
 Eindhoven University of Technology

MASTER

Multivariate Correlation Discovery in Streaming Data

d'Hondt, Jens

Award date:
2021

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/8a521941-d429-4c01-8a15-8de8ceb1d503

Multivariate Correlation
Discovery in Streaming

Data

Master Thesis

Jens d’Hondt

Department of Mathematics and Computer Science
Database Research Group

Assessment Committee:

dr. ir. O. Papapetrou
dr. ir. V. Menkovski

prof. dr. ir. G.H.L. Fletcher

Supervisor:
dr. ir. O. Papapetrou

Eindhoven, September 2021

Abstract

Correlation analysis plays an important role in large-scale event monitoring applications over
streaming data. Most works to date focus on detection of strong pairwise correlations - pairs
of streams with high Pearson correlation over sliding windows. A generalization of this problem
involves discovery of strong multivariate correlations over streams, i.e., finding sets of streams
(in the order of 3 to 5 streams) exhibiting high interdependence as a whole. Although several
applications of this problem are known, an efficient solution is yet to be proposed, owing to the
problem’s immense search space. In this work we propose the first-ever streaming algorithm for
multivariate correlation discovery. Our algorithm handles both synchronous and asynchronous
streams, works with two different query types, and supports addition of user constraints. We also
propose an extension to the algorithm which is able to react to anomalous behavior of the input
streams, safeguarding short- and long-term performance. Extensive experimental evaluation with
5 datasets shows that our algorithms are able to handle streams with millisecond-level arrival
rates, outperforming alternative approaches by multiple orders of magnitude.

ii Multivariate Correlation Discovery in Streaming Data

Preface

This thesis marks the end of my academic career as a student. Despite including some less eventful
times related to a certain pandemic, the last five years have been a rollercoaster of exciting experi-
ences and newly-formed friendships. Beginning my journey at the school of Industrial Engineering
has helped me develop my interests, which sparked my passion for Computer Science and matured
me as a person. Working on this thesis has only strengthened this passion, though it would not
have been possible without the support of the following people.

First of all, I would like to thank Odysseas Papapetrou for his guidance over this past year. You
have been an incredible supervisor; not only for this thesis, but also for my internship at BMW.
Your commitment to help and advice your students has been truly inspiring, and, combined with
the absence of offline contact, has had me question your existence as a real person, and not some
highly advanced AI. I hope we will keep in contact in the future in whatever endeavors we will
both get involved with.

Additionally, I would like to thank Vlado Menkovski and George Fletcher for participating in the
assessment committee of this thesis.

Special thanks to Koen Minartz, with whom I have shared my entire academic career, including
this graduation process. You have always kept me on my toes, improving the quality of our work,
and making the whole process a lot more enjoyable.

I would also like to thank my brother Tim for proof-reading this work, but more importantly for
being a great brother and friend.

Thanks to my friends Miguel and Emaar, who have hosted me at tough times during this process,
helping me regain my motivation and my (faded) summer tan.

Finally, a big thanks to my parents for their unconditional support throughout these years, my
girlfriend Rosella for her endless love and her ability to keep me sane, and my friends in Eindhoven,
Hulst, and Munich for making my student years unforgettable.

Jens

Multivariate Correlation Discovery in Streaming Data iii

Contents

Contents iv

List of Figures vi

List of Tables vii

1 Introduction 1
1.1 Motivation . 1
1.2 Context of the Research . 3
1.3 Outline . 3

2 Preliminaries and Problem Formulation 5
2.1 Multiple Correlation Measure . 5
2.2 Handling Streaming Data . 5

2.2.1 Correlations over asynchronous streams . 6
2.2.2 Batching Models . 7

2.3 Problem Definition . 8

3 Related Work 10
3.1 Streaming algorithms for pairwise correlation discovery 10
3.2 Multivariate correlation algorithms . 13
3.3 Correlation Detective: a one-shot approach to Multiple Correlation discovery . . . 15

3.3.1 Threshold queries . 16
3.3.2 Top-k queries . 18

4 CDStream 19
4.1 General Idea and Intuition . 19

4.1.1 Our approach . 20
4.2 Algorithm components . 21

4.2.1 The DCC Index . 21
4.2.2 Incremental updating of pairwise correlations 24

4.3 Algorithm overview . 25
4.3.1 Initialization phase . 25
4.3.2 Arrival phase . 26
4.3.3 Parallelization . 26
4.3.4 Cost analysis . 26

4.4 Handling additional constraints . 28
4.4.1 Irreducibility . 28
4.4.2 Minimum jump constraint . 29

4.5 Top-k queries . 29
4.5.1 Initialization phase . 29
4.5.2 Arrival phase . 30
4.5.3 Combining with additional constraints . 30

iv Multivariate Correlation Discovery in Streaming Data

CONTENTS

4.5.4 Impact on storage and performance . 30

5 CDHybrid 32
5.1 Motivation . 32
5.2 Algorithm selection . 33
5.3 Switching between algorithms . 34

6 Evaluation 36
6.1 Experimental set-up . 36

6.1.1 Technicalities . 37
6.2 CDStream evaluation . 38

6.2.1 Effect of correlation pattern and number of streams 38
6.2.2 Effect of batch-size (time-based) . 39
6.2.3 Effect of batch-size (arrival-based) . 40
6.2.4 Effect of k . 40
6.2.5 Effect of dataset . 41
6.2.6 Effect of the correlation threshold and constraints 42
6.2.7 Long-term performance . 42
6.2.8 Pruning results . 43

6.3 CDHybrid evaluation . 43

7 Conclusions 45
7.1 Limitations and future work . 46

Bibliography 48

Appendix 51

A Incremental updating of running statistics on asynchronous streams 52

B Pseudo-code algorithm for storing and indexing DCCs 54

Multivariate Correlation Discovery in Streaming Data v

List of Figures

1.1 (a) Normalized daily closing prices for stocks traded at the Australian Securities
Exchange, (b) Correlation matrix of the prices. Source: [29] 2

2.1 Example of discretized stream with w = 3, bbw = 5, average aggregation and last-
average imputation . 8

3.1 Running example in 2 dimensions: the centroids of each cluster are depicted with
darker background. All clusters are labeled for easy reference. Source: [29] 17

4.1 (a) Illustration of extrema pairs for a positive DCC with lmax = 1, rmax = 2 (b)
Visualization of the DCC Index . 22

4.2 Visualization of top-k DCC sets . 30

5.1 Visualization of lazy updating of DCCs in CDHybrid 35

6.1 Effect of dataset size and correlation pattern . 39
6.2 Effect of query parameters on performance of CDStream 40
6.3 Development of runtime and arrivals (long-term) 43
6.4 Performance of CDHybrid . 44

vi Multivariate Correlation Discovery in Streaming Data

List of Tables

4.1 Nomenclature of CDStream top-k queries . 30

6.1 Dataset overview and configurations . 38
6.2 Experimental parameters (default values in bold) 38
6.3 Effect of dataset on CD and CDStream . 41
6.4 Effect of τ and δ on CD and CDStream . 42
6.5 Vector combinations examined with CDStream on Stock dataset 42

Multivariate Correlation Discovery in Streaming Data vii

Glossary

basic window A consecutive subsequence of timepoints over which a system maintains a digest,
e.g., a few minutes. 5

breaking cluster combinations The act of splitting the largest cluster of an indecisive cluster
combinations into its sub-clusters to create new cluster combinations. 23

changing state Phenomenon of cluster combinations moving in or out of the result set, or be-
coming indecisive. 20

correlation pattern Combination of maximum set sizes (i.e, cardinality) of queried highly-
correlated vector combinations. 9

digest Aggregation of the values observed in one basic window. 5

dominant bound A DCCs mc-bound that is closest to the correlation threshold τ . 20

epoch The period in which a batch of updates is processed. Usually the period between two
timepoints. 8

extrema pair clusters Clusters that share an extrema pair in different decisive cluster combin-
ations. 23

extrema pairs Pairs of streams/vectors that make up a cluster combinations’ mc-bound. 20

forward-filling Imputation technique where missing values are filled with the most recent ob-
served value. 7

global update Process of sliding the windows of all considered streams simultaneously, either by
observing an actual new value or imputing one. 7

local update Process of only sliding the windows of streams that received a new value from one
timepoint to another. 7

materialization A set of vectors that can be formed by picking picking precisely one vector from
each cluster in a cluster combinations. 16

negative decisive cluster combinations Cluster combinations that have both mc-bounds be-
low the correlation threshold τ . 16

one-shot Algorithmic technique that computes the query answer in one go, without using any
information obtained prior to the run. 3

positive decisive cluster combinations Cluster combinations that have both mc-bounds above
the correlation threshold τ . 16

significance of updates The extend in which new values in a stream violate existing decisive
combinations. 23, 32

singleton clusters Clusters containing only one stream/vector. 16

viii Multivariate Correlation Discovery in Streaming Data

Glossary

sliding window A consecutive subsequence of basic windows over which the user queries stat-
istics, e.g., an hour. 5

synchronous streams Streams that always receive new values at identical timepoints. 6

timepoint The smallest unit of time over which a system collects data, e.g., second. 5

warm-up period Time period in which we gather data on the performance of CD and CDStream
in order to train the regressor used by CDHybrid to select the optimal algorithm. 33

Multivariate Correlation Discovery in Streaming Data ix

List of Symbols

δ Minimum jump factor

R Query result set

S A set of stream time series

V A set of discretized stream time series

X A set of sets (caligraphic capital)

mc Multiple correlation measure

τ Correlation threshold

v̂ A z-normalized vector (bold-faced with hat)

v A vector (bold-faced)

B Batch-size (either number of arrivals or time-period in which arrivals are received

b Buffer size in top-k queries

bbw Basic window size

C A set (upper-case)

k Number of vector combinations with the highest multiple correlation coefficient

L The index of the running basic window

lmax Maximum size of left-hand side of correlation pattern

n The number of considered streams

rmax Maximum size of right-hand side of correlation pattern

si[x : y] The observed values of stream i between timepoint x and y

Si The discretized version of stream si (sequence of digests)

si A stream with index i

t The most recent timepoint

w Sliding window size

x Multivariate Correlation Discovery in Streaming Data

Chapter 1

Introduction

The following chapter provides a high-level motivation for the current study including a context
description of the project setting in which the research took place. Further, the academic contri-
butions of the work are presented and an outline is provided for the contents of the remainder of
the thesis.

1.1 Motivation

Correlation analysis plays an important role in the toolbox of data analysts, for understanding the
data and extracting insights. For example, in neuroscience, a strong correlation between activity
levels in two regions of the brain indicates that these regions are strongly interconnected [14].
In finance, correlation plays a crucial role in portfolio diversification in order to limit risk while
striving for maximum expected returns [28]. In genetics, correlations have helped scientists better
understand hereditary syndromes and their causes. A prime example is the Spark project for
discovering gene properties related to the manifestation of the autism spectrum disorder [10],
which led to a list of genes and their correlated symptoms [11]. In database management design,
correlations – as a generalization of functional dependencies – found use for optimizing access
paths in databases [45].

Multivariate, or high-order correlations, are a generalization of pairwise correlations aimed
at measuring relations between arbitrarily-sized sets of variables, represented either as high-
dimensional vectors or as time series.1

In the last years it was repeatedly shown that multiple correlations come with great potential
for discovering novel insights from the data, and for better understanding natural phenomena.
To illustrate, detection of ternary correlations in fMRI time series improved our understanding of
how different brain regions work in cohort for executing different tasks [2, 3]. For instance, the
activity of the left middle frontal region was found to have a high correlation with the average
activity of the right superior frontal and left inferior frontal regions while the brain was processing
audiovisual stimulus. This insight suggests that the left middle frontal has an integrative role of
assimilating information from the other two regions, which was not possible to find by looking only
at pairwise correlations. In climatology a ternary correlation led to the characterization of a new
weather phenomenon and to improved climate models [25]. In the fields of genomics and medicine,
researchers found through multivariate correlation analysis that presence of multiple RASopathy
genes contributed to an elevated risk of autism spectrum disorders (ASDs) due to a phenomenon
called epistasis [12]. This phenomenon involves the dependence of the effect of a gene mutation
on the presence or absence of mutations in other genes. In other words, multiple genes interact
with each other which impacts the expression of a disease, while each gene individually only has
weak correlation with the disease trait [40, 48, 24, 30].

1In the remainder of this thesis we will generally refer to the specific case of time series, as it is most relevant
to the context of streaming data.

Multivariate Correlation Discovery in Streaming Data 1

CHAPTER 1. INTRODUCTION

MCP QAN RDF Sum
MCP 1 0.46 0.53 0.96
QAN 0.46 1 -0.47 0.52
RDF 0.53 -0.47 1 0.52
Sum 0.96 0.52 0.52 1

(a) (b)

Figure 1.1: (a) Normalized daily closing prices for stocks traded at the Australian Securities
Exchange, (b) Correlation matrix of the prices. Source: [29]

Several multivariate correlation measures have been proposed throughout the last years. Agrawal
et al. [2] defined tripoles – sets of three vectors – where the sum of the first two vectors has a
high linear correlation with the third one. Three years later, Agrawal et al. was introduced the
multipoles measure, which measures the degree of linear dependence of a vector set of arbitrary
cardinality [3]. Similarly, Canonical Correlation Analysis (CCA) aims at finding linear combin-
ations of two sets of vectors such that the Pearson correlation of the two resulting vectors (i.e.,
the aggregates) is maximized [17]. There also exist non-linear multivariate correlation measures
that are frequently used. For example, Total Correlation is an information theoretic measure that
expresses the amount of information shared between variables [44], serving as the basis for several
other correlation measures and algorithms [48, 35, 34].

The fundamental challenge in finding strong multivariate correlations is the immense growth
in the amount of combinations of time series that need to be examined (i.e., search space), as
the number of time series in the data increases. As the search space consists of possible com-
binations of objects, it logically grows at a binomial rate. To illustrate, a small data set of 100
vectors already implies a search space of 1 million candidates when searching for ternary high
correlations, whereas finding quaternary high correlations on 1000 vectors involves 1 trillion com-
binations. Unfortunately, apriori-like pruning techniques cannot be applied to the general case of
multivariate correlations. Consider, for example, the three time series presented in Figure 1.1(a),
which represent closing prices of three stocks from the Australian securities exchange. Here, we
see that all pairwise correlations are relatively low, whereas the artificial time series created by
summing QAN and RDF is strongly correlated to MCP. This indicates that pairwise correlation
values do not provide sufficient information to reason about whether these vectors can participate
in a higher-order correlation. At the same time, an exhaustive algorithm that iterates over all
possible combinations implies combinatorial complexity, which does not scale well to large data-
sets. Therefore, smart algorithms are needed that can drastically prune the search space to reduce
computational complexity.

Past algorithms attempted this through one of the following approaches: (a) by focusing on
definitions of multivariate correlations that enable apriori-like filtering [3, 34, 48], (b) by constrain-
ing query results (e.g., only consider time series combinations with low pairwise correlations), which
are only applicable to specific application scenarios [2, 3, 48], or, (c) by developing approximation
algorithms, often without any provable guarantees on the completeness of the query answer [2, 3].
Consequently, even though these algorithms are still very useful for their particular use cases, they
are not relevant for general use.

Furthermore, literature on efficient multivariate correlation detection has only focused on one-
shot computations over static data; data that is made available at the beginning of the algorithm
and does not change during its runtime. Such techniques are inadequate for real-time event
monitoring applications that involve analysis of data streams [13]. Typical examples include

2 Multivariate Correlation Discovery in Streaming Data

CHAPTER 1. INTRODUCTION

flash-trading models (where early discovery of irregularities in the market can help traders spot
investment opportunities [49, 33]), weather sensor networks (where measurements must be mon-
itored and analyzed for detection of anomalous events such as storms and floods), and network
monitoring systems (where usage information must be tracked to timely identify weak spots and
DoS attacks). In such contexts, continuous maintenance of query answers is required instead of
one-shot responses to occasional queries [16, 41].

This study takes a more general approach to mining multivariate correlations as well as extend-
ing the problem to a streaming setting. We present a streaming extension to a one-shot algorithm
for mining high multivariate correlations called Correlation Detective (abbreviated as CD) [29].
In contrast to other work on multivariate correlation discovery, CD considers correlation measures
that are, by nature, not suitable for apriori-like pruning. It prunes the search space by identi-
fying clusters of vectors, and handling all vectors within the cluster as a single entity. Further,
CD prioritises discovery of the less complex multivariate correlations – the ones that contain the
smallest number of vectors – to foster more intuitive and interpretable results. The streaming ex-
tension (named CDStream) naturally inherits all of these features. Different algorithmic variants
of CDStream are considered: an exact threshold variant that monitors and returns all correlations
higher than a threshold τ , and an exact top-k variant that returns the top-k highest correlations.
Additionally, we present an extension to CDStream called CDHybrid, which adaptively chooses
between CD and CDStream for updating the query answer based on the properties of the input
stream.

We evaluate our algorithms on five datasets for a wide range of query parameters, and compare
them to CD and current state-of-the-art one-shot algorithms. Our evaluation demonstrates that
CDStream outperforms CD by at least an order of magnitude in unexceptional situations, which
in turn outperforms the state-of-the-art by approximately the same amount. Also, we show that
the CDHybrid effectively orchestrates CD and CDStream with marginal switching cost, offering a
more context-robust solution.

1.2 Context of the Research

This work was part of an overarching research initiative on multivariate correlation discovery al-
gorithms broken up into a collection master thesis projects (running in parallel). The current
study, focused on designing an algorithm suitable for streaming data, was linked to the research
that led to the development of CD [29]. Although the work on CD served as the basis for CD-
Stream, the main artifact of this study, it is important to note that the main author (J.E. d’Hondt)
does not claim (co-)ownership of the work on CD as part of his master thesis. He merely suppor-
ted the research on CD through regular discussions, challenging the ideas of the main researcher
(Koen Minartz). Moreover, the choice for CD as the initialization algorithm of CDStream was an
independent design decision. It was not set as a requirement prior to the study. The author could
have gone a totally different road if it led to a potentially better result.

A joined version of the work on CD and the current is under submission for the 48th Interna-
tional Conference on Very Large Data Bases [43]. The technical report of this submission can be
found in our github 2.

1.3 Outline

This work is structured as follows. In Chapter 2, preliminary knowledge is covered which is
essential to understand the problem definition, discussed in the same chapter. The problem
definition includes discussion of the possible query types and constraints considered, along with
a description of the streaming model that will be employed. Chapter 3 discusses related work
on bivariate and multivariate correlations, including an overview of the current state-of-the-art
algorithms for both static and streaming data. Furthermore, the chapter includes an in-depth

2https://github.com/JdHondt/CorrelationDetective

Multivariate Correlation Discovery in Streaming Data 3

CHAPTER 1. INTRODUCTION

description of the Correlation Detective algorithm, which will serve as the basis for this work. Next,
Chapter 4 presents the proposed extension to CD through illustrating the prior’s shortcomings in
a streaming context. Then, Chapter 5 describes how a combination of the two algorithms can be
created which adapts to sudden events and changes in that context in order to improve robustness
of the solution. In Chapter 6, evaluation and comparison of the proposed algorithms is covered.
Finally, Chapter 7 introduces the final conclusions of this study and evaluates its limitations.

4 Multivariate Correlation Discovery in Streaming Data

Chapter 2

Preliminaries and Problem
Formulation

We start with a discussion of the multivariate correlation measure that we will be considering in this
work; the Multiple Correlation measure. We then discuss the methods for handling streaming data,
particularly how meaningful correlations can be calculated over data that is updated continuously
and asynchronously among time series in a non-distributed manner. Finally we formalize the
research problem.

2.1 Multiple Correlation Measure

This study focuses on a multivariate correlation measure named multiple correlation. Given two
sets of vectors X and Y , multiple correlation is defined as follows:

mc(X,Y) = ρ

(∑
x∈X x̂

|X|
,

∑
y∈Y ŷ

|Y |

)
(2.1)

where ρ denotes the Pearson correlation coefficient and x̂ denotes x after z-normalization, i.e.,
x̂i = xi−µx

σx
with the average and standard-deviation of x as µx and σx, respectively. Intuitively,

mc takes the element-wise means of the z-normalized vectors in X and Y , and computes the
Pearson correlation of the result. The aggregation method of choice here is averaging, but note
that both the definition and our work can be easily extended to other linear aggregation methods
such as weighted average.

2.2 Handling Streaming Data

Following [49], our approach begins by distinguishing three time periods, from smallest to largest:

• timepoint - the smallest unit of time over which a system collects data, e.g., second.

• basic window - a consecutive subsequence of timepoints over which a system maintains an
aggregated value called a digest , e.g., a few minutes. The size of the basic window is assumed
to be fixed and pre-defined in this work.

• sliding window - a consecutive subsequence of timepoints over which the user queries stat-
istics, e.g., an hour. For example, the user might ask, ”which pairs of stocks were correlated
with a value of over 0.9 for the last hour?”. The size of the sliding window is assumed to be
fixed and pre-defined in this work.

The necessity of breaking-up a data stream into intermediate time intervals that we call basic
windows will become apparent in the following subsections.

Multivariate Correlation Discovery in Streaming Data 5

CHAPTER 2. PRELIMINARIES AND PROBLEM FORMULATION

Time Series Data Streams

We consider data arriving as a time-ordered series of tuples (i, timepoint, value), with i being the
index of the stream. We do not assume synchronous streams, i.e., it is possible that only a subset
of the streams receive a new value during a periodic time interval, e.g., a second. A stream with
maximum arrival rate will have a new value available at every timepoint. Arrival rates do not
have to be fixed for each stream. For example, it is possible for a single stream to receive a new
value 1 second after receiving the preceding value, while subsequently receiving no new values for
a period of 10 seconds. If a stream receives multiple values during a timepoint, then a summary
value will be assigned to that timepoint (e.g., the value received last). Let s[i] denote the value
of stream s at timepoint i. If s did not receive a value at timepoint i, s[i] will be ignored when
computing statistics over a period including timepoint i. s[i : j] denotes the values of stream s
received between timepoints i and j inclusive. si denotes a stream with index i. We use t to refer
to the latest timepoint at a certain moment, i.e., now.

Temporal Spans

While data streams are assumed to be virtually infinite, people are generally only interested in
statistics on data gathered over a certain temporal span, e.g., over the last few days. We define
the most common temporal spans over which statistics of stream time series are calculated.

• Landmark windows: Statistics are computed based on the values received between a
fixed timepoint called landmark and the present. For example, when computing the moving
average of a stream time series s from a landmark k up to and including timepoint t, one
would compute 1

t−k+1

∑t
i=k s[i].

• Sliding windows: This temporal span can be considered a landmark window with a land-
mark that shifts with time. Given the length of the window w and the current timepoint t,
statistics will be computed over the subsequence s[t − w + 1 : t]. For example, the moving
average over a period w is computed as avg(s[t−w+1 : t]) = 1

w

∑t
i=t−w+1 s[i]. This window

is most used for financial applications as it allows to move with short-term trends.

• Decaying window model: Can be considered a weighted sliding window model with
decreasing weights for older data points. For example, in contrast to the computation of
avg(s[t− w + 1 : t]) with a normal sliding window, the moving average in a damped model
can be computed as

avgnew = avgold ∗ α+ s[t] ∗ (1− α), α ∈ [0, 1]

In this work, we will be using the sliding window model, as it is the most general and widely-used
alternative. For conciseness we denote si[t− w + 1 : t] as vti (bold-faced v referencing a vector of
fixed dimensions).

2.2.1 Correlations over asynchronous streams

We do not assume streams to be synchronous. This decision is not obvious. In fact, the vast major-
ity of work on monitoring (pairwise) correlations over stream time series requires that streams are
synchronized or artificially synchronizes streams using imputation techniques (e.g., interpolation)
[13, 20, 22, 48, 49]. The reasons for this assumption are often non-explicit or unclear. However, the
decision does become more sensible when considering the complications that come with handling
asynchronous streams, to be discussed shortly.

In reality, streams are typically not synchronized. For example, security prices are updated
based on the agreed value from one successful trade to the next (i.e., ticks). These updates are
irregular within a stream, thus also resulting in asynchronization between streams of different
securities. Also, consider analyzing sensor data from sensors spread globally, potentially having
different manufacturers or measuring different data. Then, it is likely those sensors will have

6 Multivariate Correlation Discovery in Streaming Data

CHAPTER 2. PRELIMINARIES AND PROBLEM FORMULATION

different measurement intervals which will also result in asynchronization. If one wishes to perform
linear correlation analysis on this data, he/she will have to find a way to ’line up’ data points such
that points gathered at (approximately) the same time can be compared. Again, the most common
solution for this is imputation of missing values. When applying this to the case of sliding windows,
this means that all windows will be slid when moving to a new timepoint, either observing an
actual new value or an imputed one. We refer to the process of sliding all windows simultaneously
as a global update. Likewise, we refer to the process of sliding only a single window as a local
update.

Performing global updates on naturally asynchronous streams with sliding windows has the
danger of leading to spurious correlations. This is because imputed values give a false sense of
similarity between time series, especially between time series that have imputed values at the same
timepoints. For example, consider a stream s1 with values 〈. . . , 1, 10, 20〉 for the last 3 seconds,
and stream s2 with values 〈. . . , 1, 1, 1〉. Clearly, when using a sliding window of size w = 3, the
correlation between s1 and s2 will be around zero as s2 does not report the same relative increase
in values as s2. Though, if both streams do not receive updates for the next 3 seconds, and
we impute values using forward-filling , their correlation will grow to 1. While correlations may
indicate high similarity, this conclusion is solely based on the absence of data in the two streams,
while that absence might have been caused by totally different factors. The likelihood of spurious
correlations only increases with the level of dissimilarity between arrival rates of streams (i.e., level
of asynchronization).

Employing a local update model for monitoring correlations over asynchronous streams, how-
ever, is controversial as it will lead to time-misalignments between windows, effectively computing
lagged correlations instead of synchronized correlations. This will deteriorate the meaningfulness
of correlations as the time lag of correlations will not be constant over time or fixed between
streams. Logically, this also holds for multivariate correlations as a correlation mc(va, (vb,vc))
at timepoint t will not mean the same the correlation at t + 1 if only vc receives an update.
As we look to develop a general method that works in most situations, we require a streaming
model that allows processing of both synchronous and asynchronous updates while preserving the
meaningfulness and reliability of the results.

Similar to the work of Zhu [49], we will do this by discretizing the time series into sequences
of aligned basic windows, maintaining digests (i.e., summary values) of the values received within
those windows (see Fig. 2.1). Then, correlations can be computed over the digests instead of
over the raw (imputed) values. Note that this means that sliding windows will also be taken
over basic windows instead of timepoints. Digests of the running basic window will be updated
as data arrives using an aggregation method appropriate for the data context. When a running
basic window ends, all windows will be slid and a new basic window is started with an appropriate
starting value (e.g., latest price for stock data). A good value of the size of the basic window
bbw would be the smallest average arrival rate among streams, such that on average every basic
window will contain at least one original value, which limits the amount of aggregation and global
updates over time. Note that this method is effectively an online approach to resampling time
series. The discretized version of stream si will be denoted as Si, with the sliding window (of basic
windows digests) Si[L − w + 1 : L] denoted as VL

i (using L to indicate the index of the running
basic window). The symbol w will still be used to refer to the sliding window size, even though it
now contains at most bbw original values.

2.2.2 Batching Models

Batch processing of incoming data is often perceived as the counterpart of stream processing.
In batch processing, data is collected over a relatively large period of time (e.g., a day) and
processed in bulk at the end of the period. This method is most useful for streams of data that
are not time-sensitive and/or require complex processing. Stream processing, on the other hand,
involves processing data piece-by-piece which is useful in cases where processing is fast and results
are needed immediately. Streaming algorithms are by definition the solutions that fall into the
latter category. However, streaming algorithms often still involve some form of batching with

Multivariate Correlation Discovery in Streaming Data 7

CHAPTER 2. PRELIMINARIES AND PROBLEM FORMULATION

1 2 3 2 3 8 10 9 11 10 13

Sliding Window

...

Basic Window
S[L − 1]

Basic Window
S[L − 2]

Basic Window
S[0]

13Digest10Digest11/2Digest2Digest

Running Basic Window

S[L]

x

x

Actual value

Imputed value

Timepoints Epoch

Figure 2.1: Example of discretized stream with w = 3, bbw = 5, average aggregation and last-
average imputation

their arrivals, albeit on a much smaller scale. This is to benefit from some efficiency gain that
comes from handling a group of updates (e.g., avoiding double work), or because it is necessary
considering the context (e.g., correlation monitoring over synchronized streams). Batching is also
favourable in the current case as it may open doors to additional optimizations, and updates
may cancel each other out leaving correlations unchanged. This work considers two main ways of
batching updates;

• Time-based batching: Batches involving all data arrived throughout a sequence of one
or more timepoints (e.g., 5 seconds). This implies the query result is updated at a fixed
time-interval.

• Arrival-based batching: Batches involving a fixed amount of arrivals. This implies the
query result is updated based on the rate updates come in.

The batch-size (either a time interval or a number of arrivals) determines the update rate of the
result set. Thus, it should be carefully set in consideration of both context and algorithm capacity.
Note that basic windows always span a fixed amount of time, also if an arrival-based batching
model is employed. In such a case, if the time of the basic window has been passed, the algorithm
will move the sliding window as soon as the running batch has been finished.

In this work, we will mainly be using a time-based batching model as this guarantees that
updates will always contribute to basic window they arrived in. In contrast, using an arrival-
based model enables the algorithm to place updates in later basic windows if they were received
during processing. For example, consider the situation that the algorithm receives a batch of
updates that takes a significant amount of time, resulting in incoming data queuing up during
processing. Then, when the algorithm is finally done, it first needs to move the sliding window as
an interval of bbw has expired. Subsequently, the data arrived during processing will be added to
the new basic window while it was received earlier. If this happens, correlations will no longer be
in line with our formulated definitions and will break down the meaningfulness of our results.

We will also be doing experiments employing the arrival-based model to show the solution’s
sensitivity to batching models and the batch-size.

2.3 Problem Definition

Consider a set of asynchronous streams S = {s1, s2, . . . , sn} and their discretized variants V =
{vi ∈ Rw}ni=1 with windows of size w, receiving new data in a non-distributed manner. Then,
the goal of this work is to find the result set Rt containing all subsets of V that have a high mc
coefficient, satisfy the additional constraints, and contain data arrived up to timepoint t. User
queries need not to have a latency larger than the time required to fill one batch (i.e, time period
for time-based batching, number of arrivals for arrival-based batching). We call the period in
which a batch of updates is processed an epoch (see Fig. 2.1).

Users may be interested in all subsets that have a mc coefficient higher than some threshold

8 Multivariate Correlation Discovery in Streaming Data

CHAPTER 2. PRELIMINARIES AND PROBLEM FORMULATION

τ ∈ [−1, 1], or merely the subsets with the highest mc coefficients. 1 Therefore, we consider two
query types:

Query 1: Threshold query For a user-chosen correlation correlation threshold τ , and paramet-
ers lmax, rmax ∈ N+, find all pairs of sets (X ⊂ V, Y ⊂ V), for which mc(X,Y) ≥ τ , X ∩ Y = ∅,
|X| ≤ lmax and |Y | ≤ rmax.

Query 2: Top-k query For a user-chosen integer parameter k, and parameters lmax, rmax ∈ N+,
find the k pairs of sets (X ⊂ V, Y ⊂ V) that have the highest values mc(X,Y), such thatX∩Y = ∅,
|X| ≤ lmax, and |Y | ≤ rmax.

The combination of lmax and rmax controls the desired complexity of the answers. Smaller
lmax + rmax values yield results that are easier to understand, and more useful to the data analyst.

Complementary to the two query types, users may also want to specify a set of additional
constraints. Typically, these constraints relate to the targeted diversity of the answers. We will
consider two different constraints:

Irreducibility constraint For each (X,Y) in the result set, there exists no (X ′, Y ′) in the result
set such that X ′ ⊆ X, Y ′ ⊆ Y , and (X ′, Y ′) 6= (X,Y). Intuitively, if mc(X ′, Y ′) ≥ τ , then no
supersets of X ′ and Y ′ should be considered together. This constraint prioritizes smaller answers,
which are more easily explainable.

Minimum jump constraint: For each (X,Y) in the result set, there exists no (X ′, Y ′) such that
X ′ ⊆ X, Y ′ ⊆ Y , (X ′, Y ′) 6= (X,Y), and mc(X,Y) −mc(X ′, Y ′) < δ. This constraint, which
was first proposed in [2], prioritizes the solutions where each time series in X and Y contributes
at least δ to the increase of the correlation.

The minimum jump constraint applies to both query types. The irreducibility constraint, on
the other hand, is useful only for threshold queries. This is because the irreducibility constraint
is ill-defined for top-k queries. For example, consider vectors a,b, c packed into sets X = {a},
Y = {b, c}, X ′ = {a}, Y ′ = {b}, with correlations mc(X,Y) = 0.9, and mc(X ′, Y ′) = 0.8. Then,
if one queries the top-1 vector combinations with an irreducibility constraint, it is unclear which
vector combination should be in the result set; top-k states that the highest correlations should
be in R (i.e., (X,Y)), while irreducibility states that the smaller combinations have priority (i.e.,
R = {(X ′, Y ′)}). To avoid such conflicts we refrain from considering such query definitions.

For conciseness, we will denote the combination of the set sizes as mcsize(lmax, rmax). We will
call this a correlation pattern. For example, mcsize(2, 1) will identify the combinations of sets of
time series with one or two time series on the left-hand side and one on the right-hand side, with
high mc correlation. Finally, we will denote a particular combination of time series by displaying
the time series, grouped by parentheses. For example, (v1, (v2,v3)) denotes a set combination of
correlation pattern mcsize(1, 2), where time series v2 and v3 are aggregated together.

1Note that for some applications it is also interesting to identify subsets with multivariate correlations lower
than some threshold, or within some range of values (e.g., negative correlations between stock prices are relevant
for portfolio diversification). While we do not focus on such thresholds in this work, the theory and methods that
are presented can straightforwardly be extended to the above result set definition (further discussed in Chapter 7).
These extensions were left out of the scope of this study in view of time-constraints.

Multivariate Correlation Discovery in Streaming Data 9

Chapter 3

Related Work

Correlation analysis is commonly used in Exploratory Data Analysis, and several algorithms exist
for finding highly correlated sets of time series, considering both static and streaming data. The
following sections present the most prominent algorithmic techniques in bivariate and multivariate
correlation discovery through discussing the most influential work in the field. We start with the
discussion of relevant work on simple correlation discovery for streaming time series. As also noted
in the previous chapter, all presented work assume streams are synchronized. Next, we focus on
the current state-of-the-art for multivariate correlation discovery. These algorithms currently
only support static data. Lastly, the unpublished Correlation Detective algorithm is described
in appropriate detail, as it will serve as the basis for the proposed algorithm discussed in later
chapters.

3.1 Streaming algorithms for pairwise correlation discovery

The following section describes relevant work on simple correlation discovery for streaming time
series. We grouped the work based on the techniques used to prune the respective search space,
and focus on the rationale behind those techniques to infer whether they can be applied to our
context.

Discrete Fourier Transformations In 2002, Zhu and Shasha presented StatStream, a non-
distributed streaming algorithm supporting maintenance of threshold queries for pairwise correl-
ations [49]. One of the core contributions of StatStream is a monotonic one-to-one mapping of
Pearson correlation to Euclidean distance, which opens doors to dimensionality reduction tech-
niques. Specifically, given that Euclidean distance is preserved during Discrete Fourier Transform-
ation (DFT) of vectors, they use DFT to reduce the dimensionality of vectors such that these
can be indexed in a low-dimensional grid, where all highly correlated pairs end up in neighboring
cells. As such, high correlations are identified by finding all neighboring pairs in the grid. At
every (global) update, DFT approximations are updated incrementally and re-indexed in a clear
grid. StatStream also supports lagged correlations and autocorrelations by keeping pointers to
outdated windows of streams in the grid for a certain sequence of timepoints. The method’s eval-
uation shows that the approximation of correlations using DFTs yields significantly better results
compared to an exact computation of correlations using the raw data; the computation is faster,
allows more streams to be handled, and has no false negatives.

Later, Mueen et al. extended the methods of Zhu by resorting to dynamic programming to
reduce the number of comparisons and proposing methods for optimizing I/O costs through graph
partitioning [32]. In contrast to Zhu et al., Mueen considers ad-hoc queries, where all data is
stored on disk and a target set of streams and target sliding window size are set by the user
during the query time. They argue that this implies that no pre-computed index can be created
for fast correlation computation because of the large overhead and inefficiency that would come
with supporting ad-hoc definition of sliding windows and other hyperparameters. Also, on-disk

10 Multivariate Correlation Discovery in Streaming Data

CHAPTER 3. RELATED WORK

storage of time series leads to high I/O costs because, due to limited memory, data may need to be
read from disk to memory multiple times. Their method solves these problems by approximating
correlations using the first few DFT coefficients of time series, and using those results to create
batches of time series that have approximate high correlations within the batch, and approximate
low correlations with time series from other batches. Then, exact correlations are computed per
batch, which minimizes I/O cost as only the time series within that batch have to be read into
memory as correlations with other time series are proven to be low. Experiments show that this
their algorithm is 17 times faster than that of Zhu et al., and other state-of-the-art exact solutions.

Locality Sensitive Hashing (LSH) LSH is an algorithmic technique where similar input objects
(in this case windows of time series) are hashed into the same buckets with high probability [21].
The amount of buckets is heavily subordinate to the universe of input items. This way, it can
be seen as a dimensionality reduction method which preserves relative distances between items,
similar to the method of Zhu and Shasha. Driven by the lack of work on approximate similarity
search algorithms for stream time series, Lian et al. propose an algorithm using weighted locality
sensitive hashing (WLSH) to answer approximate range queries over time series [22]. An example
of a similarity search query is asking ”give me all streams similar to stream i”. These queries
are relevant to our context as correlation coefficients are also considered a measure of similarity,
meaning that querying similar streams could effectively be mapped to querying streams that have
high correlation with another target stream. Their method involves transforming windowed time
series into a bit vector that is subsequently hashed by randomly selecting k positions in the bit
vector with weighted probability. This is done such that vectors of high approximate similarity
(small L1 distance) have the same key with adjustable probability. Updates are handled by
incrementally updating hash functions which limits down-time of the query system.

Sketches Sparked by the work of Zhu, Cole et al. argue that dimensionality reduction techniques
like DFT and Wavelet transforms only work for time series with a fundamental degree of regularity
[7]. They state that these techniques ”do not work for time series in which the energy is spread
over many frequency components, thus resembling white noise”. A prototypical example of such
time series are stock market returns; changes in price from one timepoint to the next, divided by
the initial price. As the energy is spread over many frequency components for such time series,
correlations cannot be reliably estimated based on the first few Fourier/Wavelet coefficients, which
makes up the core of the techniques of Zhu and Mueen [32, 49].

To cope with this issue, Cole proposes a sketch-based approach to obtain data reduction and
uses it to efficiently query highly correlated pairs. Sketches of time series are generated by taking
the inner product of each time series window, with a set of structured random vectors. Then the
Johnson Lindenstrass lemma [18] is used to make inferences on the correlations of the original
data based on the sketches. Again, sketches are updated incrementally by using running dot
products. Note that this method is very similar to LSH for Euclidean or Cosine distance without
the notion of buckets. Experiments show that the sketches-based approximations of correlations
are significantly more accurate than DFT-based approximations for uncooperative time series.
On the other hand, when time series closely resemble a random walk, as for stock price data,
DFT-approaches give significantly better precision levels at the same recall as compared with the
sketch method. In terms of performance, neither the sketch-based approach and Fourier-based
approaches are consistently faster than the other.

The main takeaway of this work is that we ought to be cautious with the usage of Fourier-
based transformations when working with uncooperative time series. As the financial domain is
considered to be one of our main application domains, it is likely that we will face such scenarios
in our context.

Hierarchical Boolean Representation (HBR) Introduced by Zhang et al., HBRs are essen-
tially bit vectors of size w which can be used to quickly assess if pairs of a time series are potentially
highly correlated through bit operations [47]. In their work Zhang et al. initialize two HBRs for
each time series; (1) a macro variant where each bit indicates if the original value with the same
index is above the mean value over the window, (2) a micro variant where bits indicate if the

Multivariate Correlation Discovery in Streaming Data 11

CHAPTER 3. RELATED WORK

original value was larger than the preceding value. The authors prove that these representations
can be used to bound correlations with certain precision. Consequently, non-promising pairs are
pruned in a two-step approach by computing bounds with the macro HBR following by bounding
with the micro HBR which has tighter bounds. Upon updates, both HBRs are updated incre-
mentally as long as the arrival value does not exceed some slack. Elsewise, representations have
to be reconstructed fully.

The author’s proof that macro and micro HBRs can be used to bound correlations is build
upon the assumption that the time series follow a normal distribution. This assumption is arguably
crude, especially given the datasets used in the method’s evaluation; an unprocessed stock dataset
with daily open prices of companies listed on a Chinese stock exchange, spanning a period of 5000
days, and an artificial dataset consisting 1000 generated random walk sequences. Stock prices are
known to follow not normal distributions but log-normal distributions; and only after application
of a detrending procedure [4]. One would expect to see at least a minor trend present in the used
data, especially considering that it spans a period of over 13 years, and that Chinese markets
have shown considerable price increases over the last few decades. Still, results show that HBRs
are very effective in pruning uncorrelated pairs of time series early, resulting in a performance
competitive with other state-of-the-art algorithms. A possible explanation for these results is that
the distribution assumption of the author’s is only used to estimate the precision of correlation
approximations; it is not instrumental to the proof that correlations can be bounded with HBRs.
Consequently, we can conclude that assumption violations on the data distribution will only lead
to worse approximations, and thus a lower pruning power. Results also tell us that the realized
precision is adequate for the respective use case. Though, we should still consider these caveats
when looking to apply these techniques to our context.

Piecewise Aggregate Approximations (PAA) This technique exists in literature under many
different names but all works essentially come down to the same concept; to down-sample time
series to a sequence of basic windows with digests which serves as an approximate representation
of the original data. Tangent to their paper on LSH, Lian et al. applied a hierarchical version
of this method for answering pattern matching queries over stream time series [23]. Examples of
such queries are ”Get me all stocks that recently had a two bottom or head-shoulder pattern in
their price”, or more specific to this context; ”Get me all all streams that recently had the same
pattern as the one in vi”. In their method they use what they call multi-scale segment means
which are effectively the means of basic windows of different sizes, going as low as bbw = 1. Then,
they employ a multi-step filtering approach to prune the search space by bounding the distance
between a target pattern and a sequence of segment means. If the bounds are both on one side of
the threshold, one can make a decision based on the approximate representation. If the bounds
are not conclusive, a finer grain of segment means are used. Bounds are provided for all Lp-norm
distances, making the method very flexible. Updates are handled by incrementally updating the
multi-scale segment means.
Other notable work applying a similar technique is the work of Keogh and Lin named Symbolic
Aggregate Approximation (SAX) [26]. Here, Keogh proposes a symbolic representation of time
series specifically designed for data mining algorithms. The proposed approximation is particularly
useful for data mining algorithms as it allowed both dimensionality reduction and lower bounding
of Lp norms (similar to Lian and Zhu). This is favourable as data mining algorithms often suf-
fer from high dimensionality and it allows the algorithms to manipulate the representation while
preserving relative distances. It does this by transforming time series into a sequence of PAAs.
Next, it discretizes the segments by fitting a Gaussian curve over the original values, dividing it
into equiprobable regions and using it to map segment values to regions indexed by letters (hence;
symbolic representations). They further show that this representation can be used to lower bound
Lp-norm distances, which is favourable for data mining tasks such as clustering or even classi-
fication. The authors later refute those claims in a paper titled ”Clustering of Streaming Time
Series is Meaningless” [27]. In the paper, the authors argue that clusters extracted from streaming
time series are forced to obey the constraint that the weighted sum of cluster averages must be
constant over time, which is pathologically unlikely to be satisfied by any dataset. Because of this,

12 Multivariate Correlation Discovery in Streaming Data

CHAPTER 3. RELATED WORK

clusters extracted by any clustering algorithm are essentially random; invalidating the contribu-
tions of dozens of previously published papers. Despite this argument, the authors continue to
show the usefulness of stream time series clustering for various applications in later work [5, 9, 42].
SAX was later applied to the case of correlation by generating symbolic representations over z-
normalized vectors, performing a nearest neighbor search with the Euclidean distance measure [36].

A clear pattern can be observed when analyzing the above techniques. Namely, they are gen-
erally extensions to a fast one-shot approach with the addition of incrementally updating the com-
pressed representations or relevant auxiliary data structures. After an update, they again consider
all candidates (O(n2)) without re-using any information related to previous results for pruning.
This approach makes sense when considering bivariate correlations, where vector dimensionality
is a limiting factor, making a case for dimensionality reduction techniques.1 However, for the case
of multivariate correlations, the number of possible combinations increases at a binomial rate with
the values of lmax and rmax, making the combinatorial complexity the limiting factor. Thus, while
dimensionality reduction might speed-up the computation of multiple correlation coefficients, it
will only marginally influence the total computation time.

Furthermore, techniques that map vectors to a compressed space where neighborism implies
correlatedness (e.g., DFT and LSH) will also not work for multivariate correlations as highly
correlated sets do not require correlated pairs within them. In other words, two vectors may have
a low pairwise correlation with a third vector, whereas their aggregate may have a high correlation
(See, e.g., example of Fig. 1.1).

From this we conclude that the discussed techniques for bivariate correlations are inapplicable
for the multivariate case. Nevertheless, the overarching method of incrementally updating the
artifacts of a fast one-shot algorithm could be useful if such an algorithm can be found.

3.2 Multivariate correlation algorithms

The following section focuses on the current state-of-the-art for multivariate correlation detection.
The family of multivariate correlation measures is small. Still, we limit ourselves to discussing the
state-of-the-art algorithms for correlation measures that lie close to our formalized problem. The
work is grouped based on the employed correlation measure. Note that all work to date considers
one-shot approaches to discovering correlations without discussing possible streaming extensions.
We are thus limited to multivariate correlation algorithms on static data.

Multiple Correlation Prior work on multivariate correlations often rely on additional constraints
for their pruning power. To illustrate, Agrawal et al. investigate the problem of finding highly-
correlated tripoles [2]. A tripole is effectively equivalent to the multiple correlation measure of
pattern mcsize(2, 1). The authors propose two algorithms for finding strongly correlated tripoles
that comply to the minimum jump constraint (as defined in Section 2). One of the algorithms,
called CONTRaComplete, prunes the search space by deriving bounds on the correlation of two
vectors, such that it is impossible for the pair to exist in a triplet and comply to the minimum jump
constraint if their pairwise correlation is not within these bounds. Logically, CONTRaComplete
initially computes all pairwise correlations, and filters out all pairs that do not comply to the
bound. The algorithm subsequently constructs triplets from the pairs that passed the filter, and
evaluates their correlation. As the bounds are based on the definition of the minimum jump
constraint, this constraint is naturally indispensable in all queries.

The second algorithm, named CONTRaFast, introduces an additional filtering step to remove
redundant tripoles from being enumerated, that provides further reduction of the computational
effort for the cost of completeness of the result set. The algorithm additionally prunes vector pairs
in the filtered set that have a high correlation with any other pair in the filtered set. Formally,

1One might argue that pruning candidates is still relevant for bivariate correlation detection as it limits the
amount of correlations that need to be computed. However, candidate pruning often involves creating complex
indices that come with considerable overhead. The cost of computing correlations for these candidates will likely
not exceed the overhead that comes from potentially pruning some of them.

Multivariate Correlation Discovery in Streaming Data 13

CHAPTER 3. RELATED WORK

given a pair (TA, TB) that complies to the constraint defined in CONTRaComplete, if there exist
another pair in the filtered set (TX , TY) such that (TA, TX) ≥ κ∨(TB , TY) ≥ κ. In such cases, both
vector pairs are disregarded. Experiments show that CONTRaFast reports 99% of all interesting
tripoles within 100 minutes on a dataset with sensor data from with 10 000 different sensors. The
authors further discuss the fysical interpretation of an interesting tripole, and demonstrate how
they can lead to novel insights through several case studies.

While the work on tripoles show promising applications of multivariate correlations, the tech-
niques are limited to correlation patterns with a cardinality of three, cannot guarantee complete-
ness, and rely heavily on the minimum jump constraint. Since we look to provide more freedom
to the user through allowing correlation patterns of arbitrary cardinalities and optional usage of
additional constraints, the algorithms cannot be used as a reference.

Multipoles As a follow-up on tripoles, Agrawal et al. extended the measure to arbitrary correl-
ation patterns by introducing a novel multivariate correlation measure, the multipoles measure.
The metric measures the linear dependence of an input set of vectors X. Specifically, let x̂1, . . . , x̂n
denote n z-normalized input (column) vectors, and X = [x̂1, . . . , x̂n] the matrix formed by con-
catenating the vectors. Then:

Multipoles(X) = 1− min
v∈Rn,||v||2=1

var(X · v)

The measure takes its maximum value 1 when there exists perfect linear dependence, i.e., there
exists a vector v with norm 1, such that X·v has zero variance. Notice that multipoles and multiple
correlation are not equivalent, and the one is not a generalization of the other. By definition,
multipoles assumes optimal weights (vector v is such that the variance is minimized), whereas
for the case of multiple correlation, the aggregation function for the vectors (e.g., averaging) is
determined at the definition of the measure and is independent of the vectors. Furthermore,
multipoles expresses the degree of linear dependence within a single set of vectors, whereas for
multiple correlation, two distinct, non-overlapping vector sets are considered. Agrawal et al.
propose in their paper two approximate algorithms for finding vector sets with high multipole
values. Both algorithms use clique enumeration to efficiently explore the search space of possible
vector combinations. Their performance relies on a parameter that trades off completeness of
the result set for performance. Again, the minimum jump constraint is instrumental to reduce
computational effort. The proposed algorithms yield significantly more complete results compared
to baseline methods that use l1-regularization based techniques or methods from structure learning.
Still, both algorithms do not come with completeness guarantees.

Total Correlation Total correlation is a non-linear information-theoretic metric that expresses
how much information is shared between variables [17]. Nguyen et al. [34] proposed a solution
to finding strongly correlated groups of columns in a database considering a correlation measure
closely related to Total Correlation. Their key concept is the initial evaluation of pairwise correl-
ations, which can then be used to lower bound the total correlation of a group of vector. Next,
their algorithm focuses on identifying quasi-cliques with high pairwise correlations, which thus
also yield a high total correlation value. Despite the ability to discover interesting sets of vectors,
the algorithm fails to identify the groups with low pairwise correlations which do have a high
total correlation as a whole. These are arguably the most interesting cases as these relations will
not have been detected by bivariate correlation analysis and will thus uncover potentially novel
insights. In line with this deficiency, the method also does not provide completeness guarantees.

Subset Regression In the supervised learning context, subset regression is related to multivariate
correlation mining. The goal of this feature selection problem is to select the best p predictors out
of n candidate features [8]. Heuristics like forward selection, backward elimination or genetic al-
gorithms are commonly used to find good solutions [31, 15]. Our problem differs from the above in
two aspects. First, we aim to find interesting patterns in the data, instead of finding the best pre-
dictors for a given dependent variable. Second, instead of finding only the single highest correlated
set of vectors, our goal is to find a diverse set of results. Showing multiple diverse results to the do-

14 Multivariate Correlation Discovery in Streaming Data

CHAPTER 3. RELATED WORK

main expert helps her to further assess the results on qualitative aspects and to gain more insights.

We can conclude from this discussion that none of the current state-of-the-art methods are
applicable to the problem definition of this study. The proposed algorithms cannot be extended to
our streaming setting as they all apply to slightly different problems; they either include approx-
imation algorithms (e.g., the reported work Tripoles/Multipoles/Total Correlation detection) or
involve a dissimilar definition of the desired answer (e.g., Subset Regression). Fortunately, affiliate
research on the Correlation Detective algorithm showed promising results while this research was
conducted. In contrast other multivariate correlation algorithms, this algorithm could serve as
the basis for a solution as it applies to an identical problem definition (excluding the streaming
setting) and outperforms the rest by at least an order of magnitude [29]. Though, we should be
weary of the potential dangers of clustering streaming time series proposed by Lin and Keogh [27]
when extending CD to a streaming context, as it relies heavily on the hierarchical clustering of
time series.

3.3 Correlation Detective: a one-shot approach to Multiple
Correlation discovery

The following section describes a recently developed one-shot approach to discovering strong mul-
tivariate correlations that looks out to be more general and efficient than the current state-of-the-
art described in Section 3.2. As the algorithm assumes the input data to be static, we do not
have to consider incoming data and windows, making the discussion overly complicated. Instead,
we will be referring to the data as a set of static vectors V to preserve generalization and aid
interpretability.

As discussed before, the main challenge in detecting strongly correlated vector sets stems from
the combinatorial explosion of the number of possible combinations that need to be examined. Spe-
cifically, in a dataset of n vectors, there exist at least O

(∑p
i=2

(
n
k

))
possible combinations, where

p = lmax + rmax denotes the maximum number of vectors that can participate in a correlation.
This means that, even if each possible combination can be checked in constant time, the enumer-
ation of all combinations will still take significant time. CD combats this complexity through the
observation that vectors containing data from similar contexts (e.g., stock prices of STMicroelec-
tronics and ASML) often exhibit relatively high correlations between them (recall Fig. 1.1). CD
exploits these correlations by clustering the respective vectors together, making decisions on the
collective instead of the individual to drastically prune the search space. More specifically, instead
of enumerating over all possible combinations of vectors complying to a correlation pattern, CD
clusters vectors based on their pairwise ρ, and enumerates over the combinations of the cluster
centroids, which are generally several orders of magnitude less. For each of these combinations, CD
computes upper and lower bounds on the correlations of all vector combinations in the Cartesian
product of the clusters. Based on these bounds, CD decides whether or not the combination of
clusters (i.e., all combinations of vectors derived from these clusters) should already be added to
the result set, can safely be discarded, or, finally, if the clusters should be split further into smaller
subclusters, for deriving tighter bounds. This effectively reduces the number of combinations that
need to be considered, making CD an order of magnitude faster than the competitive algorithms.

In the remainder of this section, we will discuss in detail how CD handles the query types
and additional constraints proposed in Section 2.3. For conciseness we will limit ourselves to
the elements relevant to its streaming extension. A more in-depth description of the algorithm
(including its individual evaluation) can be found in the technical report [29]. We will start with a
brief description of the initialization phase, which includes data pre-processing and the clustering
algorithm. In the later subsections we will describe how CD answers threshold and top-k queries
respectively.

Initialization phase. As a pre-processing step, CD z-normalizes all vectors in order to obtain a
common scale for all signals. This is essential in situations where signal values differ significantly.

Multivariate Correlation Discovery in Streaming Data 15

CHAPTER 3. RELATED WORK

For example, consider analyzing stock data which includes the prices of penny stocks as well as
stocks like Amazon. Then, when considering the mc value of a pattern including a stock of 1 euro
and one of 1000 euro on the same side of the pattern, we lose all information of the cheap stock when
taking the element-wise average of the two stocks. Consequently, we are effectively computing a
bivariate correlation instead of a multivariate correlation value. Next, CD hierarchically clusters
the data based on pairwise correlations using an algorithm inspired by the K-Means++ algorithm
[46]. In contrast to typical K-Means clustering which stops at convergence, CD makes sure that
the full cluster-tree is created, meaning that the leaves only consist of clusters with a single vector
(called singleton clusters). The pairwise correlations computed during the clustering stage are
cached, such that they can be reused at later stages of the algorithm.

3.3.1 Threshold queries

In line with the problem definition in Section 2.3, CD receives as input a correlation pattern (e.g.,
mcsize(2, 1), restricting the correlations to types (x,y) and ((x,y), z)), a correlation threshold τ ,
and the cluster tree produced in the initialization phase. It will then start from the children of
the root cluster, forming all possible combinations of the correlation pattern with these. In the
example of Fig. 3.1, which will be used as a running example throughout the thesis, if the desired
correlation pattern is mcsize(2, 1), the following combinations of clusters will be examined in order
of increasing pattern length:

∀Cx,Cy∈{C1,C2,C3}(Cx, Cy) ∪ ∀Cx,Cy,Cz∈{C1,C2,C3}((Cx, Cy), Cz)

A combination of clusters compactly represents the combinations created by the Cartesian product
of the vectors inside the clusters, further called the materialization of a cluster combination. For
example, assuming that |Cx| = 4 and |Cy| = 3, the cluster combination (Cx, Cy) represents a set
of 12 vector combinations. For each cluster combination, CD computes lower and upper bounds
on the mc value of the materializations of these clusters, denoted with LB and UB respectively
(Alg. 1, line 1). Next, CD compares these bounds with the threshold τ (lines 2,4,6). If UB < τ ,
the combination is decisive negative - any materialization cannot yield a correlation higher than
the threshold τ . Therefore, this combination does not need to be examined further. We will
further refer to these cluster combinations as negative decisive cluster combinations, or DCC−.
If LB ≥ τ , the combination is decisive positive, guaranteeing that all materializations will have a
mc value of at least τ . Therefore, all materializations are inserted in the result. We will further
refer to these cluster combinations as positive decisive cluster combinations, or DCC+. Finally,
when LB < τ and UB ≥ τ , the combination is indecisive. In this case, CD (lines 7-11) identifies
the cluster with the largest radius Cmax, and recursively checks all combinations where Cmax is
replaced by one of its sub-clusters from the clustering tree. In the running example, assume that
CD examined an indecisive combination of clusters C1, C2, C3, and C2 is Cmax. Then, CD will
drill down to the three children of C2, namely C6, C7, C8, and examine their combinations with
C1 and C3. This process continues recursively until each combination is decisive.

Derivation of bounds for the multiple correlation measure

In the following, we discuss how CD derives bounds on the mc value of combinations of clusters of
arbitrary correlation patterns. As you will see, these bounds depend solely on pairwise correlations
between the contents of clusters participating in the correlation pattern (e.g., ρ(v,w) with v ∈
C1, w ∈ C2 participating in mc((C1, C2), C3). The original work on CD describes two ways
of approaching these pairwise correlations; (1) by bounding the pairwise correlations between
two clusters using trigonometric functions (referred to as theoretical bounds), (2) by computing
the exact pairwise correlations of the clusters’ contents (referred to as empirical bounds) [29].
Evaluation of CD showed that the usage of empirical bounds lead to better performance, despite
the cost of computing many pairwise correlations. Therefore, in this work we will only consider
the usage of empirical bounds in CD to bound mc values.

16 Multivariate Correlation Discovery in Streaming Data

CHAPTER 3. RELATED WORK

a
b

c
d

e
f gh

a d beh c

C2 C3

C4 C10C5 C6 C7 C8

a
d b

e
h

c
f g

f g
C9

C1

Figure 3.1: Running example in 2 di-
mensions: the centroids of each cluster
are depicted with darker background.
All clusters are labeled for easy refer-
ence. Source: [29]

Algorithm 1: CDThreshold(Pl, Pr, τ)
Input: Sets of clusters Pl and Pr that adhere

to the user-defined correlation
pattern, correlation threshold τ .

1 (LB,UB)← CalcMCBounds(Pl,Pr)
2 if LB ≥ τ then
3 Add (Pl,Pr) to the result set
4 else if UB < τ then
5 Discard (Pl,Pr)
6 else

// Replace largest cluster with subclusters
and recurse

7 Cmax ← arg max
C∈Pl∪Pr

{C.radius}

8 Set SC ← Cmax.subclusters
9 for S ∈ SC do

10 (P ′l ,P ′r)← (Pl,Pr) with Cmax replaced
by S

11 CDThreshold((P ′l ,P ′r) , τ)

CD uses the following theorem to bound all possible multiple correlation values on sets of
clusters solely based on the pairwise correlations that exist between those clusters, which it uses
to heavily prune the search space.

Theorem 3.3.1 (Bounds for mc) For any pair of clusters Ci, Cj, let l(Ci, Cj) and u(Ci, Cj)
denote the largest/smallest pairwise correlations between the clusters’ contents, i.e., l(Ci, Cj) =

min
x∈Ci,y∈Cj

ρ(x,y) and u(Ci, Cj) = max
x∈Ci,y∈Cj

ρ(x,y). Consider two sets of clusters Pl = {Ci}lmax
i=1 and

Pr = {Ci}rmax+1
i=1 . Let L(P1,P2) =

∑
Ci∈P1,Cj∈P2

l(Ci, Cj), and U(P1,P2) =
∑
Ci∈P1,Cj∈P2

u(Ci, Cj).

Then, for any two sets of vectors Xl = {x1, . . . ,xlmax
}, Xr = {xlmax+1, . . . ,xN} such that xi ∈ Ci,

multiple correlation mc(Xl, Xr), can be bounded as follows:

(1) if L(Pl,Pr) ≥ 0 :
L(Pl,Pr)√

U(Pl,Pl)
√
U(Pr,Pr)

≤mc(Xl, Xr) ≤
U(Pl,Pr)√

L(Pl,Pl)
√
L(Pr,Pr)

(2) if U(Pl,Pr) ≤ 0 :
L(Pl,Pr)√

L(Pl,Pl)
√
L(Pr,Pr)

≤mc(Xl, Xr) ≤
U(Pl,Pr)√

U(Pl,Pl)
√
U(Pr,Pr)

(3) else:
L(Pl,Pr)√

L(Pl,Pl)
√
L(Pr,Pr)

≤mc(Xl, Xr) ≤
U(Pl,Pr)√

L(Pl,Pl)
√
L(Pr,Pr)

With this theorem, CD can efficiently bound the multiple correlation of any combination
of clusters that satisfies the correlation pattern, without testing all possible materializations of
this combination. It computes the pairwise bounds on clusters by pre-computing all correlations
between pairs of vectors at initialization time, and caching it in an upper-triangular matrix. Then,
during the execution of Alg. 1, CD computes l(Ci, Cj) and u(Ci, Cj) by iterating of the contents
of Ci and Cj tracking the pairs with the largest/smallest correlations.

Handling additional constraints

For the irreducibility constraint, CD requires to test for any considered combination of clusters
whether there exists a (simpler) combinations of any of the subsets of Pl and Pr that should be
contained in the answers. This is done by discarding the combination (Pl,Pr) if a pair of clusters
Cl, Cr ∈ (Pl∪Pr) is found with l(Cl, Cr) ≥ τ during the computation of the mc bounds. Note that

Multivariate Correlation Discovery in Streaming Data 17

CHAPTER 3. RELATED WORK

this accounts only for simpler combinations of cardinality 2. Combinations of higher cardinality
are filtered out ad-hoc, before returning the result set to the user. The case of minimum jump is
handled analogous, combinations are discarded during execution of Alg. 1 if any l(Cl, Cr) ≥ UB−δ
is found. Simpler combinations of higher cardinality are filtered out later.

3.3.2 Top-k queries

Correlation Detective handles top-k queries by treating it as a threshold query with variable τ .
It starts with a low estimate for τ , and progressively increases it by observing the intermediate
answer set. Key to the algorithm’s pruning power is the speed it can approach the true value of τ ,
the threshold separating the k subsets with the highest mc values from the rest. CD does this by
considering the candidates in descending order of estimated correlation. We provide a high-level
description of this process.

First, at the initialization phase, τ is set to the value of the highest k’th pairwise correlation
(derived during computation of the pairwise correlation matrix). Then, it processes the possible
cluster combinations in two stages. In the first stage, CD continuously updates τ and the in-
termediate answer while recursively going over possible candidates (i.e., cluster combinations).
However, instead of considering the actual UB of cluster combinations, CD artificially lowers the
UB to UBshrunk so that only combinations with extremely high UB (i.e., containing materializ-
ations with potential of reaching the top-k) are broken up and considered more carefully. Cluster
combinations that do not make this cut (i.e., with UBshrunk < τ) are assigned to ordered buckets
based on the center of their bounds UB−LB

2 with respect to τ , indicating how promising they are.
Then, in the second stage, CD iterates over the buckets in descending order, and evaluates the
combinations again with their actual bounds to obtain the final answer set. This way, by only
spending time on the most promising combinations in the first stage, the value of τ is increased
prematurely which increases the pruning power in stage 2.

18 Multivariate Correlation Discovery in Streaming Data

Chapter 4

CDStream

The following chapter provides an in-depth description of our proposed streaming algorithm for
maintaining multiple correlations, named CDStream. We will start with a high-level summary
of the algorithm, going into details on each of its components in later sections. The in-depth
discussion of the algorithm is structured as follows. First, we describe the solution for maintain-
ing threshold queries without any additional constraints. Next, we informally analyze the base
algorithm’s computational complexity and storage complexity. Last, the base solution is extended
to enable support for the additional constraints and top-k queries.

4.1 General Idea and Intuition

One way to detect multiple correlations on streams is to re-run CD every time a batch of updates
arrives, replacing the old result with the new one. However, as we will show in later experiments,
this approach is rather inefficient as it does not use any information of previous runs to save com-
putational effort later. CDStream builds on top of CD such that it maintains the solution as new
data arrives. The following section will provide a high-level description of the followed approach
and the rationale behind it. We will do this through consideration of alternative approaches,
showing their weaknesses which provides insight on the research process which led to the final
solution.

Recall from the previous chapter that many streaming algorithms for correlation monitoring
are essentially extensions to a fast one-shot algorithm with the introduction of incremental up-
dates. To date, Correlation Detective is the only one-shot algorithm for multivariate correlation
discovery that has the same goals and assumptions as this study. The algorithm efficiently discov-
ers multivariate correlations by clustering the data, and bounding the mc-values of combinations
of clusters. The result is a set of vector combinations with mc-values larger than a threshold τ .
These combinations were derived from decisive combinations of clusters, DCCs for short.

An initial approach for our problem could be to incrementally update the mc-values of vector
combinations, subsequently recomparing it with τ . However, this approach does not address the
combinatorial complexity that CD tries so hard to battle. Incremental updating namely speeds-up
computation of correlations, but it does not limit the amount of correlations that have to be com-
puted. One could instead argue for an approach where the mc-bounds of cluster combinations are
incrementally updated. This way, one could continue where CD left off, benefiting from the prun-
ing power of CD without suffering from the computation effort of clustering and the consideration
of cluster combinations with indecisive bounds. While valid, the problem with this approach is
that mc-bounds are not distributive over vector addition; roughly meaning that we cannot separ-
ate the bounds at t + 1 into a term with the bounds at t and a term signifying the change (i.e.,
mc(a + δ, (b, c)) 6= mc(a, (b, c)) + mc(δ, (b, c)) with at+1 = at + δ). This is mainly because of
the square root in the denominator of all mc-bounds (see Theorem 3.3.1); in case one of the time

Multivariate Correlation Discovery in Streaming Data 19

CHAPTER 4. CDSTREAM

series involved receives an update, pairwise correlation may change that make up the terms under
the square-roots in the denominator. As square roots are not distributive under addition, this
change cannot be separated meaning that the bound cannot be ’split’ in two. Consequently, one
has to reconsider all pairwise correlations that exist among the contents of the clusters, in order
to update the U(·, ·) and L(·, ·) terms in the bound.

4.1.1 Our approach

The observation that multivariate correlations cannot be incrementally updated implies that the
bounds of cluster combinations need to be fully recomputed. This is potentially very expensive
considering the combinatorial rate at which they can increase, despite being substantially subor-
dinate to the amount of vector combinations they represent. As we desire the algorithm to handle
streams with second to millisecond arrival rates, alternative methods are necessary. CDStream
does this by pruning the amount of cluster combinations that need to be considered. This approach
relies on two main observations;

Observation 1: Most updates do not lead to significant updates on the final result.
For instance, consider tick data of stock prices with millisecond-level granularity. Here, hundreds
of trades (i.e., data arrivals) may occur within a second causing the price to change with fractions
of a cent, which are marginal fluctuations relative to the daily trend. Therefore, it is likely that
pairwise correlations do not change significantly from these single arrivals if the sliding window
spans a considerable time (e.g., an hour). The effect of these fluctuations is even more damped
for multivariate correlations, as vectors are aggregated.

Observation 2: Streams are not synchronized. Consequently, only a subset time series may be
updated meaning that some mc-values and bounds might not change at all. Therefore, recom-
puting the bounds of all cluster combinations can be wasteful.

Considering these observations, substantial effort could be saved by identifying only the com-
binations that impact the result set when receiving a certain update. Specifically, upon an arrival
we would only check the decisive cluster combinations that are in danger of changing state, mean-
ing their materializations move in or out of the result set. For a threshold query, these include
only DCCs for which the bound closest to τ (i.e., dominant bound) moves closer towards the cor-
relation threshold. This includes positive DCCs with a decrease in LB and negative DCCs with
an increase in UB.

By analyzing the mc-bounds in Theorem 3.3.1, we observe that bounds of cluster combinations
depend solely on the minimum and maximum pairwise correlations between all involved clusters.
We call the pairs of time series that make up these correlations extrema pairs, and argue that
changing DCCs can be located efficiently when storing and indexing them based on these pairs, and
comparing correlations of extrema pairs to other updated pairwise correlations as new data arrives.
As such, CDStream identifies changing DCCs by storing them in an auxiliary data structure called
the DCC Index. This structure is effectively a nested hash map, with DCCs keyed by multiple
variables, including its extrema pairs. As a batch of updates arrives, CDStream uses the DCC
Index to locate the DCCs affected by the update, so bounds can be recomputed and changes to
the result set can be made if necessary. Section 4.2.1 contains a detailed description of the index,
including its rationale and additional optimizations that can be made to improve the algorithm’s
pruning power.

Instrumental to our pruning technique is the ability to reason about potential changes in
multivariate correlations based on changes in pairwise correlations. To this end, we require to
update a subset of all pairwise correlations upon arrival of a batch of data. This can be a costly
ordeal if the batch size and sliding window size w are large (e.g., hundreds of updates, and w > 100).
We therefore optimize this process by separating the definition of Pearson correlation into a term
representing the correlation before the update, and a term signifying the change in correlation.
This allows us to update both pairwise correlations and mc-bounds in constant time and space,

20 Multivariate Correlation Discovery in Streaming Data

CHAPTER 4. CDSTREAM

even though we showed that multiple correlation coefficients cannot be updated incrementally
themselves. Details of this process are provided in Section 4.2.2.

Incremental updating of correlations and the DCC Index constitute the main weapons in
CDStream’s arsenal to efficiently maintain threshold queries without any additional constraints.
Section 4.3 describes how these components are combined to create the base solution. This base
solution is then extended to support those additional constraints by slightly modifying the storage
of DCCs in the index. Central to this method is the observation that the DCC index effectively
supports a triggering functionality - it facilitates quick lookup and verification of the conditions
that need to hold after an update such that bounds of DCCs remain unchanged. If these conditions
do not hold for a group of cluster combinations, it triggers a reconsideration of the state of
those combinations. In the absence of additional query constraints, these conditions concern
only the validity of the extrema pairs in the decisive combinations. Triggers for when additional
constraints are (no longer) violated can be created in a similar fashion, by simply storing the
decisive combinations in additional locations in the index. Section 4.4 formally explains this
process for handling both of the additional constraints.

Finally, CDStream is modified to support top-k queries by applying minor changes to the
steps in which the result set is initialized and violated DCCs are queried from the index. The
modification involves querying the top-k variant of CD for a slightly larger number of results than
k. This buffer on the result set is added to aid quick replacement of top-k vector combinations
that move out of the top-k set due to a decrease in correlation. After initialization of the buffered
set, CDStream finds the minimum correlation in these results, and uses it as a threshold τ in the
arrival phase of the algorithm. In this arrival phase, CDStream processes a batch of updates in
two steps; (1) recomputing the correlations of elements in the buffered result set to obtain the new
value of τ , (2) then querying the DCC Index for changing negative DCCs which are potentially
added to the buffered set based on the updated threshold. As long as the size of the result set
is at least k, the true top-k results will be a subset of the buffered result set maintained by the
algorithm. Before returning the results to the user, the elements of the buffered set are sorted
on correlation, and the top-k are returned to the user. We provide an in-depth discussion of this
algorithm variant in Section 4.5.

4.2 Algorithm components

We now provide detailed descriptions of the main components of CDStream; the DCC Index and
incremental updating of pairwise correlations. In these sections, we assume that the user provides
a basic threshold query without any additional constraints.

4.2.1 The DCC Index

The main challenge in identifying DCCs that are in danger of changing state lies in reasoning
about changes in bounds without actually computing them. Key in doing so is understanding
what impacts the bound of a cluster combination. Observe from Theorem 3.3.1 that, even for
combinations of three or more clusters, the bounds are determined by the minimum and max-
imum pairwise correlations between all involved clusters. In the inequalities these are denoted
respectively as l(Ci, Cj) and u(Ci, Cj) for any pair of clusters Ci and Cj . From this we can con-
clude that any update that does not change l(Ci, Cj) or u(Ci, Cj) will not invalidate the previous
bounds, or the previous solution. We refer to the pairs of vectors from Ci and Cj that are respons-
ible for l(Ci, Cj) and u(Ci, Cj) as the minimum extrema pair and the maximum extrema
pair, respectively.

Extrema pairs

Figure 4.1(a) illustrates the extrema pairs for a positive DCC with clusters from the running
example. Note again that Euclidean distance is inversely related with correlation, meaning that

Multivariate Correlation Discovery in Streaming Data 21

CHAPTER 4. CDSTREAM

C2 C3

f

g

b

C1
d

a

h e c

Cx
x

u(,)C2 C3

l(
,

)

C
1

C
2

l(,)C1 C3

a

⟨b,f⟩

C2

⟨a,m⟩

b

⟨x,y⟩

...

...
⟨a,d⟩

C5
...

C17
...

...

⟨b,f⟩

C3
...

C15
...

...

C8

(, (,))C1 C2 C3

(,)C2 C3

c decisive pos.

decisive neg.

(a) (b)

Figure 4.1: (a) Illustration of extrema pairs for a positive DCC with lmax = 1, rmax = 2 (b)
Visualization of the DCC Index

vectors (i.e., points) close to one other have relatively high correlations [32]. In this example, the
minimum and maximum extrema pairs for (C2, C3) are 〈h,g〉 and 〈b, f〉, respectively. From the
definitions in Theorem 3.3.1 we can conclude that the dominant bound of this DCC (i.e., the LB)
is made up of the minimum extrema pairs of (C1, C2) and (C1, C3), and the maximum extrema
pair of (C2, C3). We call these active extrema pairs. Naturally, the DCC’s dominant bound will
only decrease if any of these extrema pairs change undesirably, either by becoming more extreme
(i.e., 〈b, f〉 increases) or by being surpassed by another pair (i.e., ρ(e, f)t+1 > ρ(b, f)t+1). To
analyze this geometrically, note that updates potentially cause a change in the digest value of the
last basic window. From perspective of z-normalized vectors this means that all values change
causing the vector to move in z-normalized space. Consider receiving an update for e, then the
bound of the DCC changes if e moves closer to a point in C3 than b is to f , or further away from
C1 than b is to d.

This insight implies that if DCCs are stored and indexed based on their extrema pairs, one can
retrieve potential ’state changers’ by updating pairwise correlations and locating only the DCCs
where active extrema pairs have changed. We do this by building an index that maps each vector
v to a list of all decisive combinations (both negative and positive) that involve any cluster with v.
Figure 4.1(b) shows a visual representation this index, which we naturally named the DCC Index
(note that the representation is in concordance with the running example). In practice, effectively
two DCC Indices are built and maintained; one where combinations are indexed based on upper
bounds on correlations of v (related to maximum extrema pairs), and one where combinations
are indexed based on lower bounds on correlations of v (related to minimum extrema pairs). For
conciseness, we will continue to refer to indexing decisive combinations as if they are contained in
one overarching structure.

Grouping DCCs

Internally, the combinations for v are grouped in multiple levels. This decision comes from the
observation that possibly many different cluster combinations have similar extrema pairs. There
are two scenarios in which this can happen;

Scenario 1: identical cluster pairs. Consider a close alternative to the situation in the running
example where the root cluster also included a vector x, which is somewhat dissimilar from the
other vectors. Then, it is likely that x would directly be split from the rest into a child cluster of
the root Cx, only containing x. The resulting situation is opaquely illustrated in Fig. 4.1(a). In
this scenario it is perfectly possible that a decisive combination exists with (C1, (C2, C3)) but also
with (Cx, (C2, C3)). As the DCCs share the cluster pair (C2, C3), we may check the validity of its
extrema pairs only once while making inferences on the bounds of both DCCs, saving effort.

Scenario 2: related cluster pairs. The scenario of overlapping extrema pairs among DCCs
is not limited to the case of DCCs having identical cluster pairs. Active extrema pairs may also

22 Multivariate Correlation Discovery in Streaming Data

CHAPTER 4. CDSTREAM

be shared among DCCs when they include clusters from the same branch in the cluster tree. For
example, one decisive combination may include the cluster pair (C2, C3) while another includes
(C8, C3), with C8 = {b}, C2 = {b, e,h} (recall the running example in Fig. 3.1). As long as both
decisive combinations have the same state (i.e., positive/negative) and the cluster pairs exist at
the same side of the correlation pattern, the active extrema pairs will be the same. Thus, effort
can be saved analogously to Scenario 1.

To exploit this observation, decisive combinations for v are first grouped by the extrema pairs
that v can invalidate.
Example. In Fig. 4.1(b), the first 5 combinations for vector c are grouped under extrema pair
〈b, f〉. The first two of the five combinations both involve the pair of clusters C2 and C3. C3 is
the cluster that contains c and has f as an extremum, whereas C2 has b as an extremum. All
combinations with the same extrema pair are subsequently grouped by the cluster that does not
contain the vector used for indexing (in this case, the vector c). In our example, the first two
combinations both involve the same extrema pair, and both have C2 as the second cluster. The
remaining three combinations under extrema pair 〈b, f〉 contain cluster C8 instead as a second
cluster, and therefore are placed in a different sub-group. We will refer to these clusters for the
same extrema pair as the extrema pair clusters.

Querying DCCs

Recall that the key utility of the described index is to support a triggering functionality for when
DCC bounds change in an undesired manner. It allows us to quickly locate and verify the extrema
pairs related to each update. An update of any stream si is processed as follows. First, the index
is used to retrieve the information related to si (line 2 of Algorithm 2). The algorithm iterates over
the respective extrema pairs to verify that these did not change or move, despite the recent update
of vi. Precisely, for each minimum extrema pair with correlation ρmin, it checks if the correlation
of vi with all points belonging to the second cluster is still at least equal to ρmin, whereas for each
maximum extrema it verifies that all correlations of vi remain less than ρmax (line 8). If this is
still the case, all decisive combinations are still correct and do not need to be checked one-by-one.
If, on the other hand, an extrema pair is invalidated (e.g., if the updated correlation of vi with a
vector from the opposite cluster becomes less than ρmin), the respective decisive combinations are
checked and their bounds are recomputed, re-indexing the combinations and updating the result
set if necessary.

Checking whether ρmin (resp. ρmax) are still valid requires computing the correlation of v with
each of the vectors contained in all extrema pair clusters (lines 7-10). A critical observation is that
there always exists one cluster in the extrema pair clusters that contains all others – otherwise the
other clusters could not contain the same extrema vector. To avoid double work, the algorithm
considers the extrema pair clusters in decreasing size. If the largest cluster passes the test, then
all its decisive combinations and all the decisive combinations of all its sub-clusters are still valid
and do not need to be checked (lines 12-13). In the running example, if 〈b, f〉 is still the maximum
extrema pair between clusters C3 and C2, and its correlation did not change, then all combinations
under 〈b, f〉 are still decisive. If the largest cluster does not pass the test, then the bounds for all
its decisive combinations are verified (line 10). The combinations that are no longer decisive are
updated accordingly, e.g., by splitting one of the involved clusters to sub-clusters, as described in
Section 3.3. This process is referred to as breaking cluster combinations. Furthermore, since the
decisive combinations of the largest cluster were updated, the second, third, etc. largest extrema
pair clusters are tested recursively (lines 14-15). The process can stop as soon as one of these
clusters passes the test.

This grouping of decisive combinations based on the extrema pairs and clusters is instrumental
in the algorithm’s performance. It allows us to multiply the pruning power of CD by considering
only a fraction of all cluster combinations (which are already significantly less than the amount of
vector combinations). The effective pruning power of CDStream is dependent on the significance
of updates, i.e., how many extrema pairs they end up violating. The pruning power also comes
with the overhead cost of maintaining and iterating over the index. More thorough analysis of the

Multivariate Correlation Discovery in Streaming Data 23

CHAPTER 4. CDSTREAM

Algorithm 2: QueryIndex(i, I)
Input: A stream index i, the DCC

Index I
Output: A set of DCCs O that need to

be checked
1 O ← {}
2 for 〈a,b〉 ∈ I[i] do
3 first← true
4 V ← {}
5 for C ∈ I[i][〈a,b〉] do
6 if first then
7 for vj ∈ C do
8 if ρ(vi,vj)t > ρ(a,b)t

then
9 V ← V ∪ vj

10 O ← O ∪ I[i][〈a,b〉][C]

11 first← false
12 if V = ∅ then
13 break

14 else if C ∩ V 6= ∅ then
15 O ← O ∪ I[i][〈a,b〉][C]

16 return O

Algorithm 3:
UpdateStream(Si, d, vold)
Input: The windowed digests Si of a

stream i, an incoming data
point d for stream i, the value
that needs to be overwritten
vold.

// Update the digest value

1 vnew ←Agg(Si[L], d)

2 E [Si]← E [Si] + 1
w (vnew − vold)

3 E
[
S2
i

]
← E

[
S2
i

]
+ 1

w (v2new − v2old)
4 for j ← 1 to n \{i} do

// Prevent concurrency errors

5 if Sj.last update < t then
6 E [SiSj]←

E [SiSj] +
vold,j
w (vnew − vold)

7 ρ(Si, Sj)←
E[SiSj]−E[Si]E[Sj]√

E[S2
i]E[Si]

2
√

E[S2
j]E[Sj]

2

8 Si[L]← vnew

pruning power and overhead costs is provided in subsection 4.3 and the evaluation in Chapter 6.

4.2.2 Incremental updating of pairwise correlations

Recall from earlier that mc-bounds cannot be updated in an incremental fashion as new data
arrives. However, due to the reduction of streams to sequences of basic windows, sliding windows
are guaranteed to remain aligned which allows us to incrementally update pairwise correlations
instead. This is favorable considering the relevance of pairwise correlations in checking the validity
of extrema pairs. Namely, checking the validity of an extrema pair involves comparing it to updated
pairwise correlations between cluster pairs. Seen that the cluster combinations encompass all
possible vector combinations, it is likely that a substantial portion of the correlation matrix needs
to be updated before querying the DCC Index. Hence, updating pairwise correlations in a more
efficient manner will likely improve the algorithm’s performance significantly.

The Pearson correlation function of two random variables X, Y can be decomposed as follows;

ρ(X,Y) =
Cov(X,Y)

σXσY
=

E [(X − µX)(Y − µY)]√
E [(X − E [X])2]

√
E [(Y − E [Y])2]

=
E [XY]− E [X]E [Y]√

E [X2]E [X]
2
√
E [Y 2]E [Y]

2

(4.1)
In our context, X and Y are not random variables but digests the basic windows inside the
sliding window (i.e., vectors). Therefore, the E-terms refer to the average value of the expres-
sion within those terms. A term E [XY]t in the current context indicatively boils down to
1
w

∑L
i=L+w−1(Sx[i]Sy[i]), with SX [i] referring to the i’th basic window digest of stream X. Recall

that L is used to indicate the index of the running basic window (see Section 2.2.1). For brevity
we will continue to denote the averages on sliding windows of stream with the expected value
notation. Consider a stream x receiving an update between timepoint t and t+ 1. Then, each of

24 Multivariate Correlation Discovery in Streaming Data

CHAPTER 4. CDSTREAM

these terms can be incrementally updated as follows1;

E [sx]t+1 = E [sx]t +
1

w
(Sx[L]t+1 − Sx[L]t)

E [sx]
2
t+1 = E [sx]

2
t +

1

w
(Sx[L]2t+1 − Sx[L]2t)

E [sxsy]t+1 = E [sxsy]t +
1

w
((Sx[L]t+1 ∗ Sy[L]t+1)− (Sx[L]t ∗ Sy[L]t))

At completion of the running basic window, the terms can be updated analogously with the
exception of replacing Sx[L]t with Sx[L − w]t. From these equations we conclude that for each
stream we only need to maintain the running sum, running sum of squares and the running
products with other streams. Upon an update or move of the sliding window one can incrementally
update the correlation using these statistics in combination with the change in digest value. This
is significantly more efficient than doing a full pass over the data at every update. Alg. 3 provides a
pseudo-code representation of the process of updating running statistics and pairwise correlations.

A critical observation is that conversely with CD, we do not z-normalize the windowed digests
(i.e., vectors). Instead, we effectively z-normalize the vectors through the discussed recomputing
of Pearson correlations by considering the general equation for Pearson2. The Pearson definition
used in the proofs of Theorem 3.3.1 uses ρ(x,y) = x·y

m∗σxσy
which is a derivation of the general

definition of Pearson with the assumption that vectors are already z-normalized. The definition
of mc-bounds from Theorem 3.3.1 can still be used as both Pearson definitions come to the same
answer. This is because z-normalization merely re-scales vectors which does not impact the value
of linear relationships like Pearson correlation. We ought to be careful though with using the
original clustering algorithm of CD as it uses Euclidean distance as a distance measure, which is
impacted by not z-normalizing vectors. This problem is easily solved by changing the distance
measure to the inverse Pearson correlation value (i.e., large correlations have a small distance
value). This will result in the same cluster tree, and pairwise correlations are computed prior to
running CD anyway.

4.3 Algorithm overview

Now that we have the methods in place for initiating a first solution and efficiently handling
arrivals, we can combine them into an algorithm that finds and maintains multivariate correlations.
This section provides an overview of the full algorithm including an (informal) analysis of its
complexity and pruning power.

4.3.1 Initialization phase

Naturally, the initialization phase starts with the first phase of CD. Here, statistics and pairwise
correlations are computed from scratch with the first sliding window, which are subsequently used
to construct the cluster tree (lines 1-2 of Algorithm 4). Then, a ’stream-aware’ modification of
CD is run which stores DCCs in the DCC Index when they are identified (line 3). Storing and
indexing a decisive combination involves iterating over all possible cluster pairs in the combination,
extracting the extrema pair of each cluster pair, and storing the DCC in the index keyed by the
streams in each of the clusters, the respective extrema pair, and the cluster opposite to the
respective stream. A full pseudo-code representation of this process can be found in Appendix B.
The stream-aware variant of CD calls this method after lines 3 and 5 of Algorithm 1. Note that
this modification will lead to a significant increase in runtime for CD as negative DCCs now also
require to be stored. In the original CD algorithm these were simply ignored when found whereas
positive DCCs required deconstruction and addition to result set.

1Complete derivations can be found in Appendix A
2ρ(x, y) =

Cov(x,y)
σ(x)σ(y)

Multivariate Correlation Discovery in Streaming Data 25

CHAPTER 4. CDSTREAM

4.3.2 Arrival phase

Upon initialization of the result set and DCC Index, the algorithm is ready to start handling
batches of arrivals. This process consist of three steps; (1) updating of streams (Alg. 3), (2)
querying the index for potential violations (Alg. 2) and (3) recomputation of bounds leading to
potential changes in the result set and reindexes (in order). Note that Algorithm 2 only shows the
process of querying the DCC Index used for checking the validity of maximum extrema pairs. The
process is analogous for querying the DCC Index used for minimum extrema pairs. Also, line 8 of
Alg. 2 does not cover the case when 〈vi,vj〉 is the extrema pair itself. In this case, the algorithm
compares ρ(vi,vj)t with ρ(vi,vj)t−1. This was left out for simplicity and conciseness.

4.3.3 Parallelization

In practice, each processing step in the arrival phase is multithreaded, meaning that every task is
parallelized but threads are joined at the end of every step. A thread-join after updating streams
is necessary because querying the index for an updated vector v involves consideration of pairwise
correlations excluding v (i.e., correlations of extrema pairs). In absence of a join between the two
steps, it is possible that a thread considers the correlation of an extrema pair that is not yet updates
as part of the task of another thread. This may lead to incorrect conclusions on the validity of
extrema pairs. Furthermore, step 2 and 3 are separated for performance-related reasons related to
thread partitioning. Namely, load imbalance may occur if the two steps are merged due to some
streams receiving more significant updates than others. For example, consider we parallelize steps
2 and 3 with one CPU handling the query process for one stream in the batch. If a certain stream
has more significant updates than others, more DCCs are violated meaning that the CPU has to
recompute significantly more bounds than the others, which is bad for performance. Therefore,
labeled DCCs are collected first, joining threads, after which work is again divided for recomputing
and reindexing the combinations.

4.3.4 Cost analysis

As said before, the additional pruning power of CDStream comes at the cost of storage of DCCs
and the cost of querying the index. Formal complexity analysis of the computation- and storage
cost of the algorithm is difficult as both pruning power and index size are heavily dependent
on the amount of DCCs in the system and the significance of updates. These factors depend
on the data distribution; how well it can be clustered, and the amount of correlation drift over
time. Accounting for these factors would result in a complex stochastic analysis of the algorithm’s
performance. This was left out of the scope of the study. Nonetheless, in this subsection we will
reason about the main factors that influence the algorithm’s computational effort. This will aid in
interpreting the experimental results discussed in Chapter 6. This will be done for three aspects of
the algorithm; storage of decisive combinations in the index, querying the index, and the pruning
power that may be obtained from it.

Storage of decisive combinations

Recall that for each stream s ∈ S, the index contains a separate partition with all the DCCs
including s, indexed by the extrema pairs s can violate. Additional grouping of DCCs on opposing
clusters of s is irrelevant for this analysis. In practice, the DCC Index is implemented as a nested
structure of hash maps, with DCCs keyed by three factors; the stream’s index i, the extrema
pair in the DCC that si can invalidate, and the cluster in the DCC opposite to si, in that order.
From the perspective of an individual DCC, this means that it has to be stored (Pl + Pr − 1)ncc
times, where ncc is the total amount of vectors in the cluster combination. This is because there
exists an extrema pair for every cluster pair in the DCC. Every cluster in the DCC participates
in (Pl + Pr − 1) cluster pairs, so every stream in C can logically invalidate (Pl + Pr − 1) cluster
pairs.

26 Multivariate Correlation Discovery in Streaming Data

CHAPTER 4. CDSTREAM

We conclude from this that the storage of DCCs grows linearly with the total amount of DCCs,
the average size of DCCs, and the values of lmax and rmax. Simply put, CDStream benefits from
small amounts of ’large’ DCCs. Seen that the average size of DCCs is directly related to the
total amount of DCCs, we can also conclude that the storage complexity of CDStream is directly
dependent on CD’s ability to cluster the data and the tightness of the mc-bounds. Note that
these factors are also heavily dependent on the data itself and the value of τ .

Querying the index

Querying the index involves iterating over the extrema pairs that streams in the arrival batch
can violate, and comparing the correlations between the stream at question and one ’opposing
cluster’ to that of the extrema pair. Extrema pairs are pairs of streams. Thus, for each unique
stream in the arrival batch we may iterate over O(n2) extrema pairs in the worst case. However, in
practice we see that this complexity is actually closer to linear complexity. This has to do with the
similarity between DCCs, as discussed in Section 4.2.1. When the clusters in DCCs are relatively
large, many DCCs will have overlapping extrema pairs, resulting in less second-level keys in the
index.

Again, the computational complexity of this task is mainly dependent on the average size of
the clusters in decisive cluster combinations, which eventually translates to the average size of
DCCs overall. Large clusters result in more similar DCCs, which limits the amount of work that
has to been done on querying the index.

Pruning power

The power of pruning vector combinations for CDStream comes from reconsidering only a selection
of decisive combinations inherited from CD, which themselves are already pruning combinations.
This means that CDStream’s pruning power is guaranteed to be at least that of CD. However,
the overhead from enabling this extra pruning might not outweigh its costs (further discussed in
Chapter 5). The fraction of DCCs to consider after a batch is dependent on the amount of extrema
pairs those arrivals violate. We referred to the latter as the significance of arrivals.

Extrema pairs are violated by related pairwise correlations exceeding its own correlation at
t−1. If pairwise correlations change more drastically, extrema pairs are more likely to be violated,
making arrivals more significant. The change of a correlation is dependent on its value relative to
the other values in the window, and the window sizes w and bbw. This creates a trade-off between
algorithmic performance and robustness of correlations. Namely, large values for w and bbw result
in less significant updates, and therefore higher pruning power, while a small values increase the
result’s sensitive to short-term trends. The latter is especially important for financial applications
as it enables the algorithm to identify short-term opportunities earlier. Concluding, the values of
w and bbw need to be chosen carefully, depending on what is important in the problem context.

3InsertionSort is used as it is most efficient for structures that are already in approximate sorted order.

Multivariate Correlation Discovery in Streaming Data 27

CHAPTER 4. CDSTREAM

Algorithm 4:
CDStream(S, w, b, τ)
Input: Set of streams S, sliding

window size w, basic window
size bbw, correlation threshold τ

1 V ← InitWindows(S, w, b)
2 InitCorrelations(V)
3 R, I ← CD(V, τ)
4 t← 1
5 while true do
6 A← {}
7 if t % bbw = 0 then
8 V ← ProgressWindows(V)
9 A← V

10 for Si ∈ V do
11 UpdateStream(Si, Si[L−

1], Si[L− w])
// Arrival of a batch B

12 if |B| > 0 then
13 for (i, t, d) ∈ B do
14 UpdateStream(Si, d, Si[L])
15 A← A ∪ {Si}
16 for Si ∈ A do
17 O ← QueryIndex(i, I)
18 for (Pl,Pr) ∈ O do
19 CDThreshold(Pl,Pr, τ)

20 t← t+ 1

Algorithm 5:
CDStreamTopK(S, w, b, k)
Input: Set of streams S, sliding

window size w, basic window
size bbw, top-k value k

1 V ← InitWindows(S, w, b)
2 InitCorrelations(V)

3 Rk+b, I ← CDTopK(V, k)

4 τb ← Rk+b[last].mc

5 Rk ← Rk+b[1 : k]
6 t← 1
7 while true do
8 Slide windows if necessary (lines 6-11 Alg. 4)

if |B| > 0 then
12 for (i, t, d) ∈ B do
13 UpdateStream(Si, d, Si[L])
14 A← A ∪ {Si}
15 Update mc-values of Rk+b
16 Initialize again if > k(b− 1) passed τb
17 τb ← SORT3(Rk+b)[last].mc
18 for Si ∈ A do
19 O ← QueryIndex(i, I)
20 for (Pl,Pr) ∈ O do
21 CDThreshold(Pl,Pr, τb)
22 Rk ← SORT(Rk+b)[1 : k]

23 Index(Rk+b[kb : last])

24 Rk+b ← Rk+b[1 : kb]

25 t← t+ 1

4.4 Handling additional constraints

Additional constraints such as irreducibility and minimum jump can be handled elegantly by
slightly modifying the use of the DCC Index. Notice again that the index support a triggering
functionality - a quick lookup and verification of the conditions that need to hold after an update
on one or more streams. Triggers on the compliance to additional constraints can be created by
storing decisive combinations in additional locations in the index. The following section describes
this process in detail.

4.4.1 Irreducibility

Let X,Y,X ′, Y ′ denote sets of clusters. Consider combinations (X,Y), and (X ′ ⊆ X,Y ′ ⊆ Y),
with |X∪Y | > |X ′∪Y ′|. In words, we consider two cluster combinations; one enclosing correlation
patterns of high cardinality, and another enclosing patterns of lower cardinality, using a subset of
the clusters of the first combination.
Example. Consider two cluster combinations (X,Y) = (C1, (C2, C3, C4)) and (X ′, Y ′) = (C1, (C2, C3)).
The irreducibility constraint involves rejecting (X,Y) from the result set if (X ′, Y ′) is already in
it (or needs to be). Preserving compliance to this constraint as data arrives requires detection of
two cases: (a) (X,Y) needs to be removed from the result set because mc(X ′, Y ′) surpassed τ
due to an update, and, (b) (X,Y) needs to be added to the result set, because (X ′, Y ′) was just
removed from the result set. Notice that both cases can be triggered by an update of a vector
from X or Y (hence, also from X ′ and Y ′).

Without the irreducibility constraint, the index contains the following extrema pairs: (a) for the

28 Multivariate Correlation Discovery in Streaming Data

CHAPTER 4. CDSTREAM

negative DCCs, all pairs required for upper-bounding the mc-value, (b) for the positive DCCs, all
pairs required for lower-bounding the mc-value. Case (a) of irreducibility violation can be detected
by additionally monitoring the upper bounds of positive DCCs (i.e., those that encapsulate (X,Y)).
To illustrate this, consider again the example where X = {C1}, X ′ = {C1}, Y = {C2, C3, C4}, Y ′ =
{C2, C3}, and mc(X,Y)LB > τ , mc(X ′, Y ′)UB < τ . If a materialization of (X ′, Y ′) receives an
update such that its mc-values rises above τ , the UB of (X ′, Y ′) must also rise above τ , as it
spans all of the possible mc-values of its materializations. Note that extrema pairs contributing
to the UB of (X ′, Y ′) are a subset of those contributing to the UB of (X,Y), as shown in the
following;

mc(X,Y) ≤ u(C1, C2) + u(C1, C3) + u(C1, C4)√
3 + 2(l(C2, C3) + l(C2, C4) + l(C3, C4))

(4.2)

Clearly, monitoring the bounds of cluster combinations of high cardinality simultaneously monit-
ors the bounds of ’simpler’ cluster combinations. This method is also applied for detecting case
(b), by monitoring the lower bounds of negative DCCs with any mc(X ′, Y ′) > τ . Monitoring
both bounds for a decisive combination involves indexing it under all extrema pairs, and checking
them accordingly.

One might argue that the above method does not cover all (edge-)cases. Particularly, if the
bounds of the simple combination are of a different bound case in Theorem 3.3.1 than the complex
combination’s bounds, the highlighted terms in Equation 4.2 become incorrect. While valid, this
edge-case does not jeopardize the algorithm’s correctness. This is because the above method
effectively results in monitoring all extrema pairs in a cluster combination, instead of only those
contributing to one of the mc-bounds. Regardless of bound cases, the extrema pairs of simple
combinations will still be a subset of the extrema pairs in a complex combination. Therefore, if
for each cluster pair both the minimum and maximum extrema pairs are monitored, both bounds
will be effectively be monitored for both cluster combinations, and constraint violations will be
detected.

4.4.2 Minimum jump constraint

Monitoring for the minimum jump constraint is analogous to that of the irreducibility constraint.
The following cases need to be considered: (a) (X,Y) needs to be removed from the result set
because mc(X ′, Y ′) > τ and mc(X ′, Y ′) + δ > mc(X,Y), and (b) (X,Y) needs to be added in
the result set because mc(X,Y) > τ and mc(X ′, Y ′) + δ < mc(X,Y). Both cases are identified
using the discussed method for monitoring the irreducibility constraint.

4.5 Top-k queries

CDStream can be modified to support top-k queries by applying minor changes to the process
of initializing and maintaining the result set. Similar to Section 4.3, the following section goes
through the main steps of the algorithm and shows how they are modified to support this query
type. The section also includes a discussion on the changes it brings to the storage complexity of
the DCC Index, and its potential pruning power.

4.5.1 Initialization phase

Recall that CDStream is initialized with the result set R of CD. For a top-k query, CDStream
queries CD for a slightly larger number of results k′ = b ∗ k, where b is a small integer, greater
than 1 (line 3 of Algorithm 5). As a result, CD returns a set Rk+b of size b ∗ k which contains the
true top-k set Rk and a buffer set of vector combinations Rb (See Fig. 4.2 and Table. 4.1). This
buffer is added to aid quick replacement of top-k vector combinations that move out of the result
set Rk. In its process, CD breaks positive DCCs down to multiple DCCs of singleton clusters
to check compliance to additional constraints and to construct the correct top-k set. We modify

Multivariate Correlation Discovery in Streaming Data 29

CHAPTER 4. CDSTREAM

1−1 τb

R
b

R
k

pos. DCC

neg. DCC

mc − value

Figure 4.2: Visualization of top-k DCC sets

Symbol Description
Rk top-k set
Rb buffer of top-k set
Rk+b Rk ∪Rb
τb lowest mc-value in Rb
τk lowest mc-value in Rk

Table 4.1: Nomenclature of CDStream
top-k queries

the stream-aware version of CD (recall from Section 4.3) so that it does not index positive DCCs
(i.e., DCCs in Rk+b), only negative DCCs. This decision comes from the fact that Rk will need
to be reconstructed from Rk+b after every update batch. CD progressively builds Rk+b. This
means that DCCs with bounds under the intermediate correlation threshold will be stored in
the index. Furthermore, CD also continuously kicks-out cluster combinations from Rk+b when
stronger combinations are found. The rejected cluster combinations will be stored in the index
ad-hoc.

When CD is finished, CDStream finds the minimum correlation in Rk+b, and uses it as a
threshold τb in the streaming algorithm (lines 4-5). As long as the size of Rk+b is at least k, the
true top-k results will always have a correlation higher than τb and will therefore be a subset of
Rk+b.

4.5.2 Arrival phase

When a batch of updates arrives, CDStream first recomputes the correlations of the elements
in Rk+b so that τb is updated before the index is queried (lines 15 and 17). The latter is done
next in identical manner as with threshold queries, i.e., by adding DCCs to the result set if they
exceed the (intermediate) correlation threshold (lines 18-21). Subsequently, Rk is constructed
from Rk+b and returned to the user (line 22). As a post-processing step, the buffer set Rb is re-
duced if it has excessively grown (e.g., |Rb+k| = 2bk) due to outsiders entering the set (lines 23-24).

Observe that there exists a critical edge case in the above process where a DCC is wrongfully
left out of Rk, jeopardizing the algorithm’s correctness. Consider the extreme case that in one
epoch, all elements of Rk+b have a decrease in correlation resulting in that they all move under
τb. Then, τb is updated, bounds for moving DCCs are recomputed, but no DCC moves into Rk+b.
However, if a DCC exists with a dominant bound less than τb at t, and its bounds stay constant
in the transition to t + 1, the DCC will not be reconsidered while it should be included in Rk
due to the huge downshift in τb. This edge case is covered by rerunning the initialization phase
(including CD) if more than k(b− 1) elements from Rk+b move under τb in one epoch (line 16).

4.5.3 Combining with additional constraints

Additional indexing of positive DCCs to monitor compliance to irreducibility and minimum jump
constraints can be omitted as this is checked anyway when recomputing the bounds of DCCs in
Rk+b. Negative DCCs with any mc(X ′, Y ′) > τ (irreducibility) or mc(X ′, Y ′) + δ > mc(X,Y)
(min. jump) are handled by adding them to Rk+b, regardless of their disconformity to the con-
straints. This means that their bounds are reconsidered at every epoch. They are, however, not
considered when updating τb and Rk.

4.5.4 Impact on storage and performance

Scaling factor b controls the trade-off between the robustness of the buffer set, and the efficiency
of the algorithm. A b = 1 may lead to more situations where the discussed edge case applies and
the algorithm needs to be reinitialized, which is very expensive. Conversely, a large b will lead to

30 Multivariate Correlation Discovery in Streaming Data

CHAPTER 4. CDSTREAM

a higher number of intermediary results, and to more effort for computing the exact correlation
of these results, which is necessary for retaining the top-k results. Our experiments with a variety
of datasets have shown that b = 2 is already sufficient to provide good performance without
compromising the robustness of the algorithm.

The ability of CD to quickly reach the ’true’ correlation threshold does not only impacts the
performance of CD, but also that of CDStream. Namely, the more combinations that have to
be kicked out of the intermediate result set, the more DCCs of clusters of size one (i.e, singleton
cluster) will be stored in the DCC Index. Moreover, throwing DCCs of singleton clusters from
the buffered set back into the pond of indexed negative combinations also results in more small
DCCs in the index. However, this is less of a problem as those DCCs have correlations close to
the threshold which makes them likely to enter Rk+b again in the future, for which they need to
be broken down anyway. Still, recall from Section 4.3.4 that the average size and total amount of
DCCs in the index negatively impacts the algorithm’s performance. Therefore, we should try to
limit this impact by carefully choosing b, and optimizing the parameters of CD.

Another way to battle this phenomenon is to attempt to keep DCCs in their original ’unbroken’
state in Rk+b while still making inferences on the location of their materializations in the buffer
and top-k set. Unfortunately, prototypes of solutions all showed that the cost of this concept did
not outweigh the benefits.

Multivariate Correlation Discovery in Streaming Data 31

Chapter 5

CDHybrid

The following chapter addresses the sustainability of CDStream’s performance over time, and
argues that there are certain scenarios that may jeopardize the performance short-term and worsen
the efficiency of the index. To battle this, we propose an extension to CDStream which enables
it to adapt to anomalous behavior of in streams. Similar to the previous chapter, we start by
discussing the algorithm’s motivation and general idea, followed by in-depth descriptions of each
of its components.

5.1 Motivation

Following from the cost-benefit analysis in Section 4.3.4, we expect CDStream to outperform CD
in situations where the amount and significance of updates is small. This involves the majority
of the applications we focus on, which generally have no drastic changes in the data, and data
arriving at reasonable velocities. However, at sudden events, the overhead of CDStream can grow
excessively for a few epochs, potentially leading to data congestion issues. Think of situations like
prominent business people tweeting about certain crypto-currencies [1], which can cause prices to
behave in odd ways, disturbing commonly stable correlation patterns. During these periods, it
is likely that many DCCs need to be reconsidered and broken (i.e., splitting clusters), which is
expensive and not good for the state of the DCC Index. Therefore, we might want to run CD
instead during this time, as it is invariant to arrival significance, which may cause it to temporarily
outperform CDStream. Note again that this only happens when the overhead of maintaining the
index is larger than the pruning power one gains from it.

It is likely that after this period, correlation patterns grossly return to the way they were. If we
freeze the state of the DCC Index during these periods, we might be able to maintain some DCCs
in their original state, while they would have been broken down if CDStream was kept running.
This is favorable as we know from the cost analysis that relatively larger DCCs should result in
better performance. In case the correlation patterns do not go back to their previous state, we
will at least delay the process of reconsidering impacted DCCs to a period of less arrivals or less
significant arrivals. This way, we have some extra time on our hands to do some repair work,
having to worry less about data congestion issues. The nature of this repair work will become
apparent in later sections.

In this chapter we present CDHybrid, an algorithm that orchestrates CD and CDStream,
transparently managing the switch between the two algorithms based on the properties of the
input stream. This process involves (1) making an intelligent decision on which algorithm to run,
and (2) efficiently switching to the another algorithm if strategies have changed, both of which
are not trivial. The following subsection describes our solutions to the two issues in-depth.

32 Multivariate Correlation Discovery in Streaming Data

CHAPTER 5. CDHYBRID

5.2 Algorithm selection

To decide between CD and CDStream, CDHybrid needs to estimate the cost of each approach
for handling each batch. As discussed before, the cost of CDStream is mainly dependent on the
state of the DCC Index (i.e., amount and size of stored combinations), and the significance of
the batch. Therefore, a good predictor for the cost would be recent processing times for similar
batches. A simple measure of batch similarity is the number of updates in the batch (assuming
time-based batching). The cost of CD is expected to be more stable, making the overall average
processing time a good cost predictor for that algorithm. CDHybrid accounts for both factors by
employing online linear regression to model the relationship between the number of updates, and
the execution time of each algorithm. Consider the model function

c = α+ βB

which describes a line with slope β and intercept α, mapping the amount of updates B to an
execution time c. Training of the model involves finding estimated values α̂ and β̂ for the coeffi-
cients which would provide the ’best’ fit in some sense for the data points. In this work, the best
fit will be understood as in the least-squares approach: a line that minimizes the sum of squared
residuals.

CDHybrid trains two of these models (i.e., one CD and one for CDStream) in order to estimate
the cost of each algorithm at the start of an epoch. Initial data is gathered for the models by
running a brief training or warm-up period at the initialization of CDHybrid, testing out the
performance of the two algorithms for a couple of epochs. During this period, CDHybrid collects
statistics on the observed arrival count and execution time.

We will show how the coefficients of a simple linear regression model can be estimated and
maintained in constant time and space. This will enable us to continue training the models after
the training phase with negligible overhead costs.

Given a sample of values for c and B of size T , simple linear regression offers elegant expressions
for the estimates of α and β which minimize the sum of squared residuals [19];

α̂ = ȳ − (β̂B̄),

β̂ =

∑T
i=1(Bi − B̄)(yi − ȳ)∑T

i=1(Bi − B̄)2

=
sB,c
s2B

where:

B̄, c̄ = the sample average of B and y , respectively
sB,c = sample covariance of B and c
s2B = sample variance

Note that the equations include the same statistics used in the computation of pairwise correl-
ations. We previously showed how these statistics can be incrementally updated. However, this
situation is slightly different as these statistics span an ever-increasing period while the statist-
ics used for pairwise correlations consider the values inside a sliding window. Still, the sample
statistics that make up the estimators can be incrementally updated in a similar way;

B̄t+1 = B̄t +
Bt+1 − B̄t
t+ 1

s2(B,c),t+1 = s2(B,c),t +

t
t+1 (Bt+1 − B̄t)2 − s2(B,c),t

t+ 1

s(B,c),t+1 = s(B,c),t +
t
t+1 (Bt+1 − B̄t)(ct+1 − c̄t)− s(B,c),t

t+ 1

Multivariate Correlation Discovery in Streaming Data 33

CHAPTER 5. CDHYBRID

By only storing these intermediate statistics and updating them at the end of an epoch, we can
continuously train our cost estimators.

The two estimators are used by CDHybrid at the start of every epoch (after the warm-up
period) to estimate the cost of each algorithm, given the number of updates in the batch that
just arrived. CDHybrid then chooses the algorithm that minimizes the expected cost to handle
the batch of updates. Note that the cost of CD is estimated using the same model function as
for CDStream. This implies that the amount of updates is also considered in the cost estimation
of CD, even though the algorithm’s performance is expected to be uncorrelated with this factor.
While the value of β for CD’s regressor is therefore likely to be around 0, we allow the model to
take the factor into account in case our assumptions on CD are incorrect.

5.3 Switching between algorithms

Switching from CDStream to CD is fairly trivial. It mainly involves preparation of data struc-
tures which aid the (potential) switch back to CDStream in the future. After the selection for
CD, we cache the current results of CDStream (referred to as RCDStream) and stop maintaining
the index. Furthermore, we also cache the state of the pairwise correlations in case changes in the
correlations of extrema pairs need to be considered. This applies to cases where a vector in the
extrema pair receives an update, and its validity is checked by analyzing the correlation’s direction
of change (Related to line 8 of Alg. 2). After these caches CDHybrid transitions to running CD,
which involves updating streams and passing them to CD for producing the result RCD.

Switching back from CDStream to CD is less trivial. Since the DCC Index was not updated
for some time, we need to synchronize it so the state of the DCCs (i.e., positive or negative)
conforms with the new correlations. This can be done through a full re-initialization or by updating
the original DCCs to match the current state. The optimal strategy depends on the distance
between the state of correlations before and after the period of CD. For simplicity, we will assume
that correlation patterns go back to the way they were after an anomalous period, limiting the
discrepancy between these two states. Therefore, we go with maintenance of the index instead of
replacement.

There are multiple ways we can update the index to the new state. A naive approach would be
to iterate over all DCCs, update their bounds and break them down if necessary. This approach
is expensive, and requires all the work to be done within one epoch, which may delay updates on
the result set. Furthermore, it might involve a lot of unnecessary checks on DCCs which remained
unchanged and/or do not impact the result set. We instead use a lazy approach which focuses
only on those DCCs that pose a threat to the correctness of the result set. We first compute the
symmetric difference ∆ between RCD and RCDStream. Any result r contained in ∆∩RCDStream
is translated to a negative decisive combination, whereas any r contained in ∆ ∩ RCD leads to a
new positive decisive combination. These new combinations are added in the index.

Example. If we find a vector combination (v1, (v2,v3)) in RCD but not in RCDStream, we create
an artificial cluster combination ({v1}, ({v2}, {v3}) and store it in the index as a positive DCC
(object i∗ in Fig. 5.1). Note that this action only accounts for cluster combinations in the index
with materializations that actually changed state during the freeze. By artificially adding those
combinations to the index we make sure future changes are detected, which would have been missed
otherwise as their original DCCs are still indexed by their old extrema pairs. In our example, this
implies that there may still exist a cluster combination ({v1,v5,v6}, ({v2}, {v3,v4})) in the index,
that is monitored as a negative DCC (object i in Fig. 5.1). These ’outdated’ DCCs can be updated
in a lazy manner, reconsidering them when the old extrema pairs are violated. This will cause the
DCC to break, and the algorithm will try to add/remove some of its materializations to/from the
result set. These materializations will already be in ∆, and will have been added to the index as
an artificial DCC. In these scenario’s we will prioritize the original DCC and delete the artificial
DCC from the index. This involves process involves iterating over the symmetric difference before

34 Multivariate Correlation Discovery in Streaming Data

CHAPTER 5. CDHYBRID

1−1

a
b

c
d

fe
g

h
n
om

l
k
j

τ

i

neg. indexed DCC

pos. indexed DCC

artificial DCC

Stage 0: frozen index

Stage 1: add artificial DCCs

RCD,t=1 RCDStream,t=1

j
l m
n o
i*

Δi* k

j
l m
n o

k

a
b

c
d

fe
g

h
n
om

l
k
ji

i*k*

a
b

c
d

fe
g

h
n
om

l
k
jp

k*

Stage 2: update at i,

break i to p and q, remove i*
q

Figure 5.1: Visualization of lazy updating of DCCs in CDHybrid

adding/removing one or more vector combinations from the result set. We make sure that this is
done at most once per DCC.

Artificial DCCs are effectively temporary solutions to guarantee correctness while lazily up-
dating decisive combinations. There still exists an edge-case where an artificial DCC has ’moved
to the same side’ as its original DCC before it is reconsidered. This causes the algorithm to fail in
identifying the artificial DCC, allowing it to remain in the index. We cover this case by retaining
∆ and labeling artificial DCCs to notice when this happens. If this happens, we still delete the
artificial version as we prioritize larger DCCs.

The lazy approach of updating the DCC Index after a switch to CDStream requires significantly
less work than the naive approach (which involves reconsidering all DCCs in the index). Still, it
does add some switching cost to the algorithm. This cost is amortized through multiple epochs,
which guards the update frequency of the result set short-term. To prevent switching costs from
influencing the predictions on algorithm execution times, we refrain from updating the regression
model during a short period after any switch.

Multivariate Correlation Discovery in Streaming Data 35

Chapter 6

Evaluation

The following chapter analyzes the performance of CDStream in different situations. The purpose
of the experiments was threefold: (a) to assess the scalability and efficiency of our methods, (b)
to compare the ’maintenance’ approach of CDStream with repeated execution of CD, and (c) to
investigate opportunities for improvement.1

Before discussing the results, we present the experimental set-up, including description of
the used datasets. Then, we discuss the results of the experiments one-by-one, starting at the
evaluation of CDStream, ending at the evaluation of CDHybrid.

6.1 Experimental set-up

Multiple real-world datasets from different contexts were used for our experiments:

• Stock. Intraday tick data from the New York Stock Exchange (NYSE) including prices and
quantities of individual trades taking place at February 13th 2009. The dataset considers
trades at millisecond-level granularity for all stocks listed on NYSQ, AMES, NASDAQ, and
SmallCap issues. During the peak hours, there are hundreds of trades for each stock in a
second. Each stock had its own update frequency, with averages ranging from 10 msec to 1
sec. All prices were normalized with log-return normalization, as is standard in finance. This
involves measuring the change in price from one point to another, and taking the natural
logarithm of that value. The dataset was offered by Wharton Research Data Services [38],
and is only available for partners of Wharton. The dataset was also used by Zhu et. al for
their evaluation of StatStream [49].

• ISD. Segment of an overarching dataset from the National Centers for Environmental In-
formation called the Integrated Surface Dataset (ISD) [37]. ISD includes worldwide surface
weather observations from over 35,000 sensors, spread over the globe. Sensors measure a
wide range of parameters such as atmospheric pressure, temperature, winds, ocean waves,
and sea level pressure. For our experiments we use the measurements of two parameters; sea
level pressure (SLP) and atmospheric temperature (Temp). We only consider measurements
collected throughout the year 2000 by a diverse selection of sensors. Measurements were of
an hour-level granularity with sensors having variable update frequencies. Pre-processing
involved removing the sensors that did not have any arrivals for more than five consecutive
days. This resulted in a total of 1898 available time-series of SLP data, and 2927 time-series
with Temp data.

• Crypto. The Crypto dataset contained hourly closing prices of 7075 crypto-currencies
between April 14, 2021 and July 13, 2021. Although currencies had a minimal update fre-

1We acknowledge that it would be best to compare CDStream to current state-of-the-art algorithms for mul-
tivariate correlation detection over streams. However, as noted earlier, these algorithms do not yet exist. Therefore,
we deem CD as the state-of-the-art algorithm closest to our problem context.

36 Multivariate Correlation Discovery in Streaming Data

CHAPTER 6. EVALUATION

quency of one hour, the data was of minute-level granularity, and arrivals took place through-
out the whole hour. Currencies launched during the time span of the dataset were filtered
out, resulting in 3937 time-series with a maximum of 2160 observations each. With crypto-
currency prices being effectively financial asset data, further pre-processing was identical to
that of the Stock dataset. Data was retrieved through the CoinGecko API [6].

• fMRI Dataset containing functional MRI data of a person watching a movie, from the
Naturalistic Neuroimaging Database of OpenNeuro.org [39]. The original data was already
pre-processed by the owners for voxel-based analytics. This involved time-alignment of time
series and normalization by 3-dimensional de-trending. We further pre-processed the data by
mean-pooling with kernels of 2x2x2, 3x3x3, 4x4x4, 6x6x6 and 8x8x8 voxels, each representing
the mean activity level at a cube of voxels. This was done in order to create meaningful
subsets of the time series of sizes 237, 509, 1440, 3152, and 9700. Time series with constant
activity level (i.e., variance equal to zero) were also removed. The resulting time series
covering a period of 1.5 hours with data of second-level granularity. Due to the original pre-
processing of the owners, time series are synchronized, meaning that every stream receives
an update every second.

Previous works already demonstrated the usefulness of discovering correlations and/or mul-
tivariate correlations, on many of the above data types, e.g., [2, 3, 25, 49]. However, most of
the above data was previously used for evaluation of one-shot algorithms, and not to simulate
streams (excluding the stock-tick dataset). We acknowledge that datasets of second- to hour-level
granularity are less applicable for evaluating algorithms that ought to handle data streams with
millisecond velocity. Unfortunately, no such applicable datasets are openly available, to the best
of our knowledge. Therefore, the bulk of the evaluation will be conducted with the Stock dataset,
using the others solely to assess the context sensitivity of the algorithm. An overview of the data-
sets can be found in Table 6.1, including the default parameters used to simulate their streams.
Default values for τ and δ were chosen for each dataset such that it resulted in a reasonable result
set size (below 10k) for mcsize(1, 2) with default n.

6.1.1 Technicalities

To generate the streams from our datasets, we initialized sliding windows on the head of the
time series, and fed the remaining values in a priority queue indexed by their timestamps. After
completion of an epoch with a time-based model, a new batch was created by collecting all data
from the queue indexed up to the next timepoint. In case of an arrival-based model, arrivals were
read from the queue until a desired amount was reached. Sliding windows were moved based on
the amount of simulated time passed (i.e., timestamps of data).

We evaluated the performance of CDStream by using both CDStream and CD (without incre-
mental updates) to process batches, measuring the runtime. The primary performance indicator
we use is average update time, which is the time taken to fully update the result set for a batch
of updates (including sliding of windows and updating statistics). Experiments were conducted
for a variety of query parameters to observe potential performance dependencies. Performance
of CDHybrid was evaluated by simulating a common stream of arrivals followed by a period of
impactful updates, running all three algorithm variations to analyze performance and evaluate the
algorithm selection method of CDHybrid. The high-impact period was simulated by artificially
increasing the batch-size for a certain time span (using a time-based batching model). Basic win-
dow sizes were decreased during those periods such that the ratio with the batch-size remained
constant, preserving correlation quality. Batch-sizes were increased maximally, effectively having
to set bbw to 1. For example, for the Stock dataset, the timepoint value was set to 1000 during
this period. Mind that this implies sliding windows are slid at every epoch. In contrast to other
experiments, where the Stock dataset is used by default, the evaluation of CDHybrid focuses on
the results on Crypto. This has to do with the fact that switching to CD at anomalous times is
not always relevant for all datasets (as shown in Section 6.3).

Multivariate Correlation Discovery in Streaming Data 37

CHAPTER 6. EVALUATION

Dataset Characteristics Default parameters

Time-
series

Time
span

n
Time-
point∗

bbw w τ δ
Digest
agg.

Digest
first val.

Epochs

Stock 1906 8h 1000 1msec 1000 (1sec) 3600 (1h) 0.8 0.05 sum 0 5000 (10sec)
SLP 1898 1y 1000 1h 12 (0.5d) 180 (90d) 0.99 Irred avg last avg. 720 (30d)
Temp 2927 1y 1000 1h 12 (0.5d) 180 (90d) 0.99 Irred avg last avg. 720 (30d)
Crypto 5342 90d 1000 1min 60 (1h) 216 (9d) 0.8 0.05 sum 0 1440 (1d)
fMRI 9700 1.5h 1440 1sec 1sec 1800 (30min) 0.9 0.05 last last value 1200 (20min)
* I.e., the time-granularity of the data, effective epoch-size.

Table 6.1: Dataset overview and configurations

Runtimes for epochs with no arrivals are also considered when computing average processing
times, even though runtime is close to zero then, as they are relevant w.r.t. potential data
congestion issues. The reported results correspond to averages after 10 repetitions. All experiments
were executed on a server equipped with a 24-cores Intel Xeon Platinum 8260 Processor, and
400GB RAM.

6.2 CDStream evaluation

The following section discusses the effect of query parameters on the performance of CD and
CDStream, and their ratio. Each experiment will focus on the impact of one parameter, by varying
that parameter and keeping the others at their default value. Experimental parameters can be
found in Table 6.2, with default values presented in Tables 6.1 and 6.2. Results of experiments
will be discussed one by one, evaluating CDStream on three main aspects; (1) scalability and
long-term performance, (2) prevention of data congestion (i.e., ability to handle streaming data),
(3) relationship to CD. The same holds for the evaluation of CDHybrid.

6.2.1 Effect of correlation pattern and number of streams

The first experiment assessed the scalability of CDStream by measuring the mean processing time
per batch for different correlation patterns, for subsets of the Stocks dataset ranging from 200 to
1900 randomly chosen time-series. Figure 6.1 shows that CDStream is significantly more efficient
than CD for all correlation patterns, requiring fractions of milliseconds - generally several orders
of magnitude less than CD. Consequently, CDStream’s average runtime stays sub-ordinate to the
batch-size up to n = 500,mcsize(1, 3), while CD never manages this. When average runtimes
exceed the inter-arrival time (i.e., batch-size, shown with black dotted line in Fig. 6.1), arrival
overflow will occur. In our context, we call this data congestion. These issues can be battled
by increasing the batch-size (i.e., number of updates in arrival-based batching, time-period in
time-based batching), allowing the algorithm to obtain efficiency gains from handling a bigger
batch of arrivals. This strategy will work best for CD, as it is practically invariant to the amount
of updates. In any way, increasing the batch-sizes implies the result set is updated at a slower

Parameter Values
Dataset Stock, SLP, Temp, Crypto, fMRI
k 1000, 2000, 3000, 4000, 5000
Corr. pattern mcsize(1,2), mcsize(1, 3), mcsize(2, 3)
Vectors 200, 500, 1000, 1500, 1900
Batch Model Time-based, Arrival-based
Timepoint 1, 10, 50, 100, 200, 500, 1000
Batch size∗ 100, 200, 400, 800, 1000, 2000, 4000, 8000, 16000, 32000
Query type Threshold, Top-k
τ 0.6, 0.7, 0.8
δ None, Irreducibility, 0.05, 0.10, 0.15

*For arrival-based batching

Table 6.2: Experimental parameters (default values in bold)

38 Multivariate Correlation Discovery in Streaming Data

CHAPTER 6. EVALUATION

200 500 1000 1500 1900 200 500 200
Number of vectors

1e-5
1e-4
1e-3
1e-2
1e-1
1e0

Ru
nt

im
e

(s
ec

on
ds

)

mcsize(1, 2) mcsize(1, 3) mcsize(2, 3)
Batch size
CD
CDStream

Figure 6.1: Effect of dataset size and correlation pattern

rate, which may delay the identification of significant events. Therefore, we can conclude that
CDStream is able to offer high refresh rates for higher complexities, making it a more attractive
streaming algorithm.

Also note that, even though the number of comparisons increases at a combinatorial rate
with the number of time-series, execution time grows at a substantially slower rate. This can be
attributed to the grouping techniques inside the DCC Index, which effectively reduces the work
for processing each update. The difference between the average runtimes of CD and CDStream
becomes smaller for larger correlations patterns, such as mcsize(2, 3). Most likely, this has to do
with the fact that large correlation patterns result in more DCCs with identical extrema pairs (i.e.,
more DCCs in same groups). Consequently, the violation of an extrema pair leads to relatively
more DCCs that have to be checked, which is expensive. Variance of CDStream’s runtime also
seemingly increases as patterns become larger. This might be attributed to the fact that handling
arrivals become more expensive, so the differences between epochs with and without arrivals
become bigger.

Lastly, note that experiments are not shown for values of n > 500 for larger correlation pat-
terns. This was because machine resources could not handle the memory complexities for these
configurations, related to storing and indexing DCCs. From this we can conclude that space com-
plexity it the limiting factor of CDStream. In contrast, CD was able to handle these complexities
on the same machine, as it does not require to store DCCs (only the result set). Therefore, it can
be used as a replacement for CDStream when answering such queries.

6.2.2 Effect of batch-size (time-based)

Figure 6.2a plots the average processing time per batch for varying timepoint values, i.e., the
batch-size. Similar to the experimental setup of CDHybrid, bbw is decreased as the timepoint value
increases, such that their ratio remains constant. This is done to roughly preserve the meaning of
correlations among different batch-sizes. Unfortunately, this also limits us to a maximum batch-
size of 1000. Results for batches with more arrivals are discussed in the following subsection.

As predicted, we see that the runtime of CD is invariant to the timepoint value, and thus the
amount of arrivals in a batch. In contrast, CDStream’s runtime seems to increase linearly with the
batch-size. This increase was actually expected to be sub-linear, as it was reasoned that a growing
batch size may increase the probability that some vectors receive multiple updates in the same
batch. In this case, updates would be aggregated2 potentially cancelling each-other out. This
would imply that doubling the batch size would roughly halve the time required for processing a
single update. However, this does not seem to happen for this range of batch sizes. We conclude
from this that CDStream has a relatively fixed processing time per update, meaning that one is
free to choose the values for timepoint and bbw that leads to the desired update rate of results.
This observation partly lead to the choice of 1 msec as the default batch-size, as higher refresh
rates are generally better for contexts where event reaction-time is key.

Despite this linear increase in runtime, CDStream outperforms CD for all batch-sizes. However,
one might argue that the lines will intersect if the batch-size is increase further. This hypothesis
was rejected by the experiment on the arrival-based batching model (Fig. 6.2b), discussed shortly.

2Within-batch aggregation of updates is done with the data’s default aggregation method.

Multivariate Correlation Discovery in Streaming Data 39

CHAPTER 6. EVALUATION

1 10 50 100 200 500 1000
Timepoint (milliseconds)

1e-4

1e-3

1e-2

1e-1

1e0

Ru
nt

im
e

(s
ec

on
ds

)

CD
CDStream

(a) Effect of batch size for time-
based model

0.1 0.2 0.4 0.8 1.0 2.0 4.0 8.0 16.0 32.0
Batch size / n (#arrivals/n)

10 3

10 2

10 1

Ru
nt

im
e

pe
r

ar
ri

va
l (

se
c)

CD - Stock
CDStream - Stock

CD - Crypto
CDStream - Crypto

(b) Effect of batch size for arrival-based
model

1000 2000 3000 4000 5000
topK value (k)

10 4

10 3

10 2

10 1

100

Ru
nt

im
e

(s
ec

on
ds

)

CD
CDStream

(c) Effect of k

Figure 6.2: Effect of query parameters on performance of CDStream

Lastly, note that both CD and CDStream have significantly smaller runtimes for a batch-size
of 1 msec. This is due to the increased amount of epochs without any arrivals, resulting in a
runtime of 0, which skews the average. Nevertheless, results are still valid and make a case for
choosing the smallest batch-size possible.

6.2.3 Effect of batch-size (arrival-based)

The next experiment assessed the impact of batch-size when using an arrival-based batching model
for both the Stocks and Crypto datasets. This model allows us to consider situations with more
arrivals. Fig. 6.2a plots the average processing time per update, for varying batch sizes and for
both datasets. The batch size (X-axis) is presented as a multiplicative factor on the number of
considered streams n in each dataset (n = 1000). The results show that CDStream’s runtime per
arrival progressively decreases as the batch size increases. This implies that the initial expectation
that CDStream’s runtime increases sub-linearly still seems to be (partly) correct. Consequently,
the batch size offers a tunable tradeoff between the algorithm’s throughput and update rate of
the results: increasing the batch size increases the efficiency, but also reduces the freshness of the
results.

The relationships between runtimes and batch sizes appears to hold for both datasets. However,
for Crypto, CD starts to outperform CDStream around a batch size of 600. This confirms the
observation from Chapter 5 noting that running CD might be more efficient in times of highly
significant updates, which lead to the development of CDHybrid. We further hypothesize from
this that the relationship between CD and CDStream is context-dependent, but the effect of
query parameters on CDStream’s performance remains fairly constant. This hypothesis is further
assessed in subsection 6.2.5

6.2.4 Effect of k

Figure 6.2c shows the average processing times for a top-k query mcsize(1, 2), with different values
of k. We see that processing time for both algorithms increases with k. In CD, execution time
grows almost linearly with k (from 60 to almost 600 msec) whereas for CDStream the time increases
by roughly a factor of two for the same values. This discrepancy is attributed to the fact that
CDStream only maintains the top-k solutions, already having a good estimate for the threshold
of the top-k highest correlation from previous runs, whereas CD starts each run from scratch.
Furthermore, CDStream’s performance is negatively correlated with the value of k as the preferred
size of the buffered result set was set as a multiple of k. Consequently, the cost of extracting the
result set from the buffered set scales linearly with k.

Also note that CDStream’s performance for top-k queries is generally worse compared to the
average runtime for threshold queries. This is due to the fact that top-k prevents CDStream from
pruning positive DCCs, as the (buffered) result set needs to be sorted and maintained at each
non-empty batch. As a result, the complexity of top-k is effectively the same as that of threshold
queries, with some additional overhead. However, this overhead is not excessive.

40 Multivariate Correlation Discovery in Streaming Data

CHAPTER 6. EVALUATION

Dataset
Avg.
arrivals

Avg.
results

Avg. runtime∗

CD
Avg. runtime∗

CDS∗∗ (% of CD)
Avg. time∗ per
arrival - CDS

Weighted Avg.
DCC checks∗∗∗

Stock 7.486 6169 1.478e-1 1.301e-4 (0.10%) 1.74e-5 5.52e3
SLP 106.22 5657 5.883e-1 1.049e-1 (17.83%) 9.88e-4 1.53e5
Temp 752.03 3803 7.230e-1 3.907e-1 (54.05%) 5.20e-4 1.85e5
Crypto 17.16 8790 1.417e0 9.574e-2 (6.76%) 5.58e-3 6.61e6
fMRI 1440.0 1948 1.611e0 9.662e-1 (60.00%) 6.71e-4 8.94e5

* Runtime in seconds
** CDStream
*** Average number of reconsidered DCCs, weighted by the #streams in the DCC

Table 6.3: Effect of dataset on CD and CDStream

For CD the relation between performance and query types is opposite; CD’s performs better on
top-k queries (for this parameter configuration). This can be attributed to the fact that the value
for k is significantly smaller than the average amount of results of a threshold query with default
parameters. Consequently, the top-k highest correlation lies higher than τ = 0.8, enabling CD to
prune more comparisons provided that it is able to rapidly increase its intermediate correlation
threshold.

6.2.5 Effect of dataset

Table 6.3 presents the results of threshold queries on different datasets using the parameters
configuration from Table 6.1. A general observation is that all statistics differ significantly between
datasets, except for result set size and runtime of CD, which are fairly constant. The difference in
average arrivals per epoch can be attributed to the diversity in time-granularities between datasets.
Stock logically has a relatively small number of arrivals per epoch, as the timepoint size is set to
only one millisecond. We conclude from the average arrival count that every stock has around 7.486
trades per second, resulting in a relatively high level of aggregation within basic windows. This
is no issue considering the aggregation method; summing logreturns which effectively computes
the change in price occurring within the basic window span. No information is lost this way.
Both weather datasets have hour-level granularity, so the arrival rates tell us that sensor for sea
level pressure measure once every 10 hours, and temperature sensors measure at a near hourly
rate. The low arrival rate for Crypto can be explained by the fact that data is of minute-level
granularity while considering currencies that are updated at an hourly rate. As a result, a single
epoch contains updates for only a small subset of the currencies. Put differently, each stream has
only one update per hour, but updates are spread over this hour. Recall from earlier that fMRI
was pre-processed by the original authors, resulting in a global update model. This reflected by
the arrival rate, being equal to n for that dataset. Result set sizes are very similar, as this was
done by design from selecting the values for τ and δ to facilitate fair comparison between datasets.

Considering the average runtimes per batch, we see that both CD and CDStream have runtimes
sub-ordinate to the epoch-sizes for all datasets (i.e., the time between two batches of arrivals),
with the exception of CD for Stock and fMRI. More important, CDStream outperforms CD on
all datasets, concluding that our methods are robust to different data contexts. The difference in
runtime does vary heavily between datasets. Particularly, we see that CDStream performs best
in situations where the number of arrivals is relatively small, which makes sense considering the
difference in approach. Weighted average DCC checks of CDStream serves as good a indicator
of arrival significance. Recall that arrival significance is defined as the extend in which new data
violates existing decisive combinations, i.e., how many prior correlation patterns are disrupted.
When arrivals disrupt more prior correlation patterns, more DCCs are violated, which means that
maintaining the DCC Index requires more (computational) effort. We see that this statistic is
also not constant over datasets. CDStream requires relatively the most amount of time to process
updates on Crypto, which is positively correlated with the amount and size of the reconsidered
DCCs. A reasonable explanation for this observation is that Crypto markets are known to be very
volatile (i.e., often experience period of unpredictable, and sharp, price movements), and updates

Multivariate Correlation Discovery in Streaming Data 41

CHAPTER 6. EVALUATION

Runtime CD∗ Runtime CDStream∗

δ/τ 0.6 0.7 0.8 0.6 0.7 0.8
None 4.02e-1 2.62e-1 1.68e-1 3.75-4 2.98e-4 0.87e-4
Irred. 3.21e-1 2.01e-1 0.88e-1 4.64-4 3.67e-4 1.31e-4
0.05 3.87e-1 2.55e-1 1.49e-1 4.32-4 3.43e-4 1.30e-4
0.10 3.25e-1 2.20e-1 1.08e-1 4.44-4 3.32e-4 1.23e-4
0.15 3.02e-1 2.12e-1 0.98e-1 4.36-4 3.31e-4 1.33e-4

* Average runtime in seconds

Table 6.4: Effect of τ and δ on CD and CDStream

Statistic Value (% of above)
Vector combinations 5.00e8
Total DCCs 7.12e6 (1.428%)
Avg. DCCs checked∗ 1.60e4 (0.022%)
Avg. impactful DCCs∗∗ 1.81e0 (0.113%)
Avg. DCC Size∗∗∗ 7.02e0
* Measured only over epochs with arrivals
** DCCs that affect the result set
*** Vectors involved in a DCCs

Table 6.5: Vector combinations examined
with CDStream on Stock dataset

are expected to be significant seeing that they encapsulate the market activity of an entire hour.

6.2.6 Effect of the correlation threshold and constraints

Table 6.4 shows the effect of τ and constraints (minimum jump and irreducibility) on CDStream’s
performance. We see that the absence of any additional constraint leads to better processing
times for CDStream. This is as expected, as additional constraints merely lead to additional
DCCs in the index, which leads to extra storage cost and more potential checks. When additional
constraints are in effect, the exact configuration (i.e., irreducibility or δ value) has a negligible
effect on the CDStream’s performance. This makes sense as it does not affect the number of
decisive combinations that need to be monitored.

In contrast, an increasing value of τ leads to better performance for both algorithms, as CD
is able to reach decisive combinations earlier. Specifically as the vast majority of the search space
is usually not strongly correlated, a higher τ leads to DCCs with clusters at higher levels in
the cluster tree, and thus overall larger and less DCCs. Besides, low τ leads to more positive
DCCs which may ought to be indexed on minimum jump factors for CDStream. Cost analysis in
Chapter 4 showed that both factors are favorable for CDStream’s performance. We thus conclude
that CDStream benefits from large τ and no additional constraints.

6.2.7 Long-term performance

The next experiment was aimed at measuring the sustainability of CDStream’s performance long-
term, also providing insights into the overall behavior of the processing time over individual epochs.
This was done by running CDStream for an extended period of 300,000 epochs, measuring the
processing times as well as statistics on the DCCs in the Index and how many were checked.
The results are shown through several sub-figures in Figure 6.3, focusing on both short-term and
long-term measurements.

Considering the short-term development of runtime in Fig. 6.3a, we immediately note that
there are three clear outliers, each at epochs which are multitudes of bbw. This makes sense as
these are the points where sliding windows are moved, resulting in a global update. Global updates
are significantly more expensive for CDStream, as they lead to many DCC checks and breaks. This
observation is again confirmed by Fig. 6.3b, where we see the total number of DCCs increasing in
a stepwise manner. In-depth analysis showed that these stepwise increases typically happen when
sliding windows are moved. We conclude from this that sufficient thought needs to go into selecting
the sizes of both basic and sliding windows. Small basic window sizes might be desired to limit the
level of aggregation within basic windows, but it may also lead to worse performance of CDStream,
as global updates occur more frequently. We further note that the runtime is positively correlated
with the number of arrivals, though difficult to see due to the outliers from global updates. This
is in line with earlier experiments. There also seems to be a small peak in runtime around epoch
700, which cannot be explained by a global update or a significant peak in arrivals. Analysis of
the run showed that this peak was due to garbage collection of the Java Virtual Machine (JVM).

Focusing on the long-term measurements in Figures 6.3b and 6.3c, we note that the number of
DCCs increases very fast in the earlier stages, converging later. Over the whole run, the number

42 Multivariate Correlation Discovery in Streaming Data

CHAPTER 6. EVALUATION

0 1000 2000 3000
Epoch

0

2.0e-2

4.0e-2

6.0e-2

Ru
nt

im
e

(s
ec

on
ds

)

Runtime #Arrivals

0

20

40

60

80

#
Ar

ri
va

ls

(a) Development of runtime and
arrivals (short-term)

0 1e-5 2e-5 3e-5
Epoch

5.0e2

10.0e2

15.0e2

20.0e2

25.0e2

#
D

CC
s

ch
ec

ke
d

Rolling avg. DCC checks (epochs=1000)
Rolling avg. DCC checks (epochs=10000)

Total DCCs

4.0e6

5.0e6

6.0e6

7.0e6

8.0e6

#
D

CC
s

(b) Development of DCCs (long-
term)

0 1e-5 2e-5 3e-5
Epoch

1.0e-4

2.0e-4

3.0e-4

4.0e-4

Ru
nt

im
e

(s
ec

on
ds

)

Rolling avg. runtime (epochs=1000)
Rolling avg. runtime (epochs=10000)

#Arrivals

0

50

100

150

#
Ar

ri
va

ls

(c) Long-term avg. runtime devel-
opment

Figure 6.3: Development of runtime and arrivals (long-term)

of DCCs roughly doubles, which may cause one to worry about the sustainability of CDStream.
Specifically, we concluded in the cost analysis in Chapter 4 that CDStream will suffer from a large
amount of small DCCs. The increase in DCCs tells us that DCCs are being broken (i.e., splitting
clusters), which leads to more DCCs of smaller size. However, we still do not conclude that the
sustainability of CDStream is jeopardized as the rolling average of DCC checks shows only a small
structural increase in checks. Additionally, the rolling averages of processing times in Fig. 6.3c
tell us that this does not necessarily lead to a structural increase in processing time. One might
still argue that even the long-term runs only span a period of 5 minutes, and that this structural
increase in runtime might come later. While being valid criticism, we argue that this is unlikely
to become a problem as the number of DCCs will probably continue to converge, stagnating this
structural increase in runtime. Furthermore, even if the runtime eventually increases to 1 msec
we can simply initialize the algorithm again, which will reset the DCCs in the index. Therefore,
we can conclude that our methods will work over the long term.

6.2.8 Pruning results

Table 6.5 presents a breakdown of the vector combinations pruned through the components of
CDStream. By using CD as an initialization algorithm, CDStream reasons about cluster combin-
ations instead of vector combinations, reducing the amount of objects to only 1.425% of the total
search space. Then, through the triggering functionality of the DCC Index, CDStream only checks
0.022% of those cluster combinations as a non-empty batch arrives. In other words, CDStream
effectively decreases the search space by six orders of magnitude. This observation explains the
results of the discussed experiments, and is the essence of what allows CDStream to handle ’real’
streaming data. However, also note that on average only 1.8 DCCs actually change the result set,
which is another three orders of magnitude less than what we check. We thus conclude that there
is still room for improvement in future work, focused on developing an algorithm with even higher
pruning power.

6.3 CDHybrid evaluation

Our final two experiments examined the ability of CDHybrid to switch between CD and CDStream
based on the stream properties. Recall from Section 6.1.1 that we simulated stream burst by
speeding-up the updates (switching the values for timepoint and bbw) around the middle of the
stream, for an eighth of the length of the run. For fMRI we multiplied the epoch- and basic
window size by 4 for the sake of experimentation, despite implying qualitatively worse correlations.
Furthermore, we ran a total of 240 epochs for all datasets except Stock, for which we ran a total
of 24000 epochs. The first 12.5% of the runs were reserved as warm-up time, in order to train the
runtime regressors of CDHybrid.

Figure 6.4a shows the average processing times per algorithm for all datasets (excluding warm-
up time). A more in-depth view of the behavior of the three algorithms is shown in Figure 6.4b,
plotting rolling averages of processing times for the last 5 batches throughout time. The right Y
axis shows the number of arrivals within each batch (i.e., epoch).

Multivariate Correlation Discovery in Streaming Data 43

CHAPTER 6. EVALUATION

Crypto fMRI Stock SLP Temp
Dataset

1e-2

1e-1

1e0

1e1

1e2

1e3

Ru
nt

im
e

(s
ec

on
ds

) CD
CDStream
CDHybrid

(a) Effect of dataset on CDHybrid.

0 50 100 150 200 250
Epoch

1e-2

1e-1

1e0

1e1

Ru
nt

im
e

(s
ec

on
ds

)

CD CDStream CDHybrid #Arrivals
(right y)

0

175

350

525

700

#
U

pd
at

es

(b) Efficiency of CDHybrid on Crypto

Figure 6.4: Performance of CDHybrid

The results on different datasets (see Fig. 6.4a) show that CDHybrid automatically chooses the
best approach, outperforming the other algorithms every time. In the case of Stock and SLP this
means that it does not switch at all, running CDStream during arrival wave as it still outperforms
CD then. The differences in performance for the Temp dataset are striking. Here, CDStream’s
runtime explodes during the arrival wave with excessive DCC breaks ruining the DCC Index. This
results in excessive processing times also after the arrival wave. Our observation from Chapter 5
is thus confirmed that freezing the DCC Index does only protect performance during anomalous
periods, it also improves the sustainability of the algorithm long-term.

Analyzing the development of runtimes and arrival rates for Crypto in Fig. 6.4b, we imme-
diately note the clear cyclical pattern in the number of arrivals. Apparently prices of crypto-
currencies are updated at a fixed rate, with arrivals uniformly distributed over the first ∼ 40
min of each hour, and no new arrivals for the remaining 20 min. The wave of arrivals starts at
epoch 120 and ends at epoch 150. We also observe that CDHybrid quickly switches to the best
method, outperforming the other algorithms. In the epochs following a switch to CDStream, the
cost of CDHybrid is marginally higher than CDStream that is attributed to the additional cost
for updated the outdated index. After some time CDHybrid’s performance is back in line with
CDStream, indicating that the process of updating the index after the switch is not expensive.
Also recall that part of this cost (for removing the expired decisive combinations from the index)
is amortized through a large number of epochs, due to the lazy updating algorithm discussed in
Chapter 5. Comparing CDHybrid to the non-adaptive algorithms, we see that CDStream suf-
fers from erratic update-times during the arrival wave, almost failing to remain sub-ordinate to
the batch-size at times. We thus conclude that it is sub-optimal at managing anomalous events.
However, also mind that CDStream’s high processing times are not solely caused by an increased
amount of arrivals, sliding windows are also moved at every epoch, which causes some overhead.
As expected, CD performance is uninfluenced by arrival rates.

44 Multivariate Correlation Discovery in Streaming Data

Chapter 7

Conclusions

Prior work has shown the relevance of correlation analysis for streaming data. While most work
on stream correlation discovery only concerns pairwise correlations, recent effort has shown the
potential of multivariate correlations to lead to new insights. Efficient algorithms have been
proposed to discover multivariate correlations, but they only focus on one-shot computations over
static data. The current work was aimed at developing an algorithm that would also work on
streaming data, as it may improve large-scale event monitoring systems.

Where prior stream correlation discovery solutions assume synchronous streams, we argued
that that assumption is somewhat crude and generally does not hold in applications relevant to
our context. Through the introduction of basic windows we proposed a method for handling
asynchronous streams over which meaningful correlations can be computed in an efficient manner.

When considering related work, we concluded that few techniques applied to our problem.
Most known streaming algorithms for pairwise correlations were extensions of fast one-shot al-
gorithms to streaming contexts. Though, none of these streaming algorithms could be extended
to multivariate correlations. Also, no existing one-shot algorithms for multivariate correlations
could be extended to our streaming setting. Affiliated work fortunately offered a novel one-shot
algorithm for multivariate correlations called Correlation Detective, that outperformed the prior
state-of-the-art. As it considered the same goals and assumptions as the current work, it served
as an ideal initialization algorithm of our solution.

We then proposed a solution called CDStream, which efficiently maintains the results of CD
through incremental updating of correlations, and construction of an index that allows quick
locating of impactful vector combinations. Cost analysis of the algorithm showed that cost is
heavily dependent on the amount and size of the elements in the index. This also determines the
algorithm’s pruning power, in combination with properties of the arriving data, and hyperpara-
meter values.

CDStream breaks down elements in the index as it queries it, theoretically increasing the cost
over time which arguably makes it an unsustainable approach. We thus proposed methods to
maintain and repair the index, in order to fight back against its degradation. These methods in-
cluded continuous re-clustering of streams and freezing of the index at anomalous events, resorting
to a repeated one-shot approach to continue reporting results.

Experiments showed that CDStream is able to handle streams with millisecond-level arrival
rates, and is robust to data from different domains. Processing times of batches turned out to
be strongly dependent on the amount of arrivals in the batch, and the occurrence of a window
slide. Although the latter resulted in much alterations to the index of CDStream, endurance runs
showed that degradation was limited and performance could be maintained long-term with the
proposed techniques.

Concluding, the proposed algorithm serves as the first-steps towards a streaming algorithm for
multivariate correlation discovery. Nevertheless, it still has its limitations which offers opportun-
ities for future work. The following sections briefly discuss those factors.

Multivariate Correlation Discovery in Streaming Data 45

CHAPTER 7. CONCLUSIONS

7.1 Limitations and future work

Due to time constraints, not all issues related to CDStream could be solved, and not all ideas could
be pursued. The following section addresses those issues, and provides suggestions for future work
tangent to the problem definition of this study.

Issue 1: Memory complexity The first thing that became apparent in CDStream’s evaluations
is that it is limited by its memory complexity, making it unable to handle many streams and
consider correlation patterns of high complexity (e.g., mcsize(2, 3)). Though the combinatorial
complexity of the problem means that finding correlations for n = 1000 and mcsize(1, 3) can
already be considered challenging, many of the datasets included significantly more time series,
which were not always manageable for CDStream. We therefore may argue that CDStream is not
applicable to situations of ’real’ big data (although that term is famously ambiguous), involving
10,000 to 100,000 streams. Future work should be focused on improving the memory complexity
of the current approach, or develop an alternative approach altogether that uses less storage.
Naturally, this will be challenging due to the inherently vast search space of the problem. Though
maybe techniques could be developed that reason about vector combinations without having to
store them, or a compressed representation of them (e.g., DCCs).

Issue 2: Absence of performance guarantees Although most experiments showed that CD-
Stream was able to process batches faster than they were coming in, there were also situations
where data congestion might have become an issue in the real world. For example, results on CD-
Hybrid showed that neither CD or CDStream reported average processing times under the batch
size when arrival rates were artificially increased (e.g., see results on Stock in Fig. 6.4a). Those
issues might be battled by increasing the batch size, but together with the absence of a formal
complexity analysis, our evaluation does not provide guarantees that CDStream or CDHybrid will
work that well in all situations. This makes it a relatively risky choice for implementing in real
world applications. Though, as there currently does not exist an alternative, the choice for CDHy-
brid is still better than no choice, even if it leads to relatively slow updates on the results. We may
complete formal complexity analysis of CDStream in future work, such that reliable performance
estimations can be offered based on data characteristics.

Issue 3: Caveats of using basic windows The introduction of basic windows and digests
enabled us to drop the common assumption of synchronized streams. However, the technique does
come with some limitations, most related to the quality (i.e., meaningfulness) of the correlations
they make up. For instance, one may argue that the computation of correlations over (online)
resampled time-series might lead to spurious relationships. This hypothesis is reinforced by the
clear changes in correlations after windows are slid. If (multivariate) correlations in data are
allegedly fairly constant over time, why does sliding of windows lead to so many breaks in DCCs?
The argument that correlations over basic windows may differ from correlations over the original
data (with missing value imputation) is true. However, computing correlations over artificially
synchronized streams is not necessarily better. They too lead to spurious relations when too many
values are imputed. The usage of basic windows with the correct aggregation method actually
results in original values having an increased impact on correlation values. As long as we keep
w large and bbw relatively small, the difference in correlations will be limited between the two
methods.

A second point of potential criticism is that there still exists some factor of time-misalignment
between the values over which correlations are computed, particularly between the running basic
windows. If one time-series s1 receives an update at timepoint t and another time series s2 does
not, the digest S2[L] will be outdated with respect to S1[L]. This will lead to different correlations
compared to if we forward-filled the last value of s2 and used averaging as an aggregation method.
However, this does not happen when we use sum or last-value as an aggregation method, and
updating averages with imputed values on itself is also questionable. Our method simply ensures
that we are not reconsidering the correlation between streams that all did not receive an update,
which is something related work does do. We thus argue that future work should be focused on

46 Multivariate Correlation Discovery in Streaming Data

CHAPTER 7. CONCLUSIONS

optimizing the handling of global updates with the current methods, instead of resorting back to
assuming synchronized streams.

Other suggestions for future work The following presents other suggestions for future work,
which are briefly discussed.

• Alternative correlation measures CDStream currently only supports the detection of
vector combinations with high multiple correlation. However, future research on extending
the current methods to alternative correlation measures such as Multipoles, Total Correla-
tion, and Canonical Correlation Analysis. This work would involve the extension of Correla-
tion Detective to supporting these measures, and analysis of the dependencies of correlation
bounds of cluster combinations, such that they can be indexed on those factors.

• Decaying window model Recall from Chapter 2 that there are several commonly used
temporal spans for computing statistics over streams. We chose to use sliding windows over
the landmark model and damped window model due to its generality and vast theoretical
background. However, the damped window model might be more applicable for financial
applications, as it weighs recent observations more heavily than old ones. In future work, we
could implement this model and analyze the differences in results with those of the sliding
window model. This implementation should not be difficult as the incremental updating of
statistics involves simply computing the weighted sum of the change in digest value and the
old statistic.

• Support of negative correlations Recall the notion in Chapter 2 that some applications
(additionally) require the result set to contain combinations of vectors with mc coefficients
lower than some threshold τ ∈ [−1, 1], or merely those with the lowest correlation. Along
with this notion, we argued that support of such thresholds would involve trivial modific-
ations to the presented theory and methods. Namely, if one looks to find all subsets of S
with an mc coefficient lower than some threshold τ ∈ [−1, 1], CDStream would simply have
to be configured such that positive DCCs are indexed on their UB instead of their LB, and
negative DCCs are indexed on their LB instead of their UB. As long as the value of τ is set
such that the result set size is comparable to the results reported in Chapter 6, CDStream
is expected to report similar results.
Support of both a lower and higher correlation threshold would involve indexing negative
DCCs on both their UB and LB. This modification is expected to worsen the performance
of CDStream somewhat, as negative DCCs will have to be checked more often.
Modifications to CD for such thresholds would only involve re-configuration of the constraints
used to determine the state of a cluster combination. For example, given we look to find
all subsets with a mc coefficient lower than some threshold τlower = −0.95 or higher than
some τhigher = 0.95, we would consider cluster combinations with both bounds above τhigher
or below τlower positive DCCs, those with bounds in [−0.95, 0.95] negative DCCs, and all
others indecisive. It would be interesting to see if our hypotheses on the performance of such
extensions are confirmed. Therefore, we leave the implementation of the above modifications
for future work.

• Case study The evaluation in the current study involves running our algorithms on sim-
ulations of streams originating from different domains. However, it would be interesting to
apply the methods to a real world application to see if it manages to process the data as well
as offer interesting insights. For example, we could implement the algorithms in flash-trading
applications and see if it is able to spot profitable opportunities that it would not be able to
identify without it.

Multivariate Correlation Discovery in Streaming Data 47

Bibliography

[1] Bitcoin falls after Elon Musk tweets breakup meme. https://www.cnbc.com/2021/06/04/

bitcoin-falls-after-elon-musk-tweets-breakup-meme.html, 2021. Accessed: 2021-07-
13. 32

[2] Saurabh Agrawal, Gowtham Atluri, Anuj Karpatne, William Haltom, Stefan Liess, Snig-
dhansu Chatterjee, and Vipin Kumar. Tripoles: A new class of relationships in time series
data. In Proceedings of the 23rd SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 697–706. ACM, 2017. 1, 2, 9, 13, 37

[3] Saurabh Agrawal, Michael Steinbach, Daniel Boley, Snigdhansu Chatterjee, Gowtham Atluri,
Anh The Dang, Stefan Liess, and Vipin Kumar. Mining novel multivariate relationships in
time series data using correlation networks. IEEE TKDE, 32(9):1798–1811, 2020. 1, 2, 37

[4] I. Antonioua, V. Ivanova, Va. V. Ivanovb, and P. V. Zrelova. On the log-normal distribution
of stock market data. 2015. 12

[5] Nurjahan Begum, Liudmila Ulanova, Jun Wang, and Eamonn Keogh. Accelerating dy-
namic time warping clustering with a novel admissible pruning strategy. Proceedings of the
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2015-
August:49–58, 2015. 13

[6] CoinGecko. Coingecko api. https://www.coingecko.com/en/api, 2021. Accessed: 2021-07-
13. 37

[7] Richard Cole, Dennis Shasha, and Xiaojian Zhao. Fast window correlations over uncooper-
ative time series. Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, (August 2017):743–749, 2005. 11

[8] Abhimanyu Das and David Kempe. Algorithms for subset selection in linear regression. In
Proc. 40th ACM Symposium on Theory of Computing, STOC ’08, page 45–54. ACM, 2008.
14

[9] Hoang Anh Dau, Nurjahan Begum, and Eamonn Keogh. Semi-supervision dramatically im-
proves time series clustering under Dynamic Time Warping. International Conference on
Information and Knowledge Management, Proceedings, 24-28-October-2016:999–1008, 2016.
13

[10] Simons Foundation. SPARK for autism. https://sparkforautism.org/portal/page/

autism-research/, 2021. Accessed: 2021-07-30. 1

[11] Simons Foundation. SPARK gene list. https://d2dxtcm9g2oro2.cloudfront.net/

wp-content/uploads/2020/07/13153839/SPARK_gene_list_July2020.pdf, 2021. Ac-
cessed: 2021-07-30. 1

[12] Pierre-Alexis Gros, Hervé Le Nagard, and Olivier Tenaillon. The Evolution of Epistasis
and Its Links With Genetic Robustness, Complexity and Drift in a Phenotypic Model of
Adaptation. Genetics, 182(1):277–293, 05 2009. 1

48 Multivariate Correlation Discovery in Streaming Data

https://www.cnbc.com/2021/06/04/bitcoin-falls-after-elon-musk-tweets-breakup-meme.html
https://www.cnbc.com/2021/06/04/bitcoin-falls-after-elon-musk-tweets-breakup-meme.html
https://www.coingecko.com/en/api
https://sparkforautism.org/portal/page/autism-research/
https://sparkforautism.org/portal/page/autism-research/
https://d2dxtcm9g2oro2.cloudfront.net/wp-content/uploads/2020/07/13153839/SPARK_gene_list_July2020.pdf
https://d2dxtcm9g2oro2.cloudfront.net/wp-content/uploads/2020/07/13153839/SPARK_gene_list_July2020.pdf

BIBLIOGRAPHY

[13] Tian Guo, Saket Sathe, and Karl Aberer. Fast distributed correlation discovery over streaming
time-series data. In Proceedings of the 24th ACM International on Conference on Informa-
tion and Knowledge Management, CIKM ’15, page 1161–1170, New York, NY, USA, 2015.
Association for Computing Machinery. 2, 6

[14] Daniel A. Handwerker, Vinai Roopchansingh, Javier Gonzalez-Castillo, and Peter A. Ban-
dettini. Periodic changes in fmri connectivity. NeuroImage, 63(3):1712–1719, 2012. 1

[15] H. Hasan Örkcü. Subset selection in multiple linear regression models: A hybrid of genetic
and simulated annealing algorithms. Applied Mathematics and Computation, 219(23):11018–
11028, 2013. 14

[16] Zhiyong Huang, Hua Lu, Beng Chin Ooi, and Anthony K.H. Tung. Continuous skyline queries
for moving objects. IEEE Transactions on Knowledge and Data Engineering, 18(12):1645–
1658, 2006. 3

[17] Wolfgang Karl Härdle. Applied Multivariate Statistical Analysis, pages 321–330. Springer,
2007. 2, 14

[18] W. Johnson. Extensions of lipschitz mappings into hilbert space. Contemporary mathematics,
26:189–206, 1984. 11

[19] J.F. Kenney and E.S. Keeping. Mathematics of Statistics, volume 3, chapter 15, pages 252–
285. NJ: Van Nostrand, Princeton, 1962. 33

[20] Chungho Lee and Incheon Paik. Stock Market Analysis from Twitter and News Based on
Streaming Big Data Infrastructure. (iCAST):312–317, 2017. 6

[21] Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. Mining of Massive Datasets.
Cambridge University Press, USA, 2nd edition, 2014. 11

[22] Xiang Lian, Lei Chen, and Bin Wang. Approximate Similarity Search over Multiple Stream
Time Series, volume 5005 LNCS. 2008. 6, 11

[23] Xiang Lian, Lei Chen, Jeffrey Xu Yu, Jinsong Han, and Jian Ma. Multiscale representations
for fast pattern matching in stream time series. IEEE Transactions on Knowledge and Data
Engineering, 21(4):568–581, 2009. 12

[24] Silvan Licher, Shahzad Ahmad, Hata Karamujić-Čomić, Trudy Voortman, Maarten J. G.
Leening, M. Arfan Ikram, and M. Kamran Ikram. Genetic predisposition, modifiable-risk-
factor profile and long-term dementia risk in the general population. Nature Medicine,
25(9):1364–1369, 2019. 1

[25] Stefan Liess, Saurabh Agrawal, Snigdhansu Chatterjee, and Vipin Kumar. A teleconnection
between the west siberian plain and the enso region. Journal of Climate, 30(1):301 – 315,
2017. 1, 37

[26] Jessica Lin, Eamonn Keogh, Stefano Lonardi, and Bill Chiu. A symbolic representation of
time series, with implications for streaming algorithms. Proceedings of the 8th ACM SIGMOD
Workshop on Research Issues in Data Mining and Knowledge Discovery, DMKD ’03, pages
2–11, 2003. 12

[27] Jessica Lin, Eamonn Keogh, and Wagner Truppel. Clustering of streaming time series is
meaningless. Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data
Mining and Knowledge Discovery, DMKD ’03, pages 56–65, 2003. 12, 15

[28] Myles E. Mangram. A simplified perspective of the markowitz portfolio theory. Global Journal
of Business Research, 7(1):59–70, 2013. 1

Multivariate Correlation Discovery in Streaming Data 49

BIBLIOGRAPHY

[29] Koen Minartz, Jens D’Hondt, and Odysseas Papapetrou. Multivariate correlation discovery
in static and streaming data. Technical report. Source. vi, vi, 2, 3, 15, 16, 17

[30] Ileena Mitra, Alinoë Lavillaureix, Erika Yeh, Michela Traglia, Kathryn Tsang, Carrie E.
Bearden, Katherine A. Rauen, and Lauren A. Weiss. Reverse pathway genetic approach
identifies epistasis in autism spectrum disorders. PLOS Genetics, 13(1):1–27, 01 2017. 1

[31] Douglas Montgomery. Applied statistics and probability for engineers. Wiley, Hoboken, NJ,
2011. 14

[32] Abdullah Mueen, Suman Nath, and Jie Liu. Fast approximate correlation for massive time-
series data. In Proc. ACM International Conference on Management of Data, SIGMOD ’10,
page 171–182. ACM, 2010. 10, 11, 22

[33] Ethan Namvar and Lawrence Harris. The Economics of Flash Orders and Trading. SSRN
Electronic Journal, pages 1–17, 2012. 3

[34] Hoang Vu Nguyen, Emmanuel Müller, Periklis Andritsos, and Klemens Böhm. Detecting
correlated columns in relational databases with mixed data types. In Proc. 26th International
Conference on Scientific and Statistical Database Management, SSDBM ’14. ACM, 2014. 2,
14

[35] Hoang Vu Nguyen, Emmanuel Müller, Jilles Vreeken, Pavel Efros, and Klemens Böhm. Mul-
tivariate maximal correlation analysis. In Proc. 31st International Conference on Machine
Learning - Volume 32, ICML’14, pages 775–783, 2014. 2

[36] Philon Nguyen and Nematollaah Shiri. Fast correlation analysis on time series datasets.
International Conference on Information and Knowledge Management, Proceedings, pages
787–795, 2008. 13

[37] National Oceanic and Atmospheric Administration. NOAA integrated surface dataset
(global). https://www.ncei.noaa.gov/access/search/dataset-search, 2021. Accessed:
2021-07-30. 36

[38] Wharton University of Pennsylvania. Wharton Research Data Services. https://wrds-www.
wharton.upenn.edu/, 2021. Accessed: 2021-08-25. 36

[39] OpenNeuro. Naturalistic neuroimaging database. https://openneuro.org/datasets/

ds002837/versions/2.0.0, 2021. Accessed: 2021-08-25. 37

[40] Örjan Carlborg and Chris S. Haley. Epistasis: too often neglected in complex trait studies?
Nature Reviews Genetics, 5(8):618–625, 2004. 1

[41] Odysseas Papapetrou and Minos Garofalakis. Monitoring distributed fragmented skylines.
Distributed and Parallel Databases, 36(4):675–715, 2018. 3

[42] Liudmila Ulanova, Nurjahan Begum, Mohammad Shokoohi-Yekta, and Eamonn Keogh. Clus-
tering in the Face of Fast Changing Streams, pages 1–9. 2016. 13

[43] VLDB. VLDB 2022 - 48th International Conference on Very Large Data Bases. https:

//vldb.org/2022/, 2021. Accessed: 2021-08-05. 3

[44] Satosi Watanabe. Information theoretical analysis of multivariate correlation. IBM Journal
of Research and Development, 4(1):66–82, 1960. 2

[45] Yingjun Wu, Jia Yu, Yuanyuan Tian, Richard Sidle, and Ronald Barber. Designing succinct
secondary indexing mechanism by exploiting column correlations. In Proc. International
Conference on Management of Data, SIGMOD’19, page 1223–1240. ACM, 2019. 1

50 Multivariate Correlation Discovery in Streaming Data

https://github.com/JdHondt/CorrelationDetective
https://www.ncei.noaa.gov/access/search/dataset-search
https://wrds-www.wharton.upenn.edu/
https://wrds-www.wharton.upenn.edu/
https://openneuro.org/datasets/ds002837/versions/2.0.0
https://openneuro.org/datasets/ds002837/versions/2.0.0
https://vldb.org/2022/
https://vldb.org/2022/

BIBLIOGRAPHY

[46] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and Ion Stoica.
Discretized streams: fault-tolerant streaming computation at scale. In Michael Kaminsky
and Mike Dahlin, editors, ACM SIGOPS 24th Symposium on Operating Systems Principles,
SOSP ’13, Farmington, PA, USA, November 3-6, 2013, pages 423–438. ACM, 2013. 16

[47] Tiancheng Zhang, Dejun Yue, Yu Gu, Yi Wang, and Ge Yu. Adaptive correlation analysis
in stream time series with sliding windows. Computers and Mathematics with Applications,
57(6):937–948, 2009. 11

[48] Xiang Zhang, Feng Pan, Wei Wang, and Andrew Nobel. Mining non-redundant high order
correlations in binary data. Proc. VLDB Endow., 1(1):1178–1188, 2008. 1, 2, 6

[49] Yunyue Zhu and Dennis Shasha. Statstream: Statistical monitoring of thousands of data
streams in real time. In Proc. 28th International Conference on Very Large Data Bases,
VLDB ’02, page 358–369, 2002. 3, 5, 6, 7, 10, 11, 36, 37

Multivariate Correlation Discovery in Streaming Data 51

Appendix A

Incremental updating of running
statistics on asynchronous streams

This appendix contains the full derivations for incremental updating of the running statistics
discussed in Chapter 4.
E [sx] can be incrementally updated as follows;

E [sx]t+1 =
1

w

L∑
i=L−w+1

S[i]

=
1

w

(
L−1∑

i=L−w+1

(S[i]) + S[L]t+1

)

=
1

w

(
L−1∑

i=L−w+1

(S[i]) + S[L]t − S[L]t + S[L]t+1

)

=
1

w

(
L−1∑

i=L−w+1

(S[i]) + S[L]t

)
+

1

w
(S[L]t+1 − S[L]t)

= E [sx]t +
1

w
(S[L]t+1 − S[L]t)

E
[
S2
]

can be incrementally updated as follows;

E
[
s2x
]
t+1

=
1

w

L∑
i=L−w+1

S[i]2

=
1

w

(
L−1∑

i=L−w+1

(
S[i]2

)
+ S[L]2t+1

)

=
1

w

(
L−1∑

i=L−w+1

(
S[i]2

)
+ S[L]2t − S[L]2t + S[L]2t+1

)

=
1

w

(
L−1∑

i=L−w+1

(
S[i]2

)
+ S[L]2t

)
+

1

w

(
S[L]2t+1 − S[L]2t

)
= E

[
s2x
]
t

+
1

w

(
S[L]2t+1 − S[L]2t

)

52 Multivariate Correlation Discovery in Streaming Data

APPENDIX A. INCREMENTAL UPDATING OF RUNNING STATISTICS ON
ASYNCHRONOUS STREAMS

E [sxsy] can be incrementally updated as follows;

E [sxsy]t+1 =
1

w

L∑
i=L−w+1

Sx[i]Sy[i]

=
1

w

(
L−1∑

i=L−w+1

(Sx[i]Sy[i]) + Sx[L]t+1Sy[L]t+1

)

=
1

w

(
L−1∑

i=L−w+1

(Sx[i]Sy[i]) + Sx[L]tSy[L]t − Sx[L]tSy[L]t + Sx[L]t+1Sy[L]t+1

)

=
1

w

(
L−1∑

i=L−w+1

(Sx[i]Sy[i]) + Sx[L]tSy[L]t

)
+

1

w
(Sx[L]t+1Sy[L]t+1 − Sx[L]tSy[L]t)

= E [sxsy]t +
1

w
(Sx[L]t+1Sy[L]t+1 − Sx[L]tSy[L]t)

Multivariate Correlation Discovery in Streaming Data 53

Appendix B

Pseudo-code algorithm for storing
and indexing DCCs

The following pseudo-code algorithm represents the process of indexing and storing DCCs. Note
that it only shows how positive DCCs of the first bound case are stored. However, the process
can be modified trivially allow indexing of positive and negative DCCs of other bound cases, by
changing the argmin/argmax terms in lines 3,10,17 to the relevant terms from the bounds in The-
orem 3.3.1.

Algorithm 6: Index(Sl,Sr, I+, I−)
Input: A decisive cluster combination with sets of clusters Sl and Sr, the two DCC

Indices I+ and I−.
// Index on LHS extrema pairs

1 for C1 ∈ Sl do
2 for C2 ∈ Sl \ {C1} do
3 〈a,b〉 ← arg max

i∈C1,j∈C2

{ρ(i, j)}

4 for si ∈ C1 do
5 I+[i][〈a,b〉][C2].add((Sl,Sr))
6 for sj ∈ C2 do
7 I+[j][〈a,b〉][C1].add((Sl,Sr))
// Index on RHS extrema pairs

8 for C1 ∈ Sr do
9 for C2 ∈ Sr \ {C1} do

10 〈a,b〉 ← arg max
i∈C1,j∈C2

{ρ(i, j)}

11 for si ∈ C1 do
12 I+[i][〈a,b〉][C2].add((Sl,Sr))
13 for sj ∈ C2 do
14 I+[j][〈a,b〉][C1].add((Sl,Sr))

// Index on Between-side extrema pairs

15 for C1 ∈ Sl do
16 for C2 ∈ Sr do
17 〈a,b〉 ← arg min

i∈C1,j∈C2

{ρ(i, j)}

18 for si ∈ C1 do
19 I−[i][〈a,b〉][C2].add((Sl,Sr))
20 for sj ∈ C2 do
21 I−[j][〈a,b〉][C1].add((Sl,Sr))

54 Multivariate Correlation Discovery in Streaming Data

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Context of the Research
	Outline

	Preliminaries and Problem Formulation
	Multiple Correlation Measure
	Handling Streaming Data
	Correlations over asynchronous streams
	Batching Models

	Problem Definition

	Related Work
	Streaming algorithms for pairwise correlation discovery
	Multivariate correlation algorithms
	Correlation Detective: a one-shot approach to Multiple Correlation discovery
	Threshold queries
	Top-k queries

	CDStream
	General Idea and Intuition
	Our approach

	Algorithm components
	The DCC Index
	Incremental updating of pairwise correlations

	Algorithm overview
	Initialization phase
	Arrival phase
	Parallelization
	Cost analysis

	Handling additional constraints
	Irreducibility
	Minimum jump constraint

	Top-k queries
	Initialization phase
	Arrival phase
	Combining with additional constraints
	Impact on storage and performance

	CDHybrid
	Motivation
	Algorithm selection
	Switching between algorithms

	Evaluation
	Experimental set-up
	Technicalities

	CDStream evaluation
	Effect of correlation pattern and number of streams
	Effect of batch-size (time-based)
	Effect of batch-size (arrival-based)
	Effect of k
	Effect of dataset
	Effect of the correlation threshold and constraints
	Long-term performance
	Pruning results

	CDHybrid evaluation

	Conclusions
	Limitations and future work

	Bibliography
	Appendix
	Incremental updating of running statistics on asynchronous streams
	Pseudo-code algorithm for storing and indexing DCCs

