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Abstract

In this project we put forth a new approach to quantify a well known risk metric called Value-at-
Risk (VaR). VaR is a statistical technique used to measure the amount of potential loss that could
happen in an investment portfolio over a specified period of time. There are well established VaR
models that have been used (in some form) in the industry for many years: the Normal Linear
model, the Monte Carlo model and the Historical Simulation model. These models do however
have drawbacks, the Normal Linear and Monte Carlo VaR have strong assumptions of normality
for the percentage returns of the portfolio and the Historical Simulation depends heavily on data.
In this project, a Mixed-Sum-Product Network (MSPN) was applied to estimate the VaR. The
MSPN model is able to learn the joint probability distribution of the risk factor returns of a
financial portfolio and capture the heavy tails without making any parametric assumptions of the
daily returns distribution. However, the MSPN model does assume that the daily returns are
independent and identically distributed meaning that each stock in the portfolio has the same
probability distribution and all stocks are mutually independent.

By using the MSPN model to learn the joint probability distribution of the daily returns we
could obtain possible realisations of the portfolio’s returns and estimate the VaR. We executed two
experiments to examine how well the MSPN model performed compared to the well established
VaR models. In the first experiment, we used stock data from 03/07/2013-20/07/2021 to estimate
a 1-day VaR value and the other experiment was a sliding window approach were we split our data
into segments and estimated the VaR for each segment. Using statistical backtesting methodologies
we were then able to see what VaR estimates were useful and which were not. The results indicate
that the MSPN model performs well at high dimensions with abundance of data, especially at the
highest (99%) VaR level. In addition, using MSPN inference we demonstrated that the MSPN
model was able to capture the heavy tails of the daily returns and is therefore more capable
of catching extreme events which is associated with high level VaR estimations. However, with
smaller data and a lower VaR level (95%) there was no clear advantage of using the MSPN
model. The results indicate that the MSPN is a promising alternative to VaR risk modelling, it is
able to capture the heavy tails of the daily returns distribution with no parametric assumptions
and provides useful VaR estimates. To conclude, the MSPN model is more sensitive to new
market observations than the other models and is more capable of catching rare market movements
providing more useful VaR estimates at the highest level (99%).
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Chapter 1

Introduction

For many years, mathematicians and other data scientists have dealt with the task of financial time
series predictions. With increasing computing capabilities and progress in machine intelligence,
one could assume that the design of accurate prediction models in finance is a manageable task.
However, the future trend in the prices of financial instruments contains a lot of uncertainty and
thus making much of the effort put in the prediction models of little value [Mariani et al., 2019].
Lately, market volatility has been growing as trading focuses on increasingly complex instruments
whose risks are extremely difficult to assess. Risk management and financial securities have been
around for centuries, yet we are only getting started to understand how the risks of complex fin-
ancial products can be quantified realistically, even though these measures make all the difference
between success and failure in the financial industry [Alexander, 2008b].

Despite a rapid growth in computing and artificial intelligence, modern portfolio management
is largely based on linear models and the Markowitz framework [Markowitz, 1991], better known
as Modern Portfolio Theory. The main drawbacks of the well established risk models in portfolio
management are very strong and unrealistic assumptions, for example parametric assumptions
about the future risk factor returns. To address the limitations of these models we will provide a
new generative approach of quantitative risk assessment in portfolio theory by using a special type
of a probabilistic graphical model to model the market uncertainty that ultimately drives future
prices. More precisely, our model learns the joint probability distribution of the price trends for
various sets of financial assets to match the probability distribution of the real market. By using
this approach we eliminate the assumptions used in these well established linear risk models, i.e.
we do not make any parametric assumptions of the risk factor returns.

In this project, we aim to assess a well known quantitative risk metric called Value-at-Risk by
using a probabilistic model called Mixed Sum Product Networks. By using a model of this kind
we can learn the behavior of a collection of complex financial instruments to acquire an estimate
of the risk associated. To demonstrate how the model performs compared to older well established
VaR models we plan to execute experiments on a wide range of stock data from 2013-2021. This
data includes stock prices for the top 40 stocks of the S&P 500 index and we will provide VaR
risk estimates with different sets of these stocks. We will look at different aspects of how the
model performs both by retrieving VaR estimates using a sliding window based approach, where
we split our data into smaller segments and estimate the VaR repeatedly with various segments
sizes and we will also look at the performance of the model using as much data as possible with
different collections of stocks. For further inspection, we aim to estimate very conservative and
less conservative VaR to gain a better insight in how the Mixed Sum Product Network model
performs at the extreme levels. To assess the VaR estimates retrieved from all models we will
use three well established backtesting methodologies, two of these methodologies are statistical
methodologies whereas one is a non-statistical method that is a regulatory framework used in the
industry and is used for more conservative VaR measures.

This work is split as follows. First, we will motivate precisely why an approach of this kind
is relevant and put forth our Research Questions that we aim to answer with this project. Then
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CHAPTER 1. INTRODUCTION

we will explain in detail all the financial and mathematical background that is relevant for this
project and after that we will introduce previous work that is related to risk assessment and
machine learning. Next, we will explain the design of our experiments, what data we used, explain
the hyperparameters of our model, etc. After explaining our experimental setup we will present
the results along with conclusions followed by future work, where we explain what are the next
potential directions of research for this project.

2 Portfolio Analysis: Estimation of VaR Using Mixed Sum Product Networks



Chapter 2

Problem Statement

In this chapter we will argue why and how this project is a promising new way to assess VaR in
portfolio theory. We will define what a financial portfolio is, explain how the VaR risk measure
is defined, present well known VaR models and their limitations and then explain what are Sum-
Product-Networks and Mixed Sum Product Networks and how they are a promising candidate for
helping calculating the VaR. Finally, we will present the research questions that we aim to answer
in this project.

2.1 Motivation

Portfolios are a collection of financial investments like stocks, bonds, commodities and cash. Al-
though these are the common financial instruments of portfolios, they can also include a wide
range of assets including real estate, art and private investments. Due to the different number of
assets that can be incorporated in a portfolio, we need a way to assess its behavior (riskiness) by
using a summary which is called a risk measure. We can define a market risk measure as the meas-
ure of uncertainty in the future value of a portfolio, i.e. the measure of uncertainty in the profits
and loss of a portfolio [Alexander, 2008b]. In this project, we focus in on one of the most popular
risk measure called Value-at-Risk (VaR). Value-at-risk has been around since the mid 1990s, and
almost all of financial institutions use some form of VaR [Alexander, 2008b]. It is a statistical
measure of the riskiness of financial portfolios of assets and is defined as the maximum amount
expected to be lost over a given time horizon, at a pre-defined confidence level. For example, if
we have a 1-day 95% VaR of 1 million USD for a portfolio, then there is 95% confidence that over
the next day the portfolio is not expected to lose more than 1 million USD.

The VaR risk metric can be calculated using different techniques. There are three widely known
VaR models; the Normal Linear VaR model, the Historical Simulation model and the Monte Carlo
VaR model. However, these models have their limitations. The Normal Linear VaR model, often
called the Variance-Covariance model, can only be applied to linear portfolios and can only be
generalized to a few simple parametric forms. The Historical Simulation VaR model assumes that
all possible future variation has been experienced in the past which imposes a strict requirement
on the data and the Monte Carlo VaR models require a lot of computational power and can yield
considerable simulations errors if the sampling strategy is not well thought of.

From this we can imagine that there is room for alternative approaches to estimate the VaR
for portfolios, methods that do not have similar assumptions and restrictions as the other three
models, which are most often not realistic. In this study, we will investigate how a particular
kind of Sum Product Networks, named Mixed Sum Product Networks, can be applied to help
estimate the VaR. Sum Product Networks are a prominent type of deep probabilistic models as
they are a flexible representation for high-dimensional distributions [Trapp et al., 2019]. They
are related to other better known probabilistic graphical models like Bayesian networks. Sum
Product Networks are similar to neural networks to some extent and can tackle the same types of
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CHAPTER 2. PROBLEM STATEMENT

problems, such as natural language understanding and image processing. Because of their ability to
represent high-dimensional distributions they are a good candidate for estimating the probability
distributions of portfolio returns. Mixed Sum Product Networks are a mixture of Sum Product
Networks and nonparametric probability distributions that require no parametric assumptions to
learn the portfolio’s return distribution. By learning this distribution of returns we can acquire
an estimation of the VaR measure. In addition, a Mixed Sum Product Network model can ideally
capture the extreme events (high profits and low losses), which occur at the tails of the portfolio’s
return distribution, providing a better estimate of the VaR measure than the other models at
higher confidence levels.

2.2 Research Questions

The aim of this thesis is to estimate VaR with Mixed Sum Product Networks, namely:

RQ1: Is it possible to calculate the 1-day VaR of a financial portfolio using an MSPN
by learning the joint probability distribution of the portfolio’s risk factor returns?

RQ2: How does it compare with other well-known VaR models?

4 Portfolio Analysis: Estimation of VaR Using Mixed Sum Product Networks



Chapter 3

Background

In this chapter we will look at the concept of risk measures, how VaR is defined in detail, we will
look at other concepts like backtesting and explain three well-known VaR models and how they
calculate VaR. In addition, we will define and explain Sum Product Networks, in particular Mixed
Sum Product Networks and why they are a good candidate for this kind of problem.

3.1 Basics of Portfolio Theory

A portfolio is defined as a collection of financial investments like stocks, bonds, commodities and
cash. Let’s consider a simple portfolio with k assets and denote the i-th asset price at time t by
pi,t. At time 0 a certain amount is invested in each of these assets, so that the portfolio contains
a unit amount ni of asset i, for i = 1, ..., k. The set {n1, n2, .., nk} is defined as the vector of
portfolio holdings at time 0. If the portfolio is rebalanced, then the holdings in certain financial
assets may change, but without that the portfolio holdings are constant over time.

If there is no rebalancing over time, then at any time t > 0, the value of the portfolio is the
sum of the product of asset prices and holdings,

Pt =

k∑
i=1

nipi,t (3.1)

The proportion of capital invested in a certain asset i at time t is called the portfolio weight
on this asset. The portfolio weight on asset i is

wit =
nipi,t
Pt

(3.2)

The return of a portfolio is calculated with the formula,

R =

k∑
i=1

wiRi (3.3)

where k is the number of assets, wi is the portfolio weight on asset i and Ri denotes the one-period
return on asset i.

In addition, we also need to define the profit and loss (P&L) on an asset, which is the change
in price of an asset over a period of time,

P&Lt,t+h =
Bt,t+hPt+h − Pt

Pt
=
Pt+h − Pt

Pt
(3.4)

where Bt,t+h is the discount factor assumed to be 1 for h = 1. Our portfolio P&L returns
therefore illustrate how the total value of our portfolio will change, based on a percent change in
the underlying prices.

Portfolio Analysis: Estimation of VaR Using Mixed Sum Product Networks 5



CHAPTER 3. BACKGROUND

3.2 Risk Measures

This section is largely based on [Artzner et al., 1999], where desirable properties of market risks
are discussed and justified. We will make a brief summary of the concepts presented in that paper.

We can think of a risk measure as a mapping from spaces of probability distributions to real
numbers but it is important to present a formal definition of a risk measure and what are the
properties they should satisfy.

There is a natural way to define a risk measure for a ”reference instrument” by describing how
close or far a position is from acceptance by the regulator. Let us define Ω as the set of states of
nature and we make the assumption that it is finite. Then let X be the set of all risks, i.e. the
set of all real valued functions X ∈ X , which represent the final net worth of an instrument, or of
a portfolio of instruments, for each element of Ω.

Definition 3.2.1 (Risk Measure). A risk measure ρ(X) is a mapping from X into R.

A measure of risk enables us to express the riskiness of a position with a single number. As the
positions are more risky, the higher its measure of risk is and vice versa. When ρ(X) is positive,
the number assigned by the measure ρ to the risk X will be interpreted as the amount of capital,
m, that is needed to make the risky position X an acceptable position. Roughly, an acceptable
position, is a position that meets the capital requirements established by some regulator. If the risk
measure ρ(X) is negative, the cash amount −ρ(X) can be pulled out from the already acceptable
position and invested in a more profitable way. Therefore, we can conclude that this concept of
risk measure is related to acceptability.

We can state that sets of acceptable future net worths are of primary importance and need to
be considered when describing allowance or rejection of a risky position. An acceptance set A is a
class of final net worths accepted by a regulator. The families of acceptable positions depend on
the tolerance of the regulator and each risk identifies an acceptance set of admissible positions.

Definition 3.2.2. The acceptance set associated with a risk measure ρ is the set denoted by Aρ
and defined by

Aρ = {X ∈ X |ρ(X) ≤ 0} (3.5)

Definition 3.2.3. For a given rate of return r of a reference instrument, the risk measure asso-
ciated with the acceptance set A is the mapping from X to R, denoted by

ρA,r(X) = inf{m|m · r +X ∈ A} (3.6)

From Definition 3.2.3 we can conclude that a measure of risk for an unacceptable position is
interpreted as the minimum extra capital, defined by m, that is needed to invest in the reference
instrument, for letting the future value of the modified position to be acceptable.

Another concept introduced in the paper is the notion of coherent risk measures and is a
fundamental concept related to the acceptability of risk measures.

Definition 3.2.4. A risk measure is coherent if it satisfies the following axioms:

Axiom 1. Translation Invariance For all X ∈ X and for all m ∈ R, we have

ρ(X +m) = ρ(X)−m (3.7)

Axiom 2. Sub-Additivity For all X1 ∈ X and X2 ∈ X , we have

ρ(X1 +X2) ≤ ρ(X1) + ρ(X2) (3.8)

Axiom 3. Positive Homogeneity For all X ∈ X and for all τ > 0, we have

ρ(τ ·X) = τ · ρ(X) (3.9)

6 Portfolio Analysis: Estimation of VaR Using Mixed Sum Product Networks



CHAPTER 3. BACKGROUND

Axiom 4. Monotonicity For all X1 ∈ X and X2 ∈ X with X1 ≤ X2, we have

ρ(X1) ≥ ρ(X2) (3.10)

The first Axiom of Translation Invariance illustrates that adding (or deducting) a risk-free
amount to a portfolio and investing it in the reference instrument results in a decrease of the risk
of the position by exactly the same amount. The Axiom of Sub-Additivity is a simple reminder
of diversification theory where a portfolio made up by several assets is strictly less risky than a
portfolio composed by a single instrument.

In this sense, we can assert that the sub-additivity sets an upper bound to the risk of a
portfolio and thus to the amount of regulatory capital needed for allocation. The Axiom of Sub-
Additivity captures the essence of how a risk measure should behave, especially in the aggregation
of portfolios, and because of that it is the key feature of a risk metric. Axiom 3 of Positive
Homogeneity explains that if (for instance) the exposure to a specific position doubles then the
risk measure that is related to the position should double as well. However, in the case that
the position size directly influences risk, we should account for any possible repercussion (e.g.
difficulty in liquidate the position), and therefore we might expect the risk to more than double.
To conclude, the Axiom of Monotonicity explains that if a position X2 always performs better than
X1 then the risk associated to X1 should be higher than that related to X2 [Roccioletti, 2015].

3.3 Value-at-Risk

This section is largely based on [Alexander, 2008a]. In this book, she explains the concept of
VaR thoroughly and the three VaR models: Normal Linear VaR, Monte Carlo VaR and Historical
Simulation VaR.

We can define VaR as the loss we are fairly sure will not be exceeded if the current portfolio
is held over some period of time. VaR has two basic parameters:

1. Significance level α (or confidence level 1− α).

2. Risk horizon h, the period of time (that is most often measured in days) in which VaR is to
be measured.

The significance level is often set by an external regulator, otherwise the significance level for
the VaR depends on the attitude to risk of the user. As the user is more conservative, the lower
the value of α he will use obtaining a higher confidence level.

The risk horizon is the period in which we measure the potential loss. Different risks are
measured over different time periods according to their liquidity. Traders of liquid positions that
are operating under VaR limits require real-time, intra-day VaR estimates to assess the effect of
any proposed trade on their current level of VaR. The more liquid the risk, the shorter the time
period over which the risk needs to be assessed. Liquid risks have the tendency to evolve rapidly
and it is difficult to represent the dynamics of these risks over a long term. In high stressful and
volatile markets, markets tend to lose liquidity and therefore the risk horizon should be increased
when measuring VaR in stressful circumstances.

If we consider a portfolio of risky assets and a fixed risk horizon h and suppose that we have
estimated the P&L distribution that is associated to this portfolio and denote by FL(l) = P(X ≤ l)
its distribution function, we can then define a statistic based on FL which evaluates the level of
risk associated to the holding of our portfolio over the risk horizon.

Definition 3.3.1 (Value-at-Risk). Given a significance level α ∈ [0; 1] and a predetermined time
horizon h, the VaR of a portfolio at the significance level α is given by the smallest number l such
that the probability that the loss X exceeds l, in the time horizon h, is no larger than α.

More formally, the VaR risk measure is defined as:

VaRh(α) := inf{l ∈ R : P(X ≤ l) ≤ α} (3.11)

Portfolio Analysis: Estimation of VaR Using Mixed Sum Product Networks 7



CHAPTER 3. BACKGROUND

L0xα = VaR

Figure 3.1: 5% VaR of a hypothetical P&L probability density function.

where X is a random variable representing the P&L of our portfolio at time horizon h. In
Figure 3.1 we can see a visualisation of the VaR risk measure. The shaded area represents α ≈ 0
and the α quantile represents the VaR value, xα.

VaR is thus simply the α quantile of the P&L distribution. In market risk management the
risk horizon is usually one to ten days, while in credit risk management it is usually one year.
The VaR risk measure is intuitive and popular because of its conceptual clarity. It gives us a
rough idea about the extent of risk in our portfolio with only one single number making it quite
manageable to interpret. The VaR measure can be measured for different types of assets, whether
it is stocks, bonds, currencies, derivatives or any other assets with a price. Because of that, banks
and financial institutions use it.

3.3.1 Normal Linear VaR model

The Normal Linear VaR model is only applicable when the return of the profits and losses of a
portfolio is a linear function of its risk factor returns.

In addition, there is the assumption that risk factor returns are normally distributed, and
that their joint distribution is multivariate normal. Because of that, the covariance matrix (which
gives the covariance between each pair of elements) is all that is needed to capture the dependency
between the risk factor returns. Therefore, if we write the return of a portfolio as X (excluding
the dependence on time and risk horizon for simplicity) we assume

X
i.i.d∼ N (µp, σ

2
p) (3.12)

where the parameter µp is the expected return of the portfolio and σ2
p is its standard deviation

at time t.
The expected return of the portfolio is calculated with the formula,

µp = E[Rp] =

N∑
i=1

wiE[Ri] ≈ R̄p =

N∑
i=1

R̄itwi (3.13)

where Rp is the return of the portfolio at time t, E[Ri] is the expected return of instrument i,
R̄p is the average return of the portfolio at time t, R̄it is the average return of asset i.

The standard deviation is calculated by the formula,

σ2
p =
√
wTΩw (3.14)

where Ω is the covariance matrix of our financial assets in the portfolio,

Ω =

 σ1 . . . σ1n

...
. . .

...
σm1 . . . σm

 (3.15)
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The diagonal contains the variances of each stock while the non-diagonal elements is the cov-
ariance between each pair of stocks.

The goal is to find the α quantile return such that P(X < xα) = α. When the standard
deviation and expected return has been calculated, the VaR can be found by calculating the
inverse of the normal cumulative distribution.

3.3.2 Historical simulation VaR model

The Historical Simulation VaR model reorganizes historical daily returns, putting them in order
from worst to best. From the re-organized historical daily returns we can then retrieve the VaR
by calculating the xα quantile from the distribution.

This model has the assumption that all possible variations have been experienced in the past,
and that the historically simulated distribution is identical to the returns distribution over the
forward looking horizon. One of the main problems of the Historical Simulation model approach
is that it needs much data. To construct the historical distribution the number of data points
needed is equal to the number of observations on each risk factor return in the simulation. This
number of data points should be as high as possible to get good precision. Ideally, the historical
data should be sampled at the daily frequency and for many years. The reason for this is that we
need much data to estimate the quantiles of an empirical distribution. The accumulation of such
data is a lot of work and can be difficult.

In Figure 3.2, we can see an example of 99% VaR of simulated P&L density.

Figure 3.2: Simulated P&L density displaying 1% VaR[Alexander, 2008b].

The advantage of these models is that assumptions for distributions are few. There is no need
to assume for any kind of distribution of the risk factor return distribution, least of all multivariate
normality. There is only one distribution assumption and that is that the multivariate distribution
of the risk factor returns over the risk horizon will be identical to the one in the past. In addition,
if the historical VaR is scaled to a longer period of time, then we need to assume that the risk
factor returns are i.i.d. They do not have to be normally distributed but they have to have a
stable distribution of some sort so that it is possible to derive a scaling rule for the historical VaR.

One of the advantages of the Historical Simulation VaR model is that it bases the risk factor
dependencies on experienced risk factor returns and co-movements between these rather than on
a parametric model for their distribution like the Normal Linear VaR model. However, because of
sample size constraints the historical VaR needs to be assessed initially at the daily horizon, and
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then scaled up to longer horizons. The scaling from a daily horizon to a long risk horizon requires
a detailed investigation of the nature of the empirical return distribution.

3.3.3 Monte Carlo VaR model

The Monte Carlo VaR model, in its basic form, uses the same assumptions as the Normal Linear
VaR model, i.e. that the risk factor returns are i.i.d. with a multivariate normal distribution.
However, the Monte Carlo VaR model is more flexible and many different assumptions about the
multivariate distribution of the risk factor returns can be accommodated.

Monte Carlo models that are i.i.d. multivariate, simulate independent standard normal vectors
which are then transformed to multivariate normal vector using the Cholesky decomposition of the
risk factor returns covariance matrix. From that we can obtain a simulated portfolio risk horizon,
one for each simulated vector of correlated risk factor returns.

One other difference between the Monte Carlo VaR and the Normal Linear VaR is that the
Monte Carlo VaR can and should only be applied to nonlinear portfolios, i.e. portfolios where
the returns cannot be expressed by linear functions. If Monte Carlo models were applied to linear
models we can obtain sampling errors that are not present in the Normal Linear VaR model.

Because of their similarities, the Monte Carlo and Normal Linear VaR models have similar
estimations on VaR, but both approaches are common. If we compare the two methods, the
Normal Linear VaR model is very precise but is built on assumptions that are unlikely to hold
while the Monte Carlo VaR is subject to simulation errors. Thus, these two methods should give
a similar value of VaR, if that is not the case then most likely there were too few simulations
used in the Monte Carlo VaR execution. The Monte Carlo VaR models can be based on any kind
of multivariate distribution for risk factor returns, whereas the normal linear VaR model have
closed-form solutions for only a select distributions.

3.4 Backtesting

How should a model be assessed? It can be argued that a model should be assessed on the
usefulness of its predictions, not the reasonableness of assumptions or analytical sophistication.
From the very beginning of VaR in 1994, financial authorities immediately recognized that there
was a need for VaR backtesting methodologies. The first research on this topic was published in
1995 [Kupiec, 1995] and 1996 [Kambhu et al., 1996].

Backtesting is a statistical process of assessing the usefulness of Value-at-Risk predictions when
it is applied to a portfolio over a certain period of time. By collecting enough data, i.e. the realized
profits and losses for the portfolio, statistical tests (and other kinds of tests) can be applied to
assess how well the Value-at-Risk measurements capture the riskiness of a portfolio.

The backtesting concept is explained mathematically in [Roccioletti, 2015] where we consider
a continuous loss distribution. By the definition of Value-at-Risk at a certain significance level α
and a time horizon h, we have that the violation probability of the VaR number equals α:

P(X < VaRh,α(X)) = α (3.16)

We can describe the violation process with an indicator function as

It+1(α) = 1{X(t+1)<VaR(X(t+1))} (3.17)

This means that the hit sequence returns a value of 1, if the loss in day t + 1 is larger than
the predicted VaR number from the model, and 0 if not. To do backtesting we must build this
sequence of zeros and ones {It+1}Tt=1, where T is the number of days in the testing period.

From that, we can conclude that a VaR risk model has correct unconditional coverage if

P(It+1 = 1) = E[It+1] = α (3.18)
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In layman’s terms, a correct unconditional coverage indicates that the proportion of VaR
violations is not significantly different from α across the number days. A correct conditional
coverage suggests that the model gives a VaR hit with the right probability on every day, provided
all the information available the day before. Under these set of terms, VaR hits are independent
and identically distributed Bernoulli random variables, with a success probability of α.

Therefore, we can think of VaR backtesting as questioning the following null hypothesis:

H0 = It+1 ∼ i.i.d Bernoulli(α) (3.19)

It is worth mentioning that the significance level choice is very important because that choice
is directly related to the following errors:

1. Type I: probability of rejecting a correct model.

2. Type II: probability of not rejecting a wrong model.

As the significance level increases, the number of Type I errors increases but number of Type
II errors decreases and vice versa.

3.4.1 Binomial Distribution Test

The Binomial Distribution test states that if we have a violation sequence, as described in Equation
3.17, that is independently and identically distributed and has correct unconditional coverage (see
Equation 3.18), then the total number of violations x has a binomial distribution B(n, α) with
E[x] = [nα] and Var[x] = nα(1−α). If x is a realisation of binomial random variable X, then our
null hypothesis is

H0 : X ∼ B(n, α) (3.20)

If we have a large number of observations, the central limit theorem can approximate the
binomial distribution by the normal distribution. Therefore for discussing the null hypothesis in
Equation 3.20 we can use a simple mean test:

z =
x− nα√
nα(1− α)

≈ N (0, 1) (3.21)

3.4.2 Kupiec’s Proportion of Failure Test

This coverage test is the oldest proposed VaR backtesting methodology and is concerned with
whether or not the reported VaR is violated more than 100α% percent of the time.

Let’s assume we have a number of observations n and a number of violations x. Let’s define
q := 1−α and we define the unconditional coverage q∗ = E[It], the null hypothesis of the Kupiec’s
test is:

H0 : 1− q = q∗ (3.22)

We treat x as a realisation of a binomial random variable X. To test our null hypothesis at
some significance level α, we must construct a non-rejection interval [x1, x2] such that

P([X /∈ [x1, x2]) ≤ α (3.23)

Rather than directly calculating the probabilities of B(n, 1 − q), the Kupiec’s Test uses this
distribution to construct a likelihood ratio

Λ =
qn−x(1− q)x[
n−x
n

]n−x [ x
n

]x (3.24)

If the value of the statistic in Equation 3.24 is higher than the critical value of the χ2 distribu-
tion, H0 will be rejected and we conclude that the model is incorrect. The power of the Kupiec’s
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test grows as we have more data and therefore when we have a considerable amount of data we
can reject an inaccurate model without much difficulty [Roccioletti, 2015].

However, it can be difficult to infer probabilities with Equation 3.24. A standard technique is
to consider −2 log(Λ) [Holton, 2003]. We consider

− 2 log(Λ) = −2 log

[
qn−x(1− q)x[
n−x
n

]n−x [ x
n

]x
]

= −2 log

[[
n− x
qn

]n−x [
x

(1− q)n

]x]
(3.25)

According to [Lehmann and Romano, 2005] the expression in Equation 3.25 is approximately
centrally chi-squared with one degree of freedom, i.e. −2 log(Λ) ∼ χ2(1, 0) assuming H0.

Given a significance level α, we can calculate the α quantile of the χ2(1, 0) distribution and
setting that equal to Equation 3.24 we can solve for x. From that we will get two solutions which
can be obtained using numerical methods. Rounding the lower one down and the higher one up
gives us the [x1, x2] non-rejection interval.

3.4.3 The Basel Committee’s Traffic Light Coverage Test

The final backtesting framework we want to cover is a regulatory framework established by the
Basel Committee in 2013 and is based on a regular comparison of the bank’s daily risk measure with
the realized profit or loss. The use of a proprietary VaR measure requires approval of regulators.
A bank is obligated to have an independent risk management function and satisfy regulators that
it was following acceptable risk management practices.

As with other backtesting methodologies, we look at how often the trading outcomes exceeds
the risk measures (or look at how often the risk measures were larger than the trading outcome).
Then the fraction covered can be compared with the intended level of coverage to gauge the
performance of the bank’s risk model [Grody et al., 2013]. This backtesting methodology is based
on the VaR measures at the 99% percentile confidence level. The banks were required to produce
250 risk measures forecasts. According to the Basel Committee, an exception occurs when the loss
of a trading desk registered in a day of the backtesting period is higher than the corresponding
VaR measure from our model. If a risk measure or the profit (or loss) is unavailable for some
reason it will count as an exception.

We can define a risk capital requirement as a minimum capital requirement for banks set
by regulators. In this backtesting framework, this capital requirement depends not only on the
portfolio risk but also on the outcome of the backtesting procedure

CRt = mft · ρ(Lt) (3.26)

where CR stands for Capital Requirement, mf for the multiplication factor and ρ is the risk
measure computed on the loss distribution L. The subscript t indicates that all of this is calculated
at time t, using the information we have up to time t− 1. The mft term is determined from the
backtesting results and the Basel Committee ranks the backtesting according to three categories:
green, yellow and red zones. This approach is called the The Basel Traffic Light Approach.

The number of VaR exceptions that land in the green zone are not of concern and those that
fall in the yellow zone require monitoring. The Basel Committee recommended that the VaR
measures from the yellow zone be weighted more heavily in calculating the banks’ capital charges
for market risk and are implicated by the multiplier factors - these multipliers are indicated in
Table 3.1.
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Zone Number of Exception Plus Factor Cumulative Probability
Green Zone 0 0.00 8.11

1 0.00 28.58
2 0.00 54.32
3 0.00 75.81
4 0.00 89.22

Yellow Zone 5 0.40 95.88
6 0.50 98.63
7 0.65 99.60
8 0.75 99.89
9 0.85 99.97

Red Zone ≥ 10 1.00 99.99

Table 3.1: The Basel Committee defined the green, yellow and red zones for backtesting proprietary
1-day 99% VaR measures, assuming 250 observations.

Table 3.1 shows the plus factors we need to calculate the multiplication factor

mft = 3 + Plus Factor (3.27)

Note that for a model providing 99% coverage it is quite likely to produce as many as four
exceptions and therefore there is little reason to be concerned by backtesting results that fall in
this range [Grody et al., 2013]. As the number of exceptions go from five to nine, we fall in the
yellow zone in which outcomes suggest both accurate and inaccurate models. Obviously, as the
number of violations grow the validity of our model become smaller as the number of violations
approaches nine. This can be reflected by the scaling factor. If the backtesting results fall into
the red zone that clearly indicates that there is something wrong in our model: a well specified
model should not display ten or more violations for 250 observations.

3.5 Sum Product Networks

The goal of this study, as mentioned, is to use a probabilistic model to represent probability
distributions, i.e. compute their marginals and modes efficiently and learn them accurately. Sum
Product Networks (SPNs) are one kind of these probabilistic models. They are directed graphs
that represent a probability distribution that is resulted from a hierarchy of distributions combined
in the form of mixtures (sum nodes) and factorizations (product nodes). The main advantage of
SPNs is that they can perform inference task in time proportional to the number of edges in a
graph [Sánchez-Cauce et al., 2021].

SPNs are similar to other probabilistic graphical models (PGMs), such as Bayesian Networks
(BNs) and Markov Networks, in their ability to represent probability distributions but the main
difference is that in PGMs, each node represents a variable and edges represent probabilistic de-
pendencies, while in SPNs, each node represents a probability distribution. PGMs can be compiled
into SPNs and arithmetic circuits [Chavira and Darwiche, 2007]. As stated, SPNs compute mar-
ginals and conditional probabilities proportional to the number of edges in the graph while in BNs
inference is NP-hard.

We can look at SPNs as a particular type of feed-forward neural networks because there is a flow
of information from the input nodes to the output nodes. However, the main difference between
SPNs and neural networks is that SPNs have a probabilistic interpretation while standard neural
networks do not. Inference is also different between the two: to compute a posterior probability
requires two passes, and the most probable explanation (MPE) - in most SPNs - can be found
by backtracking from the root to the leaves. In addition, SPNs can do inference with partial
information, i.e. when some variables are unknown, while in neural networks it is necessary to
assign a value to each of the input nodes. When looking at parameter learning, neural networks
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are usually trained with gradient descent or variations of that, while SPNs can be trained with
probabilistic algorithms, such as EM and Bayesian methods.

Definition 3.5.1 (Sum Product Networks). An SPN S is a rooted acyclic directed graph such
that:

1. Each leaf node represents a probability distribution for a finite-states variable, V .

2. All the other nodes are either of type sum or product.

3. Every edge ni → nj outgoing from a sum nodes has an associated weight, wij > 0.

An SPN can be built bottom-up beginning with sub-SPNs of one node and joining them with
sum and product nodes.

We can define the scope of a node ni, with sc(ni). For a leaf node, it is the set of variables on
which the probability distribution is defined. The scope of a non-terminal node ni is the union of
scopes of its children:

sc(ni) =
⋃

j∈ch(i)

sc(nj) (3.28)

The scope of an SPN S, denoted by sc(S), is the scope of its root, sc(nr). A sum node is
complete if all its children have the some scope. An SPN is complete if all its sum nodes are
complete. Finally, a product node is decomposable if all its children have pairwise disjoint scopes.
An SPN is decomposable if all its product nodes are decomposable.

SPNs are defined recursively, as weighted sums and products of smaller SPNs, with univariate
distributions as the base case. These networks also have other important classes of probabilistic
models as special cases, including mixture models, thin junction trees, non-recursive probabilistic
context-free grammars, and more [Gens and Pedro, 2013].

In [Poon and Domingos, 2011], they described and defined an SPN over Boolean variables.
They defined the negation of a random variables Xi as X̄i and the indicator function [.] has a
value 1 when its argument is true and 0 otherwise. They abbreviate [Xi] as Xi and [X̄i] as X̄i.

They defined the unnormalized probability distribution Φ(x) ≥ 0. The network polynomial of
Φ(x) is

∑
x Φ(x)Π(x) where Π(x) is the product of the indicators that have value 1 in state x.

This network polynomial is a multilinear function of the indicator variables. The unnormalized
probability of the evidence e is the value of the network polynomial when all indicators compatible
with e are set to 1 and the remainder are set to 0. For any evidence e, the cost of computing

P (e) = Φ(e)
Z is linear in the size of the network polynomial. The network polynomial

∑
x Φ(x)Π(x)

has size exponential in the number of variables, however we may be able to represent and evaluate
it in polynomial space and time using an SPN.

Figure 3.3: SPN implementing a naive Bayes mixture model
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For a given structure of SPNs the weights can be learned in two ways; generatively and dis-
criminatively. In the generative case, a well-known algorithm, the EM algorithm, was proposed
by [Poon and Domingos, 2011] where each example is presented in turn to the SPN. The authors
demonstrated that this algorithm was capable of learning very deep SPNs but they used a pre-
defined SPN structure that was both expensive to learn (because there were a lot of nodes) and
insufficiently flexible. For the other case, the discriminative one, [Gens and Domingos, 2012] pro-
posed a backpropagation-style gradient descent algorithm which obtained state-of-the-art results
on image classification problems, but again faced a trade-off between flexibility and cost of learning
[Gens and Pedro, 2013].

In [Gens and Pedro, 2013] paper they proposed a method for learning an SPN structure. Their
algorithm, named LearnSPN, inputs an i.i.d. sample of a vector-valued variable that is in the form
of a matrix of instances by variables. If the vector is of unit length, their algorithm returns the
corresponding univariate distribution. In the case there are no dependencies detected among the
variables, the algorithm returns a fully factorized distribution.

Another recent approach for learning the structure of SPNs was proposed by [Peharz et al., 2020].
In this paper, they introduced a simple and scalable method to construct random and tensorized
SPNs, named RAT-SPNs. First a random region is constructed, which is then populated with
array of SPN nodes. This particular strategy essentially dictates a random hierarchical tensorial
decomposition, learning SPNs with reduced sparsity. These types of SPNs map well into existing
deep learning frameworks like Tensorflow and scales to a million parameters.

In the case of density estimation, [Peharz et al., 2020] used the classic EM algorithm previously
mentioned. The EM algorithm is free of tuning-parameters and rapidly increases the likelihood,
and is therefore a good choice for this particular task. Their results showed that the RAT-SPNs
yielded test-likelihoods very close to ID-SPN which is one of the most sophisticated SPN learners
available.

For a given training set, X = {x1, ...,xN} of i.i.d. samples, which is drawn from an un-
known distribution P ∗(X), we want to approximate this distribution. The canonical approach to
generative learning is maximizing the log-likelihood

LL(w) =
1

N

N∑
n=1

logS(xN ) (3.29)

where w denotes all the parameters of the SPN, i.e. sum weights and parameters of the input
distributions [Peharz et al., 2020].

To optimize Equation 3.29, the EM algorithm is applied. This algorithm rapidly and mono-
tonically increases the likelihood, is free of tuning-parameters and can be implemented via simple
and backward evaluations to compute the required statistics.

3.6 Mixed Sum-Product Networks

There is a particular type of Sum-Product Networks that appears to be applicable in risk assess-
ment in portfolio theory; an architecture called Mixed Sum Product Networks (MSPNs). When
structuring probabilistic models we sometimes have to spend a considerable amount of time in
identifying the parametric form of the random variables (Gaussian, Poisson, etc.). One approach
to make this easier is to use MSPNs, a deep architecture for hybrid domains that features tractable
queries [Molina et al., 2018]. They are a general class of mixed probabilistic models, by combin-
ing Sum-Product Networks and piecewise polynomials, and they allow for a broad range of exact
and tractable inference without having to make assumptions of distribution. To learn MSPNs
from data we are required to do different conditioning and decomposition steps for SPNs that is
tailored towards nonparametric distributions, i.e. we need to describe methods so that we can
model hybrid domains without making parametric assumptions. These steps are described in
[Molina et al., 2018], namely three factors are explained: Rényi Decomposition, Rényi Condition-
ing and Nonparametric Univariate Leave Distributions.
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They approached the problem of seeking independent subsets of random variables of mixed
but unknown types as a dependency discovery problem. According to [Rényi, 1959], a measure
of maximum dependence ρ∗ : Vi × Vj → [0, 1] between random variables Vi and Vj should satisfy
several fundamental properties like symmetry, transformation invariance and that the following
expression should hold ρ∗(Vi, Vj) = 0 if and only if Vi and Vj are statistically independent. Rényi
also explained how the Hirschfeld-Gebelein Maximum Correlation Coefficient (HGR) covers all of
these conditions.

Definition 3.6.1 (Hirschfeld-Gebelein-Rényi Maximum Correlation coefficient). Given random
variables X and Y , the Hirschfeld-Gebelein-Rényi maximal correlation of (X,Y ) is defined as
follows [Anantharam et al., 2013]:

ρm(X;Y ) := max
(f(X),g(Y ))∈S

E[f(X)g(Y )], (3.30)

where S is the collection of pair of real-valued random variables f(X) and g(Y ) such that

Ef(X) = Eg(Y ) = 0, and Ef2(X) = Eg2(Y ) = 1 (3.31)

In a paper [Lopez-Paz et al., 2013] they presented an estimator for the HGR ρ∗ coefficient, the
randomized dependency coefficient (RDC). This estimator is quite useful for hybrid domains as
it can be applied to both multivariate, continuous and discrete random variables. In addition, it
runs in O(M logM) running time, with M being the number of instances making it one of the
fastest nonlinear dependency measure. The idea behind the RDC is to find the linear correlation
between the representations of two random samples that have undergone a series of non-linear
transformations. The samples are concluded to be independent if and only if the transformed
samples are linearly uncorrelated.

If we consider two random samples DVi = {vmi |vmi ∼ Vi}Mm=1 and DVj = {vmj |vmj ∼ Vi}Mm=1

drawn from random variables Vi and Vj , we conclude that Vi and Vj are independent if and only if
ρ(DVi

,DVj
) = 0, where ρ is the RDC. In order to do achieve invariance against scaling and shifting

data transformations, we compute their empirical copula transformations [Póczos et al., 2012], CVi

and CVj
.

CVi
=

[
1

M

M∑
r=1

1{vri ≤ vmi }|vmi ∈ DVi

]M
m=1

(3.32)

After that, we apply a random linear projection on the obtained samples to a k-dimensional
space, finally passing them through a non-linear function σ,

φ(CVi) = σ(w · CTVi
+ b), (w, b) ∼ N (0k, sIk×k) (3.33)

Note that w ∈ Rk×1, b ∈ R and that random sampling w from a zero-mean k-dimensional Gaus-
sian is analogous to the use of a Gaussian kernel [Lopez-Paz et al., 2013]. In [Molina et al., 2018]
they used k = 20, σ to be the sine function and s = 1

6 because they have been proven to be useful
heuristics according to [Lopez-Paz et al., 2013]. Then, we can compute the canonical correlations
(CCA) ρ2 for φ(CVi) and φ(CVj ) as the solutions for the eigenproblem:[

0
∑−1
ii

∑
ij∑−1

jj

∑
ji 0

] [
β
γ

]
= ρ2

[
β
γ

]
(3.34)

From these solutions, we conclude the RDC coefficient to be the largest canonical correlation
coefficient:

RDC(Vi, Vj) = sup
β,γ

ρ(βTφ(CVi
), γT ρ(CVj

)) (3.35)

In the case of independent random variables, we are looking for the RDC to be zero.
For the clustering of hybrid data [Molina et al., 2018] proposed to cluster multivariate hybrid

samples after the RDC pipeline has processed them. By doing that, we can produce a feature

16 Portfolio Analysis: Estimation of VaR Using Mixed Sum Product Networks



CHAPTER 3. BACKGROUND

space in which clusters may be more easily seperable and no assumption of distributions has to
be made.

Lastly, to realize MSPNs, they adapted piecewise polynomial approximations of the univari-
ate leaf densities. One straightforward approach to approximate the univariate leaf densities
is to use piecewise constant functions, i.e. histograms. They adapted a scheme proposed in
[Rozenholc et al., 2010], offering an adaptive binning, i.e. with regular intervals, that is learned
from data by optimizing a penalized likelihood function. By doing this, we allow MSPNs to model
both multimodal and skewed univariate distributions without further assumptions. They also ap-
plied Laplacian smoothing by a factor of ∆ to cope with unseen values and the natural overfitting
of histograms. As expected, if we increase the degree of our leaf polynomial approximations, we
can get more expressive models. To find the right balance between complexity of learning inference
and expressiveness they restrained to piecewise linear approximations. From these three factors
of consideration, we can construct an MSPN.

To summarize, MSPNs are a combination of nonparametric probability distributions and deep
probabilistic models. These networks provide effective learning, tractable inference and enhanced
probability. They allow us to train multivariate mixed distributions more easily than previous
methods across a wide range of domains. Because there is no need for parametric assumptions in
the MSPN framework it seemed to be a good fit for learning the high-dimensional joint probability
distribution of the P&L distribution (Equation 3.4) in portfolios and estimate the VaR.
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Previous Work

In this chapter we will look at a few machine learning studies in the field of finance, some regarding
the estimation of VaR.

4.1 Portfolio Analysis Using General Adversarial Networks

The previous mentioned VaR models are well recognized and have been used for quite some time
in the industry. A recent study [Mariani et al., 2019], used an alternative approach to model the
market uncertainty. They proposed a generative model to learn the joint probability distribution
of the real market. This model learned the joint probability distribution of the price trends for
a particular portfolio (or set of assets) to match the probability distribution of the real market.
When the model was then trained they optimized the portfolio by deciding the best diversification
to minimize the risk and maximize the expected returns observed over the execution of several
simulations.

In their work they modeled the probability distribution of the asset-price trends for the future
f days given the current market situation represented by the latest observed b days. They also
pointed out that since they are dealing with time-series data they have to count in the factor of
time. By using a 1D convolutional neural network (CNN) they had an effective way to process
the time series as pointed out by [Bai et al., 2018]. Using the CNN they ended up with a matrix
M with k rows (financial assets) and w columns (days), M ∈ Rk×w. The matrix M spanned the
whole analysis length and contained the known past called Mb and the unknown future Mf . A
generative deep-neural network G was then applied to learn the probability distribution of future
price trends Mf within the target future horizon f given the known recent past Mb, and a prior
distribution of a random latent vector.

Figure 4.1: Conceptual overview of the proposed PAGAN generator [Mariani et al., 2019]
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A graphical interpretation is displayed in Figure 4.1, the matrix M represents the input and
the output of the generator G. The generative model returns a possible realisation future matrix
Mf as a function:

M̂f = G(Mb, λ) (4.1)

where λ is the latent vector from a prior distribution. The λ vector represents the unknown
future events and phenomena the impacts the marketplace. The known past Mb was used to con-
dition the probability distribution of the future M̂f based on the most updated market situation.

Their result was that their approach was able to expose to the final user the possibility of
selecting a target risk level and come up with a suggestion of diversification given the current
market situation. By comparing their results with the Markowitz modern portfolio optimization
approach1 they achieved better performance in terms of expected return maximization and risk
minimization.

4.2 Forecasting Exhange Rate VaR Using Deep Belief Net-
work Ensemble Based Approach

In a paper from 2018, [He et al., 2018] proposed a new VaR estimate that is based on Deep Belief
Network ensemble model with Empirical Mode Decomposition (EMD) technique. With the EMD-
BDN ensemble model they attempted to capture multi-scale features with the aim to predict
the risk movement accurately. Individual data components are extracted using the EMD model
while individual forecasts can be calculated at different scales using the ARMA-GARCH model.
The DBN model searches for the optimal nonlinear ensemble weights to combine the individual
forecasts at different scales into the ensembled exchange rate VaR forecasts.

Figure 4.2: The structure of the DBN
model [He et al., 2018].

Deep Belief Network (DBN) is a generative model in
the general deep learning framework. The DBNs have
activation functions and process the information and as
the number of layers increases the number of parameters
involved in training the network increases exponentially.
To cope with this problem, they used Boltzmann ma-
chines in the DBNs (RBMs) for pre-training. RBM is
used as the pre-training model to learn the hidden data
feature in an unsupervised learning process. They are
neural networks and consists of two layers called visible
layer and hidden layer. In RBMs, neurons in the differ-
ent levels of layers have mutual undirected connections
while the neurons in the same level of the layers are inde-
pendent. In the structure of RBM, v and h represent the
state of the neurons of visible layers and hidden layers
respectively. The structure of the DBN is displayed in
Figure 4.2. The training process of the DBN model can
be divided into pre-training phase with an unsupervised
learning process and fine tuning phase with a supervised
learning process.

They constructed an ensemble VaR model based on
EMD and the DBN model that consisted of a series of
steps to transform and model the data characteristics.
The first step was to assume that there was a multi scale
risk structure in the exchange rate movement. Given the
exchange rate time series data, xi, i = 1, 2, .., N , EMD
model was used to calculate the decomposed components IMF at different scales up to the maximal
scale N and the residuals ei, xi =

∑N
i=1 IMFi,t + et.

1Markowitz, H. M. (1991). Foundations of portfolio theory. The journal of finance, 46(2), 469-477.
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This transforms the exchange rate data into a series of data components, then there is further
ensemble modelling performed. Secondly, they estimated the ARMA-GARCH model for indi-
vidually extracted data components using the model training data. The conditional mean and
conditional standard deviation were then forecasted using ARMA-GARCH model, however with
the normal assumption. Thirdly, they assumed that there was a nonlinear relationship between
the individual risk factors and the total risk estimate. Finally, they calculated the VaR with the
conditional mean and standard deviation with VaRα = −µ + σZa, where a = 1 − cl, Za was the
normal variate at quantile a, µ and σ were the conditional mean and standard deviation.

They used an extensive market dataset across major exchange markets, including Australian
Dollar against Dollar, Dollar against Canadian Dollar, Dollar against Swiss Franc, and Euro
against Dollar. In addition, they backtested their backtesting result using a conditional coverage
test, looked at the number of exceedances for each model and deciding if the model was useful by
looking at the p-values. In terms of average p value the DBN model performed better than the
ARMA-GARCH model and was more conservative at the higher VaR levels (97.5% and 99%).

Their results was that the DBN model produces generally more optimal forecasts. However,
the DBN model assumes that the risk factor returns of exchange rates followed a (multivariate)
normal distribution which is most often unrealistic in the real-world. In our MSPN approach,
there is no need for an assumption of this kind, the MSPN main strength is that it can learn
high-dimensional joint distributions with no parametric assumptions for the returns.

4.3 Bayesian LSTM model for Value at Risk and Expected
Shortfall Joint Forecasting

In a study, [Li et al., 2020] proposed using a hybrid model based on the Asymmetric Laplace
quasi-likelihood and employed Long Short-Term Memory (LSTM) time series modelling technique
to capture the dynamics of VaR and ES (alternative to VaR, more sensitive to the shape of the
tail of the loss distribution) efficiently. They referred to this model as LSTM-AL and used the
Markov chain Monte Carlo (MCMC) algorithm for Baysian inference in the LSTM-AL model.

The LSTM-AL model is an innovative model that is a combination of the LSTM structure and
the ES-CAViaR framework [Engle and Manganelli, 2004], which is a framework that specifies the
evolution of the quantile over time using an autoregressive process and estimates the parameters
with regression quantiles. The model has 18 parameters and they used MCMC to sample from
their posterior distribution. A graphical representation of the model is shown in Figure 4.3.

Figure 4.3: A graphical representation of the LSTM-AL model [Li et al., 2020].
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They did a simulation study to compare both the in-sample and out-of-sample properties of
the proposed Bayesian LSTM-AL model, in comparison with other competing models. With each
set of the simulated data, which were simulated using a non-linear stochastic volatility model,
they used the first 1000 observations for Baysian model estimation (in-sample analysis) and the
last 1000 observations for model evaluations (out-of-sample analysis). They then compared the
performance of the LSTM-AL model with two ES-CAViaR family models. Their conclusion was
that the LSTM-AL model outperformed two benchmark models in all their simulated datasets in
terms of quantile loss and AL score.

In addition, they did an empirical study where the applied the LSTM-AL model into four
financial time series to test its ability in capturing VaR and ES dynamics. The results showed that
the LSTM-AL model consistently outperforms the other models across all stocks index markets.
They concluded that that indicates that the LSTM-AL model can capture non-linear and long-
term serial dependence properties exhibited by the selected financial stocks markets.

To conclude, the LSTM-AL model generated favourable results in both simulation study and
empirical study, in terms of the VaR quantile loss function and VaR-ES joint score function, espe-
cially in the financial stocks markets where the long-term dependence and non-linearity properties
are present.

4.4 VaR Exception Classification Model With Support Vec-
tor Machines

The final study related to the application of machine learning on VaR which we will present
is [XIONG, 2018] where they looked at VaR exceptions with a machine learning model. More
precisely, they built an SVM classifier that classifies VaR exceptions into ”market move” and
”VaR model issue”. They used TSNE data visualization, which is a method for visualising high
dimensional data, to study the separability of the two categories. In addition, they proposed a nu-
merical method to approximate VaR model predicted P&L and proved an asymptotic convergence
property.

They defined Xt+1 as a vector of portfolio returns between the end of day t and the end of day
t+ 1, and ∆t as the risk captured by a VaR model at the beginning of day t+ 1. Then according
to the VaR model, daily P&L between the end of day t and the end of day t+1 equals the product
of risk and return,

VaR PLt+1 = ∆t ·Xt+1 (4.2)

To be able to calculate VaR of date t, a predictive model calculated a risk-synchronized P&L
according to some distribution Dt. For example, historical VaR models use historical returns back
to T days and the computable risk of day t:

Dt = {∆tXt,∆tXt−1, ...,∆tXt−T } (4.3)

In addition, they defined the clean P&L, which excludes the intraday trades), denoted by
clnPL. Compared with VaR-predicted P&L, the clean P&L may contain a part that is not ex-
plained by the VaR model, denoted as unxPL. Then the clean P%L can be decomposed in the
following way

clnPLt+1 = ∆t ·Xt+1 + unxPLt+1 (4.4)

Thus, we can define the VaR P&L p-value as:

VaR PVt+1 = Dt(VaR PLt+1) (4.5)

The p space ranges from 0 to 1 and therefore the P&Ls are normalized automatically when
projected onto the p-values.

They achieved high accuracy rate by the RBF Kernel SVM model. The model successfully
predicted the exception points which do not obey exactly the p-value criterion.
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Figure 4.4: Prediction results on 99% VaR exceptions [XIONG, 2018].

From Figure 4.4 we can see that there is no clear boundary between predicted market moves
and model issues, which indicates that the real datasets are for portfolios where the risk profile
significantly changes. The parameters of the RBF Kernel SVM was achieved through cross-
validation. The prediction power of the SVM is also validated by the fact that it reproduces the
exact classification rule on an ideally simulated dataset.
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Chapter 5

Experimental Setup

In this chapter, we will explain the data that was used for the VaR estimation, how the data was
preprocessed, provide details about how we structured the MSPN model, how we used the outputs
from the MSPN model to calculate the VaR and finally we’ll explain the hyperparameters of our
model.

5.1 Portfolio Data

The data that was used for the portfolio analysis was the top 40 companies, sorted by weight,
listed in the S&P 500 index1. The S&P (Standard & Poor’s) 500 index is a market-capitalization-
weighted index of the 500 largest publicly-traded companies in the United States. The S&P 500
uses this market-capitalization weighting method, giving a higher percentage allocation to the
companies that have the largest market capitalizations (market cap), which is the market value of
a publicly traded company’s outstanding shares:

Company Weighting in S&P 500 =
Company market cap

Total of all market caps
(5.1)

The weighting of each component of the S&P 500 begins with summing the total market cap
for the index. The companies used in this project are listed in Table 5.1.

The financial data that was used in this project ranged from 03/07/2013-20/07/2021 and
contained the opening, high, low, closing and adjusted closing price, along with the volume traded
for each stock. We considered only the closing price for each asset to train our models and
calculate the VaR. The closing price is the raw price or cash value of the last transacted price of
an asset before the market officially closes for normal trading. The closing prices are often used
as a reference point for investors to compare a stock’s performance since the previous day and are
often used to construct graphs displaying historical price changes over a period of time.

We decided to normalize the data for each asset, i.e. we normalize the prices for each asset
so it fits in range [−1, 1]. Thus, we receive the daily percentage changes in closing prices for each
asset i at time t by applying the transformation

p̄i,t =
pi,t − pi,t−1

pi,t−1
(5.2)

By normalizing our data we achieve a common scale for all of the financial assets in the
portfolio and our models are exposed to data within a reasonable range. In general, normalization
is common in machine learning when we do not know the distribution of our data and it has
varying scales which fits our data characteristics.

1Top list was retrieved from https://www.slickcharts.com/sp500
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# Company Symbol
1 Apple Inc. AAPL
2 Microsoft Corporation MSFT
3 Amazon.com Inc. AMZN
4 Facebook Inc. Class A FB
5 Alphabet Inc. Class A GOOGL
6 Alphabet Inc. Class C GOOG
7 Berkshire Hathaway Inc. Class B BRK-B
8 JPMorgan Chase & Co. JPM
9 Tesla Inc TSLA
10 Johnson & Johnson JNJ
11 NVIDIA Corporation NVDA
12 Visa Inc. Class A V
13 UnitedHealth Group Incorporated UNH
14 Home Depot Inc. HD
15 Procter & Gamble Company PG
16 Bank of America Corp BAC
17 Walt Disney Company DIS
18 Mastercard Incorporated Class A MA
19 Adobe Inc. ADBE
20 Comcast Corporation Class A CMCSA

# Company Symbol
21 Exxon Mobil Corporation XOM
22 Netflix Inc. NFLX
23 Verizon Communications Inc. VZ
24 Intel Corporation INTC
25 salesforce.com inc. CRM
26 Cisco Systems Inc. TMO
27 Pfizer Inc. PFE
28 Coca-Cola Company KO
29 Abbott Laboratories ABT
30 AbbVie Inc. ABBV
31 PepsiCo Inc. PEP
32 NIKE Ince. Class B NKE
33 AT&T Inc. T
34 Thermo Fisher Scientific Inc. TMO
35 Chevron Corporation CVX
36 Accenture Plc Class A ACN
37 Broadcom Inc. AVGO
38 Merck & Co. Inc. MRK
39 Walmart Inc. WMT
40 Eli Lilly and Company LLY

Table 5.1: Top 40 stocks of the S&P 500 index on 28/07/2021.

For visualization of multiple stocks we applied the transformation from closing prices to base
100. This is used in industry to normalize percentages because the percentage changes makes it
difficult to compare multiple stocks. We apply the transformation for each stock i

{pi,t} →
{
It =

I0
pi,0

pi,t

}
(5.3)

where I0 = 100 is the base case. In Figure 5.1 we can see the historical price changes after
doing the index transformation.
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Figure 5.1: Historical prices in base 100 of the top 5 companies in the S&P index from 2013-2021.
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From Figure 5.1 we can see closing prices for the top 5 companies in the S&P index. These are
daily percentage changes for five companies: Amazon, Microsoft, Amazon, Facebook and Google.
Notice that these five assets follow an upward trend from 2013-2021 but at a different growth rate.

For further research of our data, it is useful to see how the historical daily percentage returns
are distributed for each stock, for example if we want to see if it is realistic to make the assumption
that the P&L distribution is normally distributed. In Figure 5.2, we can see on a historical basis
the daily return distribution for the top five companies.
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Figure 5.2: Historical daily percentage distribution of returns of the top 5 companies in the S&P
index from 2013-2021.

In Figure 5.2 we can see that the daily returns of all assets violate the assumption of normality.
The normal curve does not cover the heavy tails of the distribution, which are the extreme events,
in all cases. Thus, the underlying assumptions of the Normal Linear VaR model and Monte
Carlo VaR are violated while the MSPN and the Historical Simulation model make no parametric
assumptions of the daily returns.
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5.2 Architecture of the MSPN model

The MSPN was implemented in Python using the library SPFlow, which is an open-source Python
library that provides an interface to inference, learning and manipulation routines for deep and
tractable probabilistic SPN models. We can build the MSPN model directly from data and there
are a few hyperparameters that needs to be calibrated, these are

1. Context - here we set up how we are to model our data, in our case we specify that we want
to model 5, 10, 20 or 40 real valued variables (daily percentage returns of stocks). In other
types problems this can be a list of parametric types (Gaussian, Poisson, etc.).

2. Correlation measure - We need to decide how we want to calculate the correlations of our
data which is an essential part to learn the tree structured MSPN. The default value is RDC
which is the estimator for the HGR coefficient (see Equation 3.35).

3. Clustering method - This is the task of Rényi Decomposition (see Section 3.6) where we
choose how we want to cluster our data samples and depends on the choice of a metric
space.

4. Minimum number of instances (η) - A number representing how often we split our input
data into independent components where each component is either partitioned into clusters,
resulting in a sum node, or each component is recursively induced into a product node. The
default value for this parameter is 200.

5. Threshold - edges between the random variables have to pass a certain threshold of signific-
ance. The default value is 0.3.

6. Random Generator - exposes a number of methods for generating random numbers drawn
from a variety of probability distributions.

From the MSPN model we can get possible realisations of daily percentage changes in returns
and use that to acquire the VaR. More precisely, once we have trained our MSPN model, from
time [0, t], we can sample from our learnt joint distribution of daily returns of our portfolio many
times and multiply each realisation with its corresponding weight to get our portfolio return at
time t+1 from Equation 3.3. When that is finished, we can calculate the significance (α) percentile
to get our VaR estimation. This procedure is described in Algorithm 1.

Algorithm 1 Calculate α100% 1-day SPN VaR

1: procedure CalculateMSPNVaR(Scenario, α) . Specify a number of simulations & α
2: for each scenario do
3: Sample a possible realisation of the joint distribution for time t+ 1.
4: Multiply each instrument with its corresponding weight.
5: Calculate portfolio return realisation at time t+ 1 with Equation 3.9

6: Calculate the α percentile of all possible portfolio returns to get the 100α% 1-day VaR
estimation.

As explained in Section 3.5, we want to maximize the log-likelihood LL(w) values when train-
ing our MSPN. Therefore, we strive to choose the value for each hyperparameter that gives us
the highest log-likelihood values. We ran experiments on the entire dataset for 5, 10, 20 and
40 stock portfolios to pick the value for the minimum number of instances and threshold that
yielded the highest average log-likelihood value. Therefore by training the MSPN with different
hyperparameter values we were able to decide on using the ones that yielded the highest average
log-likelihood value, this was executed for all of our portofolio compositions of 5, 10, 20 and 40
stocks.

In Tables 5.2-5.5 we can see how the exponential of the log-likelihood varies with different
values of the hyperparameters where the highest values are marked in bold text. Reasonable
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Min Instances
Threshold

0.2 0.3 0.4 0.5 0.6

50 1.81e+07 1.73e+07 1.28e+07 1.23e+07 9.98e+06
75 1.79e+07 1.74e+07 1.28e+07 1.23e+07 9.98e+07
100 1.75e+07 1.80e+07 1.28e+07 1.23e+07 9.98e+06

Table 5.2: Average exp(LL(w)) values for a five stock portfolio.

Min Instances
Threshold

0.2 0.3 0.4 0.5 0.6

50 8.2e+14 1.75e+15 1.96e+15 1.83e+15 8.22e+14
75 8.97e+14 1.58e+15 1.97e+15 1.65e+15 8.16e+14
100 9.38e+14 1.70e+15 1.94e+15 1.94e+15 1.72e+15

Table 5.3: Average exp(LL(w)) values for a ten stock portfolio.

Min Instances
Threshold

0.2 0.3 0.4 0.5 0.6

50 7.56e+30 4.54e+31 1.36e+31 3.68e+30 1.41e+30
75 6.76e+30 3.29e+31 1.29e+31 3.20e+30 1.40e+30
100 3.96e+30 3.19e+31 1.26e+31 3.47e+30 1.37e+30

Table 5.4: Average exp(LL(w)) values for a 20 stock portfolio.

Min Instances
Threshold

0.2 0.3 0.4 0.5 0.6

50 1.13e+62 3.62e+63 1.27e+63 7.71e+61 5.41e+60
75 1.86e+62 1.92e+63 8.33e+62 7.71e+61 5.34e+60
100 1.37e+62 5.81e+63 8.67e+62 7.68e+61 5.32e+60

Table 5.5: Average exp(LL(w)) values for a 40 stock portfolio.

values for the hyperparameters varies for different sizes of portfolios, for example a good value
for minimum instances for ten stock and 20 stock portfolios is 75 and 50. In this project, we
used the randomized dependency coefficient (RDC) as described in Chapter 3.6 for our measure of
correlation and k-means as a clustering method. In addition, experiments were executed to select
the ’Random Generator’ parameter for each type of portfolio. We looked at the log-likelihood
values from models that had Random generator ranging from 17, 25, 50, 75, 100, 125, 150 and
175. For each type of portfolio a Random Generator parameter value was selected which was
associated with the highest average log-likelihood value, the assigned hyperparameter value for
each portfolio type are displayed in Table 5.6.

5 Stock Portfolio 10 Stock Portfolio 20 Stock Portfolio 40 Stock Portfolio
Random Generator 50 125 175 100

Table 5.6: Random Generators values that were assigned for each MSPN model.

The Random Generator hyperparameter did have a noticeable impact on the log-likelihood
values which was to be expected because this value has influence in how the both the correlation
and decompositioning is calculated. By using a higher number for the Random Generator we are
training our model with different decompositions of the data.
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5.3 Sliding Window Approach

In this study, we designed an approach to get an in depth understanding for how the MSPN model
performs. Instead of using the whole data set from [0, t] to acquire a single VaR estimate we split
our data into many segments or windows and used the data in each window to calculate the VaR.
The main goal of this approach is to get as many VaR values as possible and assess these values
using the backtesting methodologies to find out how the MSPN model performs.

First, we need to decide how many windows, W , we want to have. Preferably, we want as
many windows as possible to gain insight in how the MSPN model is performing. When that is
done, we train an MSPN model and calculate the VaR value for each window. Each VaR value is
then assessed using the Kupiec’s Coverage Test where we look at the VaR exceedances in the next
window. If a particular VaR value passes the Kupiec’s Test then we increase a counter D by one,
else the counter is not increased. In total there are N VaR values and we calculate the average

1

N

N∑
i=1

Di (5.4)

The procedure is explained in Algorithm 2 below,

Algorithm 2 Sliding Window Assessment of MSPN model

1: procedure SlidingWindowAssessment(α, W ) . Specify the number of windows W and
significance α

2: Split the data into W windows
3: Calculate the non-rejection interval with Kupiec’s Test.
4: for each window do
5: Train MSPN on data.
6: Calculate VaR from the MSPN.
7: Calculate number of VaR exceedances in the next window, W + 1.
8: if VaR estimate is in non-rejection interval then
9: D = D + 1

We did the Sliding Window assessment for each portfolio type (5, 10, 20 and 40 stocks) for the
Normal Linear model, Historical Simulation model and the MSPN model and compared the results.
We examined how the VaR varies across time for each model, how the number of exceedances varied
for each model and compared the averages.
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Results

In this chapter we will present the results from our experiments in detail. First, we will look at how
well the MSPN captures the heavy tails of the probability distribution of the risk factor returns
for one, five, ten, 20 and 40 stock portfolios by looking at the densities from the MSPN provided
with inference. Then we will look at how well the MSPN model performs on the entire dataset
from 2013-2021 both at the 95% and 99% level and backtest those results. Finally, we will use
the Sliding Windows Approach to gain further insight in how well the MSPN performs compared
to the other models i.e. how much effect data size and dimensions has on the performance of the
MSPN model.

6.1 Density Estimation and Heavy Tails

One important property of the MSPN model that was important to examine was how well the
model captures the heavy tails of the P&L distribution. This is important because we want to
capture what happens at the extremes, i.e. for high losses and profits. With the assumption of
normality in portfolio daily returns these events are considered highly unlikely while the likelihood
that one encounters significant deviations from the mean in heavy-tailed distributions is much
greater. Therefore, it is now commonly accepted that financial asset returns are in fact, heavy-
tailed [Bradley and Taqqu, 2003]. For example, 3σ events (three standard deviations from the
mean) may occur with much greater probability when the returns are heavy tailed and for quantile
based measures like VaR the heavy tails have a large effect. This is especially true for the highest
quantiles (for example 99% VaR) of the daily returns because that is associated with very rare
market movements.

The Historical Simulation VaR models use historical returns and therefore it allows for heavy
tails without making any assumptions on the probability distributions of the daily returns in the
portfolio. However, Historical Simulation VaR models need much data to capture the heavy tails.
For example, if we are to calculate a 99% 1-day VaR with 100 data points there is only a single
observation in the tail. Finally, the Monte Carlo VaR model allows for heavy tails because of its
flexibility in P&L distribution assumptions but capturing the heavy tails requires a lot of compu-
tational power (more simulations) and a reasonable assumptions about the P&L distribution.

In order to see how well the MSPN grasps the heavy tails of the P&L distribution we used
MSPN inference. After training the MSPN model in each case, we sampled many possible realisa-
tions of the portfolio using simulations, i.e. we trained our MSPN model from [0, t] and obtained
realisations for the portfolio daily returns at t + 1. From the realisations we then calculated the
MSPN inference, that means we can calculate the density for a given portfolio return realisation.
Using these densities we can then visualize how efficiently the MSPN model grasps the heavy-tailed
portfolio data.

In Figure 6.1, we can see the density acquired from MSPN inference in possible portfolio
realisations for 5, 10, 20 and 40 stock portfolios. In all cases the MSPN model seems to grasps the
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Figure 6.1: Density estimation for 5, 10, 20 and 40 stock portfolios obtained by MSPN inference.

heavy tails of the P&L distribution. This indicates that the MSPN models are capable of catching
the extreme events and provide more useful VaR estimates at the higher levels.

6.2 VaR Estimation of Stock Data From 2013-2021

For this section, we calculated the VaR for four different portfolio compositions containing 5, 10,
20 and 40 stocks. All of these stocks were from the S&P 500 stock index and we used the entire
data set ranging from 03/07/2013-20/07/2021. Using the entire dataset we produced a single
VaR value for all of the three models: MSPN model, Normal Linear VaR model and Historical
Simulation VaR model. After acquiring the VaR estimates for the entire period we backtested
them using the three different backtesting methodologies explained in Chapter 3. Note that the
weights are divided equally for all kinds of portfolios.

The 95% and 99% VaR results are displayed in Table 6.1 and 6.2, one value for each model.
For all types of portfolios we executed 100000 simulations to retrieve the possible realisations.

95% 1-day VaR [%]
5 Stock Portfolio 10 Stock Portfolio 20 Stock Portfolio 40 Stock Portfolio

Normal Linear -2.31 -2.04 -1.91 -1.73
Historical Simulation -2.32 -1.98 -1.74 -1.56
MSPN -2.28 -1.96 -1.73 -1.52

Table 6.1: 95% 1-day VaR results for all models.

In Tables 6.1 and 6.2 we can see that for the 95% 1-day VaR the Normal Linear VaR produces
the lowest VaR value in all portfolio compositions. However, the MSPN model gives the lowest
estimate of VaR for the 99% VaR. Then, we backtested these VaR values over the entire period
with three methodologies, the results are displayed in Table 6.6-6.5. From a financial point of
view, a risk-averse investor (one who chooses preservation of capital over potential higher-than-
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99% 1-day VaR [%]
5 Stock Portfolio 10 Stock Portfolio 20 Stock Portfolio 40 Stock Portfolio

Normal Linear -3.31 -2.92 -2.75 -2.47
Historical Simulation -4.21 -3.71 -3.63 -3.27
MSPN -4.41 -3.49 -3.45 -3.44

Table 6.2: 99% 1-day VaR results for all models.

average return) would choose the most conservative model, which is the MSPN model at the
99% level. However, being conservative comes at a price, the MSPN VaR value at the 99% level
is approximately 30% higher than the VaR from the Normal Linear model and therefore would
require 30% more capital.

5 Stock Portfolio: 99% 1- day VaR
Kupiec’s Test Binomial Distribution Test

Non-rejection Interval: [9, 33] Pass? Pass?
Normal Linear 46 Exceedances No Yes

Historical Simulation 21 Exceedances Yes Yes
MSPN 14 Exceedances Yes Yes

Table 6.3: Backtesting results for a 99% 1-day VaR of a 5 stock portfolio.

10 Stock Portfolio: 99% 1- day VaR
Kupiec’s Test Binomial Distribution Test

Non-rejection Interval: [9, 33] Pass? Pass?
Normal Linear 33 Exceedances Yes Yes

Historical Simulation 60 Exceedances No Yes
MSPN 28 Exceedances Yes Yes

Table 6.4: Backtesting results for a 99% 1-day VaR of a 10 stock portfolio.

20 Stock Portfolio: 99% 1- day VaR
Kupiec’s Test Binomial Distribution Test

Non-rejection Interval: [9, 33] Pass? Pass?
Normal Linear 45 Exceedances No Yes

Historical Simulation 21 Exceedances Yes Yes
MSPN 24 Exceedances Yes Yes

Table 6.5: Backtesting results for a 99% 1-day VaR of a 20 stock portfolio.

40 Stock Portfolio: 99% 1- day VaR
Kupiec’s Test Binomial Distribution Test

Non-rejection Interval: [9, 33] Pass? Pass?
Normal Linear 41 Exceedances No Yes

Historical Simulation 21 Exceedances Yes Yes
MSPN 16 Exceedances Yes Yes

Table 6.6: Backtesting results for a 99% 1-day VaR of a 40 stock portfolio.

From Tables 6.3-6.6 we can see the entire backtesting results at the 99% VaR level. The MSPN
model passes the Kupiec’s Test for all portfolio compositions at this level while the Historical
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Simulation model fails for a 10 stock portfolio and the Normal Linear model fails for all portfolio
types except the 10 stock portfolio. However, all of the models pass the Binomial Distribution
test.

5 Stock Portfolio: 95% 1- day VaR
Kupiec’s Test Binomial Distribution Test

Non-rejection Interval: [82, 121] Pass? Pass?
Normal Linear 102 Exceedances Yes Yes

Historical Simulation 101 Exceedances Yes Yes
MSPN 106 Exceedances Yes Yes

Table 6.7: Backtesting results for a 95% 1-day VaR of a 5 stock portfolio.

10 Stock Portfolio: 95% 1- day VaR
Kupiec’s Test Binomial Distribution Test

Non-rejection Interval: [82, 121] Pass? Pass?
Normal Linear 99 Exceedances Yes Yes

Historical Simulation 101 Exceedances Yes Yes
MSPN 103 Exceedances Yes Yes

Table 6.8: Backtesting results for a 95% 1-day VaR of a 10 stock portfolio.

20 Stock Portfolio: 95% 1- day VaR
Kupiec’s Test Binomial Distribution Test

Non-rejection Interval: [82, 121] Pass? Pass?
Normal Linear 87 Exceedances Yes Yes

Historical Simulation 101 Exceedances Yes Yes
MSPN 103 Exceedances Yes Yes

Table 6.9: Backtesting results for a 95% 1-day VaR of a 20 stock portfolio.

40 Stock Portfolio: 95% 1- day VaR
Kupiec’s Test Binomial Distribution Test

Non-rejection Interval: [82, 121] Pass? Pass?
Normal Linear 83 Yes Yes

Historical Simulation 103 Yes Yes
MSPN 110 Yes Yes

Table 6.10: Backtesting results for a 95% 1-day VaR of a 40 stock portfolio.

For the 95% VaR, we can see that the MSPN also passes the two coverages tests despite
having more violations than the other three models. The traditional models do not provide more
useful VaR estimates at the 95% VaR level, all of the models have useful estimates and pass the
coverage tests. The MSPN model does seem to provide more useful VaR estimates at the 99%
level by never failing the Kupiec’s Test while the other two VaR models fail in some occasions.
The Normal Linear VaR model produces more optimistic VaR estimates at this level resulting in
too many exceedances.

The final backtesting methodology we executed was the Basel Traffic Light Coverage Test
which requires the most current 250 day VaR measurements and from these estimates we look at
the number of violations, i.e. how often portfolio returns exceeds the VaR. We plotted the latest
250 VaR measurements both for the 95% and 99% level and compared the MSPN with the other
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models. Note that this test is only used at the 99% VaR level and therefore we cannot conclude
anything about the usefulness of the VaR values at the 95% level. However, it is interesting to see
multiple predictions, from all models both at the 95% and 99% levels to see how well the models
respond to new market movements.
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(a) 5 Stock Portfolio.
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(b) 10 Stock Portfolio.
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(c) 20 Stock Portfolio.
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(d) 40 Stock Portfolio.

Figure 6.2: Basel Traffic Light Coverage Test 99% VaR results for 5, 10, 20 and 40 stock portfolios.

In Figure 6.2 we can see all 250 VaR estimates for the Normal Linear VaR model, the MSPN
model and the Historical Simulation VaR model at the 99% VaR level. We can see that the
MSPN model is more sensitive to new data than the other two models, the VaR values in the
Historical Simulation model and the Normal Linear VaR model change slowly with each data
point added while the MSPN is much more sensitive to newly observed market movements. For
example, in Figure 6.2c we can see how the model grasps the two larger portfolio return losses at
the beginning of the period and then the VaR values becomes quite lower after these events. The
other two models do not seem to grasp this behavior. The results for the test is displayed in Table
6.11. From the table we can see that for the five stock portfolio both the Historical Simulations
VaR model and the MSPN model fall into the green zone of the Basel Test while the Normal
Linear model falls in the yellow zone. That is also the case for 10 and 20 stock portfolios and
finally all models pass the Basel Test for the 40 stock portfolio. It is interesting to see that as the
portfolios got larger and more complex the MSPN model had fewer and fewer exceedances.

Finally, to gain further insight in the behavior of the models we plotted the 250 most recent
VaR values in Figure 6.3 at the 95% level. In this case, the VaR values of the MSPN are more
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Number of Exceedances
5 Stock Portfolio 10 Stock Portfolio 20 Stock Portfolio 40 Stock Portfolio

Normal Linear 5 5 6 4
Historical Simulation 3 3 3 2
MSPN 3 3 1 0

Table 6.11: Basel Traffic Light Results at the 99% level for all models.
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(b) 10 Stock Portfolio.
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(c) 20 Stock Portfolio.
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Figure 6.3: Basel Traffic Light Coverage Test 95% VaR results for 5, 10, 20 and 40 stock portfolios.

similar to the other models than at the 99% level. The Normal Linear model is more conservative
then the other two for 20 and 40 stock portfolios. As with the 99% level, the MSPN seems to be
more sensitive to new market movements.

6.3 VaR Estimation of Stock Data Using Sliding Window
Approach

In this section we are going to present the results obtained by the Sliding Window Approach
described in Chapter 5 to get a better look at how the MSPN model performs. For this experiment
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we looked at a wide range of window lengths, i.e. 93, 119, 156 and 253 days to calculate the VaR.
The goal of this approach is to see how well the MSPN model performs with various amounts
of data to train on, look at the effect of dimensionality (number of stocks in the portfolio) and
compare the performance of all three models. This Sliding Window Approach was only performed
at the 95% level because it proved to be too difficult to calculate the non-rejection interval at
the 99% level for the smaller window sizes. The reason for that is that to be able calculate the
non-rejection interval of the Kupiec’s Test, we essentially need to solve a nonlinear equation 3.25
with numerical methods where ideally the equation has two solutions giving us the upper and
lower bound of the non-rejection interval. However, at a high level of 99% with limited data (93,
119, 156, 253 observations) we could not calculate the non-rejection interval because the numerical
method did not find one. In this setting we are dealing with a nonlinear setting that does not
have an analytical solution and we are simply trying to find solutions without knowing if these
solutions even exist.

Accuracy of 95% 1-day VaR estimations for all window sizes for all models.
Historical Simulation Normal Linear MSPN

Number of Stocks Number of Stocks Number of Stocks
|W | 5 10 20 40 5 10 20 40 5 10 20 40
93 76.1 66.7 52.3 57.1 85.7 66.7 66.7 52.4 71.4 61.9 52.3 0.0
119 75.0 43.8 56.3 62.5 81.3 81.3 62.5 43.8 81.3 43.8 50.0 43.8
156 58.3 58.3 50.0 41.2 75.0 58.3 50.0 33.3 75.0 66.6 58.3 50.0
253 42.8 28.2 28.6 28.5 28.6 14.3 14.3 0.0 57.1 14.3 42.8 14.9

Average of scores 63.1 49.3 46.8 47.3 67.7 55.2 48.4 32.4 71.2 46,7 50,9 27.2

Table 6.12: Sliding Window Approach accuracy results for all models.

In Table 6.12, the accuracy results described with Equation 5.4 are displayed for each model
where the bolded values are the highest accuracies achieved for each scenario. We can see that
the MSPN model does not perform well with such limited data and with the smallest window size
|W | = 93, the MSPN performs the worst of all three models. For |W | = 119 the MSPN performs
best for the 5 stock portfolio and for |W | = 156 the MSPN model achieves the best accuracy
results for all portfolio types stocks. Finally at |W | = 253, the MSPN performs the best out of
the three. From this we can see that as the window got larger, i.e. the MSPN model predicts with
more data, the MSPN achieved better and better results. Therefore as the window gets larger the
MSPN achieves better results. In Figure 6.4 we can see the number of exceedances for each model
along with the Kupiec’s non-rejection interval. This interval remains constant for all windows as
it depends merely on the data size and the significance level α of interest. The Normal Linear
VaR model does worse as the portfolio contained more stocks (higher dimensions) and the window
sizes got bigger. In addition, we can see that exceedances become less similar as the portfolio
becomes more complex while being similar on the 5 and 10 stock portfolios indicating that it is
more difficult to assess the VaR at higher dimensions. All of the three models do worst on the
highest dimension portfolios, as the dimension goes up more data is needed to get more useful
VaR estimates. To conclude, the MSPN model does not perform well at the smallest window size
because by using such limited data we are not using the full power of the MSPN. For the MSPN
model to learn joint distributions of high dimensionality there are more parameters to estimate and
therefore it needs an abundance of data and 93 observations appears to be too limited. However,
by simply looking at the average of scores from Table 6.12 the MSPN model performed the best
of all three models in the Sliding Window Approach.

In Figure 6.5 the VaR values for the largest window size of each model is plotted for each
portfolio type. One thing to notice is that the exceedances behavior becomes more dissimilar as
the number of stocks gets larger demonstrating the effect of dimensionality and this effect impacts
the MSPN model most of all three models.

When we look at the smallest window size of |W | = 93 for all portfolio compositions we can see
the MSPN shortcomings clearly. The VaR values obtained by the MSPN for the 40 stock portfolio
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(a) Exceedances For a 5 Stock Portfolio.
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(b) Exceedances For a 10 Stock Portfolio.
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(c) Exceedances For a 20 Stock Portfolio.
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(d) Exceedances For a 40 Stock Portfolio.

Figure 6.4: Number of exceedances along with the Kupiec’s non-rejection interval for each window
and portfolio types for all three models with window size |W | = 253.

is very dissimilar than the other two models being too optimistic leading to a higher amount of
exceedances. The MSPN model has an accuracy of 0.0% with the smallest window size yet again
indicating it heavily depends on larger amounts of data. However, the MSPN model does have an
accuracy above 50% for 5, 10 and 20 stock portfolios and the VaR prediction behavior is similar
to the other two at this level. In Figure 6.6 we can see how the VaR estimates of the three models
behave similarly for all models with 5 and 10 stock portfolios but that is not the case for the 40
stock portfolio, there the MSPN has more optimistic VaR estimates.

If we compare Figures 6.5 and 6.6 we can see more clearly that the MSPN most often has
more optimistic predictions as the dimensionality goes up, for example for the 40 stock portfolio
in Figures 6.5d and 6.6d the MSPN has in almost all cases the most optimistic VaR estimate.
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Figure 6.5: Estimated VaR values of each window for the largest window size |W | = 253.
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Figure 6.6: Estimated VaR values of each window for the smallest window size |W | = 93.
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Chapter 7

Conclusions

In this project we provided a new way to estimate the VaR risk of portfolios. Other well established
model architectures like the Normal Linear, Historical Simulation and Monte Carlo VaR models
have underlying assumptions that are most often not realistic while the MSPN model designed in
this project does not. The MSPN model proved to be a realistic alternative to the other models,
providing useful VaR estimates while having no underlying assumptions of the P&L distribution.
However, the MSPN model has the underlying assumption that the portfolio’s daily returns are
independent and identically distributed which means that the observations are independent of each
other and that potential returns for each stock has the same probability distribution. This means
that our model does not include the time factor and has no ”memory” of previous observations.
In addition the MSPN model is not the ideal model for every scenario, especially for small amount
of observations and requires heavy computational power for the higher dimensions.

We applied an MSPN architecture, a special combination of SPNs and piecewise polynomials,
which allows for tractable inference without any assumptions for the P&L distribution. This
architecture provides a new way to train and learn multivariate mixed distributions, which is
represented as risk factor returns in portfolio theory, in a more effective way than other methods.
Our results indicate that the MSPN model is capable of capturing the heavy tails of the risk factor
returns and by doing that we are more capable of capturing the extreme events.

First, we provided VaR estimates using the entire dataset from 2013-2021 both at the 95% and
99% level. At the 95% level the MSPN provided useful and competitive VaR estimates passing
the Kupiec and Binomial Distribution Test for all portfolio compositions. However, at the 95%
level, there is no clear advantage of the MSPN model. In addition, we estimated the 99% 1-day
VaR with all three models and used the two previously mentioned backtesting strategies and the
Basel Traffic Light Test. The results from the 99% VaR estimates and the Basel Traffic Light Test
indicate that the MSPN model is able to capture extreme events with better performance than
the other models, which can be seen from the exceedances in Table 6.6 and the MSPN behavior in
Figure 6.2. The MSPN VaR estimations appears to be more sensitive to new observations (market
movements) than the other models and catches extreme events more frequently than the other
models, this behavior is demonstrated in Figure 6.2c.

In addition, we conducted a Sliding Window approach to examine more carefully how the
MSPN model performs by backtesting many VaR estimates with various window sizes and different
portfolios compositions. On average, the MSPN model does not perform better than the other
models with the smallest window size but performs best of all three with the largest window
size. The MSPN model performs considerably worse than the other models for high dimensional
portfolios with the smallest window size, failing every Kupiec Test. For the 40 stock portfolio, the
MSPN model provided too optimistic VaR estimations leading to frequent exceedances. However,
as the window size gets larger, the MSPN model provides more useful VaR estimations for all
portfolio compositions. It proved to be very difficult to calculate acceptable VaR estimations for
the 40 stock portfolio with such small data. Overall, the MSPN model had the highest average
score of all three models, it had the highest average of scores two out of four times for all portfolio
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types as we can see in the bottom row of Table 6.12.
We can conclude that the MSPN model is a promising alternative for VaR estimation. It

provides a way to calculate the VaR without using any parametric assumptions and is much
more sensitive to new market movements when dealing with large data, especially at the 99%
level. The Basel Traffic Light Test demonstrated that the MSPN was able to capture the extreme
events better than the traditional models which is desirable feature because these events happen
frequently with heavy-tailed distributions. This property is also demonstrated in Figures 6.1 where
we used MSPN inference to see how well the MSPN captures the heavy tails by using possible
realisations of the portfolio returns. However, the MSPN model does not seem to provide useful
estimations when using smaller amounts of data at a time like in the Sliding Window Approach.
The MSPN model needs to train on a considerable amount of data to fully capture the joint
distribution, especially at the higher dimensions. This can be problematic because as observations
gets older they should have less and less effect on tomorrow’s realisations. This means, that we
would not expect observations from many years ago to have a large effect on tomorrow’s realisation
of some stock, that should depend on more recent data. The MSPN model does not take this
factor into consideration, an observation that is for example a few years old has as much impact
on how the MSPN model is trained as a day old observation.
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Chapter 8

Future Work

In this chapter we will discuss and present ideas that are possible extensions of this project. We
will discuss how to incorporate time-dependent MSPNs, called Conditional Mixed Sum Product
Networks, and discuss underlying assumptions that we use to deal with the financial time-series
in our project and how we can deal with these assumptions.

8.1 Stationary Time Series

Dealing with financial time-series is different from the more traditional classification and regression
predictive modeling problems. The temporal aspect adds an order to the observations that we are
handling, e.g. the order of realisations for a particular stock has a strict temporal order.

We can define a stationary time series a series whose properties do not depend on the time at
which the series is observed. More precisely, a stationary time series is a series whose statistical
properties such as the mean, variance, etc. are all constant over time. Time series can be rendered
as approximately stationary with mathematical transformations. The predictions retrieved from
the stationarized series (with transformations) can then be untransformed by reversing the trans-
formation previously used resulting in predictions for the original series.

In this project, we assumed that the financial series data was stationary, i.e. that the summary
statistics remained constant over time (2013-2021). In Figure 8.1 we can see the mean and variance
of our financial stocks where we chose a window size of 30 days, i.e. we calculate the mean and
standard deviation with 30 days intervals.
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Figure 8.1: Mean and standard deviation of all 40 stocks with a 30 day window.

From Figure 8.1 we can see that the mean and standard deviation fluctuate to some extent
from 2014-2021 and especially in the extreme events, e.g. Covid-19 in the beginning of 2020. To
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conclude, a potential direction of research for this project would therefore be to figure out how to
incorporate non-stationary time series for MSPN models.

8.2 Conditional MSPNs

Using the MSPN model we were able to learn the joint probability distribution of our portfolio
daily returns to sample possible realisations and calculate the 1-day VaR. However, when we
trained our MSPN on our financial data we did not take into account the time factor, i.e. we
assumed that the daily returns of all stocks were i.i.d. and the temporal order of the observations
had no effect on the training of our model. The natural next direction of this project would
therefore be to include conditionality. For example, if we want to predict the VaR for one stock
A, we would learn the conditional probability P(A(t)|A(t − 1), A(t − 2), ..., A(t − N)), where N
is a predetermined number of have much data we should take into account, instead of learning
P(A(t)) like we did in this project. By doing this we would be adding the temporal aspect and the
model would take into account the order of our observations when training. The next step would
therefore be to design a Conditional Mixed Sum Product Network (CMSPN).

In [Shao et al., 2019], they stated that in order to include the time factor of a time series
into an SPN we can either use an existing SPN structure and condition on its parameters on the
input (e.g. neural networks) or use a structure-learning approach that they proposed that derives
both the structure and parameters of Conditional Sum Product Networks (CSPNs) from data. As
explained in [Molina et al., 2018], this means that to learn a CMSPN P(Y |X) we can use a neural
network g to make the CMSPN functional of its parameters.

For experimentation, we tried to include the time factor of our financial data by conditioning
on its parameters on the input using a convolutional neural network. In [Mariani et al., 2019], they
processed their financial time series with a 1-D convolutional neural network. These networks are
an effective tool to process time series according to [Bai et al., 2018]. The deep-learning network
processes the time information by convolving along the time dimension.

1-day 95% VaR Number of Exceedances Kupiec’s Test
CMSPN -2.19% 82 No
MSPN -2.98% 41 No

Historical Simulation -2.98% 41 No
Normal Linear VaR -2.97% 42 No

Table 8.1: 95% VaR and Kupiec’s Test results with a non-rejection interval of [12,30] for all four
models.

We designed a 1-D convolutional neural network with a windows size of 2, four convolutional
layers with 64 filters and ReLu as an activation function and tested it on a 10 stock portfolio. The
output of the convolutional neural network is then used as parameters for the CMSPN which is
then trained and VaR derived as before on the realisations at time t + 1. By using 60/40 train
and test split we were able to train the CMSPN on 403 observations to learn the joint probability
distribution of the daily percentage returns.

In Table 8.1 we can see the 95% 1-day VaR and backtesting results for a 10 stock portfolio.
The CMSPN model produced a slightly more optimistic VaR value while the other three produce a
similar VaR estimation. However, all of models fail the Kupiec’s Test with a non-rejection interval
of [12;30] for 403 observations at the 95% level. In [Shao et al., 2019], it was mentioned that
this approach of using a convolutional network might misrepresent the conditional independence
present in the data. Therefore, we can conclude that in our case using convolutional neural network
data for preprocessing did not seem to get a more useful 1-day 95% VaR result. To conclude, a
possible direction of research for this project is to find a way to design a CMSPN and by doing
that we can add the temporal aspect and exclude the assumption of independent and identically
distributed returns in addition to parametric assumptions of the P&L distribution.
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