resulting in O(|ESCC |) time for processing the edges. So in total the steps 20-23 can
be done in O(|VSCC |+ |ESCC |) time.

(24-35) Steps 24-35 come down to correcting the incident edges that were just stored in P (N), as the
nodes stored in the NodeEdge for these vertices still all point to N . First for each of the ver-
tices in any of the nodes in unreachableVertices.list store their node in vertexToChild.
This can be done in O(|VSCC |) time. Then give this hashmap to the parent Node to correct
the edges. Correcting the edges for a given hashmap in a Node takes O(|ESCC |) time. So
steps 24-35 will take O(|VSCC |+ |ESCC |) time.

(36-37) In these steps the arguments for the next recursive call or next iteration of UpdateSCC-Tree,
which updates the parent of N , have to be prepared. The parent node is stored in parent
in N , U is already present as the list unreachableVertices.list and adding {vN} comes
down to adding N to the list. So these preparations can all be done in O(1) time and the
process can start over for the parent until the ancestor that has no parent.

(39) If N is the root node, then iterating over the list of nodes in unreachableVertices.list
takes O(1) per item.

(40) For each node remove their parent, making them a root and add them to the dynamic SCC
decomposition by adding the node to sccTrees, both can be done in O(1) time.

(41) Step 41 finds all vertices stored in the node. Getting a list of all vertices present in a Node
takes O(|VSCC |) time for all iterations of line 39.

(42-44) Those vertices found in step 41 have to have their root updated since they are now part of
a different SCC tree. Through all iterations of line 39 O(|VSCC |) vertices have their root
updated in DynamicSCCDecomposition, taking O(|VSCC |) time for all of them.

So all these steps together to update a single node of the SCC tree take O(|S|+ |VSCC |+ |ESCC |+
1) = O(|ESCC |) = O(m) time, meeting the required complexity.

D.3 Deleting a set of vertices from an SCC tree implement-
ation

This subsections how removeVerticesFromTree(D,T,X) was implemented such that it can delete
all edges with an endpoint present in X that are present in SCC tree T from T and update the
nodes in T in O(|X||E|δ) time. All data structures used in this implementation can be found in
Figure F.1 and a summary of all operations on the data structures is present in Table F.1.

The in the implementation the removeVerticesFromTree(D,T,X) function receives as argu-
ments an DynamicSCCDecomposition object, a Node object which is the root node of SCC tree
T and a set of vertices X ⊆ V . The implementation of the topologicalSortAffected(N,X)
function in Algorithm 8, receives as arguments a Node object which is the root node of SCC tree T
and a set of vertices X ⊆ V . Lastly the implementation of the UpdateSCC-TreeNode(D,N,A,L)
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function of algorithm 9 receives as arguments an DynamicSCCDecomposition object, the Node N
which has to be updated, a ListSetPair A which contains children of N that have been modified
and a ListSetPair L to store any children of the parent that this function call modifies.

First the implementation of the steps making the topological ordering of T with the topologicalSortAffected(T,X)
function will be discussed. The line numbers correspond to the numbers as shown in algorithm 8.

(2-3) These lines create the stack and queue needed to make the topological ordering. The stack
and queue hold Tuple objects. Creating a stack, queue and a Tuple object take O(1) time.
Adding an object to the queue takes O(1) time as well.

(4-16) These lines perform the breath-first search on the tree, adding them to the stack as found
to create the topological order. These lines check if there are still still Tuples in the queue,
if so it dequeues the first and puts it on the stack so it will be popped later from the stack
than the Tuple its children. It checks for the inner node in the Tuple object that was just
dequeued all its children. For each child if the child is an leaf node and the vertex of the child
is in X then this inner node might have an edge with an endpoint in X, so set relevant to
true. If the child is an inner node create an Tuple object for it, with this Tuple object as
parentTuple and add it to the queue. Checking if there is an item in the queue, dequeueing
an item and pushing an item to the stack each take O(1) time. Iterating over the list of
children takes O(1) per child. These lines will be executed once for each inner node in the
tree. There are at most O(|VSCC |) inner nodes in the tree so during the function lines 17-19
will take in total O(|VSCC |) time. Checking if a node is a leaf node and checking if an item
is in a set both take O(1) time, and so does setting a boolean to true. Checking if a node is
an inner node, creating an object and adding an item to the queue take O(1) time. So lines
20-26 take O(1) time to execute. Each node is the child of only 1 parent, so for all iterations
together the loop starting at line 20 is iterated at most O(|VSCC |) times, thus lines 20-26
take O(|VSCC |) time as well.

(17-32) These lines add the Tuple objects to the queue in reverse topological order by popping them
from the stack to which they were added in topological order. A node is only added to the
queue if it is an ancestor of the leaf node of a vertex in X, so if relevant is true. If this
node still h as a parent the parent is also an ancestor so parentTuple.relevant is set to
true as well. Checking if an stack is empty, popping an item from the stack and checking a
boolean take O(1) time. Adding an item to the queue, checking if an the parent of a Node is
null and setting a boolean to true take O(1) as well. The stack will contain a Tuple object
for each inner node in the tree, so the loop starting at line 28 is executed at most O(|VSCC |)
times, making lines 28-36 take O(|VSCC |) time.

(33) The queue is returned. This takes O(1) time.

Taking all these times together makes that the topologicalSortAffected(T,X) function takes
O(1 + |VSCC |+ |VSCC |+ 1) = O(|VSCC |) time.

The implementation of the steps of deleting the edges and updating the nodes with the
removeVerticesFromTree(D,T,X) function will be discussed next. The line numbers corres-
pond to the numbers as shown in algorithm 7.

(2) A call is made to the topologicalSortAffected function passing on the already existing
arguments. A call to topologicalSortAffected takes O(|VSCC |) time.

(3-4) These lines get the Tuples and with these the nodes from the queue one by one. The
queue will contain at most O(|VSCC |) tuples so the loop starting at line 3 will have at most
O(|VSCC |) iterations. Checking if a queue still has an item and getting an item from the
queue O(|VSCC |) times takes O(|VSCC |) time.

(5-18) Thesse lines remove all edges that have endpoints in the set X from the Node in the Tuple.
It passes the changes ListSetPair in the Tuple as argument so that the children that have
been modified are all collected in there. Removing all edges with endpoints in given set of
vertices from an InnerNode takes O(|ESCC |) time.
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(19-23) These lines make a call to UpdateSCC-TreeNode with the DynamicSCCDecompsotion D from
the argument, the Node node in the Tuple, the ListSetPair changes in the tuple and the
ListSetPair changes in the parentTuple as arguments. The complexity of
UpdateSCC-TreeNode is the same as for UpdateSCC-Tree as the only thing that has changed
is that now instead of adding the nodes present in the list unreachableVertices.list and
{vN} to a list for the next iteration, now it is added to the ListSetPair changes of the
parentTuple and no iterations will be made. A single iteration of UpdateSCC-Tree took
O(|ESCC |) time so this call to UpdateSCC-TreeNode takes O(|ESCC |) time.

As for each vertex in X only the ancestors of the leaf node representing the vertex are updated,
it is the case that lines 5-10 are executed O(|X|δ) times. So removeVerticesFromTree(D,T,X)
takes in worst case O(|VSCC |+ |VSCC |+ |X|δ|ESCC |+ |X|δ|ESCC |) = O(|X||ESCC |δ) time.

D.4 Deleting an SCC tree from a dynamic SCC decomposi-
tion implementation

This subsection will describe the implementation of deleting an SCC tree from a dynamic SCC
decomposition, so from a DynamicSCCDecomposition object. The function removeTree(G,D, T)
receives a Game object G, the DynamicSCCDecomposition object D and the root Node of the SCC
tree T that has to be deleted. Updating D is implemented in the following steps:

• Remove T from the hashmap sccTees to delete the tree. Then all vertices of leaf nodes in
T have to be removed from the vertexToRoot hashmap. To do this first get the list of all
vertices in T and then for each vertex in the list remove it from vertexToRoot. Removing
an item from a hashmap takes O(1) time. Getting the list of all vertices in the SCC tree
from a Node takes O(|VSCC |) time. Removing each of these vertices from a hashmap also
takes O(|VSCC |) time. So removing the tree and updating vertexToRoot takes O(|VSCC |)
time.

• If T is not a single leaf node tree then it will containedges. Removing the storage place of
these edges follows the following steps: make a stack, put root Node T in the queue, then
pop an Node from the stack and iterate over its edges, for each edge remove it from the
edgesStoragePlace hashmap, then iterate over its children, if the child is an inner node
then push it to the stack, after all children are processed take the next Node from the stack
if it is not empty. Since a tree is non cyclic each node in the tree is accessed exactly once and
so is every edge in the tree. Iterating over the edges takes only O(1) per edge as they are
stored in a list. Each edge is has a remove operation on a hashmap which takes O(1) time.
There are O(|ESCC |) edges so just removing the edges takes O(|ESCC |) time. Iterating over
the children to find all edges takes O(1) per child as they ares stored in a list, and so does
adding a value to a stack. There are at most O(|VSCC |) nodes in a tree, so to push and
pop all inner nodes of T to the stack takes O(|VSCC |) time. Therefore removing the storage
place of the edges in T takes O(|ESCC |+ |VSCC |) time.

• To remove the edges between trees for a vertex consists of removing the inedges and removing
the outedges between trees. Removing the outedges is simple, just remove the vertex from
the edgesBetweenTrees hashmap. To remove the inedges first get the list of inedges from
the Graph G. Then for each source in the list of inedges, if edgesBetweenTrees contains the
source as key, then remove the vertex from the the set value of this key. If after removing
the vertex that set is empty then remove the source from the edgesBetweenTrees hashmap
as well. Removing a value from a hashmap or set takes O(1) time. Iterating over a list of
inedges takes O(1) per edge and there are at most O(|E|) inedges, so to remove the edges
between trees for a vertex takes O(|E|) time.

To remove the edges between trees for all vertices in T follows the following steps: make
a stack, put root Node T in the queue, then pop an Node from the stack and iterate over
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its children, if the child is a leaf node then for the vertex of the leaf node remove the edges
between trees, if the child is an inner node then push it to the stack, after all children are
processed take the next Node from the stack if it is not empty. Since a tree is non cyclic each
node in the tree is accessed exactly once. Iterating over the children takes O(1) per child
as they ares stored in a list Removing the edges between trees is done for each leaf node,
thus done O(|VSCC |) times and takes (|E|) time each time. Therefore removing the edges
between trees for all vertices in T takes O(|E||VSCC |) time.

So to update all corresponding values when an SCC tree is deleted from a dynamic SCC decom-
position still takes O(|VSCC |+ |ESCC |+ |VSCC |+ |E||VSCC |) = O(|E||VSCC |) time.
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Implementing 3 versions of
Zielonka’s Algorithm

In this Appenxix we will give a description of how SCC decomposition was done for each of the
3 versions of Zielonka’s algorithm. So basically a description of how line 4 of algorithm 2 was
implemented for each version. In the implementation Zielonka’s algorithm contained a boolean
array is kept, for which each index i is true if vertex i ∈ G\(WG

0 ∪WG
1 ) and false otherwise. This

array is updated at the end of each iteration, which would be after line 22 of algorithm 2. Tarjan’s
algorithm uses this array to know which vertices currently belong to G.

E.1 Zielonka’s algorithm with Tarjan’s algorithm
The implementation of this version is the simplest. Line 4 of algorithm 2 is literally implemented
as a call to the code of Tarjan’s algorithm, passing the complete game in a Graph object and using
the boolean array to provide which vertices it has to decompose.

E.2 Zielonka’s algorithm with partial re-decomposition
For this version, when the program reaches line 4 of algorithm 2, a call is made to the function
which does the preparation work for partial re-decomposition. This function receives the following:

• A Graph object containing the whole game.

• The old SCC decomposition in an SCCdecomposition object.

• A list of integers containing the vertices in the attractorset of player 0.

• A list of integers containing the vertices in the attractorset of player 1.

Using this input, the following preparation steps are made to find the vertices that need to be
decomposed into SCCs, where the line numbers correspond to the numbers as shown in algorithm
3:

(2) An empty list of integers and a new boolean array, initialised at false, is made to contain
the vertices that need to be decomposed. Creating an empty list takes O(1) time.

(2.5) Between step 2 and 3, the SCCdecomposition which contains the old SCCs as a list, is put
into a set so it is later easy to check if the SCC is still in there or already has been removed.
Since each SCC has to be added to the set, where adding to a set takes constant time, and
there are at most |V | SCCs, this step takes at most O(|V |) time. Next to these the attractor
sets are also combined into a list and a set, which takes O(|V |) time. So step 2.5 takes
O(|V |) time in total.
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(3) Then each vertex in the combined list of attractor sets is considered. Iterating over the list
gives O(|X|) iterations.

(4) The SCC the vertex is part of can be found in the vertexToSCC hashmap in the received
SCCdecomposition object. Retrieving an object from a hashmap takes O(1) time.

(5-6) Attempt to remove the SCC of the vertex from the set of old SCCs. If it succeeds the if
statement is taken. Removing an object from a set takes O(1) time. So this line takes
at most O(|V |) time over all iterations of the loop at line 3.

(7) If the if statement is taken then iterate over the list of members of the SCC, set the new
boolean array to true for each member and add it to the list of vertices that need to
be decomposed. Also remove the vertex from the hashmap vertexToSCC since it will
be assigned to a new SCC. Setting a value of a boolean array, adding the the end of a
list and removing an object from a hashmap take O(1) time. At most |V | vertices can
be considered in total for all iterations in line 7, so this line takes at most O(|V |) time
over all iterations of the loop at line 3.

(10) A call is made to the code of Tarjan’s algorithm, passing the complete game in the received
Graph object and using the new boolean array and list of vertices to provide which vertices it
has to decompose, as well as the hashmap vertexToSCC so the new references can be added
and old references will be saved. It receives the new SCCs in a SCCdecomposition object.
A call to Tarjan’s algorithm takes O(|V |+ |E|) time.

(11) Iterate over the list of old SCCs, and if the SCC is still in the set of old SCCs then add it
to the new SCCdecomposition object. There were at most |V | SCCs, so this step takes at
most O(|V |) time.

So as mentioned before in chapter 5, partial redecomposition still takes O(|V |+ |E|) time.

E.3 Zielonka’s algorithm with dynamic SCC maintenance

For this version, before the first call to Zielonka’s algorithm starts a call is made to the code that
builds the SCC tree, which is described in D.1. This call returns an DynamicSCCDecomposition
object, which will be passed to each call to Zielonka’s algorithm. In lines 12 and 17 of Zielonka’s al-
gorithm, algorithm 2, the function recurses. Before this recursion, a new DynamicSCCDecomposition
object is made containing only a copy of the SCC tree of the SCC of that iteration. This new
DynamicSCCDecomposition object is then updated to remove the attractor set A or B in a way
similar to the process at line 4. At line 4 the call to delete vertices from the dynamic SCC
decomposition receives the following arguments:

• A Graph object containing the whole game.

• The dynamic SCC decomposition in an DynamicSCCDecomposition object.

• A set of integers X containing the vertices that need to be removed.

Using this input, the following steps are made update the dynamic SCC decomposition:

• Convert the received set of integers X to a list. This takes O(|V |) time.

• For each vertex in X (O(|X|) iterations):

– If the vertex is not in the dynamic SCC decomposition then skip, if it still is, which
can be found by checking the vertexToRoot hashmap in O(1) time, then:

– Get the root of the tree the vertex is part of from the vertexToRoot hashmap in O(1)
time.

Optimising parity game solvers using dynamic SCC maintenance 87



APPENDIX E. IMPLEMENTING 3 VERSIONS OF ZIELONKA’S ALGORITHM

– If All vertices in this tree are in |X| then remove the tree as described in Appendix D.4
in O(|E||V |) time for all iterations together.

– If not then remove |X| from the tree with the removeVerticesFromTree function whose
implementation is described in D.3 in O(|X||E|δ) time for all iterations together.

– For each vertex that was both in the tree and in |X| find the new root of the SCC tree
they are part of and remove that tree as described in Appendix D.4 in O(|E||V |) time
for all iterations together.

So although updating a tree can be done in O(|X||E|δ) time, to remove a set of vertices from a
dynamic SCC decomposition still takes O(|E||V |) time.
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Data structures

This chapter will first describe the data structures used for the implementation of Tarjan’s al-
gorithm, building SCC trees and of the findUnreachable, deleteEdge and removeVerticesFromTree
functions. Followed by this subsections F.1 to F.6 will describe several operations on the data-
structures which will be used in any of the implementations. Figure F.1 shows as an overview
a class diagram of all data structures and Table F.1 gives a summary of the complexity of each
operation on any of the data structures.

Data Structure (Graph). The Graph data structure is the data structure that stores the input
graph G = (V,E) with V = {0, 1, ..., n} for which an SCC tree has to be build for each SCC. It
contains the following:

• A list of outgoing edges for each vertex. This is stored in a Hashmap outgoingEdges with
as key the vertex and as value the list of targets of the outgoing edges of that vertex. So for
each (v, w) ∈ E we have that the list outgoingEdges.get(v) contains w.

• A list of incoming edges for each vertex. This is stored in a Hashmap incomingEdges with
as key the vertex and as value the list of sources of the incoming edges of that vertex. So
for each (v, w) ∈ E we have that the list incomingEdges.get(w) contains v.

• The total number of vertices in the whole original graph, stored in an integer nrOfVertices.
So nrOfVertices= n.

Data Structure (Node). The Node objects store the nodes of the SCC tree. There are 3 types
of nodes, leaf nodes, inner nodes and split nodes, each get their own object leafNode, innerNode
and splitNode. All 3 types store which Node is their parent in the SCC tree. Leaf nodes and
split nodes also store the vertex they represent. An inner node can have children and store edges,
so the innerNode object also stores:

• A splitNode object.

• A List children to store the nodes of its children.

• A List edges which stores all edges between its children. For each edge it stores the edge
in a NodeEdge object containing the endpoints of the edge in the original graph in the
integers source and target as well as for both endpoints which child they are stored in, in
sourceNode and targetNode.

Using this data structure an SCC can be stored in O(|V |+ |E|) space. Each vertex in the SCC is
stored in at most 1 leaf or split node which contain an integer and a reference to their parent. So
to just store the leaf nodes takes O(|V |) space. Each inner node stores at least 1 vertex, namely in
the split node. So there can be at most O(|V |) inner nodes. Each inner node stores a reference for
the split node. so at most O(|V |) references. It stores a list of children. Each child is only stored
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Graph

outgoingEdges : Hashmap<int, List<int»
incommingEdges : Hashmap<int, List<int»
totalNrOfVertices : int

SCCdecomposition

temporarySCCs :List<TemporarySCC>
vertexToSCC : Hashmap<int, temporarySCC>

TemporarySCC

members :List<int>
outgoingEdges : List<Edge>

Edge
source : int
target : int

NodeEdge

sourceNode : Node
targetNode : Node

Tuple

parentTuple : Tuple
node : Node
relevant : bool
changes : ListSetPair<Node>

DynamicSCCDecomposition

edgesBetweenTrees : HashMap<int, Set<int»
sccTrees : Hashmap<int, Node>
edgesStoragePlace : Hashmap<Edge, Node>
vertexToRoot : Hashmap<int, Node>

<<interface>>
Node

parent : Node

LeafNode
vertex : int

SplitNode
vertex : int

InnerNode
splitnode : Node
children : List<Node>
edges : List<NodeEdge>

DAG
outgoingEdges : Hashmap<Node, List<NodeEdge»
incomingEdges : Hashmap<Node, List<NodeEdge»
outgoingEdgesCount : Hashmap<Node, int>
incomingEdgesCount : Hashmap<Node, int>

Unreachables
unreachableVertices : ListSetPair<Node>
incidentEdges : ListSetPair<NodeEdge>

ListSetPair<K>
list : List<K>
set : Set<K>

Figure F.1: An overview of the data structures used to store, create or update the dynamic SCC
decomposition of a graph. Each vertex is represented by an integer.
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Data structure Operation Complexity

Graph Get the list of inedges or outedges of a vertex. O(1)
Get the total number of vertices of the complete graph. O(1)

DynamicSCC-
Decomposition

Add a node to the decomposition. O(1)
Add an edge between trees. O(1)
Store, get, remove or change the root of the tree in which
a vertex is present.

O(1)

Add, get, remove or change the node in which an edge
is stored.

O(1)

Replace an given inner node by a given leaf node and
update the reference for the vertex that it is stored in
the root leaf node.

O(1)

Check if an edge is an edge between trees. O(1)
Removing leaf node trees for a given list of vertices. O(|V |+ |E|)
Removing leaf or inner node tree. O(|V |+ |E|)
Get a final SCC tree. O(|V |)

Node Get parent or vertex O(1)

InnerNode

Get the split node O(1)
Add a child node. O(1)
Add an edge. O(1)
Get all vertices in the tree starting at this node. O(|VSCC |)
Remove a single edge. O(|ESCC |)
Remove all edges with endpoints in a given set of ver-
tices.

O(|ESCC |)

Get the number of children. O(1)
Remove all nodes and edges present in a given
Unreachables object.

O(|VSCC |+ |ESCC |)

Replace a given inner node by a given leaf node and
replace all occurrences of the inner node in the edges
stored in this node by the leaf node.

O(|VSCC |+ |ESCC |)

Correct the edges stored in the inner node for all en-
dpoints stored in a given HashMap<int, Node> such
that if any source or target in the NodeEdge is
present in the HashMap then afterwards SourceNode
and TargetNode will contain the values of those keys in
the HashMap.

O(|ESCC |)

Get the DAG of the condensed graph of the SCC rep-
resented by the node.

O(|VSCC |+ |ESCC |)

Given a set of vertices that will be removed, check if all
vertices of the SCC represented by this inner node will
be removed.

O(|VSCC |)

DAG Get the list of inedges or outedges of a node. O(1)
Decrement or get the number of inedges or outedges of
a node.

O(1)

ListSetPair

Add an item if it is not present. O(1)
Check if an item is present. O(1)
Iterate over all items. O(1) per item
Remove an item. O(|list|)

Unreachables

Add a node or edge if it is not present. O(1)
Check if a node or edge is present. O(1)
Remove a node or edge O(|list|)
Iterate over the nodes or edges. O(1) per item

Table F.1: Summary of the complexity of several operations data structures.
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in its parent, so all lists of children in inner nodes in a tree together take up at most O(|V |) space.
Each edge is stored in only 1 inner node, so all lists of edges in inner nodes in a tree together take
up at most O(|E|) space. So to store this all together takes up O(|V |+ |E|) space.

Data Structure (DynamicSCCDecomposition). The collection of SCC trees, containing an SCC
tree for each SCCs of the input graph are stored in an DynamicSCCDecomposition object which
stores:

• A hashmap edgesBetweenTrees containing the edges between SCC trees such that that the
key is the source of the edge, and the value is a set of targets of all edges between SCC trees
for that source vertex.

• A hashmap sccTrees which stores the SCC trees of the original graph. For an SCC tree
that is just a single leaf node it has as key the value of the vertex and the leaf node itself as
value. For an SCC tree consisting of multiple nodes, the key is the value of the vertex of the
split node of the root node and the value is the root node.

• A hashmap edgesStoragePlace which stores for each edge, which is the key, the SCC tree
node in which they are stored.

• A hashmap vertexToRoot which stores for each vertex, which is the key, the root of the
SCC tree which they are part of.

Data Structure (SCCdecomposition). The process of building the SCC tree will need Tarjan’s
algorithm to decompose graphs into SCCs. The iterative version Tarjan’s algorithm as described
in Chapter A will be used for this, which takes O(|V |+ |E|) time. In a parity game or in a graph
of an SCC each vertex has at least 1 outgoing edge, so |V | ≤ |E| which means that O(|V |+ |E|)
= O(|E|) is the complexity for the iterative version of Tarjan’s algorithm for the graphs it will be
run on. To adapt the iterative version of Tarjan’s algorithm for use in the creation of SCC trees,
a small changes has been made to the implementation as described in section 3.3, namely that
it also finds all outgoing edges of an SCC and stores these in Edge objects. The return object
SCCdecomposition contains the following:

• A list of TemporarySCC objects. Each of these objects represents an SCC and contains:

– A list of integers members, which contains all vertices in the SCC the object represents.

– A list of edges outgoingEdges, which contains all edges from vertices in this SCC to
vertices in other SCCs. Each Edge object contains the source vertex and target vertex.

• An Hashmap vertexToSCC which has as key a vertex and as value the TemporarySCC object
the vertex is part of.

Data Structure (DAG). The input graph (V,E) for the FindUnreachable function needs to be
able to answer several queries in the function: checking if there are in edges, if there are out edges,
to get all in and out edges as well as to remove edges. To meet the running time requirements of
findUnreachable, any of these queries or actions is only allowed to take constant time. To meet
these demands the condensed graph is passed to the function as a DAG object which contains the
following:

• To get all in edges for a condensed vertex it contains an Hashmap incomingEdges with the
condensed vertex (Node object) as key and a list of edges as value.

• To get all out edges for a condensed vertex it contains an Hashmap outgoingEdges with
the condensed vertex (Node object) as key and a list of edges as value.

• To get the number of in or out edges for a condensed vertex, there are corresponding
Hashmaps incomingEdgesCount and outgoingEdgesCount which contain the condensed
vertex (Node object) as key and the number of in or out edges as value. This allows the
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function to "delete" an in\out edge of a node and see of the other end point of the edge still
has out\in edges left without having the time consuming action of having to remove values
from a list or to have to iterate over a set.

The condensed vertices are directly passed as Node objects in the DAG as the child nodes in an
inner node of the tree represent each of these condensed vertices and the edges between condensed
vertices are also stored as edges between these child nodes.

Data Structure (ListSetPair). While choosing what data structures to use, there were several
occasions where neither a set or a list totally fitted. When adding to the data structure, the
item should only be added if not present, so this would make a set more suitable. However the
functions would often need to iterate over the data structures, which in turn would make a list
more suitable. To solve this problem a ListSetPair object was created. It contains both a list
and a set with the same items.

Data Structure (Unreachables). The FindUnreachable function as described in the pseudocode
returns (U, I) the set of unreachable vertices and their incident edges, with both U and I a set. In
the implementation in the return value which is an FindUnreachable object which contains the
following:

• A ListSetPair<Node> unreachableVertices which contains U , so it contains the nodes
that cannot reach or cannot be reached from the split node. A ListSetPair was used
because the deleteEdge function will need to iterate over the list, and be able to check it if
nodes are present..

• A ListSetPair<NodeEdge> incidentEdges which contains I, so it contains the incid-
ent edges of all nodes in unreachableVertices. A ListSetPair was used because the
deleteEdge function will need to iterate over the list to add the edges to a parent node, and
be able to check it if edges are present to efficiently remove edges in the current inner node.

Data Structure (Tuple). The Tuple data structure is a simple data structure that stores the
information the topologicalSortAffected and deleteEdgesOfVertices functions need for a
node. A Tuple object stores:

• The Tuple parentTuple, p from the pseudocode, of the parent of the node p(N). This value
is stored so that if this tuple turns out to be an ancestor of the leaf node of a vertex in X
then it able to set relevant to true in the Tuple of its parent, which is an ancestor as well.

• The Node node, N from the pseudocode, which is the node this Tuple stores information
for.

• A boolean relevant, r from the pseudocode, which can be set to true when it is discovered
that this node is an ancestor of the leaf node of a vertex in X.

• A ListSetPair changes, L from the pseudocode, which will be used by UpdateSCC-TreeNode
as L when it is called on any of its children to store any nodes that it modifies. Next to this
it is also used when the edges in the node are deleted to add the endpoints since they are
modified and is then passed to UpdateSCC-TreeNode as A as the list of vertices that were
modified for this node.

F.1 Operations on the Graph data structure
This section will give a description how certain operations are executed on the Graph data struc-
ture. Next to this a complexity analysis of these operations is given as well.

Operation (Getting the list of in edges of a vertex). For each vertex a list of in edges is stored
in the incomingEdges hashmap. So getting the list of in edges of a vertex is done by retrieving
this list from the incomingEdges hashmap which takes O(1) time.
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Operation (Getting the list of out edges of a vertex). For each vertex a list of out edges is stored
in the incomingEdges hashmap. So getting the list of out edges of a vertex is done by retrieving
this list from the outgoingEdges hashmap which takes O(1) time.

Operation (Getting the total number of vertices of the complete graph). The total number of
vertices in the whole original graph is stored in an integer nrOfVertices. So the total number of
vertices of the complete graph can be accessed in O(1) time.

F.2 Operations on the Node data structure
This section will give a description how certain operations are executed on the Node and InnerNode
data structures. Next to this a complexity analysis of these operations is given as well.

Operation (Get the parent or vertex). The parent is stored in the field parent so this value can
be accessed in O(1) time. A SplitNode or LeafNode stores the vertex in the vertex field allowing
access in O(1) time. An InnerNode stores its split node in the splitNode field and will return
the vertex value of its split node. So getting the vertex of an InnerNode takes O(1) time as well.

Operation (Get the split node). The splitNode field stores the splitnode. So getting the split
node of an InnerNode takes only O(1) time.

Operation (Add a child node). A List children stores the children. Adding a child to the list
can be done in O(1) time.

Operation (Add an edge). The List edges stores all edges between the children of the node.
Adding an edge to the innerNode is adding an edge to this list, which takes O(1) time.

Operation (Get all vertices in the tree starting at this node). It might be needed to know all
vertices in a subtree starting at a Node, for example when a subtree becomes disconnected from
another tree and becomes a tree on itself, all vertices in this subtree need to have an update of
the root of the tree they are in. Getting a list of all vertices in a tree starting at Node follows the
following steps: make a queue, put the Node in the queue, then take an Node from the queue and
iterate over its children, if the child is an inner node then add it to the queue, if the child is a
leaf node then add its value to the list, after all children are processed take the next Node from
the queue if it is not empty. Since a tree is non cyclic each node in the tree is accessed exactly
once, and iterating over the children takes only O(1) as it is stored in a list, and so does adding a
value to a list. There are at most O(|VSCC |) nodes in a tree, so to get all vertices in a tree takes
O(|VSCC |) time.

Operation (Remove a single edge). When deleting an edge, the step of the actual deletion comes
down to removing an object from the list of edges in a Node object. Removing an item from this
list will take O(|ESCC |) time.

Operation (Remove all edges with endpoints in a given set of vertices). To remove all edges
with endpoints in a given set of vertices, the list of edges is replaced by an empty list and while
iterating over the old list of edges, if the edge does not have an endpoint in the given set of vertices
then add it to the list of edges. In this way of removing each edge of the Node is processed only
once, and for each one the actions of checking if they are in the set of vertices and adding them
to the list both only take O(1) time. Therefore to remove all edges with endpoints in a given set
of vertices, takes O(|ESCC |) time.

Operation (Get the number of children). A List children stores the children. AGetting the
number of children can be done by checking the size of the list which can be done in O(1) time.

Operation (Remove all nodes and edges present n a given Unreachables object). When there
are condensed vertices that have become unreachable because of the edge deletion, the Nodes
corresponding to these condensed vertices and their incident edges have to be removed from their
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parent Node. To remove all nodes in a Unreachables object, the Node stores the old list of children
and creates an empty list as their list of children. Then it iterates over the old list of children and
checks for each child if it is present in the Unreachables object. If not then it adds it to the list
of children. The incident edges proceed in the same way, the old list of edges is stored, the list of
edges is replaced by an empty list and while iterating over the old list of edges, if the edge is not
present in the Unreachables object then add it to the list of edges. In this way of removing each
child and edge of the Node is processed only once, and for each one the actions of checking if they
are in the Unreachables object and adding them to the list both only take O(1) time. Therefore
to remove all nodes and edges present in a given Unreachables object takes O(|VSCC |+ |ESCC |)
time.

Operation (Replace a given inner node by a given leaf node and replace all occurrences of the
inner node in the edges stored in this node by the leaf node). When deleting an edge from an
inner node it can be the case that while updating this node it no longer has children aside from
its split node. In this case the inner node with split node has to be replaced by a leaf node in
its parent if it was not the root node. To do this first the old inner node has to be deleted from
the list of children of its parent which takes O(|VSCC|)) time. Then a new leaf node has to be
created and added to the list of children, adding to a list takes O(1) time. Then the edges have to
be updated. All references to the old inner node have to be replaced by the new leaf node. This
can be done by iterating over the list of edges and checking the sourceNode and targetNode, if it
equals the old inner node, then replace it by the new leaf node. Checking and replacing can both
be done in O(1) time and these steps have to be done for all edges, so updating the edges takes
O(|ESCC |) time. So to replace an inner node by a given leaf node and to update the edges of the
old inner node takes O(|VSCC |+ |ESCC |) time.

Operation (Correct the edges stored in the inner node for all endpoints stored in a given
HashMap<int, Node> such that if any source or target in the NodeEdge is present in the
HashMap then afterwards SourceNode and TargetNode will contain the values of those keys in
the HashMap). After moving the child nodes in the Unreachables object to the parent of the
node, the edges of the parent have to be updated. There can be edges in the parent whose end
points were vertices in these child nodes. Before the corresponding sourceNode or targetNode of
this edge pointed to the node, but now it should point to the child node. To update the edges,
the parent node takes a hashmap with the vertex as key and the value the current child of the
parent this vertex is in. Only the vertices of children that have been newly added to the parent
are present in the hashmap. Then the updating of the edges is done by iterating over the edges of
the parent. For each edge check if the endpoints are present in the hashmap, and if so update the
corresponding sourceNode or targetNode with the value in the hashmap. Checking and replacing
can both be done in O(1) time and these steps have to be done for all edges, so updating the edges
to the values of a hashmap takes O(|ESCC |) time.

Operation (Get the DAG of the condensed graph of the SCC represented by the node). The
findUnreachable function called after edge deletion needs to receive a DAG object as argument.
This DAG object has to be created from the InnerNode. First by iterating over the list of children
of the InnerNode for each child an empty list is added to the outgoingEdges and incomingEdges
hashmaps, as well as the value 0 to the outgoingEdgesCount and incomingEdgesCount. These
operations take O(1) time per child, so O(|VSCC | time in total. Then adding the edges is done by it-
erating over the edges of the InnerNode and for each NodeEdge add it to the lists of outgoingEdges
and incomingEdges for the keys sourceNode and targetNode. Next to this also increment the
outgoingEdgesCount and incomingEdgesCount for the keys sourceNode and targetNode. These
operations take O(1) time per edge, so O(|ESCC | time in total. Then to get the effect of the split
node, which for findUnreachableDown should not have in edges and for findUnreachableUp
should not have out edge, the lists and counts in the hashmaps for the split node are set to an
empty list and count equal to 0. These 4 actions take O(1) time each. So to create a DAG for an
InnerNode takes in total O(|VSCC |+ |ESCC |) time.
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Operation (Given a set of vertices that will be removed, check if all vertices of the SCC repres-
ented by this inner node will be removed). text

Operation (Remove all edges with endpoints in a given setX ). At some point in the deleteEdgesOfVertices
the edges that have endpoints in the set x have to be actually deleted from the InnerNodes. So
the InnerNode receives the set X and then to have only edges with no endpoints in X it first
stores the old list of edges. The list of edges is replaced by an empty list and while iterating over
the old list of edges, if neither of the endpoints of the edge is present in X then add it to the
list of edges. In this way of removing each edge of the InnerNode is processed only once, and for
each one the actions of checking if they are in X and adding them to the list both only take O(1)
time. Therefore to remove all edges that have an endpoint in a given set X from an InnerNode
object takes O(|ESCC |) time. Next to the set X it also receives a ListSetPair for the nodes of
the endpoings that are removed. Every time an edge does have an endpoint in X its sourceNode
and targetNode are added to the ListSetPair. Adding an item to a ListSetPair takes O(1)
times and at most O(|ESCC |) are added. So to remove all edges with endpoints in a given set X
from an InnerNode takes O(|ESCC |) time.

F.3 Operations on the DynamicSCCDecomposition data struc-
ture

This section will give a description how certain operations are executed on the DynamicSCCDecomposition
data structure. Next to this a complexity analysis of these operations is given as well.

Operation (Add a node to the decomposition). Adding a root node is as simple as adding an
item to the sccTrees hashmap, thus taking O(1) time.

Operation (Add an edge between trees). Adding an edge (v, w) ∈ E comes down to checking if
the v already has a key in the edgesBetweenTrees hashmap. If not a new set is created for this
key, and w is added to the set of V . All of this is done in O(1) time.

Operation (Store, get, remove or change the root of the tree in which a vertex is present). The
vertexToRoot hashmap stores for each vertex the root of the SCC tree which they are part of.
Adding or removing the root of the tree containing a vertex or retrieving the root of the tree in
which a vertex is stored can be achieved by either an add, remove or get operation on this hashmap
in O(1) time.

Operation (Add, get, remove or change the node in which an edge is stored). The edgesStoragePlace
hashmap stores for each edge the SCC tree node in which they are stored. Adding the storage
place for an edge is adding an item to this hashmap, and retrieving in which node an edge is stored
is done by doing get on this hashmap. Both take O(1) time. To remove or change in which node
the edge is stored is done by removing or adding to this hashmap as well, taking O(1) time.

Operation (Replace an given inner node by a given leaf node and update the reference for the
vertex that is stored in the root leaf node). When deleting an edge from an inner node it can be
the case that while updating this node it no longer has children aside from its split node. In this
case the inner node with split node has to be replaced by a leaf node in its parent or if it was a
root node in the DynamicSCCDecomposition. To do this first the old inner node has to be deleted
from sccTrees and from vertexToRoot which takes O(1) time for both. Then a new leaf node has
to be created and added to both sccTrees and vertexToRoot, adding to a hashmap takes O(1)
time. So the operation of replacing an inner node by a leaf node in an DynamicSCCDecomposition
takes O(1) time.

Operation (Check if an edge is an edge between trees). Checking if an edge is an edge between
SCC trees can be done by a get on the source in the edgesBetweenTrees hashmap and then a
contains on the set for the target in O(1) time.
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Operation (Removing leaf node trees for a given list of vertices). When deleting multiple vertices
but not all from a tree, first all edges in the SCC tree these vertices are in are deleted so those
vertices become single leaf node SCC trees. After doing that these single leaf trees and their edges
between trees need to be deleted from the DynamicSCCDecomposition. The vertices whose leaf
node trees have to be removed is received as a list together with the Game object that stores the
initial graph. First for each vertex in the list remove the single leaf node tree from sccTrees
and vertexToRoot. Removing something from a hashmap takes O(1) time, so all vertices in
the list this takes O(|V |) time. Next for each vertex in the list remove the key and value in
edgesBetweenTrees to remove the outgoing edges between SCCs. Likewise this can be done in
O(|V |) time. Then to remove the incoming edges between trees, for each vertex v in the list get
the list of incoming edges of v from the Game. For each incoming edge of (w, v) ∈ E, check if w is
present as key in edgesBetweenTrees and if so remove v from the corresponding value. Checking
if a key is present, receiving the corresponding value and removing from a set each take O(1) time.
This will be done at most O(|E|) times as each edge is only an in edge of 1 vertex, so removing
the incoming edges takes O(|E|) time. So the operation of removing the leaf node trees and their
edges can be done in O(|V |+ |E|) time.

Operation (Removing a leaf or inner node tree). When all vertices of a tree have to be deleted,
the tree can be deleted as a whole from DynamicSCCDecomposition. First a list of vertices present
in the tree has to be generated, which takes O(1) time as later shown in the Node data structure.
Then for each vertex in the list remove the key and value from vertexToRoot. The root node of
the tree with its key is removed from sccTrees as well. Removing these vertices from the hashmap
takes O(|V |) time. Then if the root is not a leaf node the storage place of the edges stored in the
tree has to be removed. This is done as follows: make a queue, add the root to the queue, then
as long as the queue is not empty, take a node from the queue, iterate over the list of edges and
remove them from edgesStoragePlace, then iterate over the children, if the child is an inner node
add it to the queue, then take the next node from the queue, etc. The operation of removing an
item from a hashmap takes O(1) time, each edge is stored in only 1 place so is removed at most
once, so removing all edges stored in an SCC tree can be done in O(|E|) time. The last step is to
remove the edges between trees for the list of vertices in the tree. This can be done in the same
way as in the paragraph above with as list the list of vertices in the tree, in O(|E|) time. So the
operation of removing a single SCC tree from the DynamicSCCDecomposition takes O(|V |+ |E|)
time.

Operation (Get a final SCC tree). In Zielonka’s algorithm each iteration starts by getting a
final SCC. Getting a final SCC tree from a DynamicSCCDecomposition takes the following steps:
iterate over the values of sccTrees, for each tree if the tree is a leaf node and the vertex of this
leaf node is not present in edgesBetweenTrees then return the leaf node. If the tree is an inner
node, then make a queue, add the root of the tree to the queue, then as long as the queue is not
empty, take a node from the queue and iterate over the children, if the child is a leaf node and
the vertex in that leaf node has outgoing edges in edgesBetweenTrees then this tree is not a final
SCC tree, so go to the next value in sccTrees, if the child is an inner node add it to the queue.
When the queue is empty and no leaf nodes with outgoing edges have been found then this tree
is a final SCC tree and can be returned. In this process, each leaf node will be looked at at most
once, and the only action for the leaf node is to look up a value in the hashmap, so taking O(|V |)
time. Iterating over the values of a hashmap takes O(sizeofhashmap) time. There are at most
O(|V |) items in the hashmap, with an 0.75 load factor iterating over the hashmap will take at
most O(|V |) time. There are less inner nodes in a SCC tree than vertices, so just the action of
iterating over the children also takes O(|V |) time. In conclusion getting a final SCC tree from a
DynamicSCCDecomposition takes O(|V |) time.
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F.4 Operations on the ListSetPair data structure
This section will give a description how certain operations are executed on the ListSetPair data
structure. Next to this a complexity analysis of these operations is given as well.

Operation (Check if an item is present). Checking if an item is present can be done by checking
if it is present in the set. This takes O(1) time.

Operation (Add an item if it is not present). When adding an item, first the set can be checked
if the item is already present. If not add the item both to the set and list. Checking if an item
is present in a set, adding an item to a set and adding an item to a list each take O(1) time. So
Add an item if it is not present takes O(1) time.

Operation (Iterate over all items). When a function needs to iterate over all items in the data
structure, it can just iterate over the list in the ListSetPair, resulting in O(1) time per item.

Operation (Remove an item). To remove an item from a ListSetPair the item has to be removed
from both the set and list. Removing an item from a set takes O(1) time, and removing an
item from a list will take O(|list|) time, so to remove an item from a ListSetPair takes O(|list|)
time.

F.5 Operations on the DAG data structure
This section will give a description how certain operations are executed on the DAG data structure.
Next to this a complexity analysis of these operations is given as well.

Operation (Getting a list of in edges of a node). For each Node a list of in edges is stored in the
incomingEdges hashmap. So getting the list of in edges of a Node is done by retrieving this list
from the incomingEdges hashmap which takes O(1) time.

Operation (Getting a list of out edges of a node). For each Node a list of out edges is stored in
the outgoingEdges hashmap. So getting the list of out edges of a Node is done by retrieving this
list from the outgoingEdges hashmap which takes O(1) time.

Operation (Getting or decrementing the number of in edges of a node). The incomingEdgesCount
hashmap contains for each Node the number of in edges. Using this hashmap the number of in
edges for a Node can be decremented or checked in O(1) time.

Operation (Getting or decrementing the number of out edges of a node). The outgoingEdgesCount
hashmap contains for each Node the number of out edges. Using this hashmap the number of out
edges for a Node can be decremented or checked in O(1) time.

F.6 Operations on the Unreachables data structure
This section will give a description how certain operations are executed on the unreachables data
structure. Next to this a complexity analysis of these operations is given as well.

Operation (Check if a node is present). Checking if an Node is present in an Unreachables data
structure can be done by checking if it is present in the UnreachableVertices ListSetPair.
This takes O(1) time.

Operation (Check if an edge is present). Checking if an NodeEdge is present in an Unreachables
data structure can be done by checking if it is present in the incidentEdges ListSetPair. This
takes O(1) time.

Operation (Add a node if it is not present). Adding a Node to an Unreachables data structure
is done by adding it to the unreachableVertices ListSetPair. This takes O(1) time.
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Operation (Add an edge if it is not present). Adding a NodeEdge to an Unreachables data
structure is done by adding it to the incidentEdges ListSetPair. This takes O(1) time.

Operation (Remove a node). Removing a Node to an Unreachables data structure is done by
removing it from the unreachableVertices ListSetPair. This takes O(1) time.

Operation (Remove an edge). Removing a NodeEdge to an Unreachables data structure is done
by removing it from the incidentEdges ListSetPair. This takes O(1) time.

Operation (Iterate over the nodes). Iterating over all Node objects in an Unreachables data
structure is done by iterating over the list of the unreachableVertices ListSetPair. This
takes O(1) time per item.

Operation (Iterate over the edges). Iterating over all NodeEdges objects in an Unreachables
data structure is done by iterating over the list of the incidentEdges ListSetPair. This takes
O(1) time per item.
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Appendix G

Random games runtime differences
experiment standard deviation and
median

In section 7.4.2 the average results of each set 25 random games with the same settings was given.
This appendix contains the standard deviation and median of each set of 25 random games
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APPENDIX G. RANDOM GAMES RUNTIME DIFFERENCES EXPERIMENT STANDARD
DEVIATION AND MEDIAN

Random games
max
#out-
edges

|V | avg
#trivial
SCC

avg
#non
trivial
SCC

avg size
longest
tree

avg
#tar-
jan
calls

avg
Zielonka+
tarjan
runtime

avg
Zielonka+
partial
runtime

avg
Zielonka+
dynamic
runtime

1 1K 14,806867781,4142135620 0 0,001s 0,001s 0,002s
2 1K 30,231 0,917 8,326 2,723 0,002s 0,002s 0,021s
5 1K 9,559 0,2 14,95 2,208 0,001s 0,001s 0,036s
20 1K 0,277 0 13,505 0,866 0,001s 0,001s 0,03s
1 5K 51,465 1,15 0 0 0,001s 0,001s 0,001s
2 5K 62,739 0,764 25,387 2,447 0,005s 0,006s 0,229s
5 5K 22,298 0,332 47,513 1,908 0,009s 0,008s 0,745s
20 5K 0,374 0 25,15 0,841 0,027s 0,026s 4,803s
1 10K 76,079 1,696 0 0 0,002s 0,002s 0,003s
2 10K 69,008 0,557 32,313 2,533 0,013s 0,013s 0,794s
5 10K 26,742 0,277 50,628 1,508 0,048s 0,049s 11,19s
20 10K 0,712 0 48,79 0,833 0,044s 0,044s 6,098s
1 50K 161,825 2,531 0 0 0,013s 0,01s 0,01s
2 50K 206,353 0,436 113,496 2,135 0,198s 0,194s 45,011s
5 50K 60,939 0,332 211,103 2,521 0,495s 0,491s 9m1s
20 50K 1,08 0,2 108,007 0,781 0,53s 0,526s 12m

Table G.1: The standard deviation of the results of the runtime experiment for the random games.

Random games
max
#out-
edges

|V | avg
#trivial
SCC

avg
#non
trivial
SCC

avg size
longest
tree

avg
#tar-
jan
calls

avg
Zielonka+
tarjan
runtime

avg
Zielonka+
partial
runtime

avg
Zielonka+
dynamic
runtime

1 1K 971 3 1 2 0,002s 0,002s 0,002s
2 1K 427 1 72 5 0,002s 0,002s 0,026s
5 1K 65 1 275 7 0,006s 0,006s 0,236s
20 1K 0 1 613 6 0,01s 0,01s 0,512s
1 5K 4,9K 4 1 2 0,006s 0,007s 0,008s
2 5K 2,1K 1 384 7 0,014s 0,015s 0,503s
5 5K 290 1 1,4K 7 0,043s 0,045s 6,133s
20 5K 0 1 3,1K 6 0,088s 0,102s 17,867s
1 10K 9,9K 4 1 2 0,013s 0,016s 0,021s
2 10K 4,2K 1 777 7 0,038s 0,04s 2,11s
5 10K 591 1 2,9K 6 0,127s 0,128s 33,604s
20 10K 0 1 6,1K 6 0,33s 0,335s 1m57s
1 50K 50K 4 1 2 0,131s 0,182s 0,253s
2 50K 21K 1 4K 5 0,263s 0,266s 6m48s
5 50K 3K 1 15K 7 1,365s 1,33s 35m
20 50K 1 1 31K 6 2,276s 2,294s 1h20m

Table G.2: The median of the results of the runtime experiment for the random games.
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