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Abstract

The utilization of third-party packages is a consolidated practice in software engineering that signi-
ficantly alleviates the development. Nevertheless, introducing dependencies into software projects
is also a source of security concerns. Third-party packages may contain security vulnerabilities
that propagate to the dependent applications through code reuse. To counter this, maintainers
of dependent projects should monitor their dependencies and security reports to ensure that only
patched releases of the upstream applications are in use. Unfortunately, previous studies demon-
strate that developers fail to maintain their dependencies secure and up-to-date. As such, recent
years have seen several software bots designed to assist developers in this task and support the
rapid identification and resolution of vulnerable dependencies. One of such bots, Dependabot,
automatically notifies the developers of a vulnerability in their dependencies and generates a pull
request that remediates it - a security update.

However, no studies investigate the developer interaction with the security updates and the
level of Dependabot adoption by the community. In this work, we address this gap by combining
quantitative and qualitative techniques to analyse security updates in mature and actively main-
tained JavaScript projects. Our findings show that the task of fixing vulnerable dependencies is,
to a large extent, delegated to Dependabot and that developers merge the majority of security
updates within several days. On the other hand, when developers do not merge a security up-
date, they usually address the identified vulnerability manually, which often takes up to several
months. Based on this finding, we encourage developers to perform manual security fixes more
rapidly. Furthermore, we discover many problems the users experience when using the bot. We
analyse the findings and formulate five recommendations for Dependabot maintainers to elevate
user satisfaction, urging them to provide better means for the developers to familiarise themselves
with the bot and increase its configurability.
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Chapter 1

Introduction

Modern open-source software is increasingly developed and deployed in highly interdependent en-
vironments, relying on reusable software packages that are distributed through online registries,
each targeting a particular programming language (e.g., npm, RubyGems, Maven, and CRAN). In-
deed, software reuse is a well-established practice which facilitates the development of complex
systems [52]. By reducing costs, efforts, and delivery times, it also contributes to rapid software
evolution.

However, while providing benefits, utilization of third-party libraries may introduce security
concerns. The reason is that a downstream application that depends on reusable software pack-
ages not only inherits their functionality but also security vulnerabilities [79]. Although reusable
packages are as well subjects to constant evolution, resulting in mitigation of known vulnerabilities
and bugs with newer releases, Kula et al. [65] concluded that developers are reluctant to update
stale and vulnerable dependencies, perceiving dependency management to be extra workload and
responsibility. In fact, after interviewing the developers of open-source projects with known vul-
nerable dependencies, Kula et al. report that 69% of the interviewees were simply unaware of
them.

The problem of vulnerable dependencies does not remain overlooked, and one recommended
measure to address it is to facilitate dependency management through the use of automation [44].
As such, recent years have seen several software bots [9,10,14,16,17] designed to monitor releases
and/or security reports to identify stale and/or vulnerable dependencies, and in response, generate
pull requests to update them. GitHub, the largest host of code in the world [54], has also acknow-
ledged the problem, and since October 2017 [12], started to monitor the dependency graphs of
the hosted dependent projects and notify the developers when a vulnerability is detected in one of
the dependencies, suggesting known fixes to resolve it. Taking it a step further, on May 2019 [11],
GitHub has acquired one the most popular dependency management bots, Dependabot-preview [9],
resulting in a new natively integrated service, Dependabot security updates [2]. In turn, GitHub’s
own security notification service was renamed to Dependabot security alerts. When developers
receive an alert, Dependabot automatically opens a pull request, i.e., security update, to upgrade
the dependency to the minimum required non-vulnerable version.

Being natively integrated into GitHub and distributed completely free of charge, irrespective
of project visibility and team size, Dependabot security updates hold the lead as the most ac-
cessible service that provides automated pull-requests for remediation of vulnerable dependencies.
Moreover, in less than two years since its introduction, GitHub’s Dependabot has generated more
than 23M pull requests, suggesting that it is the most widely used dependency management bot.
However, no work investigates the usage of Dependabot security updates and their role in fixing
vulnerable dependencies in software projects. To address this gap, we analyse 4,538 security up-
dates associated with 1,004 mature and actively maintained JavaScript projects hosted on GitHub.
First, we ask:

RQ1: How often do developers merge Dependabot security updates?

On Resolution of Vulnerable Dependencies with Dependabot Security Updates in JavaScript
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CHAPTER 1. INTRODUCTION

The interaction intended by the design of the bot suggests that in response to a generated security
update, the recipient developers should merge it. As such, we analyse the distribution of merge
rates across the considered projects to get an understanding of how frequently project maintainers
adhere to this practice. We find that regardless of the number of security updates received, the
projects’ maintainers tend to either accept and merge every suggestion of Dependabot or none of
them.

As suggested by the findings of the previous studies [23,74], developers may prefer to close an
automated pull request and implement the bot suggestions manually. Alternatively, developers
may choose to eliminate the dependency on a vulnerable package altogether. Envisioning multiple
scenarios in which a security update is rejected, but the identified vulnerability is nonetheless
removed from the project, we ask:

RQ2: How frequently do developers fix a vulnerable dependency manually in the presence of the
Dependabot security update?

Using a semi-automated approach, for each vulnerability associated with a security update raised
by Dependabot, we track the earliest commit in which the concerned vulnerability is resolved.
Distributing the fixes between Dependabot and developers, we find that majority of the fixes
are contributed by the bot. Furthermore, most of the vulnerabilities that are not addressed by
merging a security update do not remain ignored and, eventually, get resolved manually.

Aiming to obtain further insights on what interaction challenges do developers face when
interacting with Dependabot, and accordingly, how can user satisfaction with the bot get improved,
we ask:

RQ3: Why do developers ignore the suggestion of Dependabot or decide to address the vulnerability
manually?

Manually investigating any textual artefacts associated with the security update or a fixing commit,
we find 22 unique reasons to ignore a vulnerability in dependencies or mitigate it without the bot.
Among the most frequent reasons, we outline the use of the third-party services for development
and the risks of breaking changes.

Finally, we attempt to capture the degree to which the developers react to the identified
vulnerabilities in a timely manner. Therefore, we formulate the following research question:

RQ4: How long does it take to address a vulnerable dependency identified by Dependabot?

Taking into account that some vulnerabilities may remain unaddressed by the end of the
observable period, to answer this question, we rely on the statistical technique of the survival
analysis [20] and estimate the expected time duration until the remediation measures are taken.
We find that, to a large extent, developers are proactive to address a vulnerability when a cor-
responding security update is generated. Nevertheless, this mostly concerns the fixes made with
the bot, as they, on average, take one or two days. When developers decide to implement the fix
manually, the observed statistic is not as optimistic.

The remainder of the paper is organised as follows. In Sections 2 and 3, we discuss the
background and survey the related work. Following this, in Sections 4 and 5, we describe the
methodology and report the results. Accordingly, in Section 6, we discuss the implications and
present the threats to validity. At last, in Section 7, we conclude.

2 On Resolution of Vulnerable Dependencies with Dependabot Security Updates in JavaScript
Projects



Chapter 2

Background

In this chapter, we cover the requisite background knowledge and concepts embedded in the found-
ation of this work. Specifically, the technologies and core definitions that pertain to dependency
management in JavaScript projects (Section 2.1) and Dependabot and its services (Section 2.2).

2.1 Dependencies in JavaScript projects

To provide the context for the methodology exploited in this work, first, we discuss the package
managers leveraged in JavaScript projects for dependency management (Section 2.1.1). Next, we
explain the functionality, the working, and the structure of the two files used to capture JavaScript
dependencies and control their installation. Namely, a manifest file (Section 2.1.2) and a lock file
(Section 2.1.3).

2.1.1 Package managers

To ease the installation, upgrading, removal, and distribution of software packages, developers
rely on package managers [18]. As of March 2021, there are two core package managers available
for JavaScript software. The first one is npm1, which is the most widely used package manager.
It comprises two main components: (1) a remote registry, i.e., an online database for publishing
and fetching JavaScript packages, and (2) a command-line interface for users to interact with the
registry and manage dependencies. In npm registry, package releases follow the versioning policy
called semantic versioning2, which uses a sequence of three digits Major.Minor.Patch to signal
the compatibility of a change [29]. Under this scheme, version numbers and the way they change
have a special meaning about what has been modified from one version to the next. An increase
in the Major digit indicates breaking API changes, whereas changes to Minor and Patch version
numbers are intended as backward compatible new features and bug fixes, respectively.

Another popular package manager is yarn3, an alternative to npm released by Facebook [19],
actively maintained and steadily growing in popularity to this date [13]. While remaining compat-
ible with npm registry, yarn was developed to offer increased performance, security, and function-
ality for installation and resolution of dependencies. That is, yarn provides only a command-line
interface but does not maintain its own registry, relying on the one of npm instead [15]. In our
work, we do not restrict the scope to one particular package manager but consider the dependent
projects that rely on either (or even both) of the two interfaces to manage dependencies.

1https://www.npmjs.com/. Last accessed March 10, 2021.
2https://semver.org/. Last accessed February 24, 2021.
3https://yarnpkg.com/. Last accessed March 10, 2021.
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CHAPTER 2. BACKGROUND

Table 2.1: Semantic oriented constraints.

Constraint Translation

1.0 or 1.0.x or ˜1.0.0 Allow Patch release updates

1 or 1.x or ˆ1.0.0 Allow Minor release updates

x or * Allow Major release updates

2.1.2 Manifest file
All the dependent JavaScript projects contain a manifest file, package.json, that includes the
relevant metadata, such as name, description, and release number. Most importantly, this file
is used to specify the set of direct dependencies, i.e., upstream packages referenced within the
source code directly. Each dependency is captured through the name of the required upstream
package mapped onto the dependency constraint, which explicitly states the range of the allowed
releases, effectively excluding the versions that are deemed undesirable or incompatible. Such
constraints can be used to specify a minimal (e.g., ≥ 1.0.0) or a maximal (e.g., ≤ 1.0.4) version
of the dependency but can also be exploited for the semantic compatibility oriented ranges (see
Table 2.1). Using specific notations, one can also express the combinations of constraints to
declare a more complex restriction. By default, when a user runs the installation command, for
every required dependency declared in the manifest, npm and yarn install the most recent release
satisfying the constraint. This process is recursive, as every module on which the targeted project
depends directly has dependencies of its own, resulting in transitive (a.k.a. indirect) dependencies.

Above, we emphasised that only required dependencies are installed. The reason is that there
are four types of dependencies defined in npm. First, runtime dependencies, which are requisite for
installation and execution of a project in the production environment. Next, there are optional
dependencies that do not hamper the installation procedure if not found or cannot be retrieved.
Additionally, there are peer dependencies, which are never fetched amid the execution of the
installation command. Instead, the expectancy is to use the version already located in the root
of the user folder hosting the deployed packages. In case it is not present or its version does
not satisfy the constraint, a warning is raised. At last, there are development dependencies,
required only during the development (i.e., testing). Accordingly, users can signal npm (with a flag
--production) to ignore the development dependencies upon installation.

2.1.3 Lock file
Aside from a manifest file, it is also encouraged to commit a lock file into the source repository.
This file is generated upon execution of the installation command on a manifest file and stores the
exact calculated dependency tree along with the relevant metadata for each node (e.g., integrity
hash and the resource path in the registry). In a dependency tree, nodes represent software
packages with an assigned release number determined upon installation, whereas edges capture
the dependency relationship between them. A lock file that stores it is designed to be solely
machine-processable rather than human-readable. Thus, contrary to a manifest file, a lock file is
not intended to be modified by developers manually.

As discussed, in a manifest file, developers declare the allowed releases for direct dependencies,
whereas transitive dependencies remain outside of developer control. Consequentially, when run-
ning the installation command twice at different times, two almost entirely different dependency
trees may be produced. In turn, the purpose of a lock file is to lock down the versions of both
direct and indirect dependencies, allowing the exact reproduction of the dependency tree across
different users and systems. This allows maintainers of the project to ensure that other contribut-
ors and end-users leverage the application in an environment identical to the one in which it was
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developed and tested.
Each of the two discussed package managers for JavaScript software supports a different im-

plementation of a lock file. For npm, there are package-lock.json and npm-shrinkwrap.json.
Both of the files have no differences in structure, yet, unlike the first, npm-shrinkwrap.json
can be published not only to the source repository but also npm package registry. For yarn, in
turn, there is yarn.lock. We cover the structure of both package-lock.json and yarn.lock in
Sections 2.1.3.1 and 2.1.3.2, respectively.

2.1.3.1 package-lock.json

The package-lock.json file describes the dependency tree generated upon deployment as a JSON
object. This lock file captures the exact structure and hierarchy of the automatically compiled
folder containing the installed packages. Consider an excerpt of an arbitrary package-lock.json
given by Listing 2.1.

1 " lodash ": {
2 " version ": "1.0.0" ,
3 " resolved ": " https ...",
4 " integrity ": " sha512 ...",
5 "dev": true,
6 " requires ": {
7 "kind -of": "ˆ6.0.0"
8 }
9 }

10 "kind -of": {
11 " version ": "6.0.1" ,
12 " resolved ": " https ...",
13 " integrity ": " sha512 ...",
14 "dev": true
15 }
16 "mnim": {
17 " version ": "0.1.4" ,
18 " resolved ": " https ...",

19 " integrity ": " sha512 ...",
20 "dev": true,
21 " requires ": {
22 "kind -of": "3.2.2"
23 },
24 " dependencies ": {
25 "kind -of": {
26 " version ": "3.2.2" ,
27 " resolved ": " https ...",
28 " integrity ": " sha512 ...",
29 "dev": true
30 }
31 }
32 }

Listing 2.1: Excerpt of a package-lock.json
file.

The first object (lines 1-9) corresponds to a node of the dependency graph representing the
lodash package. As can be observed, on line 2 of the file excerpt, the version locked for this package
is declared, i.e., release “1.0.0”. Lines 3-4 specify the resource to download the package from, and
an integrity hash used to determine whether the package contents have been tampered with since
the author originally published them. Next, on line 5, it is identified whether the dependency
on this package is of development kind or not. Finally, lines 6-8 specify the dependencies of this
package, i.e., the name of an upstream package and an associated dependency constraint. In the
concerned case, the lodash package at version “1.0.0” is dependant on any release of the kind-of
package at the sixth major version. Accordingly, the next object in the file excerpt (lines 10-15)
represents the kind-of package node in the dependency graph, resolving it to version “6.0.1”.

Further examining the given excerpt of the package-lock.json file, one can observe that the
mnim package at version ”0.1.4” in the dependency graph (lines 16-33) also requires the kind-
of package. However, unlike the lodash package, the dependency constraint specifies that only
version “3.2.2” of the kind-of package satisfies the requirements. Since version “6.0.1” of the kind-
of package, deployed at the top level, does not satisfy the aforementioned requisite, the mnim
package will contain its own local deployment of the kind-of package at version “3.2.2” (lines
25-32).

Under the described scheme, representations of the direct dependencies will always be defined
at the top level of the JSON object. Whereas the representations of transitive dependencies can
be defined either within the “dependencies” field inside another upstream package object or also
at the top level. The latter scenario applies (1) when no direct dependency onto the upstream
package concerned by a transitive dependency is declared or (2) when the version deployed for
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the direct dependency satisfies the constraint of the transitive dependency, implying that a nested
package will rely on the upstream placed as the top-level package.

2.1.3.2 yarn.lock

The yarn.lock file can be described as a collection of dependency resolution blocks, which dic-
tate the version that will be installed for a certain combination of an upstream package and a
dependency constraint in a given dependency tree. Consider an example of such a block given in
Listing 2.2.

1 axios@0.18.1, axios@ˆ0.18.0 :
2 version "0.18.1"
3 resolved : " https ..." ,
4 integrity : " sha512 ..." ,
5 dependencies:
6 follow - redirects "1.5.10"
7 is - buffer "ˆ2.0.2"

Listing 2.2: Excerpt of a yarn.lock file.

The first core element of the block, the header, is defined at the first line of the listing. It is a set
of package-constraint pairs separated by the “@” sign. Despite the syntax, the package name in
each pair for a single block must be the same. That is, each block is dedicated to no more than a
single package. However, a dependency constraint in each of the headers with identical package
names is unique. Therefore, a header reads as a package and a collection of the dependency
constraints. The logic behind this element is that a block to which a header belongs applies to
every node in a dependency graph that corresponds to the package and one of the dependency
constraints defined in it. Therefore, in the case of Listing 2.2, any instance of the axios package
with a constraint “0.18.1” or “ˆ0.18.0”, regardless of its position in a dependency graph, will get
resolved with version “0.18.1” (see line 2).

Similarly to package-lock.json, lines 3-4 specify the resource path and an integrity hash.
Finally, lines 6-7 give a list of the dependencies for the specified release of the concerned package,
i.e., the axios package at version “0.18.1”, retrieved from its own manifest file. Accordingly, for
each dependency listed in a block, there is another block that contains it in a header, defining the
locked version for this dependency.

2.2 Dependabot
GitHub’s Dependabot is associated with four interconnected services. Specifically, database of
security advisories (Section 2.2.1), security alerts (Section 2.2.2), security updates (Section 2.2.3),
and version updates (Section 2.2.4). While our work focuses solely on Dependabot security up-
dates, an explanation of the other three features is required to understand the identified bottlenecks
in the methodology and our approach to address them.

2.2.1 GitHub Advisory Database
GitHub maintains a curated list of security vulnerabilities in software packages that belong to
six different ecosystems, including npm. As of March 2021, GitHub exploits three main sources
of information to construct its database: (1) the National Vulnerability Database4, (2) the npm
Security advisories database5, and (3) the advisories reported by the project maintainers. Addi-
tionally, GitHub leverages a combination of human review and machine learning capabilities to
detect vulnerabilities in public commits. Each advisory record includes the description of the con-
cerned vulnerability, name of the package and the ecosystem it belongs to, affected and patched
releases, and optional information (references, workarounds, credits). Additionally, each security

4https://nvd.nist.gov/. Last accessed February 21, 2021.
5https://www.npmjs.com/advisories. Last accessed February 21, 2021.
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Figure 2.1: Screenshot of a security update.

advisory is assigned with a severity level, one of low, moderate, high, and critical. These are used to
signal the extent of the risks incurred on the affected system, enabling the maintainers to prioritise
the vulnerabilities.

2.2.2 Security alerts
In October 2017, GitHub introduced a new natively integrated service to the community, Depend-
abot security alerts. Upon any changes to the dependency files or the security advisory database
of GitHub, Dependabot performs a scan of the dependency graph, and if a vulnerable version of
a dependency is identified, raises a security alert. To perform the scan, Dependabot leverages the
dependency graph feature, which reads the dependency files (both manifest and lock) located in the
default branch of a repository, i.e., the base branch for pull requests and commits, and uses them
to construct an exact representation of the entire dependency tree. This implies that Dependabot
is only capable to monitor and interact with the default branch.

A raised alert can be accessed at the dedicated section on the web page of a repository, visible
only to the project owners and collaborators. Additionally, by default, Dependabot sends a noti-
fication to the users with the required permissions. An alert contains a link to the corresponding
security record in the database and a summary describing the vulnerability, including its severity
level, the file in which the vulnerable dependency is declared, and possible remediation measures
if any. Dependabot raises the alerts in public repositories by default, but developers can opt-out.

2.2.3 Security updates
On May 23rd, 2019, GitHub announced the acquisition of Dependabot-preview, leading to a new
natively integrated service, Dependabot security updates. When enabled, upon receiving a security
alert, Dependabot constructs a pull request with the modification(s) to the dependency file(s)
necessary to eliminate the identified vulnerability (if possible). It is worth noting that, in case
of a vulnerable dependency, Dependabot always suggests an update to the minimum required
non-vulnerable release of the upstream package, averse the most recent. An example of a security
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update is presented in Figure 2.1. As can be observed at the top of the figure, the suggested change
is displayed both in the title (A1 & A2) and body of the pull request. Additionally, Dependabot
provides the changelog for each of the versions in between the current and the suggested release (B)
and a badge that communicates the compatibility score (C). The latter is calculated dynamically
based on a percentage of successful CI runs in other public repositories, where an identical security
update has been instantiated. The information concerning the concerned vulnerability is not
presented in the pull request itself. Instead, a yellow paned window is displayed to a user, signalling
that the pull request concerns a security vulnerability (D). On the leftmost side, it provides a link
to the corresponding security alert, and on the rightmost side, it displays the severity level of the
vulnerability. This information, however, is not visible to the users without the required access
rights, i.e., external observers.

Although, it is expected that the developers respond to a generated security update manually,
under certain circumstances, Dependabot can reject the corresponding pull request by itself. First,
in case the dependency files are modified manually, updating the vulnerable dependency to a
patched version, Dependabot closes the dedicated security update leaving a comment that the
dependency has been upgraded and so the pull request is no longer needed (e.g., [7]). Similarly, in
case the dependency on the vulnerable package is removed entirely, Dependabot signals through
a comment that the dependency has been removed and closes the pull request (e.g., [5]). Another
scenario concerns the case when after a security update has been generated, the dependency
files are changed such that there is now a new dependency on the concerned vulnerable package
imposed by a certain node in the dependency graph, whose constraint prevents the remediation
(e.g., [4]). In response, Dependabot leaves a comment that the dependency is no longer updatable
and closes the pull request. Furthermore, in case a new vulnerability of the concerned upstream
package is published, requiring an update to a more recent release, Dependabot supersedes the
previous security pull request with a newer one, effectively closing the former (e.g., [6]). At last,
by commenting a command @dependabot ignore this [patch|minor|major] version or @de
pendabot ignore this dependency on a security update generated by Dependabot, developers
trigger a corresponding action, which causes Dependabot to close the pull request (e.g., [3]).

Concerning availability, Dependabot security updates is, generally, an opt-in service. However,
provided that a project satisfies the given set of the prerequisites, such as (1) repository is public
and not a fork, (2) contains a dependency file for a supported ecosystem, (3) does not already
use an integration for dependency management, and (4) has security alerts enabled, the service of
security updates is enabled automatically, with an option to opt-out.

2.2.4 Version updates
Continuing to transfer the functionality of the acquired tool, Dependabot-preview, on June 1st,
2020, GitHub has introduced another service, Dependabot version updates. Unlike security up-
dates, version updates are automatically generated pull requests that aim at keeping the depend-
encies up-to-date. That is, Dependabot monitors the dependency graph of the project and the list
of the releases for the upstream packages, and with a specified frequency, generates a pull request
with an update in case a newer version is available. Both the security and the version updates
can be enabled at a single repository simultaneously. However, to an external observer with no
permissions, the two kinds of pull requests are indistinguishable. In fact, a version update can
effectively turn into a security update, in case a recently published security advisory suggests that
an unaddressed version update resolves a vulnerability in dependencies.

As of March 2021, Dependabot version updates remains in beta as an opt-in service. To enable
it, the project maintainers are required to deploy a dedicated configuration file, dependabot.yml,
in which developers specify, e.g., the packages they want Dependabot to monitor, the schedule to
generate the updates, the maximum amount of the simultaneously open automated pull requests,
etc. Some of the configuration options may also affect the security updates.
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Related work

We discuss the relevant literature in two steps. First, in Section 3.1, we overview the studies on the
propagation of vulnerabilities in dependency networks. These identify the widespread and non-
negligible impact of this problem across numerous software projects while revealing the complexity
of dependency management, perceived by the developers, which combined, explain the necessity
of tools like Dependabot. In Section 3.2, we discuss the research on dependency management bots
and describe the relationship between the prior studies and this work, effectively outlining the
gaps in the knowledge that we aim to address.

3.1 Vulnerabilities and Dependency Management

A plethora of studies [22,26,35,42–44,46,65,82,90,91] conducted within the domain of the depend-
ency networks conclude that updates in dependencies suffer from considerable time lags, sometimes
even measured in the orders of years [67]. This phenomenon can be observed across various eco-
systems, both decentralized, such as Android [26, 46], and centralized, such as Java [65, 82] and
JavaScript [35, 43, 44, 90]. In turn, as concluded by Cox et al. [40], who studied the relation-
ship between outdated dependencies and vulnerabilities in Java systems, reluctance to update
ultimately leads to security issues [40].

In the attempt to gauge the problem, Decan et al. [44] examined the propagation of security
vulnerabilities and their fixes in the dependency network for JavaScript software. Following their
findings, over 133K projects, out of 610K considered, directly depend on a package with a known
vulnerability. Whereas 52% of these projects have at least a single release that relies on an affected
version of a vulnerable package. Considering that this share accounts for more than 72K dependent
projects, while only 269 distinct upstream packages with known vulnerabilities were taken into
account, the scale and importance of the problem become more than evident.

Further findings of Decan et al. [44] suggest that it takes nearly 14 months for 50% of the
dependent packages to fix a vulnerable dependency. In fact, the dependent packages take not only
a lot of time to be freed from vulnerabilities but also significantly more than the upstream pack-
ages. Identically, the study of Prana et al. [77] reveals that the high survivability of a vulnerable
dependency is primarily caused by the delayed updates in the dependent application rather than
the persistence of vulnerabilities across the releases of the upstream package. In their study of 450
software projects, Prana et al. [77] also analysed the relationship between vulnerabilities in the
dependencies of a project and its attributes, such as activity level, popularity, and contributors,
only to observe that the strongest correlation factor for the number of vulnerable dependencies is
total dependency count. Indeed, as the dependency network grows, it becomes increasingly more
complex for the developers to examine and manage it, despite the number of contributors, their
experience, or project size. This suggests the need for automation to support developers in these
duties.

Careful management of a project’s dependencies, although is highly encouraged, not always
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practised. By surveying the developers of the software projects with known vulnerabilities in
dependencies, Kula et al. [65] report that, for developers, the effort needed to migrate a vulnerable
dependency is of greater importance than the persistence of the security issue. Namely, developers
are not likely to prioritize an update, perceiving it as an extra workload and responsibility. To
make matters worse, 69% of the respondents were simply unaware of their vulnerable dependencies.
This highlights that the community could benefit from the automated notifications on the security
issues in projects’ dependencies, stipulating our interest to study to what extent developers respond
to them.

3.2 Software Bots
Software bots are rapidly becoming a commodity in software development. They assist developers
with coding activities, play an integral role in testing, speed up code deployment, address slow
feedback loops, bridge communication between users and developers, and generate documentation.
In response, the research community has carried out a considerable effort on investigating these
tools. Previous studies focus on identifying the challenges in interacting with software bots [69,
83,85,86], the impact of their usage on the development artifacts and software quality [63,70,84],
and quantitatively measuring the extent of their adoption and developer receptivity towards their
assistance [23,32,88].

In their recent study, Wyrich et al. [88] extracted over 20M GitHub pull requests to analyse
and compare whether maintainers are more receptive to manually created pull requests averse
those created automatically by bots. The authors found that the pull requests from humans are
accepted and merged almost twice as often as bot pull requests (72.53% vs 37.38%), suggesting
that such tools are not leveraged to their full potential. Furthermore, despite the fact that bot
pull requests contain less changes on average, they take significantly longer to be interacted with
and to be merged. However, Wyrich et al. have neither scoped their analysis to a particular bot
nor restricted the domain based on the properties of the projects that use them, opting to go
wide with a large collection of pull requests. On the contrary, in our work, we go deep and focus
specifically on GitHub’s Dependabot and mature and well-maintained JavaScript projects, aiming
to mitigate the potential impact of confounding variables.

Despite the consensus of the research community on the complexity and burdensome of depend-
ency management experienced by developers, there is an evident scarcity of studies that analyse
the tools, which automate and alleviate this task. Similarly to our work, Mirhosseini et al. [70]
analysed JavaScript projects that use a dependency management bot. Specifically, the authors
investigated the impact of Greenkeeper, a bot that generates pull requests to upgrade out-of-date
dependencies. The results acquired by Mirhosseini et al. show that, on average, projects that used
the dependency management bot upgraded 1.6 times more often than projects that did not use
any tools, suggesting a significant utility of such a suggestion mechanism. Although the authors
report that 32% of automated pull requests in their dataset were merged, it remains unknown
whether the developers disregarded the updates or performed them manually; the authors did
not examine to what extent developers delegate the bot with the dependency updates. In turn,
the survey of Pashchenko et al. [74] suggests that bots can be used solely for the identification of
issues within dependencies, while the update itself is performed by a developer. In our work, we
take it a step forward and not only analyse the developer receptivity to bot suggestions but also
determine quantitatively how frequently they resolve the problem manually despite an automated
pull request.

The only other study that investigates the usage of a dependency management bot, the recent
study of Alfadel et al. [23], is the most relevant to our work. The authors examined the receptivity
and level of adoption of the security pull requests authored by Dependabot-preview, the prede-
cessor of GitHub’s Dependabot. On the contrary to the previously discussed studies, they found
that majority of such automated suggestions are merged (65.42%), and highly likely, within a day.
However, some of the design properties of Dependabot-preview may affect the representativity
of the acquired statistic. The principal functionality of the bot are version updates, and, as a
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consequence, Dependabot-preview may frequently supersede the previous security update with a
new one when a more recent release of the vulnerable package is available. Indeed, Alfadel et al.
report that the majority of the rejected pull requests are closed by the bot itself due to superseding.
Most importantly, Dependabot-preview ships with the auto-merge feature, which allows the bot
to merge its own pull requests without developer intervention. Thus, the acquired findings do not
necessarily reflect the developer reception and reaction to the security pull requests since many
merges and majority of rejections are performed automatically. Examining GitHub’s Dependabot,
on the other hand, allows us to account for these confounding factors to a much greater extent -
Dependabot always suggests the minimum required non-vulnerable version and does not feature
auto-merge functionality.

Furthermore, Alfadel et al. [23] examined the factors that affect the rapid merges of the security
pull requests generated by Dependabot-preview. Exploiting the regression modelling, the authors
observed that the severity level of identified vulnerability has no significant impact, contradicting
the other existing studies that conclude the relationship between the severity of a vulnerability
and the time it takes to resolve it in both the upstream package [44] and the downstream applic-
ations [36]. Further results suggest that the risk of breaking changes as well has no significant
influence, disputing the concerns shared by the developers [29,56,60]. We argue that the counter-
intuitive findings could be a result of the misalignment between the subject of analysis and the
research goals due to the design of the examined tool. Since authors report that the majority of
the pull requests are superseded, it is very plausible that a rapidly merged update could be the
last in a long chain of closed and newly opened pull requests. Therefore, it can be no rapid as the
vulnerable dependency addressed by it could have been resolved much earlier with the pull request
that got superseded due to non-responsiveness. In our work, we account for this and choose not
the pull requests but the vulnerabilities specifically as the subjects of the analysis, ensuring the
alignment between the analysis and the goals.
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Methodology

This chapter presents the data collection procedures we follow (Section 4.1) and the analysis
techniques we leverage (Section 4.2) to answer the research questions posed in this work.

4.1 Data Collection

In this section, we describe the data collected for answering the research questions we raise in
this work and cover the approaches and procedures we leverage to mine it. To analyse how of-
ten developers merge security updates of Dependabot (RQ1), we argue and establish a collection
period for their collection (Section 4.1.1). Furthermore, we assess the projects associated with the
collected security updates based on their quality and properties, effectively excluding the undesir-
able ones (Section 4.1.2). Next, to investigate the fixes of vulnerable dependencies (RQ2, RQ3,
RQ4), we gather the cases of vulnerability resolution associated with the advisories flagged by
Dependabot through an automated pull request in the selected projects. This requires extracting
the security advisory records of GitHub (Section 4.1.3), defining the algorithm to detection of vul-
nerabilities in dependencies (Section 4.1.4), and finally, locating the cases of vulnerability fixing
by traversing the repositories’ histories. (Section 4.1.5).

4.1.1 Collection period

As discussed in Section 2.2.4, a year after introducing the security updates, GitHub extended
the functionality of Dependabot by providing developers with version updates that aim at keeping
dependencies up-to-date. Having no access to the project settings of public repositories, it becomes
extremely challenging to identify whether a project that makes use of version updates also exploits
security updates. Moreover, the presence of both services in a single project may contribute to
confounding factors, effectively convoluting our findings that should solely target security updates.

One option to avoid this is to disregard the repositories that deploy a configuration file signalling
the adoption of version updates. However, under such constraint, we would also eliminate the
innovation-friendly projects that, after a successful adoption and continuous usage of Dependabot
security updates, decided to opt-in for the version updates. As such, we instead constraint the
collection period by the interval between the introduction of security updates to the community
and the subsequent event of introducing version updates. In particular, the collection period marks
the start as of June 1st, 2019 and the end as of May 31st, 2020, resulting in a time-window of
exactly a year. Following this definition, we only consider the pull requests that were instantiated
during this period.
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4.1.2 Project selection
For our empirical study, we focus on JavaScript projects. The motivation for this is threefold.
First, the annual surveys that GitHub conducts among its developers1 suggest that JavaScript is
taking the lead over other alternatives, as the most popular programming language. In turn, npm
package manager, the official registry for JavaScript packages, is the largest ecosystem, comprising
more than 1.68M packages2, which is > 4 times greater in comparison to its closest predecessor
(Maven). Combined, these two factors make our results relevant for a large community of de-
velopers. Moreover, JavaScript projects were observed to have the highest distribution of package
dependencies in comparison to other programming languages that benefit from centralised library
ecosystems [1]. As a consequence, for the maintainers of such projects, dependency management
is a challenge of a much greater scale. Since the identical observation holds for the npm hosted
packages [42] [45], JavaScript projects are more prone to inheriting vulnerabilities through depend-
encies. At last, JavaScript projects, and the npm packages in particular, are the primary targets of
the recent studies on dependency networks [21,22,35,37,42–45,58,87,89,92] and tools [23,70,80].

Using the GitHub Search API 3, we identify 155,065 starred and non-forked repositories that
were created before the start of the collection period and had at least a single update after it. To
ensure that immaturity or inconsistent levels of activity do not introduce bias to our analysis, we
select the projects that were actively maintained during the entire collection period and had no less
than 100 commits at the start of the collection period [65]. We operationalise active maintenance
as the presence of at least a single commit each month that belongs to the collection period.
Furthermore, to identify whether the collected projects have dependencies on npm packages, for
each of them, we track the presence of the manifest file in the root of the repository, leaving us
with 3,587 projects.

The study of Kalliamvakou et al. [61] reveals that a large portion of GitHub repositories are
used for experimental, storage, or academic purposes. For the sake of our study, we want to
avoid such projects since their inclusion may introduce noise to the analysis. Indeed, the security
concerns of the repositories hosting homework assignments or blogs are not necessarily applicable
to the projects with general-purpose utility. Therefore, we proceed with the selection procedure by
leveraging Reaper, a tool designed by Munaiah et al. [72] to identify engineered projects, averse the
personal ones, such as homework assignments. The authors of the tool developed an evaluation
framework consisting of eight quantifiable software engineering practices, called dimensions, to
characterise a repository: architecture, community, continuous integration, documentation, history,
issues, license, and unit testing. Accordingly, Reaper computes the values for these dimensions
using the source code of the targeted repository and the history of the project by extracting the
relevant data from GHTorrent [53], an offline mirror of GitHub metadata. In turn, to classify the
projects for affiliation to the group of the engineered ones, the authors exploit a random forest
classifier [30].

The application of Reaper to our scenario, however, requires a number of modifications. First,
we remove a dependency on GHTorrent, since the latest image it provides is largely outdated. In-
stead, to mine the history of the identified projects, we leverage GitHub GraphQL API 4. Secondly,
the architecture dimension was not originally designed towards projects written in JavaScript. This
dimension is operationalised by a metric, monolithicity, which measures the ratio of the number of
files in the largest connected sub-graph to the number of files in the entire inter-file call-graph of
the project. The approach the authors employed to estimate the inter-file call-graph, while applic-
able to the other programming languages, such as Python and Java, cannot be used for JavaScript
source files due to the dynamic nature of this language. A possible measure to address this issue
is to extend the tool by implementing an algorithm for the approximation of the call-graphs for
JavaScript (e.g., [50]). However, since for the training data, the call-graphs were computed using
the author’s own technique, we expect that utilization of a different approach would lead to a

1https://octoverse.github.com/. Last accessed February 21, 2021.
2https://libraries.io/platforms/. Last accessed February 21, 2021.
3https://docs.github.com/en/rest/reference/search. Last accessed February 21, 2021.
4https://docs.github.com/en/graphql. Last accessed February 21, 2021.
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Table 4.1: Assessment of the classifier performance on the different sets of dimensions.

Classifier FPR FNR Precision Recall F-measure
Baseline [72] 18% 17% 82% 83% 83%

Modified 25% 11% 78% 89% 83%

Table 4.2: Resource path resolution for the set of identified bots.

Bot Path Repositories
Dependabot [2] /apps/dependabot 1,492

Dependabot-preview [9] /apps/dependabot-preview 572
Greenkeeper [10] /apps/greenkeeper 276

Snyk-bot [17] /snyk-bot 228
Renovate [16] /apps/renovate 380

/renovate-bot

large non-conformity between the monolithicity values for the JavaScript projects and the ones
written in the languages originally targeted by Reaper, effectively degrading the accuracy. Hence,
in line with the study of Cassee et al. [33], we disregard the architecture dimension. Following
the approach of Cassee et al., we also remove the issue dimension, operationalised as the issue
frequency across the time-span between the first and the last commit. While the tool authors rely
on this dimension as an evidence to the project management, many of such tasks are carried out
with external applications, and thus, not visible in the GitHub records. To ensure that removal of
these two dimensions does not vastly degrade the performance, we benchmark the tool using the
training and validation datasets supplied by Munaiah et al. [72]. The authors provide two data-
sets for the training procedure, organisation and utility. In contrast to the organisation dataset,
which comprises of the public repositories owned by widely known companies, such as Google,
Amazon, Facebook, etc., the utility dataset contains the projects that were manually labelled for
a general-purpose utility to users other than the developers themselves, irrespective of the organ-
isation behind them. Since Munaiah et al. report to achieve a better performance when using the
latter collection, to benchmark the tool and label the projects in our study, we train a classification
model using the utility dataset. The validation dataset contains a set of 200 repositories manually
labelled for the ground truth, i.e., engineered (100) vs. non-engineered (100) projects. To conduct
the training procedure, we rely on scikit-learn [76], one of Python’s most widely used machine
learning libraries. In line with the original work [72], we assess the classification performance
based on false positive rate (FPR), false negative rate (FNR), precision, recall, and F-measure.
Table 4.1 presents the results for the baseline classifier that utilises all of the eight dimensions (as
reported by Munaiah et al. [72]) and the modified model that excludes the architecture and issue
dimensions. As can be observed, at the expense of a 4% drop in precision, the modified classifier
achieves a 6% increase in recall. Overall, observing no change in the F-measure, we are confident
that the removal of the architecture and issue dimensions has no significant negative impact on
the tool accuracy. Applying the trained classifier to the feature dimensions computed for the 3,587
selected repositories, accounting for their state as of the end of the collection period, we identify
3,151 engineered projects.

Accounting for the confounding factors that stem from the utilization of multiple dependency
management bots, we remove the projects that exercise this practice from our collection. Surveying
the existing literature [37, 47–49,63, 88] and the GitHub Marketplace5, the official registry for the
third-party GitHub applications, we identify four other bots that provide automated pull requests
that update dependencies in JavaScript projects: Dependabot-preview [9], Greenkeeper [10], Snyk-
bot [17], and Renovate [16]. Following this, for each selected repository, we extract all the pull
requests that were instantiated during the collection period and inspect their authors. Specifically,
we track the resource path of the author, i.e., the HTTP path for this actor. Consider Table 4.2

5https://github.com/marketplace. Last accessed February 21, 2021.

14 On Resolution of Vulnerable Dependencies with Dependabot Security Updates in JavaScript
Projects

https://github.com/marketplace


CHAPTER 4. METHODOLOGY

Table 4.3: Summary of the collected security updates.

State Security updates
Open 221
Closed 1,847
Merged 2,446

Table 4.4: Characteristics of the selected projects.

Metric Min. Max. Median Mean
Forks 0 33,022 33 391.88
Stars 2 180,228 63 2,121.08

Core contributors* 1 477 4 8.58
Security updates 1 67 3 4.50

Commits before col. period 101 48,807 890 2,019.81
Commits during col. period 25 15,306 346 670.80

*Computed in line with [72]

that presents the mapping between the bot name and its corresponding resource path(s) but also
displays the number of the repositories in which pull request history the traces of this actor were
encountered. Accordingly, from the set of 1,492 repositories that have at least a single pull request
issued by Dependabot, we filter out 390 projects that, aside from this dependency management
bot, employ one or more other ones.

At last, we filter out the projects that have received Dependabot security updates targeting
ecosystems other than npm (e.g., Maven, RubyGems). The final dataset consists of 4514 security
updates (see Table 4.3), associated with 1,003 JavaScript projects. The collection includes software
projects maintained by Google, Mozilla, Facebook, eBay, SAP, and vastly popular npm packages,
such as react, vue, and mongoose. In Table 4.4, we report the characteristics of the collected
projects.

4.1.3 Security Advisory Records
We retrieve the security advisories from the database of GitHub using the GitHub GraphQL API
on March 27th, 2021. Some of the advisories concern the vulnerabilities with no known fixes (a
fixing patch has not been released) or those that originate from the ultimately malicious packages.
These advisories either comprise no entry for the field dedicated to the first patched release or
contain a collocation “Malicious Package” in the summary. Since such vulnerabilities cannot
be addressed by Dependabot, we remove the corresponding entries from the collection, leaving us
with 1,063 security advisory records. However, the database of the security advisories is constantly
evolving, and as such, some vulnerability records may be taken down, republished or modified.
Therefore, the advisories that incurred the creation of some of the collected Dependabot security
updates may have already be taken down by the time we have mined the database. Accordingly,
we verify the extent to which this problem applies to our data. To this end, for each retrieved
security update, we identify whether there is at least a single associated security advisory from
the collected set.

As discussed in Section 2.2.3, the information about the vulnerabilities targeted by a security
update cannot be accessed without specific project permissions. In fact, once the concerned
vulnerability is eliminated, this information becomes unavailable to the project maintainers as
well. The reason is that each security update is linked to a security alert, and, if the latter is
addressed, the record is erased, effectively breaking the link. Therefore, to identify the association
of an advisory with a security update, we implement an algorithm that extracts this information
based on the title of an automated pull request.

The title of a security update captures the vulnerable upstream package, its currently installed
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Figure 4.1: Structure of a security update title.

version, i.e., declared in the manifest or lock files, and the release to which Dependabot suggests to
upgrade. Consider Figure 4.1 that demonstrates its structure. Omitting the optional constructs,
such as semantic commit message prefix (“misc”) and the path to the dependency files, one can
produce a regular expression to extract the relevant information from the title of a security update.
We use the name of a vulnerable package to locate the security advisory records that correspond
to it. Following this, we filter out the records which were published after the pull request that
represents the security update has been raised since they could not have induced its generation.
Accordingly, for each advisory, the range of the vulnerable releases is matched against the currently
installed version (“old version”) to identify whether the latter belongs to a list of the affected
releases. To this end, and for any further operation on evaluation of dependency constraints and
comparators in our work, we rely on the semver6 module, leveraged by npm. Furthermore, to
ensure that the security update concerns the identified vulnerability, we verify that the suggest
release (“new version”) is outside of the range of the affected ones.

After applying the algorithm to the set of the collected security updates, we find that for 479
of them, the associated security advisory could not be deducted. To address the problem and
restore the missing records, we manually investigate these cases and inspect the past commits,
comments, and discussions on GitHub. We find advisory records, associated with eight vulnerable
packages, that were altered, removed, or re-entered into the database (resulting in an imprecise
publication date). These cases, together with the evidence to them, are presented in Appendix A.
Re-applying the algorithm on the extended collection of the security advisories, we manage to
reduce the number of unlabelled security updates to 28 (0.6%). Accordingly, we remove them
from the further analysis.

4.1.4 Detecting Vulnerabilities in Dependencies
To recognise the cases of vulnerability resolution, first and foremost, there is a need to define a set
of rules that dictate whether a project is affected by a concerned security vulnerability through its
dependencies or not. One option is to adopt the algorithm introduced by Decan et al. [44] in their
study on the propagation of vulnerabilities through dependencies in the npm ecosystem. Another
option is to leverage the logic behind the audit command of the npm client that, given a description
of the configured dependencies, returns a report of the detected vulnerabilities. However, in our
work, we decide to adopt the technique used by GitHub’s own services. In particular, Dependabot
security alerts and security updates. The reason for this is that Dependabot acts as the uniform
source of the security vulnerability information shared among all of the selected projects.

Even though for the original tool, Dependabot-preview, the codebase is exposed to the public,
GitHub’s Dependabot, as the collection of services, remains a closed-source project. Specifically,
the security alerts service, used to determine whether there is a need to update a dependency, i.e.,
whether it is vulnerable or not. Therefore, to identify GitHub’s logic in vulnerability detection, we
reverse-engineer it without access to the source code, i.e., based on its inputs and outputs. To this
end, we generate a plethora of GitHub repositories with the security services enabled, to which we
deploy the dependency files of over 50 different projects from our dataset, chosen randomly. As
such, the deduction routine comprises of manually modifying the dependency files to observe the
impact of the changes onto the security alerts. Additionally, at each modification, we examine the

6https://semver.org/. Last accessed February 24, 2021.
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Figure 4.2: Decision tree routine for a manifest file; [x, y] stands for the range defined by the
dependency constraint, [z, k] defines the range of the vulnerable releases, and finally, p is the first
patched release.

security updates generated by Dependabot, provided the dependency files declare a dependency on
the affected releases of a package with a known vulnerability. The entire procedure is performed
iteratively, until the deducted algorithm, described in Section 4.1.4.1, passes the validation routine,
discussed in Section 4.1.4.2.

4.1.4.1 Deducted Algorithm

The algorithm takes as input (1) the name of the concerned upstream package with known security
vulnerabilities, (2) the database of the security advisories, and (3) the dependency files of the
selected repository. Based on the provided input, the algorithm computes the set of vulnerabilities
inherited through the dependency on the specified upstream package. The hosted repository is
deemed to be affected by a vulnerability if at least one dependency file is found to declare a
dependency on a vulnerable release of an upstream package. However, the conditions of the latter
definition differ between the manifest and the lock files.

Manifest File The manifest file is said to declare a dependency on a vulnerable release if the
specified upstream package is present as a direct runtime or development dependency, while its
most recent version that satisfies the defined dependency constraint is affected by the concerned
vulnerability. In fact, this definition is almost entirely identical to one derived by Decan et al. [44],
with only one difference - development dependencies are also taken into account. Under the
described definition, the identification of a vulnerable dependency requires the possession of the
meta-information on each release of each package with known vulnerabilities. One possibility to
obtaining this data requires querying the npm registry, which would consume a large amount of
time. An alternative is to leverage the source discovery service Libraries.io7, known to publish
the datasets on package releases for several registries, including npm. However, the latest image
is dated by January 2020, which does not satisfy our needs. Nevertheless, after examining the
database of the security advisories maintained by GitHub, we identify that the properties of its
entries and the way they are published allow us to drop the need in the release information. First,
each security advisory is associated with one or more disjoint ranges of vulnerable releases. In
turn, each range is either given by (a) an upper bound (e.g., “< 1.5.1”), or (b) both a lower and
an upper bounds (e.g., “>= 2.5.5 < 3.0.0”, “= 4.0.0”). Furthermore, for each range, an advisory
includes the first patched release, that is, the lowest version coming after the right bound of the
range, which is not affected by a vulnerability and is available for installation by the time the
advisory is published. Indeed, unless the package is ultimately malicious, GitHub only publishes
the security advisory if the associated vulnerability has already been patched. Hence, to identify

7https://libraries.io/data. Last accessed March 10, 2021.
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whether the most recent release that satisfies the dependency constraint, given by the range [x, y],
is affected by a vulnerability, it satisfies to apply the decision tree routine captured by Figure 4.2
to each pair of a vulnerable releases range [k, z] and the first patched release p associated with the
security advisory that corresponds to this vulnerability. First, we determine whether the range
defined by the dependency constraint declared in the manifest file intersects with the range of the
vulnerable releases of the upstream package.

1 If it does not, then any version that satisfies the constraint is either strictly lower or higher than
any version defined by the range of vulnerable releases; thus, the most recent installable release
is not vulnerable .

2 If it does, there is a need to verify whether the first patched release or any version that came after
it satisfies the dependency constraint. That is, whether the range defined by the dependency
constraint intersects with the range defined by the comparator “≥ p”, where p is the first patched
release.

2.1 If not, then the most recent installable version that satisfies the constraint is strictly within
the range of vulnerable releases, i.e., the most recent installable release is vulnerable .

2.2 Otherwise, this release is either the first patched version or any version, which is higher
than it, i.e., the most recent installable release is not vulnerable .

Accordingly, if for any pair of a range and the first patched release, the most recent version that
satisfies the constraint is affected by the concerned vulnerability, then the examined package.json
file is found to declare a dependency on a vulnerable release of an upstream package. To identify
whether the two version ranges intersect, we leverage the eponymous function of the semver module
used by the npm package manager.

Lastly, an additional rule applies if the repository follows the monorepo paradigm [31], i.e.,
contains more than one project. Commonly, this implies that the sub-modules on which the top-
level (or “main”) project depends on are hosted within a single multi-package repository. If this
is the case, then the direct dependencies of the hosted sub-modules, the relative paths to which
are defined through the “workspaces” field in the manifest file, are deemed as direct dependencies
of the entire top-level module. Accordingly, we also inspect them to identify whether there is
a direct runtime or development dependency on the specified upstream package with a known
security vulnerability.

Lock files Concerning the lock files, there are two scenarios. In the first case, the specified up-
stream package with a known security vulnerability is declared as a direct runtime or development
dependency in the manifest file (including the hosted sub-modules defined through the “work-
spaces” field). To determine whether the examined lock file declares a dependency on a vulnerable
release of an upstream package, solely the release assigned to a node in the dependency graph that
represents this direct dependency is validated, whereas the nodes associated with the transitive
dependencies are ignored. To this end, for a package-lock.json (or npm-shrinkwrap.json), we
retrieve the top-level dependency node object (recall Section 2.1.3) defined by the name of the con-
cerned upstream package and examine the value for the property “version”. For a yarn.lock, we
perform a lookup for the dependency resolution block (recall Section 2.1.3), whose header contains
a package-constraint pair that corresponds to the name of the concerned upstream package and
the dependency constrain assigned to it in the manifest file. Similarly, we retrieve the value of the
“version” field. For both the package-lock.json and the yarn.lock files, this value represents
the version of the upstream package locked for the direct dependency on it.

In the second scenario, the specified upstream package with a known security vulnerability is
not declared as a direct runtime or development dependency. Then, conversely to the previous
case, every node in the dependency graph that corresponds to a dependency on the concerned
upstream package with a known security vulnerability is inspected. If the locked release of at least
a single node in the dependency graph belongs to the range of the affected versions, then the file
is said to declare a dependency on a vulnerable release of an upstream package. To verify this,
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for a package-lock.json file, we recursively traverse every dependency node object in the graph,
examining those that are defined by the name of the concerned upstream package and collecting
the releases locked to them. For a yarn.lock file, we perform a lookup for every dependency
resolution block with header containing the name of the concerned upstream package, irrespective
of the dependency constraint, and retrieve the assigned releases.

4.1.4.2 Validation

To validate the algorithm amid the deduction routine, we leverage the mined Dependabot security
updates. Indeed, the parent commit of the security update, i.e., the commit on which the modi-
fication is based, represents the ground truth state of the project with a vulnerable dependency.
Whereas the merge commit, i.e., commit resulted by merging the security update, captures the
state at which this vulnerable dependency is resolved.

As discussed in Section 2.2.3, each Dependabot security update addresses at least a single
vulnerability in dependencies. This vulnerability is publicly known at the time of the update
creation and sourced off the upstream package, the name of which is mentioned in the title of the
corresponding automated pull request. Furthermore, each security update may not only modify
the top-level, e.g., the manifest and lock files deployed at the root level of a project, but also
exclusively target the dependency files of the sub-modules at the lower levels. In fact, Dependabot
may target multiple (sub-)modules at different levels through a single security update. However,
not every single one of them must be affected by vulnerability. The reason is that amid addressing
a security vulnerability in one (sub-)module, Dependabot may select a version higher than the
first patched release for the dependency (due to other constraints), effectively attempting to also
modify it across the entire repository, regardless of susceptibility to the vulnerability. That is, bring
the selected directories up to date with the selected non-vulnerable release. Accordingly, given a
security update generated at date d, targeting upstream package u, and modifying the dependency
files in the (sub-)modules given by set F , for the state of the dependency files associated with the:

parent commit there is at least a single (sub-)module in set F containing one or more de-
pendency files that are found to declare a dependency on a vulnerable release of
package u, such that this release is affected by at least one vulnerability publicly
known at date d;

merge commit there is no a (sub-)module in set F containing one or more dependency files
that are found to declare a dependency on a vulnerable release of package u,
such that this release is affected by at least one vulnerability publicly known at
date d;

Following this, the deducted algorithm is validated through binary classification. For the parent
commit, the positive outcome is expected, i.e., a vulnerability is encountered. In this scenario,
the deducted algorithm is expected to return at least a single security advisory from the set
of the records (1) associated with the selected upstream package and (2) published before the
corresponding security update was generated. For the merge commit, in turn, the negative outcome
is expected, i.e., no vulnerability is identified. For this case, the deducted algorithm should return
an empty set.

The final version of the algorithm, described in this paper, reports no false negatives. That
is, for every security update in our collection, the algorithm manages to flag the presence of a
vulnerable dependency in the repository’s state associated with the parent commit. Nevertheless,
when it comes to the merged security updates, we find 133 cases of false positives. In other words,
for these 133 security updates, the algorithm suggests that the modification of Dependabot does
not eliminate the vulnerability. After carefully examining the false-positive cases, we find that
the reason for them is a bug in Dependabot rather than an incorrectly deducted algorithm. The
identified bug arises when all of the following conditions are met: (1) the associated advisory
comprises multiple disjoint ranges of vulnerable releases; (2) there is no direct dependency on the
concerned upstream package with a known vulnerable release(s); (3) in the dependency graph,

On Resolution of Vulnerable Dependencies with Dependabot Security Updates in JavaScript
Projects

19



CHAPTER 4. METHODOLOGY

Figure 4.3: Screenshot of a security alert.

there are multiple nodes corresponding to a transitive dependency on the concerned upstream
package; (4) there are at least two such nodes for which a locked release belongs to one of the
ranges of vulnerable versions, but for each of these nodes, the range is different; and (5) the file
requiring an update is yarn.lock. In this scenario, Dependabot accidentally ignores every range
of the vulnerable releases but one and modifies the yarn.lock file accordingly. Therefore, at least
one dependency resolution block remains pointing to a vulnerable release after the modification
of the bot.

To verify the bug conjecture, we replicate the aforementioned conditions in a GitHub repos-
itory with both the Dependabot security alerts and security updates enabled. We find that after
merging the automated pull request generated by Dependabot, the associated security alert per-
sists. Consider Figure 4.3 that captures an example of such an alert. In this instance, the alert
concerns a vulnerability in the acorn package that covers multiple versions across three different
major releases, resulting in three disjoint ranges of the vulnerable versions. Specifically, major
version “5.x”, “6.x”, and “7.x”. Accordingly, Dependabot resolved the nodes that were previously
locked with a vulnerable version at the fifth major release, as can be deducted from the title of the
corresponding pull request given at the top of the figure. However, the nodes that are assigned
with a vulnerable version at the seventh major release remained unaddressed. In further support,
we also find a discussion over a Dependabot security update [8], in which developers pointed out
the aforementioned error and eventually decided to manually revise the suggested modification.
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4.1.5 Fixing Cases Discovery
To trace the cases of fixing a vulnerable dependency, we collect the events of identifying a security
vulnerability propagated through the dependencies in the selected repositories. To this end, we
apply the deducted vulnerability detection algorithm to the parent commits of each security up-
date, and generate a separate event for every reported security advisory. As such, we ensure that
for each identified vulnerability, there is a Dependabot security update that targets it, which is the
constraint induced by RQ2. Accordingly, each event is identified by the following four properties:
(1) the slug, i.e., the name with the owner, of the repository, (2) the associated security advisory,
which also includes the name of the affected upstream package, (3) the concerned (sub-)modules
containing the dependency files that declare a vulnerable dependency, and (4) the parent commit
of the associated security update. The latter property allows capturing the earliest state in the
repositories history at which Dependabot has identified the vulnerability.

In total we obtained 5395 events of identifying a security vulnerability propagated through
the dependencies. However, Dependabot may instantiate a new security update in case a more
recent version of the upstream is required, targeting a superset of the vulnerabilities that were
concerned by the superseded pull request. Therefore, some of the collected events capture not
the earliest state at which Dependabot has identified the vulnerability, but the state at which the
security update targeting this vulnerability was re-instantiated. To account for this, we link the
superseded and superseding security updates and drop such events, leaving us with 5089 entries.

Finally, to collect the fixing cases, for each event of identifying a security vulnerability, we
trace the fixing commit. We define a fixing commit as the earliest modification to the dependency
files that resolves the specified vulnerability in the dependencies and eventually reaches the default
branch of the repository. That is, the first commit that results in a state of the concerned repository
such that it is no longer deemed affected by the specified vulnerability. The requirement on
affiliation to the default branch is explained by the fact that we only account for the commits that
were accepted by the project maintainers, effectively ignoring those that did not reach the users
of the repository. To discover the fixing commit, we implement the algorithm that recursively
visits the descendants of the commit that served as a parent for the security update generated
by Dependabot, i.e., the subsequent states of the repository, and identifies whether the concerned
vulnerability is eliminated or not using the technique we deducted. If it is eliminated, then the
recursive call halts and returns the commit to the caller. Since the repository history commonly
comprises of more than a single branch, the algorithm may return multiple candidate commits,
i.e., candidates for the fixing commit. The reason is that once the original modification carrying
the fix located at a certain development branch reaches another branch through, e.g., a merge,
then for the latter branch, the earliest node with the vulnerable dependency resolved is this merge
commit. Therefore, due to traversing each development branch independently, the algorithm may
return more than one commit. However, it is also possible that none of the candidates is the
fixing commit. We regard such a scenario as complex, on the contrary to simple, where one of the
candidates is the fixing commit. Consider Figures 4.4b and 4.4a.

Both of the figures represent excerpts of the repository history, similar to the visualisation of the
network graph realized by GitHub8. Each node represents a commit, whereas the directed edges
capture the parent-child relationships between them. Red nodes depict commits for which the
associated state of the dependency files results in the repository being affected by a vulnerability
through dependency. The green is used to define the candidate commits, for which the dependency
files do not declare a vulnerable dependency. The yellow highlights the commit generated by
Dependabot as a part of a security update. Finally, the blue is used to depict that the associated
state is non-vulnerable, but the commit does not belong to the list of candidates.

As can be observed from Figure 4.4b, the parent commit of the security update generated
by Dependabot is B1, while the candidate commits are B4 and C2. In this simple scenario, the
fixing commit C2 is a descendant of B1. Whereas examining the complex scenario depicted by
Figure 4.4a, one can observe that the fixing commit A3 does not belong to the list of candidates,

8https://docs.github.com/en/github/visualizing-repository-data-with-graphs/
viewing-a-repositorys-network. Last accessed February 21, 2021.
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(a) Complex scenario (b) Simple scenario

Figure 4.4: Candidate and fixing commits scenarios.

as the commit B2, i.e., the parent of the commit instantiated by Dependabot, is not its ancestor.
The reason is that the branch A, used as the origin for the fix, was forked before B2 was created.

The existence of the complex scenario explains the reason for no complete automation for the
discovery of the fixing commit. Avoiding them requires traversing the network graph backwards,
which is expected to increase the number of nodes to be visited by orders of magnitude, effectively
impeding the research. Following this, we opt for the semi-automated solution, i.e., given the
list of the candidate commits, a human rater determines the fixing commit manually. In the
complex scenario, however, the earliest candidate commit is a result of a merge, and as such, a
rater is required to manually investigate the ancestors of this candidate to, ultimately, identify the
fixing commit. To assess the extent of accidental errors or the potential bias due to our manual
assignment, we recruit another independent rater. This second rater is presented with a total of
50 events of identifying a security vulnerability with a list of the candidate fixing commits for each
of the events. One-half of the events pertaining to a complex scenario, while the other does not,
which is not revealed to the rater. The rater is also familiarized with the vulnerability deduction
algorithm and the task at hand through the guideline captured in Appendix B. Accordingly, we
find no discrepancy between the fixing commits reported by the original and the second raters,
increasing our confidence in the accuracy of collected fixing cases.

4.2 Data Analysis
In this section, we discuss the techniques we employ to translate the collected data into inter-
pretable results that address the questions posed in this work. In particular, in Section 4.2.1,
we report on the metric we introduce to operationalize receptivity towards Dependabot security
updates and the motivation to split the projects into separate groups to analyse it (RQ1). In
Section 4.2.2, we cover the guideline we follow to distinguish between the bot and human fixes
and the analysis techniques we use to study the developer response towards vulnerabilities on dif-
ferent levels of granularity (RQ2). Next, in Section 4.2.3, we discuss the procedure and the set of
rules defined to collect developer motivation to manually address or ignore a vulnerability and the
approach we utilize to compensate for the subjectivity in qualitative analysis (RQ3). Finally, in
Section 4.2.4, we describe the operalization framework to measure the time to address a vulnerab-
ility and the modelling technique we use in the analysis to account for the security vulnerabilities
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Figure 4.5: Distribution of the number of security updates.

Table 4.5: Project classification based on the number of security updates.

Group Number of security updates
Constraint Interpretation

Very low [lower quartile, median) [1, 3)
Low [median, upper quartile) [3, 5)
High [upper quartile, upper tail) [5, 11)

Very high [upper tail, maximum] [11, 67]

that remain unresolved (RQ4).

4.2.1 Addressing RQ1

The first research question aims at identifying how frequently developers merge the security up-
dates generated by Dependabot. To this end, we introduce a metric, merge ratio, defined as the
proportion of the non-open security updates that were merged. That is, the ratio is computed over
a set of the security updates whose state at the moment of the data retrieval was either “closed”,
i.e., closed without merging, or “merged” but not “open”. The reason to exclude them is that this
state indicates that a decision to or not merge a pull request has not been made yet.

We compute the merge ratio over the entire collection of the extracted security updates but
also perform a more fine-grained analysis by assessing this metric on a per-project basis. Different
projects may adhere to different practices, and thus, respond to the security updates in a non-
uniform manner. Therefore, it is crucial to account for this and examine the distribution of merge
ratios among the selected projects.

Given the relativity of the metric, the range of the possible values is directly determined by the
number of non-open security updates a project has. Hence, if, amid the collection period, a project
received a very small number of automated pull requests (e.g., 1 or 2), it is extremely likely that
the merge ratio is either 0% or 100%. If this is a predominant case, then the distribution of merge
ratios will be mostly determined by these projects, heavily skewing it to both of the extremes and,
effectively, impeding the analysis. We plot the distribution of the number of security updates to
verify whether the aforementioned scenario applies to our dataset. Additionally, we report the
coefficients of skewness and kurtosis [64], whose acceptable values for normality lie between -1 and
1 and between -2 and 2, respectively. Consider Figure 4.5. As can be observed, both the plot and
the computed coefficients indicate that the distribution suffers from a very high positive skew. As
a countermeasure, we follow a quantile classification approach [66] to compose four disjoint groups
of projects that characterized by the degree of recipiency of the automated pull requests. Namely,
Very low, Low, High, and Very high. In Table 4.5 we report the constraints, i.e., cut-off points,
based on which the classification is performed.
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4.2.2 Addressing RQ2

The second research question aims to assess how often developers fix a vulnerability in dependencies
manually despite the availability of the Dependabot security update that addresses it. To answer
this question, we measure the percentage of the vulnerabilities in the obtained collection that
were (1) fixed by Dependabot, (2) fixed by a developer, or (3) have not yet been addressed. We
determine the inclusion to the latter group through the absence of the fixing commit, whereas
distinguishing between the first and the second groups is more complex. Indeed, provided the
external viewpoint onto developers’ actions, one can only conjecture to what extent the fixing
modification authored by a developer is influenced by the suggestion of Dependabot. Even in
the case that the first is an exact copy of the latter. Following this, in our work, we decide to
implement the high precision strategy - we regard a fix as contributed by Dependabot if and only
if the fixing commit is authored by it. Otherwise, we attribute the fix to the developers.

To maintain consistency with the analysis for the first research question, we also compute the
percentages for the four groups of projects separately. In particular, for each group, we compute
two pairs of percentages: (1) percentage of vulnerabilities that were addressed vs not addressed,
and (2) out of all fixes, the share that was contributed by a bot vs implemented by a human.
In the event of an observable discrepancy in the results for the different groups, we validate
whether this difference is statistically significant by computing the contingency table with the
absolute values and applying the Pearson’s χ2 test [75]. We reject the null hypothesis H0, which
assumes no relationship between the number of security updates received by a project and the
expected response to a vulnerability, if p < 0.05 (the traditional 5% significance level). In line
with the common guidelines [25], we also report the effect size, i.e., magnitude of this relationship,
provided evaluation of the Pearson’s χ2 test suggests the rejection of the null hypothesis. Despite
the plethora of approaches to compute the effect size [25], for a contingency table the size of which
is not upper-bounded by 2 × 2, it is recommended [57, 59] to use Cramér’s V [41], denoted by
φV . The metric varies between 0 and 1, with the former corresponding to a lack of association.
We follow the interpretation of φV proposed by Jacob Cohen [38], which suggests that for a
4 × 2 contingency table, the association between two variables is trivial if φV < 0.10, small if
0.10 ≤ φV < 0.30, medium if 0.30 ≤ φV < 0.50, and large if φV ≥ 0.50. However, the rejection
of the null hypothesis over an entire contingency table and a non-negligible effect size neither
imply that the difference in populations is statistically significant between each group nor indicate
between which groups specifically it is. As such, we complete the analysis by performing

(4
2
)

= 6
pairwise comparisons, i.e., Pearson’s χ2 tests. To compensate for an increased risk of a type I
error when making multiple statistical tests, we control the false discovery rate by adjusting the
p values following the Benjamini-Hochberg correction procedure [27].

4.2.3 Addressing RQ3

To provide further insights, we qualitatively identify the reasons developers decide not to address
a vulnerability, implement it manually, or solely reject the proposition of Dependabot. On the
contrary to previous studies [23], we do not aim to discover the motivation to the non-merged
pull requests but the rationale behind the decisions on vulnerability resolution. For instance, in
the first scenario, we identify that a suggested fix is rejected due to being implemented manually,
whereas, in the second, we determine that this fix is implemented manually due to breaking
changes incurred by the automatically proposed update. To this end, we examine the git commit
messages submitted with the fixing commit (if present), the comments left for the associated
security update generated by Dependabot, and the other related discussions (e.g., referenced in the
logs). Accordingly, for each vulnerability not addressed by merging the original (non-superseding)
Dependabot security update, we review the communication artefacts and use the collected cues
to deduct and assign a short label that captures the reason. Each label is accompanied by one to
two sentences that explain it. When assigning a label, we only rely on the rationale suggested by
the developers themselves, without conjecturing on the possible events and intents that are not
specified explicitly. However, amid the analysis, we observe that the vast majority of non-merged
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security updates are rejected silently, while vulnerability fixes are most commonly accompanied by
a superficial message. As such, through the manual review, the first author manages to identify
only 213 explicitly motivated and actionable responses to a vulnerability notification. Despite
such a low number of cases, we establish 22 unique reasons, i.e., labels, that explain them. We
cluster these fine-grained labels into six generalized groups. This allows to strictly outline the
domains of the developers’ concerns that guide the decision to or not to merge a security update
of Dependabot.

To counteract the subjectivity that stems from the manual analysis and ensure the validity
of the results, we recruit a second rater to perform a separate round of labelling independently
(consult Appendix B for the rater guideline). To assess the agreement between the two raters, we
compute Cohen’s κ, the de facto standard statistic, which is considered robust since it accounts for
the possibility of agreeing by chance. Comparing the classification of the two raters, we observe
κ = 0.963. This, following the interpretation proposed by Viera and Garrett [81], is equivalent to
perfect agreement, which increases our confidence in the reliability of the acquired results.

4.2.4 Addressing RQ4

In our work, we focus on developer interaction with Dependabot rather than its impact on the
users of the studied projects. Therefore, by answering the fourth research question, we aim to
capture the degree to which developers react to the vulnerabilities identified by Dependabot in a
timely manner. That is, contrary to the study of Decan et al. [44], we are not interested in the
difference between the time the vulnerability occurred in dependencies and the time the security
fix reached the users. Instead, in the case of a human fix, we operationalize the time required
to resolve a vulnerable dependency as the difference between (1) the time the vulnerability was
reported by Dependabot through a security update and (2) the time the fixing commit was made.
On the other hand, when the fix is made by the bot, we measure the difference between (1) the
time the vulnerability was reported by Dependabot through a security update and (2) the time
the fixing security update was merged.

In line with the previous software engineering studies [39, 42, 44, 68, 78], to assess the time-to-
event distribution, we rely on the statistical technique of the survival analysis [20]. The advantage
of this statistical approach is that it allows to account for the vulnerabilities that remain unad-
dressed by the end of the observable period, i.e., censored observations. Using the Kaplan-Meier
estimator [62], a non-parametric statistic, we fit a survival analysis model to estimate the survival
rate of the vulnerabilities in dependencies, i.e., the expected time duration until an actionable
reaction to a vulnerability, over time. Accordingly, the survival function represents the probability
that a vulnerability survives past a certain time point. To visualize it, we plot the survival curve
along the timeline with a 95% confidence interval.

In addition to the overall analysis, for each severity level, we fit a separate survivals analysis
model. This allows verifying whether there is a relationship between the risks incurred by a
vulnerability and the time it takes for the developers to react to it. That is, whether the developers
take into account the severity levels in prioritisation. To verify the significance of any observable
difference between each pair of the severity levels, we carry out

(4
2
)

= 6 pairwise comparisons using
the log-rank test [51], the de facto testing procedure for comparing time-to-event distributions.
The null hypothesis H0 assumes that there is no difference in the survival distributions of the
two groups. Given the absence of a meta-test that considers all four survival curves at once,
we choose a more conservative approach for type I risk correction. Specifically, we control the
family-wise error rate, i.e., probability of making at least one type I error, and following the
Bonferonni approach [71], test each individual hypothesis at a significance level of 0.83% (= α/T ,
where α = 5% is the desired overall significance level, T = 6 is the number of comparisons).

Finally, we measure and compare the vulnerability resolution times between the bot and manual
fixes. Since a vulnerability that has not been addressed by the end of the observable period can
neither be attributed to a bot nor a human, for this analysis, we have no censored observations.
Therefore, performing survival analysis is redundant, and we assess the distributions of the bot
and human fixes through violin- and box- plots. To statistically verify the difference, we utilize
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the one-sided non-parametric Mann-Whitney U test [73] at a standard 5% significance level. The
choice of the one-sided alternative is motivated by intuition that vulnerability fixed attributed to
Dependabot take less time than the manually implemented ones.
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Results

5.1 How often do developers merge Dependabot security
updates?

We find that 56.75% of 4317 non-open Dependabot security updates ended up being merged.
Comparing this to the merge ratio for the security pull requests generated by Dependabot-preview
(65.42%), as reported by Alfadel et al. [23], we find an almost 9% drop in receptivity. While this
difference is not inordinate, we conjecture that there are three core reasons that could explain
it. First, the auto-merge functionality, which is unique to Dependabot-preview, allows the bot to
merge its own pull requests without human intervention. Hence, it is likely that when a security
problem is identified, the version increment that has to be performed to eliminate the vulnerability
is very small. The less the increment is, the more plausible that the upgrade will not break the
code. Moreover, given its purpose, it is reasonable to expect that the maintainers of the projects,
which adopt Dependabot-preview, are more inclined to upgrade their dependencies. At last,
unlike the other dependency management tools, Dependabot may be deployed at the repository
automatically, given that it meets the prerequisites specified by GitHub. We conjecture that in
this scenario, developers can get confused and hesitate to merge a pull request of an unknown bot.

However, analysing the overall merge ratio does not allow to discover and distinguish between
different levels of interaction with the bot. As such, consider Figure 5.1 that captures the distribu-
tion of the merge ratios for the four groups of projects, categorized based on the number of security
pull requests received (see Section 4.2.1). The dotted line connects the medians of the distribu-
tions, whereas the straight while line indicates a fair merge ratio (50%). The colours of the violin
plots transmit the proportions of the projects that belong to each group. Concerning the first
group, i.e., projects with a very low number of security updates, we observe that, predominantly,

Figure 5.1: Violin plots for the distributions of the merge ratios across the four groups of projects.
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the project maintainers either merge all of the automated pull requests or none of them. In fact,
the two proportions of projects, each capturing one of these two extremes, are almost identical.
A possible explanation to the group of the non-responsive projects is that, as discussed earlier,
Dependabot was activated automatically, without the developer consent. Another rationale that
explains this observation is that the maintainers of the projects with a very low number of security
updates have yet to assert the reliability of the tool.

Shifting the focus to the other three groups, we observe that the majority of the projects are
highly willing to merge the pull requests generated by Dependabot. In fact, for the groups with a
low and high number of security updates, we find that at least a quarter of the projects merge all of
the automated suggestions. On the other hand, at least another quarter of the projects merge none
of the pull requests, although there is a notable dominance of the practice of merging every security
update. Perhaps surprisingly, this practice can even be observed in case a project has received a
very high number of security updates amid the observation period. A possible explanation to this
behaviour is that some developers prefer to implement the modifications manually, as evidenced
by previous studies [23,74].

Findings. Developers tend to either merge all or none of the security updates. For the
projects with less than or exactly two security updates, this tendency is the most evident,
with equally frequent occurrences of both extremes. In turn, for most of the projects that
received more than two security updates, developers merge at least the majority, and more
often, every security update. Otherwise, most frequently, developers accept none of the
automated updates, regardless of the number of suggestions received.

5.2 How frequently do developers fix a vulnerable depend-
ency manually in the presence of the Dependabot se-
curity update?

The results suggests that 53.63% of the examined vulnerabilities are mitigated by Dependabot,
30.38% of vulnerabilities in dependencies are resolved manually, and the remaining 15.99% have
not yet been fixed. That is, almost a third of the vulnerabilities in our dataset were fixed by a
human, despite the availability of the Dependabot security updates targeting them. Nevertheless,
the data also suggests that over half of them are fixed by the bot. Taking into account the
percentage of unresolved vulnerabilities, the bot fixes occur 1.8 times as often as the manual ones,
which implies that, overall, the task of vulnerability resolution is to a greater extent delegated to
Dependabot.

Continuing with the analysis, in Table 5.1, we report the results on the project group level. The
first meta-column, i.e., the first two sub-columns, provide the proportions of the vulnerabilities
that have and have not been fixed. As one can observe, there is a clearly noticeable difference
in the proportions of fixed and not fixed vulnerabilities. In fact, evaluation of the Pearson’s χ2

Table 5.1: The percentages of human/bot addressed and non-resolved vulnerabilities per project
group.

Group Responses to vulnerabilities Fixed by
Fixed Not fixed Bot Human

Very low 76.74% 23.26% 53.08% 46.92%
Low 90.96% 9.04% 61.74% 38.26%
High 86.25% 13.75% 63.59% 36.41%

Very high 84.21% 15.79% 71.38% 28.62%
Total 84.01% 15.99% 63.84% 36.16%
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Table 5.2: Computed p-values for the pairwise comparisons between the project groups. Signific-
ance: ’***’ < 0.001, ’**’ < 0.01, ’*’ < 0.05. Blue cells highlight the cases when p < 0.05.

Very low Low High Very high

Very low 7.18e-15*** 4.50e-09*** 1.63e-05***

fix
ed

vs
no

t
fix

ed

Low 1.27e-03** 6.87e-04*** 7.75e-06***

High 1.35e-05*** 4.02e-01 1.11e-01

Very high 2.03e-14*** 1.35e-05*** 2.47e-05***

fixed by bot vs fixed by human

test suggests that this difference is significant (p = 4.28e-15) with a non-trivial (small) effect size
φV = 0.12. We observe that the lowest percentage of resolved vulnerabilities belongs to the group
of projects with a very low number of security updates received. This finding may provide an
additional explanation for the highest share of projects with minimal receptivity (merges) to the
security updates observed for the projects that pertain to this group - developers’ concerns do
not intersect with the security issues. That is, developers do not accept the suggestions of the
bot as a consequence of indifference to vulnerabilities in dependencies. Perhaps surprisingly, we
find that the highest ratio of the resolved vulnerabilities belongs to the group of projects with the
low number of security updates - a 14% difference in comparison to the first group. Furthermore,
as the number of security updates increases (low −→ high −→ very high), the proportion of the
unaddressed security vulnerabilities raises as well. A potential explanation to this tendency is
that developers get overwhelmed by the vulnerabilities in their dependencies. The high number
of vulnerabilities or their frequent occurrence, in turn, could be consequenced by the size and
complexity of the project, and effectively, its dependency tree. In support of this conjecture,
comparing the percentages of the bot and human security fixes captured through the second
meta-column of Table 5.1, we find that for every subsequent group of projects, there is a greater
delegation of the security fixes to Dependabot (p = 6.38e − 14 < 0.05 and φV = 0.12, i.e., the
difference is significant with a small effect size). This can be due to a more extensive experience
with the bot, as evidenced in the recent study of Alfadel et al. [23] that reports the experience to
have a significant impact on the time to merge a bot-proposed pull request. On the other hand,
the greater extent of delegation of vulnerability resolution to the bot can be well-explained by (1)
the complexity of the project and the relationship between its dependencies that obstructs the
ability to address a vulnerability manually, without re-computing the dependency tree, (2) the
effort and time needed to address the vulnerabilities, given their high number, or (3) both.

However, as evidenced by the results of the post hoc pairwise comparisons reported in Table 5.2,
the truth likely lies in between, i.e., both the experience with the bot and the project complexity
play a role. We find that in each case but two, the difference is significant (overall significance level
α = 5%). The first such case is the trivial difference in the vulnerability response between the high
and very high groups of projects, despite a significant discrepancy in the delegation of the security
fixes. This suggests that the majority of the projects that belong to the second group compensate
for the increased complexity (or the number of vulnerabilities) by delegating the (added) security
workload to a bot; hence, a considerable increase in the proportion of security fixes made by the
bot without an improvement in the extent of the vulnerability resolution, i.e., no increase in the
proportion of addressed vulnerabilities. The second case is the trivial difference in the delegation
of the security fixes between the low and high groups of projects, despite a significant discrepancy
in the vulnerability response. This suggests that the projects associated with the latter group
could not compensate for the added complexity by distributing the vulnerability resolution to
Dependabot due to lack of experience, or also, trust.
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Findings. Almost a third of the vulnerabilities identified by Dependabot are fixed manu-
ally. Nevertheless, the majority (two thirds) of the fixes are made by merging a security
update generated by the bot. In fact, the greater the number of security updates a project
received, the more inclining the maintainers are in delegating the task of resolving vul-
nerable dependencies to Dependabot. Despite this, the maintainers of the projects that
receive more security updates tend to get overwhelmed by the vulnerabilities and address
less of them. The exclusions are the maintainers of the projects with less than or exactly
two security updates, which have addressed the lowest observed percentage of identified
vulnerabilities, suggesting indifference to security vulnerabilities in dependencies.

5.3 Why do developers ignore the suggestion of Depend-
abot or decide to address the vulnerability manually?

Concerning the developer motivation, we find that in 31.92% (68) of the cases with an explicitly
transmitted rationale (213), the decision to not merge a Dependabot security update and address
the vulnerability manually stems from the project management peculiarities. For instance,
external management of the project (50), i.e., the repository acts as a mirror for the project,
whereas the development and management are mediated through another third-party platform
(e.g., Gerrit Code Review). Another cause that belongs to this group of challenges is that a
security update gets closed automatically (11) by another bot, deployed as a consequence of the
maintainer reluctance to employ the pull-based development model, i.e., the project developers do
not use pull requests and reject them automatically. Developers can also be forced to implement
the suggestion of the bot manually when the repository maintainers enforce the policy of only
merging the contributions of those who have signed the contributor license agreement (6). In this
scenario, developers cannot whitelist the bot, and thus, accept a security update. Additionally,
we also observe that developers can decide to postpone the merge (1) until the next milestone but
eventually forget to do so.

In line with previous studies [28, 29, 56], we find that one of the biggest developer concerns
when deciding to update are compatibility challenges, which cover 27.70% (59) cases. Most
frequently, developers claim that an update incurs breaking changes (40), which require additional
modifications to the source code and adjustments to the other project dependencies. That is, a sole
upgrade to the dependency files, as proposed by Dependabot, breaks the software. In fact, we also
find that developers can decide to dismiss the security update due to the absence of tests (1), i.e.,
without certainty on breaking changes but in fear of compatibility issues. Sometimes developers
explicitly asks Dependabot to ignore dependency as a whole (14) or ignore minor versions of the
upstream package specifically (1). Alternatively, in certain scenarios, developers signify aspiration
to upgrade to a more recent release, i.e., a higher version (3) than suggested by the bot, to also
benefit from the increased performance or new features.

Another source of motivation to resolve a vulnerable dependency manually or ignore the auto-
mated suggestion is the dependency usage, which accounts for the 18.31% (39) of the reasoned
cases. On several occasions developers recognise that the dependency with a known vulnerability
is unnecessary (26) to the project, i.e., either not used in the project at all or belongs to an
obsolete sub-module in the repository. Under this circumstance, developers decide that it is more
convenient and rational to remove the dependency or the redundant sub-module that sources it
rather than bring it to a more recent release, as proposed by Dependabot. This suggests that
an ability to analyse the usage of the dependency across the repository could make Dependabot
a more effective and useful tool. We also observe that developers often reject a security update,
stating that they are interested in the manifest updates only (13), i.e., transitive dependencies are
outside of the developers’ concerns.

As expected, we also find that some of the bot limitations may also impact the decision to
not accept its contributions - 10.33% (22). First, there are scenarios when developers highlight
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that the vulnerable dependency has been already resolved (9) on the development branch by the
moment Dependabot generated a corresponding security update. Indeed, Dependabot monitors
only one branch, the default one, which often is the production branch, averse to the one that
developers use to prepare a release. Therefore, the fix that is already applied to the development
branch has not been transmitted to the production one yet at the time the bot generated the
security update. In fact, the absence of an opportunity to select the desired branch results in
another problem - developer reject the suggestion claiming that Dependabot proposes a merge
to the wrong branch (4). That is, developers would have merged the suggestion, provided it was
based on the branch of their choice. Furthermore, sometimes developers are not satisfied with
the bot committing redundant changes (7). For instance, modifying some of the additional fields
in the dependency files (e.g., the path to the registry) or the magnitude of the update, as in
the cases when Dependabot recomputes almost the entire dependency tree. We also find rare
instances when the developers would rather have multiple security updates grouped (1) into a
single pull request, or the scenario when the developers prefer to instead manually implement an
advanced fix (1) that addresses more vulnerabilities using other sources of the security advisory
information. Overall, majority of the aforementioned issues concern the limited configuration
settings provided by Dependabot, which is one of the recurrent issues in bot adoption, following
the study of Wessel et al. [86].

We also find the developers expressing bot dissatisfaction in 9.39% (20) of the cases. In
particular, there are cases when developers purposely removed all the lock files to prevent future
security alerts (11) and the cases when developers explicitly mark security updates as spam (5).
This suggest that, to an extent, Dependabot generates noise, which is the most recurrent and
central problem of interacting with software bots [83, 85, 86]. In addition, we observe several
cases when developers explicitly state their reluctance (4) to use Dependabot, which was deployed
automatically.

Finally, there are three reasons we find that are too rare to form their own group and too
distinct to join the others. We put them under the notion of the misc reasons that cover 2.35%
(5) of the cases. In particular, confusion (3) experienced by the developers either due to the title
or the contents of the security update (or a mismatch between the two), leading to a rejection of
Dependabot’s proposition; the case when Dependabot security update was generated as a result
of a trial run (1) by a developer; and at last, the case when the developers decided decided that
update addresses a vulnerability with the tolerable severity (1), thus unnecessary. The results are
summarised in Figure C.1 (Appendix C).

Findings. The two most common motivations to ignore the suggestion of Dependabot or
address the vulnerability manually are the use of the third-party platforms for development
and (the risk of) breaking changes. From the side of the tool itself, the limited configuration
is the most frequent source of adoption problems. In particular, there is a lack of the choice
of the branch for Dependabot to monitor. Additionally, some developers report Dependabot
liable to noise generation, which is a recurrent challenge for the majority of software bots.
Nevertheless, we do not observe this problem to be reported frequently and widely enough
to conclude it as experienced by a significant number of developers.

5.4 How long does it take to address a vulnerable depend-
ency identified by Dependabot?

Figure 5.2 shows the survival curve for the event “vulnerability identified by Dependabot is ad-
dressed” and Table 5.3 reports the survival probability for certain times x, i.e., the probability an
arbitrary vulnerability in dependencies is addressed after x days since the vulnerability is identified
by Dependabot. First, we observe that the likelihood of a vulnerability to remain unaddressed
within the first day is less than 70%. In other words, it is expected that almost a third of the

On Resolution of Vulnerable Dependencies with Dependabot Security Updates in JavaScript
Projects

31



CHAPTER 5. RESULTS

Figure 5.2: Survival curve for the event “vulnerability identified by Dependabot is addressed”.

Table 5.3: Survival probability PS of a vulnerability identified by Dependabot.

x (in days) 1 7 14 21 30 60 90 180 365
PS(x) 0.69 0.54 0.49 0.45 0.42 0.35 0.31 0.24 0.18

vulnerabilities in dependencies are addressed within 24 hours since Dependabot reported the se-
curity problem, i.e., instantiated a corresponding security update. Accordingly, the expectancy is
that the majority of the vulnerability advisories are responded to within the first two-three weeks.
As such, we conclude that predominantly developers respond to the suggestion of Dependabot
promptly. Nevertheless, based on the acquired statistic, a vulnerable dependency identified by the
bot remains unaddressed for over a year with an 18% likelihood, implying that almost one over
five vulnerabilities affects the users of the dependent projects for at least a whole year since the
advisory was published. This suggests that there is still a need to strengthen developer motivation
to take security vulnerabilities in dependencies with care and urgency.

Concerning the analysis on the relation between the survivability and severity of a vulnerability,
consider Figure 5.3 capturing the survival curve and Table 5.4 that reports the survival probability
for a set of durations. One can immediately observe that the level of the severity is negatively
correlated with the survival probability when comparing critical and high severity vulnerabilities
to moderate and low. In fact, there is also a clear difference between the first two classes of
vulnerabilities - given an identical time span, a critical severity vulnerability is always less likely
to remain unaddressed. The dominance is even more emphasised when comparing to the low
and moderate severity vulnerabilities - a critical severity vulnerability reported by Dependabot
has, on average, 15-20% more chances to receive an actionable response, given the same period
of time. For instance, we observe that a critical severity vulnerability is 1.5 times more likely
to be addressed within the first month than a low or a moderate. When it comes to an entire
year since the notification, an arbitrary low severity vulnerability is 2.4 more likely to persist
than a critical and 1.7 than a high. The evaluation of the pairwise log-rank tests confirms the
significant difference between each severity level, excluding the comparison of low and moderate
severity vulnerabilities. This suggests that developers consider the risks a vulnerability incurs

Table 5.4: Survival probability PS of a vulnerability identified by Dependabot based on its severity.

Severity
x (in days) 1 7 14 21 30 60 90 180 365

PS(x)

Low 0.74 0.60 0.57 0.53 0.50 0.44 0.39 0.33 0.26
Moderate 0.76 0.61 0.55 0.52 0.48 0.40 0.36 0.30 0.23
High 0.65 0.50 0.44 0.41 0.37 0.32 0.27 0.21 0.15
Critical 0.62 0.44 0.40 0.36 0.33 0.26 0.22 0.15 0.11
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Figure 5.3: Survival curves for the event “vulnerability identified by Dependabot is addressed”
based on the severity level.

Figure 5.4: Violin plots for the distributions of the bot and manual fixing times.

when prioritizing a dependency update.
As expected, comparing the bot fixes and the ones implemented manually, we find that the

first take significantly less time than the latter (0.01% significance level). As can be observed from
Figure 5.4 that shows the distributions of the fixing times, the difference between the two classes
of vulnerability resolutions is vast. Roughly 50% of the security updates are merged within a day
and another 25% within eleven days. On the other hand, it is only less than 25% (precisely, 18%)
of the manual fixes that are implemented within a day, whereas half of them take at least 1.5
months. This suggests that either a security fix is executed rapidly with the bot or requires far
more time to be addressed by developers manually.

Findings. Predominantly, developers are proactive in addressing vulnerable dependencies
identified by Dependabot - less than half of the vulnerabilities persist for more than two
weeks. Furthermore, developers follow the ground truth advice on treating security con-
cerns, i.e., prioritize the vulnerabilities based on the risks they incur, reflected through the
severity level assigned.
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Discussion

In this chapter, we correlate the obtained findings and discuss their implications. First, in Sec-
tion 6.1, we cover the implications for practitioners. Next, in Section 6.2, we present the actionable
advice for the maintainers of Dependabot to increase user satisfaction and engagement with the
tool. Accordingly, in Section 6.3, we review the lessons learned that can be helpful for fellow
researchers that investigate software bots, and in Section 6.4, we discuss the problems that emerge
from this work. Lastly, in Section 6.5, we discuss the validity of our study.

6.1 Implications to Practitioners

Usage of Dependabot is predominantly a positive experience The observed bimodal dis-
tribution of merge rates across all the selected projects with the majority of samples concentrated
at the extremes (recall Figure 5.1) implies that if project maintainers merge at least one security
update, it is likely that they will continue accepting all (or the vast majority of) the future De-
pendabot suggestions. In other words, it is unlikely that maintainers stop using Dependabot or
use it to a lesser extent once committed to it. From this, we conclude that either project main-
tainers rarely face negative experiences with Dependabot or that its benefits severely outweigh
the cons. The qualitative analysis confirms this, as we only observe dissatisfaction with the tool
in roughly 9% of explicitly motivated rejections. In fact, these belong to the projects that do
not merge the suggestions of Dependabot at all. Furthermore, amid the labelling procedure, we
notice positivity as the most frequent sentiment when developers express emotions towards the
tool. For example, “Good bot! :)” or “Thanks Dependabot!”. Based on this, we advise developers
to leverage Dependabot for keeping dependencies secure. We also encourage developers that, to
this date, have not merged a single Dependabot security update received to at least attempt to
use it for some trial period.

When addressing a vulnerable dependency manually, developers should strive to do
so more rapidly. As a whole, developers react to vulnerabilities in a timely manner, addressing
most of them within the first two-three weeks since the corresponding pull request is generated
(recall Figure 5.2). However, 30.38% of vulnerabilities in dependencies identified by Dependabot
are resolved manually, whereas the majority of manual fixes take at least one and half months to
get approached (recall Figure 5.4). Despite that a manual update may require additional costs due
to breaking changes, which we observe as a common rationale to ignore vulnerability or address it
without Dependabot, we advocate that the fixing times could get reduced by prioritizing security
concerns over other tasks. Alternatively, we advise project maintainers to perform regular updates
to dependencies to minimise the difference between the installed release and the non-vulnerable
one, i.e., reduce the risks of breaking changes for when a vulnerability needs to be addressed.
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6.2 Implications to Dependabot Maintainers

Familiarise developers with Dependabot. For the maintainers of the projects with less than
or exactly two security updates, which is the largest group of projects (roughly 45%), the tendency
to either merge all or none of the security updates is the most evident. We suggest that the reason
for this behaviour is two-fold, both of which stem from the automatic deployment of Dependabot
without the developer consent. First, some developers and maintainers can get confused and refuse
to merge a pull request of an unknown bot that starts interacting with the repository without
warning and instead address the identified vulnerability manually. This is confirmed by the fact
that the highest observed percentage of developer fixes belong to this group of projects (47%, recall
Table 5.1). Accordingly, the problem is the lack of information about the bot, or its immediate
accessibility upon deployment, which is one of the main challenges in human-bot interactions.
To address this, we recommend GitHub to always deploy Dependabot with an introductory or a
welcoming message that explains the purpose of the bot, how it works, and how to interact with
it, effectively increasing user familiarity with the tool.

Promote the importance to address vulnerable dependencies. The second reason for
the tendency to either merge all or none of the bot suggestions is that some developers and
maintainers that started receiving Dependabot security updates automatically are not concerned
about security issues in their dependencies. In support of this, we find that the highest observed
percentage of unaddressed vulnerabilities pertains to this (very low number of security updates)
group of projects (23%, recall Table 5.1). Following this, GitHub needs to promote the importance
to address vulnerable dependencies. One way to achieve this is to publicly display the number of
unaddressed security alerts on the repository page, similar to the badges, the presence of which
is known to correlate with more involved management of vulnerabilities in dependencies [80].
Accordingly, this badge-like element is used as a signal of the project quality to its users, effectively
introducing a gamification mechanism to motivate developers [24,34,55].

Enable integration of Dependabot with third-party services. Investigating the de-
veloper motivation to ignore a vulnerable dependency or mitigate it manually, we observe that
the reasoned cases of rejected security updates are often explained by the use of external tools to
manage the repositories. In this scenario, the repository hosted on GitHub is not used for develop-
ment purposes but only as a mirror to increase accessibility to the source code for the users. Since
Dependabot is bounded to the pull-request based contribution mechanism of GitHub, maintainers
of such projects can not leverage the bot to address security concerns in dependencies. As such,
we recommend GitHub to also distribute the services of Dependabot as a command-line interface
or through REST API, the uniform programming interface for the web services.

Increase configurability of Dependabot and provide better control over bot actions.
Whereas limited configuration is a common issue in bot adoption [86], GitHub does not provide
any options to control the behaviour of Dependabot. As concluded through qualitative analysis,
the most recurrent need of the developers is to select the branch on which Dependabot should
operate. Moreover, as reported by developers, due to the absence of this setting, Dependabot
can generate false alarms, i.e., alert the vulnerable dependency only present on the outdated
branch. Another setting that would allow for better tailoring towards user needs is to limit the
number of open security updates, as we observe that developers can get overwhelmed by them,
and ultimately, address a lower percentage of vulnerabilities. Alternatively, Dependabot could
allow project maintainers to prioritise reception of security based on the vulnerability severity
level. This should be an effective prioritisation factor as we observe a strong correlation between
the survivability of a vulnerability and the severity level assigned to it.

Introduce dependency usage analysis. In almost one over five reasoned cases of rejecting
Dependabot suggestion, developers argue that either the vulnerable dependency or the module
that sources it is not actually used in the project. Therefore, for these scenarios, an alert generated
by Dependabot is a false alarm. Therefore, we recommend enhancing the analysis performed by
Dependabot by scanning the source files to identify whether the package identified as vulnerable
is imported, i.e., used in the code, or not. As a side effect, generating fewer false alarms would
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also reduce the overall number of security updates, and so the likelihood of developers getting
overwhelmed by them.

6.3 Implications to Researchers
Ensure alignment in the goals of the analysed bots. We observe that developers merge a
security update generated by Dependabot in 56.75% of the cases. This statistic does not align with
the results reported in previous works that investigate developer receptivity towards pull request
bots. For instance, Wyrich et al. [88], who aimed to compare the interaction with automatically and
manually created pull requests, report that only 37.38% of the bot pull requests in their collection
ended up being merged. The difference in the results could be contributed by the extensive
project filtering that we perform in our work. For this project, we focus on actively maintained
and matured JavaScript projects, contrary to Wyrich et al., which do not define criteria that
restrict the scope of their work. However, we are more inclined to consider the tool selection
as the main factor contributing to the observed discrepancy - Wyrich et al. do not distinguish
between the bots that are pull request authors on GitHub and analyse them as a whole. Indeed,
different bots support developers in different tasks and goals. This is further confirmed when
comparing our results to the ones reported by Mirhosseini et al. [70] in their work on the usage of
Greenkeeper, which is a bot that provides automated pull requests upgrading stale dependencies.
The authors focused on starred and non-forked JavaScript projects with at least 20 commits and
found that only 32% of pull requests generated by Greenkeeper were actually merged, which is 1.8
times less than the percentage we observe in this work. Despite that Greenkeeper and Dependabot
are designed to update the dependencies and leverage an almost identical developer interaction
mechanism, i.e., pull requests, the different goals they support play a role in their receptivity. As
such, when analysing the bot usage among developers, we suggest separating them based on the
goals and tasks these bots are designed to fulfil.

Small differences between seemingly identical bots may lead to different findings.
The alignment in the goals of examined bots is necessary but, perhaps, not sufficient to en-
sure identical levels of developer interaction with them. Despite that Dependabot was based on
Dependabot-preview, and from the first glance is an identical tool, it can be deployed at a repos-
itory automatically, lacks auto-merge functionality, and aims to suggest the minimum required
increment in the updated release. Accordingly, in our work, we observe a merge ratio that is 1.2
times less than the one reported by Alfadel et al. [23] in their study on the usage of Dependabot-
preview and its security pull requests. As such, the findings collected for one tool do not necessarily
apply to another similar.

Developers rarely comment on rejected bot pull requests. Extracting developer mo-
tivation based on the commit messages and pull request discussions allowed us to discover many
divergent reasons to remediate a vulnerable dependency manually or ignore it. Nevertheless, we
observe that the majority of the collected security updates rejected by the developers are left
uncommented. Moreover, such an approach consumes a very large amount of time. Indeed, in
this project, this technique is the only feasible option as it is unreasonable to survey developers
on their past decisions. However, for researchers that aim to investigate the developer opinion
towards pull-based bots, we advise leveraging a series of interviews or an open-ended survey to
mine them.

6.4 Future work
Continue the investigation on the reasons to reject suggestions of Dependabot. As
discussed in Section 6.3, despite that we have discovered many unique motivations to address
a vulnerability manually or ignore it, developers predominantly reject security updates without
explaining their decision. This phenomenon suggests that the relevance of the identified reasons to
the majority of developers and project maintainers requires further investigation. We argue that
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the results acquired in this study can be regarded as a stepping stone for the future work that
investigates the interaction between developers and Dependabot. In particular, with the reasons
collected, it becomes possible to conduct a close-ended survey among the developers where the
respondents are required to rate or order them in line with the experienced relevance. This would
provide the maintainers of Dependabot with a more accurate assessment of the priority in which
the problems should be addressed.

Identify the advantages of the Dependabot interaction design. It is important to
identify the problems with the tool so that they can be addressed and that the developers of the
other tools could learn from them. In our work, we identify these problems and suggest the means
to mitigate them. However, to further strengthen the user satisfaction with Dependabot and the
other similar tools, it is also crucial to understand its convenience and advantages in interaction
design. To this end, we envision two strategies. First, we suggest the qualitative approach,
which boils down to conducting a series of interviews with the users of Dependabot. The other
approach requires reproducing our study for the projects that use the other tools (e.g., Snyk-bot
or Renovate). Accordingly, correlating the difference between the tools and the difference in the
extent of their adoption may reveal the advantages and disadvantages of the compared tools.

Measure the impact of Dependabot on keeping the project dependencies secure. In
our work, we assess the time it takes for the developers to address a vulnerability identified by
Dependabot. Nevertheless, it remains unknown to what extent Dependabot has an impact on it.
The way the tool aims to assist developers is clear, and the rationale behind its usage is evident, but
understanding its effect on the secureness of the projects is still required. In an optimistic scenario
that the bot has a strong impact, this evidence can be used to further motivate the projects’
maintainers to adopt Dependabot, effectively elevating the secure state of the dependencies. On
the contrary, a scenario that there is no impact or its negligible implies that the concept of a bot
that generates pull requests to update vulnerable dependencies requires refinement.

6.5 Threats to Validity
Construct validity. We find two core threats that concern the relationship between the theory
and the results obtained in this study. The first threat refers to our definition of a security fix made
by Dependabot. We employ a high precision strategy and only consider a fix to be contributed by
the bot if Dependabot is the author of the fixing commit. Indeed, there could be instances when
developers replicate the update generated by the bot or use a proxy to implement the suggested
changes. However, such cases can not be identified with high confidence. Accordingly, when
identifying the extent of delegation of fixing vulnerable dependencies to Dependabot, we prefer
to underestimate rather than overestimate. In fact, we estimate the impact of this decision to be
mild, if any, as, amid the manual inspection, we only find 32 (2%) of the cases where one could
conjecture that the contents of the commit generated by the bot were exactly replicated by a
developer.

The second threat is that we operationalise the left endpoint of the fixing time interval for a
vulnerability as the moment the corresponding security update that addresses it was generated.
The moment that developers and maintainers of a project became aware of the vulnerability in
their dependencies could have taken place earlier, provided they used other sources of information.
Nevertheless, as Dependabot is the uniform interface for vulnerability data, shared across all of
the selected projects, this choice of the starting timestamp for a fixing event is the most optimal.

Internal validity. We find three main threats that could affect our results and are internal
to our study. The first threat pertains to the quality of the obtained collection of projects and
has an impact on every research question we pose in this work. For instance, the presence of
abandoned projects or immutable forks could have downgraded the overall merge ratio or signific-
antly elevate survival curves for vulnerabilities. To address this threat, we perform an extensive
filtering procedure and remove the projects that have less than one commit during each month of
the collection period. As such, we ensure that when a project receives a security update, it has
recent activity. In fact, the average number of commits during the collection period among the
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selected projects is 640, i.e., approximately 53 commits per month.
The next internal threat concerns mining GitHub in general, as a large share of the repositories

hosted there are used for personal projects [61], e.g., homework assignments. This poses a serious
threat to our analysis, as vulnerabilities in a project with no utility to individuals other than the
developers of the project themselves are tolerable. That is, security concerns for the maintainers
of such projects are likely to associate with the lowest priority. To mitigate this threat, we
only consider engineered repositories selected using the Reaper tool. Despite that this tool is
not perfectly accurate, given the other criteria we impose on the projects, we are confident the
presence of personal repositories in the considered sample is minimal.

The third and final internal threat relates to the use of qualitative techniques. To obtain
insights on developer motivation, we manually analyse the cases of identified vulnerabilities that
were not addressed or mitigated manually, despite the presence of the corresponding Dependabot
security update. The downside of such approach is the author bias and subjectivity. To counter
this, first, we enforce a rule that the conclusion can be made only based on the information
explicitly specified by the developers themselves. Furthermore, we employ a second independent
analyst to repeat the manual study. Measuring the inter-rater agreement, we observe a very high
value (0.96) for Cohen’s κ coefficient, strengthening our confidence in the objectivity, and hence
validity, of the qualitative analysis.

External validity. The last threat concerns the generalization of our findings. In our work,
we solely focus on the JavaScript projects and npm ecosystem. Since the communities surrounding
different centralised package registries deviate in policies, practices, and culture [29,42], our results
do not necessarily reflect the use of automated support in the projects written the different lan-
guages and ecosystems other than npm. Moreover, our analysis is strictly limited to Dependabot,
whose interaction traits and core logic need not correlate with the ones of the other tools alike.
As such, we encourage replication of our work for the other languages and package dependency
networks. We expect that different lessons learnt from other ecosystems can contribute to the
better adaptation of the dependency management tools towards specific developer communities.
While our results do not reflect the level of adoption and receptivity towards other tools like De-
pendabot, these findings hold significant relevance since this bot is the most accessible tool that
provides automated security updates.
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Conclusion

This work conducts an empirical study of vulnerable dependency resolution with the assistance
of Dependabot in the open-source JavaScript projects hosted on GitHub. Literature suggests
that maintaining dependencies secure is an overwhelming challenge to the developers, indicating
a strong need for support through automation. In turn, Dependabot is the most accessible and
widely deployed tool designed to mitigate this problem. However, no prior studies assess the
extent of its adoption by the community and investigate the interaction with the bot along with
the problems developers face when using it.

To provide insights on the usage of Dependabot and address the gap, we formulated four re-
search questions that we answered by combining quantitative and qualitative techniques through
the analysis of 4,538 security updates associated with 1,004 mature and actively maintained JavaS-
cript projects. We studied developer receptivity towards Dependabot on different levels of granu-
larity, investigated the practice of fixing the vulnerability manually in the presence of an automated
pull request that addresses it as well as motivation to this phenomenon, and finally, assessed how
proactive the developers were in remediating the vulnerable dependencies alerted by Dependabot.

To evaluate developer receptivity, we measured the overall merge ratio but also assessed its
distribution across the studied projects. We found that more than half of the bot suggestions are
accepted and merged. After splitting the projects into four groups based on the number of security
updates received, we observed that developers either merge all or none of the suggestions. This
behaviour was encountered in all four groups of projects.

Studying how often developers fix a vulnerability manually, as opposed to merging the cor-
responding Dependabot security update that addresses it, proved to be a complex problem that
requires several steps. First, we restored the missing and modified entries in the public database
of security advisories hosted by GitHub. Then, we reverse-engineered and implemented the al-
gorithm leveraged by Dependabot to identify whether the project is affected by a vulnerability
in the dependencies. After the validation procedure, we apply the algorithm to the modification
history of each studied project. Specifically, we recursively traversed their network graphs for
each vulnerable dependency identified by Dependabot to locate the earliest fixing commit that
eliminates it. Completing this task required manual inspection, whose correctness we confirmed
with the help of the second reviewer. We found that when developers do not accept a security up-
date, they eventually address the associated vulnerability manually - vulnerabilities identified by
Dependabot were fixed manually twice more often than ignored. Nevertheless, the vast majority
of the identified fixes were performed by merging a security update generated by the bot.

To discover the challenges developers face when interacting with Dependabot, for each rejected
security update, we manually investigated the textual artefacts associated with it or a fixing
commit, provided the associated vulnerability was addressed manually. To counter the subjectivity
in the qualitative analysis, we verified the inter-rater agreement between the original and the
second reviewers. We found 22 unique reasons to ignore a vulnerability in dependencies or mitigate
it without the bot, which we grouped into six categories. We observed that the two prevailing
motivations are the use of third-party platforms for development and (the risk of) breaking changes.
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Moreover, the limited configuration of the bot is one of the most frequent sources of adoption
problems.

At last, to capture the degree to which the developers react to the identified vulnerabilities
promptly, we leveraged the survival analysis. We found that developers are often proactive in
addressing vulnerable dependencies identified by Dependabot. In particular, less than half of
the vulnerabilities persist for more than two weeks. We also found that developers prioritize the
vulnerabilities based on the risks they incur, i.e., there is a relation between the severity level
assigned to a vulnerability and the time it takes for developers to react to it. However, when
developers implement the fix manually, the results are not as optimistic - the majority of the
studied manual fixes took more than a month.

Based on our findings, we conclude that the majority of developers are willing to delegate the
resolution of vulnerable dependencies to Dependabot and that the usage of this bot is predomin-
antly a positive experience. However, we urge developers to spend additional efforts on manual
fixes as they take a very long time, especially in comparison to automated fixes. Despite that over
50% of the security updates are merged, we identified several ways the maintainers of Dependabot
could improve this statistic. First, we recommend them to familiarise developers with Dependabot
and promote the importance to address vulnerable dependencies. Furthermore, we encourage to
augment the bot by enabling integration with third-party services, increasing configurability of the
tool, and introducing dependency usage analysis. Finally, we call for the continuation of our work
by extending the findings on the reasons to reject suggestions of Dependabot through additional
surveys and analysing the impact of Dependabot on keeping the project dependencies secure.
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Appendix A

Rectification of the security
advisory records

A.1 minimist and acorn

A.1.1 Summary
GHSA-7fhm-mqm4-2wp7 got withdrawn and replaced by GHSA-6chw-6frg-f759 (acorn package)
and GHSA-vh95-rmgr-6w4m (minimist package), as suggested by the summary of the former. The
only change that occurred is that the range of the vulnerable releases for the minimist package
used to be defined as < 1.2.2 but got modified to (< 0.2.1) ∨ (≥ 1.0.0 < 1.2.3)

A.1.2 Evidence

As for the acorn package, there are numerous examples of the security updates1 that suggest
updating from the highest vulnerable version to the minimum non-vulnerable one, dated seconds
after GHSA-7fhm-mqm4-2wp7 got published. As for the minimist package, the associated entry
in the National Vulnerability Database2, highlights that every release up to (excluding) 1.2.2
is vulnerable. Additionally, using GitHub Search, one can find many examples of the security
updates3, dated minutes after publication of the original security advisory, that suggest upgrading
minimist to 1.2.2. There are also examples4 when a security update that upgrades minimist to
1.2.2 gets superseded by an automated pull request that upgrades it to 1.2.3 on the date of the
publication of the replacement advisory ( GHSA-vh95-rmgr-6w4m).

A.1.3 Remediation
The publication date for the records GHSA-6chw-6frg-f759 and GHSA-vh95-rmgr-6w4m should
be replaced by the one of GHSA-7fhm-mqm4-2wp7. In turn, GHSA-7fhm-mqm4-2wp7 is removed, to
avoid identification of multiple vulnerabilities, since the affected release ranges intersect. At last,
a special case must be made in the vulnerability deduction algorithm that, in case Dependabot

1https://github.com/thedevs-network/the-guard-bot/pull/113,
https://github.com/restorecommerce/handlebars-helperized/pull/4,
https://github.com/yellowled/yl-bp/pull/71
2https://nvd.nist.gov/vuln/detail/CVE-2020-7598
3https://github.com/BitGo/BitGoJS/pull/703,

https://github.com/kartotherian/kartotherian/pull/122,
https://github.com/workshopper/adventure/pull/18
4https://github.com/peeranha/peeranha-web/pull/187,

https://github.com/fakob/MoviePrint_v004/pull/10,
https://github.com/viewstools/morph/pull/185
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suggests updating minimist to 1.2.2, the vulnerability GHSA-vh95-rmgr-6w4m is assigned as an
associated security advisory.

A.2 concat-with-sourcemaps

A.2.1 Summary

The GHSA-2xv3-h762-ccxv advisory comprises an incorrect vulnerability constraint, which is used
to capture the range of the affected releases.

A.2.2 Evidence

The range of the vulnerable releases is defined as > 1.0.0.1 < 1.0.6, while the summary of the
advisory suggest that, instead, every version prior to 1.0.6 is affected. The latter is correct, as
suggested by the corresponding vulnerability record in the database maintained by npm5, which is
included as a reference. Additionally, version 1.0.0.1 of package concat-with-sourcemaps does not
exist.

A.2.3 Remediation

Replace the vulnerability range definition with < 1.0.6.

A.3 eslint

A.3.1 Summary

The GHSA-jcgq-xh2f-2hfm advisory concerning catastrophic backtracking (severity level “mod-
erate”) in eslint package of versions prior to 4.18.2 got published on June 20th, 2019, and removed
from the database after November 19th, 2020.

A.3.2 Evidence

Numerous secuirty updates suggesting to upgrade eslint package to version 4.18.26 were generated
on June 20th, 2019. The latest security update suggesting to upgrade to this version7, which we
manage to retrieve, was instantiated on November 19th, 2020. As suggested by an automated pull
request raised by Renovate bot on June 20th, 20198, which sources GitHub Advisory Database, the
ghsa identifier of the concerned vulnerability is GHSA-jcgq-xh2f-2hfm, and the affected version
range is < 4.18.2. As derived from the following discussion9, the severity level assigned to this
vulnerability is “moderate”.

A.3.3 Remediation

Add an entry to the collection of security advisories following the information provided above.

5https://www.npmjs.com/advisories/644/versions
6https://github.com/search?o=asc&q=is%3Apr+author%3Aapp%2Fdependabot+bump+eslint+from+to+4.18.2&

s=created&type=Issues
7https://github.com/saelinklaw/ReverseServer/pull/1
8https://github.com/Financial-Times/n-teaser/pull/214
9https://github.com/uktrade/githubscan/pull/4
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A.4 ecstatic

A.4.1 Summary

The GHSA-9q64-mpxx-87fg advisory, originally published on June 7th, 2019, got republished on
April 1st, 2020.

A.4.2 Evidence
The corresponding advisory comprises three disjoint vulnerability ranges. Accordingly, the sug-
gestions are to upgrade ecstatic package to version 2.2.2, 3.3.2, or 4.1.2. There are numerous
examples of the security updates10 that upgrade a dependency on ecstatic to one of the aforemen-
tioned versions, dated June 7th, 2019.

A.4.3 Remediation

Modify the publication date with June 7th, 2019.

A.5 ws

A.5.1 Summary
The GHSA-5v72-xg48-5rpm advisory used to have a different range of the vulnerable releases
specified.

A.5.2 Evidence
The advisory suggests that the versions of the ws package that satisfy the constraint (≥ 0.2.6 <
1.1.5) ∨ (≥ 2.0.0 < 3.3.1) are vulnerable. That is, release 1.1.5 is patched. However, on the
first day of publishing this advisory, there are a plethora of Dependabot security updates11 that
suggest avoiding version 1.1.5 and, instead, upgrading to 3.3.1. Furthermore, we find a pull request
generated by Renovate-bot12 on the day advisory was published that references it and suggesting
that the affected versions of the ws package are (≥ 0.2.6 < 3.3.1). Therefore, when the advisory
was published, version 1.1.5 was deemed vulnerable. The advisory was modified to exclude the
version 1.1.5 from the range of affected releases on December 9th, 201913.

A.5.3 Remediation
A special case must be made in the vulnerability deduction algorithm that, in case Dependabot
suggests updating ws package from version 1.1.5 to any release that is higher than 3.3.0 before
December 9th, 2019, the vulnerability GHSA-5v72-xg48-5rpm is assigned as an associated security
advisory.

10https://github.com/search?o=asc&q=is%3Apr+author%3Aapp%2Fdependabot+ecstatic+from+to+2.2.2&s=
created&type=Issues,

https://github.com/search?o=asc&q=is%3Apr+author%3Aapp%2Fdependabot+ecstatic+from+to+3.3.2&s=
created&type=Issues,

https://github.com/search?o=asc&q=is%3Apr+author%3Aapp%2Fdependabot+ecstatic+from+to+4.1.2&s=
created&type=Issues

11https://github.com/search?o=asc&q=is%3Apr+author%3Aapp%2Fdependabot+bump+ws+from+1.1.5+to+3.3.1&
s=created&type=Issues

12https://github.com/moul/iocat/pull/14
13https://github.com/search?o=asc&q=is%3Apr+author%3Aapp%2Fdependabot+bump+ws+from+1.1.1+to+1.1.5&

s=created&type=Issues
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A.6 kind-of

A.6.1 Summary
The GHSA-6c8f-qphg-qjgp advisory used to have a different range of the vulnerable releases
specified.

A.6.2 Evidence
The retrieved version of advisory suggests that versions of the kind-of package 6.x prior to 6.0.3
are vulnerable to a Validation Bypass. However, on the day the advisory was published, we find
several Dependabot security updates14 that suggest avoiding version 3.3.2 of the package kind-of
in favour of 6.0.3. Indeed, as suggested by the following discussion15, the advisory used to declare
that every version prior to 6.0.3 is vulnerable. The latest security update that advises to avoid
versions prior to 6.x is dated by November 6th, 2020.

A.6.3 Remediation
A special case must be made in the vulnerability deduction algorithm that, in case Dependabot
suggests updating from version <6.x to any release that is higher than 6.0.2 before November 6th,
2020, the vulnerability GHSA-6c8f-qphg-qjgp is assigned as an associated security advisory.

A.7 marked

A.7.1 Summary
The GHSA-7m7q-q53v-j47v advisory concerning the regular expression denial of service (severity
level “moderate”) in marked package of versions ≥ 0.5.0 < 0.6.1 got published on June 4th, 2019,
and removed from the database after August 30th, 2020.

A.7.2 Evidence
Numerous security updates suggesting to upgrade marked package to version 6.0.116 were gener-
ated on June 4th, 2019. The latest security update suggesting to update to this version17, which
we manage to retrieve, was instantiated on August 30th, 2020. As suggested by a pull request
raised by Renovate-bot on June 4th, 201918, the ghsa of this advisory is GHSA-7m7q-q53v-j47v,
and the affected version range is ≥ 0.5.0 < 0.6.1. As derived from the following discussion19, the
severity level assigned to this vulnerability is “moderate”.

A.7.3 Remediation
Add an entry to the collection of security advisories following the information provided above.

14https://github.com/search?o=asc&q=is%3Apr+author%3Aapp%2Fdependabot+Bump+kind-of+from+3.2.2+to+
6.0.3&s=created&type=Issues

15https://github.com/near/rainbow-bridge/issues/28
16https://github.com/search?o=asc&q=is%3Apr+author%3Aapp%2Fdependabot+bump+marked+to+0.6.1&s=

created&type=Issues
17https://github.com/admdev8/autocomplete-plus/pull/4
18https://github.com/cats-oss/scaffdog/pull/48
19https://github.com/docsifyjs/docsify-cli/pull/87
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Appendix B

Rater guideline

The labelling procedure consists of two stages. The first stage is dedicated to the identification
of the fixing commit given a list of the candidate commits, additional information that pertains
to the concerned vulnerability, and access to the repository hosted on GitHub. All the necessary
knowledge and in-depth explanation of the methodology are described in Section B.1. In the
second stage, a rater is required to assign four (multi-) labels to each case of fixing (or non-fixing)
a vulnerable dependency for which Dependabot has generated a security update. The details are
discussed in Section B.2.

B.1 First stage

B.1.1 Susceptibility to a vulnerability

Each provided case is accompanied with a list of the affected directories, i.e., (sub-)modules of
a repository with a vulnerable dependency. The hosted repository is deemed to be affected by a
vulnerability if at least one dependency file in either of the specified directories is found to declare
a vulnerable dependency. In our study, we consider four kinds of dependency files. Namely,
package.json, npm-shrinkwrap.json, package-lock.json, and yarn.lock. A rater is assumed
to have a considerable level of familiarity with their structure and function.

For each case, a rater is provided with a name of the upstream package and the range(s) of
its vulnerable releases. Additionally, for each range, the first patched release is specified. The
package.json is said to declare a vulnerable dependency if the specified upstream package is
present as a direct runtime or development dependency, whose highest version that satisfies its
dependency constraint is vulnerable. Since each vulnerability range is upper-bounded by a first
patched version, there is no need to consult the registry for a list of releases. A rater is assumed to
be capable of interpreting the dependency constraints and have a knowledge of semantic versioning.

Concerning the other three kinds of dependency files, if the specified upstream package is de-
clared as a direct dependency, then solely the release assigned to a node in the dependency graph
that represents this direct dependency is used to determine the susceptibility to a vulnerability.
Otherwise, if the locked release of at least a single node that corresponds to the specified package
in the dependency graph belongs to a range of vulnerable versions, then the file is said to de-
clare a vulnerable dependency. Furthermore, if a repository follows the monorepo structure, then
the direct dependencies of the hosted sub-modules, defined through the workspaces field in the
yarn.lock, are deemed as direct dependencies of the entire top-level module.

At last, consider that a repository is no longer regarded as affected by a vulnerability through
a dependency, if the dependency files that declare a vulnerable dependency are removed. Whereas
renaming a dependency file is treated as removing it.
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B.1.2 Fixing commit
The goal of the first stage is to, given a case, identify the fixing commit (its oid). A fixing commit
is the earliest modification to the dependency files that resolves the specified vulnerability in the
dependencies and pertains to the default branch of the repository. That is, the first commit that
results in a state of the concerned repository such that it is no longer deemed affected by the
specified vulnerability. Recall that only the directories reported together with a provided case
contribute to susceptibility to a vulnerability.

B.1.3 Candidate commits
For each case, a rater is presented with a list of candidates for the fixing commit. The algorithm
used in the study to retrieve this list is based on the recursion and visits the descendants of the
commit that served as a parent for the security update generated by Dependabot. That is, a
commit on which security update was based. Due to this and the plethora of ways to interact with
the version control system, the fixing commit cannot be identified automatically. Specifically, it is
possible that none of the candidates is the fixing commit. We regard such a scenario as complex,
on the contrary to simple, where one of the candidates is the fixing commit. Consider Figures B.1b
and B.1a.

Both of the figures represent excerpts of the repository history, similar to the visualisation of the
network graph realized by GitHub1. Each node represents a commit, whereas the directed edges
capture the parent-child relationships between them. Red nodes depict commits for which the
associated state of the dependency files results in the repository being affected by a vulnerability
through dependency. The green is used to define the candidate commits, for which the dependency
files do not declare a vulnerable dependency. The yellow highlights the commit generated by
Dependabot as a part of a security update. Finally, the blue is used to depict that the associated
state is non-vulnerable, but the commit does not belong to the list of candidates.

As can be observed from Figure B.1b, the parent commit of the security update generated
by Dependabot is B1, while the candidate commits are B4 and C2. In this simple scenario, the
fixing commit C2 is a descendant of B1. Whereas examining the complex scenario depicted by
Figure B.1a, one can observe that the fixing commit A3 does not belong to the list of candidates,
as the commit B2, i.e., the parent of the commit instantiated by Dependabot, is not its ancestor.
The reason is that the branch A, used as the origin for the fix, was forked before B2 was created.

Nevertheless, the traceability of the complex scenario is straightforward. In this case, the
earliest candidate commit is a result of a merge. As such, a rater is required to manually investigate
the ancestors of this candidate to, ultimately, identify the fixing commit.

Finally, note that merging the corresponding pull request generated by Dependabot does not
necessarily result in mitigation of a vulnerability. The reason to this is a supposed bug that arises
when the bot attempts to resolve a vulnerability in yarn.lock file, while this vulnerability affects
multiple disjoint release ranges of the upstream package.

B.1.4 Provided information
Aside from the aforementioned details, as a part of each case, a rater is also presented with the
url’s to the repository, the first pull request generated by Dependabot to address the vulnerability,
and the pull requests that have superseded it (if existing). Additionally, we provide a link to
the parent of the commit generated by a Dependabot and the unique identified (ghsa) of the
concerned vulnerability.

1https://docs.github.com/en/github/visualizing-repository-data-with-graphs/
viewing-a-repositorys-network
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(a) Complex scenario (b) Simple scenario

Figure B.1: Candidate and fixing commits scenarios

B.2 Second stage

In the second stage, for each case, a rater is provided with the address of the repository, the url’s of
the first pull request generated by Dependabot to address the vulnerability and the pull requests
that have superseded it (if existing), the fixing commit and the pull request associated with it (if
existing), the information about the vulnerability and the upstream package, and at last, the list
of the directories. A rater is required to assign four labels, one for each column. The in depth
description of each is given below.

B.2.1 Column A

The associated variable is a boolean that captures whether or not the fixing commit was created
with a security intent. We follow a high-precision approach, and as such, when assigning a value,
a rater is prohibited from making conjectures. A fix can only be deemed as a security-intended
if and only if this is directly specified by the developers, e.g., through the commit message, the
name or the discussion in the associated pull requests, the branch name, etc. When in doubt, a
rater should always assign False. If a fixing commit is authored by Dependabot, the assigned
value is True by default.

B.2.2 Column B

The intent behind this column is to identify by which actions the fix was brought into the reposit-
ory. Accordingly, a rater is required to assign one of the labels from the predefined pool. Consider
Table B.1 that gives the list of possible labels.

B.2.3 Column C

The third column is used to identify the way the dependency (the constraint or the locked version)
was altered, such that the vulnerability is eliminated. A rater is required to assign one of the labels
listed in Table B.2.
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Table B.1: Column B - Labels.

label description
merged Either the pull request generated by Dependabot to address

the vulnerability or one of the pull requests that have super-
seded it was merged, effectively eliminating the vulnerability.

accompanied The fix was brought by merging a security update generated
by Dependabot to address a vulnerability in another upstream
package.

transported The pull request generated by Dependabot to address the vul-
nerability and the pull requests that have superseded it are
declared as not merged but one of the associated commits is
the fixing commit. That is, the developers have migrated the
Dependabot commit to another branch, effectively eliminating
the vulnerability.

duplicate The vulnerability alert and the associated Dependabot pull re-
quests were generated as a result of shifting the default branch,
while the vulnerability is addressed by merging one of the cor-
responding security updates instantiated based on the branch
regarded as the default previously.

copypaste The fixing commit is identical to the one generated by De-
pendabot but authored by a developer. That is, a developer
has copied a commit of Dependabot. Alternatively, a portion
of the developer commit is a copy of the modifications made
by Dependabot.

migrate The fix is made by a migrating from one dependency file
format or registry to another (e.g., from package-lock.json
to yarn.lock).

update dependencies Either the fixing commit only comprises of modifications to
the dependency files (excluding removal or renaming) or the
commit/pull request message suggests that (one of) the goal(s)
of the commit is to update dependencies.

update upstream Developers purposely update the direct dependency on the
upstream package that induces a transitive dependency on a
vulnerable package, effectively removing the latter.

remove upstream Developers purposely remove the direct dependency on the
upstream package that induces a transitive dependency on a
vulnerable package, effectively removing the latter.

remove dependency Developers purposely remove the dependency on the vulner-
able package.

remove lock files Developers removed all of the lock files.
remove one lock file Developers removed one of the lock files in a directory. The

other lock files in the directory remain untouched.
remove manifest Developers removed the manifest file(s) from the directories

sourcing the vulnerability.
remove dependency files Developers removed all of the dependency files from the dir-

ectories sourcing the vulnerability.
remove directory Developers removed the entire sub-module(s) that holds the

dependency files sourcing the vulnerability.
audit Developers either utilized npm/yarn audit or npm/yarn audit

fix commands.
other None of the categories fit.
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Table B.2: Column C - Labels

label description
removed Either the dependency is removed or the lock files that state

the fixed version for it are removed.
introduced as direct The vulnerable upstream package that was originating only

as a transitive dependency, was introduced as a direct one.
Accordingly, this has narrowed the susceptibility to a vulner-
ability to the locked version of the node in the dependency tree
that represents the direct dependency on the affected package.

other None of the two aforementioned categories fit. Similar to the
automated message “dependency is up-to-date” of Depend-
abot.

B.2.4 Column D
The intent behind the final column is to identify the reason why developers decided to not address
the vulnerability, implement it manually, or reject the proposition of Dependabot. Similarly to
the previous columns, a rater is required to assign one of the labels from the predefined pool. A
label can only be assigned based on a strong evidence, such as a discussion in a pull request/issue
or a commit message. That is, no conjectures can be made. If no reason can be identified, a rater
should leave the field blank. Consider the list of labels given in Table B.3.

Table B.3: Column D - Labels.

grouping Developer(s) intended to update all dependencies at once,
rather than merging the security updates generated by De-
pendabot.

advanced Developer(s) indented to perform an advanced modification
that eliminates more vulnerabilities than reported by Depend-
abot.

trial run The Dependabot security update was generated as a result of
trial run by developer(s).

ignore minor Developer(s) asked Dependabot to ignore the minor versions
of the affected package.

ignore dependency Developer(s) asked Dependabot to ignore the vulnerabilities
in the affected package.

no tests Developer(s) did not merge the Dependabot security update
due to lack of testing.

tolerable severity Developer(s) decided that the severity of the vulnerability is
tolerable for the project.

postpone merge Developer(s) decided to postpone the merge.
confusion Developer(s) got confused either by the title or the contents of

the security update (or a mismatch between the two), rejecting
the proposition of Dependabot.

manifest updates only Developer(s) do not address vulnerabilities in transitive de-
pendencies or prefer to merge modifications that only concern
the manifest files.

higher version Developer(s) want to upgrade to a higher version that pro-
posed by Dependabot.

anti-dependabot Developer(s) express the reluctance to use Dependabot.
wrong branch Developer(s) are not satisfied with the choice of the branch to

which Dependabot proposes a merge.
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spam Developer(s) regard the security update as spam.
cla Developer(s) are unable to merge the suggestion since this

requires its author to sign the Contributor License Agreement.
Accordingly, developer(s) are unaware of how to bypass this.

bot extra changes Developer(s) are not satisfied with the bot altering some of
the additional fields in the dependency files or the magnitude
of the change.

already resolved Developer(s) indicate that the vulnerability has already been
addressed on the internal branch.

auto close The security update is closed automatically by another bot
shortly after its creation.

prevention Developer(s), instead of addressing the vulnerabilities, prefer
to prevent the security alerts/notifications/warnings.

obsolete Developer(s) decided that the dependency is not used in a pro-
ject or easily removable/replaceable. Alternatively, the (sub-)
module in which the vulnerability is identified is not used.

breaking changes Developer(s) state that merging the security update is not
possible due to issues with compatibility.

external management Developer(s) do not merge the security updates due to ex-
ternal management of the repository (e.g., Gerrit Code Re-
view).

other none of the categories fit.
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Figure C.1: Summary for RQ3
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