
 Eindhoven University of Technology

MASTER

Calling Jasmin from Rust
Introducing an approach to safely interoperate between the Rust and Jasmin programming
languages

van Drunen, Juriaan

Award date:
2021

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/b98d1cf3-a2e7-4808-9d39-c048be382b7b

Department of Mathematics and Computer Science

Calling Jasmin from Rust

Introducing an approach to safely interoperate between the Rust
and Jasmin programming languages

Juriaan van Drunen

Supervisors:
Dr. A. Hülsing (Andreas)

Prof. Dr. P. Schwabe (Peter)
Prof. Dr. M. Barbosa (Manuel)

September, 2021

Abstract

The use and dependence on software systems throughout the lives of people
are ever-expanding. As a consequence, the security of these software systems is
becoming more important. Advancements in programming languages and tools
allow for the writing of more secure software. This thesis introduces an ap-
proach to interoperate between the Rust and the Jasmin programming languages
safely. Our approach allows programmers to write their non-cryptographic code
in Rust, benefiting from Rust’s safety and high-level abstractions. And write the
cryptographic code in Jasmin, which guarantees memory safety, constant-time
code, and predictability. In addition, we provide a tool to make the approach
easy for the programmer. Furthermore, we demonstrate our approach by re-
placing part of the cryptographic code used by Rustls, which is a TLS library
written in Rust.

i

Preface

This work is the outcome of my graduation project for my Master’s degree in
Information Security Technology at the Eindhoven University of Technology.
The thesis introduces an approach to call the Jasmin programming language
from the Rust programming language in a safe manner. During my thesis, I
learned a great deal about the low-level details of both languages, how they
interact and how to analyze the safety of this interaction.

Special thanks go to my supervisors, Manuel Barbosa and Peter Schwabe, for
the numerous online meetings and pushing me in the right direction. Their
feedback and suggestions were invaluable in the writing of this thesis. I would
also like to thank Andreas Hülsing and Nicola Zannone for being part of my
thesis committee. Finally, I want to thank my girlfriend, family, and friends for
their support and providing me with many distractions.

ii

Contents

1 Introduction 1

2 Background 3
2.1 Rust . 3

2.1.1 Ownership and Borrowing 4
2.1.2 Unsafe Rust . 8
2.1.3 Rust runtime checks . 9

2.2 Jasmin . 10
2.2.1 Jasmin language . 11
2.2.2 Jasmin safety . 13

3 Rust and Jasmin ABI 15
3.1 Rust Rlib and ABI . 15
3.2 Jasmin ABI . 19

4 Rust and Jasmin Interoperation 21
4.1 Interoperation . 21
4.2 Interoperation safety . 27

5 Case Study 31
5.1 Rustls . 31

5.1.1 x25519 . 32
5.1.2 Replacing x25519 . 33
5.1.3 ChaCha20 . 36
5.1.4 Replacing ChaCha20 . 37

5.2 Benchmarks . 43
5.3 Safety . 45

5.3.1 X25519 . 45
5.3.2 ChaCha20 . 46

6 Discussion 49
6.1 Future work . 49
6.2 Conclusion . 50

References 51

iii

List of Figures

4.1 Rust to Jasmin overview . 22

5.1 Throughput . 45

iv

List of Tables

3.1 Rust type size and alignment on x86_64 17

4.1 Rust types and their corresponding Jasmin type 23

5.1 State of the ChaCha algorithm. The 16 32-bit words are divided
into 4 groups by colors. Each quarter takes one of these groups
as input during the column round 36

5.2 State of the ChaCha algorithm. The 16 32-bit words are divided
into 4 groups by colors. Each quarter takes one of these groups
as input during the diagonal round 37

5.3 Average time in microseconds of both algorithms based on over
120k iterations of both implementations 44

5.4 Average time in nanoseconds of both algorithms for varying input
sizes, based on over 1.8 million iterations for all runs 44

v

Chapter 1

Introduction

The role of technology throughout the life of people and in organizations is ever
increasing as more devices are introduced and interconnected. The reliance and
dependence on technology systems are also growing. The security and privacy
provided by these systems are therefore becoming more important.

Systems are often compromised through mistakes in the software. Mem-
ory errors make up a large part of these vulnerabilities. In 2019 Microsoft
reported that 70% of their bugs are due to memory safety issues [20], and
the Chromium open-source browser project reported the same number in 2020
[22]. Both projects use C++, which does not provide memory safety. Using
a memory-safe language (e.g., Go, C#, Java, Swift, Python) is a way to pre-
vent these memory safety issues. However, for performance and interoperability
reasons, unsafe languages like C or C++ are preferred.

Rust is a language introduced in 2010, originally developed at Mozilla Re-
search for writing efficient and reliable system programs [19]. Rust is innovative
because of the way it manages memory. Most programming languages use one
of the following two approaches:

1. Giving the responsibility to the programmer to allocate and free memory.
This allows for great performance as the programmer can carefully opti-
mize memory usage. It, however, comes with the risk of the programmer
making mistakes and thus introducing memory-related security issues.

2. Having a garbage collector that checks at runtime if memory is no longer
in use and can therefore be freed. This prevents the memory mistakes of
the previously mentioned approach but comes at the cost of performance
as the garbage collector is constantly running in the background.

Rust takes a different approach by leveraging the type system to manage mem-
ory. Rust has the concepts of ownership and borrowing embedded into the type
system, with a set of rules that are verified at compile time. The ownership and
borrowing concepts inform the compiler which variable owns and has access to
the memory and when it is no longer needed. With this approach, Rust provides

1

the same safety as languages using a garbage collector while achieving similar
speeds to languages that leave the responsibility of memory management to the
programmer. In this way, it addresses the shortcomings of the other memory
management approaches at the cost of increased compile-time and some more
restrictions on what code is accepted by the compiler. One goal of Rust is to
make system-level programming safer through the type system while simultane-
ously making it more accessible by providing high-level abstractions which do
not come at additional runtime cost (zero cost abstractions). Although Rust is
a fairly new language, big tech corporations have already expressed interest in
the language. Recently (February 2021), the Rust foundation was announced,
where the founding members (AWS, Huawei, Google, Microsoft, and Mozilla)
participate and financially contribute to Rust and its ecosystem.

In providing security and privacy to systems and communication, there is
often a need for confidentiality, integrity, authentication, and non-repudiation.
Central to all of these concepts is cryptography. Cryptographic code is also sus-
ceptible to memory safety issues. Furthermore, cryptographic code needs to be
efficient, functionally correct, and free from secret-leaking side channels. There-
fore it is often written in hand-optimized assembly using special programming
patterns to achieve constant-time code. However, the hand-optimized assembly
and the special programming patterns complicate the verification of the cryp-
tographic code. Jasmin [1] aims to bridge this gap by providing an integrated
framework that, along with the Jasmin language, includes tools to reason about
the safety of the program and an embedding into the EasyCrypt framework [4]
for verifying correctness.

In this thesis, we introduce an approach to interoperate between the Rust
and the Jasmin programming languages and discuss the safety of this approach.
Being able to utilize Rust and Jasmin together is a useful extension for both
languages. The combination makes it possible to write the high-level code in
Rust, benefiting from the safety Rust provides and the quickly growing Rust
ecosystem. And use the Jasmin framework to write the cryptographic code,
achieving maximum efficiency and safe cryptographic code.

The structure of this thesis is as follows. In Chapter 2, the necessary back-
ground on Rust and Jasmin is introduced. Chapter 3 discusses the Application
Binary Interface (ABI) of both Rust and Jasmin. Chapter 4 describes the
approach to interoperate between Rust and Jasmin and presents a tool to auto-
mate part of the process. Chapter 5 is a case study of an existing Rust library,
where two algorithms written in C and assembly are replaced with Jasmin code,
and the safety is discussed. The future work, limitations, and conclusion are
provided in Chapter 6.

2

Chapter 2

Background

2.1 Rust
Rust is a programming language originally developed by Mozilla research for
writing efficient and reliable system programs. It provides direct access to the
hardware, giving the programmer control over their programs’ memory layout
and running time. Rust was designed with concurrency and parallelism in mind
and provides strong guarantees about memory safety. To achieve this, Rust
comes with a strong type system that allows the compiler to statically detect a
great number of memory safety issues and data races [19].

Memory safety can be divided into two categories: temporal and spatial. Tem-
poral memory safety ensures that no pointer is dereferenced, which is invalid.
Spatial safety ensures that access to a pointer is always within bounds of the
object that the pointer is referring to [25]. Rust mainly innovates in the area of
temporal memory safety, which it accomplishes through its type system. The
type system is not expressive enough to guarantee spatial memory safety. Here
the compiler can reason about simple cases to validate that access to a pointer
is within bounds but relies on runtime checks for more complex cases.

Rust distinguishes between two kinds of references. Mutable references are
unique pointers to a memory location, and immutable references can have mul-
tiple pointers to the same memory location. At the heart of Rust’s memory
safety is the principle of mutability XOR aliasing, which guarantees that at
any given time, either one mutable reference can mutate a memory location or
a memory location can be shared immutably many times [13]. This principle
helps to rule out many common memory safety issues, as we will discuss below.
Enforcing this principle are two key concepts called ownership and borrowing.

3

2.1.1 Ownership and Borrowing
In Rust, there is always one unique owner of a memory location. This principle
is demonstrated in the example program below. In Rust, Vec, a vector type,
consists of three fixed-size values: pointer, length, and capacity. The pointer
points to a buffer of length neighboring elements on the heap. The capacity
indicates the amount of allocated space for the vector. In the example below,
we create the vector containing the numbers 1 to 3 (vec![1,2,3]) and assign
this to the variable foo. On line 2 foo is assigned to the variable bar and finally,
we print the value of the variable foo.

1 let foo = vec![1,2,3];
2 let bar = foo;
3 println!("{:?}", foo); // Value foo is used after the
4 // ownership has moved to bar

The program fails to compile as the ownership of the vector is moved from
foo to bar on line 2. Having both foo and bar active simultaneously would
violate Rust’s unique ownership principle: in Rust, there is always one unique
owner of a memory location. When assigning the value foo to bar, the pointer,
length, and capacity are copied (note that the buffer on the heap is not copied).
The foo variable is then invalidated and can therefore no longer be used. This
process is referred to as a move.

Rust automatically deallocates values when the owner goes out of scope.
How this happens depends on the type. In Rust, types can be divided into two
categories. Types that manage a resource that eventually needs to be released
or freed when the value goes out of scope and types that can be duplicated
by copying the value’s bits. To distinguish between the two, Rust uses the
concept of traits. Traits are the way for Rust to define shared behavior for
types in an abstract way [16]. Types that manage a resource implement the
Drop trait, specifying how the resource (e.g., memory, file descriptors, locks)
the type manages should be cleaned up. Types that can be bitwise copied
implement the Copy trait. This marker indicates the type can be bitwise copied
without needing to take ownership of the original instance. This is not true for
the Vec type as it manages a resource on the heap, and a bitwise copy would
create two pointers to the same memory location. Types that can be entirely
stored on the stack (i.e., the size is known at compile-time) can implement the
Copy trait. The Drop and Copy traits are exclusive and can not be implemented
for the same type: values that manage resources can not safely be bitwise copied
without creating two pointers to the same memory location.

When a value goes out of scope, the deconstructor is run, which calls drop
for that value if the Drop trait is implemented for the type. After this, Rust
recursively calls the deconstructor on all the fields of the type. The deconstruc-
tor takes ownership of the variable, preventing the usage of the value after it
has been deconstructed. The compiler automatically inserts these calls to the
deconstructor. The automatic insertion prevents use after free, and the unique
ownership prevents a double-free as only the owner of the value can call the

4

deconstructor. Types that implement Copy are stored on the stack, and they
are automatically deallocated when a function returns, and the stack frame is
cleaned up.

1 let mut foo: i32 = 4;
2 let mut bar: i32 = foo;
3 foo += 1; // Increment foo by 1
4 println!("{}", foo); // Prints 5
5 println!("{}", bar); // Prints 4

The above example declares the values foo and bar as mutable (with the mut
keyword). This indicates that the programmer can mutate the values of the
variables. This example does not result in a compile-time error because the type
i32 implements the Copy trait. In the example above, this would mean that
the value 4 gets duplicated on the stack. This, in turn, does not invalidate the
previous variable as both variables point to unique locations in memory. Instead
of the ownership being moved, types that implement Copy get duplicated. Many
primitive types implement the Copy trait (e.g., integers, floats, booleans).

Let us look at a slight alteration of the previous example with vectors again.
Here the variables foo and bar are declared as mutable. On line 3, we mutate
the value foo by pushing the value 4 to the end of the vector.

1 let mut foo = vec![1,2,3];
2 let mut bar = foo;
3 foo.push(4);
4 println!("{:?}", bar);

Compiling this code results in the following error: borrow of moved value: ‘foo‘.
This is because foo is used on line 3 after the ownership has moved to bar. It
would, however, be quite restrictive if only the owner would be allowed to mutate
values. It is common that a value is passed to a function mutated in some way
and then returned to the caller. push is such a function, it takes a collection
and a value to be appended to the end of the collection. This would, however,
require ownership to be passed back and forth between functions, which is not
ideal. To facilitate these common cases, Rust allows for temporary loans of
values by the use of references; this is referred to as borrowing. Rust has two
types of references, mutable references and shared references. First, we describe
mutable references.

The function signature of push for a vector containing values of type i32:
1 fn push(&mut self, value: i32)

The signature takes &mut to self (self refers to the collection push is being
called on) and an integer of type i32. &mut indicates that push takes a mutable
reference to the vector, borrowing it for the duration of the call to push. It
might seem that this contradicts the unique ownership principle. However, the
compiler ensures there is at most one unique mutable reference being used at any
given time by imposing the following two constraints on mutable references [13]:

1. A reference can only be used during its lifetime.

5

2. The referent (value being referenced) can not be used as long as active
references borrow from the original reference.

To reason about these rules, the compiler has the notion of lifetimes, which
specify the span of time in which references are in use. References have addi-
tional type information associated with them that indicate the lifetime of the
reference. Thus the full type of a mutable reference is &’a mut T, where ’a
indicates that this type has lifetime ’a and T indicates the type the reference is
referring to.

1 let mut foo = vec![1,2,3];
2 let bar: &’a mut Vec<i32> = &mut foo;
3 println!("{:?}", bar);
4 println!("{:?}", foo);

In the example above, a mutable reference to vector foo is created on line 2.
This mutable is annotated with lifetime ’a and is used on line 3 again. On lines
2 and 3, the reference is thus active, after which it is no longer used. Therefore
on line 4, the original referent can be used again without violating the lifetime
rules. This program compiles without errors.

1 let mut foo = vec![1,2,3];
2 let bar: &’a mut Vec<i32> = &mut foo;
3 bar.push(4); // reference bar is reborrowed
4 println!("{:?}", bar) // reference bar gets used again

In the example above, the mutable reference bar, borrowed from foo, is bor-
rowed again to the push function. This is referred to as a reborrow. In the
case of reborrowing, two mutable references can exist to one piece of data.
This is, however, still in line with the Rust safety rules as the compiler knows
that these mutable references alias. The type of mutable reference of push is:
&’b mut Vec<i32>. While the reference with lifetime annotation ’b lasts, the
programmer may use it, but the reference with lifetime annotation ’a may not.
Only after the span of time in which the reference with lifetime annotation ’b is
used ends (after the call to push) the mutable reference with lifetime annotation
’a is allowed to be used again. In this way, the compiler ensures that mutable
access to both references stays exclusive.

1 let mut foo = vec![1,2,3];
2 let bar: &’a mut i32 = &mut foo[1];
3 foo.push(4); // original referent is used
4 println!("{:?}", bar); // reference bar gets used again

Here bar borrows the second element of the vector. The pointer thus points to
the location of the foo buffer plus the size of an i32. Here the original referent
gets used before the lifetime of reference bar has expired. This violates the
lifetime rules and therefore results in a compile-time error. The push on line 3
could have altered the location of the foo buffer on the heap (due to it being out
of space and having to reallocate somewhere else), invalidating the bar pointer.

6

The other reference type is a shared reference. Shared references have the
following type information: &’a T. Trying to mutate a shared reference will re-
sult in a compile-time error as they are immutable. The compiler ensures that
shared references adhere to the following constraints [13]:

1. A reference can only be used during its lifetime.

2. The referent (value being referenced) does not get mutated as long as
active references borrow from the original reference.

1 let mut foo = vec![1,2,3];
2 let bar: &’a Vec<i32> = &foo;
3 let baz: &’b Vec<i32> = &foo;
4 println!("{:?}", baz);
5 println!("{:?}", bar);
6 foo.push(4);

On line 2 and 3 bar and baz borrow from foo. The lifetimes of these borrows
overlap as baz is active on lines 3 and 4 and bar on lines 2 through 5. This pro-
gram compiles successfully as it adheres to the above rules for shared references.
Since shared references are immutable, it is not possible to mutate the borrowed
value through the references. Shared references can be seen as read-only access
to a value.

1 let mut foo = vec![1,2,3];
2 let bar: &i32 = &foo[1];
3 let baz: &i32 = &foo[2];
4 println!("{}", baz);
5 foo.push(4);
6 println!("{}", bar);

The program above fails to compile as on line 5 the referent foo is mutated
while there is still a shared reference active (bar is used on line 6). The push to
foo could invalidate the pointer of the reference bar as it might reallocate the
buffer on the heap. This would result in a dangling pointer, but the constraints
on shared references prevent this error.

Rust can pass values in two ways: by reference and by value. When passed
by value (for non Copy types), ownership is moved, and when passed by ref-
erence (mutable or shared), the value is borrowed bounded by a lifetime. The
difference between mutable and shared references is that multiple shared ref-
erences can be active simultaneously (i.e., overlapping lifetimes). In contrast,
for mutable references, there is always only one active reference at any given
time [15].

As explained, Rust prevents double-free and use-after-free through unique
ownership of memory locations. The borrowing rules prevent iterator invalida-
tion and data races. Iterator invalidation is prevented as no data structure can

7

be mutated while it is being iterated over. Data races occur when two or more
threads access the same memory location, and one of these operations is a write
without some form of synchronization [29]. These are prevented as no shared
mutable state can exist. Everything discussed up until now is known as safe
Rust, which is the default when programming in Rust.

2.1.2 Unsafe Rust
The Rust type system allows for many programs to be written safely. There
are, however, data structures that rely on shared mutable state, whose im-
plementation is prevented by the Rust type system [14]. To implement these
data structures, Rust allows for the easing of the constraints by using unsafe
Rust code. Unsafe Rust can be seen as a separate language where some of the
restrictions enforced by Rust are relaxed.

One of the restrictions lifted is the ability to dereference raw pointers. In
unsafe Rust, the borrow checker and other safety mechanisms are still active,
but the borrowing rules do not apply for raw pointers.

1 fn main() {
2 let mut foo = 1;
3 let foo_ptr = &mut foo as *mut i32;
4 let res = unsafe { deref(foo_ptr)};
5 println!("{}", res) // prints 42
6 }
7 unsafe fn deref(foo: *mut i32) -> i32 {
8 let bar = foo as *mut i32;
9 *foo = 13;

10 *bar = 42;
11 *foo
12 }

In the example above, an unsafe function deref is declared, dereferencing two
raw pointers and changing the contents to 13 and 42, respectively. Since the
borrowing rules are not enforced for raw pointers, it is allowed (in unsafe Rust)
to have multiple mutable pointers to the same memory location. Unsafe Rust
with the right restrictions can be safe, but the distinction with Rust is that the
compiler can not guarantee this. It is thus the responsibility of the programmer
to make sure the written code does not cause any undefined behavior. The
unsafe keyword makes it explicit where the programmer has relaxed the com-
piler rules, and when reviewing the code, extra effort should be made to verify
the operations in these unsafe blocks.

Unsafe Rust can also be used to interface with other languages, like C. Since
the Rust compiler can not guarantee the safety of these languages, a call made
to another language has to be surrounded by the unsafe keyword.

8

2.1.3 Rust runtime checks
Rust’s type system is not able to prevent all memory-safety issues at compile
time. Rust relies on runtime checks for preventing division by zero, for checking
that memory access is within bounds, and for catching stack overflows. These
checks are omitted if the compiler at compile time can validate that these checks
are unnecessary (e.g., a value is divided by a constant that is not zero).

Before looking at the runtime checks, it is good to get a high-level overview of
how Rust compiles code. The Rust compiler goes through several stages before
the eventual binary is generated. First, the Rust syntax is analyzed by the lexer
and turned into a token stream. This is then parsed to generate an abstract
syntax tree (AST). During this phase, Rust macros are expanded, name reso-
lution is performed, and validation of the AST is done. The AST is converted
to a high-level intermediate representation (HIR), which involves desugaring.
During translation to HIR, type inference and initial type checking happen.
The HIR is then translated to a mid-level intermediate representation (MIR),
closely resembling LLVM intermediate representation (LLVM IR). In the MIR
phase, borrow checking and optimizations are performed. Rust uses LLVM as a
backend for code generation. LLVM provides target-independent optimization
and code generation for many CPU architectures. For code generation, LLVM
takes as input LLVM IR which closely resembles assembly but comes with added
annotations and low-level types [10]. So the MIR is translated to LLVM IR,
which performs more optimizations before generating the final binary. Runtime
checks for division by zero and bounds checking are introduced at the MIR level.
The Rust standard library and LLVM introduce Stack-overflow checks.

Divide-by-zero checks are inserted when the division operator is used. The
compiler inserts instructions to compare the divisor to zero. If they are equal,
an error is thrown, indicating a divide-by-zero error. When the compiler can
determine that the divisor is zero during the MIR compiler phase, the program
will fail to compile, indicating the division operation will fail at runtime. If
LLVM can determine that the divisor equals zero, the program will compile a
program that will print a divide-by-zero error without performing any divide by
zero checks. Both MIR and LLVM can remove the runtime check if they know
that the divisor will never be equal to zero.

For indexing, the Rust compiler inserts bounds checks. In some cases, dur-
ing the MIR phase, the compiler can reason that the index is out of bounds,
resulting in the program failing to compile with an error indicating that the
program will crash at runtime. If LLVM can infer that a program will index out
of bounds, the program will compile successfully but will crash by default with
an out-of-bounds error. Bound checks are inserted when the compiler lowers
index expressions in the MIR compiler phase. For example, consider the Rust
function below:

9

1 pub fn increase_by_pos(slice: &mut [u8]) {
2 slice[3] = 5;
3 }

The function gets a pointer to a mutable slice of memory and assigns the value
5 to the fourth position in this slice. A slice is a dynamically sized type (the
size is not known at compile time) and therefore uses fat pointers. Therefore,
a pointer to slices in Rust consists of the memory location of the slice and the
number of elements in the slice. When the compiler evaluates this index ex-
pression, it inserts a check that verifies that the value used to index the slice
is less than the number of elements in the slice. LLVM can remove the out-of-
bounds checks when it can reason that the indexing will never be out-of-bounds.

Stack-overflow protection is implemented by relying on guard pages and LLVM
stack probes. If the stack overflows and the program tries to read or write to a
guard page, the program will segfault. The details of how this is implemented
are platform-specific, e.g., Linux automatically sets up a guard page for the
main thread of a program, but for additional threads, guard pages are set up by
Rust with a call to libc mprotect. Stack probes1 are inserted when a function
requires more stack size than the guard page. Stack probes are used to prevent
the stack clash vulnerability [23]. Here a stack overflow jumps over the guard
page(s) and accesses a mapped memory region below the guard page(s). Stack
probes ensure that every page belonging to the stack is accessed, ensuring the
guard page is hit if the stack overflows. The details of stack-overflow protection
are platform-specific and part of the Rust runtime. When programming using
the #![no_std] attribute, which only relies on the platform-agnostic core Rust
library, used for embedded development, guard pages are not set up by Rust.
In this case, the programmer has to either ensure the targeted environment sets
up guard pages or take the responsibility to prevent stack overflows.

2.2 Jasmin
Jasmin is a framework for developing cryptographic software which is highly
efficient and provides strong safety guarantees [1]. Good cryptographic software
must be efficient, functionally correct, and free from any secret leaking through
side channels.

Cryptographic software is often hand-optimized in assembly to meet the ef-
ficiency requirements using special programming patterns to achieve constant-
time code. Constant-time code does not leak secret information (e.g., keys)
gathered by measuring the execution time of cryptographic implementations.
Both the efficiency requirements and the special programming patterns compli-
cate the verification of the cryptographic code. Jasmin aims to bridge this gap
by providing an integrated framework that, along with the Jasmin programming

1Currently, stack probing is only supported on x86. Work is being done on implementing
this for AArch64

10

https://github.com/rust-lang/compiler-builtins/blob/master/src/probestack.rs
https://github.com/rust-lang/rfcs/pull/2959

language, provides tools to verify the safety of the program and an embedding
into the EasyCrypt [4] framework. EasyCrypt supports proofs of functional
correctness, functional equivalence, and the ability to prove constant-time code
and crypto reduction proofs with minimal user interaction. Jasmin comes with a
certified compiler that guarantees that the assembly program behaves the same
as the Jasmin program. This allows safety and correctness reasoning to happen
at the Jasmin source code, which greatly simplifies the process.

2.2.1 Jasmin language
The Jasmin language has both high-level structures (e.g., for loops), which are
easier to verify, and low-level instructions, giving the programmer precise control
over the generated code. One of the core principles in Jasmin is predictability.
The programmer will be able to envision how the assembly will be generated,
which allows for the writing of highly efficient code. Below is a fictive example
of cryptographic code written in the Jasmin language. It demonstrates some of
the features of the language, which we discuss below.

1 export fn main(reg u64 key, reg u32 state)
2 {
3 reg u32[16] k; // the full state is in k[0..14] and k15;
4 stack u32 k15;
5 stack u32 k14;
6

7 k, k15 = init(key, state);
8 rotate_left(k, 0, 4, 8, 16);
9 rotate_left(k, 2, 6, 10, 16);

10

11 k14 = k[14];
12 k[15] = k15;
13

14 rotate_left(k, 1, 5, 9, 16);
15 rotate_left(k, 3, 7, 15, 16);
16

17 k15 = k[15];
18 k[14] = k14;
19 }

The function main is annotated with the export attribute. This function is
the entry point of the Jasmin program. By default, functions are automatically
inlined during compilation2 and therefore not present in the generated assembly.

In Jasmin, the programmer specifies where data is allocated using the key-
words: inline, stack, reg and global. inline values are resolved at compile-
time, stack values are stored on the stack, reg values are stored in registers,

2Since the writing of this section Jasmin has introduced several new features, most notably
function calls, global arrays, and the ability to have a register pointer to a stack array. Due
to Jasmin introducing function calls, functions are no longer inlined by default.

11

global values are stored in the code segment (requires the value to be known
at compile-time). This gives great control over the generated assembly, which
allows for achieving maximum efficiency.

When there are more live variables than registers, compilers may perform
register spilling. Here the content of some registers is transferred to memory to
free up registers for other values. The Jasmin compiler does not automatically
perform register spilling. The programmer should thus explicitly handle register
spilling. This is demonstrated in the example above, where the variable k, which
is a collection of 16 registers, and stack variables k14 and k15 are defined. On the
x86_64 architecture, 15 registers are free to be used simultaneously. Therefore
k15 is initially stored on the stack. When k15 is needed, the register holding
k14 is stored on the stack, and k15 is placed in a register. Not automatically
performing register spilling ensures predictability of the generated assembly.

1 fn init(reg u64 key, reg u32 state) -> reg u32[16], stack u32
2 {
3 inline int i;
4 reg u32 k15;
5 reg u32[16] k;
6 stack u32 s_k15;
7

8 k15 = state[13];
9 s_k15 = k15;

10

11 for i=0 to 2
12 {
13 k[i] = (u32)[key + 4*i];
14 }
15 for i=2 to 14
16 {
17 k[i] = state[i-2];
18 }
19

20 return k, s_k15
21 }

Jasmin allows for the reading and writing operations of all word sizes to and
from stack arrays. As seen in the above example (line 13), values from the
pointer key are read and interpreted as u32.

On lines 11 and 15, a for loop is used. These high-level structures are nor-
mally not used when writing cryptographic code due to the overhead of keeping
a counter, but the Jasmin compiler automatically unrolls for loops. Using high-
level structures makes the code more intuitive and compact to write without a
performance penalty; the compiler preserves while loops.

12

1 fn rotate(reg u32[16] k, inline int a, b, c, r) -> reg u32[16]
2 {
3 k[a] += k[b];
4 k[c] ^= k[a];
5 _, _, k[c] = #ROL_32(k[c], r);
6 return k
7 }

Jasmin can use specific CPU instructions of the architecture it supports (cur-
rently only x86_64). On line 5, the ROL instruction is called, which rotates the
bits to the left. CPU flags are handled explicitly in Jasmin. In the above exam-
ple, the ROL instruction might cause the overflow flag (OF) and carry flag (CF) to
be set. The calling of the ROL instruction thus returns the result and the flags.
By handling flags in this way, the side effects are explicit from the program code.
Except for memory-related instructions, all instructions are treated as pure op-
erators, making state modifications explicit. This simplifies the reasoning about
side-channel resistance and functional correctness.

To achieve maximum performance, cryptographic code often makes use of
vectorized instructions provided by the architecture. Jasmin supports SIMD ex-
tensions of the x86_64 architecture (not shown in the example). The embedding
in EasyCrypt allows for proving equivalence between the functional specification
and an implementation with vectorized instructions.

2.2.2 Jasmin safety
Jasmin comes with a static analyzer to prove the safety of the program. The
static analyzer guarantees the program terminates (when able to), in-bounds
array access, valid memory access, absence of division by zero, and that all
variables are initialized.

For a program to terminate, it needs to hold that there is a finite set of
transitions for any initial state. For proving this, an approach based on rank-
ing functions is used [2]. This approach can infer that the number of transi-
tions between program states will decrease, eventually ending the program. The
checking for termination is incomplete, meaning the safety checker cannot prove
termination for all programs. When the safety checker is unable to prove ter-
mination, it will report the program does not terminate. This means it can not
prove termination, and the programmer should ensure the program terminates.

The absence of division by zero, out-of-bounds array accesses, and variable
initialization are checked during the Jasmin safety analysis. The safety analysis
will return errors if any of these safety conditions are violated. To statically
reason about the program safety, the Apron library [12] is used, which is able to
represent variables in the polyhedra abstract domain. In the polyhedra domain
all possible linear constraints between variables can be encoded [26], allowing
to prove the absence of, e.g., division-by-zero and index out-of-bounds.

A Jasmin state consists of the global memory available to all functions and
the local environment, only available to the current function. Jasmin requires

13

that all read and write operations happen on valid memory. Valid memory ad-
heres to the specific architecture’s constraints (e.g., alignment) and should be
initialized. Jasmin has a simple form of dynamic allocation, where Jasmin allo-
cates memory on the stack for function-local variables upon function entry and
frees the memory upon function exit. Jasmin can work with pointers; however,
Jasmin cannot verify if the memory locations supplied to the entry point are
valid. Therefore Jasmin computes an overapproximation of the memory regions
accessed as a precondition, which - when satisfied - guarantees safe execution.
The programmer has to ensure that these preconditions hold. Compiled pro-
grams may end up consuming more stack space than the source program (e.g.,
due to stack alignment requirements of the target platform). This means that a
safe source program under the safety preconditions might still fail due to a lack
of stack space.

To prove formal security, functional correctness, and constant-time code,
Jasmin provides an embedding in the EasyCrypt framework. The EasyCrypt
framework is designed for the verification of cryptographic code. The soundness
of the embedding requires the Jasmin program to be safe. As Jasmin programs
are statically analyzed to guarantee safety at compile-time, this is always the
case. The safety assumption simplifies the verification conditions generated and,
therefore, the proof of functional correctness and functional equivalence prop-
erties [2]. For constant-time code, it should hold that any two executions with
only different secret information (i.e., all public values are the same) should
result in the same information leakage [3]. To prove this condition, traces are
added to the EasyCrypt embedding of the Jasmin program for branching condi-
tions and memory access. Then it is verified that two given programs with the
same public state will produce the same leakage trace. The programmer will
need to verify that the variables inferred to be public are indeed public.

14

Chapter 3

Rust and Jasmin ABI

Rust provides a Foreign Function Interface (FFI) to interact with other lan-
guages and the underlying OS. The most common use of the FFI is the interac-
tion with the C language. When calling into C code, the programmer can tell
Rust to use the C ABI by using the extern keyword:

1 extern "C" {
2 fn plus_one(foo: i32) -> i32;
3 }
4

5 fn main() {
6 unsafe {
7 println!("1␣+␣1␣equals␣{}", plus_one(1));
8 }
9 }

This ensures that the function uses the standard C ABI of the platform when
the external function plus_one is called. As the Rust compiler cannot verify
that the external code adheres to the Rust safety rules (i.e., the code is memory
safe), calls using the FFI need to be wrapped with the unsafe keyword. This
is not ideal as the interoperation between Rust and Jasmin should uphold the
guarantees of both languages, which implies memory safety.

Therefore another approach is considered where we pack the Jasmin code into
a Rust library file, which can be called from a Rust program without relying on
the unsafe keyword. In this chapter, we examine the Rust and Jasmin ABI.

3.1 Rust Rlib and ABI
By default, an Rlib file, which is a static Rust library with additional metadata,
is generated when compiling a Rust library. An Rlib file is a .ar archive on
Linux, which groups files as a single file with additional metadata. The archive

15

file contains the object files of the library and a file that describes the meta-
data of the library. The metadata includes, among others, the Rust compiler
version, dependencies, language attributes, code location of all definitions, MIR
of inlined functions and generic functions, and type and macro definitions. The
Rlib format and metadata format have yet to be fully standardized1.

When compiling a Rust program that depends on a Rust library, the com-
piler queries the metadata of the external Rlib to ensure the calling code is
correctly typed and to ensure the library functions are called correctly (e.g., the
correct number of arguments). The Rust compiler does not verify the safety of
the external library, as the safety has already been checked during the compila-
tion of the library. Memory safety of the external library is guaranteed either at
compile time or by introducing runtime checks when appropriate. At the end of
the compilation process, the Rlib files are passed to the linker, consuming the
object files within the Rlib to generate the final executable.

Rust by default uses symbol mangling; this allows for functions of different mod-
ules to have the same name without naming conflicts arising during linking. To
interoperate with external code, Rust provides the #[no_mangle] attribute that
prevents the mangling of function names. By preserving the function name dur-
ing the compilation of the Rlib file, the library function will be called by Rust
without mangling the function’s name. Rust also provides the #[export_name]
attribute, which can be used to give a custom name to a function or static value
in the final output file [28].

The compiler removes static values that are not used in the Rust code.
To preserve a static value, the programmer can add the #[used] attribute to
the static value. This will prevent the compiler from removing the value from
the output file. The linker can still remove items marked with the #[used]
attribute [28].

To force the compiler to place the contents of a function or static value into
a specific section of the object file, the #[link_section] attribute can be used.
This allows for precise control over the exact location where the final code is
placed with the help of the linker [28].

1 // Static foo will not be removed from the compiled output file
2 #[used]
3 static foo: u32 = 42;
4

5 // Function bar preserves the function name (no symbol
6 // mangling) in the final compiled output file and is
7 // placed in the section .bar_section in the object file
8 #[no_mangle]
9 #[link_section = ".bar_section"]

10 pub fn bar() {
11

1During the research, we used the following compiler versions: rustc 1.51.0 (2fd73fabe
2021-03-23).

16

12 }
13

14 // Function baz has the name baz_function in the
15 // compiled output file
16 #[export_name = "baz_function"]
17 pub fn baz () {
18

19 }

Rust on x86_64 uses the calling convention from the System V AMD64 ABI. This
entails that when passing arguments to a function, the first six arguments that
fit in a general-purpose register are passed in registers: RDI, RSI, RDX, RCX,
R8, R9. If additional arguments are provided, they are passed via the stack. For
passing floating-point numbers or types that do not fit into the general-purpose
registers, the vector registers xmm0 up to xmm7 are used.

The size and alignment of a subset of Rust types are shown in Table 3.1.

Type Size in bytes Alignment in bytes
Bool 1 1
u8/i8 1 1
u16/i16 2 2
u32/i32 4 4
u64/i64 8 8

u128/i128 16 8
usize/isize 8 8
&/&mut 8 8

const/*mut 8 8
[T; N] size of T * N alignment of T
[T] size of T * N alignment of T

&[T]/&mut[T] 16 alignment of T

Table 3.1: Rust type size and alignment on x86_64

The size and alignment of most types are straightforward. The bool type can
only take the values 0x00, to indicate false, and 0x01 to indicate true. Any
other value is undefined behavior. usize and isize are platform-specific types
and are guaranteed to be the same number of bits as the platform’s pointer
type (x86_64 in this case). Therefore, pointers and references take the same
size and alignment as usize/isize. Arrays ([T; N]) are laid out in memory
sequentially, meaning that given the address of the array, the n’th element can
be accessed as follows: address + n ∗ size_of(T). Slices ([T]) have the same
layout as arrays. Types of which the size is not known at compile time are
known as dynamically sized types. References or pointers to such types have
twice the size of normal pointers, also known as fat pointers. In the case of a slice
(&[T]/&mut[T]), this pointer contains the memory location and the number of

17

elements in the slice.
When encrypting data, there is often an input buffer that contains the data

to be encrypted and an output buffer to which the encrypted data is written.
Both of these are of unknown size at compile time. In Rust, the idiomatic
way of passing a pointer to a contiguous memory region is by using slices. As
mentioned, slices are dynamically sized; therefore, the pointer to a slice consists
of the memory location and the number of elements in the slice. When passing a
slice to a function, this ends up using two registers, one for the memory location
and one for the number of elements. When dealing with an input and output
buffer, this would thus consume 4 registers. However, when the input buffer and
output buffer are of the same length, only one argument to specify the number of
elements of both buffers is sufficient, therefore ideally, only three registers would
be needed. Furthermore, it may be desirable to have the input and output buffer
overlap, such that less memory is needed to perform the crypto routine. The
data to be encrypted is read-only, while the output buffer should be mutable.
Having both a mutable and immutable reference to the same memory location
violates the Rust borrowing rules and is therefore not possible.

As explained in the unsafe Rust section, Rust has raw pointers for which the
borrowing rules do not apply. Therefore raw pointers can have multiple mutable
and immutable pointers to the same location. In addition, it is possible to create
a raw pointer to a fat pointer; this pointer only consists of the memory location
and thus only takes up one register. Raw pointers are also not guaranteed to
point to valid memory, can be null, and do not affect any other values when
they go out of scope (i.e., no automatic drop). By loosening these restrictions,
raw pointers allow for interoperation with other languages, hardware or, in some
cases, allow for better performance of Rust code. Dereferencing (e.g., indexing
the value) a raw pointer requires the use of unsafe. However, creating a raw
pointer or passing a raw pointer to another function does not require unsafe,
as only dereferencing a raw pointer can lead to undefined behavior. Using raw
pointers in scenarios such as the one described above, the number of registers
needed to pass two buffers of the same size, unknown at compile-time, can be
reduced by one. Furthermore, this also allows for an immutable and mutable
pointer to the same buffer, reducing the amount of memory needed to perform
the cryptographic function.

Rust also provides what is known as composite types, which are build-up of
primitive data types. These are structs, enums, and unions. The memory lay-
out of these types is dependent on the primitive types they contain. The memory
layout is referred to as their representation. By default, these composite types
have the default Rust representation. This representation does not provide
any guarantees about the memory layout. To interface with the C language,
the programmer can use the C representation for these types:

18

1 #[repr(C)]
2 struct ElementLocation {
3 address: u64,
4 index: u8,
5 }

This guarantees that the size and alignment of the struct are the same as in C.
We can also use the C representation to provide guarantees about the memory
layout of composite types. This is useful when performing operations that make
assumptions about the memory layout of the type.

Rust also has the transparent representation. This representation can only
be applied to a struct with one field whose size is greater than 0 (and any number
of zero-sized fields with an alignment of 1 byte). This ensures the memory layout
of the struct is that of the field it contains. It also ensures this type follows the
same ABI as the field it contains, i.e., the struct is passed in the same way to a
function as the single field would have been passed.

1 #[repr(transparent)]
2 struct Float {
3 num: f32,
4 }

For example, the struct above contains a single floating point number, on x86_64
this would normally be passed using the normal registers as this is a struct.
However, when using the transparent representation, it gets passed using the
floating-point registers as is expected for a floating-point number.

3.2 Jasmin ABI
The Jasmin compiler outputs assembly files for the target machine architecture.
An assembler then uses these assembly files to generate object code. The entry
point of the Jasmin code is marked with the export keyword. Jasmin performs
no name mangling of function names. Only the entry function marked with
export remains visible in the final object code. Jasmin also does not export
any of the global variables.

Like Rust, Jasmin uses the System V ABI on Linux x86_64. Thus it uses RDI,
RSI, RDX, RCX, R8, R9 to pass arguments. As Jasmin supports SIMD instruc-
tions, on Intel x86 CPU’s vector registers xmm0 up to xmm7 can be used to
pass arguments. The Jasmin export function currently does not support stack
arguments. Therefore when calling Jasmin code from external, only registers
can be used as arguments, limiting the number of arguments that can be passed
to Jasmin up to at most six 64-bit general-purpose registers and eight 128-bit
vector registers.

In Jasmin, types passed to or returned from the export function are re-
stricted to the unsigned integers u8, u16, u32, u64. When there is support for
AVX/AVX2, the u128 and u256 types can also be used. Jasmin does not have a

19

special type for pointers; on x86_64 pointers to Jasmin are passed using u64.
Jasmin treats the types u128 and u256 as vector types, which will therefore use
the vector registers. All other types use general-purpose registers. Jasmin can
return values in RAX, RDX, xmm0 and xmm1.

Jasmin only allocates memory on the stack. This memory is allocated on func-
tion entry and freed on function exit. When the programmer wants to make a
change to a variable, made in Jasmin, visible to the caller of a Jasmin export
function, this variable needs to be returned by this export function. Jasmin
can also make changes to contents on the heap, but only through the pointers
passed to it in an export function.

1 export fn add_three(reg u32 num, reg u64 bar)
2 {
3 reg u32 foo;
4 foo = num;
5 foo += 3;
6

7 [bar] += 3;
8 }

As the value foo is not returned from this function, the changes made by Jasmin
are lost on function exit. As the pointer bar is provided by the caller, the changes
made to this pointer will be visible to the caller.

20

Chapter 4

Rust and Jasmin
Interoperation

To benefit from the high-level features and the ecosystem Rust provides while
achieving maximum efficiency and verifiable secure cryptographic code, the goal
is to interoperate between Rust and Jasmin.

The approach we take to call Jasmin from Rust is replacing the object file
of a Rust Rlib with a Jasmin object file. First, the function to be converted
to Jasmin is moved to a separate Rust file and compiled as an Rlib file. Then
the Jasmin code is written for this function and compiled to an object file. By
replacing the Rust object file with the Jasmin object file and keeping the meta-
data, the Jasmin code can be called without relying on FFI, and therefore there
is no need for unsafe Rust. A high-level overview of this process can be seen in
Figure 4.1. In this chapter, we will describe this approach in more detail. First,
the matches and mismatches between the ABI of Rust and Jasmin are outlined.
Then we describe a step-by-step approach to interoperate between Rust and
Jasmin and introduce a tool to automate a part of these steps. Finally, we
consider the safety of this approach.

4.1 Interoperation
By default, the Rust compiler performs symbol mangling; therefore, Rust will
expect the name of the function it calls to be mangled. However, as Jasmin
does not perform symbol mangling, calling Jasmin from Rust will result in
errors during linking. Therefore the #[no_mangle] attribute has to be added
to the Rlib function; this prevents Rust from mangling the function name.

As both Jasmin and Rust use the same calling convention, the first six
arguments that fit in a general-purpose register are passed in registers: RDI, RSI,
RDX, RCX, R8 and R9. In Rust, when there are more than six arguments, they
are passed via the stack. Jasmin currently does not support passing arguments

21

Figure 4.1: Rust to Jasmin overview

to the entry function via the stack; this limits the number of arguments that
can be passed from Rust to Jasmin to six.

Rust has a rich type system, which in addition to the primitive types, sup-
ports user-defined composite types: structs, enums, and unions. Jasmin only
has support for the types u8, u16, u32, u64, u128, u256. We only consider a
subset of types as function arguments from Rust to Jasmin. Rust does not sup-
port u256 value by default. Although Rust supports u128 as a primitive type,
Rust does not use a vector register for this type by default. Using u128 and
u256 as arguments or return values is therefore not considered. The following
unsigned integers from Rust are supported: u8, u16, u32, u64, usize. In addition
to this, immutable and mutable references to arrays (&[T; N]/&mut[T; N]) and
slices (&[T]/&mut[T]) are also supported. There is also support for raw pointers
(*const/*mut) as this allows for creating a raw pointer to a fat pointer, which
only needs one register instead of two (as explained in the previous section). For
return types from Jasmin to Rust, the following Rust types are supported: u8,
u16, u32, u64 and usize. This subset of types is sufficient for writing typical
cryptographic routines. The Rust types and their corresponding Jasmin types
are shown in Table 4.1.

When passing a reference to a slice from Rust to Jasmin, this reference uses
two registers. The Jasmin entry function should thus use two registers (as in-
dicated in Table 4.1) when it receives a reference to a slice from Rust. When
multiple buffers of the same length, unknown at compile-time, are passed to
Jasmin, the programmer can use raw pointers to reduce the number of needed
registers. This allows for more flexibility when dealing with the limit of at most

22

Rust type Jasmin type
u8 reg u8
u16 reg u16
u32 reg u32
u64 reg u64
usize reg u64

&/&mut [T; N] reg u64
&/&mut [T] reg u64, reg u64
const/*mut reg u64

Table 4.1: Rust types and their corresponding Jasmin type

six register arguments.

Now we describe a step-by-step approach to interoperate between Rust and
Jasmin. We assume the workflow of a programmer that has written their pro-
gram in Rust and now wants to convert one function to Jasmin. A simple
example of a Rust function that increases each element in a slice by its position
is used to demonstrate the steps needed for Rust and Jasmin to interoperate.
The programmer has written the following Rust code in the file example.rs:

1 fn main() {
2 let mut input = [1,2,3,4];
3 increase_by_pos(&mut input[..]);
4 println!("result:␣{:?}", input);
5 }
6

7 fn increase_by_pos(input: &mut [u64]) {
8 for i in 0..input.len() {
9 input[i] += i;

10 }
11 }

In the main function, an array is created with four elements. A mutable refer-
ence to a slice1 is passed to the increase_by_pos function. After calling the
function, the resulting array is printed. The programmer wants to convert the
increase_by_pos function to a Jasmin function. First, we create a directory,
named jasmin, for the Jasmin code to reside and a separate Rlib file, named
increase_by_pos.rs.

1 $ mkdir jasmin
2 $ cd jasmin
3 $ touch increase_by_pos.rs

1Here, the size of the array is known at compile-time, it would thus be possible to explicitly
encode the size in the type of the receiving function. This is not done as a mutable reference
to a slice serves as a more illustrative example.

23

The increase_by_pos function is moved to the Rlib file to generate the correct
metadata. The #[no_mangle] attribute is added to prevent the Rust compiler
from encoding a mangled name in the metadata. The function body is left
empty since this is enough for Rust to encode the function in the metadata.

1 #[no_mangle]
2 pub fn increase_by_pos(input: &mut [u8]) {
3

4 }

Next, the programmer writes the Jasmin code in increase_by_pos.jazz:
1 export fn increase_by_pos(reg u64 input, reg u64 len) {
2 reg u64 i;
3 i = 0;
4 while (i < len) {
5 [input+8*i] += i;
6 i += 1;
7 }
8 }

A u64 register is created as a counter for the while loop. While the counter is
less than the length, the slice is indexed at each position and increased by the
counter. The counter is multiplied by eight as each entry in the array takes up
8 bytes, and the array is indexed at byte level. Note that the Rust function only
has one argument, but the Jasmin function has two. This is due to how the
reference to a slice is passed in Rust (as explained previously). The programmer
compiles the Jasmin function with the Jasmin compiler. This generates the
assembly code, which is assembled to an object file using clang:

1 $ <path_to_jasmin_compiler>/jasminc increase_by_pos.jazz
2 -o increase_by_pos.s
3 $ clang increase_by_pos.s -c -o increase_by_pos.o

When compiling the Rlib file, the compiler will output a warning about the
unused variable input, but will still compile the program. After compilation
the programmer extracts the metadata and packs it together with the Jasmin
object file to create an Rlib file that can be called from Rust:

1 $ rustc --crate-type=rlib increase_by_pos.rs
2 $ ar -x libincrease_by_pos.rlib
3 $ rm increase_by_pos.increase_by_pos.*
4 $ rm libincrease_by_pos.rlib
5 $ ar -crs libincrease_by_pos.rlib increase_by_pos.o
6 lib.rmeta

The programmer now imports the Rlib file so that he can use the Jasmin func-
tion in example.rs. To import the Rlib the external crate increase_by_pos is
defined and the function increase_by_pos is imported from this crate.

24

1 extern crate increase_by_pos;
2 use increase_by_pos::increase_by_pos;
3

4 fn main() {
5 let mut input = [1,2,3,4];
6 increase_by_pos(&mut input[..]);
7 println!("result:␣{:?}", input);
8 }
9

10 //fn increase_by_pos(input: &mut [u64]) {
11 // for i in 0..input.len() {
12 // input[i] += i;
13 // }
14 //}

The programmer now compiles and runs the program. To tell rustc where to
find the external crate during the linking phase, the -L flag is used.

1 $ rustc example.rs -L /jasmin
2 $./example

Using the approach described above, we can call the Jasmin code from Rust.

Starting with just the Rust code, the following steps are observed in the process
above:

1. Determine which functions need to be rewritten in Jasmin

2. Move these functions to a separate Rlib file

3. Create Jasmin functions

4. Write Jasmin functions

5. Compile Rlib files

6. Compile Jasmin files

7. Replace object file in Rlib with Jasmin object file

Automating part of this process simplifies calling from Rust to Jasmin. For this
purpose, we create a Python tool named jasminify2. jasminify assumes the
same workflow as above, i.e., the programmer wants to convert existing Rust
code to Jasmin.

jasminify performs the process in two phases, with the corresponding com-
mands generate and build. In the first phase, the tool scans the current
directory for Rust files, and in each Rust file searches for functions annotated
with the "// Jasmin" comment. It comments out all the annotated functions
and moves them to Rlib files in a new jasmin directory. The Rlib files are

2https://gitlab.com/Jur/jasminify

25

automatically imported into the original Rust file so that the Rust program can
call the functions from the original Rust file. Next, jasminify generates the
corresponding Jasmin function stubs for the functions in the Rlib files. Dur-
ing the generation of the Jasmin stubs, jasminify performs several validation
steps, which we will explain in the next section. The programmer now writes
the Jasmin code for each of the generated Jasmin function stubs. In the second
phase, the tool compiles the Jasmin functions and assembles them into object
files. The Rlib file is compiled, and the object files in the Rlib are replaced
with the Jasmin object files. Now the programmer compiles and runs the Rust
program.

We now demonstrate jasminify using the same example as above.
1 fn main() {
2 let mut input = [1,2,3,4];
3 increase_by_pos(&mut input[..]);
4 println!("result:␣{:?}", input);
5 }
6

7 // Jasmin
8 fn increase_by_pos(input: &mut [u64]) {
9 for i in 0..input.len() {

10 input[i] += i;
11 }
12 }

The function increase_by_pos is annotated with the "// Jasmin" comment
to indicate to jasminify that, this functions should be converted to a Jasmin
function. Now jasminify is executed with the generate command.

1 $ python jasminify generate

jasminify automatically generates the Rlib file example_increase_by_pos.rs
and the Jasmin file example_increase_by_pos.jazz in the jasmin directory.
The generated Jasmin function stub is listed below:

1 // slice: &mut[u64]
2 // slice name: input
3 // slice length: input_len
4 // jasminc -checksafety -safetyparam input;input_len
5 export fn increase_by_pos(reg u64 input input_len)
6 {
7 reg u64 i;
8 i = 0;
9 while (i < input_len) {

10 [input+8*i] += i;
11 i += 1;
12 }
13 }

26

Note that jasminify added comments above the increase_by_pos function.
This informs the programmer what Rust types are being passed to Jasmin. In
this case, because the type being passed is a slice (&mut [u64]), it is expanded to
two arguments, input and input_len. For slices jasminify also automatically
specifies which safety parameters the programmer can pass to the safety checker
to help with the Jasmin program’s safety checking. We will explain this in the
next section.

After completing the Jasmin function, we run the following command to
compile the Jasmin code and Rlib:

1 $ python jasminify build compiler=<path_jasmin_compiler>

The compiler= option is used to specify the path to the Jasmin compiler, which
is used to compile the Jasmin files. Now we can compile the example.rs pro-
gram and run it.

1 $ rustc example.rs -L /jasmin
2 $./example

4.2 Interoperation safety
Both Rust and Jasmin provide mechanisms to establish memory safety, and the
safety guarantees they provide largely overlap. There are, however, some points
the programmer should keep in mind when using the approach described above.
These are discussed below.

The Rust compiler only queries the metadata corresponding to the Rust en-
try function; the Jasmin entry function can deviate from this. More specifically,
the assembly generated code of the calling function in Rust should match the
number of arguments and the types of the Jasmin entry function. As both Rust
and Jasmin use the System V AMD64 ABI, the same registers will be used (up
to a maximum of six arguments). When using a fat pointer (e.g., a pointer to a
slice), Rust passes the argument using two registers; the Jasmin entry function
should account for this.

jasminify ensures that these safety problems related to the ABI are pre-
vented by performing several validation steps when generating the Jasmin stubs.
As discussed earlier, only a subset of Rust types are allowed to be passed from
Rust to Jasmin, jasminify verifies that only these allowed types are used. As
the Rust type system is more expressive than Jasmin’s, the programmer must
translate Rust types to the correct Jasmin type (see Table 4.1). jasminify
ensures that the correct Jasmin types are used. jasminify automatically ex-
pands Rust slices to two Jasmin register arguments. The Jasmin export function
currently supports a maximum of six arguments due to Jasmin only accepting
arguments via registers. jasminify ensures that a maximum of six arguments
are used. Although Jasmin and Rust support returning more than one argu-
ment via registers, we only consider one return argument. jasminify prevents

27

more than one return argument from being used. By performing these valida-
tion steps, jasminify ensures that the Jasmin code is called in the right way;
this takes care of one part of the safety considerations the programmer should
keep in mind.

Jasmin does not differentiate between the notion of immutability and muta-
bility for externally provided arguments. Jasmin may therefore change the con-
tents of an immutable variable, invalidating the safety invariant of Rust. When
creating an immutable variable in Rust, it is impossible to assign a value to it
again. Although Jasmin can change the contents of this variable when passed to
Rust, the actual memory location in Rust where this variable is stored is never
touched. Therefore these changes are not visible to Rust. Even when returning
the value to Rust, assigning a returned value to an immutable variable is impos-
sible. In this way, it is thus not possible for Jasmin to mutate immutable Rust
variables. Jasmin can, however, changes the contents of memory declared im-
mutable in Rust through pointers passed to the export function. When passing
pointers to immutable memory to Jasmin, the programmer has to ensure that
writing to memory only happens through mutable pointers. Furthermore, Easy-
Crypt provides a way to prove that values are not mutated; the programmer can
use this approach to prove that the Jasmin code adheres to the immutability
constraints of Rust.

Another problem is that Jasmin can change a pointer to an array and return
this value to Rust. Jasmin has no understanding of the heap memory layout, so
when returning a pointer from Jasmin, there are no guarantees that the pointer
points to valid memory. This will be problematic if Rust uses this pointer.
As already mentioned, the returning of pointers is not considered. jasminify
ensures that only unsigned integers are returned from Jasmin to Rust.

To prevent data races, when dealing with multiple threads, Rust provides
guarantees that prevent shared mutable data or requires synchronization to
manage access to shared mutable data. Jasmin does not support multi-threading
(i.e., Jasmin can not spawn additional threads) and therefore is not able to
invalidate the safety guarantees provided by Rust.

Jasmin does not allocate or free on the heap; therefore, Jasmin does not
interfere with the Rust heap. Since both Rust and Jasmin ensure memory safety
independently, the operations performed by Jasmin and Rust are guaranteed not
to result in memory errors; the one exception is if the Rust caller does not ensure
the safety preconditions required by Jasmin. Jasmin can not know if the values
passed to the entry function are valid. For this reason, the Jasmin safety checker
reports which memory bounds should be valid; the programmer should verify
these bounds.

We run the Jasmin safety checker on the increase_by_pos Jasmin example
program above:

1 jasminc -safetyconfig range_config.json -checksafety
2 example_increase_by_pos.jazz -safetyparam "input;input_len"

We pass a safety configuration file to the Jasmin safety checker using the
-safetyconfig option. This is done to help the Jasmin safety checker with

28

the safety analysis of our program. In this case, we specify a bound on the
maximum value of input_len. The maximum size in bytes of a slice and array
in Rust is 247 − 1. As each entry in the &mut [u64] slice points to 8 bytes, the
maximum value of input_len is (247/8)−1 = 17592186044415. We specify this
upper bound as follows in the range_config.json file:

1 {
2 "input_range": {
3 "input_len": { "min": "0", "max": "17592186044415" }
4 }
5 }

The Jasmin safety checker produces the following output:

1 *** No Safety Violation
2

3 Memory ranges:
4 mem_input_len: [0; 0]
5

6 * Rel:
7 {inv_input_len ≤ 17592186044415, inv_input ≤
8 18446744073709551615, inv_input ≥ 0, 8 · inv_input_len ≥
9 mem_input, mem_input ≥ 0}

10 mem_input ∈ [0; 140737488355320]
11

12 * Alignment: input 64;

The Jasmin safety checker reports no safety violations, meaning the code is
memory safe, and the program terminates if the safety preconditions output by
the safety checker are satisfied. The size of the allocated memory region pointed
to by the input pointer depends on the value of input_len; therefore, Jasmin
generates conjunctions of linear inequalities that need to hold for the allocated
memory region.

In this case, it follows from the conjunctions of linear inequalities that
0 ≤ mem_input ≤ 8 · inv_input_len, meaning that the input pointer must
point to an allocated memory region of length 8 · input_len. The upper bound
on the input pointer is 17592186044415 · 8 = 140737488355320, which is ex-
pected as this is the maximum value at which the input pointer can be in-
dexed. Since we pass a slice type (&mut [u64]) from Rust to Jasmin, both
input and input_len are part of the same Rust type. The Rust type system
guarantees that input_len exactly matches the number of elements pointed to
by the input pointer and that this number is not larger than 17592186044415.
The alignment specifies that the input pointer should be aligned to 64 bits. In
Rust, references are equal to the word size; a pointer on x86_64 is aligned to 64
bits. The safety preconditions of the Jasmin safety checker are thus satisfied.

When calling Jasmin from Rust, the programmer’s responsibility is to check
that the entry function and Rust function match, Jasmin does not mutate an
immutable Rust value through a pointer, and the safety preconditions of the

29

Jasmin safety checker are satisfied. If these all hold, then the calling of Jas-
min from Rust is guaranteed not to invalidate the safety guarantees of both
languages.

30

Chapter 5

Case Study

The previous chapter gave a high-level overview of how the calling of Jasmin
from Rust works and discussed the safety of this approach. This chapter demon-
strates the interoperation process by replacing the assembly and C code of two
algorithms (x25519 and ChaCha20) in the Ring Rust library with Jasmin code.

5.1 Rustls
Rustls is a TLS library written in Rust [8]. Rustls is a modern library that aims
to provide good cryptography security while not supporting obsolete or unsafe
TLS features (e.g., RC4). For cryptography, Rustls relies on the Ring crypto
library providing general-purpose cryptography implementations [27]. Most of
the Ring crypto library code is based on BoringSSL1, and it uses a mix of Rust,
C, and assembly. Critically the low-level crypto routines are written in either
C or assembly. This makes it a good candidate to replace some of the existing
crypto code with Jasmin code.

For reproducibility purposes, the Rust version is set to the latest rustc
version, with which we tested the interoperation:

1 $ rustup toolchain install 1.51.0
2 $ rustup default 1.51.0

The Ring library can be found on GitHub, from which it is cloned to edit the
contents of the library:

1 $ git clone https://github.com/briansmith/ring.git

To use the same version of the Ring library as in this case study, the git checkout
command is used. This allows us to move back to a specific commit by using
the commit hash. In this case, the hash of the latest commit when we wrote
this case study.

1 $ git checkout c263876eb52a5a5827d915efbdc45706197d2fdb

1https://boringssl.googlesource.com/boringssl

31

The Jasmin code of the algorithms replaced is introduced by Almeida et al [2]
and can be found on Github2. Although we use existing Jasmin implementations
to replace the existing code, we will write the case study using Jasminify.
Thus, it is assumed that we still have to write the Jasmin code. This is done as
this workflow is the most illustrative. The resulting code of this case study is
published on GitLab3.

5.1.1 x25519
x25519 is an elliptic-curve Diffie Hellman (ECDH) function introduced by Bern-
stein in 2006 [6], that uses Curve25519 and provides 128-bit security. The
algorithm can be used to construct a shared secret key over an untrusted
channel safely. Curve25519 is defined in Montgomery form as follows: y2 =
x3 + 486662x2 + x which operates on field F255− 19 and uses a fixed base point
B where XB = 9. The public, private and shared keys are all encoded into
32-byte arrays.

The procedure for establishing a shared key using x25519 is as follows. Both
parties sample a random 32-byte string uniformly at random. From this, the
private key is generated by a process known as clamping. Clamping clears
the lower three bits, clears the most significant bit, and sets the second most
significant bit [24]. Using scalar multiplication, they compute their 32-byte
public key by multiplying the generated private key with the base point. After
exchanging public keys over the untrusted channel, they multiply their secret
keys with the public key of the other party. This results in a shared secret value.
This shared value can be used in a key-derivation function to generate a shared
symmetric key.

The basic operation of the x22519 algorithm is scalar multiplication, once
to generate the public key and once to compute the shared key. For scalar s
and point P the multiplication is written as sP . Using the Montgomery form,
this operation can be performed efficiently using only the x-coordinate of the
point. This works well with the algorithm as the public key is defined to be the
x-coordinate. This has the added benefit that the public keys are only 32-bytes,
in contrast to 64-bytes if both the x and y coordinate of the point would have
been used. For scalar multiplication, the Montgomery ladder algorithm is used.
The simple structure of this algorithm makes it easy for implementers to ensure
the computation happens in constant time.

The clamping process has two purposes. First, the clearing of the lowest
three bits and clearing of the most significant bit prevent small-subgroup at-
tacks. Second, setting the second most significant bit prevents attempts to
optimize the Montgomery ladder by skipping the first iteration if this bit equals
zero. The skipping of the first iteration results in a timing leak that an adversary
could exploit [9], [17].

2https://github.com/tfaoliveira/libjc
3https://gitlab.com/Jur/ring/-/tree/casestudy

32

5.1.2 Replacing x25519
Below we show the steps to replace the x25519 crypto primitive from the Ring
library (written in C) with the Jasmin implementation.

The x25519 code is located at: ring/src/ec/curve25519/x25519.rs. In-
specting the x25519.rs file we observe the following code that calls into extern
code:

1 #[cfg_attr(
2 not(all(not(target_os = "ios"), target_arch = "arm")),
3 allow(unused_variables)
4)]
5 fn scalar_mult(
6 out: &mut ops::EncodedPoint,
7 scalar: &ops::MaskedScalar,
8 point: &ops::EncodedPoint,
9 cpu_features: cpu::Features,

10) {
11 #[cfg(all(not(target_os = "ios"), target_arch = "arm"))]
12 {
13 if cpu::arm::NEON.available(cpu_features) {
14 return x25519_neon(out, scalar, point);
15 }
16 extern "C" {
17 fn GFp_x25519_scalar_mult_generic_masked(
18 out: &mut ops::EncodedPoint,
19 scalar: &ops::MaskedScalar,
20 point: &ops::EncodedPoint,
21);
22 }
23 unsafe {
24 GFp_x25519_scalar_mult_generic_masked(out, scalar,
25 point);
26 }
27 }

The function GFp_x25519_scalar_mult_generic_masked is defined with the
extern C ABI and called surrounded by the unsafe keyword. The code for this
function is located at ring/crypto/curve25519 and written in C. This C imple-
mentation of scalar multiplication is a good candidate to replace with a Jasmin
implementation. As Jasmin currently only supports the x86_64 architecture,
we introduce a new function x25519_jasmin that is only called when compiled
for the x86_64 architecture. This is done using the cfg attribute, which allows
for conditional compilation. In this case, the call to the Jasmin function is only
present in the compiled program when compiled for x86_64. We annotate this
new function with the // Jasmin comment so jasminify can convert this to a
Jasmin function.

33

1 #[cfg_attr(
2 not(all(not(target_os = "ios"), target_arch = "arm")),
3 allow(unused_variables)
4)]
5 fn scalar_mult(
6 out: &mut ops::EncodedPoint,
7 scalar: &ops::MaskedScalar,
8 point: &ops::EncodedPoint,
9 cpu_features: cpu::Features,

10) {
11 #[cfg(all(not(target_os = "ios"), target_arch =
12 "arm"))]
13 {
14 if cpu::arm::NEON.available(cpu_features) {
15 return x25519_neon(out, scalar, point);
16 }
17

18 #[cfg(all(target_arch = "x86_64"))]
19 {
20 return curve25519_mulx(
21 out,
22 scalar.bytes(),
23 point);
24 }
25

26 extern "C" {
27 fn GFp_x25519_scalar_mult_generic_masked(
28 out: &mut ops::EncodedPoint,
29 scalar: &ops::MaskedScalar,
30 point: &ops::EncodedPoint,
31);
32 }
33 unsafe {
34 GFp_x25519_scalar_mult_generic_masked(out, scalar,
35 point);
36 }
37 }
38

39 #[cfg(all(target_arch = "x86_64"))]
40 // Jasmin
41 fn curve25519_mulx(out: &mut [u8; 32], scalar: &[u8; 32],
42 point: &[u8; 32]) {
43

44 }

34

The scalar variable is defined as follows: pub struct MaskedScalar([u8;
SCALAR_LEN]). In order to pass a reference to the array contained in the struct
the following function is added to the implementation of MaskedScalar in
ring/src/ec/curve25519/scalar.rs:

1 pub const fn bytes(&self) -> &[u8; SCALAR_LEN] {
2 &self.0
3 }

We now use jasminify to generate the Rlib and Jasmin function:

1 $ python jasminify.py generate

jasminify generates the following Rust and Jasmin file in the Jasmin directory:

1 #[no_mangle]
2 pub fn curve25519_mulx(out: &mut [u8; 32], scalar: &[u8; 32],
3 point: &[u8; 32]) {
4

5 }

1 // out: &mut[u8;32]
2 // scalar: &[u8;32]
3 // point: &[u8;32]
4 export fn curve25519_mulx(reg u64 out scalar point)
5 {
6

7 }

We observe that jasminify has preserved the Rust types in the comment above
the Jasmin function. Now we write the Jasmin code for the generated Jasmin
function stub. After completing this step, we again call jasminify:

1 $ python jasminify.py build
2 compiler=<path_jasmin_compiler> --opts=-lea

The --opts= option allows for the passing of options to the Jasmin compiler.
The -lea option is used to tell the Jasmin compiler to use the lea assembly
instruction as much as possible instead of the add and mull instructions. This
can, on some CPUs, result in less execution time as the decoding of the lea
instruction occurs in a different stage of the CPU pipeline. jasminify produces
an Rlib file, in which the object file is replaced with the Jasmin object file.

The Ring library is compiled with the Rust Cargo package manager. In this
case a Cargo build script is defined in ring/build.rs, as Cargo must compile
non-Rust code. For Cargo to find and link our Rlib file, the cargo:rustc-link-
search instruction is added to the build script (as suggested by jasminify):

1 fn ring_build_rs_main() {
2 use std::env;
3 ----- SNIP ------

35

4 // Search for link targets in the Rust
5 println!("cargo:rustc-link-search=<path_from_build.rs>
6 /src/ec/curve25519/jasmin");
7 check_all_files_tracked()
8 }

Now we can use Cargo to build the Ring library:

1 $ cargo build

The ring library now calls Jasmin instead of C for the x25519 scalar multipli-
cation function as the build is successful.

The Ring library comes with built-in tests that verify the crypto functions
are working as expected. One of these test functions compares the output of the
x25519 scalar multiplication function with multiple predefined inputs and their
corresponding expected outputs. We can run this test to give confidence that
the Jasmin implementation is called correctly and returns the correct output.
We run the x25519 test can be run using the following command:

1 $ cargo test agreement_tests

The test runs without any errors, indicating that replacing the existing code
with the Jasmin code was successful.

5.1.3 ChaCha20
ChaCha20 is a stream cipher designed by Bernstein as a variation on the Salsa20
cipher [7]. It improves on Salsa20 by having a better diffusion per round and
increased speed on some platforms [5]. The ChaCha20 variant considered here
is specified in RFC 7539 for use in TLS [18]. The ChaCha20 algorithm has as
input a 256-bit key, a 32-bit counter, a 96-bit nonce, and a plaintext of arbitrary
length.

Constant Constant Constant Constant
Key Key Key Key
Key Key Key Key

Counter Nonce Nonce Nonce

Table 5.1: State of the ChaCha algorithm. The 16 32-bit words are divided into
4 groups by colors. Each quarter takes one of these groups as input during the
column round

.

The ChaCha20 cipher consists of 20 rounds, generating a 64-byte keystream
block. One round is made up of four quarter rounds, which each operate on four
distinct words of the state. The state comprises 16 32-bit words, consisting of
4 constant words, 8 words derived from the key, 1 word from the counter, and
3 words from the nonce. The state can be seen as a four-by-four matrix and is

36

Constant Constant Constant Constant
Key Key Key Key
Key Key Key Key

Counter Nonce Nonce Nonce

Table 5.2: State of the ChaCha algorithm. The 16 32-bit words are divided into
4 groups by colors. Each quarter takes one of these groups as input during the
diagonal round

.

shown in Table 5.1. A quarter-round performs addition (modulo 232), bitwise
XOR, and a left n-bit rotation on the input of four 32-bit words. The rounds
alternate between operating on columns (shown in Table 5.1) and diagonals
(shown in Table: 5.2). As each round operates on four distinct words of the
state, it is possible on SIMD-supporting platforms to store the state in vector
registers. ChaCha20 can then be used with SIMD operations to increase the
performance. After performing the 20 rounds, the initial state is added to the
final state (modulo 232), resulting in a 64-byte keystream block. This block is
XOR’ed with 64 bytes from the plaintext to get the encrypted output. When
there is more plaintext to be encrypted, the 20 rounds are repeated with the
same constant words, key, nonce, and the counter is increased by one.

5.1.4 Replacing ChaCha20
Below we show the steps to replace the ChaCha20 crypto primitive from the
Ring library (written in assembly) with the Jasmin implementation.

The Chacha20 code is located at ring/src/aead/chacha.rs. Inspecting
the chacha.rs file, the following code that calls into extern code is observed:

1 impl Key {
2 ---- SNIP ----
3

4 #[inline]
5 fn encrypt_less_safe(&self, counter: Counter,
6 in_out: &mut [u8], src: RangeFrom<usize>) {
7 #[cfg(any(
8 target_arch = "aarch64",
9 target_arch = "arm",

10 target_arch = "x86",
11 target_arch = "x86_64"
12))]
13 #[inline(always)]
14 pub(super) fn chacha20_ctr32(
15 key: &Key,
16 counter: Counter,

37

17 in_out: &mut [u8],
18 src: RangeFrom<usize>,
19) {
20 let in_out_len = in_out.len()
21 .checked_sub(src.start).unwrap();
22

23 // There’s no need to worry if ‘counter‘ is
24 // incremented because it is owned here and we
25 // drop immediately after the call.
26 extern "C" {
27 fn GFp_ChaCha20_ctr32(
28 out: *mut u8,
29 in_: *const u8,
30 in_len: crate::c::size_t,
31 key: &[u32; KEY_LEN / 4],
32 counter: &Counter,
33);
34 }
35 unsafe {
36 GFp_ChaCha20_ctr32(
37 in_out.as_mut_ptr(),
38 in_out[src].as_ptr(),
39 in_out_len,
40 key.words_less_safe(),
41 &counter,
42)
43 }
44 }
45 }
46 ---- SNIP ----
47 }

This code shows that the function GFp_ChaCha20_ctr32 is defined and called us-
ing the extern C ABI. We can find the code this function calls in the ring/crypto
/chacha/asm directory. Here multiple ChaCha20 implementations are found for
different CPU architectures, all written in assembly. This code makes for a good
candidate to replace with Jasmin code.

Depending on the CPU features available, different assembly code is run
to get the best performance. The Ring ChaCha20 assembly implementation
checks for availability of the AVX and AVX2 features. Three separate Jasmin
implementations are used, reference, AVX, and AX2, and called depending on the
CPU features available. To call the right Jasmin function, we will check the
supported CPU features in Rust. For this, the Ring crate provides the CPU
(ring/src/cpu.rs) Rust module, which checks for supported CPU options by
executing the CPUID instruction. Ring already provides the ability to check for
the AVX feature. Support for checking for the AVX2 feature is added.

38

1 #[cfg_attr(
2 not(any(target_arch = "x86", target_arch = "x86_64")),
3 allow(dead_code)
4)]
5 pub(crate) mod intel {
6

7 ---- SNIP ----
8

9 pub(crate) struct Feature {
10 word: usize,
11 mask: u32,
12 }
13 #[cfg(target_arch = "x86_64")]
14 pub(crate) const AVX: Feature = Feature {
15 word: 1,
16 mask: 1 << 28,
17 };
18

19 #[cfg(target_arch = "x86_64")]
20 pub(crate) const AVX2: Feature = Feature {
21 word: 2,
22 mask: 1 << 5,
23 };
24

25 ---- SNIP ----
26

27 }

As Jasmin currently only supports x86_64, we can replace the assembly code
of this architecture with Jasmin code. A new function chacha20_jasmin is
written that is only introduced when compiled for the x86_64 architecture. In
this function, the available CPU features are checked, and the right Jasmin
implementation is called.

1 impl Key {
2 ---- SNIP ----
3

4 #[cfg(any(
5 target_arch = "aarch64",
6 target_arch = "arm",
7 target_arch = "x86",
8 target_arch = "x86_64"
9))]

10 #[inline(always)]
11 pub(super) fn chacha20_ctr32(
12 key: &Key,
13 counter: Counter,

39

14 in_out: &mut [u8],
15 src: RangeFrom<usize>,
16) {
17 let in_out_len = in_out.len()
18 .checked_sub(src.start).unwrap();
19 #[cfg(all(target_arch = "x86_64"))]
20 {
21 return chacha20_jasmin(
22 in_out.as_mut_ptr() as *mut u64,
23 in_out[src].as_ptr() as *const u64,
24 in_out_len as u32,
25 key,
26 counter.0[1..4].as_ptr() as *const u64,
27 counter.0[0]);
28 }
29

30 // There’s no need to worry if ‘counter‘ is
31 // incremented because it is owned here and we drop
32 // immediately after the call.
33 extern "C" {
34 fn GFp_ChaCha20_ctr32(
35 out: *mut u8,
36 in_: *const u8,
37 in_len: crate::c::size_t,
38 key: &[u32; KEY_LEN / 4],
39 counter: &Counter,
40);
41 }
42 unsafe {
43 GFp_ChaCha20_ctr32(
44 in_out.as_mut_ptr(),
45 in_out[src].as_ptr(),
46 in_out_len,
47 key.words_less_safe(),
48 &counter,
49)
50 }
51 }
52

53 ---- SNIP ----
54 }
55 #[cfg(all(target_arch = "x86_64"))]
56 #[inline]
57 fn chacha20_jasmin(output: *mut u64, plain: *const u64,
58 len: u32, key: &Key, nonce: *const u64, counter: u32)
59 {

40

60 if cpu::intel::AVX2.available(key.cpu_features) {
61 return chacha20_avx2(output, plain, len,
62 key.words_less_safe(), nonce, counter)
63 }
64 if cpu::intel::AVX.available(key.cpu_features){
65 return chacha20_avx(output, plain, len,
66 key.words_less_safe(), nonce, counter)
67 }
68 chacha20_ref(output, plain, len,
69 key.words_less_safe(), nonce, counter)
70 }

As these new functions are going to be converted to a Jasmin function, they are
annotated with the // Jasmin comment4.

1 // Jasmin
2 fn chacha20_ref(output: *mut u64, plain: *const u64, len: u32,
3 key: &[u32; 8], nonce: *const u64, counter: u32) {
4 }
5

6 // Jasmin
7 fn chacha20_avx(output: *mut u64, plain: *const u64, len: u32,
8 key: &[u32; 8], nonce: *const u64, counter: u32) {
9 }

10

11 // Jasmin
12 fn chacha20_avx2(output: *mut u64, plain: *const u64, len: u32,
13 key: &[u32; 8], nonce: *const u64, counter: u32) {
14 }

Now we call jasminify to generate the Rlib and Jasmin function stubs:

1 $ python jasminify.py generate

This generates the Rlib and Jasmin files for the reference, AVX, and AVX2 func-
tions in the Jasmin directory. We now describe the second step of replacing the
algorithm for the ChaCha20 reference implementation. The process is similar
for AVX and AVX2 implementations. Looking at the generated Rlib and Jasmin
file for the reference implementation, the following code is observed:

1 #[no_mangle]
2 pub fn chacha20_ref(output: *mut u64, plain: *const u64,
3 len: u32, key: *const u64, nonce: *const u64, counter: u32)
4 {
5

6 }

4As existing Jasmin implementations are used the way they pass function arguments is
changed to match the Jasmin functions.

41

1 // output: *mutu64
2 // plain: *constu64
3 // len: u32
4 // key: &[u32;8]
5 // nonce: *constu64
6 // counter: u32
7 export fn chacha20_ref(reg u64 output, reg u64 plain,
8 reg u32 len, reg u64 key, reg u64 nonce, reg u32 counter)
9 {

10

11 }

Now we write the code for the Jasmin reference implementation. After this is
done, we run jasminfiy to build the final Rlib:

1 $ python jasminify.py build
2 compiler=<path_jasmin_compiler>

For Cargo to find and link our Rlib file, the cargo:rustc-link-search instruc-
tion is added to the build script.

1 fn ring_build_rs_main() {
2 use std::env;
3 ----- SNIP ------
4 // Search for link targets in the Rust
5 println!("cargo:rustc-link-search=<path_from_build.rs>/
6 ring/src/aead/jasmin");
7 check_all_files_tracked()
8 }

Now we use Cargo to build the Ring library:

1 $ cargo build

As the build is successful, the Ring library now calls Jasmin instead of assembly
for the ChaCha20 encryption algorithm. The Ring library comes with built-in
tests that verify the crypto functions are working as expected. One of these test
functions verifies the output of the ChaCha20 function with predefined input
and output pairs. We can run this test to give confidence that the Jasmin
implementation is called correctly and returns the correct output. We run the
ChaCha20 test using the following command:

1 $ cargo test chacha20_test_default

The test runs without any errors, indicating that the replacing of the code was
successful.

We repeated the process above for the AVX and AVX2 Jasmin implementa-
tions5. This, however, resulted in an error when running the Ring test for the

5As there were constants with the same name in both AVX and AVX2 the names of the
constants in AVX2 were changed to prevent linking errors.

42

ChaCha20 function. This is because Ring allows for partially overlapping input
and output buffers, where output pointer <= input pointer. This is verified
during the ChaCha20 test case by testing for offset values between 0 and 259.
Working with buffers that completely overlap (offset = 0) or are completely dis-
joint is not a problem, but working with buffers that partially overlap results in
an error. This happens as the AVX and AVX2 implementation store the ciphertext
in the output buffer in two rounds in an interleaved fashion.

For example, consider the AVX implementation with a length of 256 and
an offset of 1 (input pointer = output pointer + 1). After performing the
ChaCha20 rounds, the plaintext gets XOR’ed with the keystream and stored in
the output buffer in two separate rounds. In the first round, the encrypted text
is written to the output pointer at ranges 0-31, 64-95, 128-159, 192-233. In the
following round, data is read from the input pointer at intervals 32-63, 96-127,
160-191, 234-255. But as input pointer = output pointer + 1, from the
perspective of the output pointer, the following ranges are read 33-64, 96-128,
161-192, 234-255. It thus reads bytes 64, 128, and 192, which are assumed
to be plaintext but have already been overwritten with chipertext in the first
round. These bytes are XOR’ed with the keystream again and then written
to 32-63, 96-127, 160-191, 234-255. This results in wrong output for bytes 63,
127, and 191. It is important to note that this is not a safety problem but
a correctness problem (i.e., the input and output behavior of AVX and AVX2
implementations does not match that of the reference implementation). The
Ring library is more permissive by allowing the input and output pointer to
partially overlap, and therefore does not satisfy the contract for which the AVX
and AVX2 implementations were proven correct.

To fix this issue, we changed the AVX and AVX2 implementations to store the
plaintext read in the second round on the stack before the encrypted output
of the first round is written to the output pointer. In the second round, the
plaintext is then read from the stack and XOR’ed with the keystream. By
applying this change, the ChaCha20 test runs without any errors for the AVX
and AVX2 implementations6.

5.2 Benchmarks
We perform a performance evaluation of both the ChaCha20 and x25519 Jasmin
implementations. For this evaluation, we use the Rust criterion benchmark-
ing crate version 0.3.5 [11], a statistics-based micro-benchmarking tool used to
detect performance regressions and improvements between the current and the
previous version of the code.

The benchmarks were run on an Intel i7-8650U processor clocked at 1.90GHz
with Turbo Boost and Hyper-threading disabled, running kernel release 5.13.12-

6We did not redo the correctness proof for the changes made to the Jasmin AVX and AVX2
implementations. Redoing this proof should be straightforward, and we leave this for future
work.

43

arch1-1. We compiled the Ring library with rustc version 1.51. We compiled
the non Rust parts with gcc 11.17.

The Jasmin implementations are compared against the existing Ring imple-
mentations. For x25519 the x25519_ecdh function is benchmarked. The results
for x22519 are shown in Table 5.3. For x25519, we note a significant perfor-

Ring x25519 Jasmin x25519
82.564 us 51.937 us

Table 5.3: Average time in microseconds of both algorithms based on over 120k
iterations of both implementations

mance increase (37%). This is expected as the Ring library implementation of
x22519 is implemented in C instead of assembly. Furthermore, the Jasmin im-
plementation also directly uses the MULX, ADOX and ADCX instruction introduced
by Intel for big-integer arithmetic [21].

To evaluate the performance of ChaCha20 the execution time of the encrypt_
less_safe function is measured. We only compare the Jasmin AVX2 implemen-
tation against the Ring implementation. This is done as the system the eval-
uation is performed on supports AVX2, and the existing Ring implementation
will default to using AVX2. The results for ChaCha20 are shown in Table 5.4 for
different input lengths. Figure 5.1 shows the throughput.

#bytes Ring ChaCha20 Jasmin ChaCha20
256 319.82 ns 237.05 ns
512 324.01 ns 319.03 ns
1024 643.84 ns 642.45 ns
2048 1254.3 ns 1252.9 ns
4096 2507.7 ns 2506 ns
8192 5027.6 ns 5019.8 ns

Table 5.4: Average time in nanoseconds of both algorithms for varying input
sizes, based on over 1.8 million iterations for all runs

The performance measurements of both ChaCha20 implementations do not
show any significant differences. This is to be expected as the Ring implementa-
tion already relies on optimized assembly that uses AVX2 instructions. Only for
the small size of 256 do we notice the Jasmin implementation being faster (about
26%). We suspect this difference is present because the Jasmin implementation
uses a different strategy for inputs of less than 257 bytes.

The x25519 implementation improves performance, while the ChaCha20 has
similar performance. We note that both the Jasmin implementations have cor-

7The benchmark code can be found at https://gitlab.com/Jur/ring/-
/tree/casestudy/benches

44

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Av
er

ag
e

tim
e

(u
s)

Input Size (Bytes)

Jasmin
Ring

Chacha20: Comparison

Figure 5.1: Throughput

rectness proofs. Although this can also be achieved for the existing Ring imple-
mentations, Jasmin provides this all in one framework and makes it easier to
iterate new improvement ideas.

5.3 Safety
Now both algorithms have been replaced with Jasmin code and were tested using
the tests provided by Ring; we will consider the safety of both implementations.

5.3.1 X25519
To verify the Jasmin x25519 implementation we run the Jasmin safety checker:

1 $../jasminc.native -checksafety
2 x25519_curve25519_mulx.jazz -safetyparam
3 "curve25519_mulx>;"

Using the safetyparam option, we specify which function to analyze. The out-
put of the Jasmin safety checker is listed below:

45

1 Analyzing function curve25519_mulx
2

3 *** No Safety Violation
4

5 Memory ranges:
6 mem_out: [0; 32]
7 mem_scalar: [0; 32]
8 mem_point: [0; 32]
9

10 * Rel:
11 >
12

13 * Alignment: out 64; scalar 64; point 64;

We observe that the memory access to the pointers is done between 0 and 32
bytes, which is as expected. Both out and point are defined as an EncodedPoint
looking for the definition in the Rust code for the EncodedPoint type the fol-
lowing is found in the file ops.rs:

1 pub type EncodedPoint = [u8; ELEM_LEN];
2 pub const ELEM_LEN: usize = 32

A reference to the EncodedPoint is passed to Jasmin. We are thus sure that
both point and out point to 32 bytes of memory. scalar is defined in the
struct Scalar:

1 #[repr(transparent)]
2 pub struct Scalar([u8; SCALAR_LEN]);
3 pub const SCALAR_LEN: usize = 32;

When passing this type to Jasmin, a reference to the inner value ([u8; SCALAR_
LEN]) is passed to Jasmin. We are thus guaranteed that this value points to 32
bytes of data.

The alignment requires that scalar, out, and point are aligned to 64 bits.
Since references in Rust have the same alignment as usize on x86_64, this is the
case.

Looking at the Jasmin code, we observe only one place where is being writ-
ten to the mutable out pointer. No writes to the immutable scalar and point
pointers are observed. Since Jasmin can only modify the Rust memory through
these pointers, we are sure Jasmin does not invalidate the immutability con-
straints of Rust.

5.3.2 ChaCha20
To check the safety of the Jasmin ChaCha20 implementation, we run the Jas-
min safety checker on the Jasmin implementations. We only demonstrate this
process for the ChaCha20 reference implementation. The same process and rea-
soning hold for the AVX and AVX2 implementations.

46

1 $../jasminc.native -checksafety -safetyparam
2 "plain;len:output;len" chacha_chacha20_ref.jazz

To help the Jasmin safety checker, the parameters plain;len and output;len
are specified to get the bounds on memory access for the plaintext and output
pointer. The output of the Jasmin safety checker is listed below:

1 *** No Safety Violation
2

3 Memory ranges:
4 mem_len: [0; 0]
5 mem_key: [0; 32]
6 mem_nonce: [0; 12]
7 mem_counter: [0; 0]
8

9 * Rel:
10 {mem_plain ≥ 0, inv_len ≤ 4294967295, inv_len ≥
11 mem_plain}
12 mem_plain ∈ [0; 4294967295]
13

14 * Alignment: output 64; plain 64; key 32; nonce 32;
15 * Rel:
16 {mem_output ≥ 0, inv_len ≤ 4294967295, inv_len ≥
17 mem_output}
18 mem_output ∈ [0; 4294967295]
19

20 * Alignment: output 64; plain 64; key 32; nonce 32;

Running the Jasmin safety checker on the code presents no safety violations.
The value of len is not indexed, therefore the memory range is [0; 0]. The
same holds for the counter value. The pointer to Key is indexed from 0 up to
31. Therefore the memory range is [0; 32] (inclusive on the left and exclusive on
the right), meaning Jasmin expects the Key pointer to point to 32 bytes. For
nonce, Jasmin expects it to point to 12 bytes specified by the memory range
[0; 12]. Looking at the Rust code for the Key value, the following is found in
chacha.rs:

1 pub struct Key {
2 words: [u32; KEY_LEN / 4],
3 cpu_features: cpu::Features,
4 }
5

6 pub const KEY_LEN: usize = 32;

When passing the Key to Jasmin, only the words member of the Key struct
is passed. Thus, Jasmin receives a reference to [u32; 8], which points to 32
bytes. The nonce is grouped with the counter in the Iv struct:

47

1 pub struct Iv([u32; 4]);

The first 4 bytes represent the counter and the following 12 bytes represent the
nonce. The nonce value is passed to Jasmin in the following way:

1 counter.0[1..4].as_ptr() as *const u64,

Passing the nonce value in this way results in a pointer being passed to the last
3 u32 values of the Iv struct. This equals the expected 12 bytes.

The Rel entry states the memory range through conjunctions of linear in-
equalities. From the entry it is observed that both the plaintext and output
pointer are accessed anywhere between 0 and the value of len. The value of
len is defined as follows in the Rust code:

1 let in_out_len = in_out.len().checked_sub(src.start).unwrap();

The pointer in_out refers to the input and the output buffer (only one buffer
is passed to the encrypt_less_safe function). In this way, the len value
is the same for both the input buffer and the output buffer. From this, we
conclude that all accesses to the plaintext and output pointer happen on valid
and initialized memory.

Looking at the Jasmin code, we observe that the values key, len, nonce,
and counter are only read. The interesting cases are the plain and output
references declared immutable and mutable, respectively. These references can
point to the same or an overlapping memory range. This is not in line with
the Rust safety rules, which require that at any given time, either one unique
mutable reference can mutate a memory location or a memory location can be
shared many times immutably. In contrast to Rust, Jasmin cannot affect the
memory location of the objects allocated on the heap (e.g., by pushing some-
thing onto a buffer). Jasmin can only mutate the values to which the plain
and output pointers point. Therefore having one immutable and one mutable
reference, provided by the caller of the export function, to the same or over-
lapping memory location does not result in memory safety issues in Jasmin.
Furthermore, since we have a mutable pointer to output we are sure that this
pointer is not used anywhere else by the caller code. Rust can thus not modify
the memory location of where the output and plain pointers point to.

In this way, it is guaranteed the code of both x25519 and ChaCha20 performs
in-bounds array access, accesses only valid memory, is absent of division by zero,
and that all variables are initialized. Both Jasmin implementations have also
been proven absent of secret-leaking side channels and functionally correct [2].
We can now use the Ring library with Jasmin code for the x86_64 platform.

48

Chapter 6

Discussion

6.1 Future work
We see several ways to improve the safety of the interoperation approach intro-
duced in this thesis. First, the safety analysis is not fully automated yet. It is
possible to extent jasminify to be aware of the Rust types being passed and
check if the safety preconditions hold. Alternatively, the Jasmin safety checker
could also be extended to accept and understand the Rust types of the calling
function. This way, the Jasmin safety checker could validate if the safety pre-
conditions are satisfied. Extending the Rust compiler to be aware of the Jasmin
ABI, e.g., using extern Jasmin for Jasmin functions, would further simplify
the interoperation between Rust and Jasmin. Tighter integration with the Rust
compiler could also provide Jasmin with more information about the types it
receives. This further simplifies the automatic reasoning of the Jasmin safety
checker.

Furthermore, in this thesis, we only reason why the introduced approach
preserves the safety guarantees of both languages. However, no formal proof that
our reasoning holds is given. Giving a formal proof would show that programs
using our approach do, in fact, preserve the safety guarantees of both Rust and
Jasmin. This requires the formalization of Rust, which is being worked on by
the RustBelt [14] and Oxide [30] projects.

These extensions would also justify the absence of the unsafe keyword in
our approach, as this would fully eliminate the programmer’s responsibility to
ensure the code is safe.

We also see ways to improve the applicability of the interoperation approach.
jasminify currently supports a limited set of types. jasminfiy could be ex-
tended to allow for more Rust types. It would be especially interesting to
introduce support for Rust structs. The #[repr C] attribute could guarantee
the struct layout in memory. Currently, the amount of arguments passed from
Rust to Jasmin is limited to at most six. This is due to Jasmin not being

49

able to accept arguments via the stack. For the algorithms studied in the case
study, this did not turn out to be a problem. However, this might not hold for
all algorithms. Therefore Jasmin could benefit from accepting arguments via
the stack. This is not a straightforward step as it will complicate the mem-
ory model of Jasmin. Therefore, making it harder to reason about the safety
of Jasmin programs. Furthermore, in this thesis, only the x86_64 architecture
is considered. Currently, Jasmin only supports the x86_64 architecture, but
support for the ARM and RISC-V architectures is being worked on. A similar
approach to analyze the ABI and the safety as in this thesis can be used for
these architectures.

6.2 Conclusion
This thesis introduced an approach to interoperate between Rust and Jasmin
for the x86_64 architecture. This approach makes it possible to call Jasmin
functions from Rust in a safe manner without relying on the Rust unsafe key-
word. In addition, a Python tool, jasminify, is introduced to make the process
easy for the programmer and prevent errors. We explain how to use this ap-
proach safely, and in the case study, we demonstrate our approach to replace
two algorithms of an existing project.

We hope to contribute to the safety of the software ecosystem by enabling de-
velopers to use the Rust programming language in combination with the Jasmin
framework for cryptographic code. This work also serves as a stepping stone
for creating formal proof about the interoperation approach. Furthermore, the
same process followed in this thesis for the x86_64 architecture can be used for
other architectures.

50

References

[1] José Bacelar Almeida et al. “Jasmin: High-assurance and high-speed cryp-
tography”. In: Proceedings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security. 2017, pp. 1807–1823.

[2] José Bacelar Almeida et al. “The last mile: High-assurance and high-speed
cryptographic implementations”. In: 2020 IEEE Symposium on Security
and Privacy (SP). IEEE. 2020, pp. 965–982.

[3] José Bacelar Almeida et al. “Verifying constant-time implementations”.
In: 25th {USENIX} Security Symposium ({USENIX} Security 16). 2016,
pp. 53–70.

[4] Gilles Barthe et al. “Easycrypt: A tutorial”. In: Foundations of security
analysis and design vii. Springer, 2013, pp. 146–166.

[5] Daniel J Bernstein et al. “ChaCha, a variant of Salsa20”. In: Workshop
record of SASC. Vol. 8. 2008, pp. 3–5.

[6] Daniel J Bernstein. “Curve25519: new Diffie-Hellman speed records”. In:
International Workshop on Public Key Cryptography. Springer. 2006, pp. 207–
228.

[7] Daniel J Bernstein. “The Salsa20 family of stream ciphers”. In: New stream
cipher designs. Springer, 2008, pp. 84–97.

[8] J. Birr-Pixton. a modern TLS library in Rust. https://github.com/
rustls/rustls. Accessed on 20.08.2021.

[9] Wouter de Groot. A Performance Study of X25519 on Cortex-M3 and
M4. 2015.

[10] Guide to Rustc Development. url: https://rustc-dev-guide.rust-
lang.org/.

[11] B. Heisler. Criterion.rs. https://github.com/bheisler/criterion.rs.
Accessed on 15.08.2021.

[12] Bertrand Jeannet and Antoine Miné. “Apron: A library of numerical ab-
stract domains for static analysis”. In: International Conference on Com-
puter Aided Verification. Springer. 2009, pp. 661–667.

[13] Ralf Jung. “Understanding and evolving the Rust programming language”.
PhD thesis. 2020.

51

https://github.com/rustls/rustls
https://github.com/rustls/rustls
https://rustc-dev-guide.rust-lang.org/
https://rustc-dev-guide.rust-lang.org/
https://github.com/bheisler/criterion.rs

[14] Ralf Jung et al. “RustBelt: Securing the foundations of the Rust program-
ming language”. In: Proceedings of the ACM on Programming Languages
2.POPL (2017), pp. 1–34.

[15] Ralf Jung et al. Safe systems programming in Rust: The promise and the
challenge. In: CACM (2020). To appear.

[16] Steve Klabnik and Carol Nichols. The Rust Programming Language (Cov-
ers Rust 2018). No Starch Press, 2019.

[17] MARTIN Kleppmann. Implementing Curve25519/X25519: A tutorial on
elliptic curve cryptography. Tech. rep. Tech. rep., University of Cambridge,
Department of Computer Science and . . ., 2020.

[18] Adam Langley et al. “ChaCha20-Poly1305 cipher suites for transport layer
security (TLS)”. In: RFC 7905 10 (2016).

[19] Nicholas D Matsakis and Felix S Klock. “The rust language”. In: ACM
SIGAda Ada Letters 34.3 (2014), pp. 103–104.

[20] Microsoft.A proactive approach to more secure code. Accessed on 23.08.2021.
url: https://msrc-blog.microsoft.com/2019/07/16/a-proactive-
approach-to-more-secure-code.

[21] E Ozturk et al. “New instructions supporting large integer arithmetic on
intel architecture processors”. In: Intel white paper, reference 327831-001
(2012).

[22] Chromium project. Memory safety. Accessed on 23.08.2021. url: https:
//www.chromium.org/Home/chromium-security/memory-safety.

[23] Qualys. Qualys Security Advisory - The Stack Clash. June 2017. url:
https://www.qualys.com/2017/06/19/stack-clash/stack-clash.
txt.

[24] Peter Schwabe et al. “A Coq proof of the correctness of X25519 in Tweet-
NaCl.” In: IACR Cryptol. ePrint Arch. 2021 (2021), p. 428.

[25] Matthew S Simpson and Rajeev K Barua. “MemSafe: ensuring the spatial
and temporal memory safety of C at runtime”. In: Software: Practice and
Experience 43.1 (2013), pp. 93–128.

[26] Gagandeep Singh, Markus Püschel, and Martin Vechev. “Fast polyhedra
abstract domain”. In: Proceedings of the 44th ACM SIGPLAN Symposium
on Principles of Programming Languages. 2017, pp. 46–59.

[27] B. Smith. general-purpose cryptography in Rust. https://github.com/
briansmith/ring. Accessed on 27.08.2021.

[28] The Rust reference. Accessed on 23.08.2021. url: https://doc.rust-
lang.org/1.51.0/reference/.

[29] The Rustonomicon. Accessed on 07.11.2020. url: https://doc.rust-
lang.org/nomicon/races.html.

[30] Aaron Weiss et al. “Oxide: The essence of rust”. In: arXiv preprint
arXiv:1903.00982 (2019).

52

https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code
https://www.chromium.org/Home/chromium-security/memory-safety
https://www.chromium.org/Home/chromium-security/memory-safety
https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt
https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt
https://github.com/briansmith/ring
https://github.com/briansmith/ring
https://doc.rust-lang.org/1.51.0/reference/
https://doc.rust-lang.org/1.51.0/reference/
https://doc.rust-lang.org/nomicon/races.html
https://doc.rust-lang.org/nomicon/races.html

	Introduction
	Background
	Rust
	Ownership and Borrowing
	Unsafe Rust
	Rust runtime checks

	Jasmin
	Jasmin language
	Jasmin safety

	Rust and Jasmin ABI
	Rust Rlib and ABI
	Jasmin ABI

	Rust and Jasmin Interoperation
	Interoperation
	Interoperation safety

	Case Study
	Rustls
	x25519
	Replacing x25519
	ChaCha20
	Replacing ChaCha20

	Benchmarks
	Safety
	X25519
	ChaCha20

	Discussion
	Future work
	Conclusion

	References

