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Abstract

Graph-based data models can be used to store multi-dimensional event
data and describe the relations between multiple entity identifiers and se-
quential information in one data structure. There are existing data models
that describe how event data can be represented inside a graph database,
however, none of them describe how a graph database can be used for an in-
depth analysis that includes the execution of multiple process mining-related
activities. Therefore, it becomes relevant to determine if it is possible to
build upon these graph-based data models to obtain a viable alternative to
execute these activities and provide significant results for a process mining
project. In this thesis, we present a tool built on top of a graph database
that is able to execute the essential activities that should be executed in a
process mining project with the help of a tool. We provide the details on its
implementation and the execution of these activities through a user interface.
Moreover, we present an extension to one of the existing data models that
allows us to execute and analyze the results a process discovery algorithm,
the Heuristic Miner. We show that it is not only possible to execute pro-
cess mining on top of a graph database, but there are additional advantages
obtained from its usage.
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Chapter 1

Introduction

In this Chapter, we provide the introduction to this thesis. First, we provide
the context of this work. Then, we present the state of the art related
to process mining on relational and graph databases. Then, we define our
research questions and present the methodology used to conduct our research.
Finally, we describe the results of our work.

1.1 Context

Process mining projects aim to discover, monitor and improve real processes
by extracting knowledge from event logs stored in information systems. These
event logs represent the starting point for process mining, since all process
mining techniques assume that it is possible to obtain a sequential order
of events that represent the activities executed in a process [3]. Event logs
define a case identifier to store the activities as one sequence of events per
case. In turn, these sequences can be queried for behavioral properties.

In practice, processes may involve multiple related entities, where every
event is linked to more than one case identifier, in which case, we say the event
data describes the behavior of multiple dimensions. Relational databases
(RDBs) can store this behavior through 1:n and n:m relations between events
and case identifiers. However, to analyze the behavior of multi-dimensional
data stored in an RDB, it is necessary to extract the data into a sequential
format, which may lead to false behavioral information.

Graph-based data models can overcome these issues since they can de-
scribe the relations between multiple entities and sequential paths in one
data structure. Events and case identifiers can be stored as nodes, and the
information between events and cases can be stored as relationships. Then,
the sequential order of events can be represented through paths of nodes
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connected by relationships.

In [1], Esser and Fahland propose a data model for multi-dimensional
event data based on labeled property graphs capable of representing multi-
ple different, related entities and the relations between entities and events
through correlation relationships. This data model avoids the shortcomings
related to multi-dimensional data found in existing data models.

Given the benefits of this data model, it becomes relevant to determine
if it is possible to build upon it and provide a viable alternative for process
mining analysis, allowing the discovery and improvement of real processes
through a graph database.

1.2 State of the Art

Dijkman, R., Gao, J., Syamsiyah, A. et al [26] present a first step towards in-
database process mining, where they define a relational algebraic operator to
extract the ”directly follows” relations from a log stored in an RDB. However,
they state that it is hard to work with cases and propose the aggregation of
properties from an event level to a case level in the future.

In another study, Romero, M. and Rodriguez, A. [27] propose a graph-
based approach to modeling events and their interrelations, but their focus is
mainly on extending the graph data models to include temporal and spatial
settings and manage different levels of granularity to represent events and
their relationships.

In a previous master’s thesis, Türkyılmaz [30] discusses how to conduct
process mining analysis on an event log stored in a graph database. However,
as part of the findings, it is mentioned that future work is still needed to make
deeper process mining analysis and include the implementation of different
process mining algorithms.

Finally, the graph-based data model proposed by Esser and Fahland [1]
allows the modeling and querying of multi-dimensional event data, but also
mention that a more general data model could allow the development of new
event data analysis and process mining techniques.

1.3 Research Questions

As we can see from Section 1.2, there is no graph-based data model that not
only provides a correct representation of multi-dimensional event data, but
allows the execution of other process mining-related activities and techniques
to provide an in-depth analysis on the process being evaluated.
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The data model from [1] provides a promising foundation to do this, but
it remains to be seen if this graph-based model can be used to execute process
mining activities and techniques and store models that describe the behavior
of the processes. This is why our aim is to determine if it is possible to build
upon this data model to obtain a viable alternative to execute the activities
that provide significant results in a process mining project. Based on this
objective, we define the following research questions:

RQ1. Is it possible to build on top of the data model proposed in [1] to
execute process mining-related activities in a graph database?

RQ2. Can we store process models in the graph database? If so, how would
the execution of process mining change in this environment?

RQ3. Is there an added benefit on the joint storage of different process mining
components in the graph database?

1.4 Methodology

We built a tool in Java that, through its connection to a graph database,
allows us to execute the most essential activities in a process mining project
while using the data model presented in [1] as its foundation.

First, in Chapter 3, we analyze the stages of the PM2 methodology to
identify all the activities that a process mining tool should perform during
a process mining project. Based on this analysis, we define a 5-layer archi-
tecture to guide the implementation of the tool. Then, by identifying the
most essential process mining-related activities, we delimit the scope of our
project, which resulted in the removal of the third layer of the architecture
from our implementation.

Secondly, in Chapter 4, we start by presenting the layout of the user
interface for the tool and discussing how we handle multi-dimensional data.
Then, we describe how we adapt the data model from [1] into our tool through
the first two layers of the 5-layer architecture. In the first layer, we implement
functionalities related to the import of event data into the graph database.
In the second layer, we implement functionalities related to the creation and
enrichment of event logs by defining entity identifiers and event classes. For
every functionality, we describe its queries and how they can be executed
through the user interface, together with the visualization of the results.

Thirdly, in Chapter 5, we implement the fourth layer of the architecture
by implementing functionalities related to process discovery. First, we de-
scribe our proposal to extend the data model [1], allowing us to define how

7



process models can be represented through nodes and relations in the graph
database. Then, we discuss our implementation of an existing process dis-
covery algorithm, the Heuristic Miner, through the graph data model. After
describing the algorithm, we present our implementation, once again detail-
ing the queries and interactions with the user interface needed to execute
this activity and visualize the results through our tool.

Finally, in Chapter 6, we implement the fifth layer of the architecture by
implementing functionalities related to the diagnosis of the process. Given
our extended data model, we identify two activities that can be implemented
in our tool to help in the diagnosis, the model comparison and the model
querying.

For the model comparison, we first implement a transformation of the
results of the Heuristic Miner algorithm into Petri nets, the most common
modeling language, to account for the fact that distinct discovery algorithms
may generate different outputs. Then, we present how the model comparison
can be executed in our tool. As for the model querying, we first define the
queries that find process models stored in the graph database based on graph
patterns. Then, we present how the model querying can be executed in our
tool.

1.5 Results

We defined four experiments to evaluate our implementation and help us
determine the answer to the research questions.

Experiment 1 In the first experiment, we use our tool to run a process
mining exploratory analysis in a real dataset to help us determine if the
activities implemented in the tool provide significant results for the analysis.
Then, we use the process mining tool ProM to run the same analysis and be
able to compare the results and identify the differences in their execution.

From this experiment we could determine that our tool does execute suc-
cessfully the distinct process mining-related activities implemented, allowing
us to obtain significant insights for the process analysis. In terms of usability,
even if there are changes in the steps that need to be executed to obtain the
results, the interactions between the user and the tool are similar to what has
to be done in ProM (63 against 66 interactions respectively), but in terms
of performance, ProM proved to be better since it was able to execute its
activities in less than 2 minutes, while our tool took around 14 minutes.

Additionally, our tool proved to have a couple of advantages. First, it
allowed us to execute a model comparison as part of the process mining
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analysis, something that ProM does not provide. Also, the model obtained
by our tool does a better job in describing the behavior of the process due
to our handling of data dimensionality through graph structures.

Experiment 2 In the second experiment, we dive deeper into the perfor-
mance of our tool, testing its scalability with larger datasets. We generated
5 random subsets of data, which contained 20, 40, 80, 160, and 320 cases re-
spectively. For each of them, we registered the time it took from the import
of the data into the graph database until the visualization of the discov-
ered process model. Similar to the previous experiment, we ran the same
experiment in ProM to provide context on our results.

In this case, we saw that our tool can still be improved on this regard, since
the scale up is significantly larger than ProM. For the event log containing
160 cases, our tool took around 85 minutes to complete its tasks, while ProM
took 1 minute. Then, for the event log containing 320 cases, the time went
up to 330 minutes, while ProM had a more linear scale up and the tasks took
2 minutes overall to complete.

So even if it is possible to execute several process mining-related activities,
including the creation and storage of process models, the performance of the
tool must be improved to be considered a more viable option to work with
during process mining projects.

Experiment 3 In the third experiment, we analyze what additional ben-
efits can we obtain from the storage of different process mining components
in the graph database. To do this, we define a query that takes advantage
of a graph relation defined by us as an extension to the original data model
from [1].

Using this relation, which connects the process models with the event
data, we were able to obtain additional insights on how well a given process
model is representing the behavior of the event log.

We realized that further extensions for our tool can be made by expanding
on the approach used in this experiment to include additional process mining-
related activities such as conformance checking.

Experiment 4 Finally, in the fourth experiment we dive further in the
analysis of the benefits of executing process mining in a graph environment,
where we try to identify how our tool contributes to the discipline of process
mining based on the functionalities implemented.

To do this, we refer to the Process Mining Manifesto [3] to identify which
challenges process mining is currently facing and identify which of them are
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being addressed by our implementation.
From the results of this experiment, we identified that 17 of our function-

alities help address 4 of the process mining challenges, letting us conclude
that our tool does not only prove that it is possible to execute process min-
ing on top of a graph database, but it also provides additional value to the
discipline in general.

These experiments helped us identify that it is not only possible to exe-
cute process mining-related activities on top of a graph database, but there
are added benefits in doing so, such as the correct representation of multi-
dimensional data, the model comparison, or the connection between process
models and event data. In addition, the ease with which these activities
can be performed through the user interface allows for more flexibility in the
process mining analysis, where at any point we can define new connections
in the data to analyze the process from different perspectives.
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Chapter 2

Background

In this Chapter, we provide the concepts, definitions, and work related to
this thesis. First, we provide the definition of process mining. Then, we
provide additional details on the discipline of process mining through the de-
scription of the PM2 methodology and the Process Mining Manifesto. Then,
we describe graph databases and Neo4j, an open-source, NoSQL database
that implements the property graph model. Then, we define the CSV files,
which we use as input for our tool. Then, we describe GraphStream, a Java
library used for the modeling and analysis of dynamic graphs. Finally, we
describe the existing research related to the use of graph databases for pro-
cess mining, with special emphasis on a graph data model proposed by Esser
and Fahland.

2.1 Preliminaries

2.1.1 Process Mining

Wil van der Aalst [6] defines process mining as the missing link between
data science and process science. Process mining can be placed between
machine learning and data mining on side and process modeling and analysis
on the other. The objective of this discipline is to discover, monitor and
improve real processes by extracting knowledge from the event logs available
in information systems.

There are three main types of process mining, discovery, which takes an
event log and produces a model without any a-priori information, confor-
mance, where an existing process model is compared with an event log of the
same process, and enhancement, where the idea is to extend or improve an
existing process model.
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In this thesis we discuss the requirements needed for a tool, built on top
of a graph database, to help in the execution of an in-depth process mining
analysis.

2.1.2 PM2 Methodology

PM2 is a methodology that guides the execution of process mining projects
[2]. This methodology guides organisations performing process mining projects
whose aim is to improve process performance or ensure their compliance to
rules and regulations.

The methodology consists of 6 stages related to the inputs and outputs of
the data objects, models, and four goals: (1) research question definitions, (2)
performance findings, (3) compliance findings, and (4) improvement ideas.
The 6 stages of the methodology are the following [2]:

1. Stage 1 - Planning. The objective of this stage is to set up the project
and determine the research questions.

2. Stage 2 - Extraction. The objective of this stage is to extract event
data and, optionally, process models.

3. Stage 3 - Data Processing. The objective of this stage is to create event
logs as different views of the event data and process logs in such a way
that their format is optimal for the next stage.

4. Stage 4 - Mining and Analysis. The objective of this stage is to apply
process mining techniques on event logs and aim to answer the research
questions.

5. Stage 5 - Evaluation. The objective of this stage is to relate the analysis
findings to improvement ideas that achieve the project’s goals.

6. Stage 6 - Process Improvement and Support. The objective of this stage
is to use the gained insights to modify the actual process execution.

2.1.3 Process Mining Manifesto

The Process Mining Manifesto is a manifesto written by members and sup-
porters of the IEEE Task Force on Process Mining whose goal is to promote
the research, development, education, implementation, evolution, and under-
standing of process mining [3].
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Among the contents of the manifesto, which include the state of the art of
the discipline and its guiding principles, it is also included a list of challenges
that need to be addressed. The list describes the following 11 challenges [3]:

C1. Finding, Merging, and Cleaning Event Data. It still takes considerable
efforts to extract event data suitable for process mining.

C2. Dealing with Complex Event Logs Having Diverse Characteristics. Ex-
tremely large event logs may be difficult to handle, whereas other ex-
tremely small event logs do not provide enough data to make reliable
conclusions.

C3. Creating Representative Benchmarks. Since process mining is an emerg-
ing technology, good benchmarks are still missing.

C4. Dealing with Concept Drift. This refers to the need to address the
situation where the process is changing while being analyzed.

C5. Improving the Representational Bias Used for Process Discovery. The
selection of a target language may limit the search space, where results
that cannot be represented by the language cannot be discovered.

C6. Balancing Between Quality Criteria such as Fitness, Simplicity, Pre-
cision, and Generalization. Improved process mining algorithms need
to be developed to better balance these four competing quality dimen-
sions.

C7. Cross-Organizational Mining. New analysis techniques need to be de-
veloped to handle scenarios where the event logs of multiple organiza-
tions are available for analysis.

C8. Providing Operational Support. Process mining should not be restricted
to offline analysis and should also be used for online operational sup-
port.

C9. Combining Process Mining With Other Types of Analysis. Combining
automated process mining techniques with interactive visual analytics
could allow us to extract more insights from event data.

C10. Improving Usability for Non-Experts. The end-user interactions with
the results of process mining can be very valuable, but intuitive user
interfaces are required to allow them to happen.

C11. Improving Understandability for Non-Experts. To avoid problems with
the understanding of the outputs or reaching incorrect conclusions, the
results should be presented in a suitable representation.
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2.1.4 Graph Databases

A graph database is a database that stores information in sets of nodes and
relationships. The labeled property graph is the most popular form of graph
models [23], which has the following characteristics:

• Contains nodes and relationships.

• Nodes contain properties (key-value pairs).

• Nodes can be labeled with one or more labels.

• Relationships are named and directed, and always have a start and end
node.

• Relationships can also contain properties.

Neo4j

Neo4j is an open-source, NoSQL database that implements the property
graph model. Neo4j uses Cypher as its specific graph database query lan-
guage to store and retrieve information [23]. Cypher allows us to find data
inside the database that matches a specific pattern. For example, for the
graph pattern shown in Figure 2.1, we can define the following Cypher query
to help us find the mutual friends of Tony:

1 MATCH (a:Person{name:’Tony ’}) -[:KNOWS]->(b) -[:KNOWS]->(c),

2 (a) -[:KNOWS]->(c)

3 RETURN b, c

The MATCH Cypher clause shown in the query takes a pattern as an
input, and allows us to find the nodes and relationships that match the
pattern. Then, the RETURN clause specifies which nodes, relationships,
and properties should be included in the output of the query. In our example,
we are returning the (:PERSON) nodes that represent Steve and Bruce.

Other important Cypher clauses include:

• WHERE Provides criteria for filtering results.

• CREATE Creates nodes and relationships.

• MERGE Ensures that the given pattern exists in the graph. If it does
not exist, it is created.

• DELETE Removes nodes, relationships and properties from the database.

• SET Set property values.
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Figure 2.1: Example graph pattern that describes the ”knows” relation between
three persons.

• WITH Merges results from two or more queries.

• DISTINCT Removes duplicates in the result.

• ORDER BY Order the results based on a given property.

• UNWIND Expands the rows that have a list property into several
rows, with one row per item in the list.

• LOADCSV Load data into the database from a CSV file.

2.1.5 Comma Separated Values (CSV) File

The Comma Separated Values (CSV) file is the most prominent file format
to represent tabular data. As mentioned in [24], CSV data is a standard way
for exchanging and converting data between different related applications.
According to [24], two of its key format specifications include:

1. CSV is a 2D format constructed by rows and columns of data, each
row containing multiple cells.

2. CSV is a ”text-based” format, which makes it flexible for processing
with all types of textual applications.
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In this thesis, we use CSV files as the main input to represent the event
data that is meant to go through a process mining analysis, where each row
represents a single event.

2.1.6 GraphStream

GraphStream is a Java library for the modeling and analysis of dynamic
graphs [25]. This library lets us generate, import, export, measure, layout
and visualize graphs.

GraphStream also allows us to store any kind of data attribute on the
nodes and relationships of the graph, such as numbers, strings or any object.

The Java code below shows an example of how a graph can be defined
and visualized in a panel. Executing this code can produce the result shown
in Figure 2.2.

1 MultiGraph graph = new MultiGraph("g");

2

3 graph.addNode("A");

4 graph.addNode("B");

5 graph.addNode("C");

6

7 graph.addEdge("AB", "A", "B");

8 graph.addEdge("BC", "B", "C");

9 graph.addEdge("CA", "C", "A");

10

11 g.getNode("A").setAttribute("ui.color", Color.BLUE);

12 g.getNode("B").setAttribute("ui.color", Color.YELLOW);

13 g.getNode("C").setAttribute("ui.color", Color.WHITE);

14

15 graph.display ();

In this thesis, we include the GraphStream library in the Java implemen-
tation of our tool to display the graphs that represent the event data, taking
advantage of the functionalities provided by the library to format the nodes
and edges and provide accurate representations of the data.

2.2 Related Work

2.2.1 Process Mining on Databases

Dijkman, R., Gao, J., Syamsiyah, A. et al [26] present a first step towards
in-database process mining. They define a relational algebraic operator to ex-
tract the ”directly follows” relations from a log stored in a relational database.
This operator is meant to facilitate exploratory process mining, but it must
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Figure 2.2: Example visualization using the GraphStream Java library.

be constructed with a complex SQL query. However, as part of their findings,
they report that it is hard to work with ”cases” in a SQL query, because ”a
log table has a row for each event that happens rather than each case that
completes” [26].

Romero, M. and Rodriguez, A. [27] propose a graph-based approach to
modeling events and their interrelations. In order to make explicit relations
between events, they extend graph data models to include temporal and
spatial settings and to manage different levels of granularity to represent
events and their relationships. Their main contribution is to ”address the
modeling, representation, and query specification of events from a different
perspective” [27].

Türkyılmaz [30] discusses how to conduct process mining analysis on an
event log stored in a graph database. The paper discusses what the schema
and the data preparation should be to make proper process mining analysis
on graphs. However, it is also mentioned that deep process mining analysis
is missing and ”future work could look into the implementation of different
process mining algorithms” [30].

2.2.2 Multi-Dimensional Event Data in Graph Databases

In [1], Esser and Fahland propose a ”general data model for multi-dimensional
event data based on labeled property graphs that allows storing structural and
temporal relations in a single, integrated graph-based data structure in a sys-
tematic way”.

Their data model allows them to query for multi-dimensional event data
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Figure 2.3: Data model proposed in [1] to model multi-dimensional event data in
labeled property graphs.

of multiple related entities. They mention that, to analyze the behavior of
event data that involves multiple identifiable entities, data must be extracted
in a sequential format; however, the correlation of events under a single entity
that needs to be done to flatten the data and obtain a single-dimensional
event log may lead to false behavioral information known as convergence
and divergence.

Convergence A convergent event log contains entries where one activity
is executed in several process instances at once. In a relational database, this
can be recognized by a 1:n relation from an event to the process instance
[28].

Divergence A divergent event log contains entries where the same activity
is performed several times in one process instance. In a relational database,
this can be recognized by a n:1 relation from events to the process instance
[28].

The data model presented in [1] can be observed in Figure 2.3. The Event
node represents a single event from the event log, with the event’s activity
and timestamp as properties. Event nodes can be connected between them
through :DF relations, which are determined based on the entity identifiers.
Then, the Log nodes allows them to identify which events belong to each log.

The Entity node is used to identify the entity identifier to which each
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event is correlated, with the EntityType property describing the type of entity,
the ID property describing the entity identifier, and their combined values
serving to provide a unique identifier to the node in the database. The
relations between entities are described through the :REL relations.

Finally, the Class node is used to specify event classes. The Class nodes
have a unique ID property and a Type property that is the same for all
event classes defined based on a single attribute or a combination of multiple
attributes. The :DF C relations between classes describe the aggregated
directly-follows relations between the events related to them.

Esser and Fahland mention that this data model can be seen as a multi-
dimensional event log, where events of each entity are ordered by “their”
directly-follows relation leading to a partial order of events, avoiding short-
comings of existing event data models and supporting multiple perspectives
on the event data from different case identifiers at once.
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Chapter 3

Building a Process Mining Tool
on top of a Graph Database

In this chapter, we describe how we can build a process mining tool that is
able to execute the most essential activities within a process mining project
while using the data model presented in [1] as its foundation. First, we
identify the activities that a process mining tool should perform throughout
a process mining project, analysing how they are impacted when considering
a tool built on top of a graph database. Then, we describe the architecture
used as a guideline to implement the tool, identifying the activities that
provide the minimum viable result for a process mining project, thus defining
the final scope of the implementation.

3.1 Identifying Process Mining Activities

In this section, we use the PM2 methodology, described in Section 2.1.2, as
the main reference to identify the activities that need to be carried out during
a process mining project. For each of its six stages, we first describe their
objectives and identify the activities that can be executed with a process
mining tool. Then, we analyze the considerations this entails for a tool built
on top of a graph database.

First Stage - Planning The first stage of the PM2 methodology is Plan-
ning, whose main objectives are setting up the start of the project and deter-
mining what knowledge should be obtained in the form research questions.
The three activities that should be carried out in this stage are Identifying
research questions, which should be answered with the available data, Se-
lecting business processes that are meant to be analyzed, and Composing the
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project team with business owners, system experts and process analysts that
will be involved in the project. Although these activities are important to
start the project and define its goals, an interaction with a process mining
tool is not yet required.

Second Stage - Extraction The objective of the second stage, Extraction,
is to extract event data and process models. The three activities to be
performed in this stage are Determining the scope or identifying the data
that will be extracted for the analysis, Extracting event data, where the event
data is created based on the scope determined in the previous activity, and
Transferring process knowledge, where there is an exchange of information
within the project team to ensure the same understanding of the process.
The identification and extraction of the most relevant data that will be used
as an input for the next stage depends more on domain knowledge and the
interaction between team members than the usage of process mining tools,
but this stage is still relevant for our tool.

The Extracting event data activity at this stage gets the source data into
a format ready for process mining, but, for a tool built on top of a graph
database, the extracted event data cannot be used directly as an input. For
this particular tool, we must consider that the data has to be adapted for
the graph database environment so it can be used to execute activities from
subsequent stages. This is why we must define an additional activity to be
considered for our tool related to this stage. We call this activity Importing
data, where we import the extracted event data into the graph database,
producing the appropriate inputs for our tool to execute the activities from
the upcoming stages.

Third Stage - Data Processing In the third stage, Data Processing,
event logs must be created from the event data in order to provide the nec-
essary inputs for the mining and analysis stage. The four activities executed
during this stage are Creating views or event logs by defining event classes and
process instances to provide different perspectives of the data, Aggregating
events to reduce the complexity of the event data, Enriching logs by adding
additional attributes to the logs, and Filtering logs by removing events or
partitioning the event log. These four activities, while they can be executed
before we start using a process mining tool, we can also make the argument
that they can be executed inside it, which we should discuss more in depth.

The data processing stage must ensure that the data is suitable for the
analysis that will be performed later on, and even though it can be argued
that these activities do not require a process mining-specific tool to execute
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them (e.g. running a Python script that generates an event log from the
data or filters events based on their attributes), tools such as ProM have
shown that there is a benefit in performing them within a dedicated process
mining tool, since it provides the right context to define events and traces to
allow its users to perform filters or aggregations on the data more intuitively.
This is especially true considering the data model proposed in [1], where
Entity and Class nodes can be defined to generate different views of the
event data, enriching the log at the same time with new relations between
Event nodes. Thus, a process mining tool based on this graph data model
should be capable of taking advantage of the schema to create and enrich
logs while also allowing its users to filter the log or aggregate events in a
subsequent step.

Another thing to note related to the processing stage is found on a recent
case study on process mining [4], which mentions that the processing stage
may also address bringing the data into the right format, such as updating
the timestamps so they can be correctly interpreted by the tool, therefore, it
is important to clearly define the type of inputs accepted by the tool (e.g. file
types, content format) so the processing stage can take this into consideration
and the tool can be used successfully.

Fourth Stage - Mining and Analysis The objective of the fourth stage,
Mining and Analysis, is to apply process mining techniques on event logs in
an attempt to answer the research questions. The four types of activities
included in this stage are Process Discovery, where techniques are used to
obtain a process model, Conformance Checking to detect inconsistencies be-
tween a process model and its corresponding event log, Enhancement, which
refers to extending, improving or repairing a process model based on infor-
mation about the actual process, and Process Analytics, where data mining
techniques or visual analytics can be applied to improve the process models.
Once again, these four activities can be executed with the help of a process
mining tool and should be discussed further.

We can say that any tool with process mining capabilities should be able
to execute at least one of these activities, something that becomes apparent
by looking at the similarities between these four activities and those men-
tioned in the Process Mining Manifesto, which include process discovery,
conformance checking, deviation monitoring, model extension and model re-
pair among others [3]. Therefore, a tool that plans to build around the data
model presented in [1] must be able to adapt or create process mining tech-
niques that execute the activities from the fourth stage in a manner suitable
for the current setting.
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Fifth Stage - Evaluation Then, the fifth stage, Evaluation, refers to the
association of the findings from the previous stage with improvements that
address the initial objectives. The two activities for this stage are Diagnose,
which refers to the understanding of the process model discovered, highlight-
ing the results that deviate from the expectations, and Verify and Validate,
where the findings are compared against the original data to identify im-
provements. While the second activity requires direct interaction between
the stakeholders to evaluate the findings, the diagnosis can be more effective
by using a tool that provides an optimal interpretation of the results.

The evaluation and correct understanding of the results depend to some
extent on the effectiveness with which results are presented. The Process
Mining Manifesto acknowledges the importance of working with process min-
ing tools that provide a good representation of the results by mentioning three
current process mining challenges related to this topic [3]:

• Challenge C9. This challenge mentions the need to combine process
mining with visual analytics for a better understanding of large and
complex datasets.

• Challenge C10. This challenge mentions that it is important to consider
the creation of user-friendly interfaces and the linking of event data with
process models to provide valuable interactions with end-users

• Challenge C11. This challenge mentions that results should be pre-
sented using a suitable representation.

Therefore, a process mining tool working on top of a graph database must
also consider a way to extract the data from events and models, stored in
the form of nodes and edges, and present the results in a suitable manner.

Sixth Stage - Process Improvement and Support Finally, the ob-
jective of the sixth stage, Process Improvement and Support, is to use the
insights obtained to define actions that modify the current process. The two
activities executed in this stage are Implementing improvements based on
the results of the project, and Supporting operations, where, for structured
processes, results can be used to detect problematic cases or suggest correc-
tive actions. While the results obtained from the process mining tools are
the inputs for this stage, no further interaction with the tools is needed at
this stage.

After analyzing the 6 stages proposed by the PM2 methodology, we identi-
fied 10 activities that can be executed with the help of a process mining tool.
These activities are marked in boldface in Table 3.1, where we also specify
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Stage Activity Inputs Outputs Included? Layer

2 Extraction

Determining the scope Research
questions and
Information
Systems

Event Data

- -
Extracting event data - -
Transferring process knowledge - -
Importing data* Yes 1

3
Data
Processing

Creating views
Event Data

Event Logs

Yes 2
Aggregating events No -
Enriching logs Yes 2

Filtering logs Event Data
Process Models

No -

4
Mining and
Analysis

Process discovery Event Logs
Process Model

Yes 4
Enhancement

Event Logs
Process Models

No -
Conformance checking Diagnostics No -

Process analytics
Data Mining /
Visual Analyt-
ics Results

No -

5 Evaluation
Diagnose Process Models

Improvement
Ideas

Yes 5

Verify and Validate
Performance
and Compliance
Findings

New research
questions

- -

Table 3.1: PM2 methodology activities. Activities in boldface are those that can
be executed with the help from a process mining tool. *The Importing Data
activity was added by us considering that data has to be adapted to execute
subsequent activities on top of a graph database.

their corresponding inputs and outputs (according to the methodology) in
the fourth and fifth columns. The next step is to define an architecture for
the tool that is able to address these activities.

3.2 Defining the Tool Architecture

After identifying the activities that can be executed with a process mining
tool, in this section we define an architecture for the tool, providing a guide-
line for its implementation that specifies when these activities are executed.
We define the architecture based on the activities defined in Table 3.1, de-
scribing how their inputs and outputs are correlated and how they translate
into the graph database environment.

By analysing the stages of the PM2 methodology that contain the ac-
tivities identified in the previous section, together with the interaction with
ProM, it was possible to define an architecture for the tool that would ensure
that each activity was implemented and executed in a logical order, providing
the appropriate inputs for subsequent activities. If we look at the inputs and
outputs of each activity defined in Table 3.1, we can describe two examples
of how the architecture was defined: 1) The second activity identified was
Creating views, where Entities and Class nodes are defined to create differ-
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ent connections in the log, but to do this, first it is necessary to import the
event data into the graph database through the Importing data activity so
the Event nodes that compose the log can be used as the inputs to create
views, and 2) To perform the Diagnose activity, we must have previously
generated process models that can be visualized to understand and analyze
the results. Following a similar thought process for all the activities resulted
in the model shown in Figure 3.1.

The model consists of 5 layers: (1) Event Layer, (2) Entity and Behavior
Layer, (3) View Layer, (4) Model Layer, and (5) Model Analysis Layer. These
layers help us group the different types of nodes and relations that exist in
the database. In turn, these different types of nodes represent the inputs and
outputs of the 10 distinct process mining activities we identified towards the
end of Section 3.1. Next, we describe the objectives and activities addressed
by each layer.

Event Layer The Event Layer addresses the Importing data activity through
the upload of the extracted data into the graph database, transforming the
isolated events into Event nodes, with the event attributes stored as node
properties. The input for this layer is the extracted data from relevant in-
formation systems and the output is a set of Event nodes imported into the
database representing the event data.

Entity and Behavior Layer The Entity and Behavior Layer addresses
the Creating views and Enriching logs activities, where functionalities that
create different views of the data and add information to the log can be
executed. For the graph data model, this is done by defining the entity
identifiers, which provide a temporal ordering for the events, and the event
classes, which describe the aggregated behavior per entity type. The input
for this layer is the event data in the form of the isolated Event nodes and the
outputs are the Event, Entity and Class nodes together with the relations
that define their correlations, all of which represent our version of the views
and event logs.

View Layer The View Layer addresses the Aggregating events and Filter-
ing logs activities, where functionalities that create data subsets to reduce
the complexity of the event log can be executed. The input for this layer is
the connected Event nodes together with the Entity and Class nodes and the
output is the subset of nodes that compose the processed log.
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Figure 3.1: 5-layer architecture used for the implementation of the tool. From
the 10 activities identified in Section 3.1 (marked in italics), 5 of them (marked
also in boldface) are addressed by our implementation.
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Model Layer The fourth layer, Model Layer, addresses the Process discov-
ery, Conformance checking, Enhancement, and Process analytics activities,
where the process mining algorithms or other data mining techniques can be
executed. For this layer in the graph data model, the input is either the set
of correlated Event, Entity and Class nodes conforming the event log to be
analyzed or an already existing model on which algorithms are executed, and
the outputs are either new process models or diagnostic information about
the existing models.

Model Analysis Layer Then, the fifth layer, Model Analysis Layer, ad-
dresses the Diagnose activity, where those functionalities that help in under-
standing the process models can be executed. The inputs for this layer are
the database elements containing the information about the process models
and the output is a visual representation of those elements.

Now that the architecture has been defined, we describe our approach to
delimit the scope of our implementation.

3.3 Delimiting the Project Scope

Once the architecture has been established, the next step is to delimit the
scope of the tool. In this section, we describe the scope of our implementation
by identifying the most essential activities to successfully use the tool for
process mining. To do this, we analyze if any of the 10 activities originally
established can be considered as ”non-essential”, keeping only those activities
whose execution provide the minimum viable working tool that can provide
relevant results for a process mining project.

The first pair of activities that can be discarded are the Aggregating events
and Filtering logs activities. Although reducing the complexity of the logs
can help to remove uncommon events or traces and focus the analysis on
specific parts of the data, the process mining algorithm can still be executed
on a full event log. Therefore, these two activities, composing in full the
third layer, are non-essential for the implementation.

Then, we can look at the types of process mining mentioned in the Pro-
cess Mining Manifesto to discard activities from the fourth layer and further
delimit the scope of the tool. First, the Manifesto mentions three basic types
of process mining: discovery, conformance checking, and enhancement [3],
which directly correlate to three of the four activities addressed in the fourth
layer. Given that the Process analytics activity is not mentioned as a basic
type of process mining, it can be discarded from the implementation. Then,
from the three types of process mining, both the conformance checking and
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enhancement require an existing model as an input, so it is important to first
define how a process model can be discovered using the graph data model
before working with those two activities. Considering also the fact that the
Manifesto mentions that process discovery is ”the most prominent process
mining technique” [3], we need to include this activity to show that it is
possible to execute process mining with our tool.

The results from this analysis are displayed in the last two columns of
Table 3.1, where we specify which activities were included and which layer
from the architecture defined in Section 3.2 addresses them. In the end, we
considered five activities as ”non-essential” to obtain the minimum viable
working tool that can be built around the data model from [1], with only the
third layer from the model being fully excluded. These activities are displayed
in italics and grey font in Figure 3.1. The five remaining activities considered
for our implementation are: Importing Data, addressed in the first layer,
Creating views and Enriching logs, addressed in the second layer, Process
discovery, addressed in the fourth layer, and finally Diagnose, addressed in
the fifth layer. These activities are displayed in italics and black font in
Figure 3.1.

The details on the implementation of these 4 layers are presented in Chap-
ters 4, 5, and 6.
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Chapter 4

Creating the User Interface for
the Event Graph Data Model

In Chapter 3, we define the scope of the process mining tool under the 5-
layer model. In this chapter, we discuss how the first and second layer of the
architecture shown in Figure 3.1 are implemented. In Section 4.1, we present
the layout for the user interface of the tool. In Section 4.2, we describe the
scenarios that must be accounted for to deal with multi-dimensional data.
Then, to implement the Event Layer and address the Importing Data activity,
in Section 4.3 we describe how event data is imported into the graph database.
To implement the Entity and Behavior Layer and address the Creating views
and Enriching logs activities, we describe the creating of entities, directly-
follows relations, entity type attributes and classes in Sections 4.4, 4.5, 4.6,
and 4.7 respectively.

4.1 User Interface Layout

In this section, we describe the layout of the user interface by providing
details on the purpose of each of its components.

Now that the scope of the tool has been defined, the next thing we need
is to define a layout that can help us translate the architecture from Figure
3.1 into a user interface.

The layout was designed with the objective of providing the user with an
intuitive look into what the tool can do and in which order it can be done,
which resulted in the user interface shown in Figure 4.1. The layout of the
user interface is described next based on the labels from Figure 4.1:

A. Tool Menu. The layout contains a menu on top, standard for many soft-
ware applications, that can be used to store functions such as opening
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files, interacting with the application or displaying additional details
about the tool.

B. Log Label. The layout includes a label indicating which event log is
currently selected, providing a reference for the users to know which log
will be used as input or will be affected by the different functionalities.

C. Functions Panels. The layout also contains 7 panels on the left-hand
side that allow us to group the tool functions according to their func-
tionality. These panels are ordered in such a way that they emulate the
5-layer architecture, providing the users with a visual guide to know
the order on which different functions can be executed. The 7 panels
are:

1. Logs. The Logs panel is meant to contain functions related to the
imported event logs, directly relating it to the Event Layer.

2. Graph Data. The Graph Data panel was placed next since users
can already interact with the event logs after they are imported.
This panel allows the users to obtain more information about not
only the Event nodes pertaining to a particular event log, but
also the Entity and Class nodes that are addressed in the next
two panels.

3. Entities. The Entities panel contains those functions related to
the definition of entity identifiers.

4. Classes. The Classes panel contains those functions related to the
definition of event classes. Together with the Entities panel, these
two panels represent the Entity and Behavior Layer.

5. Filters. The Filters panel is meant to contain the functions related
to the View Layer, which, as discussed earlier, was left out of the
current scope, serving only as a placeholder.

6. Algorithms. The Algorithms panel is meant to contain the func-
tions related to the Model Layer, such as the process discovery
algorithms.

7. Models. The Models panel represents the Model Analysis Layer,
so inside this panel we can find those functionalities that help in
understanding the process models.

D. Graph Panel. The right side of the user interface is completely allocated
to display graphs, which could be representing anything that is stored
in the graph database, from events to models.
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Figure 4.1: User Interface Layout. (A) Tool Menu. (B) Log Label. (C) Functions
Panels. (D) Graph Panel. The tool functions are grouped by functionality in the
7 panels inside (C).
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Now that the main layout of the user interface has been presented, we
need to discuss the impact of potential multi-dimensionality in the extracted
event data used as an input for the tool. This factor must be taken into
account during the implementation of the first two layers, the Event and
Entity and Behavior layers, which is why it is important to discuss them
next.

4.2 Scenarios for Data Dimensionality

In this section, we discuss the scenarios that must be accounted by the tool
to handle event data that contains multiple dimensions. First, we provide a
brief description on how the data model proposed in [1] allows us to model
multiple dimensions. Then, we describe three scenarios that change the way
in which events should be correlated to an entity identifier. Finally, we
describe why these scenarios must be considered by the tool based on their
impact for the process mining analysis.

As mentioned in [1], a process event log is a collection of recorded events
structured into a specific view on an information system from the perspective
of one specific entity, and, to analyse its behavior, data must be extracted
in sequential format. However, information systems can host multiple iden-
tifiable entities, and in this case the data extraction also requires flattening
the data to correlate all events under a single entity or case identifier. This
transformation of the data may lead to false behavioral information if those
distinct entities are not considered.

As we discussed in 2.2.2, this issue is addressed by the graph-based data
model presented in [1], which allows the definition of multiple entity identi-
fiers and then defines directly-follows relations between events related to the
same entity only, turning the data model into a multi-dimensional event log
and avoiding the issues related to convergence and divergence.

Based on the flexibility provided by this graph data model to define mul-
tiple entity identifiers, which represent distinct dimensions of the event data,
we identify three scenarios that change the way in which events can be cor-
related through directly-follows relations depending on how the data dimen-
sionality is defined.

To explain these scenarios, we can use the event data from Table 4.1,
which contains a simplified example of the events registered for an order and
its delivery. Table 4.1 shows the 6 events that correlate the order 40 with
deliveries 514 and 623, indicating the time at which the resources carried out
the action for each event. Using this table, we can now describe the three
scenarios.
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Event Order Time Action Delivery
e1 50 2018-12-20 11:03 Receive Order
e2 50 2018-12-23 11:11 Pack Order
e3 50 2018-12-23 11:46 Add Item 514
e4 50 2018-12-23 11:49 Ship Parcel 514
e5 50 2018-12-23 11:51 Add Item 623
e6 50 2018-12-23 11:59 Ship Parcel 623

Table 4.1: Event Data. Simplified events of an order.

S1. Event data describes a single dimension Even when the data
model from [1] allows us to work with multiple dimensions, it is still possible
that we need to work on an event log that describes the events based on
a single entity. In this scenario, once we identify the column that defines
the entity, we can make the directly-follows connection between the events
related to that entity. The top section of Figure 4.2 shows how the events
would be connected if the ”Order” column in Table 4.1 is identified as the
only entity in the event log. To represent the actions, we use the first letter
of each word (e.g. ”Receive Order” is represented as ”RO” in the figure). As
we can see, all the events are connected between them since the event data
indicates that they belong to the same order (order 50).

S2. Event data describes multiple dimensions In this second sce-
nario, we take advantage of the flexibility provided by the graph data model
of [1] to define multiple entity identifiers in the event data. The middle sec-
tion of Figure 4.2 shows how the events would be connected if we defined
”Delivery” as a second entity after the ”Order” entity. In this case, we can
see how the directly-follows paths for deliveries 514 (events e3 and e4 ) and
623 (events e5 and e6 ) cross paths with the path from order 50.

S3. Event data describes multiple independent dimensions In this
third scenario, we have events that belong to one dimension but were cor-
related to a second one during the data extraction to obtain a single event
log from multiple sources. The event data from Table 4.1 may also represent
this scenario if the data from orders and deliveries was flattened under the
”Order” entity to obtain the event data. We can see how the events should
be connected in this scenario in the bottom section of Figure 4.2, where the
connection with order 50 does not include events e3 until e6 since, for these
events, the order attribute only represents the correlation with the orders,
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Figure 4.2: Distinct scenarios (S1, S2, and S3) where the connections between
events change depending on the dimensionality of the event data.
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Figure 4.3: Events from the Order and Delivery entities correlated under scenarios
S2 and S3.

but the ”Delivery” dimension is independent from the ”Order” dimension.

The difference between scenarios S2 and S3 becomes more relevant when
we start to correlate events from multiple entities, something that the graph
data model from [1] also allows. We can see the difference in the connections
in Figure 4.3.

If we correlate the events from the ”Order” and ”Delivery” dimensions
considering scenario S2, as shown in the top section of Figure 4.3, any event
that is part of either order 50 or delivery 514 will be part of a path, and
any event that is part of either order 50 or delivery 623 will be part of a
different path. These connections imply that, for any given order and its
corresponding delivery, a ”Ship Parcel” activity can be followed by an ”Add
Item” activity, as exemplified by the connection between events e4 and e5.

In contrast, under scenario S3, as shown in the bottom section of Figure
4.3, only the events that are exclusively from order 50 and the events that
are exclusively from delivery 514 will be part of a path, and only the events
that are exclusively from order 50 and the events that are exclusively from
delivery 623 will be part of another path. These connections imply that, for
any given order and its corresponding deliveries, the ”Ship Parcel” activity
marks the end of the path, as exemplified by the events e4 and e6.

As we can see, depending on the context, choosing the wrong scenario for a
particular event log could create false connections between the events, leading
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to a different interpretation of the results and changing the analysis made
on the process being evaluated. This presents relevant considerations for the
implementation of the tool, which must be able to handle the 3 scenarios to
allow its users to make their analysis under the correct assumptions regarding
data dimensionality.

Now that we have seen how the definition of dimensions in the event data
may impact the process mining results, we can continue with the description
of the tool functionalities that were implemented, starting with the data
import in the Event Layer.

4.3 Importing Event Data

In this section, we describe how the Event Layer was implemented. First, we
describe how the event data is represented in the graph data model from [1].
Then, we discuss the considerations that need to be accounted for to imple-
ment the Event Layer in our tool. Finally, we describe its implementation,
where we provide details on how the event data is imported to the database
through our user interface.

4.3.1 Defining the Event Data

The objective of the Event Layer in the architecture we defined in Section 3.2
is to address the Importing data activity, where we must import the extracted
event data into the database. In other words, our implementation for this
layer must ensure that the source event data is in the correct format for
process mining on top of a graph database, allowing us to use it to execute
the subsequent activities. Therefore, we should start by defining how the
extracted event data is represented in this context.

The extracted event data is the only input for the Event layer, which we
assume is contained in a CSV file in the form of an event table, where each
row describes one event. Table 4.2 shows an example of the event data. This
data in particular consists of the events registered for four different orders,
stored under a CSV file named ”Orders.csv”.

In [1], event data such as the one from Table 4.2 is represented in the
graph database through the Event nodes. Each Event node represents a
distinct event from the source data, and contains two mandatory properties,
the activity and the timestamp. The additional event attributes can also be
modeled as additional node properties.

To identify which events belong to which log and allow us to store event
data from multiple logs in the database, a second type of node is introduced
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Event Order Time Action Life-cycle User Delivery Type
1 40 2018-12-20 11:02 Receive Order Complete System Phone
2 40 2018-12-20 12:09 Pack Order Start Aaron Phone
3 40 2018-12-20 12:10 Add Item Complete Bob 432 Phone
4 40 2018-12-20 12:10 Add Item Complete Bob 432 Phone
5 40 2018-12-20 12:15 Ship Parcel Complete Cooper 432 Phone
6 40 2018-12-20 16:00 Pack Order Complete Aaron Phone
7 40 2018-12-22 07:23 Receive Payment Complete System Phone
8 40 2018-12-22 07:24 Archive Complete Matthew Phone
9 50 2018-12-20 11:03 Receive Order Complete Sean Phone
10 50 2018-12-23 23:11 Pack Order Start Bob Phone
11 50 2018-12-23 23:46 Add Item Complete Bob 514 Phone
12 50 2018-12-23 23:49 Ship Parcel Complete Sean 514 Phone
13 50 2018-12-23 23:51 Add Item Complete Bob 623 Phone
14 50 2018-12-23 23:59 Ship Parcel Complete Bob 623 Phone
15 50 2018-12-27 09:01 Pack Order Complete Aaron Phone
16 50 2018-12-27 09:02 Archive Complete Aaron Phone
17 60 2018-12-20 11:04 Receive Order Complete System Online
18 60 2018-12-20 11:12 Pack Order Start Bob Online
19 60 2018-12-21 09:17 Add Item Complete System 623 Online
20 60 2018-12-21 09:23 Pack Order Complete Aaron Online
21 60 2018-12-21 09:28 Receive Payment Complete Cooper Online
22 60 2018-12-21 10:15 Archive Complete Matthew Online
23 70 2018-12-20 11:05 Receive Order Complete Cooper Online
24 70 2018-12-20 14:05 Pack Order Start Aaron Online
25 70 2018-12-20 14:08 Add Item Complete Aaron 775 Online
26 70 2018-12-22 08:07 Add Item Complete Matthew 775 Online
27 70 2018-12-22 09:01 Ship Parcel Complete Matthew 775 Online
28 70 2018-12-22 09:05 Pack Order Complete Aaron Online
29 70 2018-12-22 09:36 Receive Payment Complete Aaron Online
30 70 2018-12-22 10:15 Archive Complete Cooper Online

Table 4.2: Event Data
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in [1] in the form of Log nodes. Each Log node represents a distinct event log
imported into the database and is linked to its corresponding Event nodes
through the :HAS relationship. The only property assigned for this node is
the ID.

There are several queries already defined in [1] to import the event data
into the graph database. First, to import the events, they defined a query
to import each row as an Event node and set each event attribute as a node
property. The name of these properties is defined based on the column name,
which is assumed to be specified in the first row of the CSV file. Then, they
defined a query to create the Log node, defining its ID based on the LogID
property of the recently created Event nodes. Finally, they created a query
to connect each event with the Log node through the :HAS relation. The
nodes that should be connected are identified based on the match between
LogID property of the Event nodes and the ID property of the Log node.

To implement the Event Layer and address the Data Import activity, we
must be able to execute the import of the event data into the graph database.

4.3.2 Data Import Considerations

While the queries provide a way for us to import the event data into the
database, we still need to define how these queries can be executed by users
through the user interface of our tool.

However, defining a functionality in the user interface for the data im-
port is not enough to consider the implementation complete. First, we must
implement a functionality to let the users define which of the three scenarios
defined in Section 4.2 will be used to handle multiple dimensions on the event
log. Handling the dimensionality at a later stage could lead to inconsistencies
in the directly-follows relations between events (e.g. an entity identifier is
defined considering the log as one-dimensional, but then the log is redefined
as multi-dimensional, making the previous connections obsolete), so we need
to consider this from the start. Then, the user interface itself requires ad-
ditional functionalities to provide feedback to the users on the status of the
database, especially since we do not expect users to interact directly with
the database through Cypher queries. Therefore, we also need to consider
that the user interface should display the information from the database in a
suitable manner, which might also result in changes to the original queries.
For example, we know that one of the mandatory properties in an Event
node is the activity, so we must find a way to let the user select which at-
tribute from the original event data is the activity; then, in order to allow
the user to recall which attribute was selected during the import, we must
store this selection somehow in the database, potentially altering the queries
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Figure 4.4: Menu option to upload a CSV file containing the event data.

that create the Event and Log nodes.

Additionally, there are two more considerations that should be addressed
by the tool in the Event Layer. The first consideration comes from the need
to prevent the creation of false connections between nodes in the database,
while the second consideration comes from the need to be able to delete the
event data, which can be required for a different number of reasons, such as
liberating space from the database or redefining the properties of a log.

In summary, to complete the implementation of the Event layer and ad-
dress the Importing Data activity, we must define functionalities in the tool
that allow us, through the user interface, to import the data, define the di-
mensionality, provide feedback on the information stored in the database,
prevent the creation of false connections between nodes, and deleting the
data.

4.3.3 Implementing the Data Import

To import the data through the user interface, we need to start by defining
a way to allow the user to select the file containing the event data that will
be imported into the graph database.

To allow the user to select the file, we created a menu option in the
user interface, as seen in Figure 4.4, allowing the user to select the CSV file
containing the event data (Figure 4.5). The ”Orders.csv” file shown in the
figure contains the event data from Table 4.2. This event data will be used
as our running example to describe all the functionalities of the tool.

Once the CSV file has been selected, we look into the data to find which
column describes the timestamp of the events, which is one of the parame-
ters needed for the query that imports the events. We assume that this col-
umn has one of the following names (ignoring case): ”Timestamp”, ”Time”,
”Start”, or ”End”.

Then, to have the users identify the Activity attribute, which is the sec-
ond parameter needed for the import query, we cannot use the same approach
as the one used for the Timestamp, since the possible names that the Ac-
tivity attribute can be assigned in the event data are greater, so instead of
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Figure 4.5: After selecting the Upload a CSV File option, a window shows up for
the user to select the file.

configuring the tool to expect a column with a specific name, we decided to
allow the user to select the attribute that represents the Activity of the event
in a subsequent window, as shown in Figure 4.6. For our running example,
we select the ”Action” attribute as the Activity attribute. We can also see
at the top of the figure that the ”Time” column has already been identified
as the Timestamp attribute of the event data.

Then, we decided to let users choose which event attributes to upload so
they can avoid loading unnecessary data into the database. To do this, a
subsequent window appears with the remaining attributes, allowing the user
to select 0 or more attributes to include as additional node properties during
the import, as shown in Figure 4.7. For our running example, we select the
remaining 6 attributes to be included as properties in the Event nodes.

Then, to allow users to define the dimensionality of the data through
the user interface, we included two buttons at the bottom of the window
shown in Figure 4.7. Clicking on the ”Finish” button on this window will
run the import queries considering that the data does not have independent
dimensions, thus, indicating that the events will be connected considering the
scenarios S1 and S2 defined in Section 4.2. Clicking on the ”Next” button
will display a new window, shown in Figure 4.8, where users can provide the
details on the independent dimensions of the event log.

The window shown in Figure 4.8 lets the user specify the independent
dimensions for the event data, indicating that the events will be connected
considering the scenario S3. An example was added at the top to let the
users know what the practical effect is of choosing the independent dimen-
sions. From the list on the left, users can choose which attributes, from those
already selected in the previous window (Figure 4.7), should be considered
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Figure 4.6: After selecting the file, the user can select which of the attributes will
be stored as the event’s Activity.

Figure 4.7: During the import, the user can click ”Next” after selecting the event
attributes to define the independent dimensions of the data or ”Finish” to import
the data with no independent dimensions.
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Figure 4.8: During the import, the user can select the independent dimensions
to consider for the event log.
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as independent dimensions for the event log. The order in which the at-
tributes are added as dimensions is important, since those on top will have
priority over those at the bottom when the tool needs to decide the entity to
which events will be associated with. Clicking on the ”Skip” button on this
window will have the same effect as clicking on the ”Finish” button in the
previous window (Figure 4.7), but clicking on the ”Finish” button here will
run the import queries considering that the data has at least 2 independent
dimensions.

For our running example, we specify the ”Order” and the ”Delivery”
attributes as independent dimensions, which means that when either of these
attributes is involved in the connection of events, the connection will be done
considering the scenario S3, but for the other attributes, such as ”User”, the
events will still be connected considering the scenario S2. Note that in Figure
4.8 the ”Delivery” attribute is placed first so the events that have attributes
set for both ”Order” and ”Delivery” (such as events 3-5 in Table 4.2) are
considered as part of the ”Delivery” dimension.

Now that we have defined how the query parameters (log, timestamp,
activity, event attributes, and the optional independent dimensions) are se-
lected by the user through the user interface, we can take a closer look at
how the queries from the original paper were adapted in our implementation.

The query that imports the data is shown below. We added the PERI-
ODIC COMMIT to prevent the query from failing due to memory constraints
in case the CSV file contains large amounts of data, and we defined the Log
ID as the file name to prevent the need of an additional selection from the
user to import the data.

1 USING PERIODIC COMMIT

2 LOAD CSV WITH HEADERS FROM "file :///filename .csv" AS line

3 CREATE (: Event {Log:"filename .csv", Timestamp:datetime(line.

timestamp ), Activity:line.activity , Attribute1 :line.

Attribute1 ,..., AttributeN :line.AttributeN })

The query that creates the Log node is shown below. Again, we use the
CSV file name to define the ID property. To keep a record of the selections
made by the user, we defined four additional properties, the ”timestampCol”,
indicating the name of the column identified as the timestamp attribute, the
”activityCol”, indicating the name of the column selected as the activity
attribute, the ”attributesSelected”, indicating the additional attributes se-
lected by the user, and ”Dimensions”, indicating the independent dimensions
specified by the user (only if they were specified, otherwise, the property is
not defined). In our running example, the value for the ”attributesSelected”
property is ”Event|Order|Life-cycle|User|Delivery|Type”, while the value for
the ”Dimensions” property is ”Delivery|Order”.
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1 CREATE (:Log {ID:"filename .csv", timestampCol :"

timestampColumnName ", activityCol :"activityColumnName ",

attributesSelected :"Attribute1|...|AttributeN ", dimensions :"

Dimension1|...|DimensionN "})

Finally, the query shown below correlates the Event nodes with the Log
node through the :HAS relationships.

1 MATCH (e:Event {Log:"filename .csv"})

2 MATCH (l:Log {ID:"filename .csv"})

3 CREATE (l) -[:HAS]->(e)

Once these queries are executed, the event data is stored in the graph
database as Event and Log nodes, completing the main objective of the
Event Layer. However, we still need to describe how we can visualize the
event data recently imported to provide feedback to the users on the status
of the database, how we prevent the creation of false connections between
nodes, and how we can delete the data through the user interface. The way
in which these three functionalities are addressed is described next.

Visualizing the Event Data

In order to provide the users with feedback from the tool and show them data
that currently exists on the database, it became important to implement some
sort of visual aid in the user interface to display which logs and events have
already been imported.

Visualizing Logs The users can visualize the details of the existing event
logs in the database through the Logs panel, as shown in Figure 4.9.

The first table in the panel shows a list of the logs currently on the
database, obtained by querying over the existing Log nodes. This allows the
user to check which data is already available to work with. The second table,
which is populated after clicking on the ”View Log Details” button, displays
additional details of the log, allowing the user to review which attributes
were included during the import, helping them check if the current version
of the imported log contains the information they require.

Visualizing Events Then, users can visualize the event data pertaining
to an imported log by expanding the Graph Data panel, as shown in Figure
4.10.

The Log label lets the users and the tool know which log is being used as
an input to make the queries to the database and retrieve the information.
To visualize the Event nodes on the Graph panel, we decided to implement
the ”View” button next to the Instance Level label, which runs a query to
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Figure 4.9: Logs panel showing the logs imported into the database and its details.

Figure 4.10: Visualizing the graph data. Users can interact with the Graph Data
panel to display nodes in the Graph panel and see the node properties on the
table at the bottom. The Log label shows the log currently selected.
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retrieve the Event nodes from the database and display them. In addition,
clicking on a node on the Graph panel will populate the table at the bottom
of the ”Graph Data” panel with all of the existing properties of the selected
node. In Figure 4.10, we can see the 30 Event nodes corresponding to the
30 events from Table 4.2, with the table in the Graph Data panel displaying
the properties stored inside the Event node corresponding to event 28.

The functionality of the buttons referring to the Entity and Class nodes
and their respective relations is discussed in sections 4.4, 4.5, and 4.7.

Preventing false connections between Event Nodes

Now that it is possible to import data into the database through the user
interface, it is important to make sure queries are reliable, matching exclu-
sively the nodes belonging to the correct log. At first glance, it might seem
like this has already been taken care of with the :HAS relation, connecting
the Event nodes to exactly one Log node, a constraint that is mentioned in
section 4.4 of [1]. However, there is a case where this would not hold, caused
by the potential import of new event data under the same Log ID.

As stated earlier, the ID of the log is determined by the CSV file name,
and the query that creates the relation between Events and its Log uses
that condition to identify the nodes to link. If the user tries to upload the
same event log twice, or if a different event log is imported using the same
file name, the query will basically return a cross product between the two
Log nodes and the Event nodes belonging to both logs files, creating false
connections between the data.

To prevent this, a new Cypher query was written to define a constraint
in the ID attribute of the Log node, preventing the creation of a second Log
node with the same ID value, thus preventing the issue.

1 CREATE CONSTRAINT UniqueLogs

2 IF NOT EXISTS ON (l:Log)

3 ASSERT l.ID IS UNIQUE;

In addition, as a design decision, we decided to allow the user to toggle
the activation of this constraint.

1 DROP CONSTRAINT UniqueLogs IF EXISTS;

Regarding the user interface, users can interact with this functionality
through the menu bar on top of the application, as shown in Figure 4.11.

Deleting Event Data

Finally, we considered it was necessary to provide a way inside the user
interface for the users to delete the existing data. Two distinct functionalities
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Figure 4.11: Database constraints can be enabled or disabled by the user at any
point.

Figure 4.12: Users are able to clear the database by clicking a button on the user
interface.

were implemented for this purpose, the first one allows the user to clear the
full database, removing all existing nodes and relations, and the second one
allows the users to delete a specific event log that may no longer be needed.

Clearing the Database To clear all the existing nodes from the database,
we defined a query that deleted the nodes with periodic executions to avoid
memory errors during the process.

1 CALL apoc.periodic.iterate(

2 "MATCH (n) RETURN n",

3 "DETACH DELETE n",

4 {batchSize :500})

5 YIELD batches , total

6 RETURN batches , total

To allow the users to interact with this functionality, we added a menu
option in the tool, as shown in Figure 4.12.

Deleting a Log To delete a log from the database, we first defined a
query that found and deleted all the Event nodes linked to the Log currently
selected by the user. Then, we defined a second query that deletes the Log
node itself.

1 CALL apoc.periodic.iterate (\n" +

2 "MATCH (l:Log{ID:’filename .csv ’}) -[:L_E]->(e) RETURN e",

3 "DETACH DELETE e",

4 {batchSize :500})

47



5 YIELD batches , total

6 RETURN batches , total

7

8 MATCH (l:Log{ID:’Orders.csv ’})

9 DETACH DELETE l

To allow the users to interact with this functionality, we added a button
called ”Delete Log” in the ”Logs” panel, which can be observed in Figure
4.9.

Now that we have described all functionalities from the Event layer, we
can look at the first functionality implemented for the Entity and Behavior
Layer, the creation of entity identifiers.

4.4 Creating Entities

In this section, we start describing how the Entity and Behavior Layer was
implemented by focusing on how the tool addresses the Enriching logs activ-
ity through the creation of the entity identifiers. First, we describe how the
entity identifiers were defined in [1]. Then, we describe the need to adapt the
queries presented in [1] for our tool. Finally, we describe how we use these
queries to define the entity identifiers through the user interface.

4.4.1 Defining the Entities

Once the Event Layer has been implemented, addressing the Importing Data
activity and other functionalities required for that layer, we can move on
to the implementation of the second layer, the Entity and Behavior Layer,
which addresses the Creating views and Enriching logs activities by defining
entity identifiers and event classes for the event data. To do this, we must
start by describing the entity identifiers and their representation in the data
model from [1].

Entity identifiers are used to correlate events based on a common at-
tribute. In one-dimensional event logs, this is commonly known as the case
identifier, which allows us to identify which events belong to the same ex-
ecution of the process registered in the log. In [1], these entity identifiers
are implemented in the form of Entity nodes, where each node represents a
specific entity of the process, such as Order 40 or Order 50 in Table 4.2.

Entity nodes have 3 properties. Property EntityType describes the type
of the entity, property ID refers to the entity identifier, and property uID
stores the combination of the EntityType and ID values to have a unique
value for this Entity node in the entire graph.
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To materialize the correlation between events and entities in the graph
database, [1] introduces the :CORR relation, connecting Event nodes to the
Entity nodes. The :CORR relations allow us to correlate any event to any
number of entities of different types.

[1] also defines queries to create the Entity nodes and define the :CORR
relations between them and the Event nodes. The first query creates the
Entity nodes based on the set of all entities that occur in the data, assigning
the name of the event property used to define the entity as the EntityType
and the value of the event property as the ID, with their combination stored
as the uID property. The second query correlates an entity to all the events
where the Entity node ID matches with the Event node property.

In addition to the creation of entities, the data model proposed in [1] also
allows us to model relations and interactions between entities. The purpose
of this is to provide a way for users to analyze the interaction between events
correlated to different entities, providing another way to enrich the event log.

To analyze this interaction, the data model introduces the derived entities,
which represent the relationship between to entities. Similar to the regular
entities, these derived entities are represented through Entity nodes, and are
connected to the Event nodes through the :CORR relations. The properties
of the derived Entity nodes are the same as those for the regular entities,
with the difference that the values for the EntityType, ID, and uID are a
combination of the properties from the Entity nodes used to create it.

The data model also defines a connection between these two nodes and
the derived Entity node in the form of the :REL relation, which has the
property Type. For the :REL connection between the two original Entity
nodes, the Type property has the combined EntityType properties as its
value, while the :REL connection between the original Entity nodes and the
derived Entity node has ”Reified” as its value.

There are 3 queries defined in [1] to create and connect the derived Entity
nodes. The first query creates the :REL relation between the original entities
based on the properties of the events correlated to them, if an event correlated
to the first entity has a reference to the second entity in the form of a node
property, then the :REL relation is created between the two Entities. The
second query creates the derived Entity node, sets its properties and connects
it to the corresponding Entity nodes through the :REL relations. Finally, the
third query correlates the derived Entity nodes with the Event nodes through
the :CORR relation.

In order for us to start with the implementation of the Entity and Behav-
ior Layer, we must be able to create the Entity nodes as it is proposed in the
data model from [1], which will help us address the Enriching logs activity.
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4.4.2 Considerations for the Creation of Entities

The queries already defined in [1] to create and connect the entities and
derived entities provide a guideline for us to generate these nodes inside our
tool, helping us address the Enriching logs activity inside the Entity and
Behavior Layer. However, there are three aspects not considered by the
original queries that must be addressed in our current implementation.

The first aspect is related to the usability of the tool. We consider that
the tool can be used to store multiple event logs, which are not necessarily
related, so it is important that we distinguish between the nodes that belong
to different logs to avoid creating false connections in the database. This is
not considered in the original queries during the creation of the Entity nodes,
which assume that every Event node in the database belongs to the same log
and is something we need to update in the queries.

The second aspect is related to our discussion regarding independent di-
mensions in Section 4.2. If we work with the scenario S3, we need to consider
the dimension to which an event is related to before making the connection
between events and entities in order to avoid correlating events to an entity
that refers to a different dimension. Therefore, we also need to include the
dimensionality in the queries that create and connect the Entity nodes.

For the third aspect, also caused by the scenario S3, we must adapt the
queries that create the derived entities since they do not consider that, with
the independent dimensions, we could have a case where there seems to be
no match between different entities. We can see an example in Table 4.2;
if we consider ”Delivery” and ”Order” as independent dimensions, then no
event related exclusively to the ”Order” dimension has a value defined for the
”Delivery” attribute, which could cause no derived entities to be identified
by the original queries defined in [1].

In addition to these three aspects, we must also define a way to allow
the users to use these queries to create the entities and visualize the results
through the user interface.

4.4.3 Creating Entities through the User Interface

Creating Entities

To allow users to create Entity nodes from the user interface, we decided to
add a new button to the user interface inside the Entities panel called ”New
Entity”, which can be observed in Figure 4.13.

Clicking on the ”New Entity” button will show a new window displaying
all the existing event attributes stored as node properties inside the Event
nodes, as shown in Figure 4.14. The numbers shown in parenthesis next to
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Figure 4.13: Entities panel of the user interface.

the attribute name represent the amount of distinct values for that attribute,
letting the user know in advance how many Entity nodes would be created.
Clicking on the ”Create Entity” button will execute the Cypher queries that
create the Entity nodes and the :CORR relations with the Event nodes.

Continuing with our running example, once the event data has been up-
loaded, specifying the ”Order” and ”Delivery” attributes as independent di-
mensions, we can create the Entity nodes to define the entity identifiers for
our event log, which will be the ”Order” and ”Delivery” dimensions. First,
on the window of Figure 4.14, we select the ”Order” attribute and click
on ”Create Entity”. Then, we open that window again and now select the
”Delivery” attribute to create the second entity type.

The adapted queries that create and connect the Entity nodes are shown
next. The first query we execute creates the Entity nodes. In line 1, we
specify the log for which we will create the Entity nodes, filtering out Event
nodes that belong to a different log from the start. In line 3, we can see
that the events related to a dimension with a higher priority are filtered out
before creating the :CORR relations. In our running example, we would see
the ”Delivery” dimension as the parameter inside the collection when we
create the ”Order” entity type. Finally, in line 6, we added an additional
parameter to specify the log to which the Entity nodes belong to, since there
is no direct connection between the Log and Entity nodes in the data model.
This will help us retrieve them in the next query without bringing additional
Entity nodes from other event logs.

1 MATCH (l:Log{ID:’filename .csv ’}) --(e:Event)

2 WITH e, keys(e) AS properties

3 WHERE NOT ANY(x IN properties WHERE x IN ["Dimension1 ", ..., "

DimensionN "])
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Figure 4.14: Entity selection window.

4 WITH e WHERE EXISTS(e.‘EntityType ‘)

5 WITH DISTINCT e.‘EntityType ‘ AS id

6 CREATE (en:Entity {ID:id , uID :("EntityType "+ toString(id)),

EntityType :"EntityType ", log:"filename .csv"})

The second query correlates the Event nodes with the recently created
Entity nodes. In line 1 we can see again how we match exclusively for the
Events from a specific log. In line 3, we again filter the events based on
the dimensionality. Finally, in line 6, we retrieve the Entity nodes from the
specific log we are working on.

1 MATCH (l:Log{ID:’filename .csv ’}) --(e:Event)

2 WITH e, keys(e) AS properties

3 WHERE NOT ANY(x IN properties WHERE x IN ["Dimension1 ", ..., "

DimensionN "])

4 WITH e WHERE EXISTS(e.‘EntityType ‘)

5 MATCH (n:Entity {EntityType: "EntityType "})

6 WHERE e.‘EntityType ‘ = n.ID AND n.log = "filename .csv"

7 CREATE (e) -[:CORR]->(n)

Creating Derived Entities

To allow the user to create derived entities, we decided to add a ”New Derived
Entity” button on the Entities panel, as shown in Figure 4.13. Clicking on
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Figure 4.15: Two entities must be selected to create a derived entity.

this button will show a new window, shown in Figure 4.15, where the users
can select which two entities will be used as input to create the derived entity.

In our running example, we have already created two entities, one based
on the ”Order” attribute, and another one based on the ”Delivery” attribute,
which is why we can see those entities as available options in Figure 4.15.
As our next step, we create a derived Entity based on the ”Delivery” and
”Order” entities.

The adapted queries that create and connect the derived Entity nodes are
shown next. The first query we execute is the one that creates the derived
Entity nodes. In line 2, we identify those Event nodes that have both entities
defined as properties, then, with the values of those properties, in line 6 we
find their corresponding Entity nodes. Using the properties of these Entity
nodes, we can define the properties of the derived entity in line 8. Also in
line 8, we can see that we needed to add the entity ID of the original enti-
ties as additional properties to help us make the correlation with the Event
nodes later on. Using our running example as reference, the properties of
the derived Entity node between order 40 and delivery 432 would be: En-
tityType:’DeliveryOrder’, uID:’DeliveryOrder 432 40’, DeliveryID:’432’, Or-
derID:’40’, log:’Orders.csv’.

1 MATCH (l:Log{ID:’filename .csv ’}) --(e:Event)

2 WHERE EXISTS(e.‘EntityType1 ‘) AND EXISTS(e.‘EntityType2 ‘)

3 WITH DISTINCT e.‘EntityType1 ‘ AS nID1 , e.‘EntityType2 ‘ AS nID2

4 MATCH (l:Log{ID:’filename .csv ’}) --(:Event) --(n1:Entity)

5 MATCH (l) --(:Event) --(n2:Entity)

6 WHERE n1.uID = ’EntityType1 ’+nID1 AND n2.uID = ’EntityType2 ’+nID2

7 WITH DISTINCT n1.ID as n1_id , n2.ID as n2_id

8 CREATE (: Entity{EntityType :"DerivedEntityType ", uID:’

DerivedEntityType ’+’_’+ toString(n1_id)+’_’+ toString(n2_id),
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Entity1ID :n1_id , Entity2ID :n2_id , log:"filename .csv"})

After we create the derived Entity nodes, we execute the queries that
correlate them with the Event nodes. We run this query twice, one for each
original entity that compose the derived entity. In line 2, we find the events
related to one of the original entities, and in line 4 we find the appropriate
derived Entity node through the EntityID property to make the connection
with the events in line 5.

1 MATCH (l:Log) --(e1:Event) -[:CORR]->(n1:Entity)

2 WHERE l.ID = "filename .csv" AND n1.EntityType ="EntityType "

3 MATCH (derived:Entity)

4 WHERE derived.EntityType = "DerivedEntityType " AND n1.ID =

derived.EntityID AND derived.log = "filename .csv"

5 MERGE (e1) -[:CORR]->(derived)

Finally, we create the :REL connections between the original Entity nodes
and the derived Entity node. In line 1, we obtain all the derived Entity nodes.
Then, in line 4, we find the original Entity nodes based on their IDs. Then,
in order to obtain the same result for the direction of the :REL relations
every time, we store both original entities in an array in line 5 so we can
sort them alphabetically in line 6. Once that is done, we create the :REL
connections in lines 8, 9, and 10.

1 MATCH (l:Log{ID:’filename .csv ’}) --(:Event) --(en:Entity{

EntityType:’DerivedEntityType ’})

2 WITH DISTINCT en

3 MATCH (en1:Entity) --(:Event) --(en) --(:Event) --(en2:Entity)

4 WHERE en1.ID = en.Entity1ID AND en2.ID = en.Entity2ID AND en1.

EntityType <> en2.EntityType

5 WITH DISTINCT en AS dEnt , [en1 ,en2] AS ents

6 WITH DISTINCT dEnt , apoc.coll.sortNodes(ents , ’uID ’) AS

sortedEnts

7 WITH dEnt ,sortedEnts [0] AS ent1 ,sortedEnts [1] AS ent2

8 MERGE (dEnt) -[:REL{Type:’Reified ’}]->(ent1)

9 MERGE (dEnt) -[:REL{Type:’Reified ’}]->(ent2)

10 MERGE (ent1) -[:REL{Type:’DerivedEntityType ’}]->(ent2)

Visualizing Entities

As a last step, we must also define a way for the users to visualize the created
Entity nodes, providing them with feedback on the results.

Since the Event and Entity nodes are connected between them, we decided
to put the visualization functions for the Entity nodes in the same panel
already containing the visualization options for the Event nodes. This is
why the button to visualize the Entities that have been created is placed on
the same panel already introduced in Figure 4.10.
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Figure 4.16: Entity nodes visualization.

Figure 4.16 shows the result of clicking on the ”View” button next to the
”Model Level” label. The existing Entity nodes are displayed on the Graph
panel, and, similar to the Event nodes, clicking on a node will populate the
table with the node properties. To improve the visualization, we use colors
to distinguish between different Entity Types.

Figure 4.16 shows the entities created for our running example. The
yellow Entity nodes on the left represent the ”Order” entities, the red Entity
nodes in the middle represent the ”Delivery” entities, and the blue Entity
nodes on the right represent the derived ”DeliveryOrder” events. As we can
see, these nodes are connected between them through the :REL relations.

As we can see at the top-left of Figure 4.16, the :CORR relations that
correlate the events and entities can also be visualized using the Instance
Level ”View” button, but before looking into this, we must first discuss
another result from the creation of the Entity nodes, which is the connection
between events by directly-follows (:DF) relations.

4.5 Directly-Follows Relations

In this section, we continue describing the implementation of the Entity and
Behavior Layer, detailing how we address the Creating views activity by
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using the Entity nodes to connect the Event nodes through directly-follows
relations. First, we define what the directly-follows relations represent in the
data model. Then, we describe how we can visualize these relations in the
user interface.

4.5.1 Defining the Directly-Follows Relations

The directly-follows relations create a temporal ordering of events based
on the perspective of a specific entity, allowing us to analyze the behavior
recorded in a sequential event log.

In the data model proposed in [1], this temporal ordering of events is
represented through the :DF relations. The events are first grouped by entity
and then ordered based on their timestamp, after which the :DF relations
can be created between adjacent nodes in each grouping.

The data model allows us to correlate events to multiple entities, which
means that events may have multiple :DF relations. For each new entity that
is defined, a new perspective of the event data is created through the new
:DF relations, providing a way for us to define different views of the same
event log. This is how the Entity and Behavior layer is able to address the
Creating Views activity.

Each :DF relation goes forward in time and is specific to exactly one
entity type. To distinguish between the multiple :DF relations of an event,
the data model defines the EntityType as its property, allowing us to query
for event paths based on their common entity identifier.

[1] defines one query to create the :DF relations between event. This query
retrieves all events correlated to a specific entity, orders them by timestamp
and ID (to break ties between identical timestamps), and creates the :DF
relations between the nodes.

In order for us to continue with the implementation of the Entity and
Behavior Layer and address the Creating Views activity, we need to provide
a way to define the :DF in our tool. In this case, other than having to specify
the log to retrieve the correct set of Event and Entity nodes, we do not need
to adapt the query that creates the :DF relations, we can use the query as
originally defined. The only consideration that needs to be addressed for our
tool is to determine how this query can be executed by the user and how the
results can be visualized in the user interface.
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4.5.2 Creating and Visualizing the :DF Relations

Creating the :DF relations

Since the :DF relations depend on the entity identifiers, we decided to execute
the query that creates them right after the Entity node creation, which is
triggered when the user clicks on the ”Create Entity” button shown in Figure
4.14.

The query that creates the :DF relations is shown below. As mentioned
earlier, no significant changes had to be made on the original query from
[1]. In line 2, we specify the log that has the events to be ordered and the
entity type that will be used to group the events. In line 3 we order the
events based on their timestamp and ID, and in line 4 we group the events
per Entity node. Finally, in line 7, each event is connected with the next in
line through the :DF relations.

1 MATCH (l:Log) --(e:Event) --(n:Entity)

2 WHERE l.ID = "filename .csv" AND n.EntityType ="EntityType "

3 WITH n, e as nodes ORDER BY e.Timestamp , ID(e)

4 WITH n, COLLECT(DISTINCT(nodes)) as nodeList

5 UNWIND RANGE(0,SIZE(nodeList) -2) AS i

6 WITH n, nodeList[i] AS first , nodeList[i+1] AS second

7 MERGE (first) -[:DF{EntityType :"EntityType "}]->( second)

Visualizing the :DF relations

For the visualization of the results in the user interface, we decided to use the
Instance Level ”View” button, first shown in Figure 4.10, to allow the users
to visualize the :DF relations. The reason for this is that both the :DF and
:CORR relations directly involve the nodes at the Instance Level (i.e. the
Event nodes), so their visualizations go hand in hand. Once an Entity Type
has been defined, if the ”:DF/:CORR” box is checked when the user clicks on
the Instance Level ”View” button, the tool will not only retrieve the Event
nodes, but also the :DF relations, Entity nodes and some :CORR relations
as follows. Not all the :CORR relations between Event and Entity nodes are
retrieved because the :DF relations already build a path between the events
that belong to the same entity, so showing the connection between the Entity
node and one Event node is enough to identify which events belong to each
entity.

Figure 4.17 shows an example of the visualization of the :DF relations
connecting the Event nodes. This view shows the :DF relations for the ”Or-
der” and ”Delivery” entity types of our running example, where both of
them were specified as dimensions when the log was imported. The blue
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Figure 4.17: Event nodes connected by :DF relations of the Order and Delivery
Entity Types.

nodes represent the ”Delivery” Entity nodes and the yellow nodes represent
the ”Order” Entity nodes, all of them connected by the :CORR relation to
the first Event node in their respective :DF paths.

For the initial placement of the nodes in the Graph panel, we adapted
the Sugiyama algorithm, a procedure used to define the drawing layout for
hierarchical graphs [5]. The details on our implementation of the Sugiyama
algorithm, which is based on the technique described in [29], can be found
in Appendix A.

To allow the user to decide what node types and relations to visualize
in the Graph panel, we implemented an ”Edit” button, which shows a new
window to the users where they can select which Entity Type to use for the
visualization. This window, shown in Figure 4.18, displays the available en-
tity types to display the ordered nodes based on our running example, where
three entity types have been defined, one based on the ”Order” attribute, an-
other based on the ”Delivery” attribute, and a third one created as a derived
entity between these two attributes. Figure 4.17 already shows the visual-
ization when both the ”Order” and ”Delivery” Entity Types are selected in
the window shown in Figure 4.18, but if we change the selection to display
only the ”DeliveryOrder” derived entity, the result is the one shown in Figure
4.19.

Figure 4.19 shows how the derived entity defined in our running example
connects the Event nodes that were initially correlated exclusively to the
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Figure 4.18: Display options window. Users can select which entity will be used
to visualize the connections between Event nodes.

Figure 4.19: Event nodes connected by :DF relations of the DeliveryOrder Entity
Type with the Delivery and Order attributes specified as independent dimensions.

”Order” and ”Delivery” entities. We can see for example how the :DF paths
of the derived entity connects a ”Pack Order” event (event 10 from Table 4.2),
which is originally correlated to the ”Order” entity, to a couple of ”Add Item”
events (events 11 and 13 from Table 4.2), which were originally correlated to
the ”Delivery” entity. The Event nodes were connected this way because of
our definition of ”Order” and ”Delivery” as independent dimensions, which
falls under the scenario S3 defined in 4.2.

In contrast, had we not defined the ”Delivery” and ”Order” attributes
as independent dimensions during the data import and defined the derived
entity under scenario S2 instead, the resulting connections between events
would be different, as it can be observed in Figure 4.20. We can see how
the ”Pack Order” event is no longer connected to two ”Add Item” events.
Determining which behavior is correct depends on the domain knowledge
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Figure 4.20: Event nodes connected by :DF relations of the DeliveryOrder Entity
Type with no independent dimensions specified.

from the users regarding the process being evaluated.
After looking at how events are connected between them based on the

entities defined for the log, we can discuss how we can take advantage of
these relations to reduce redundancy in the data stored for each event by
defining entity type attributes.

4.6 Entity Type Attributes

In this section, we define the Entity Type Attributes, which describe at-
tributes whose value does not change for the Event nodes connected in the
:DF path of an entity. First, we describe how these attributes are represented
in one-dimensional event logs in the form of case attributes. Then, we de-
scribe the challenge of implementing this concept in the graph data model.
Finally, we present our solution to define the Entity Type Attributes.

4.6.1 Case Attributes

In one-dimensional event logs, we say that all the events correlated to the
same entity belong to the same case [1]. If all the events within a case share
the same value for a specific attribute, we can call that attribute a case
attribute, but if the attribute changes along the case, it is simply an event
attribute. Then, if the same attribute is a case attribute for every case in
the event log, we can call such attribute a global case attribute. Thus, when
an attribute is called a global case attribute, we can assume that every event
inside a case has the same value for that particular attribute, even if each
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Figure 4.21: Depending on the :DF path, entity type attributes may change.

case has a different value.

As an example, we can look at Table 4.2. If we define the ”Order”
attribute as the case identifier, we can consider the ”Type” attribute as a
global case attribute, since all the events in every case share the same value.
The ”Type” attribute for all events from orders 40 and 50 is ”Phone” while
the ”Type” attribute for all events from orders 60 and 70 is ”Online”.

The analysis of event logs can benefit from identifying these type of at-
tributes since events can be simplified by no longer having to specify the case
attributes individually, which is something we want to replicate in our tool.

4.6.2 Challenge of Replicating Case Attributes

Replicating the Case Attributes into the graph data model is not a straight-
forward task. While a one-dimensional event log can define the global case
attributes from the start once the case identifier is defined, the same does
not apply in our case, since the graph data model under which the tool is
built allows us to work with multi-dimensional event logs by defining multiple
entities, providing different perspectives of the data. For each perspective,
the potential case attributes, or Entity Type Attributes in our case, may
change, presenting a challenge for its replication in our tool.

We can look at Figure 4.21 to see how entity type attributes may change
depending on the :DF path that we decide to follow. Following the paths
from ”Entity Type:Order” (blue), we can see that for every path, the value
for the ”Type” attribute remains the same. For events 1, 2, and 3, the value
is always ”Phone” and for events 4, 5, and 6, the value is always ”Online”.
In this case, the ”User” attribute is not an entity type attribute, since not all
of the nodes for every entity path have the same value. A simple comparison
between the values of the ”User” attribute for events 2 (User:System) and 3
(User:Aaron) discard the possibility of this being an entity type attribute.

This, however, changes if we follow the paths from ”Entity Type: Deliv-
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ery” (yellow), where now the ”User” attribute can be considered an entity
type attribute since, for every path of the entity type, the value for the ”User”
attribute remains the same, ”System” for events 1, 2, and 6, and ”Aaron”
for events 4, 5, and 3, and in contrast, the ”Type” attribute becomes simply
an event attribute.

Therefore, we must consider these different perspectives of the data to
successfully replicate the case attributes in our tool as entity type attributes.

4.6.3 Implementing the Entity Type Attributes

To replicate the case attributes in our tool, we implemented a function to
identify the attributes that appear in all the :DF paths of an entity type and
whose value does not change for all the events correlated to the same Entity
node, which represent the potential entity type attributes.

Using both a Cypher query and Java code, the function is able to identify
entity type attributes based on a given entity type. First, the Cypher query
retrieves the data from the Event node properties, providing a list of all the
event attributes and a collection of their distinct values that appear in every
:DF path of the entity type provided as an argument. Then, the Java code
iterates over these values to determine if the attribute has 1 distinct value
for every :DF path and also checks if that value appears in every Event node
in the path. If the Java code finds more than 1 distinct value in any path,
or finds out that not every Event node in any path contains the attribute as
a property, that attribute is discarded as a potential entity type attribute.
The details on the Cypher query and the activities performed in Java can be
found in Appendix B.

We decided to execute this function right after a new entity type is cre-
ated, which is done by clicking on the ”Create Entity” button shown in Figure
4.14 or by clicking on the ”Create Derived Entity” button shown in Figure
4.15. If our function finds at least one potential entity type attribute, a new
window is shown to the user.

This window, shown in Figure 4.22, allows the user to select whether they
want to move the attributes into the Entity node and remove the attribute
from the Event nodes, or if they want to keep the attributes as they are. This
is because, while removing an the attribute from the Event nodes reduces
redundancy in the database, the user will no longer be able to select that
attribute to define a new entity, so we leave this decision to the user.

Even when the users decide to send an attribute to the Entity nodes,
they might need the attribute later on a subsequent iteration of the process
mining analysis, which is why we decided to implement a button that allows
them to return the attribute from the Entity node to the Event nodes. The

62



Figure 4.22: After an Entity is created, users can decide if the attribute is assigned
to the entity and deleted from the Event nodes or keep the node properties intact.

”Return Entity Attribute” button was added to the ”Entities” panel of the
user interface, as shown in Figure 4.13.

Once the Entity nodes have been defined and the :DF paths have been
created, we can look at the second way in which the Entity and Behavior
Layer addresses the Enriching logs activity through the creation of the Class
nodes.

4.7 Creating Classes

In this section, we focus on the second way in which the tool addresses
the Enriching logs activity through the creation of event classes. First, we
describe how the event classes are represented in the data model from [1].
Then, we discuss the considerations we need to account for to create the
Class nodes in our tool. Finally, we describe how we can create and visualize
the Class nodes through the user interface.

4.7.1 Defining the Event Classes

In Section 4.3, we mentioned that any event log that was meant to be im-
ported should contain, among other things, one column defining the Activity
attribute for the event. This mandatory attribute represents the first way in
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which we can classify the events in the log, but [1] describes a second way in
which events can be classified. This second way is presented in the form of
event classes, represented in the data model by Class nodes. In other words,
a Class node represents a set of events with the same characteristics, which
could mean a set of events with the same Activity or the same combination
of different attributes.

Class nodes are defined by a unique ID and Type properties. The Type
property can be based on the Activity attribute or any other combination of
attributes.

In addition to Class nodes, the data model from [1] also presents two
new types of relations, one between Event and Class nodes, the :OBSERVES
relations, and a second one between Class nodes, the :DF C relations. The
:OBSERVES relations associate the Class nodes with the events that match
their defining attributes, while the :DF C relations connect the Class nodes
based on the aggregated :DF relations of events for a specific entity type. This
entity type is included as a the property EntityType in the :DF C relations,
which means that these relations can be created only after at least one Entity
Type has been defined in the database.

There are 3 existing queries in [1] that provide a way to create and connect
the Class nodes. The first query queries for all distinct values of particular
event attributes and creates a new Class node for each retrieved value. The
second query links the Class nodes to those Event nodes that match on the
defining event attributes. The third and final query creates the :DF C rela-
tions between Class nodes by aggregating the :DF relations between events
that have the attributes that define the classes. The :DF relations are aggre-
gated only if they connect events correlated to the same entity, and classes
are only connected if they are from the same type.

In order for us to complete the implementation of the Entity and Behavior
layer and fully address the Enriching logs activity, we need to provide a way
to create and connect the Class nodes in our tool.

4.7.2 Considerations for the Class creation

The queries provided in [1] can help us to create and connect the Class nodes,
but we also need to add a match to the query to make sure we retrieve the
Event and Entity nodes from the correct log, since we must consider that the
database may contain multiple, sometimes unrelated, event logs.

As a second consideration, we must account for a scenario where, during
the process mining project, the user may want to define additional :DF C
connections for already existing Class nodes. In this case, we should prevent
the creation of duplicate nodes in the database, so this must be addressed in
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the queries as well.
A third consideration is related to the implementation of the Process dis-

covery activity from the next layer, the Model Layer. The process discovery
activity creates a process model that describes the behavior of the process
being evaluated based on the connections between the events registered on
the event log. Since the Class nodes already describe the connections between
activities or other attributes of the Event nodes, we can consider them as our
inputs for the process discovery. However, matching Event nodes with Class
nodes composed of more than one attribute could increase the complexity of
the query, which is why we must consider adding an additional property to
the nodes describing the composed attribute to simplify the queries later on.

In addition to these three considerations, we must also determine how
these queries can be executed by the user and how the results can be visual-
ized in the user interface.

4.7.3 Creating and Visualizing the Class Nodes

Creating the Class nodes

To execute the queries that create and connect the Class nodes, we need two
inputs from the user. The first one is the event attribute that will be used
to define the class type, and the second one is the entity type defining the
:DF relations that will be used as a reference to create the :DF C relations.

To allow the user to select these inputs through the user interface, we
decided to add a ”New Class” button in the Class panel, as shown in Fig-
ure 4.23. This button shows a new window asking the user to select the
attribute(s) to be used to define the Class type. Since the class type can be
defined by a combination of different attributes, this window allows the user
to select more than one attribute, as shown in Figure 4.24.

For our running example, we will define a Class type based on the ”Activ-
ity” and ”Life-cycle” attributes from Table 4.2. This will help us distinguish
between the activities that define the start of the packing (Activity:”Pack
Order”, Life-cycle:”Start”) from those that define the end of the packing
(Activity:”Pack Order”, Life-cycle:”Complete”).

After the user chooses the attribute(s) to define the class, clicking on
”Continue” will show a second window, shown in Figure 4.25, where the user
can select the Entity Type that will be used to aggregate the :DF relations
and create the :DF C classes. For our running example, we will choose the
derived entity type, ”DeliveryOrder”, to make the :DF aggregation.

Once the Entity Type has been selected, clicking on the ”Create Class”
button will execute the queries that create the Class nodes and the :OB-

65



Figure 4.23: Class panel for the user interface.

Figure 4.24: Class type selection window.
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Figure 4.25: Entity selection window to create the :DF C relations.

SERVES and :DF C relations.
The queries that create and connect the Class nodes are shown next.

The first query creates the Class nodes. In line 1, we make sure we use only
the events from a specific log. In line 2, we obtain the values from all the
attributes that will make up the class ID. Then, in line 3, we search the
database in case the Class nodes already exist to prevent the creation of
duplicate nodes. The existing Class nodes are filtered out in line 4. Finally,
in line 5 we create the nodes, where we define add an additional Log property
to be able to retrieve the correct nodes for the subsequent queries.

1 MATCH (l:Log{ID:"filename .csv"}) --(e:Event)

2 WITH DISTINCT e.‘Attribute1 ‘ AS ‘ValueAttribute1 ‘, ..., e.‘

AttributeN ‘ AS ‘ValueAttributeN ‘

3 OPTIONAL MATCH (:Log{ID:"filename .csv"}) --(:Event) --(c:Class{

ID: ‘Attribute1 ‘+"+"...+ ‘AttributeN ‘})

4 WITH c, ‘ValueAttribute1 ‘, ..., ‘ValueAttributeN ‘ WHERE c IS NULL

5 CREATE (: Class {‘Attribute1 ‘:‘ValueAttribute1 ‘, ..., ‘

AttributeN ‘:‘ValueAttributeN ‘, Type:"Attribute1 +...+AttributeN ",

ID: ‘ValueAttribute1 ‘+"+"...+ ‘ValueAttributeN ‘, Log:"filename .

csv"})

The second query connects the Class nodes with the Event nodes. In
line 1, we retrieve the Event nodes from the log. In line 2, we retrieve the
recently created Class nodes. In line 3 we match the Class nodes with the
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Event nodes that contain the class type as attributes and finally we create
the :OBSERVES relation in line 4.

1 MATCH (l:Log{ID:"filename .csv"}) --(e:Event)

2 MATCH (c:Class) WHERE c.Log = "filename .csv" AND c.Type = "

ClassType "

3 AND e.‘Attribute1 ‘ = c.‘Attribute1 ‘ ... AND e.‘AttributeN ‘ = c.‘

AttributeN ‘

4 MERGE (e) -[:OBSERVED]->(c)

Then, in the third query, we create the :DF C relations. In line 1, we
find the Events connected by the :DF relation that are also connected to the
Class nodes. In line 2, we make sure that the events are correlated to the
same Entity node and in line 3 we make sure they are connected to the same
Log node. In line 5 we aggregate by counting the :DF relations to finally
create the :DF C relations in line 6.

1 MATCH (c1:Class) <-[:OBSERVED]-(e1:Event) -[df:DF]->(e2:Event)

-[:OBSERVED]->(c2:Class)

2 MATCH (e1) -[:CORR]->(n) <-[:CORR]-(e2)

3 MATCH (e1) --(l:Log) --(e2) WHERE l.ID = "filename .csv"

4 AND n.EntityType = "EntityType " AND df.EntityType = "EntityType "

AND c1.Type = "ClassType " AND c2.Type="ClassType "

5 WITH n.EntityType AS EType , c1 , COUNT(df) AS df_freq , c2

6 MERGE (c1) -[rel2:DF_C{EntityType:EType}]->(c2) ON CREATE SET

rel2.count=df_freq

Finally, in case the Class type is composed of more than 1 event attribute,
we run a final query to set the combined attribute as a new event property.
In line 2 we filter for the Class nodes recently created and we set the event
attribute in line 4. The definition of this property can be helpful if this Class
type is used as an input for the implementation of the Process Discovery
activity at a later stage.

1 MATCH (l:Log{ID:"filename .csv"}) --(e:Event) --(c:Class)

2 WHERE c.Type = "ClassType1+...+ClassTypeN "

3 WITH DISTINCT e,c

4 SET e.‘ClassType1+...+ClassTypeN ‘ = c.ID

Visualizing the Class nodes

Now that the Class nodes exist in the database, we need to define a way to
visualize them in the user interface. Since the Event and Class nodes are
connected, we decided to put the visualization functions for the Class nodes
in the Graph Data panel, first shown in Figure 4.10. By doing this, all the
different types of nodes introduced in the data model from [1] can be selected
for visualization in the same panel.
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To visualize the connection between Event and Class nodes, users need to
check the :OBSERVES box and click on the Instance Level ”View” button.
The result can be observed in Figure 4.26. We should also mention that we
took the design decision to display a maximum of 3 Event nodes for each
Class node in order to maintain the readability of the Graph panel.

Then, to visualize the :DF C relations between Class nodes, users need to
check the ”Classes” box and click on the Model Level ”View” button. The
result can be observed in Figure 4.27. For this visualization, we decided to
add two gray, ”virtual” nodes with the intention of showing the EntityType
of the :DF C relations that connect the Class nodes.

For our running example, Figure 4.27 shows the result of creating the
Class nodes based on the combination of the ”Activity” and ”Life-cycle” at-
tributes of the Event nodes. The connections between the Class nodes are
defined based on the aggregated :DF relations of the derived entity ”Deliv-
eryOrder”. We can see how the ”Receive Order+Complete” Class node is
followed by the ”Add Item+Complete” and the ”Pack Order+Start” activ-
ities, which represent the connections between the ”Receive Order”, ”Add
Item” and ”Pack Order” Event nodes from Figure 4.19.

The implementation of the queries that create the Class nodes and its
relations not only completes the functions needed to address the Enriching
logs activity, but also marks the final functionality needed to complete the
implementation of the Entity and Behavior Layer and the data model pre-
sented in [1]. The next step is to extend this data model by implementing
the next layer in the scope defined on Section 3.3, the Model Layer, which
addresses the Process discovery activity.
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Figure 4.26: Graph panel showing the :E C connections between Event and Class
nodes.
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Figure 4.27: Graph panel showing the :DF C connections between Class nodes.
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Chapter 5

Extending the User Interface to
Execute Process Discovery

In Chapter 4, we define how the Event and Entity and Behavior Layers were
implemented in the tool, addressing the Importing Data, Creating views and
Enriching logs activities associated with process mining projects. In this
chapter, we discuss the implementation of the Model Layer, addressing the
Process discovery activity. In Section 5.1, we describe how the outputs of
the process discovery activities can be connected with the rest of the data
model. Then, in Section 5.2, we describe our implementation of a process
discovery algorithm, the Heuristic Miner.

5.1 Connecting the Process Models with the

Data Model

In this section, we describe how the data model from [1] was extended to
account for the creation of process models. First, we describe how the outputs
of process discovery are represented. Then, we discuss four key aspects to
consider for the representation of process models in the graph data model.
Finally, we present our extension to the data model to consider the storage
of process models in the database.

5.1.1 Process Discovery

Process discovery refers to the process mining task whose objective is to
create a process model based on the information from an event log that is
able to capture the behavior seen in the log [6]. Process discovery algorithms
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attempt to map an event log onto a process model that is representative of
the behavior of the log [6].

The process models that result from the process discovery activities can
be represented through a variety of modeling languages, but we can identify
the most common ones with help from the research made in [7]. In this
study, they review and compare several process discovery methods to provide
a classified inventory and a benchmark to allow researchers to compare new
methods against the existing ones.

In [7], they identify the modeling languages used by the most common
groups of discovery algorithms to describe process models. The model lan-
guages mentioned in that research include Petri nets [16], process trees [17],
causal nets [18], state machines [19], BPMN models [20] and declarative mod-
els [21]. One common characteristic of these modeling languages is that they
use the nodes and edges of the graph structure to represent the models.

Therefore, to implement the Model Layer in our tool and address the
Process discovery activity, we first need to determine how the modeling lan-
guage that represents the discovered models can be included in the graph
data model. Next, we discuss four key aspects that need to be accounted for
to achieve this.

5.1.2 Key Aspects to Extend the Data Model

Before implementing any process discovery algorithm, we must describe how
the data model from [1] can be extended to account for the creation of process
models. To define a way to make the extension, we consider four key aspects,
the first two related to the representation of the process models, and the last
two related to the possible connections with the existing data model.

First Aspect The first aspect we need to consider is related to the mod-
eling languages identified in [7]. As mentioned earlier, the one thing these
modeling languages have in common is that all of them are different repre-
sentations of graph structures, which fits directly with the database used for
our tool. This means that, as long as we work with algorithms that use any
of those model languages, we should be able to store them in the database
through nodes and edges.

Second Aspect The second aspect is related to the characteristics of these
modeling languages. Petri nets, process trees and other languages use the
nodes and edges of the graph structure to fulfill different purposes in the
representation of models based on the discovery algorithm used. For exam-
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ple, a node in a Petri net could represent a place between transitions for the
α-Algorithm, while a node in a process tree could represent a cut for the In-
ductive Miner. These differences between algorithms and its representations
must be considered while defining the way in which process models can be
represented in the graph database.

Third Aspect The third aspect is related to the factors that influence the
process model obtained as a result. These factors are the event log used as
an input and the discovery algorithm used to create it. Changing the event
data, the discovery algorithm, or the algorithm parameters will result in a
new, different process model. Therefore, we must also define a way to connect
the discovered process models with the log and to describe the algorithm and
the parameters used to generate them.

Fourth Aspect The fourth and final aspect considered is related to the
graph database. So far, we have described how we can import or create
Log, Event, Entity and Class nodes in the database, and our next step is to
create process models and store them in the same database using different
types of nodes and relations. The fact that we are planning to use the same
space to store Events and Models provides us with a very clear opportunity
to connect the process models with the event data. This connection could
help us address challenge C10, one of the current challenges described in
the Process Mining Manifesto, which mentions, among other things, that it
is necessary to improve usability for the non-experts by linking the event
data with process models to provide valuable interactions with end-users
[3]. Therefore, we must also consider how we can include these connections
during the process discovery.

5.1.3 Connecting the Process Models

Based on the previous four aspects, we define the extension for the data model
proposed on [1]. The updated data model can be observed in Figure 5.1,
which shows three new node types, the Algorithm, Model, and Model node,
and five new relations, the :MAPS, :PRODUCES, CONTAINS, REPRE-
SENTS, and MODEL EDGE, which help us describe and connect process
models in the graph database. These node types and their relations are
described next.

Algorithm The purpose of the Algorithm node is to provide a connection
between the Log and the Process Model and to store the algorithm param-
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Figure 5.1: Extended data model to include process models.

eters defined by the user to discover the process model. Every time a new
process model is created, a new Algorithm node is created as well. This was
done to let the users know that the process model was created from within
the tool and the log used to generate it is still inside the database. Since
the process discovery algorithms map an event log, the Algorithm node is
connected to the Log node through a :MAPS relation. A Log node may be
connected to several Algorithm nodes, but every Algorithm node is connected
to only one Log node. The only defined property for this node is the ”ID”,
containing the name of the algorithm used for the process discovery. The
parameters needed to execute the algorithm (if any), can be added as addi-
tional attributes to the node. Finally, since the discovery algorithms produce
process models, the Algorithm node is also connected with the Model node
through a :PRODUCES relation, which is a 1:1 connection.

Model node The Model node nodes represent the process model. As we
discussed earlier, these nodes can fulfill different purposes depending on the
graph structure it is representing. This node is also used to establish the
connection with the event data. A second label can be defined for this node
to provide more details on the type of graph structure it is representing (e.g.
:Model node/:ProcessTree node). The properties of this node depend on the
model language it is representing. For example, we could have a property
describing the activity name for one model, and a different property describ-
ing the root node for another. To define the graph structure that connects
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the nodes, we introduce the :MODEL EDGE relations, whose properties,
similar to those of the node, depend on the modeling language. Finally, we
can connect these nodes with the already existing Class nodes through the
:REPRESENTS relations to connect specific model activities with the event
data. This connection allows us to make queries that go one step further and
correlate the model activities with specific events.

Model The Model node represents the collection of model nodes that com-
pose a process model. The purpose of this node is to help us retrieve all the
Model node nodes that make up the process model. The connection between
the Model and Model nodes is done through the :CONTAINS relations. In
addition, these nodes provide us with a simple way to identify all the models
currently in the database. The Model nodes have one property, the ”ID”,
which is a custom name to distinguish one model from the next; an additional
constraint was added to the database to make sure no two models share the
same name.

Now that we have described the extensions to the data model providing
a guideline to store process models in the graph database, we can look at
the process discovery algorithm implemented for this tool that allows us to
obtain these process models.

5.2 Implementing the Heuristic Miner algo-

rithm

In this section, we describe how the Heuristic Miner, a process discovery al-
gorithm, was implemented in the tool. First, we describe why this algorithm
was implemented. Then, we provide more details on one of its existing imple-
mentations, the Flexible Heuristic Miner. Then, we define the scope of our
implementation and how the outputs of the algorithm can be represented in
the data model. Then, we describe the queries built to execute the different
steps of the algorithm. Finally, we describe how the user can interact with
the user interface to execute the algorithm and visualize the results.

After defining how a process model can be represented in the graph
database, we can address the Process discovery activity of the Model Layer by
implementing a process discovery algorithm that generates a process model
based on an event log.

We chose to implement the Heuristic Miner algorithm because, in contrast
with other algorithms that can also be represented with a graph structure,
the premise of the Heuristic Miner allows us to take the most advantage of
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the data already generated in the data model up to this point.
As mentioned in [6], heuristic mining algorithms ”take frequencies of

events and sequences into account when constructing a process model. The
basic idea is that infrequent paths should not be incorporated into the model”
[6]. In other words, the premise of these algorithms is to build a process model
by removing the infrequent relations between activities.

From our current data model, we already have a type of node that de-
scribes the existing relations between activities in the form of Class nodes
and its :DF C relations. As we saw in Section 4.7, the :DF C relations thatb-
connect the Class nodes are based on the aggregated :DF relations of events
for a specific Entity Type, so every path between two Event nodes of the
same Entity Type is represented by a path between two Class nodes. If
we were to add the frequency with which these paths occur in the Event
nodes, we could already observe which are the most frequent and infrequent
paths in the event log, providing the ideal input to execute a heuristic miner
algorithm.

5.2.1 Flexible Heuristic Miner

The Flexible Heuristic Miner (FHM) [8] is an updated version of the Heuris-
tic Miner algorithm originally described in [10]. The FHM is ”a heuristics-
driven, control-flow mining algorithm” [8] which is also built under the
premise of removing infrequent relations between activities to discover a pro-
cess model.

To use the FHM to discover a process model based on an event log, the
log must be analyzed to find tasks that follow other tasks and determine if
there is a dependency relation between them. To analyze these relations, the
FHM builds a Dependency Graph (DG), and in order to build this graph,
the FHM defines the following types of relations:

1. a >W b (Direct successor). We say that b is a direct successor of a if
there is a trace in log W where b directly follows a.

2. a >>W b (Length-Two Loop). We say that a and b make up a length-
two loop if there is a trace in log W where a is directly followed by b
and then b is directly followed by a, and a 6= b.

In addition to these relations, it also defines three dependency measures
to indicate how certain we are that there is a dependency relation between
two tasks. Let us say that |a >W b| defines the frequency with which a >W b
occurs and |a >>W b| defines the frequency with which a >>W b occurs,
then, we can define these three measures as follows:
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1. (Absolute) Dependency.

a⇒W b =

(
|a >W b| − |b >W a|
|a >W b|+ |b >W a|+ 1

)
if(a 6= b)

2. Length-1 Loop (L1L) Dependency.

a⇒W a =

(
|a >W a|
|a >W a|+ 1

)

3. Length-2 Loop (L2L) Dependency.

a⇒2
W b =

(
|a >>W b| − |b >>W a|
|a >>W b|+ |b >>W a|+ 1

)

After defining these relations, the FHM defines three steps to execute the
algorithm: (1) Mining the dependency graph, (2) Mining of the splits/joins,
and (3) Mining long-distance dependencies, which we briefly describe next.

Step 1. Mining the dependency graph The dependency graph is a
graph structure that represents the causal relations between the tasks of the
event log, specifying their dependency measures. We can see an example in
Figure 5.2. This figure shows how the dependency graph would look like
assuming we have the log shown in the top-left. We can see how each node
in the DG represents a task of the event log and each edge between nodes
represents the causal relation between them. Also, we can see how each
edge defines the frequency (Freq) and dependency (Dep) between the two
connecting tasks. In the case of the self-loop of task E, we use the L1L
dependency measure instead of the normal dependency.

To mine the dependency graph, the FHM defines 4 thresholds to deter-
mine if a dependency relation is accepted or not. The first three thresh-
olds are the Dependency threshold, the Length-One Loop threshold, and the
Length-Two Loop threshold, which are based on the measures of the same
name and whose default value is 0.9. The fourth threshold is the Relative
to Best threshold, which indicates that we will also accept relations that
have either a dependency measure above the dependency threshold or their
difference with respect to the best dependency measure is lower than the
relative-to-best threshold. The FHM does not define a default value for this
threshold, but for one of their examples they use 0.05, while ProM leaves it
at 0.
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Figure 5.2: Dependency Graph built based on the Event Log shown in the top-
left.

These thresholds are used in the formal definition of the mining of the
DG, where 12 steps are defined to determine which relations are accepted
and which infrequent relations are removed from the DG. We will provide
additional details regarding the formal definition in Section 5.2.5 when we
implement it for our tool.

In addition, the FHM uses the all-tasks-connected heuristic, which ensures
that each non-initial task must have at least one other task as its cause. This
means that every task that appears in the event log will remain in the final
DG even if their causes are initially not accepted, because this heuristic will
make sure that at least one cause relation is kept in the end.

Step 2. Mining of the splits/joins The mining of the split and join
points of the DG refers to the identification of the input and output bindings
for each task. These bindings help us identify the type of connection between
a task and its neighbors. For example, a dependency graph may show that
the outputs of task A are tasks B and C, but these connections may refer to
an AND-split, where A is always followed by B and C, an OR-split, where A
is followed by either B or C, or both.

The mining of the splits/joins relies on both the fully connected Depen-
dency Graph obtained in the previous step and the traces of the event log.
For example, if we have A as the cause relation for B and C in the DG,
and the log traces indicate that task A is the nearest candidate that appears
before B and C, we determine that their relations indicate an AND-split. In
this step, we determine the input and output bindings of each task to find
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the splits and joins of the graph.

Step 3. Mining long-distance relationships In this final step, the
FHM identifies the dependencies that are not represented yet in the DG. The
long-distance dependencies ”indicate cases where task X depends indirectly
on another task Y to be executed. That means that, in a split or join point,
the choice may depend on choices made in other parts of the process model.”
[8].

Once the long-distance relationships are identified and represented in the
DG, the execution of the FHM is complete, with the resulting DG represent-
ing the discovered process model.

Extensions to the Heuristic Miner

There are 2 relevant extensions presented for the heuristic miner algorithms
that we should briefly discuss.

Additional Thresholds In [6], as part of the description of the heuristic
miner algorithms, two additional thresholds are defined to remove the in-
frequent relations from the dependency graph. The first one is the positive
observations threshold or frequency threshold for short, which helps us re-
move relations whose absolute frequency is lower than the threshold value.
There is no default value for this threshold provided in [6], but ProM sets the
default value at 0.1. The second threshold is the bindings threshold, which
helps us remove those relations that represent an input or output binding
with low frequency with respect to the binding with the highest frequency
for that task. For example, if task A has two output bindings, B, with a
frequency of 10, and the AND-split of BC with a frequency of 4, and the
bindings threshold is set at 0.5, then the BC binding would be removed since
4/10 = 0.4, which is lower than the threshold value. Again, there is no
default value for this threshold in [6], but ProM sets it at 0.1.

Accepted-task-connected Heuristic [9], in their implementation of the
heuristic miner, defines the accepted-task-connected heuristic, which impacts
the way in which dependency relations are brought back for those tasks
that ended with no cause or effect after the mining of the DG. This heuristic
allows us to connect tasks with missing inputs or outputs by finding their best
neighboring tasks (i.e. the neighboring tasks whose relation with the target
task has the highest dependency measure). As opposed to the all-tasks-
connected heuristic, a cause is found only for those activities that remain in
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the DG, so those tasks that ended without neither a cause nor an effect are
initially discarded, but they can be brought back if they represent the best
neighbor for one of the remaining activities. Given this scenario, the process
is repeated until all the activities in the dependency graph have a cause and
an effect.

5.2.2 Defining the scope

Now that we have seen how the Flexible Heuristic Miner works and some of
its relevant extensions, we must define the scope for our implementation in
order to test if it is possible to generate a process model in our tool based
on this algorithm.

To address the Process discovery activity of the Model Layer, we will use
the FHM as our main reference. For the first step of the FHM, we will not
only consider the 12 steps of their formal definition for the mining of the
dependency graph, but we will also include an additional step to remove the
infrequent relations based on the frequency threshold.

Then, instead of implementing the all-tasks-connected heuristic, we will
make sure every task/activity is connected through the accepted-task-connected.
This way, we can still have a resulting model where all the activities from the
final DG are connected but we can still exclude those with infrequent input
and output relations that may just be representing noise in the process. This
also means that, in order for us to provide a connection for the activities that
have either no input or output, we must keep a reference of all the original
relations to find the best one and bring it back to the DG.

Then, once the remaining activities of the DG are set, we can create the
:REPRESENTS edges between the Model node nodes and the Class nodes, so
our implementation must consider that as well at this stage of the algorithm.

Finally, we will implement the second step of the FHM to find the splits
and joins through the identification of the input and output bindings of each
activity. In addition, we will include the bindings threshold to remove the
infrequent bindings from the final DG.

The third step of the FHM will be excluded from our implementation.
This step, which mines the long-distance relations, is meant to identify con-
nections between activities that are not yet represented in the event log [8],
so we consider that this step is not essential to test the feasibility of being
able to generate a process model that describes the behavior of the event log.

In addition to the implementation of this algorithm, we must also find
a way to allow the users to set its parameters, execute it, and visualize the
discovered process models through the user interface.
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Figure 5.3: Example of how the discovered dependency graph connects with the
rest of the graph data model.

Next, we present our implementation in 7 steps: (1) Defining the DG in
the data model, (2) Setting up the initial DG, (3) Mining the dependency
graph, (4) Connecting the activities, (5) Connecting the process model with
the Class nodes, (6) Mining of the splits/joins, and (7) Creating and visual-
izing the process model.

5.2.3 Defining the Dependency Graph in the Data Model

Before describing our implementation of the algorithm, we must describe how
we plan to represent the Dependency Graph, the main output of the FHM,
using the extension to the graph data model presented in Section 5.1.3.

Figure 5.3 shows an example of how a process model discovered through
our implementation of the Heuristic Miner algorithm is connected with the
rest of the graph data model. At the top, in the middle, we can see the Algo-
rithm node, where we specify the name of the algorithm (”Heuristic Miner”)
and all the thresholds (Dependency, Frequency, L1L, L2L, Relative-to-best,
and Bindings) used as parameters. In this node we also store as properties
the Class and the DF relations that will be used to define the model activ-
ities and their dependency relations respectively. Then, at the top-left, we
can see the Model node, which contains only the ID as its property.

Figure 5.3 also shows how the Model node connects with every Model node
in the DG through a :CONTAINS relation. Since one of the steps in our
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implementation requires us to bring back relations that were considered in-
frequent initially, we decided that it would be important to create two DG
during runtime. The first DG will contain the initial DG, before any relation
has been removed, and the second DG will contain the final DG with the
remaining activities and relations. To distinguish between these two DGs,
we define a runtime property for the :CONTAINS attribute in the form of the
DG property. Every :CONTAINS relation between the Model node and the
nodes that make up the initial DG will have ”Before” as their property value,
and every :CONTAINS relation between the Model node and the nodes that
make up the final DG will have ”After” as their property value. Once the
initial DG is not needed anymore, it is deleted from the database.

Then, for the Model node nodes in the left side of Figure 5.3, we define
their second, more specific label, as DG node, to specify that these particular
nodes represent the tasks/activities of a Dependency Graph. The DG nodes
that represents the start and end of the process have ”ARTIFICIAL START”
and ”ARTIFICIAL END” as their ID property. In addition to the ID that
represents the activity, we add two more properties to all the DG nodes in
the form of the InputBindings and OutputBindings. These properties store
the collection of bindings for every task. Every OR-split/join is represented
by a new item in the collection and every AND-split/join is represented by
an ”|” character inside the item. For example, if activity A has an OR-split
of two output bindings, B and an AND-split between C and D, the value for
this property would be ”OutputBindings: [B, C|D]”.

Then, Figure 5.3 also shows the :MODEL EDGE relations between the
DG nodes that represent the dependency relations of the DG. These relations
have several properties that represent their dependency measures. These
properties are the frequency (|a >W b|), dependency (|a⇒W b|), L1L depen-
dency (a⇒W a) and L2L dependency (a⇒2

W b).

Finally, we can also see in Figure 5.3 that the DG nodes are connected to
the Class nodes that represent the same activity through the :REPRESENTS
relation, creating an indirect connection between the process model activities
and its corresponding Event nodes.

Now that we have defined the planned structure for the DG, we can start
to look at the queries that generate this structure.

5.2.4 Setting Up the Initial Dependency Graph

The first queries that we execute generate the Algorithm, Model, and DG node
nodes together with their relations between them and to other nodes in the
database (i.e. the Log and Class nodes).
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Create Algorithm and Model nodes

The first query we execute is shown below. This query creates the Algorithm
and Model nodes. The Algorithm node is connected to the Log node and the
Model node, and is used to store the parameters to run the model.

1 MATCH (l:Log{ID:"filename .csv"})

2 MERGE (l) <-[:MAPS]-(: Algorithm{ID:" Heuristic Miner",Class :"

ClassType ",DF:"EntityType ",Freq:FreqThreshold ,Dep:DepThreshold ,

L1L:L1LThreshold ,L2L:L2LThreshold ,Rel:RelThreshold ,Bind:

BindThreshold }) -[:PRODUCES ]->(:Model{Algorithm :" Heuristic

Miner",Log:"filename .csv",ID:"ModelID "})

Create DG node nodes

Then, we create the DG nodes using two queries. The first query creates
the DG nodes based on the class type passed as argument. In line 2, we
retrieve the corresponding Class nodes. In line 3, we create and connect
the DG nodes with the Model node, specifying in the :CONTAINS relation
that these nodes represent the DG before the mining. In line 4, we connect
the DG nodes with their corresponding Class node. Then, the second query
creates the artificial Start and End DG nodes. In lines 8 and 9, we create
and connect the Start and End DG nodes respectively. To easily distinguish
these nodes from the rest in the queries, we added the properties isStart and
isEnd respectively.

1 // Query 1

2 MATCH (m:Model{ID:"ModelID "}) --(:Algorithm) --(:Log) --(:Event)

--(c:Class{Type:"ClassType "})

3 MERGE (m) -[:CONTAINS{DG:" Before "}]->(dg:DG_node:Model_node{ID

:c.ID})

4 MERGE (dg) -[: REPRESENTS]->(c)

5

6 // Query 2

7 MATCH (m:Model{ID:"ModelID "})

8 MERGE (m) -[:CONTAINS{DG:" Before "}]->(: DG_node:Model_node{ID:"

ARTIFICIAL_START",isStart:True})

9 MERGE (m) -[:CONTAINS{DG:" Before "}]->(: DG_node:Model_node{ID:"

ARTIFICIAL_END",isEnd:True})

Create :MODEL EDGE relations

After the DG nodes have been created, we create the :MODEL EDGE rela-
tions between them. The first query shown below creates the :MODEL EDGE
relations between model activities. In lines 2 and 3 we match two DG nodes
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with their corresponding Class nodes. In line 4 we make a match to keep
only those pairs of DG nodes whose classes are connected by a :DF C rela-
tion of the EntityType passed as argument. Since we also need to compute
the frequency with which these relations occur in the event log, in line 5 we
find all the :DF relations between events related to the Class nodes. In line
6, we count these :DF relations. Finally, in line 7 we connect the DG nodes
through a :MODEL EDGE relation, setting the frequency of this relation as a
property. Then, the second query shown below creates the :MODEL EDGE
relations between the artificial Start node and the rest of the DG nodes. In
line 10, we match the DG nodes with their Event nodes. In line 11, we find
those events that do not have an ingoing :DF relation, which represent the
start activities. To also register the frequency for this relation, in line 12 we
count the events with no ingoing :DF, grouped by activity. Finally, in line
13 we retrieve the DG node that represents the artificial Start and in line 14
we connect it with the DG nodes that represent starting activities, setting
the frequency as a property of their :MODEL EDGE relation.

1 // Query 1

2 MATCH (m:Model{ID:"ModelID "}) -->(dg:DG_node)-->(c:Class)

3 MATCH (m) -->(dg2:DG_node) -->(c2:Class)

4 MATCH (c) -[:DF_C{EntityType :"EntityType "}]->(c2)

5 MATCH (c) <--(:Event) -[df:DF{EntityType :"EntityType "}]->(: Event)

-->(c2)

6 WITH DISTINCT dg AS From , dg2 AS To , COUNT(df) AS f

7 MERGE (From) -[: MODEL_EDGE{Freq:f}]->(To)

8

9 // Query 2

10 MATCH (m:Model{ID:"ModelID "}) --(dg:DG_node) --(:Class)--(e:

Event)

11 WHERE NOT EXISTS (() -[:DF{EntityType :"EntityType "}]->(e))

12 WITH m, dg AS startActivity , COUNT(e) AS f

13 MATCH (m) --(st:DG_node{isStart:True})

14 MERGE (st) -[: MODEL_EDGE{Freq:f}]->( startActivity)

A third query is also executed to generate the :MODEL EDGE relations
between the model activities and the artificial End node. This query is similar
to the second query shown above (see Appendix C).

Calculate Dependency Measures

Now that the DG nodes are connected, we can compute their dependency
measures (absolute, L1L and L2L dependencies) using the equations de-
scribed in Section 5.2.1. We define one query per measure.

The first query calculates the absolute dependency. In line 1, we retrieve
the dependency relation me between two model activities. In line 2, we check
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if there is also an inverted dependency relation between the same activities.
If there is no such relation, we use the COALESCE function in line 3 to set
the fB frequency value as 0 instead of null. Then, in line 4 we compute the
dependency with the (Absolute) Dependency equation from Section 5.2.1 to
finally set the computed value in line 6.

1 MATCH (m:Model{ID:"ModelID "}) --(a:DG_node)-[me:MODEL_EDGE]->(b

:DG_node)

2 OPTIONAL MATCH (b) -[me2:MODEL_EDGE]->(a)

3 WITH DISTINCT a, b, me , me.Freq AS fA , COALESCE(me2.Freq ,0)

AS fB

4 WITH a,b,ABS(ROUND (((fA -fB)*1.0/( fA+fB+1)) ,3)) AS dep

5 MATCH (a) -[me:MODEL_EDGE]->(b)

6 SET me.Dep = dep

Then, the second query calculates the L1L dependency. In line 1, we find
DG nodes that have a self-referencing :MODEL EDGE, and for those that
do, we set the L1L property using the L1L dependency equation.

1 MATCH (m:Model{ID:"ModelID "}) --(a:DG_node)-[me:MODEL_EDGE ]-(a)

2 SET me.L1L = ROUND((me.Freq *1.0)/(me.Freq +1) ,3)

Finally, the third query calculates the L2L dependency. In line 1, we
find those DG nodes that have an ”A->B->A” pattern in the DG. Then, to
compute the frequency with which a >>W b occurs, we find the events e1, e2,
and e3 that have a path that also describes the ”A->B->A” pattern. In lines
5 and 6, we find the events related to the classes that represents activities ”A”
and ”B” respectively. In line 7, we check if these events describe the pattern
through the :DF relations of the entity type passed as argument. In line 8, we
count the frequency with which this pattern occurs in the event log. Then,
in lines 9-12 we use a similar approach, this time to find the pattern ”B->A-
>B” so we can find the frequency with which b >>W a occurs. Now that
we have the required parameters, we can use the L2L dependency equation
in line 13 to calculate the dependency measure. Finally, this value is set as
a property for the :MODEL EDGE relation in line 15.

1 MATCH (m:Model{ID:"ModelID "}) --(dg:DG_node) -[: MODEL_EDGE]->(

dg2:DG_node) -[: MODEL_EDGE]->(dg)

2 WITH DISTINCT m, dg, dg2

3 MATCH (m) --(dg) --(c:Class)

4 MATCH (m) --(dg2) --(c2:Class)

5 MATCH (e1:Event) --(c) --(e3:Event)

6 MATCH (c2) --(e2:Event)

7 OPTIONAL MATCH (e1) -[df:DF{EntityType :"EntityType "}]->(e2) -[:DF

{EntityType :"EntityType "}]->(e3)

8 WITH m,dg,dg2 ,c,c2 ,COUNT(df) AS l2lFreqA

9 MATCH (e4:Event) --(c2) --(e6:Event)

10 MATCH (c) --(e5:Event)
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11 OPTIONAL MATCH (e4) -[df2:DF{EntityType :"EntityType "}]->(e5) -[:

DF{EntityType :"EntityType "}]->(e6)

12 WITH m,dg,dg2 ,l2lFreqA ,COUNT(df2) AS l2lFreqB

13 WITH m,dg,dg2 ,ROUND ((( l2lFreqA+l2lFreqB)*1.0)/( l2lFreqA+

l2lFreqB +1) ,3) AS l2lDep

14 MATCH (m) --(dg) -[me:MODEL_EDGE]->(dg2)

15 SET me.L2L = l2lDep

Now that the initial DG and the dependency measures have been stored
in the database, we can describe the query that executes the first step of the
FHM, the mining of the DG.

5.2.5 Mining the Dependency Graph

[8] provides the formal definition for the mining of the DG. This definition
consists of 12 steps indicating how to obtain the dependency graph. The
definition of the 12 steps, as presented in [8], is:

Dependency Graph (DG)-algorithm Let W be an event log over a fi-
nite set of tasks T, W+ an extension of W including start/end tasks, σa the
(absolute) Dependency Threshold (default 0.9), σL1L the Length-one-loops
Threshold (default 0.9), σL2L the Length-two-loops Threshold (default 0.9),
and σr the Relative-to-best Threshold (default 0.05). DG(W+) (i.e., the de-
pendency graph for W+) is defined as follows.

1. T = {t|∃σ∈W+ [t ∈ σ]} (the set of tasks appearing in the log),

2. C1 = {(a, a) ∈ T × T |a⇒W a ≥ σL1L} (length-one loops),

3. C2 = {(a, b) ∈ T × T |(a, a) /∈ C1 ∧ (b, b) /∈ C1 ∧ a ⇒2W b ≥ σL2L}
(length-two loops),

4. Cout = {(a, b) ∈ T × T |b 6= End ∧ a 6= b ∧ ∀y∈T [a ⇒W b ≥ a ⇒W y]}
(for each task, the strongest follower),

5. Cin = {(a, b) ∈ T × T |a 6= Start ∧ a 6= b ∧ ∀x∈T [a ⇒W b ≥ x ⇒W b]}
(for each task, the strongest cause),

6. C
′
out = {(a, x) ∈ Cout|(a ⇒W x) < σa ∧ ∃(b,y)∈Cout [(a, b) ∈ C2 ∧ ((b ⇒W

y)− (a⇒W x)) > σr]} (the weak outgoing-connections for a length-two
loop),

7. Cout = Cout − C
′
out (remove the weak connections),
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8. C
′
in = {(x, a) ∈ Cin|(x ⇒W a) < σa ∧ ∃(y,b)∈Cin

[(a, b) ∈ C2 ∧ ((y ⇒W

b)−(x⇒W a)) > σr]} (the weak incoming-connections for a length-two
loop),

9. Cin = Cin − C
′
in (remove the weak connections),

10. C
′′
out = {(a, b) ∈ T × T |(a⇒W b) ≥ σa ∨ ∃(a,c)∈Cout [((a⇒W c)− (a⇒W

b)) < σr]},

11. C
′′
in = {(b, a) ∈ T × T |(b ⇒W a) ≥ σa ∨ ∃(b,c)∈Cin

[((b ⇒W c) − (b ⇒W

a)) < σr]},

12. DG = C1 ∪ C2 ∪ C
′′
out ∪ C

′′
in.

As mentioned in Section 5.2.2, the Cypher query that mines the DG will
not only execute these 12 steps, but it will also execute one additional step
to remove relations based on the frequency threshold.

The 13 total steps are executed in one large query, whose main structure
can be observed below. The query does not need to explicitly execute Step 1
of the mining of the DG since the set of tasks appearing in the log is already
stored in the DG nodes of the initial DG. The other 12 steps are chained
together with the use of the WITH command to pass the intermediate results
from one step to the next (the full query is included in Appendix C).

In line 4 of the query below, we can see how we store the result from Step
2 in variable C1. Then, we can see an example of how we deal with null
results in line 5, where we check whether there are any values stored in C1,
if not, we define an empty collection for the variable. A similar process is
executed for the results of Step 3 in lines 10 and 11. Then, in lines 16 and
21 we store the results of Steps 4 and 5 respectively, and we can see that we
keep chaining the new variables that will be used in upcoming steps. Step 7
asks us to remove the weak connections found in Step 6 (line 26) from the
results stored in Cout, which is why in line 30 we use an apoc function to
subtract these connections. We execute a similar process in Steps 8 and 9 to
remove the weak connections from Cin (lines 35 and 39). Then, for Step 10,
we need to find connections based on two conditions. The results from the
first condition are stored in Cout2 1 (line 44) and the results of the second
condition are stored in Cout2 2 (line 46). Finally, these results are combined
in one variable, Cout2 (line 48). We execute a similar process for Step 11 in
lines 53, 55, and 57. For Step 12, we combine the results in variable dgEdges
(line 61), completing the 12 steps defined in the FHM. Then, for the extra
step, we store the connections below the frequency threshold in Cfreq (line
66) and remove them from the connections stored in dgEdges (line 67).
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Finally, the remaining connections are used to create the DG nodes that
make up the second DG, which are connected to the Model node through
:CONTAINS relations that specify the ”DG:After” property (lines 71-76).

1 . . .
2 // FHM Step 2
3 // ( Pa i r s with a Length−1 loop connect ion above the L1L thre sho ld are

s to r ed in C1)
4 WITH COLLECT(DISTINCT [ a . ID , a . ID ] ) AS C1
5 WITH CASE WHEN C1 [ 0 ] [ 0 ] IS NULL THEN [ ] ELSE C1 END AS C1
6 . .
7

8 // FHM Step 3
9 // ( Pa i r s with a Length−2 loop connect ion above the L2L thre sho ld are

s to r ed in C2)
10 WITH C1 ,COLLECT(DISTINCT [ a . ID , b . ID ] ) AS C2
11 WITH C1 , CASE WHEN C2 [ 0 ] [ 0 ] IS NULL THEN [ ] ELSE C2 END AS C2
12 . . .
13

14 // FHM Step 4
15 // (The pa i r i n g s o f each task with i t s s t r ong e s t f o l l ow e r are s to r ed in

Cout )
16 WITH C1 ,C2 , COLLECT( s t rPa i r s ) AS Cout
17 . . .
18

19 // FHM Step 5
20 // (The pa i r i n g s o f each task with i t s s t r ong e s t cause are s to r ed in Cin

)
21 WITH C1 ,C2 , Cout , COLLECT( s t rPa i r s ) AS Cin
22 . . .
23

24 // FHM Step 6
25 // ( Pa i r s r ep r e s en t i ng weak outgoing−connec t i ons f o r a length−two loop

are s to r ed in Cout1 )
26 WITH C1 ,C2 , Cout , Cin ,CASE WHEN Cout1 [ 0 ] [ 0 ] IS NULL THEN [ ] ELSE Cout1 END AS

Cout1
27

28 // FHM Step 7
29 // ( Pa i r s r ep r e s en t i ng weak connect i ons are removed )
30 WITH C1 ,C2 , Cin , apoc . c o l l . subt rac t (Cout , Cout1 ) as Cout
31 . . .
32

33 // FHM Step 8
34 // ( Pa i r s r ep r e s en t i ng weak incoming−connec t i ons f o r a length−two loop

are s to r ed in Cin1 )
35 WITH C1 ,C2 , Cout , Cin ,CASE WHEN Cin1 [ 0 ] [ 0 ] IS NULL THEN [ ] ELSE Cin1 END AS

Cin1
36

37 // FHM Step 9
38 // ( Pa i r s r ep r e s en t i ng weak connect i ons are removed )
39 WITH C1 ,C2 , Cout , apoc . c o l l . subt rac t (Cin , Cin1 ) as Cin
40 . . .
41

42 // FHM Step 10
43 // ( Pa i r s r ep r e s en t i ng outgoing−connec t i ons above the abso lu te

dependency thresho ld , s to r ed Cout2 1 , toge the r with pa i r s r ep r e s en t i ng
outgoing−connec t i ons under the r e l a t i v e −to−best thresho ld , s to r ed in
Cout2 2 , are s to r ed in Cout2 )

44 WITH C1 ,C2 , Cin , Cout ,COLLECT(DISTINCT [ a . ID , b . ID ] ) AS Cout2 1
45 . . .
46 WITH C1 ,C2 , Cin , Cout2 1 ,COLLECT(DISTINCT [ a . ID , b . ID ] ) AS Cout2 2
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47 . . .
48 WITH C1 ,C2 , Cin , Cout2 1+Cout2 2 AS Cout2
49 . . .
50

51 // FHM Step 11
52 // ( Pa i r s r ep r e s en t i ng incoming−connec t i ons above the abso lu t e

dependency thresho ld , s to r ed Cin2 1 , toge the r with pa i r s r ep r e s en t i ng
incoming−connec t i ons under the r e l a t i v e −to−best thresho ld , s to r ed in
Cin2 2 , are s to r ed in Cin2 )

53 WITH C1 ,C2 , Cout2 , Cin ,COLLECT(DISTINCT [ b . ID , a . ID ] ) AS Cin2 1
54 . . .
55 WITH C1 ,C2 , Cout2 , Cin2 1 ,COLLECT(DISTINCT [ b . ID , a . ID ] ) AS Cin2 2
56 . . .
57 WITH C1 ,C2 , Cout2 , Cin2 1+Cin2 2 AS Cin2
58

59 // FHM Step 12
60 // (The connect i ons s to r ed in C1 , C2 , Cout2 , and Cin2 are s to r ed in

dgEdges , r ep r e s en t i ng the f i n a l connect i ons o f the DG based on Step 1 o f
the FHM)

61 WITH C1+C2+Cout2+Cin2 AS dgEdges
62 . . .
63

64 // Step 13
65 // ( Connections below the f requency thresho ld , s to r ed in Cfreq , are

removed )
66 WITH dgEdges ,COLLECT(DISTINCT [ a . ID , b . ID ] ) AS Cfreq
67 WITH apoc . c o l l . subt rac t ( dgEdges , Cfreq ) as dgEdges
68 . . .
69

70 // ( Every connect ion s to r ed in dgEdges i s s to r ed in the database )
71 UNWIND dgEdges AS dgEdge
72 WITH dgEdge
73 MATCH (m: Model{ID : ”ModelID ”})
74 MERGE (m) − [ :CONTAINS{DG:” After ”}]−>(a : DG node : Model node{ID : dgEdge [ 0 ] } )
75 MERGE (m) − [ :CONTAINS{DG:” After ”}]−>(b : DG node : Model node{ID : dgEdge [ 1 ] } )
76 MERGE (a ) − [ :MODELEDGE]−>(b)

Figures 5.4 and 5.5 show two examples that describe how the steps from
the formal definition were translated into Cypher queries.

Figure 5.4 shows our translation of Step 3 in the formal definition, where
the algorithm requires us to obtain all the pairs of activities involved in a
length-2 loop. The formal definition can be observed at the top of Figure
5.4. To make the translation of this step, we need to make sure that neither
activity in the pair is already involved in a length-1 loop (stored in variable
C1 ) and that the length-2 dependency value for the connection between
activities is above the L2L threshold. The Cypher query adapted based on
these requirements can be observed at the bottom of Figure 5.4. In line 1,
we first retrieve the pairs of connected activities. Then, in line 2, we check
for the conditions specified in the formal definition. Since we could have an
event log with no activities involved in a length-2 loop, we make the match
optional. If there are no matches, causing us to store null values in the C2
variable in line 3, we set an empty collection as its value in line 4.

Then, Figure 5.5 shows our translation of Step 10 in the formal definition,
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Figure 5.4: Cypher query to obtain the result from Step 3 in the FHM formal
definition.

where we need to find all those pairs of activities [a,b] whose connection
meets either one of two conditions: (1) their dependency value is above the
threshold or (2) their connection has a dependency value inside the Relative-
to-best threshold when compared against the strongest outgoing connection
of a. In line 1, we retrieve the pairs of connected activities to check the
first condition. In line 2 we do the check by identifying those pairs whose
connection has a dependency value above the Dependency threshold passed
as argument. In line 3 we store these pairs in a variable Cout2 1. In line 4,
we retrieve the [a,b] and [a,c] pairs of activities needed to check the second
condition. In line 5, we first check that the pair [a,c] is stored in Cout
(which stores the strongest outgoing connections for each activity) and then
we check if the difference between the dependency measures of [a,c] and
[a,b] are below the relative-to-best threshold passed as argument. In line 6,
we store these second set of pairs in variable Cout2 2. In line 7, we check
if Cout2 2 has null values so they can be replaced by an empty collection.
Finally, in line 8, we combine the results from both conditions to obtain the
final result of Step 10 in variable Cout2.

After the 12 steps from the formal definition of the DG were implemented
in the query following a similar approach, we added the final step that re-
moves the connections whose frequency is below the frequency threshold.

The section of the Heuristic Miner query that removes the connections
based on their frequency is shown below. In line 1, we have the final con-
nections, resulting from the execution of the 12 steps of the FHM, stored in
variable dgEdges. In lines 2 and 3, we make a path from the Model node to
the Entity nodes to find the amount of existing Entity nodes for the entity
type used to create the model. In line 4, we store this number in variable
numEntities. In line 5, we retrieve the pairs of nodes connected through
a :MODEL EDGE relation. In line 6, we filter to keep those pairs whose
frequency measure (stored in the :MODEL EDGE relation), divided by the
total amount of entity nodes, is lower than the frequency threshold. In line
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Figure 5.5: Cypher query to obtain the result from Step 10 in the FHM formal
definition.

7 we store the pairs below the threshold in variable Cfreq. Finally, in line 8,
we subtract those infrequent pairs from the remaining relations of the DG.

1 WITH COLLECT(DISTINCT dgEdge) AS dgEdges

2 MATCH (m:Model{ID:"ModelID "}) --(:DG_node) --(:Class) --(:Event)

--(n:Entity)

3 WHERE n.EntityType = "EntityType "

4 WITH dgEdges ,COUNT(DISTINCT n) AS numEntities

5 OPTIONAL MATCH (m:Model{ID:"ModelID "}) --(a:DG_node)-[me:

MODEL_EDGE]->(b:DG_node)

6 WHERE [a.ID,b.ID] IN dgEdges AND (me.Freq *1.0/ numEntities) <

FreqThreshold

7 WITH dgEdges ,COLLECT(DISTINCT [a.ID ,b.ID]) AS Cfreq

8 WITH apoc.coll.subtract(dgEdges , Cfreq) as dgEdges

As mentioned earlier, the remaining pairs stored in variable dgEdges are
used to create the second DG, whose DG nodes are connected to the Model
node through the :CONTAINS relations, now with the ”DG:After” property.

Once this second DG is created, the first step of the FHM is complete.
In the next step of our implementation, we make sure all the remaining
activities in the DG are connected to at least one input and one output
using the accepted-task-connected heuristic.

5.2.6 Connecting all activities

After generating the dependency graph by removing the most infrequent
relations, we make sure that all the remaining activities have at least one
input and one output by implementing the accepted-task-connected heuristic.

To apply the heuristic for the model activities with no outputs, we first
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run the query below to check if there is at least one activity with this situa-
tion. First, we find the DG nodes that only have an outgoing :MODEL EDGE
relation to themselves. In line 2, we retrieve the DG nodes. In line 3, we
count the number of outgoing :MODEL EDGE relations for each node. In
lines 4 and 5, we check whether the DG nodes have only one outgoing con-
nection pointing to themselves. In line 6, we define the UNION to join these
results with a second query. In the second query, we find the DG nodes that
do not have any outgoing :MODEL EDGE relation. In line 7, we retrieve
the nodes, and in line 8 we filter to keep those that do not have any outgoing
:MODEL EDGE relation and are not the artificial End node. Finally, based
on the joint result (stored in variable a in line 9), we return the number of
nodes in line 10.

1 CALL{

2 MATCH (m:Model{ID:"ModelID "}) -[:CONTAINS{DG:’After ’}]-(a:

DG_node)-[me:MODEL_EDGE ]->()

3 WITH a,COUNT(me) AS numEdges

4 MATCH (a:DG_node) -[me:MODEL_EDGE]->(b)

5 WHERE a = b AND numEdges = 1 RETURN a

6 UNION

7 MATCH (m:Model{ID:"ModelID "}) -[:CONTAINS{DG:’After ’}]-(a:

DG_node)

8 WHERE NOT (a) -[: MODEL_EDGE ]->() AND a.isEnd IS NULL RETURN

a

9 } WITH a

10 RETURN COUNT(a) AS numNodes

The number of nodes is read in Java and, if the value is higher than 0,
we execute the query below, which creates the outgoing connections. In line
5, variable a has the collection of DG nodes with no outputs. In line 6, We
retrieve the :MODEL EDGE relations from the original DG, which we can
identify through the ”DG:Before” property of the :CONTAINS relations that
connect the original DG with the Model node. In line 7, we match the nodes
with the missing outputs (stored in a), with the nodes from the original DG
(stored in b). In line 8, we store the ID of the target nodes (stored in c) in
variable cID, and the dependency measures of their relation with b in variable
depVal. Then, in line 9, for each node a with missing outputs, we use an
apoc function to find the cID with the highest dependency value. The cIDs
that represent the activity with the highest dependency relation are stored
in a collection in variable items (line 10). Then, we retrieve the cID from the
collection and rename them as out (line 11). Then, in line 13 we check if a
DG node from the second DG (identified through the ”DG:After” property
of the :CONTAINS relation) contains a DG node with the same ID as the
one with the best dependency relation. In line 15, we check if the second DG
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does not contain such node, in which case we create a new DG node with
setting its ID property with the value from variable out (line 16) and then
we connect this new node to the Model node (line 17). In case the DG does
contain the node, we simply create the :MODEL EDGE relation between the
nodes (line 18).

1 // Fi r s t , we f i nd the model a c t i v i t i e s whose only output i s themse lves
2 // Then , we f i nd the model a c t i v i t i e s , d i f f e r e n t from the a r t i f i c i a l End ,

that have no outputs .
3 // The DG nodes that r ep r e s en t the se a c t i v i t i e s are s to r ed in va r i ab l e ”a”
4 . . .
5 WITH a
6 MATCH (m: Model{ID : ”ModelID ”}) − [ :CONTAINS{DG: ’ Before ’} ] −(b : DG node )−[me :

MODELEDGE]−>(c : DG node )
7 WHERE b . ID = a . ID AND b <> c
8 WITH m, a , c . ID AS cID ,me .Dep AS depVal
9 WITH m, a , apoc . agg . maxItems ( cID , depVal ) AS s t rFo l l owe r s

10 WITH m, a , s t rFo l l owe r s . i tems AS items
11 UNWIND items AS out
12 WITH m, a , out
13 OPTIONAL MATCH (m) − [ :CONTAINS{DG: ’ After ’} ] −(b : DG node{ID : out })
14 CALL apoc . do . when(
15 b IS NULL,
16 ”MERGE (a ) − [ :MODELEDGE]−>(c : DG node : Model node{ID : out })
17 MERGE (m) − [ :CONTAINS{DG: ’ After ’}]−>( c ) ” ,
18 ”MERGE (a ) − [ :MODELEDGE]−>(b) ” ,
19 {m:m, a : a , b : b , out : out}
20 ) YIELD value RETURN 1

Since the previous query can add new nodes to the DG, it is possible that
new nodes are missing an output, which is why after this query is executed,
we execute the first query to check once again the number of nodes that have
no outputs. If there are still nodes with this situation, we execute again
the second query, and we remain in that loop (coded in Java) until all the
activities in the second DG have at least one output.

To add the missing inputs, we created a similar pair of queries to those
presented in this Section, both of which can be observed in Appendix C.

After executing these queries, ensuring that all the activities in the final
DG have at least one input and one output, the initial DG, connected to the
Model node through the :CONTAINS relations that have the ”DG:Before”
property, can be deleted.

Now that the final set of model activities has been identified, we can make
the final connections between the model activity nodes and the Class nodes.

5.2.7 Connecting the Model with the Class nodes

After the mining of the DG, where we generated a second DG with the final
set of activities and dependency relations, we delete the original DG gener-
ated as an input for the execution of the algorithm. However, deleting these
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nodes also means that we have deleted the initial :REPRESENTS relations
made between the DG nodes and the Class nodes. Therefore, it is important
to reestablish them with the final DG, so we can keep the link between the
process model and the events.

The query that creates this connection is shown below. In line 1, we
retrieve the Class nodes used to generate the DG. In line 2, we retrieve
the final set of DG nodes. Finally, in line 3 we create the :REPRESENTS
relations between them.

1 MATCH (m:Model{ID:"ModelID "}) --(:Algorithm) --(:Log) --(:Event)

--(c:Class{Type:"ClassType "})

2 MATCH (m) -[:CONTAINS{DG:"After "}]->(dg:DG_node{ID:c.ID})

3 MERGE (dg) -[: REPRESENTS]->(c)

Now that we have connected all the activities that make up the final DG,
we can execute the second step of the FHM, where we identify the split and
join points for each model activity.

5.2.8 Mining of the splits/joins

The mining of the split and join points of the DG refers to the identification
of the input and output bindings for each activity. This will help us identify
the type of dependency relation between an activity and its neighbors.

From Section 5.2.1, we can recall that the mining of the splits and joins
depends on both the fully connected DG, which in our case is represented
by the DG nodes created in the previous step, and the traces of the event
log, which in our case are represented by the Event nodes connected between
them by the :DF relations of a specific entity type. Therefore, we must use
these two inputs to identify the bindings of each activity and store them
in the DG nodes as described in Figure 5.3. We should also mention that
the mining of the splits and joins must make sure that every remaining
dependency relation in the DG is represented in at least one output binding,
so we must also ensure that every :MODEL EDGE relation is still considered
independently of the bindings threshold.

To find the input and output bindings that define the splits and joins of
the DG and store them in the database, we built two Cypher queries, one to
find the input bindings and one to find the output bindings.

The main steps followed to define the final output bindings for all the
activities in the DG are shown next with the most relevant parts of the
Cypher query. The full query can be observed in Appendix C.

The steps to find and store the output bindings of the DG are the follow-
ing:
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1. First we make a union to obtain the output bindings of the model ac-
tivities considering three scenarios: (1) the regular output bindings of
model activities, (2) the output bindings of the model activities con-
nected to the artificial End node. (3) the output bindings of the arti-
ficial Start node. We need to consider these three scenarios separately
because the artificial nodes are not connected to the Class nodes, so
the query to find the bindings differs. The steps to find the output
bindings in the first scenario are the following:

(a) For each activity in the DG, represented by event i in the log,
find all the events j that appear later on in the :DF paths (lines
3-6). We store these events in the variable eventsCaused (line 7).
In line 7, we also use variable classType to store the class type of
the Class nodes connected with the model activities.

(b) Then, remove those events j whose cause is not i. We determine
that the cause is not i if an intermediate event k exists between
i and j in the :DF path and the DG contains a :MODEL EDGE
relation between the model activities of k and j (lines 8-10). These
events are stored in variable eventsOtherCause (line 11) and are
subtracted from the collection in eventsCaused (line 12). The
remaining events are stored in variable eventList.

(c) Then, for every event i, group the events (stored in eventList)
based on their property that was used to define the class type
(lines 13-14). Each grouping of these properties represents an
output binding and is stored in variable oB. In line 14, we add a
variable n with value of 1 to help us count the frequency of each
binding in the next step.

(d) Finally, use the class type property of every event i (stored in
variable mActivity), to group the output bindings and calculate
the total frequency with which they occur in the event log (line
15). This frequency is stored in variable bindFreq.

(e) We follow a similar process for the second and third scenarios,
which can be observed in the full query in Appendix C.

2. Now that we have identified the existing output bindings for each model
activity, in line 26 we identify the highest frequency among its bindings.
This value is stored in variable freqMax and is used to compare the
frequency of the bindings agains the threshold in a subsequent step.
Also in line 26, we use variable bindingsDetails to store the collection
of output bindings and their frequencies for each model activity.
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3. Next, for each model activity, we collect all its outputs in the DG (lines
28-30) in variable allOutputs. We do this to have a reference of all the
outputs and make sure that all of them are represented in at least one
binding.

4. Then, for each model activity we check whether they have one or more
output bindings (lines 31-32).

5. Since every model activity must have at least one binding (except for
the End node), if an activity has one binding, it is kept automatically
(lines 34-35). The binding is stored in variable outputBindings. In case
the binding is composed of more than one activity, the activities are
joined with the help of a ’|’ character (e.g. ”B” and ”C” are stored as
”B|C”.

6. If an activity has more than one binding, we make a union of two
results: (1) For every output of every model activity (stored in allOut-
puts), we retrieve the activity binding with the highest frequency that
contains this output. This way, we can make sure that every output
is represented in the final bindings even if its best binding is below
the frequency threshold. (2) For each model activity, we retrieve the
output bindings above the dependency threshold. The steps to obtain
the second result are the following:

(a) For every output binding of each model activity (which we retrieve
in lines 43-45), we check whether their frequency, divided by the
highest frequency of the activity’s bindings (stored in freqMax ),
is above the bindings threshold (line 46). The frequency of each
binding is stored in the second slot of variable bindDetails and the
threshold is a parameter of the query.

(b) Since this result is not final (it is only part of the union), we
store the bindings above the threshold in a new variable called
oBindings.

7. The union of the results for activities that have more than one binding
is now stored in variable oBindings in line 50. To remove duplicates
between the two results, we unwind the collections and collect the bind-
ings again to remove the duplicates using the DISTINCT function (lines
51-52). The distinct bindings for each activity are stored in variable
outputBindings.

8. Finally, the output bindings for each activity are stored as a collection
in property OutputBindings (lines 56-58). Each item in the collection
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represents an OR-split, and each ’|’ character in each item represents
an AND-split.

1 CALL{
2 // Ret r i eve output b ind ings o f every model a c t i v i t y
3 MATCH (m: Model{ID : ”ModelID ”}) − [ :CONTAINS]−(a : DG node ) − [ :MODELEDGE]−>(b :

DG node )
4 MATCH (a )−−( c l : Class )−−( i : Event )
5 MATCH (b)−−(:Class )−−( j : Event )
6 MATCH ( i ) − [ :DF∗{EntityType : ”EntityType”}]−>( j )
7 WITH DISTINCT m, c l . Type AS classType , i ,COLLECT( j ) AS eventsCaused
8 MATCH (m) − [ :CONTAINS]−( c : DG node ) − [ :MODELEDGE]−>(b : DG node )
9 OPTIONAL MATCH ( i ) − [ :DF∗{EntityType : ” Del iveryOrder ”}]−>(k : Event ) − [ :DF∗{

EntityType : ” Del iveryOrder ”}]−>( j : Event )
10 WHERE EXISTS( ( c )−−(:Class )−−(k ) ) AND EXISTS( ( b)−−(:Class )−−( j ) ) AND j IN

eventsCaused
11 WITH i , classType , eventsCaused ,COLLECT(DISTINCT j ) AS eventsOtherCause
12 WITH i , classType , apoc . c o l l . subt rac t ( eventsCaused , eventsOtherCause ) AS

eventL i s t
13 UNWIND eventL i s t AS event
14 WITH DISTINCT i , classType , apoc . c o l l . s o r t (COLLECT(DISTINCT event [ c lassType

] ) ) AS oB ,1 AS n
15 RETURN DISTINCT i [ c lassType ] AS mActivity , oB , SUM(n) AS bindFreq ORDER BY

bindFreq DESC
16 UNION
17 . . .
18 // Ret r i eve output b ind ings o f model a c t i v i t i e s connected to the

a r t i f i c i a l End node .
19 . . .
20 UNION
21 . . .
22 // Ret r i eve output b ind ings o f a r t i f i c i a l S ta r t a c t i v i t y .
23 . . .
24 }
25 // For every mActivity , obta in the f requency with the h i ghe s t va lue from i t s

output b ind ings and s t o r e the b ind ings with i t s f requency in
b ind i ng sDe ta i l s .

26 WITH mActivity , apoc . agg . maxItems ( mActivity , bindFreq ) . va lue AS freqMax ,
COLLECT( [ oB , bindFreq ] ) AS b ind ing sDe ta i l s

27 // Co l l e c t a l l the output a c t i v i t i e s o f each mActivity .
28 MATCH (m: Model{ID : ”ModelID ”}) − [ :CONTAINS]−(a : DG node ) − [ :MODELEDGE]−>(b :

DG node )
29 WHERE a . ID = mActivity
30 WITH DISTINCT mActivity , b ind ing sDeta i l s , freqMax , COLLECT(b . ID) AS

al lOutputs
31 CALL apoc . when(
32 SIZE( b ind ing sDe ta i l s ) = 1 ,
33 // I f a model a c t i v i t y has one binding , i t i s kept without check ing

aga in s t the th r ehso ld .
34 ”UNWIND b ind ing sDe ta i l s AS b indDeta i l s
35 RETURN mActivity AS mAct ,COLLECT( apoc . t ex t . j o i n ( b indDeta i l s [ 0 ] , ’ | ’ ) ) AS

outputBindings ” ,
36 // I f the model has more than one output binding , we make a UNION of two

r e s u l t s :
37 ”CALL{
38 . . .
39 // (1 ) For each output o f every mActivity , we r e t r i e v e the binding with

the h i ghe s t f r equecy that i n c l ud e s such output .
40 . . .
41 UNION
42 // (2 ) For each mActivity , we r e t r i e v e i t s b ind ings above the th r e sho ld .
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43 WITH mActivity , b ind ing sDeta i l s , freqMax
44 UNWIND b ind ing sDe ta i l s AS b indDeta i l s
45 WITH mActivity , freqMax , b indDeta i l s
46 WHERE ( b indDeta i l s [ 1 ] ∗ 1 . 0 ) / freqMax >= BindingsThreshold
47 RETURN mActivity AS mAct ,COLLECT(DISTINCT apoc . t ex t . j o i n ( b indDeta i l s

[ 0 ] , ’ | ’ ) ) AS oBindings
48 }
49 // The d i s t i n c t output b ind ings are s to r ed in the va r i ab l e outputBindings .
50 WITH mAct , oBindings
51 UNWIND oBindings AS oBind
52 RETURN mAct , COLLECT(DISTINCT oBind ) AS outputBindings ” ,
53 {mActivity : mActivity , b i nd ing sDe ta i l s : b ind ing sDeta i l s , freqMax : freqMax ,

a l lOutputs : a l lOutputs }
54 )YIELD value
55 // The output b ind ings are s e t as p r op e r t i e s f o r the DG node nodes .
56 WITH value .mAct AS mActivity , va lue . outputBindings AS outputBindings
57 MATCH (m: Model{ID : ”ModelID ”}) − [ :CONTAINS]−(dg : DG node{ID : mActivity })
58 SET dg . OutputBindings = outputBindings

The query to identify the input bindings that define the OR-joins and
AND-joins, whose main structure is the same as the one presented above,
can also be observed in Appendix C.

Once the input and output bindings have been identified for every activity
in the DG, the mining of the splits and joins is complete, which also marks
the completion of our implementation for the Heuristic Miner algorithm.

For our running example with the events from the Orders.csv log, we
used the following parameters to discover a process model using our imple-
mentation of the Heuristic Miner algorithm:

• Class : ”Activity+Life-cycle”

• Entity Type (:DF): ”DeliveryOrder”

• Frequency Threshold : 0.1

• Dependency Threshold : 0.6

• L1L Threshold : 0.9

• L2L Threshold : 0.9

• Bindings Threshold : 0.1

• Relative-to-best Threshold : 0.0

Figure 5.6 shows a subset of the nodes that remain in the database after
the execution of the algorithm based on the parameters described above for
our running example. The algorithm parameters are stored in the Algorithm
node as properties. As a design decision, we generate a default name for
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Figure 5.6: Example of the nodes and relations created in the database after the
Heuristic Miner algorithm is executed.

every model that is generated. For this model, generated with the Heuris-
tic Miner algorithm, the ID is ”HM 1” (the next model would receive the
name ”HM 2”). The :CONTAINS relations between the Model node and the
DG nodes remain with the ”DG: After” property, helping us identify that
this DG does represent the final result. Another thing to note is that the
DG node that represents the artificial Start is neither connected to the Class
nodes nor it has the InputBindings property, as opposed to the DG nodes
that do represent a model activity.

Once the process model, represented by the DG, has been created in the
database, we need to provide a way for the users to execute this algorithm and
visualize the results. The functionalities implemented in the user interface
for this purpose are described next.

5.2.9 Visualizing the Process Model

In this section, we describe the different functionalities implemented in the
user interface to allow users to execute the Heuristic Miner algorithm, vi-
sualize the existing models in the database, and visualize the Dependency
Graphs that represent the process models.

To allow users to execute the Heuristic Miner algorithm, we decided to
add a ”Generate Model” button in the Algorithms panel, as shown in Figure
5.7. Since we are building the tool thinking that possible extensions can be
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Figure 5.7: Algorithms Panel.

added in the future, we added a dropdown menu on top of the button that
will allow the users to select between different process discovery algorithms
to generate a process model.

Once the log has been selected in the Logs panel and the Heuristic Miner
algorithm has been selected in the dropdown menu, clicking on the ”Generate
Model” button will display a new window, shown in Figure 5.8, where the
user can specify the parameters needed by the queries to generate the process
model.

Since the data model allows us to create several views for an event log,
the first parameters that need to be defined by the user are the Class type
and Entity Type that will be used to define the model activities and the path
that connects them; this information is retrieved from the existing Class and
Entity nods in the database. Then, to allow the users to define the thresholds,
we created sliders, similar to the user interface from ProM. We consider that
the thresholds that have a bigger impact on the discovery of the process model
are the Frequency and Dependency thresholds, which is why we put them
together as part of the basic configuration. The other parameters needed
for the queries are included inside the Advanced Configuration section of the
window. Figure 5.8 shows the default values for every threshold. Once the
user clicks on the ”Generate Model” button, the queries defined from Section
5.2.4 until Section 5.2.8 are executed, generating the process model.

To allow the users to check the existing process models in the database,
we created a table in the Models panel of the user interface, shown in Figure
5.9. The table displays the list of models based on the existing Model nodes
in the database. The table at the bottom can be populated with additional
details of the model by clicking on the ”View Model Details” button, showing
properties such as the algorithm or the parameters used to generate the
model.

Then, to allow the users to visualize a process model, we added the ”Show
Model” button, which will display the model currently selected on the Graph
panel, as shown in Figure 5.10. If the user clicks on one of the nodes in the
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Figure 5.8: Parameter selection window for the Heuristic Miner algorithm.
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Figure 5.9: Models panel of the user interface.
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Figure 5.10: Clicking on the ”Show Model” button will display the process model
on the Graph panel.

graph, the table at the bottom of the Models panel will be populated with
the that activity’s input and output bindings so the user can see where the
graph contains its splits and joins.

Finally, to allow users to delete models from the database, we added the
”Delete Model” button, which will run a Cypher query that deletes the Algo-
rithm, Model, and Model node nodes, and their relations, from the database.

We should also mention that we took the design decision to not delete the
process models when a log is deleted from the database to allow the users
to remove event logs from the database while keeping the process models
for future reference. Other than the Event, Entity, Class, and Log nodes,
the only node related to the models that is also deleted is the Algorithm
node. The Algorithm node stores the parameters defined through the user
interface to generate the model based on the event log, so if the event log
is deleted from the database, the tool can no longer ensure that the same
parameters will produce the same process model, given that the tool cannot
confirm whether a newly imported event log that has the same name as the
original one will also contain the same data, which is why the Algorithm
node is deleted together with the event log. On the other hand, the models
can still be retrieved from the database using the Model node as reference
even if they are not connected to an Algorithm node.

Now that the user interface provides a way for users to generate and
visualize a process model based on an event log through the Heuristic Miner
algorithm, we have completed the implementation for the Model Layer of the
architecture shown in Figure 3.1, addressing the Process discovery activity.
The next step is to add additional functionalities in the tool that help the
user analyze the process models that have been generated. We do this by
implementing the next layer of the architecture, the Model Analysis layer,
which addresses the Diagnose activity.
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Chapter 6

Performing Process Mining
Analysis with the User
Interface

In Chapter 5, we define how the Model Layer was implemented in the tool,
addressing the Process discovery activity. In this chapter, we discuss the im-
plementation of the Model Analysis Layer, addressing the Diagnose activity.
First, we identify two tasks that we must be able to execute to address this
activity. Then, we describe our implementation of the first task, Model com-
parison. Finally, we describe our implementation of the second task, Model
Querying.

6.1 Identifying the Requirements for Model

Analysis

In this Section, we describe the requirements we have identified for our tool
to implement the Model Analysis Layer, addressing the Diagnose activity.
First, we discuss the need to provide a model comparison functionality to help
analysts identify the models that provide the best value for the diagnosis.
Then, given that our tool is capable of storing several process models in the
database, we discuss the need to be able to query for them and find the most
relevant models for the analysis.

The next step after process models are generated is to analyse how these
models represent the current state of the process so potential improvements
and changes can be identified, addressing the project’s goals set initially.
As mentioned in the PM2 methodology, two important components to make
a successful analysis are the correct interpretation of the results and being
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able to distinguish unusual results from the expected ones [2]. Although
these components depend on the user’s expertise in understanding process
models and the domain knowledge to identify anomalies in the results, a good
representation of the results can help in that regard as well.

The tool already presents a first contribution to provide a good repre-
sentation of the results by providing the users with an interactive view of
the process model generated through a discovery algorithm, where they can
obtain additional details on the model activities by clicking on them in the
user interface, as shown in Section 5.2.9. However, more often than not, more
than one process model will be generated during the analysis. This might
be done to obtain different perspectives of the data or to find interesting
behavior in the process that may appear through the use of different discov-
ery algorithms or algorithm parameters. Therefore, it becomes necessary to
compare these models so the process analysts can have a way to select those
that provide the best value for the diagnosis.

There are already some existing methods in which two models can be
compared. For example, the quality of the models can be compared based
on their results for the four quality dimensions mentioned in [11], allowing
us to determine which model best represents the behavior of the event log.
We can also determine whether two models are equivalent or not based on
observed behavior, as proposed in [12]. However, even with these methods
available, there are still challenges being reported with respect to the existing
tool support for model comparison.

During the discussion of their results, the authors of the PM2 methodol-
ogy mention the difficulties found while comparing process models. At one
point during their analysis, it was necessary to compare between several pro-
cess models, but the manual comparison required from significant effort and
they found limited tool support on this regard. Later on, they also mention
that in ProM ”it is currently time-consuming to switch between different
views or filter applications on the same data and to compare results” [2].

The graph data model presents us with a good opportunity to contribute
in this regard and provide a way to compare different process models. Since
the data for every model is stored in the same space, we should be able to
retrieve the nodes and edges that conform the models and find a way to
compare them in the user interface.

However, we should also consider the fact that for some process mining
projects, the analysis may cause multiple models to be generated and stored
in the database, as we can see from the research made in [22]. In this research,
they report that large organizations may deal with collections of hundreds
or thousands of business process models, which is why they must rely on
repository technology to store the models.
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The model repositories provide the necessary infrastructure to store a
collection of process models, and are meant to support different management
techniques that handle process model collections. The first management
technique mentioned in [22] is querying. In this context, querying refers to
finding a specific process model within a large collection. As mentioned in
[22], querying for process models in a repository has multiple uses, such as
finding models that do not comply with standards, finding models that can
be used as a template to define new ones, or finding models that have specific
activities or relations between activities.

Since our tool allows us to store multiple models, it becomes relevant for
us to also consider the implementation of a management technique such as
querying to allow users to find which models they would like to analyse or
compare

In summary, we consider that to complete the implementation of the
Model Analysis Layer and address the Diagnose activity, we must be able to
execute these two tasks inside the tool, the Model Comparison and the Model
Querying. The discussion on how we can include the comparison between
process models is presented next.

6.2 Model Comparison

In this section, we describe our implementation for model comparison on
top of the graph database. First, we discuss an additional implementation
needed for the process models. Then, we describe how users can perform
model comparison through the user interface.

The challenges related with the model comparison mentioned in [2] help
us realize that tool support is needed during the analysis of the results when
the project requires analysts to make comparisons between different process
models. We consider that the first and most intuitive way to compare mod-
els is through visual inspection, such as finding the differences between the
models’ graphical structures or identifying which activities appear in one or
both models. This consideration helps us define our first requirement for the
model comparison: (R1) to provide a visual inspection of two process mod-
els. Since our user interface allows us to display any set of nodes and edges
from the database, including the model nodes, we could simply retrieve the
components of two models and display them in the Graph panel so the users
can do the visual inspection of the results.

However, even when this simple approach works for our current imple-
mentation, it might not provide the best solution considering that different
discovery algorithms can be implemented for the tool moving forward. Right
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Figure 6.1: Comparison between the process models generated by the Heuristic
Miner (dependency graph) and the Inductive Miner (process tree).

now, we have implemented one process discovery algorithm whose process
models are always generated in the same modeling language, making the
comparison between them straightforward, but when a different algorithm is
implemented and whose output is not a dependency graph, the comparison
will prove more difficult, lessening the impact of our potential contribution.
Figure 6.1 shows an example of this; both models represent the same be-
havior, however, this is not apparent from the visual inspection, making the
side-to-side comparison ineffective.

Therefore, we must define a prior requirement for our implementation of
the model comparison: (R0) to provide the users with a common ground
to make the comparison between process models. We consider that Petri
nets can provide a solution for this problem. Petri nets are one of the most
common ways in which process models are represented, and, even if it is not
the default model language used by some algorithms to express their results
(such as the Heuristic Miner), it is possible to translate these languages into
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Figure 6.2: Comparison between the process models generated by the Heuristic
Miner and the Inductive Miner including their Petri net representations.

a Petri net. In Figure 6.2, we have a follow-up to the models shown in Figure
6.1; this time, we have added their Petri net representations, where it is now
evident that both models describe the same behavior.

Seeing how this translation can help us make the model comparison more
effective, the next step in our implementation is to define how we can include
Petri nets in the data model and address requirement R0.

6.2.1 Representing Petri Nets in the Data Model

To add Petri nets into the data model, we need to find a way to represent its
different components and then connect them with the rest of the graph. A
Petri net is, at its core, a graph structure, where the edges connect nodes that
represent either places or transitions. As we know, places represent states,
such as the start of the process, and transitions represent state changes,
which in our case refer to the activities of the process model.

Considering this, we can define our next extension to the data model to
represent Petri nets. This extension can be observed in Figure 6.3.

In our proposed extension, we introduce a new label for the Model nodes
called :PetriNet. As we defined in Section 5.1.3, the Model nodes are used
to represent the process model, with its second label allowing us to provide
more details on the type of graph structure it is representing, which is what
we are doing with this new label. The PetriNet nodes represent the different
types of places and transitions that may be used in a Petri net, and the way
to distinguish between them is through the type attribute. There are four
possible values that can be assigned for the type attribute in a PetriNet node:
p for places, s e for the start and end places, t for transitions, and tau for

109



Figure 6.3: Our second extension to the model. PetriNet nodes connect with the
rest of the graph through the Model nodes.

tau transitions. PetriNet nodes that represent transitions have an additional
property t to define the name of the activities of the model. We decided to
use the same node label to represent all the components of a Petri net to
simplify the queries that search for a match inside this part of the graph,
avoiding the need to build queries that need to distinguish between different
node labels in the graph path.

Following the definition of our first extension to the data model (shown in
Figure 5.1), the PetriNet nodes are connected between them by :MODEL EDGE
relations. However, in contrast to that extension, the PetriNet nodes are not
connected to the Model node through a :CONTAINS relation. Since both
graph structures are connected to the same Model node, we need to distin-
guish between the edges that connect the Model node to the different types
of graphs, and we can think of two ways to do this: (1) Define a property
for the :CONTAINS edge that specifies the type of graph the Model node is
pointing to, or (2) Define a new relationship type for the new graph struc-
ture. We decided to implement the second option because it prevents us
from having to query over the properties of each relation of the Model node
to find those that connect to the graph we need. This is why the connection
between the Model node and the PetriNet nodes is done through a new type
of relation, called :CONTAINS PN.

Figure 6.4 shows an example of a Petri net represented inside the data
model, where we can see how the different components of the Petri net are
identified through the node properties.

Now that we have established how the data model can be extended to
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Figure 6.4: Example showing how a Petri Net is represented in the data model.

include Petri nets, addressing R0, we can focus on how the dependency
graphs that result from the execution of the Heuristic Miner algorithm can
be translated into Petri nets.

6.2.2 Translating Dependency Graphs into Petri Nets

To translate the dependency graphs generated during the execution of the
Heuristic Miner algorithm, we implemented additional Cypher queries that
are executed right after the execution of the Heuristic Miner algorithm ends.

These queries take advantage of the input and output bindings defined
for each activity in the dependency graph to create the PetriNet nodes. In
our implementation, we defined two main queries, one that translates the
output bindings into places and transitions, and another that does the same
for the input bindings. We can look at Figure 6.5 for an example of how
the queries use the output bindings to create the Petri net. The full set of
queries generated to translate the dependency graph into a Petri net can be
observed in Appendix D.

In this example, activity A has two output bindings, one towards activities
B and C, and another one towards activity D. Multiple output bindings
represent an OR-split. The first step is to translate this OR-split, and to
do this we create the PetriNet node for transition A and connect it to an
output place (place 1 in Figure 6.5). Then, as a second step, for each output
binding, we create and connect a tau transition to the newly created place
(tau transitions 2 and 3 are created and connected to place 1). In the third
and final step, for each activity in every output binding, we connect a place
to the corresponding tau transition. In the example of Figure 6.5, the first
output binding has two activities, so we create two places (places 4 and 5),
and the second output binding has one activity, so we create one place (place
6). Multiple activities in one output binding represent an AND-split.

After doing this translation for the output bindings of all the activities in
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Figure 6.5: Steps followed to translate the output bindings of activity A into a
Petri Net.
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Figure 6.6: The Petri Nets generated can be simplified by identifying and remov-
ing unnecessary tau transitions.

Figure 6.7: Clicking on the ”Show Petri Net” button will display the correspond-
ing Petri net on the Graph panel.

the dependency graph, we run a similar query for the input bindings, merging
the inputs with the PetriNet nodes already created for the outputs. Once
this is done, we have completed the translation from the dependency graph
into a Petri net.

However, to reduce the amount of tau transitions generated during the
translation, we implemented another pair of queries that simplify the Petri
net. These queries can also be observed in Appendix D. An example of this
simplification can be observed in Figure 6.6, where we simplify the Petri net
by removing the redundant tau transition and place nodes.

After defining how a Petri net can be created and simplified, we must
provide a way for the user to visualize it in the user interface. To do this,
we added a ”Show Petri Net” button in the Models panel, as shown in Fig-
ure 5.9. Clicking on this button will execute a simple query that matches
the corresponding Model node with the PetriNet nodes based on the :CON-
TAINS PN relation. The results from this query are processed to display the
Petri net on the Graph panel, as shown in Figure 6.7.

Figure 6.7 shows the resulting Petri net representation of our running
example. As we can see, the names of the transitions represent the ID of the
activities from the dependency graph first shown in Figure 5.10.
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Figure 6.8: When 2 models are selected, only the ”Show Petri Net” button re-
mains enabled.

Now that we have defined how Petri nets can be visualized in the user
interface, we can use them to implement the model comparison functionality
in the tool and address requirement R1.

6.2.3 Comparing Models

After defining the common ground to make the comparison between process
models in the form of Petri nets, we can describe our implementation that
allows users to visualize a side-by-side comparison between two Petri nets.

To do the comparison, users first need to select the two models to compare
from the list of existing models in the Models panel. As shown in Figure 6.8,
the buttons that affect one model are disabled while the ”Show Petri Net”
button remains enabled. The second model shown in the figure, ”HM 2”, was
created as an example to showcase the model comparison functionality. This
model was created manually from a modified version of the ”Orders.csv” log,
where the name of the ”Ship Parcel” activity was changed to ”Ship Package”
and an additional ”Add Item+Complete” transition was added to the Petri
net.

Clicking on the ”Show Petri Net” button while the two models are selected
will show a new visualization of the Petri nets in the Graph panel, as shown
in Figure 6.9. This visualization shows the two selected models side by side.
A ”virtual” connection is drawn between Petri net transitions that have the
same name. Clicking on one of these transitions will highlight it together
with its virtual connections and the transitions at the other end (as seen in
Figure 6.9 for the ”Add Item+Complete” transition), providing a way for
users to analyse the similarities between the models. On the other hand,
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Figure 6.9: The Model comparison functionality displays two models side by side
and highlights the selected transitions and missing/additional transitions between
models.

those transitions from the top log that are not found in the bottom log and
vice versa are colored yellow and green respectively, to make them stand
out from the rest (such as transitions ”Ship Parcel+Complete” and ”Ship
Package+Complete” in Figure 6.9).

Now that we have defined how two models can be compared in the user
interface based on their Petri net representation, addressing requirement R1,
we look into the second task we defined for the Model Analysis layer, Model
Querying, which will help us find models stored inside the database.

6.3 Model Querying

In this section, we describe our implementation to allow users to find models
inside the database. First, we describe our approach for model querying,
which is based on the behavior patterns of the process models. Then, we
describe how this approach was implemented in the tool.

6.3.1 Defining our approach for Model Querying

As we mentioned in Section 6.1, it is possible that during a process mining
project several process models are created in order to try to find the best
answers for the research questions defined at the beginning of the project.
To deal with large collections of models, the research from [22] mentions
model querying as one of the management techniques used to handle these
collections in model repositories. This is why we believe that being able
to query process models is an essential activity during the analysis of the
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process, especially when our tool already provides a way for users to compare
between process models.

We consider that the model comparison functionality for the tool becomes
more effective when we have already queried for process models that share
some characteristics, making their differences more apparent.

In order for us to add this functionality into the tool, we need to define
the way in which the model querying will be implemented. For example, in
the survey research made in [13], they focus on 5 types of queries that can
be used for model querying:

1. Exact query based on graph structure. For this type of query, process
models are considered as graph data and models are retrieved based on
their match with a given subgraph.

2. Similarity query based on graph structure. For these queries, instead of
expecting an exact match, a threshold is defined to also retrieve models
that are similar to the subgraph provided as an input.

3. Exact query based on behavior semantics. These queries look for models
based on a given set of behavior requirements, for example, finding
models where activity ”A” precedes activity ”B” or activity ”C” can
be executed in parallel with activity ”D”.

4. Similarity query based on behavior semantics. Similar to the previous
type of queries, these queries look for models based on behavior. In
this case, models are retrieved if their traces are the same as the one
of the given condition model.

5. Query based on operation semantics. In contrast with the previous
types of queries, these are based on operation semantics. For these
queries to work, process models must be tagged with its operational
information based on a defined ontology.

For our tool, we decided to implement the model querying functionality
based on the third type of queries described in [13], the Exact query based on
behavior semantics. This is because Cypher allows us to define queries that
look for a match based on behavior, not only on specific graph structures.
This allows us to provide more flexibility to the users than what we could
provide by having to ask them to build a Petri net subgraph to be used for
the model querying.

To define what kind of behavior users can query in the Petri nets stored
in the database, we can use the basic workflow patterns described in [14]
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as reference. As part of the fundamentals of behavior inclusion to query
process models, they define three workflow patterns: sequence, parallel split,
and exclusive choice.

1. Sequence. This pattern returns a match for those models that execute
the transitions in the same order as that provided in the input trace.
This can be satisfied if such transitions are on a path in the model.

2. Parallel Split. This pattern returns a match if the transitions pro-
vided as input can be enabled concurrently in the process. This means
that, between these transitions, the ordering in which they can be fired
should not be restricted in the matching model.

3. Exclusive Choice. This pattern returns a match when the process splits
into several paths and only the path of one of the transitions provided
as input can be active.

Now that we have defined these basic patterns, we can describe the query-
ing patterns that we included in our implementation.

6.3.2 Querying Patterns

For our tool, we define 6 different patterns. First, based on the sequence pat-
tern, we implemented a Directly-Follows and an Eventually-Follows pattern.
Then, we added the Parallel Split and Exclusive Choice patterns based on
the basic patterns of the same name. Finally, we added two more patterns
that we consider can provide value during the model querying, the Starts
with and Ends with patterns. The Cypher queries built for each pattern are
described next.

Directly-Follows Pattern The Cypher query for the Directly-Follows
pattern is shown below. To find the matching models, we first need to spec-
ify the transitions that must be in the path (lines 1-3), then, we need to
make sure that any node in between is not another transition, which we can
confirm by checking whether the ”t” property exists (lines 5-7), since this
property is exclusive of transitions.

1 MATCH (m) -[: CONTAINS_PN]->(s:PetriNet) -[: MODEL_EDGE *]->(p:

PetriNet)

2 MATCH path = (p) -[: MODEL_EDGE *]->(q)

3 WHERE p.t = "TransitionA " AND q.t = "TransitionB "

4 WITH DISTINCT m.ID AS modelID , nodes(path) AS path

5 WITH modelID , tail(path) AS path
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6 WITH modelID , apoc.coll.remove(path , size(path) -1) AS path

7 WHERE ALL(n IN path WHERE n.t IS NULL)

8 RETURN DISTINCT modelID

9 ORDER BY modelID

Eventually-Follows Pattern This query is similar to the one built to find
Directly-Follows patterns, but in this case there is no need to check what is
in between transitions A and B, as long as they are on the same path along
the Petri net the model will be considered a match.

1 MATCH (m) -[: CONTAINS_PN]->(s:PetriNet) -[: MODEL_EDGE *]->(p:

PetriNet)

2 MATCH (p) -[: MODEL_EDGE *]->(q)

3 WHERE p.t = "TransitionA " AND q.t = "TransitionB "

4 RETURN DISTINCT m.ID AS modelID

5 ORDER BY modelID

Parallel Split Pattern For this query, we have to find the ”AND” splits
and joins in the Petri net. We consider an ”AND” split is found when a
transition has more than one outgoing edge, and we consider an ”AND” join
is found when a transition has more than one ingoing edge (lines 1-5). Then,
we try to find two distinct paths in the Petri net between a parallel split and
a parallel join that contain A and B (lines 7-8). If B is not inside the path
for A and vice versa, we have found a model that contains a parallel split for
A and B (line 9).

1 MATCH (m) -[: CONTAINS_PN]->(s:PetriNet) -[: MODEL_EDGE *]->(ps:

PetriNet) -[e:MODEL_EDGE ]->()

2 MATCH (m) -[: CONTAINS_PN]->(s:PetriNet) -[: MODEL_EDGE *]->() -[f:

MODEL_EDGE]->(pj:PetriNet)

3 WHERE (ps.type = "tau" OR ps.type = "t") AND (pj.type = "tau"

OR pj.type = "t")

4 WITH m.ID AS modelID , ps , COUNT(DISTINCT e) AS numSplit , pj ,

COUNT(DISTINCT f) AS numJoin

5 WHERE numSplit > 1 AND numJoin > 1

6 WITH DISTINCT modelID , ps , pj

7 MATCH path = (ps) -[: MODEL_EDGE *]->(p) -[: MODEL_EDGE *]->(pj)

8 MATCH path2 = (ps) -[: MODEL_EDGE *]->(q) -[: MODEL_EDGE *]->(pj)

9 WHERE p.t = "TransitionA " AND q.t = "TransitionB " AND NOT q IN

nodes(path) AND NOT p IN nodes(path2)

10 RETURN DISTINCT modelID

11 ORDER BY modelID

Exclusive Choice Pattern This query is similar to the one built for the
Parallel split patterns, but the difference is where we look for the splits and
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joins. Instead of looking for transitions with more than one outgoing/ingoing
edge, we look for places that have these edges (line 3). Then, the query follows
the same steps as the previous one to determine which models are a match.

1 MATCH (m) -[: CONTAINS_PN ]->(: PetriNet) -[: MODEL_EDGE *0..]->(xs:

PetriNet) -[e:MODEL_EDGE ]->()

2 MATCH (m) -[: CONTAINS_PN ]->(: PetriNet) -[: MODEL_EDGE *0..] ->() -[

f:MODEL_EDGE]->(xj:PetriNet)

3 WHERE (xs.type = "p" OR xs.type = "s_e") AND (xj.type = "p"

OR xj.type = "s_e")

4 WITH m.ID AS modelID , xs , COUNT(DISTINCT e) AS numSplit , xj ,

COUNT(DISTINCT f) AS numJoin

5 WHERE numSplit > 1 AND numJoin > 1

6 WITH DISTINCT modelID , xs , xj

7 MATCH path = (xs) -[: MODEL_EDGE *]->(p) -[: MODEL_EDGE *]->(xj)

8 MATCH path2 = (xs) -[: MODEL_EDGE *]->(q) -[: MODEL_EDGE *]->(xj)

9 WHERE p.t = "TransitionA " AND q.t = "TransitionB " AND NOT q IN

nodes(path) AND NOT p IN nodes(path2)

10 RETURN DISTINCT modelID

11 ORDER BY modelID

Starts With Pattern For this query, we just need to determine if the
transition passed as parameter is connected to the starting place of the Petri
net (lines 1-2) to consider a match for the model.

1 MATCH (m) -[: CONTAINS_PN]->(s:PetriNet) -[: MODEL_EDGE]->(p:

PetriNet)

2 WHERE s.isStart IS NOT NULL AND p.t = "TransitionA "

3 RETURN DISTINCT m.ID AS modelID

4 ORDER BY modelID

Ends With Pattern Similar to the previous query, we just need to deter-
mine if the transition passed as parameter is connected to the end place of
the Petri net (lines 1-2) to consider a match for the model.

1 MATCH (m) -[: CONTAINS_PN ]->(: PetriNet) -[: MODEL_EDGE *]->(p:

PetriNet) -[: MODEL_EDGE]->(e:PetriNet)

2 WHERE e.isEnd IS NOT NULL AND p.t = "TransitionA "

3 RETURN DISTINCT m.ID AS modelID

4 ORDER BY modelID

Now that we have defined the queries for the patterns that we can use to
find models in the database, we can look at how these queries were added
into the user interface.
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Figure 6.10: Several pattern can be defined to find specific models stored in the
database.

6.3.3 Querying models through the user interface

To allow users to find models inside the database through the pattern queries,
we implemented a ”Find Models” button in the Models panel, as shown in
Figure 5.9. Clicking on this button will display the window shown in Figure
6.10.

We considered that the tool should allow users to define their search
through one or more patterns so they can obtain more specific results de-
pending on their needs. This is why we included a list of ”Filters”, where
the result of the first pattern of the list will be used as input for the next
pattern in line and so on.

To add a search pattern, the user can click on the ”Add” button, which
will display the window shown in Figure 6.11. Inside this window, the user
can select one of the six patterns defined previously and specify the transi-
tion(s) they want to search for in the Petri nets that represent the process
models. Each pattern is accompanied by an image and a description to help
users understand how the pattern looks like in the graph structure of a Petri
net. On this window, clicking on the ”Add Filter” button will add a new
entry to the ”Filters” list in Figure 6.10.

Back in the main window (Figure 6.10), users may choose to remove
patterns with the ”Remove” button or they can switch the order in which
they filter from the list of models with the ”Up” and ”Down” buttons.

To allow more experienced users to define custom queries outside of the
predefined patterns, we added an ”Edit Query” button that allows users to
modify the queries for the patterns already selected. We can see an example
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Figure 6.11: Users can choose between 6 different patterns to define a filter for
the model querying.
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Figure 6.12: Users can modify the pattern queries to customize their results.

in Figure 6.12, where we edit the original ”Ends with” query to find process
models that end with a transition whose name contains the word ”Archive”,
when the original query was built to find an exact match with the name
”Archive+Complete”. On this window, clicking on the ”Apply” button will
save the changes and update the list to let the user know that the pattern
query has been modified, as shown in Figure 6.13. These queries are executed
with a ”read-only” session to prevent unexpected changes into the data model
caused by the custom queries.

Once the pattern filters are set, the user can start the search by clicking
on the ”arrow” icon shown in the middle of Figure 6.10. We implement the
search with the help of Java code, where we create a loop that stops either
when the query for the last filter on the list has been executed or one of the
intermediate queries returns no matching models.

After the search is complete, the list of models on the right side of Figure
6.10 is updated with the results, but at any point the user can choose one
or two models from this list to display their Petri nets in the Graph panel,
similar to the functionalities described for the ”Show Petri Net” button in
Sections 6.2.2 and 6.2.3.

This functionality marks the end of our implementation for the Model
Analysis Layer, where the model comparison and model querying tasks help
us to address the Diagnose activity. Now that the implementation of the
tool is complete, we can move on to its evaluation.
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Figure 6.13: After a query has been modified by the user, the name of the filter
is updated to ”Custom query” to let the users know which pattern queries have
been updated.
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Chapter 7

Evaluation

In this chapter, we present 4 experiments designed to help us determine if
our implementation can help us answer the research questions set initially in
Section 1.3. As we recall, the main objective of our project is to determine
if it is possible to build upon the graph-based data model presented in [1] to
obtain a viable alternative to execute the activities that provide significant
results in a process mining project. For each experiment, we provide the
details about its setup and execution, after which we present and discuss the
results. All the experiments were run on a 2 Core Intel i7-6500U @ 2.50 GHz
Windows machine with 8 GB RAM.

7.1 Experiment 1

7.1.1 Setup

The objective of the first experiment is to help us answer research questions
RQ1 and RQ2:

RQ1. Is it possible to build on top of the data model proposed in [1] to execute
process mining-related activities in a graph database?

RQ2. Can we store process models in the graph database? If so, how would
the execution of process mining change in this environment?

Our implementation described in the previous chapters already seems to
provide a positive answer for these questions, since we have defined how we
can build on top of the data model from [1] and extend it to execute and
store the results from distinct process mining activities, such as the creation
of views, process discovery or model comparison.
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However, it is important to test these functionalities with a real dataset to
check if the activities are not only executed successfully, but also fulfill their
overall purpose by providing significant results for a process mining project.

In addition, we should also compare the execution of these activities
against other process mining tools to check whether we produce the same
results and to identify if their execution in this environment presents changes
in process mining.

The experiment is designed to simulate the need for an exploratory anal-
ysis on the BPI Challenge (BPIC) 2017 log [15]. This log records cases
of a loan application process at a Dutch financial Institute and in total it
contains 1,202,267 events pertaining to 31,509 loan applications. For these
applications, a total of 42,995 offers were created.

Let us assume that, for a process mining project related to the handling
these credit applications, we want to do an exploratory analysis and obtain
additional insights on the activities related to the extension of an Offer in-
side an Application. In other words, we would like to know how the Offer
activities interact between them and how they interact within the process of
an Application. For this experiment, we will work under the assumption that
all the activities registered in the log that start with either ”A ” or ”W ”
represent the Application events, while the activities that start with ”O ”
represent the Order events.

Starting from a random subset of the BPIC17 event data stored in a
CSV file (consisting of 765 events pertaining to 20 different applications) 1,
we use both our tool and ProM to generate two process models, one including
only the Offer-related activities, the ”Offers” model, and another including
both the Offer-related and Application-related activities, the ”Applications”
model, whose visualizations will allow us to obtain the insights requested.

To showcase some of the differences between the models generated by our
tool and ProM, for the model that includes both the Offer and Application-
related activities we will adjust one of the parameters of the Heuristic Miner,
the Length-2 Loop threshold, changing the default parameter of 0.9 and set-
ting it to 0.7. In both cases, we keep track of the amount of interactions with
the application, such as clicking on a button, moving a slider or typing a file
name, and the time we take to complete each step.

We should note that our tool and ProM have some differences in the way
they handle and present their results. These differences must be accounted
for during the experiment because those functionalities add value to the final

1The Python script used to generate the subsets for all the experiments is available
at https://github.com/vhernandezs/event-graph-process-mining. The name of this file
is ”BPIC17 Sample 20cases.csv”. This script is based on those provided in the GitHub
repository shared in [1].
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Objective Activity (ProM) Activity (Graph Tool)

Importing event log Import event data Import event data

Creating ”Offer” view
Create the ”OfferID” XES file Define the ”Offer” Entity Type

Save the ”OfferID” XES file
Using ”Offer” Entity Type, define the
”Activity+Lifecycle” Class

Creating ”Offer” model
Create the ”OfferID” model Create the ”Offer” model
Save the ”OfferID” model Visualize the ”Offer” model

Creating ”Application”
view

Create the ”Application” XES file Define the ”Application” Entity Type
Save the ”Application” XES file Create the Derived Entity

Using the derived Entity Type, define the
”Activity+Lifecycle” Class

Creating ”Application”
model

Create the ”Application” model Create the ”Application” model
Save the ”Application” model Visualize the ”Application” model

Comparing models Compare the models

Table 7.1: Activities executed in each tool for experiment 1.

outcome, so we consider that we must add steps in each execution to best
emulate what the other tool does automatically.

For the experiment, we include two additional steps in our tool and two
additional steps in ProM. The first step added in our tool is the visualization
of the discovered model. ProM already provides the visualization automat-
ically after the process model has been discovered, so we need to account
for that. The second step added in our tool is the model comparison. This
functionality provides us with a better way to analyze the results from the
task, so we consider important to add it as well. Then, the steps added in
ProM are the export of the event log and the process model. Since our tool
automatically stores the results in the database and the results in ProM are
lost once the application is closed, we need to account for that functionality
in ProM.

7.1.2 Execution

Table 7.1 shows the activities executed in each tool to obtain the process
models that will help us understand how the Offer activities interact be-
tween them and how they interact with the Application activities. This
table includes an additional column called ”Objective” that helps us group
the activities based on the main goal they help to achieve, providing a direct
comparison between their executions. This way, we can identify for example
that to create the ”Offer” view, in ProM we need to create and save the XES
file based on the imported CSV file, but in our tool we need to define the
”Offer” entity type and the ”Activity+lifecycle” class. The details on how
each step was executed can be observed in Appendix E.1.

After executing the steps shown in Table 7.1 and having generated the
process models in both tools, we can proceed to show the results from the
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Objective Time (s) Interactions
Graph ProM Graph ProM

Importing event log 20 8 13 4

Creating ”Offer” view 27 29 14 19

Creating ”Offer” model 36 26 8 11

Creating ”Application” view 52 24 15 18

Creating ”Application” model 698 30 11 14

Comparing models 8 - 2 -

Total 841 117 63 66

Table 7.2: Comparison between execution times (in seconds) and interactions
with each tool.

first experiment.

7.1.3 Results

We divide the presentation and discussion of the results in two parts, first, we
discuss the usability of our tool compared against ProM and then we discuss
the differences between the resulting models.

Usability

We can already see in Table 7.1 that our tool does need to execute more
activities overall than ProM (11 against 9). Even when we include the steps
taken in ProM to save the log files and models, the two-step process to define
a view on the data for our tool (define entities and classes) does impact on the
final result together with the extra step we take to compare models, which
is something ProM does not provide.

Then, we can see the comparison between execution times and interac-
tions in Table 7.2. The times and interactions were also added by objective
to obtain a direct comparison between the tools.

The difference between execution times favors ProM, where the process
from start to finish took around 2 minutes while the same process for our
tool took around 14 minutes, with the creation of the ”Application” model
as the biggest difference-maker. Regarding the interactions, the numbers are
very close to each other.

At first glance, it may seem like our tool does not provide any significant
advantage over ProM, but we should mention that the model comparison we
executed in 8 seconds and with two clicks would take a considerable effort
to replicate using the results from ProM, where switching between views
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Figure 7.1: Petri net comparison of the ”Offer” and ”Application” process models
discovered.

or exporting the images of the models to compare them side by side would
increase the complexity of the analysis. In addition, our model comparison,
shown in Figure 7.1, does provide additional value to the analysis. As we
can see, the visualization helps us to clearly identify and track where the
Offer-related activities interact within an Application.

Another thing to mention is that with our tool we do not need to create
and store different views of the event data as we require in ProM with the
XES and model files. This advantage becomes more apparent when the
process mining project becomes iterative, where, after the initial analysis,
more views of the event data are required to obtain different insights. In
that case, the saved XES files serve no purpose and the CSV file must be
pre-processed once again. In contrast, our tool allows the users to go back
into the Entities or Classes panel of the user interface at any time to define
new ways to connect and interpret the data.

Resulting Process Models

Figures 7.2 and 7.3 show the models generated by ProM and our tool re-
spectively for the Offer-related activities, which describe the same behavior,
providing us with an evidence that our implementation for the Heuristic
Miner algorithm was successfully implemented. Another thing we should
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Figure 7.2: ”Offers” process model discovered by the Heuristic Miner algorithm
in ProM.

mention with respect to these models is that the visualization for the discov-
ered model in ProM also showed us the Application-related activities, even
if they were not connected to the start and end of the process, as shown in
Figure 7.4.

Then, the models generated by ProM and our tool that include both the
Offers and Applications can be observed at the top and bottom of Figure 7.5
respectively. For this second pair of process models, to improve its readabil-
ity, the figure only displays the first part of the models, but this is enough
for us to discuss about their similarities and differences.

As we can see on the right-hand branch of the ProM model and the top
branch of the Graph tool model (both enclosed in a green box in Figure 7.5),
the same behavior is described in both models where only the Application
activities are involved, but there are a couple of differences with respect to
the left-hand branch of the model generated by ProM and the bottom branch
generated by our tool (both enclosed in an orange box in Figure 7.5). These
2 differences are described next.

129



Figure 7.3: ”Offers” process model discovered by the Heuristic Miner algorithm
in our tool.

Figure 7.4: Full visualization of the ”Offers” process model discovered by the
Heuristic Miner algorithm in ProM.
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Figure 7.5: Top: ”Application” process model discovered by the Heuristic Miner
algorithm in ProM. Bottom: ”Application” process model discovered by the
Heuristic Miner algorithm in our tool.

131



Figure 7.6: Offer-related activities inside an Application from the BPIC17
dataset.

Difference 1 The first difference can be found in the connections between
the ”O Create Offer+COMPLETE” and the ”O Created+COMPLETE” ac-
tivities. We are able to see this difference due to the value set for the Lenght-2
Loop parameter (L2L=0.7). In the ProM model, it is implied that we can
move back and forth between these two activities in the process before moving
on to the ”O Sent (mail and online)+COMPLETE” activity. This behavior
is not represented in the graph tool model, where the process can only move
forward at that point. This difference is caused by the independent dimen-
sions we defined for the log during the import of event data in our tool, which
help us address the case where we have events that could be associated to
multiple entities and we need to choose one, avoiding the inclusion of unseen
behavior in the model. We can confirm this by taking a closer look at some of
the events of the ”BPIC17 Sample 20cases.csv” log file. A simplified version
of this file can be observed in Figure 7.6.

In Figure 7.6 we can see that Application 232032104 contains 8 activ-
ities related to 4 different offers. Looking at the events for this applica-
tion without considering the offers as a second, separate entity (as ProM
does), we can see why the process model discovered includes a connection
from ”O Created+COMPLETE” to ”O Create Offer+COMPLETE”, since
it seems to happen 4 times only in this application. However, if we consider
the Offer as a separate entity, we can see that no single offer moves back
to the ”O Created+COMPLETE” activity, and that behavior is correctly
identified by the model generated by our tool.

Difference 2 The second difference between the model generated by ProM
and our tool is in the inclusion of the ”W Complete application+COMPLETE”
in our model as an intermediate activity between the ”O Sent (mail and
online)+COMPLETE” and the ”W Call after offers+SCHEDULE” activi-
ties. Taking a closer look at some of the events from the ”BPIC17 Sample
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Figure 7.7: Second set of Offer-related activities inside an Application from the
BPIC17 dataset.

20cases.csv” log in Figure 7.7, we can see why this is happening.
We can see that for Application 232032104 there are four ”O Sent (mail

and online)+COMPLETE” activities taking place in a row, followed by a
”W Complete application+COMPLETE” activity. Again, if we do not con-
sider the Offers as a second, separate entity, it might seem that the Offer-
related activities are in a loop before finally moving on to the ”W Complete
application+COMPLETE” activity. However, since we specified in our tool
that the ”OfferID” attribute is a separate entity, we can see that these
four Offer activities belong to different offers, and they converge in the
”W Complete application+COMPLETE” activity, which marks a difference
on the frequency with which this connection happens, going from one to four.

Overall, the results from this experiment help us realize that, even if the
execution of our tool does not present a significant improvement in terms
of performance and usability when compared to ProM, the process mining-
related activities implemented in our tool on top of the graph-based data
model not only provide significant results in a real-case scenario, but also
provide additional, valuable insights for the process in the form of the model
comparison visualization and the accurate description of behavior through
our handling of multi-dimensional event data.

7.2 Experiment 2

7.2.1 Setup

The objective of the second experiment is to help us add on the answer for
the research question RQ1:

RQ1. Is it possible to build on top of the data model proposed in [1] to execute
process mining-related activities in a graph database?

Experiment 1 already helped us answer this question from a usability
perspective, where we confirmed that with our tool it is possible to execute
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# Subset Name # of Cases # of Events
1 BPIC17 Sample 20cases.csv 20 765
2 BPIC17 Sample 40cases.csv 40 1596
3 BPIC17 Sample 80cases.csv 80 2883
4 BPIC17 Sample 160cases.csv 160 5808
5 BPIC17 Sample 320cases.csv 320 12297

Table 7.3: BPIC17 Subsets details

distinct process mining-related activities on top of a graph database. How-
ever, we can further explore this question by analyzing how the performance
of the tool scales when we try to obtain results based on larger event logs.

Similar to what we did for the previous experiment, we should also com-
pare its performance against other process mining tools to to put the results
into perspective.

This experiment is designed to register the time it takes for the tool to
complete a series of tasks. Once again, we will be using the BPIC17 dataset
as our reference. From the BPIC17 dataset, we generated five random subsets
of events, whose details can be observed in Table 7.3.

For every log, we use both our tool and ProM to generate and visualize
one process model. This means that we need to import the data, define the
Entity Type/Class and Case Attribute respectively, and generate the model
using the Heuristic Miner algorithm. Similar to the previous experiment,
we add additional steps in ProM and our tool to emulate the functionalities
that each of them makes automatically (e.g. model visualization in ProM
and data storage in our tool).

7.2.2 Execution

Table 7.4 shows the activities executed in each tool to obtain the process
models for each log in Table 7.3 and observe the performance. The amount of
activities performed is less than those executed for the previous experiment
because the focus now is the execution times of the activities, not their
functionality. We should mention that for every step executed in each tool,
we count the time taken from the first interaction until the result is shown
on screen. The details on how each step was executed can be observed in
Appendix E.2.

After executing the steps shown in Table 7.4 and having generated a
process model for each log in Table 7.3, we can proceed to show the results
from the second experiment.

134



Objective Activity (ProM) Activity (Graph Tool)

Importing event log Import event data Import event data

Creating ”Application”
view

Create the ”Application” XES file Define the ”Application” Entity Type

Save the ”Application” XES file
Using ”Application” Entity Type, define
the ”Activity+Lifecycle” Class

Creating ”Application”
model

Create the ”Application” model Create the ”Application” model
Save the ”Application” model Visualize the ”Application” model

Table 7.4: Activities executed in each tool for experiment 2.

Figure 7.8: Execution times for logs containing different number of cases.

7.2.3 Results

Figure 7.8 shows the execution times for each objective for the different
number of cases included in the logs. Then, Figure 7.9 shows a plot where
we can see how the execution times (in minutes) scale up for each tool. In
this second figure we can see that, even when the number of cases increases
from 20 to 320, the execution time for ProM only takes around 2 times longer,
while for our tool the time increases by approximately 4 times just from the
scale up from 20 to 40 cases. This can also be observed on the scale up from
160 to 320 cases.

Based on the breakdown of the execution times shown in Figure 7.8,
which indicates that the creation of the process model is what takes most
of the time, we assume that the complexity of the queries built to execute
the Heuristic Miner algorithm, especially those that compute the input and
output bindings (which need to query through all the events connected by
:DF paths), are the main reason why this activity takes longer. We should
also mention that the biggest log used for this experiment, which consists
of 320 cases, represents ∼1% of the total number of cases included in the
BPIC17 dataset (31,509 cases in total).

From the results of this second experiment we can say that there is a
significant increment in the execution times for our tool with larger datasets,
which becomes even more apparent when compared against ProM. Other
than revising the process discovery queries to find ways to optimize their
performance, we believe that the tool could also benefit from the implemen-
tation of the third layer defined in Figure 3.1, the View Layer, whose activities
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Figure 7.9: Plot showing how the execution times (in minutes) scale up for each
tool.

include the filtering and aggregation of events, both of which help in reduc-
ing the complexity of the log and potentially help diminish the impact of the
long execution times when discovering a process model.

7.3 Experiment 3

7.3.1 Setup

The objective of the third experiment is to help us answer research question
RQ3:

RQ3. Is there an added benefit on the joint storage of different process mining
components in the graph database?

In Section 5.1, we defined a new relation called :REPRESENTS that
connects the activities from a process model with the event classes. We
were able to do this given that both components are stored in the same
graph database, represented by different types of nodes and relations. In
that section we established that this connection could help us to potentially
address challenge C10 of the Process Mining Manifesto [3], which mentions
that it is necessary to improve usability for non-experts by linking the event
data with process models to provide valuable interactions with end-users.

To determine if we can provide valuable interactions through the :REP-
RESENTS relation, the experiment is designed to check how the connection
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between models and events can be used to obtain additional insights on the
process being evaluated.

As we discussed in Section 3.1, another activity that should be consid-
ered during the Mining and Analysis stage of a process mining project is
the Conformance Checking, where we can detect inconsistencies between a
process model and the event log used to discover it. This activity is not
only mentioned in the PM2 methodology [2], but also in the Process Mining
Manifesto [3], highlighting its importance. Although building a conformance
checking functionality is outside the scope of the current implementation, we
can define an example query that shows how the connection between mod-
els and events provides a guideline for a future possible implementation of
conformance-checking activities.

In summary, the third experiment is about defining a query that shows
how the connection between Model and Class nodes can provide value to end-
users by allowing us to see how the behavior described by a process model
represents the event data, and thus providing a path for a future conformance
checking implementation.

7.3.2 Execution

Since Conformance Checking is used to check whether a model correctly
represents the activities recorded in the event log, we consider that a first
step towards this can be the identification of those activities that appear in
the event log but are not represented in the model; with this information, we
can already obtain a first answer on how many traces (or entity type paths
in our case) cannot be fully replayed in the generated model.

The query shown below helps us compute which activities were excluded
from a given model and, for those activities, count the number of distinct
entity type paths in which they appear. In line 1, we specify the name
of the model with the ModelID passed as argument and we make use of the
:REPRESENTS relation to obtain the Class type used to generate the model
in line 2. Now that we now the Class type, in line 3 we traverse the graph from
the other end of the process model to retrieve all the existing Class nodes
for that type. If we retrieved the Class nodes using the :REPRESENTS
relations, we would miss the existing Class nodes that are not represented in
the model. Then, in line 4, we filter these Class nodes to keep only those that
do not have a connection with the process model. Then, with the remaining
Class nodes stored in variable ”classNode” in line 5, in line 6 we traverse
the graph to reach the Entity nodes and retrieve those whose :DF relations
were used to connect the events (we identify the correct set of Entity nodes
through the EntityType argument). Then, in line 7, we return the IDs of the
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Class nodes that represent the model activities together with the number
of traces (Entity Type paths) where these activities appear. We order the
results by number of appearances first and by Class ID second in line 8.

1 MATCH (m:Model{ID:ModelID }) --(dg:DG_node) -[: REPRESENTS]->(c:

Class)

2 WITH DISTINCT m AS ProcessModel , c.Type AS ClassType

3 MATCH (ProcessModel) --(:Algorithm) --(:Log) --(:Event) --(c:

Class{Type:ClassType })

4 WHERE NOT EXISTS (( ProcessModel) --(:DG_node) -[:M_C]->(c))

5 WITH c AS classNode

6 MATCH (classNode) --(:Event) --(en:Entity{EntityType:EntityType })

7 RETURN classNode.ID AS ClassActivity , COUNT(DISTINCT en) AS

EntityPathAppearances

8 ORDER BY EntityPathAppearances DESC , ClassActivity

To execute the query, we need to define the model ID and the Entity
Type. The model we use as an input is the ”Application” model, whose ID
is ”HM 2” and was originally generated as part of the experiment described
in Section 7.1. This model describes the behavior of the BPIC17 sample
dataset for the Application and Offer activities. The inputs used to generate
this model for that experiment were the 765 Event nodes that make up 20
applications of the BPIC17 dataset, 27 derived Entity nodes, whose entity
type is ”OfferIDcase” and describe the relation between the Application and
Offer events, and 50 Class nodes, which describe the model activities through
the ”Activity+Lifecycle” event class.

7.3.3 Results

Using (ModelID=”HM 2”) and (EntityType=”OfferIDcase”) as the param-
eters for the query shown in Section 7.3.2, we obtain the results shown in
Table 7.5.

In Table 7.5 we can see that 11 out of the 50 distinct Class activities
were excluded from the model, with ”W Handle leads+COMPLETE” and
”W Handle leads+START” appearing in 4 out of 27 entity type paths. This
means that, in the best case scenario, the process model can replay 85.2%
(23 out of 27) of the traces (entity paths).

The result of this experiment shows us that the connection between mod-
els and events (through the Class nodes) can represent value to the users by
providing insights on how well the model is representing an event log.

In addition, this connection could in theory be visualized in the tool.
The user interface allows us to display any type of nodes and relations, so
we can assume that an additional functionality can be implemented where,
based on a given model ID, the nodes that represent the model and the Class
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ClassActivity EntityPathAppearances
W Handle leads+COMPLETE 4
W Handle leads+START 4
A Denied+COMPLETE 2
O Refused+COMPLETE 2
O Sent (online only)+COMPLETE 1
W Call after offers+COMPLETE 1
W Call after offers+WITHDRAW 1
W Call incomplete files+COMPLETE 1
W Complete application+WITHDRAW 1
W Handle leads+RESUME 1
W Handle leads+SUSPEND 1

Table 7.5: Excluded activities from the ”Application” model.

or Event nodes correlated to it can be retrieved and displayed in the Graph
panel, similar to what is already done for the model comparison functionality
described in Section 6.2.3.

7.4 Experiment 4

7.4.1 Setup

The objective of the fourth experiment is to help us add on the answer for
research question RQ3:

RQ3. Is there an added benefit on the joint storage of different process mining
components in the graph database?

In our tool, we were able to implement several distinct functionalities
thanks to the storage of different process mining components as nodes and
relations of a graph. Therefore, we should also check if the sum of all these
functionalities represents any additional benefit, and to do this, we can refer
to the Process Mining Manifesto [3] and check if our tool helps address some
of the challenges related to process mining.

As mentioned in Section 2.1.3, the manifesto lists 11 challenges that need
to be addressed to ensure that this discipline can continue providing value for
organizations. For this experiment, we first list all the main functionalities
implemented for our tool and then we try to identify which of them help
address one or more of these challenges, allowing us to determine how our
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Graph Tool Functionalities
Upload CSV Define Entity Type Attributes
Define Dimensions Create Classes
Clear Database Discover Models: Heuristic Miner
Set/Clear Constraints Display Available Models
Display Available Logs Show Model
Delete Log Show Petri Net
View Log Details View Model Details
View Instance Level Nodes Delete Model
View Model Level Nodes Model Comparison
View Node Details Find Models
Display Nodes with Sugiyama Layout Storage of Process Mining Data
Create Entities/Derived Entities

Table 7.6: List of the 23 functionalities implemented for our tool.

tool provides additional benefits by contributing to the discipline of process
mining.

7.4.2 Execution

After doing an inspection through our implementation and the different ways
in which we can interact with the tool through the user interface, we iden-
tified 23 different functionalities that were implemented. The list of these
functionalities can be observed in Table 7.6.

Based on the description of the challenges provided in the Manifesto, we
identified those functionalities that helped addressing one or more of them.

7.4.3 Results

Table 7.7 shows the functionalities that address at least one challenge, with a
total of 4 challenges addressed by our implementation. From the 23 function-
alities identified, 17 of them are included in this table. The functionalities
excluded are Upload CSV, Clear Database, Set/Clear Constraints, Delete Log,
Define Entity Type Attributes, and Delete Model. We already described in
the previous sections why these 6 functionalities are required for the correct
operation of the tool, but while they address a need for our implementation,
we did not identify any way in which they address one of the challenges. The
way in which each challenge is addressed is described next.
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Functionality C1 C9 C10 C11
F1 Define Dimensions X X
F2 Display Available Logs X
F3 View Log Details X
F4 View Instance Level Nodes X X X
F5 View Model Level Nodes X X X
F6 View Node Details X X
F7 Display Nodes with Sugiyama Layout X
F8 Create Entities/Derived Entities X
F9 Create Classes X
F10 Discover Models: Heuristic Miner X
F11 Display Available Models X
F12 Show Model X X
F13 Show Petri Net X
F14 View Model Details X X
F15 Model Comparison X X
F16 Find Models X
F17 Storage of Process Mining Data X X

Table 7.7: Process Mining Manifesto challenges addressed by tool functionalities.

Challenge C1 The first challenge addressed by the tool is C1, Finding,
Merging and Cleaning Event Data. More specifically, the tool addresses two
of the hurdles described in this challenge. The first hurdle talks about the
need to add context to the events by merging event data with context data.
Functionality F1 handles this by allowing the user to specify the existing
dimensions in the event data, providing a guideline to obtain more accu-
rate representations of the data. The second hurdle refers to the need to
turn event data into ”process centric” rather than ”object centric” [3], often
times needing merging and preprocessing to make the change, but with func-
tionalities F8 and F9 building on the concepts of the data model proposed in
[1], the user is able to define the connections between the data, creating enti-
ties and classes that best describe the process by relating events based on the
selected attribute. Since the details of the dimensions, entities, and classes
are stored in the graph database, we can also consider that functionality F17
is also helping to address these hurdles.

Challenge C9 The second challenge addressed by the tool is C9, Com-
bining Process Mining With Other Types of Analysis, specifically when this
challenge describes the importance of combining process mining with visual
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analytics, which ”combines automated analysis with interactive visualizations
for a better understanding of large and complex data sets” [3]. Functionali-
ties F4, F5, F6, F12, F14, and F15 all address this since they use interactive
visualizations to provide a better understanding of the different steps of pro-
cess mining. The usage of interactive visualizations is the following: If the
Event, Entity and/or Class nodes that are displayed in F4 and F5 are clicked,
the table in F6 will be populated with their properties; clicking on a model
node displayed by F12 will populate the table of F14 with the input and
output bindings of that node, and finally the comparison of two Petri nets
provided by F15 enables a new interaction where a click on an activity of the
first Petri net will highlight the activity or activities with the same name in
the second Petri net.

Challenge C10 The third challenge addressed by the tool is C10, Improv-
ing Usability for Non-Experts, which refers to the creation of user-friendly
interfaces and the linking of event data with process models to provide valu-
able interactions with end-users [3]. Given that a GUI was developed, it is
normal to expect that this is the challenge covered by most features. The
design of the tool selection windows in F1, F4, F5, F10, and F16 help the
user understand what to do to interact with the tool, while the tables in F2,
F3, F6, F11, and F14 display relevant information about the logs, process
models, or nodes currently displayed in the graph panel of the user interface.
Then, in order to provide the event data and process model interactions for
the end-users, the tool stores in the database the connection between Model
and Class nodes after generating a process model, therefore F17 also helps
to address this challenge.

Challenge C11 Finally, the tool also addresses challenge C11, Improv-
ing Understandability for Non-Experts, which, among other things, mentions
that results should be presented using a suitable representation [3]. The vi-
sualizations in F4, F5, F12, F13, and F15 take advantage of F7, which adapts
the Sugiyama algorithm to display the nodes.

The results from this experiment help us determine that several func-
tionalities implemented for the tool not only provide the necessary steps to
execute a process mining project, but also make a contribution in the pro-
cess mining field by addressing 4 of the challenges described by the Process
Mining Manifesto.
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7.5 Discussion

In this section, we further discuss how the experiments helped us answer the
three research questions proposed initially.

RQ1. Is it possible to build on top of the data model proposed in [1]
to execute process mining-related activities in a graph database?

Experiment 1 helped us realize that, with a tool built on top of a graph
database, using as a basis the data model proposed in [1], we can execute
the basic steps of a process mining project that require an interaction with a
tool and obtain significant results that provide value for the analysis of the
process being evaluated. In addition, this experiment showed us that we can
not only replicate what ProM does, but thanks to the flexibility provided
by the data model to specify the dimensionality of the data, we can obtain
results that more accurately represent the process.

However, experiment 2 then showed us that there is still room for improve-
ment for the tool with respect to its usability. While our implementation does
provide several benefits such as the storage of all the process mining-related
components in one place or the definition of data dimensionality to obtain
more accurate results, its performance with larger datasets is something that
could be improved to make this tool a more viable option for any kind of
process mining project.

We should also mention that these results were obtained almost exclu-
sively with the usage of the graph database through Cypher queries with
minimal support from Java, which, other than for the implementation of
the user interface, was only used in a couple of occasions to deal with loops
that cannot be handled easily by Cypher (e.g. the iterations in the Heuristic
Miner to connect the activities with missing inputs or outputs, as described
in Section 5.2.6).

RQ2. Can we store process models in the graph database? If so,
how would the execution of process mining change in this environ-
ment?

Experiment 1 also showed us that we can not only store process models inside
the graph database, but we can also execute process discovery algorithms to
create them. Additionally, this experiment also showed us that to obtain
these results, the way in which process mining is executed changes when we
use our tool, since the outputs from previous stages differ in the graph-based
environment.
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In regular process mining projects, where we usually have to define the
case identifier for the log, which remains constant for the duration of the
analysis, now we can define multiple entities, derived entities and classes
that provide different perspectives of the same event log and allow us to
discover new process models, enriching the analysis.

The ease with which our tool allows us to define new entity identifiers and
event classes to discover new process models makes the overall execution of a
process mining project a more iterative proposition, where we can jump back
from the model analysis to the definition of views at any point and define new
ways to connect the data without losing the information generated previously,
given that everything remains stored in the graph database.

RQ3. Is there an added benefit on the joint storage of different
process mining components in the graph database?

Experiment 3 helped us realize that storing the models together with the
event data can provide valuable insights on the process under evaluation.
The connection between models and events was not only useful to define the
queries that execute the Heuristic Miner algorithm, but it also provides a
path to expand on our current implementation and be able to address more
process mining-related activities such as conformance checking.

Then, experiment 4 showed us the benefits of developing a tool under a
data model that integrates several different process mining components. The
functionalities provided by our tool, made possible by the representation of
events, entities, classes and models exclusively through nodes and relations,
not only provide value by allowing us to define views or discover models which
can later be queried or compared, but it is the fact that all of these activities
can be done in one place that increases its positive impact. Even now we can
already identify that, in a future update, the tool could go one step further
and be configured to show how the models and event data relate to each
other in the same visualization, providing yet another valuable interaction
for process mining projects. As we saw in the results of experiment 4, we
were able to address multiple process mining challenges with several tool
functionalities thanks to this integrated approach.
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Chapter 8

Conclusion

In this thesis, we discuss the implementation of a tool that is able to build on
top of a graph-based data model to execute several process mining-related
activities, including the data import into the graph database, the creation
and enrichment of event logs, process discovery, and process diagnosis. To
evaluate the tool, we executed several experiments to test its usability, per-
formance and contributions to the discipline of process mining.

To the best of our knowledge, there is no existing process mining tool that
takes advantage of the benefits of the graph-based data models to handle
multi-dimensional data and execute process mining-related activities. This
is why we aimed to determine the feasibility of using one of these data models
to obtain a viable alternative to execute process mining.

For our implementation, we referred to the PM2 methodology [2] to iden-
tify the main activities of a process mining project that are executed with
the help of a tool to determine what a tool built on top of a graph database
should be able to execute. Based on these activities, we defined a 5-layer
architecture that provided the guideline for the implementation of our tool.
The 5 layers are: (1) Event layer, (2) Entity and Behavior Layer, (3) View
Layer, (4) Model layer, and (5) Model Analysis layer.

From the main list of activities, we identified the most essential that
provide valuable insights into the process under evaluation and confirm the
feasibility of the graph-based approach, which helped delimit the scope of
our tool. As a result, the activities from the third layer were excluded from
our implementation, whose objective was to execute activities that create
data subsets or reduce the complexity of the log. As part of our scope, we
considered the implementation of an intuitive user interface to simplify the
execution of the activities.

Using as a basis the graph-based data model and queries presented by
Esser and Fahland in [1], we implemented the first two layers of the tool,
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where we defined the way to import the data and define and enrich views of
the event data through entities and classes.

Then, we presented our extension to the data model from [1] by defining
three new node types in the form of the Algorithm, Model and Model node.
These nodes help us represent process models in the graph database and
connect them with the rest of the data model. Using this extended data
model, we implemented a process discovery algorithm, the Heuristic Miner,
where we define queries that were able to successfully generate a process
model that describes the behavior registered in an event log, completing our
implementation of the Model layer.

Then, to implement the Model Analysis layer and allow users to perform
diagnosis on the discovered models, we implemented two more functionalities
in the graph-based tool, the model comparison and the model querying. For
the model comparison, we identified the need to translate the original output
of the Heuristic Miner, the dependency graph, into a Petri net, to allow the
comparison of any pair of process models that can be represented by Petri
nets, instead of considering exclusively dependency graphs. Then, for the
model querying, we define 6 search patterns to query for models already
stored in the graph database, providing users with an alternative to find the
models to analyze.

To evaluate the tool, we defined 4 experiments to test the usability, per-
formance and contributions of our tool. The results from these experiments
helped us confirm that it is not only possible to execute process mining on
top of a graph database, but there are some added benefits by doing so. We
were able to confirm that with the graph data model we are able to discover
process models that correctly describe the behavior of event logs that contain
multi-dimensional data, as evidenced by the differences between the models
generated by our tool and those generated by the process mining tool ProM.
The joint storage of distinct process mining components proved to be an ad-
ditional advantage of our approach, since it allowed us to create connections
and implement functionalities that may not be available in other environ-
ments. These include the connection between process models and the event
data, which provide another way to analyze how the models represent the
behavior of the event log, and the usage of the database as a model repos-
itory, which allows us to provide model querying and model comparison as
additional tools for users in their analysis.

Overall, the tool also has an impact on the regular approach to process
mining, since the sum of these functionalities integrated in one tool make for
a more iterative approach, where the steps from the definition of views to
the comparison of discovered process models can be easily replayed through
the user interface, allowing for more flexibility in the analysis. In addition,
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the implementation of the user interface invites for users with less or no
experience in the usage of graphs for process mining to work with the tool
and explore the possibilities it provides without the need to define complex
Cypher queries from the start 1.

8.1 Limitations and Future Work

The current execution time of the tool to discover a process model through
our implementation of the Heuristic Miner algorithm may present an impor-
tant limitation of our tool in practice. Further improvements on the per-
formance of the algorithm queries are required, where perhaps the directly
follows connections between event classes could be further exploited to avoid
the extensive search in the event data that is required for one of the steps of
the algorithm.

Another alternative that could have a positive impact on the performance
of the algorithm is the implementation of filtering and aggregation activities
on the event data. These activities, which are part third layer in the archi-
tecture described in Figure 3.1 (View Layer), were excluded from our scope
since they were not considered essential to test the feasibility of working with
process mining in a graph database, but they could prove valuable to reduce
the complexity of the log, and therefore improve the performance of the al-
gorithm. However, it remains an open question how other process discovery
algorithms would perform using our proposed graph-based data model as a
basis.

In this regard, we should say that our implementation does consider that
further functionalities can be added in the future other than the already
mentioned View Layer. First, the extended data model was designed with
the intention of describing not only the dependency graphs generated by
the Heuristic Miner algorithm, but also any modeling language that can be
represented through a graph structure. Then, the representation of Petri
nets established in our data model invites for more discovery algorithm to
be added into the graph environment with the certainty that they can be
compared with other process models through our user interface.

Finally, future work can also include the development of additional pro-
cess mining-related activities such as process enhancement or conformance
checking, with a suggested start to approach the latter already provided as
part of the evaluation done in this thesis.

1The full implementation of the work done for this thesis, together with the
data subsets used for its evaluation, is available at the following GitHub repository:
https://github.com/vhernandezs/event-graph-process-mining
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Appendix A

Sugiyama Algorithm

In this appendix we describe our implementation of the Sugiyama algorithm,
which is used to display the nodes retrieved from the database in the user
interface. First, we describe the main steps of our implementation. Then,
we proceed to show the Java code.

Our implementation of the Sugiyama algorithm is based on [29]. In this
approach, they propose a technique consisting of 4 steps to draw directed
graphs: (1) Rank, where the nodes are assigned in layers, (2) Order, to order
the nodes within each layer to avoid edge crossings, (3) Position, to set the
layout coordinates of the nodes, and (4) Drawing edges, to define the control
points for edges.

For our implementation, we excluded the last step and we included a step
prior to the Rank to remove the cycles and make the graph acyclic, which is
a prerequisite to execute the Sugiyama algorithm.

The Java code for the functions that represent the four main steps of our
implementation is shown below. The full implementation can be found in
the GitHub repository available at https://github.com/vhernandezs/event-
graph-process-mining.

1. Remove Cycles

1 pr i va t e void removeCycles ( ) {
2 List<Node> nodes = graph . nodes ( ) . c o l l e c t ( Co l l e c t o r s . t oL i s t ( ) ) ;
3

4 f o r (Node n : nodes ) {
5 dfsRemove (n) ;
6 }
7 }
8

9 pr i va t e void dfsRemove (Node node ) {
10 i f (marked . conta in s ( node . ge t Id ( ) ) ) re turn ;
11

12 marked . add ( node . ge t Id ( ) ) ;
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13 s tack . add ( node . ge t Id ( ) ) ;
14

15 List<Edge> outgoingEdges =
node . l eav ingEdges ( ) . c o l l e c t ( Co l l e c t o r s . t oL i s t ( ) ) ;

16 f o r (Edge e : outgoingEdges ) {
17 i f ( s tack . conta in s ( e . getTargetNode ( ) . ge t Id ( ) ) ) {
18 i f ( removeCycles ) a l lEdges . remove ( e ) ;
19 e l s e changeEdgeDirect ion ( e ) ;
20 } e l s e i f ( ! marked . conta in s ( e . getTargetNode ( ) . ge t Id ( ) ) ) {
21 dfsRemove ( e . getTargetNode ( ) ) ;
22 }
23 }
24

25 s tack . remove ( node . ge t Id ( ) ) ;
26 }

2. Rank

1 pr i va t e void as s i gnLayer s ( ) {
2 List<Edge> edges = new ArrayList<>(a l lEdges ) ;
3 List<Node> nodes = graph . nodes ( ) . c o l l e c t ( Co l l e c t o r s . t oL i s t ( ) ) ;
4

5 List<Node> s t a r t = getVert icesWithoutIncomingEdges ( edges , nodes ) ;
6 whi le ( s t a r t . s i z e ( ) > 0) {
7 l a y e r s . add ( s t a r t ) ;
8 List<Node> f i n a l S t a r t = s t a r t ;
9 edges = edges . stream ( ) . f i l t e r ( e −>

! f i n a l S t a r t . conta in s ( e . getSourceNode ( ) ) ) . c o l l e c t ( Co l l e c t o r s . t oL i s t ( ) ) ;
10 nodes . removeAll ( s t a r t ) ;
11 s t a r t = getVert icesWithoutIncomingEdges ( edges , nodes ) ;
12 }
13 }
14

15 pr i va t e s t a t i c L i s t<Node> getVert icesWithoutIncomingEdges ( Li s t<Edge> edges ,
L i s t<Node> nodes ) {

16 List<Node> t a r g e t s = edges . stream ( ) .map(Edge : : getTargetNode ) .
17 d i s t i n c t ( ) . c o l l e c t ( Co l l e c t o r s . t oL i s t ( ) ) ;
18

19 r e turn nodes . stream ( ) . f i l t e r (n −>
! t a r g e t s . conta in s (n) ) . c o l l e c t ( Co l l e c t o r s . t oL i s t ( ) ) ;

20 }

3. Order

1 pr i va t e void o rd e rVe r t i c e s ( ) {
2 createVir tua lVert i ce sAndEdges ( ) ;
3

4 f o r ( i n t i = 0 ; i < 4 ; i++){ //Paper ”A Technique f o r Drawing Directed
Graphs” i n d i c a t e s i < 24

5 median ( i ) ;
6 t ranspose ( ) ;
7 }
8 }
9

10 pr i va t e void createVir tua lVert i ce sAndEdges ( ) {
11 i n t v i r t ua l I ndex = 0 ;
12 i n t v i r tua lEdgeIndex = 0 ;
13

14 f o r ( i n t i = 0 ; i < l a y e r s . s i z e ( ) −1; i++){
15 List<Node> currentLayer = l a y e r s . get ( i ) ;
16 List<Node> nextLayer = l a y e r s . get ( i +1) ;
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17 f o r (Node n : currentLayer ) {
18 List<Edge> outgoingMult i = a l lEdges . stream ( )
19 . f i l t e r ( e−>e . getSourceNode ( ) == n)
20 . f i l t e r ( e−>

Math . abs ( getLayerNumber ( e . getTargetNode ( ) )−getLayerNumber (n) ) > 1)
21 . c o l l e c t ( Co l l e c t o r s . t oL i s t ( ) ) ;
22 List<Edge> incomingMulti = a l lEdges . stream ( )
23 . f i l t e r ( e−>e . getSourceNode ( ) == n)
24 . f i l t e r ( e−>

Math . abs ( getLayerNumber ( e . getSourceNode ( ) )−getLayerNumber (n) ) > 1)
25 . c o l l e c t ( Co l l e c t o r s . t oL i s t ( ) ) ;
26 f o r (Edge e : outgo ingMult i ) {
27 graph . addNode ( ” v ” + v i r tua l I ndex ) ;
28 Node vi r tua lNode = graph . getNode ( ” v ” + v i r tua l I ndex ) ;
29 nextLayer . add ( v i r tua lNode ) ;
30 v i r tua l I ndex++;
31

32 a l lEdges . remove ( e ) ;
33

graph . addEdge ( ” ve ”+virtualEdgeIndex , e . getSourceNode ( ) , v irtualNode , t rue ) ;
34 a l lEdges . add ( graph . getEdge ( ” ve ”+vir tua lEdgeIndex ) ) ;
35 v i r tua lEdgeIndex++;
36

graph . addEdge ( ” ve ”+virtualEdgeIndex , virtualNode , e . getTargetNode ( ) , t rue ) ;
37 a l lEdges . add ( graph . getEdge ( ” ve ”+vir tua lEdgeIndex ) ) ;
38 v i r tua lEdgeIndex++;
39 }
40 f o r (Edge e : incomingMulti ) {
41 graph . addNode ( ” v ” + v i r tua l I ndex ) ;
42 Node vi r tua lNode = graph . getNode ( ” v ” + v i r tua l I ndex ) ;
43 nextLayer . add ( v i r tua lNode ) ;
44 v i r tua l I ndex++;
45

46 a l lEdges . remove ( e ) ;
47

graph . addEdge ( ” ve ”+virtualEdgeIndex , virtualNode , e . getTargetNode ( ) , t rue ) ;
48 a l lEdges . add ( graph . getEdge ( ” ve ”+vir tua lEdgeIndex ) ) ;
49 v i r tua lEdgeIndex++;
50

graph . addEdge ( ” ve ”+virtualEdgeIndex , e . getSourceNode ( ) , v irtualNode , t rue ) ;
51 a l lEdges . add ( graph . getEdge ( ” ve ”+vir tua lEdgeIndex ) ) ;
52 v i r tua lEdgeIndex++;
53 }
54 }
55 }
56 }
57

58 pr i va t e void median ( i n t i ) {
59 i f ( i%2 == 0) {
60 f o r ( i n t j = 1 ; j < l a y e r s . s i z e ( ) ; j++){
61 Map<Str ing , Double> median = new HashMap<>() ;
62 f o r (Node n : l a y e r s . get ( j ) ) {
63 median . put (n . ge t Id ( ) , getMedianValue (n , j −1, 1) ) ;
64 }
65 sor tLayer ( l a y e r s . get ( j ) ,median ) ;
66 }
67 } e l s e {
68 f o r ( i n t j = l a y e r s . s i z e ( ) −2; j >= 0 ; j−−){
69 Map<Str ing , Double> median = new HashMap<>() ;
70 f o r (Node n : l a y e r s . get ( j ) ) {
71 median . put (n . ge t Id ( ) , getMedianValue (n , j +1, 2) ) ;
72 }
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73 sor tLayer ( l a y e r s . get ( j ) ,median ) ;
74 }
75 }
76 }
77

78 pr i va t e void t ranspose ( ) {
79 boolean improved = true ;
80 whi le ( improved ) {
81 improved = f a l s e ;
82 f o r ( i n t i = 0 ; i < l a y e r s . s i z e ( ) −1; i++){
83 f o r ( i n t j = 0 ; j < l a y e r s . get ( i ) . s i z e ( ) −2; j++){
84 Node v = l a y e r s . get ( i ) . get ( j ) ;
85 Node w = l ay e r s . get ( i ) . get ( j +1) ;
86 i f ( swapImproves ( i +1,v ,w) ) {
87 improved = true ;
88 Co l l e c t i o n s . swap ( l a y e r s . get ( i ) , j , j +1) ;
89 }
90 }
91 }
92 }
93 }

4. Position

1 pr i va t e void a s s i g nPo s i t i o n s ( ) {
2 //After the l a y e r s have been ordered , medianPosit ion ( ) i s used to obta in

the best Y coord inate f o r each node
3 c a l c u l a t e I n i t i a l C o o r d i n a t e s ( ) ;
4

5 f o r ( i n t i = 0 ; i < 2 ; i++){ //Paper ”A Technique f o r Drawing Directed
Graphs” i n d i c a t e s i < 8

6 ca l cu l a t eCoo rd ina t e s ( i ) ; // Look at prev ious / f o l l ow i ng l ay e r f o r
p o s i t i o n r e f e r e n c e

7 }
8 }
9

10 pr i va t e void c a l c u l a t e I n i t i a l C o o r d i n a t e s ( ) {
11 i n t yCoord = 0 ;
12 // Get i n i t i a l Y po s i t i o n f o r a l l nodes in every l ay e r . I n i t i a l p o s i t i o n

i s the same as t h e i r placement in the l i s t
13 f o r ( L i s t<Node> l a y e r : l a y e r s ) {
14 f o r (Node n : l a y e r ) {
15 nodeYPosit ions . put (n . ge t Id ( ) , yCoord ) ;
16 yCoord−−;
17 }
18 yCoord = 0 ;
19 }
20 }
21

22 pr i va t e void ca l cu l a t eCoo rd ina t e s ( i n t d i r ) {
23 i f ( d i r%2 == 0) {
24 f o r ( i n t j = 1 ; j < l a y e r s . s i z e ( ) ; j++) {
25 List<Integer> l a y e rPo s i t i o n s = new ArrayList<>() ;
26 f o r (Node n : l a y e r s . get ( j ) ) {
27 // Ca lcu la te median po s i t i o n f o r the node based on i t s ad jacent

nodes on the l e f t .
28 // Example : I f the node i s connected to 3 nodes in p o s i t i o n s 4 ,8 ,10

( r e s p e c t i v e l y ) , the added value w i l l be 8 .
29 l a y e rPo s i t i o n s . add ( getMedianPos (n , j − 1 , 0) ) ;
30 }
31 ca l cu l a t eLaye rCoord ina t e s ( j , l a y e rPo s i t i o n s ) ;
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32 }
33 } e l s e {
34 f o r ( i n t j = l a y e r s . s i z e ( ) −2; j >= 0 ; j−−){
35 List<Integer> l a y e rPo s i t i o n s = new ArrayList<>() ;
36 f o r (Node n : l a y e r s . get ( j ) ) {
37 // Ca lcu la te median po s i t i o n f o r the node based on i t s ad jacent

nodes on the r i g h t .
38 l a y e rPo s i t i o n s . add ( getMedianPos (n , j + 1 , 1) ) ;
39 }
40 ca l cu l a t eLaye rCoord ina t e s ( j , l a y e rPo s i t i o n s ) ;
41 }
42 }
43 }
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Appendix B

Entity Type Attributes

In this appendix we describe the details on the detection of possible Entity
Type attributes, which are described in Section 4.6. First, we describe the
Cypher query used to retrieve the attribute data from the Event nodes. Then,
we describe the Java code that helps us identify the candidates. Finally, we
describe the Cypher queries that allow us to set the Entity Type Attributes
as properties of the Entity node and delete them from the Event nodes.

The query used to retrieve the attribute data from the database is shown
below. First, we retrieve all the distinct properties assigned to the nodes
of a log (lines 1-5). Then, we filter out the properties that refer to the ID,
Timestamp, Activity, or Entity Type (lines 6-7). The first two properties are
filtered out because those properties cannot be the same throughout all the
Event nodes of an Entity Type path, and the last two properties are filtered
out because they should not be removed from the Event nodes. Then, in
line 8, for each property and each entity ID, we define three variables: (1)
numEvents, which contains the number of events per entity ID, (2) numEx-
istingValues, which contains the number of events in the path that contain
that property, and (3) distinctValues, which contains the number of distinct
values for that property throughout the entity type path. Finally, in line 9,
we collect these variables per property, so they can be analyzed in the Java
code.

1 MATCH (l:Log) --(e:Event)

2 WHERE l.ID = "filename .csv"

3 WITH DISTINCT keys(e) AS keys

4 UNWIND keys AS Properties

5 WITH DISTINCT(Properties) as p

6 MATCH (l:Log) --(e:Event) --(en:Entity{EntityType :"EntityType "})

7 WHERE l.ID = "filename .csv" AND NOT p IN [’ID’, ’Timestamp ’, ’

Activity ’, ’EntityType ’]

8 WITH p AS property , en.ID AS entityID , COUNT(e) AS numEvents ,

162



Figure B.1: Example result from executing the query that retrieves the data
needed to find the Entity Type Attributes.

COUNT(e[p]) AS numExistingValues , COUNT(DISTINCT(e[p]))

AS distinctValues

9 RETURN property , COLLECT ([numEvents ,numExistingValues ,

distinctValues ]) AS distinctValuesInfo

An example from the result of running this query can be observed in
Figure B.1, which details the information returned by the query.

The Java code that analyzes the output from the previous query is shown
below. Using the data retrieved from the query, we can check for two condi-
tions to discard an attribute as an Entity Type Attribute (line 10): (1) Not
every event in any path has the attribute defined as a property or (2) The
number of distinct values for a given property in any path is different from
1.

1 List<Str ing> ent i tyTypeAttr ibutes = new ArrayList<>() ;
2 boolean isEntityTypeCandidate = true ;
3

4 // Var iab le ’ queryAnswer ’ conta in s the r e s u l t from the query
5 f o r ( Record r : queryAnswer ) {
6 List<Object> a t t r i b u t e I n f o = r . get ( ” d i s t i n c tVa l u e s I n f o ” ) . a sL i s t ( ) ;
7 f o r ( Object o : a t t r i b u t e I n f o ) {
8 List<Long> e n t i t y I n f o = new ArrayList<>((Co l l e c t i on<Long>) o ) ;
9 // I f the number o f events on the :DF path does not match with the

number o f va lue s or the number o f d i s t i n c t va lue s i s d i f f e r e n t from 1 ,
i t means the re are events in the :DF that do not have that a t t r i b u t e or
that have more than one d i s t i n c t value , so i t i s d i s ca rded as a
p o s s i b l e en t i t y type a t t r i b u t e .

10 i f ( ! e n t i t y I n f o . get (0 ) . equa l s ( e n t i t y I n f o . get (1 ) ) | | e n t i t y I n f o . get (2 ) !=
1) {

11 i sEntityTypeCandidate = f a l s e ;
12 break ;
13 }
14 }
15 i f ( i sEntityTypeCandidate )
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ent i tyTypeAttr ibute s . add ( r . get ( ” property ” ) . a sS t r i ng ( ) ) ;
16 i sEntityTypeCandidate = true ;
17 }
18

19 r e turn ent i tyTypeAttr ibutes ;

The Entity Type attributes are displayed to the user as we saw in Figure
4.22. In that window, if the user clicks on ”Continue”, two more queries will
be run.

Both queries are shown below. In the first query, we retrieve the attribute
from the Event nodes (line 3) and set it as a property of the Entity node
(line 4). Then, in the second query, we delete the property from the Event
nodes (lines 7-9).

1 MATCH (l:Log) --(e:Event) --(en:Entity)

2 WHERE l.ID = "filename .csv" AND en.EntityType = "EntityType "

3 WITH DISTINCT en, e.‘Attribute ‘ AS property

4 SET en.‘Attribute ‘ = property

5

6

7 MATCH (l:Log) --(e:Event) --(en:Entity)

8 WHERE l.ID = "filename .csv" AND en.EntityType = "EntityType "

9 SET e.‘Attribute ‘ = null

Then, if the user decides to return the Entity Type attributes to the
Event nodes through the ”Return Entity Attribute” shown in Figure 4.13,
the queries shown below are executed. The first query sets the attribute as a
property of the Event nodes (lines 1-3). Then, the second query deletes the
attribute from the Entity nodes (lines 6-8).

1 MATCH (l:Log) --(e:Event) --(en:Entity)

2 WHERE l.ID = "filename .csv" AND EXISTS(en.Attribute )

3 SET e.Attribute = en.Attribute

4

5

6 MATCH (l:Log) --(:Event) --(en:Entity)

7 WHERE l.ID = "filename .csv"

8 SET en.Attribute = null
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Appendix C

Heuristic Miner Cypher
Queries

In this appendix we show the full set of queries used in our implementation
of the Heuristic Miner algorithm, described in Section 5.2.

Initial Setup

1. Create Algorithm and Model nodes.

1 MATCH (l:Log{ID:"filename .csv"})

2 MERGE (l) <-[:MAPS]-(: Algorithm{ID:" Heuristic Miner",Class :"

ClassType ",DF:"EntityType ",Freq:FreqThreshold ,Dep:DepThreshold ,

L1L:L1LThreshold ,L2L:L2LThreshold ,Rel:RelThreshold ,Bind:

BindThreshold }) -[:PRODUCES ]->(:Model{Algorithm :" Heuristic

Miner",Log:"filename .csv",ID:"ModelID "})

2. Create DG nodes and connect them to the Class nodes.

1 MATCH (m:Model{ID:"ModelID "}) --(:Algorithm) --(:Log) --(:Event)

--(c:Class{Type:"ClassType "})

2 MERGE (m) -[:CONTAINS{DG:" Before "}]->(dg:DG_node:Model_node{ID

:c.ID})

3 MERGE (dg) -[: REPRESENTS]->(c)

3. Create Artificial Start and End nodes.

1 MATCH (m:Model{ID:"ModelID "})

2 MERGE (m) -[:CONTAINS{DG:" Before "}]->(: DG_node:Model_node{ID:"

ARTIFICIAL_START",isStart:True})

3 MERGE (m) -[:CONTAINS{DG:" Before "}]->(: DG_node:Model_node{ID:"

ARTIFICIAL_END",isEnd:True})

4. Create :MODEL EDGE relations.

1 MATCH (m:Model{ID:"ModelID "}) -->(dg:DG_node)-->(c:Class)

2 MATCH (m) -->(dg2:DG_node) -->(c2:Class)
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3 MATCH (c) -[:DF_C{EntityType :"EntityType "}]->(c2)

4 MATCH (c) <--(:Event) -[df:DF{EntityType :"EntityType "}]->(: Event)

-->(c2)

5 WITH DISTINCT dg AS From , dg2 AS To , COUNT(df) AS f

6 MERGE (From) -[: MODEL_EDGE{Freq:f}]->(To)

5. Create :MODEL EDGE relations for the Artificial Start Node.

1 MATCH (m:Model{ID:"ModelID "}) --(dg:DG_node) --(:Class)--(e:

Event)

2 WHERE NOT EXISTS (() -[:DF{EntityType :"EntityType "}]->(e))

3 WITH m, dg AS startActivity , COUNT(e) AS f

4 MATCH (m) --(st:DG_node{isStart:True})

5 MERGE (st) -[: MODEL_EDGE{Freq:f}]->( startActivity)

6. Create :MODEL EDGE relations for the Artificial End Node.

1 MATCH (m:Model{ID:"ModelID "}) --(dg:DG_node) --(:Class)--(e:

Event)

2 WHERE NOT EXISTS ((e) -[:DF{EntityType :"EntityType "}]->())

3 WITH m, dg AS endActivity , COUNT(e) AS f

4 MATCH (m) --(end:DG_node{isEnd:True})

5 MERGE (endActivity) -[: MODEL_EDGE{Freq:f}]->(end)

7. Calculate Dependency measure.

1 MATCH (m:Model{ID:"ModelID "}) --(a:DG_node)-[me:MODEL_EDGE]->(b

:DG_node)

2 OPTIONAL MATCH (b) -[me2:MODEL_EDGE]->(a)

3 WITH DISTINCT a, b, me , me.Freq AS fA , COALESCE(me2.Freq ,0)

AS fB

4 WITH a,b,ABS(ROUND (((fA -fB)*1.0/( fA+fB+1)) ,3)) AS dep

5 MATCH (a) -[me:MODEL_EDGE]->(b)

6 SET me.Dep = dep

8. Calculate L1L Dependency measure.

1 MATCH (m:Model{ID:"ModelID "}) --(a:DG_node)-[me:MODEL_EDGE ]-(a)

2 SET me.L1L = ROUND((me.Freq *1.0)/(me.Freq +1) ,3)

9. Calculate L2L Dependency measure.

1 MATCH (m:Model{ID:"ModelID "}) --(dg:DG_node) -[: MODEL_EDGE]->(

dg2:DG_node) -[: MODEL_EDGE]->(dg)

2 WITH DISTINCT m, dg, dg2

3 MATCH (m) --(dg) --(c:Class)

4 MATCH (m) --(dg2) --(c2:Class)

5 MATCH (e1:Event) --(c) --(e3:Event)

6 MATCH (c2) --(e2:Event)

7 OPTIONAL MATCH (e1) -[df:DF{EntityType :"EntityType "}]->(e2) -[:DF

{EntityType :"EntityType "}]->(e3)

8 WITH m,dg,dg2 ,c,c2 ,COUNT(df) AS l2lFreqA

9 MATCH (e4:Event) --(c2) --(e6:Event)

166



10 MATCH (c) --(e5:Event)

11 OPTIONAL MATCH (e4) -[df2:DF{EntityType :"EntityType "}]->(e5) -[:

DF{EntityType :"EntityType "}]->(e6)

12 WITH m,dg,dg2 ,l2lFreqA ,COUNT(df2) AS l2lFreqB

13 WITH m,dg,dg2 ,ROUND ((( l2lFreqA+l2lFreqB)*1.0)/( l2lFreqA+

l2lFreqB +1) ,3) AS l2lDep

14 MATCH (m) --(dg) -[me:MODEL_EDGE]->(dg2)

15 SET me.L2L = l2lDep

Flexible Heuristic Miner

10. The 12 steps of Flexible Heuristic Miner plus one additional step to
remove edges below the frequency threshold.

1 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 // F l e x i b l e Heu r i s t i c Miner Step 2
3 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 MATCH (m: Model{ID : ”ModelID ”})−−(a : DG node )−[me :MODELEDGE]−>(a )
5 WHERE me . L1L >= L1L Threshold
6 WITH COLLECT(DISTINCT [ a . ID , a . ID ] ) AS C1
7 WITH CASE WHEN C1 [ 0 ] [ 0 ] IS NULL THEN [ ] ELSE C1 END AS C1
8 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9 // F l e x i b l e Heu r i s t i c Miner Step 3

10 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
11 OPTIONAL MATCH (m: Model{ID : ”ModelID ”})−−(a : DG node )−[me :MODELEDGE]−>(b :

DG node )
12 WHERE me . L2L >= L2L Threshold AND NOT [ a . ID , a . ID ] IN C1 AND NOT [ b . ID , b . ID ] IN

C1
13 WITH C1 ,COLLECT(DISTINCT [ a . ID , b . ID ] ) AS C2
14 WITH C1 , CASE WHEN C2 [ 0 ] [ 0 ] IS NULL THEN [ ] ELSE C2 END AS C2
15 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
16 // F l e x i b l e Heu r i s t i c Miner Step 4
17 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
18 MATCH (m: Model{ID : ”ModelID ”})−−(a : DG node )−[me :MODELEDGE]−>(b : DG node )
19 WHERE a <> b AND b . isEnd IS NULL
20 WITH C1 ,C2 , a . ID AS act , [ a . ID , b . ID ] AS pair , me .Dep AS depVal
21 WITH C1 ,C2 , act , apoc . agg . maxItems ( pair , depVal ) AS s t rFo l l owe r s
22 UNWIND s t rFo l l owe r s . i tems AS s t rPa i r s
23 WITH C1 ,C2 , COLLECT( s t rPa i r s ) AS Cout
24 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
25 // F l e x i b l e Heu r i s t i c Miner Step 5
26 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
27 MATCH (m: Model{ID : ”ModelID ”})−−(a : DG node )−[me :MODELEDGE]−>(b : DG node )
28 WHERE a <> b AND a . i s S t a r t IS NULL
29 WITH C1 ,C2 , Cout , b . ID AS act , [ a . ID , b . ID ] AS pair , me .Dep AS depVal
30 WITH C1 ,C2 , Cout , act , apoc . agg . maxItems ( pair , depVal ) AS strCauses
31 UNWIND strCauses . i tems AS s t rPa i r s
32 WITH C1 ,C2 , Cout , COLLECT( s t rPa i r s ) AS Cin
33 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
34 // F l e x i b l e Heu r i s t i c Miner Step 6
35 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
36 OPTIONAL MATCH (m: Model{ID : ”ModelID ”})−−(a : DG node )−[me :MODELEDGE]−>(x :

DG node ) ,
37 (m)−−(b : DG node )−[me2 :MODELEDGE]−>(y : DG node )
38 WHERE [ a . ID , x . ID ] IN Cout AND me .Dep < Dep Threshold AND [ b . ID , y . ID ] IN Cout

AND [ a . ID , b . ID ] IN C2 AND (me2 .Dep − me.Dep)>Rel To Best Threshold
39 WITH C1 ,C2 , Cout , Cin ,COLLECT(DISTINCT [ a . ID , x . ID ] ) AS Cout1
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40 WITH C1 ,C2 , Cout , Cin ,CASE WHEN Cout1 [ 0 ] [ 0 ] IS NULL THEN [ ] ELSE Cout1 END AS
Cout1

41 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
42 // F l e x i b l e Heu r i s t i c Miner Step 7
43 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
44 WITH C1 ,C2 , Cin , apoc . c o l l . subt rac t (Cout , Cout1 ) as Cout
45 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
46 // F l e x i b l e Heu r i s t i c Miner Step 8
47 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
48 OPTIONAL MATCH (m: Model{ID : ”ModelID ”})−−(x : DG node )−[me :MODELEDGE]−>(a :

DG node ) ,
49 (m)−−(y : DG node )−[me2 :MODELEDGE]−>(b : DG node )
50 WHERE [ x . ID , a . ID ] IN Cin AND me .Dep < Dep Threshold AND [ y . ID , b . ID ] IN Cin AND

[ a . ID , b . ID ] IN C2 AND (me2 .Dep − me.Dep)>Rel To Best Threshold
51 WITH C1 ,C2 , Cout , Cin ,COLLECT(DISTINCT [ x . ID , a . ID ] ) AS Cin1
52 WITH C1 ,C2 , Cout , Cin ,CASE WHEN Cin1 [ 0 ] [ 0 ] IS NULL THEN [ ] ELSE Cin1 END AS

Cin1
53 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
54 // F l e x i b l e Heu r i s t i c Miner Step 9
55 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
56 WITH C1 ,C2 , Cout , apoc . c o l l . subt rac t (Cin , Cin1 ) as Cin
57 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
58 // F l e x i b l e Heu r i s t i c Miner Step 10
59 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
60 MATCH (m: Model{ID : ”ModelID ”})−−(a : DG node )−[me :MODELEDGE]−>(b : DG node )
61 WHERE me .Dep >= Dep Threshold
62 WITH C1 ,C2 , Cin , Cout ,COLLECT(DISTINCT [ a . ID , b . ID ] ) AS Cout2 1
63 OPTIONAL MATCH (m: Model{ID : ”ModelID ”})−−(a : DG node )−[me :MODELEDGE]−>(b :

DG node ) , ( a )−[me2 :MODELEDGE]−>(c : DG node )
64 WHERE [ a . ID , c . ID ] IN Cout AND ABS(me2 .Dep − me.Dep)<Rel To Best Threshold
65 WITH C1 ,C2 , Cin , Cout2 1 ,COLLECT(DISTINCT [ a . ID , b . ID ] ) AS Cout2 2
66 WITH C1 ,C2 , Cin , Cout2 1 ,CASE WHEN Cout2 2 [ 0 ] [ 0 ] IS NULL THEN [ ] ELSE Cout2 2

END AS Cout2 2
67 WITH C1 ,C2 , Cin , Cout2 1+Cout2 2 AS Cout2
68 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
69 // F l e x i b l e Heu r i s t i c Miner Step 11
70 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
71 MATCH (m: Model{ID : ”ModelID ”})−−(b : DG node )−[me :MODELEDGE]−>(a : DG node )
72 WHERE me .Dep >= Dep Threshold
73 WITH C1 ,C2 , Cout2 , Cin ,COLLECT(DISTINCT [ b . ID , a . ID ] ) AS Cin2 1
74 OPTIONAL MATCH (m: Model{ID : ”ModelID ”})−−(b : DG node )−[me :MODELEDGE]−>(a :

DG node ) , ( c : DG node )−[me2 :MODELEDGE]−>(a )
75 WHERE [ c . ID , a . ID ] IN Cin AND ABS(me2 .Dep − me.Dep)<Rel To Best Threshold
76 WITH C1 ,C2 , Cout2 , Cin2 1 ,COLLECT(DISTINCT [ b . ID , a . ID ] ) AS Cin2 2
77 WITH C1 ,C2 , Cout2 , Cin2 1 ,CASE WHEN Cin2 2 [ 0 ] [ 0 ] IS NULL THEN [ ] ELSE Cin2 2

END AS Cin2 2
78 WITH C1 ,C2 , Cout2 , Cin2 1+Cin2 2 AS Cin2
79 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
80 // F l e x i b l e Heu r i s t i c Miner Step 12
81 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
82 WITH C1+C2+Cout2+Cin2 AS dgEdges
83 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
84 // Step 13 . Remove edges below Frequency th r e sho ld
85 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
86 UNWIND dgEdges AS dgEdge
87 WITH COLLECT(DISTINCT dgEdge ) AS dgEdges
88 MATCH (m: Model{ID : ”ModelID ”})−−(:DG node )−−(:Class )−−(:Event )−−(n : Entity )
89 WHERE n . EntityType = ”EntityType”
90 WITH dgEdges ,COUNT(DISTINCT n) AS numEntit ies
91 OPTIONAL MATCH (m: Model{ID : ”ModelID ”})−−(a : DG node )−[me :MODELEDGE]−>(b :

DG node )
92 WHERE [ a . ID , b . ID ] IN dgEdges AND (me . Freq ∗1 .0/ numEntit ies ) < Freq Threshold
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93 WITH dgEdges ,COLLECT(DISTINCT [ a . ID , b . ID ] ) AS Cfreq
94 WITH apoc . c o l l . subt rac t ( dgEdges , Cfreq ) as dgEdges
95 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
96 // Create new DG
97 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
98 UNWIND dgEdges AS dgEdge
99 WITH dgEdge

100 MATCH (m: Model{ID : ”ModelID ”})
101 MERGE (m) − [ :CONTAINS{DG:” After ”}]−>(a : DG node : Model node{ID : dgEdge [ 0 ] } )
102 MERGE (m) − [ :CONTAINS{DG:” After ”}]−>(b : DG node : Model node{ID : dgEdge [ 1 ] } )
103 MERGE (a ) − [ :MODELEDGE]−>(b)

11. Set the specific properties for the DG nodes that represent the Ar-
tificial Start and End nodes and were generated after the execution of the
FHM.

1 //Create Star t Prope r t i e s
2 OPTIONAL MATCH (m: Model{ID : ”ModelID ”}) − [ :CONTAINS{DG:” After ”}]−(a )
3 WHERE a . ID = ”ARTIFICIAL START”
4 CALL apoc . do . when(
5 a IS NULL,
6 ”MATCH (m: Model{ID : ’ModelID ’} ) MERGE (m) − [ :CONTAINS{DG: ’ After ’} ]−>(:

DG node : Model node{ID : ’ARTIFICIAL START’ , i s S t a r t : t rue }) ” ,
7 ”SET a . i s S t a r t = true ” ,
8 {a : a}
9 )YIELD value RETURN 1

10

11 //Create End Prope r t i e s
12 OPTIONAL MATCH (m: Model{ID : ”ModelID ”}) − [ :CONTAINS{DG:” After ”}]−(a )
13 WHERE a . ID = ”ARTIFICIAL END”
14 CALL apoc . do . when(
15 a IS NULL,
16 ”MATCH (m: Model{ID : ’ModelID ’} ) MERGE (m) − [ :CONTAINS{DG: ’ After ’} ]−>(:

DG node : Model node{ID : ’ARTIFICIAL END’ , isEnd : t rue }) ” ,
17 ”SET a . isEnd = true ” ,
18 {a : a}
19 )YIELD value RETURN 1

Add Missing Inputs and Outputs

12. Obtain number of nodes with missing outputs.

1 CALL{

2 MATCH (m:Model{ID:"ModelID "}) -[:CONTAINS{DG:’After ’}]-(a:

DG_node)-[me:MODEL_EDGE ]->()

3 WITH a,COUNT(me) AS numEdges

4 MATCH (a:DG_node) -[me:MODEL_EDGE]->(b)

5 WHERE a = b AND numEdges = 1 RETURN a

6 UNION

7 MATCH (m:Model{ID:"ModelID "}) -[:CONTAINS{DG:’After ’}]-(a:

DG_node)

8 WHERE NOT (a) -[: MODEL_EDGE ]->() AND a.isEnd IS NULL RETURN

a

9 } WITH a

10 RETURN COUNT(a) AS numNodes
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13. Create missing outgoing edges.

1 CALL{
2 MATCH (m: Model{ID : ”ModelID ”}) − [ :CONTAINS{DG: ’ After ’} ] −( a : DG node )−[me :

MODELEDGE]−>()
3 WITH a ,COUNT(me) AS numEdges
4 MATCH (a )−[me :MODELEDGE]−>(b : DG node )
5 WHERE a = b AND numEdges = 1 RETURN a
6 UNION
7 MATCH (m: Model{ID : ”ModelID ”}) − [ :CONTAINS{DG: ’ After ’} ] −( a : DG node )
8 WHERE NOT (a ) − [ :MODELEDGE]−>() AND a . isEnd IS NULL RETURN a
9 } WITH a

10 MATCH (m: Model{ID : ”ModelID ”}) − [ :CONTAINS{DG: ’ Before ’} ] −(b : DG node )−[me :
MODELEDGE]−>(c : DG node )

11 WHERE b . ID = a . ID AND b <> c
12 WITH m, a , c . ID AS cID ,me .Dep AS depVal
13 WITH m, a , apoc . agg . maxItems ( cID , depVal ) AS s t rFo l l owe r s
14 WITH m, a , s t rFo l l owe r s . i tems AS items
15 UNWIND items AS out
16 WITH m, a , out
17 OPTIONAL MATCH (m) − [ :CONTAINS{DG: ’ After ’} ] −(b : DG node{ID : out })
18 CALL apoc . do . when(
19 b IS NULL,
20 ”MERGE (a ) − [ :MODELEDGE]−>(c : DG node : Model node{ID : out })
21 MERGE (m) − [ :CONTAINS{DG: ’ After ’}]−>( c ) ” ,
22 ”MERGE (a ) − [ :MODELEDGE]−>(b) ” ,
23 {m:m, a : a , b : b , out : out}
24 ) YIELD value RETURN 1

14. Obtain number of nodes with missing inputs.

1 CALL{

2 MATCH (m:Model{ID:"ModelID "}) -[:CONTAINS{DG:’After ’}]-(a:

DG_node)-[me:MODEL_EDGE ]->()

3 WITH a,COUNT(me) AS numEdges

4 MATCH (a:DG_node) -[me:MODEL_EDGE]->(b)

5 WHERE a = b AND numEdges = 1 RETURN a

6 UNION

7 MATCH (m:Model{ID:"ModelID "}) -[:CONTAINS{DG:’After ’}]-(a:

DG_node)

8 WHERE NOT (a) -[: MODEL_EDGE ]->() AND a.isEnd IS NULL RETURN

a

9 } WITH a

10 RETURN COUNT(a) AS numNodes

15. Create missing ingoing edges.

1 CALL{
2 MATCH (m: Model{ID : ”ModelID ”}) − [ :CONTAINS{DG: ’ After ’} ] − ( : DG node )−[me :

MODELEDGE]−>(a )
3 WITH a ,COUNT(me) AS numEdges
4 MATCH (b : DG node )−[me :MODELEDGE]−>(a )
5 WHERE a = b AND numEdges = 1 RETURN a
6 UNION
7 MATCH (m: Model{ID : ”ModelID ”}) − [ :CONTAINS{DG: ’ After ’} ] −( a : DG node )
8 WHERE NOT () − [ :MODELEDGE]−>(a ) AND a . i s S t a r t IS NULL RETURN a
9 } WITH a

10 MATCH (m: Model{ID : ”ModelID ”}) − [ :CONTAINS{DG: ’ Before ’} ] −(b : DG node )−[me :
MODELEDGE]−>(c : DG node )
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11 WHERE c . ID = a . ID
12 WITH m, a , b . ID AS bID ,me .Dep AS depVal
13 WITH m, a , apoc . agg . maxItems (bID , depVal ) AS strCauses
14 WITH m, a , s t rCauses . i tems AS items
15 UNWIND items AS in
16 WITH m, a , in
17 OPTIONAL MATCH (m) − [ :CONTAINS{DG: ’ After ’} ] −(b : DG node{ID : in })
18 CALL apoc . do . when(
19 b IS NULL,
20 ”MERGE ( c : DG node : Model node{ID : in }) − [ :MODELEDGE]−>(a )
21 MERGE (m) − [ :CONTAINS{DG: ’ After ’}]−>( c ) ” ,
22 ”MERGE (b) − [ :MODELEDGE]−>(a ) ” ,
23 {m:m, a : a , b : b , in : in }
24 ) YIELD value RETURN 1

Connect Model nodes to Class nodes

16. Create :REPRESENTS relations.

1 MATCH (m:Model{ID:"ModelID "}) --(:Algorithm) --(:Log) --(:Event)

--(c:Class{Type:"ClassType "})

2 MATCH (m) -[:CONTAINS{DG:"After "}]->(dg:DG_node{ID:c.ID})

3 MERGE (dg) -[: REPRESENTS]->(c)

Cleanup

17. Copy :MODEL EDGE properties from initial dependency graph to the
dependency graph created after the FHM was executed.

1 MATCH (m:Model{ID:"ModelID "}) -[:CONTAINS{DG:" Before "}]->(b1)-[

meB:MODEL_EDGE]->(b2)

2 MATCH (m) -[:CONTAINS{DG:"After "}]->(a1) -[meA:MODEL_EDGE]->(a2

)

3 WHERE b1.ID = a1.ID and b2.ID = a2.ID

4 SET meA = meB

18. Delete initial DG.

1 MATCH (m:Model{ID:"ModelID "}) -[:CONTAINS{DG:" Before "}]->(n)

2 DETACH DELETE n

Bindings

19. Define output bindings.

1 CALL{
2 MATCH (m: Model{ID : ”ModelID ”}) − [ :CONTAINS]−(a : DG node ) − [ :MODELEDGE]−>(b :

DG node )
3 MATCH (a )−−( c l : Class )−−( i : Event )
4 MATCH (b)−−(:Class )−−( j : Event )
5 MATCH ( i ) − [ :DF∗{EntityType : ”EntityType”}]−>( j )
6 WITH DISTINCT m, c l . Type AS classType , i ,COLLECT( j ) AS eventsCaused
7 MATCH (m) − [ :CONTAINS]−( c : DG node ) − [ :MODELEDGE]−>(b : DG node )
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8 OPTIONAL MATCH ( i ) − [ :DF∗{EntityType : ”EntityType”}]−>(k : Event ) − [ :DF∗{
EntityType : ”EntityType”}]−>( j : Event )

9 WHERE EXISTS( ( c )−−(:Class )−−(k ) ) AND EXISTS( ( b)−−(:Class )−−( j ) ) AND j IN
eventsCaused

10 WITH i , classType , eventsCaused ,COLLECT(DISTINCT j ) AS eventsOtherCause
11 WITH i , classType , apoc . c o l l . subt rac t ( eventsCaused , eventsOtherCause ) AS

eventL i s t
12 UNWIND eventL i s t AS event
13 WITH DISTINCT i , classType , apoc . c o l l . s o r t (COLLECT(DISTINCT event [ c lassType

] ) ) AS oB ,1 AS n
14 RETURN DISTINCT i [ c lassType ] AS mActivity , oB , SUM(n) AS bindFreq ORDER BY

bindFreq DESC
15 UNION
16 MATCH (m: Model{ID : ”ModelID ”}) − [ :CONTAINS]−(a : DG node ) − [ :MODELEDGE]−>(b :

DG node )
17 MATCH (a )−−( c l : Class )−−( i : Event )
18 WHERE b . isEnd AND NOT EXISTS( ( i ) − [ :DF{EntityType : ”EntityType”}]−>() )
19 WITH DISTINCT i , c l . Type AS classType , [ b . ID ] AS oB , 1 AS n
20 RETURN DISTINCT i [ c lassType ] AS mActivity , oB , SUM(n) AS bindFreq ORDER BY

bindFreq DESC
21 UNION
22 MATCH (m: Model{ID : ”ModelID ”}) − [ :CONTAINS]−(a : DG node ) − [ :MODELEDGE]−>(b :

DG node )
23 MATCH (b)−−( c l : Class )−−( i : Event )−−(en : Ent ity {EntityType : ”EntityType ”})
24 WHERE a . i s S t a r t
25 WITH DISTINCT m, c l . Type AS classType , a AS s ta r t , en . uID AS enUID ,COLLECT( i )

AS eventsCaused
26 MATCH (m) − [ :CONTAINS]−( c : DG node ) − [ :MODELEDGE]−>(b : DG node )
27 OPTIONAL MATCH (k : Event ) − [ :DF∗{EntityType : ”EntityType”}]−>( j : Event )
28 WHERE EXISTS( ( c )−−(:Class )−−(k ) ) AND EXISTS( ( b)−−(:Class )−−( j ) ) AND j IN

eventsCaused
29 WITH sta r t , enUID , classType , eventsCaused ,COLLECT(DISTINCT j ) AS

eventsOtherCause
30 WITH sta r t , enUID , classType , apoc . c o l l . subt rac t ( eventsCaused ,

eventsOtherCause ) AS eventL i s t
31 UNWIND eventL i s t AS event
32 WITH DISTINCT sta r t , enUID , apoc . c o l l . s o r t (COLLECT(DISTINCT event [ c lassType

] ) ) AS oB ,1 AS n
33 RETURN DISTINCT s t a r t . ID as mActivity , oB , SUM(n) AS bindFreq ORDER BY

bindFreq DESC
34 }
35 WITH mActivity , apoc . agg . maxItems ( mActivity , bindFreq ) . va lue AS freqMax ,

COLLECT( [ oB , bindFreq ] ) AS b ind ing sDe ta i l s
36 MATCH (m: Model{ID : ”ModelID ”}) − [ :CONTAINS]−(a : DG node ) − [ :MODELEDGE]−>(b :

DG node )
37 WHERE a . ID = mActivity
38 WITH DISTINCT mActivity , b ind ing sDeta i l s , freqMax , COLLECT(b . ID) AS

al lOutputs
39 CALL apoc . when(
40 SIZE( b ind ing sDe ta i l s ) = 1 ,
41 ”UNWIND b ind ing sDe ta i l s AS b indDeta i l s
42 RETURN mActivity AS mAct ,COLLECT( apoc . t ex t . j o i n ( b indDeta i l s [ 0 ] , ’ | ’ ) ) AS

outputBindings ” ,
43 ”CALL{
44 WITH mActivity , b ind ing sDeta i l s , a l lOutputs
45 UNWIND al lOutputs AS o
46 WITH mActivity , b ind ing sDeta i l s , o
47 UNWIND b ind ing sDe ta i l s AS b indDeta i l s
48 WITH mActivity , o , b indDeta i l s
49 WHERE o IN b indDeta i l s [ 0 ]
50 WITH mActivity , o , apoc . agg . maxItems ( b indDeta i l s [ 0 ] , b indDeta i l s [ 1 ] ) .

i tems AS bindActsMaxFreq
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51 RETURN mActivity AS mAct ,COLLECT(DISTINCT apoc . t ex t . j o i n (
bindActsMaxFreq [ 0 ] , ’ | ’ ) ) AS oBindings

52 UNION
53 WITH mActivity , b ind ing sDeta i l s , freqMax
54 UNWIND b ind ing sDe ta i l s AS b indDeta i l s
55 WITH mActivity , freqMax , b indDeta i l s
56 WHERE ( b indDeta i l s [ 1 ] ∗ 1 . 0 ) / freqMax >= BindingsThreshold
57 RETURN mActivity AS mAct ,COLLECT(DISTINCT apoc . t ex t . j o i n ( b indDeta i l s

[ 0 ] , ’ | ’ ) ) AS oBindings
58 }
59 WITH mAct , oBindings
60 UNWIND oBindings AS oBind
61 RETURN mAct , COLLECT(DISTINCT oBind ) AS outputBindings ” ,
62 {mActivity : mActivity , b i nd ing sDe ta i l s : b ind ing sDeta i l s , freqMax : freqMax ,

a l lOutputs : a l lOutputs }
63 )YIELD value
64 WITH value .mAct AS mActivity , va lue . outputBindings AS outputBindings
65 MATCH (m: Model{ID : ”ModelID ”}) − [ :CONTAINS]−(dg : DG node{ID : mActivity })
66 SET dg . OutputBindings = outputBindings

20. Define input bindings.

1 CALL{
2 MATCH (m: Model{ID : ”ModelID ”}) − [ :CONTAINS]−(a : DG node ) − [ :MODELEDGE]−>(b :

DG node )
3 MATCH (a )−−( c l : Class )−−( i : Event )
4 MATCH (b)−−(:Class )−−( j : Event )
5 MATCH ( i ) − [ :DF∗{EntityType : ”EntityType”}]−>( j )
6 WITH DISTINCT m, c l . Type AS classType , j ,COLLECT( i ) AS causeEvents
7 MATCH (m) − [ :CONTAINS]−( c : DG node ) − [ :MODELEDGE]−>(b : DG node )
8 OPTIONAL MATCH ( i : Event ) − [ :DF∗{EntityType : ”EntityType”}]−>(k : Event ) − [ :DF∗{

EntityType : ”EntityType”}]−>( j )
9 WHERE EXISTS( ( b)−−(:Class )−−(k ) ) AND EXISTS( ( c )−−(:Class )−−( i ) ) AND i IN

causeEvents
10 WITH j , classType , causeEvents ,COLLECT(DISTINCT i ) AS eventsOtherCause
11 WITH j , classType , apoc . c o l l . subt rac t ( causeEvents , eventsOtherCause ) AS

eventL i s t
12 UNWIND eventL i s t AS event
13 WITH DISTINCT j , classType , apoc . c o l l . s o r t (COLLECT(DISTINCT event [ c lassType

] ) ) AS iB , 1 AS n
14 RETURN DISTINCT j [ c lassType ] AS mActivity , iB , SUM(n) AS bindFreq ORDER BY

bindFreq DESC
15 UNION
16 MATCH (m: Model{ID : ”ModelID ”}) − [ :CONTAINS]−(a : DG node ) − [ :MODELEDGE]−>(b :

DG node )
17 MATCH (b)−−( c l : Class )−−( i : Event )
18 WHERE a . i s S t a r t AND NOT EXISTS ( ( ) − [ :DF{EntityType : ”EntityType”}]−>( i ) )
19 WITH DISTINCT i , c l . Type AS classType , [ a . ID ] AS iB , 1 AS n
20 RETURN DISTINCT i [ c lassType ] AS mActivity , iB , SUM(n) AS bindFreq ORDER BY

bindFreq DESC
21 UNION
22 MATCH (m: Model{ID : ”ModelID ”}) − [ :CONTAINS]−(a : DG node ) − [ :MODELEDGE]−>(b :

DG node )
23 MATCH (a )−−( c l : Class )−−( i : Event )−−(en : Ent ity {EntityType : ”EntityType ”})
24 WHERE b . isEnd
25 WITH DISTINCT m, c l . Type AS classType , b AS end , en . uID AS enUID ,COLLECT( i )

AS causeEvents
26 MATCH (m) − [ :CONTAINS]−( c : DG node ) − [ :MODELEDGE]−>(b : DG node )
27 OPTIONAL MATCH ( i : Event ) − [ :DF∗{EntityType : ”EntityType”}]−>(k : Event )
28 WHERE EXISTS( ( c )−−(:Class )−−( i ) ) AND EXISTS( ( b)−−(:Class )−−(k ) ) AND i IN

causeEvents
29 WITH end , enUID , classType , causeEvents ,COLLECT(DISTINCT i ) AS
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eventsOtherCause
30 WITH end , enUID , classType , apoc . c o l l . subt rac t ( causeEvents , eventsOtherCause )

AS eventL i s t
31 UNWIND eventL i s t AS event
32 WITH DISTINCT end , enUID , apoc . c o l l . s o r t (COLLECT(DISTINCT event [ c lassType ] ) )

AS iB , 1 AS n
33 RETURN DISTINCT end . ID as mActivity , iB , SUM(n) AS bindFreq ORDER BY

bindFreq DESC
34 }
35 WITH mActivity , apoc . agg . maxItems ( mActivity , bindFreq ) . va lue AS freqMax ,

COLLECT( [ iB , bindFreq ] ) AS b ind ing sDe ta i l s
36 MATCH (m: Model{ID : ”ModelID ”}) − [ :CONTAINS]−(a : DG node ) − [ :MODELEDGE]−>(b :

DG node )
37 WHERE b . ID = mActivity
38 WITH DISTINCT mActivity , b ind ing sDeta i l s , freqMax , COLLECT(a . ID) AS

a l l I n pu t s
39 CALL apoc . when(
40 SIZE( b ind ing sDe ta i l s ) = 1 ,
41 ”UNWIND b ind ing sDe ta i l s AS b indDeta i l s
42 RETURN mActivity AS mAct ,COLLECT( apoc . t ex t . j o i n ( b indDeta i l s [ 0 ] , ’ | ’ ) ) AS

inputBindings ” ,
43 ”CALL{
44 WITH mActivity , b ind ing sDeta i l s , a l l I n pu t s
45 UNWIND a l l I n pu t s AS in
46 WITH mActivity , b ind ing sDeta i l s , in
47 UNWIND b ind ing sDe ta i l s AS b indDeta i l s
48 WITH mActivity , in , b indDeta i l s
49 WHERE in IN b indDeta i l s [ 0 ]
50 WITH mActivity , in , apoc . agg . maxItems ( b indDeta i l s [ 0 ] , b indDeta i l s [ 1 ] ) .

i tems AS bindActsMaxFreq
51 RETURN mActivity AS mAct ,COLLECT(DISTINCT apoc . t ex t . j o i n (

bindActsMaxFreq [ 0 ] , ’ | ’ ) ) AS iB ind ings
52 UNION
53 WITH mActivity , b ind ing sDeta i l s , freqMax
54 UNWIND b ind ing sDe ta i l s AS b indDeta i l s
55 WITH mActivity , freqMax , b indDeta i l s
56 WHERE ( b indDeta i l s [ 1 ] ∗ 1 . 0 ) / freqMax >= BindingsThreshold
57 RETURN mActivity AS mAct ,COLLECT(DISTINCT apoc . t ex t . j o i n ( b indDeta i l s

[ 0 ] , ’ | ’ ) ) AS iB ind ings
58 }
59 WITH mAct , iB ind ings
60 UNWIND iBind ings AS iBind
61 RETURN mAct , COLLECT(DISTINCT iBind ) AS inputBindings ” ,
62 {mActivity : mActivity , b i nd ing sDe ta i l s : b ind ing sDeta i l s , freqMax : freqMax ,

a l l I n pu t s : a l l I n pu t s }
63 )YIELD value
64 WITH value .mAct AS mActivity , va lue . inputBindings AS inputBindings
65 MATCH (m: Model{ID : ”ModelID ”}) − [ :CONTAINS]−(dg : DG node{ID : mActivity })
66 SET dg . InputBindings = inputBindings
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Appendix D

Petri Net Cypher Queries

In this appendix we show the full set of queries used in our implementation
to translate the Dependency Graph into a Petri Net, as described in Section
6.2.1.

Create Petri Net elements based on Output Bindings

1 MATCH (m: Model{ID : ”ModelID ”})−−(dg : DG node )
2 WITH dg . ID AS mAct , dg . OutputBindings AS maOB
3 UNWIND maOB AS mActs
4 WITH mAct , mActs AS Output
5 WITH mAct , COLLECT(SPLIT(Output , ” | ” ) ) AS Output
6 CALL apoc . do . when(
7 SIZE(Output ) > 1 ,
8 ”MERGE (p : Petr iNet : Model node{ type : ’ t ’ , t :mAct , model : ’ModelID ’} ) − [ :

MODELEDGE]−>(o : Petr iNet : Model node{ type : ’ p ’ , model : ’ModelID ’} )
9 WITH Output ,mAct , o

10 UNWIND Output as a
11 CREATE (o ) − [ :MODELEDGE]−>( t : Petr iNet : Model node{ type : ’ tau ’ , model : ’

ModelID ’} )
12 WITH t , a ,mAct
13 UNWIND a AS ma
14 OPTIONAL MATCH (n : Petr iNet {model : ’ModelID ’} ) WHERE n . in = mAct AND n . out =

ma
15 CALL apoc . do . when(
16 n IS NULL,
17 \”CREATE ( t ) − [ :MODELEDGE]−>(: Petr iNet : Model node{ type :\\ ’ p\\ ’ , in :mAct ,

out :ma, model :\\ ’ModelID \\ ’} ) \” ,
18 \”CREATE ( t ) − [ :MODELEDGE]−>(n) \” ,
19 {n : n , t : t ,mAct :mAct ,ma:ma})
20 YIELD value RETURN 1” ,
21 ”MERGE (p : Petr iNet : Model node{ type : ’ t ’ , t :mAct , model : ’ModelID ’} )
22 WITH p , Output ,mAct
23 UNWIND Output as a
24 WITH p , a ,mAct
25 UNWIND a AS ma
26 OPTIONAL MATCH (n : Petr iNet {model : ’ModelID ’} ) WHERE n . in = mAct AND n . out

= ma
27 CALL apoc . do . when(
28 n IS NULL,
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29 \”CREATE (p) − [ :MODELEDGE]−>(: Petr iNet : Model node{ type :\\ ’ p\\ ’ , in :
mAct , out :ma, model :\\ ’ModelID \\ ’} ) \” ,

30 \”CREATE (p) − [ :MODELEDGE]−>(n) \” ,
31 {n : n , p : p ,mAct :mAct ,ma:ma})
32 YIELD value RETURN 1” ,
33 {mAct :mAct , Output : Output })
34 YIELD value RETURN 1

Create Petri Net elements based on Input Bindings

1 CREATE ( : Petr iNet : Model node{model : ”ModelID ” , t : ”ARTIFICIAL END” , type : ” t ”})
2 WITH 1 AS ignore
3 MATCH (m: Model{ID : ”ModelID ”})−−(dg : DG node )
4 WITH dg . ID AS mAct , dg . InputBindings AS maIB
5 UNWIND maIB AS mActs
6 WITH mAct , mActs AS Input
7 WITH mAct , COLLECT(SPLIT( Input , ” | ” ) ) AS Input
8 CALL apoc . do . when(
9 SIZE( Input ) > 1 ,

10 ”MATCH (n : Petr iNet { type : ’ t ’ , t :mAct , model : ’ModelID ’} )
11 MERGE (o : Petr iNet : Model node{ type : ’ p ’ , model : ’ModelID ’} ) − [ :MODELEDGE]−>(n

)
12 WITH Input ,mAct , o
13 UNWIND Input as a
14 CREATE ( t : Petr iNet : Model node{ type : ’ tau ’ , model : ’ModelID ’} ) − [ :MODELEDGE]−>(

o )
15 WITH t , a ,mAct
16 UNWIND a AS ma
17 OPTIONAL MATCH (n : Petr iNet {model : ’ModelID ’} ) WHERE n . in = ma AND n . out =

mAct
18 CALL apoc . do . when(
19 n IS NULL,
20 \”CREATE ( : Petr iNet : Model node{ type :\\ ’ p\\ ’ , in :ma, out :mAct , model :\\ ’

ModelID \\ ’} ) − [ :MODELEDGE]−>( t ) \” ,
21 \”CREATE (n) − [ :MODELEDGE]−>( t ) \” ,
22 {n : n , t : t ,mAct :mAct ,ma:ma})
23 YIELD value RETURN 1” ,
24 ”MATCH (p : Petr iNet { type : ’ t ’ , t :mAct , model : ’ModelID ’} )
25 WITH p , Input ,mAct
26 UNWIND Input as a
27 WITH p , a ,mAct
28 UNWIND a AS ma
29 OPTIONAL MATCH (n : Petr iNet {model : ’ModelID ’} ) WHERE n . in = ma AND n . out =

mAct
30 CALL apoc . do . when(
31 n IS NULL,
32 \”CREATE ( : Petr iNet : Model node{ type :\\ ’ p\\ ’ , in :ma, out :mAct , model :\\ ’

ModelID \\ ’} ) − [ :MODELEDGE]−>(p) \” ,
33 \”CREATE (n) − [ :MODELEDGE]−>(p) \” ,
34 {n : n , p : p ,mAct :mAct ,ma:ma})
35 YIELD value RETURN 1” ,
36 {mAct :mAct , Input : Input })
37 YIELD value RETURN 1

Identify Start and End Places

Since the Start and End places of the Petri net are initially treated as ad-
ditional transitions, we need to change their properties to specify them as
places.
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1 MATCH (m:Model{ID:"ModelID "}) ,(s:PetriNet{t:" ARTIFICIAL_START

"}) ,(e:PetriNet{t:" ARTIFICIAL_END "})

2 CREATE (m) -[: CONTAINS_PN]->(s)

3 SET s.type = "s_e",s.isStart=true ,s.t=null

4 SET e.type = "s_e",e.isEnd=true ,e.t=null

Once they have been identified, we need to remove the extra place between
the Start place and the first transition.

1 MATCH (m:Model{ID:"ModelID "}) -[: CONTAINS_PN]->(s:PetriNet)-->(

p:PetriNet) -->(n)

2 MERGE (s) -[: MODEL_EDGE]->(n)

3 DETACH DELETE p

Then, we remove the extra place between the last transition and the End
place.

1 MATCH (n) -->(p:PetriNet) -->(e:PetriNet{model :"ModelID ",isEnd:

true})

2 MERGE (n) -[: MODEL_EDGE]->(e)

3 DETACH DELETE p

Petri Net Simplification

First, we find cases where the Petri Net has the following pattern: (Place1
-> Tau -> Place2). If the Tau transition only has one input and one output
and Place2 only has 1 input, the Petri Net can be simplified by connecting
the outputs of Place2 directly to Place1 and removing Tau and Place2.

1 MATCH (m:Model{ID:"ModelID "}) -[: CONTAINS_PN]->(s:PetriNet)

-[*]->(t{type:’tau ’})

2 WITH DISTINCT t

3 MATCH () -[a:MODEL_EDGE]->(t)

4 WITH t,COUNT(DISTINCT a) AS inTau

5 MATCH (t) -[b:MODEL_EDGE ]->()

6 WITH t,inTau ,COUNT(DISTINCT b) AS outTau

7 WHERE inTau = 1 AND outTau = 1

8 MATCH (t) -->(p2)

9 MATCH () -[c:MODEL_EDGE]->(p2)

10 WITH p2,t,COUNT(c) AS inP2

11 WHERE inP2 = 1

12 MATCH (p1) -->(t) -->(p2)

13 MATCH (p2) -->(outP2)

14 MERGE (p1) -[: MODEL_EDGE]->(outP2)

15 DETACH DELETE t,p2

Then, we again find cases where the Petri Net has the following pattern:
(Place1 -> Tau -> Place2). This time, if the Tau transition only has one
input and one output and Place1 only has 1 output, the Petri Net can be
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simplified by connecting the inputs of Place1 directly to Place2 and removing
Place1 and Tau.

1 MATCH (m:Model{ID:"ModelID "}) -[: CONTAINS_PN]->(s:PetriNet)

-[*]->(t{type:’tau ’})

2 WITH DISTINCT t

3 MATCH () -[a:MODEL_EDGE]->(t)

4 WITH t,COUNT(DISTINCT a) AS inTau

5 MATCH (t) -[b:MODEL_EDGE ]->()

6 WITH t,inTau ,COUNT(DISTINCT b) AS outTau

7 WHERE inTau = 1 AND outTau = 1

8 MATCH (p1) -->(t)

9 MATCH (p1) -[c:MODEL_EDGE ]->()

10 WITH p1,t,COUNT(c) AS outP1

11 WHERE outP1 = 1

12 MATCH (p1) -->(t) -->(p2)

13 MATCH (inP1) -->(p1)

14 MERGE (inP1) -[: MODEL_EDGE]->(p2)

15 DETACH DELETE p1 ,t
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Appendix E

Evaluation Details

E.1 Execution of Experiment 1

In this appendix we describe the details on the execution of the first ex-
periment for the evaluation of the tool, described in Section 7.1. First, we
describe the steps taken in ProM. Then, we describe the steps taken in our
tool. A thing to note is that the ”case” column in the input CSV files refers
to the Applications and the ”OfferID” column refers to the Offers.

E.1.1 ProM

1. Import event data. To import the event data into the ProM workspace,
we click on the ”Import” button, select the first CSV file, named
”BPIC17 Sample 20cases.csv”, and click on ”Open”. In the popup
window, we leave the default import plugin and click ”Ok”.

2. Create the ”Offer” XES file. To do this, we first click on the ”Use
resource” (Play) button. Then, on the ”Actions” view, we select the
”Convert CSV to XES” action and click on ”Start”. On the ”Configure
CSV Parser Settings” window, we click on ”Next”. We want to obtain
a model for the Offer-related activities, and we know from domain
knowledge that the best way to describe the process for the BPIC17
is through the combined attributes of ”Activity” and ”lifecycle”, so,
on the ”Configure Conversion from CSV to XES” window, we need to
make two changes. First, we select ”OfferID” as the case column. and
then we select ”Activity” and ”lifecycle” as the event columns. Once
the case and event columns are set, we click on ”Next” and in the next
window we click on ”Finish”.
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3. Save the ”Offer” XES file. We go back to the ”Workspace” view and
select the XES event log. Then, we click on ”Export to disk”. Finally,
we assign a name to the log file and click on ”Save”.

4. Create the ”Offer” model. In the ”Workspace” view, we select the
recently generated XES event log, and click on the ”Use resource” but-
ton. In the ”Actions” view, we search for ”Heuristic Miner” to filter the
actions. Then, we select the ”Interactive Data-aware Heuristic Miner
(iDHM)” action and click on ”Start”. Then, on the popup window, we
click ”Continue”.

5. Save the ”Offer” model. In the Heuristic Miner view, we click on ”Ex-
port model” and click ”Ok” on the popup window. Then, we go back
to the ”Workspace” view, select the Causal net that was just generated
and click on ”Export to disk”. We assign a name to the file and click
on ”Save”.

6. Create the ”Application” XES file. To do this, we select the original
CSV file imported into ProM and click on the ”Use resource” (Play)
button. Then, on the ”Actions” view, we select the ”Convert CSV
to XES” action and click on ”Start”. On the ”Configure CSV Parser
Settings” window, we click on ”Next”. This time, we leave the default
value for the case columns and just select ”Activity” and ”lifecycle” as
the event columns. Once the case and event columns are set, we click
on ”Next” and in the next window we click on ”Finish”.

7. Save the ”Application” XES file. We go back to the ”Workspace” view
and select the XES event log. Then, we click on ”Export to disk”.
Finally, we assign a name to the log file and click on ”Save”.

8. Create the ”Application” model. In the ”Workspace” view, we select
the recently generated XES event log, and click on the ”Use resource”
button. In the ”Actions” view, we search for ”Heuristic Miner” to
filter the actions. Then, we select the ”Interactive Data-aware Heuris-
tic Miner (iDHM)” action and click on ”Start”. Then, on the popup
window, we click ”Continue”. After the discovered process model is
shown on screen, we click on the ”Expert Options” button to display
additional thresholds. For the ”L2 Loop” threshold, we set the value
at 0.7.

9. Save the ”Application” model. In the Heuristic Miner view, we click
on ”Export model” and click ”Ok” on the popup window. Then, we
go back to the ”Workspace” view, select the Causal net that was just
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generated and click on ”Export to disk”. We assign a name to the file
and click on ”Save”.

E.1.2 Graph Tool

1. Import event data. To do this, we use the ”Upload CSV File” op-
tion from the tool to select the CSV file, named ”BPIC17 Sample
20cases.csv”. On the ”Select Activity Attribute”, we select ”Activ-

ity” and click on ”Continue”. Then, on the ”Select Event Attributes”
window, we select all the remaining attributes and click on ”Next”.
Then, in the ”Select Log Dimensions” window, we first add ”OfferID”
and then we add ”case” as dimensions. Then, we click on ”Finish”.

2. Define the ”Offer” Entity Type. In this model we want to visualize how
the Offer-related activities interact between them. To do this, we ex-
pand the ”Logs” panel and select the recently uploaded log, whose name
is the same as the one for the CSV file, ”BPIC17 Sample 20cases.csv”.
After the log name appears in the Log Label, we expand the ”Entities”
panel and click on ”New Entity”. On the ”Entity: Attribute Selection”
window, we select ”OfferID” and click on ”Create Entity”.

3. Using ”Offer” Entity Type, define the ”Activity+Lifecycle” Class. To
do this, we expand the ”Classes” panel and click on ”New Class”. We
know from domain knowledge that the best way to describe the process
for the BPIC17 is through the combined attributes of ”Activity” and
”lifecycle”, so, in the ”Class: Attribute Selection” window, we select
both the ”Activity” and ”lifecycle” attributes, and then we click on
”Continue”. Then, on the ”Entity: Attribute Selection” window, we
select the Entity Type previously defined, the ”OfferID”, and click on
”Create Class”.

4. Create the ”Offer” model. We expand the ”Algorithms” panel, select
”Heuristic Miner” from the dropdown menu and click on ”Generate
Model”. To generate the process model, we will use the default at-
tributes, so, on the ”Heuristic Miner: Parameter Selection” window,
we can click directly on ”Generate Model”.

5. Visualize the ”Offer” model. We expand the ”Models” panel, select the
”HM 1” model from the list and click on ”Show Model”. Now we can
see the discovered process model containing exclusively the activities
related to an Offer.
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6. Define the ”Application” Entity Type. In this model, we want to visu-
alize how the Offer-related activities and Application-related activities
interact between them. We already have defined the Entity Type for
the Offers through the OfferID attribute, so the next step is to define
the Entity Type for the Applications. To do this, we go back to the
”Entities” panel and click on ”New Entity”. On the ”Entity: Attribute
Selection” window, we select ”case” and click on ”Create Entity”.

7. Create the Derived Entity. The derived entity will help us to connect
the events from Offers and Applications through a new Entity Type. To
do this, we click on the ”New Derived Entity” button in the ”Entities”
panel. Then, on the ”Derived Entity: Entity Selection” window, we
select the two entities that we have created, ”OfferID” and ”case”, and
click on ”Create Derived Entity”.

8. Using the derived Entity Type, define the ”Activity+Lifecycle” Class.
To define the Class, we go back to the ”Classes” panel and click on
”New Class”. Similar to what we did for the previous class, in the
”Class: Attribute Selection” window, we select both the ”Activity”
and ”lifecycle” attributes, and then click on ”Continue”. Then, on
the ”Entity: Attribute Selection” window, we select the Entity Type
previously defined, the ”OfferIDcase”, and click on ”Create Class”.

9. Create the ”Application” model. We click on ”Generate Model” in the
”Algorithms” panel. In the ”Heuristic Miner: Parameter Selection”
window, first we can select ”OfferIDcase” as the Entity Type. Then,
we expand the ”Advanced Configuration” menu, check on the ”Use
Advanced Thresholds” option and move the slider for the Length-2
Loop threshold to 0.7. Finally we click on ”Generate Model”.

10. Visualize the ”Application” model. We can visualize this model by
selecting the ”HM 2” model from the list on the ”Models” panel and
clicking on ”Show Model”. We can look for the activities that start with
”O ” to analyze where these activities interact with the Application-
related activities, but we can execute one additional step in the tool to
obtain a better way to identify these activities.

11. Compare the models. We can select both models and then click on
the ”Show Petri Net” button to see the comparison between the mod-
els in the Graph panel. We can click on any transition from the
”HM 1” (Offers) model to see where it appears in the ”HM 2” (Of-
fers+Applications) model.
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E.2 Execution of Experiment 2

In this section we describe the details on the execution of the second ex-
periment for the evaluation of the tool, described in Section 7.2. First, we
describe the steps taken in ProM. Then, we describe the steps taken in our
tool.

E.2.1 ProM

1. Import the event data into the ProM Workspace. To do this, we click on
the ”Import” button, select the first CSV file, named ”BPIC17 Sample
20cases.csv”, and click on ”Open”. In the popup window, we leave the

default import plugin and click ”Ok”.

2. Create the XES file. To do this, we first click on the ”Use resource”
(Play) button. Then, on the ”Actions” view, we select the ”Convert
CSV to XES” action and click on ”Start”. On the ”Configure CSV
Parser Settings” window, we click on ”Next”. Then, on the ”Config-
ure Conversion from CSV to XES” window, the selected event columns
must be ”Activity” and ”lifecycle”. Once these two columns are se-
lected, we click on ”Next” and in the next window we click on ”Finish”.

3. Save the log to disk. We go back to the ”Workspace” view and select
the XES event log. Then, we click on ”Export to disk”. Finally, we
assign a name to the log file and click on ”Save”.

4. Create the model. In the ”Workspace” view, we select the recently
generated XES event log, and click on the ”Use resource” button. In
the ”Actions” view, we search for ”Heuristic Miner” to filter the actions.
Then, we select the ”Interactive Data-aware Heuristic Miner (iDHM)”
action and click on ”Start”. Then, on the popup window, we click
”Continue”.

5. Save the model to disk. In the Heuristic Miner view, we click on ”Export
model” and click ”Ok” on the popup window. Then, we go back to the
”Workspace” view, select the Causal net that was just generated and
click on ”Export to disk”. We assign a name to the file and click on
”Save”.

6. Repeat steps 1-5 for the 4 remaining CSV files included in Table 7.3.
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E.2.2 Graph Tool

1. Import the event data into the database. To do this, we use the ”Upload
CSV File” option from the tool to select the first CSV file, named
”BPIC17 Sample 20cases.csv”. On the ”Select Activity Attribute”, we
select ”Activity” and click on ”Continue”. Then, on the ”Select Event
Attributes” window, we select all the remaining attributes and click on
”Finish”.

2. Define the Entity Type for the model. To do this, we expand the ”Logs”
panel and select the recently uploaded log, whose name is the same as
the one for the CSV file, ”BPIC17 Sample 20cases.csv”. After the log
name appears in the Log Label, we expand the ”Entities” panel and
click on ”New Entity”. On the ”Entity: Attribute Selection” window,
we select ”case” and click on ”Create Entity”.

3. Define the Class. To do this, we expand the ”Classes” panel and click
on ”New Class”. In the ”Class: Attribute Selection” window, we select
both the ”Activity” and ”lifecycle” attributes, and then we click on
”Continue”. Then, on the ”Entity: Attribute Selection” window, we
select the Entity Type previously defined, the ”case”, and click on
”Create Class”.

4. Create the model. We expand the ”Algorithms” panel, select ”Heuristic
Miner” from the dropdown menu and click on ”Generate Model”. To
generate the process model, we will use the default attributes, so, on the
”Heuristic Miner: Parameter Selection” window, we can click directly
on ”Generate Model”.

5. Visualize the model. We expand the ”Models” panel, select the ”HM 1”
model from the list and click on ”Show Model”.

6. Repeat steps 1-5 for the 4 remaining CSV files included in Table 7.3.
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