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Abstract

Standard Developing Organizations (SDOs) provide technical standards of which many declared 

‘potentially essential’ patents are likely unnecessary for implementing these standards. A 

communication by the European Commission calls for an increase in transparency of the patents 

required for standards.  This study aims to consider which roles artificial intelligence (AI) can play in 

increasing the transparency of these patents and their potential essentiality. AI and essentiality were 

considered separately and subsequently combined in considering these roles. A screening algorithm 

was created as a predictive analytics Neural Network. This algorithm is a proof-of-concept of the 

potential AI offers in essentiality assessments. This neural network was trained on a dataset of 

declared and undeclared patents with various variables available through the European Patent Office 

Worldwide Statistical Database (Patstat) Global 2020 Spring Edition v5.15. The results showed there 

is indeed potential in using neural networks. Furthermore, optimizing the classification threshold 

made it possible to minimize false positive classifications to true positive classification. On this basis, 

predictive analytics could be a powerful addition to essentiality assessment processes.  
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1. Introduction 
  The technologies we use in our day-to-day life are becoming increasingly complex, 

incorporating record numbers of other technologies (OECD, 2019) (Rip & Kemp, 1997). These 

technologies often need to be compatible with one another, communicating and interfacing to utilize 

other technical components in its system. Industry actors meet and devise technical standards to 

ensure these components fit together. Standards set reliable guidelines that allow parts to function 

together reliably, from the shape and size of plugs to the communication protocols of Wifi and 

Bluetooth. Standards are deeply connected to the technologies in our personal and shared experiences. 

  Standard Developing Organizations develop these standards (SDO, though often referred to 

as Standard Setting Organization). Sometimes these SDOs originate from industry, some are 

government, and some are public-private mixes. Some standards are not connected to any SDOs and 

are set by companies seeking to achieve a dominant market position, one example being the PDF 

format by Adobe. Regardless of origin, SDOs develop standards to benefit the involved stakeholders. 

Standardization reduces risks for private – and public entities regarding investments. Risk reduction 

that drives global technological marketplaces through offering soft guarantees of adoption. 

Consumers also benefit by buying compatible technologies by eliminating purchases and guaranteeing 

technical compatibility between devices. The memories of carrying three different chargers for the 

laptop, mobile phone, and camera are still recent in our collective memory. Reducing the number of 

cables (and other incompatible technologies) also leads to another benefit, reducing electronic 

waste(McDonald et a., 2020). A recent example is a mandate on smartphone chargers which is poised 

to reduce waste by eliminating other types of cables by the European Commission(2021). 

Standards  

Standards intend to be effective, so they often need to use newer technologies and techniques. When 

new technologies are created by companies or by academia, they tend to patent these technologies 

excluding others from their usage (OECD, 2004). Many standards facilitate economies of scale and 

reduce the cost of production by offering guarantees of adoption by a great many consumers or 

companies, or even governments. As such, a dichotomy is born between patents- which seek to 

exclude participation, and standards that aim to foster participation. While creating standards without 

using the intellectual property is possible, the SDO would eschew contemporary technology favoring 

older, inferior, non-patented alternatives. To use current technologies, SDOs have had to create 

policies that enable the inclusion of patents. There is a history of growing pains for SDO patent 

policy, with one emblematic example being a demand for free worldwide licenses during the 

development of GSM (Bekkers & West, 2007). After the refusal of Motorola, a significant IP holder 

which suffered from substantial barriers of incumbent suppliers in Europe, a compromise had to be 

reached before a GSM rollout. Poor patent policy by SDOs discourages participation, though there are 

clear benefits to patent holders under the right conditions; The widespread usage of their technology, 

their licenses, and increases of their sales volume in either products or services. 

 Academic patent literature and many commercial analyses refer to included patents as 

Standard Essential Patents (SEPs). These patents are required- or essential to enact the standards, 

which provides leverage to patent holders. In creating technical standards, participating Intellectual 

Property (IP) holders submit their SEPs or inform the SDO they might have a SEP, allowing 

interested parties to view them for licensing negotiations. These patents are often “likely to be 

essential,” with SDOs only requiring “good efforts” on finding SEPs in the IP holders’ portfolio. It is 

expensive to determine if a patent is essential and often more costly to establish it is not. While 

malicious submissions where parties knowingly declare non-essential patents are purportedly rare, the 

lack of SEP essentiality control has consequences. Research indicates that many declared patents in 

standards are not technically essential (Fairfield Resources International, 2009) (Cyber Creative 

Institute Co. Ltd., 2012). 50% to ~90% of the SEPs included in these technical standards could be 

non-essential, despite these patents being obligatory for licensing (CRA, 2016). Some industry actors 

indicate that over-declaration is problematic for the future of standards (DG GROW, 2015).  
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 Based on these worries about decreased participation in standards, the European Commission 

authored a communication to increase transparency in standards (2017). They state: “There is 

therefore a need for a higher degree of scrutiny on essentiality claims. This would require scrutiny 

being performed by an independent party with technical capabilities and  

market recognition, at the right point in time. Having said this, introducing such a scrutiny  

requirement to SEPs must be balanced against the cost”. Systematically scrutinizing declared patents 

proves to be a challenging task with different envisioned possibilities, solutions, and outcomes. The 

current rate of an essentiality assessment with the manual assessment methods is estimated to be 10% 

of the price associated with obtaining the patents (CRA, 2016). In investigating novel and systemic 

forms of essentiality assessment, Bekkers, Henkel, et al. (2020), with “Pilot study for essentiality 

assessment of Standard Essential Patents,” have categorized different vital aspects and solutions. Two 

of the scenarios posed in their research include Artificial Intelligence (AI) as an essential addition. 

 

Artificial Intelligence  

AI is a technology with much potential, has a significant capacity for discovery (Bryson, 2019), and 

has seen an enormous surge of interest from many industries. Conceptually, replacing labor with 

technology is exciting for cost-cutting and safety-increasing measures. Though often, the non-

structural environment or tacit knowledge makes implementing machines difficult. AI deviates from 

the traditional computers in using the understanding traditionally reserved to human intelligence by 

using large amounts of data (Bryson, 2019). Due to the high costs associated with assessing the 

essentiality of disclosed patents for technical standards, scholars and industry actors have been 

suggesting that AI plays a role in this process. Though the existence of this role has yet to be codified 

for any actual usage, some scholars like Brachtendorf et al. (2019) have created algorithms that 

purportedly fulfill the whole – or part of the assessment. Researching AI and existing opportunities, 

discussing its potential for actors that want to assess patents and SEPs.  

  This thesis investigates essentiality assessments and AI, discovering which combinations can 

be identified by assessing trends and literature. The discoveries are codified for further study in this 

process to map novel opportunities. One of these opportunities is further discussed in terms of 

decisions and choices. Hence part of this thesis will take the shape of a design process. Starting with 

collecting many possibilities from literature and then reducing these into one useful concept, 

developed into one proof-of-concept. In achieving that purpose, the following research question is 

posed as the leading structure of this thesis; 

What roles can Artificial Intelligence fulfill in (systemic) essentiality assessments of Standard 

Essential Patents disclosed to technical standards, and how would this implementation function?
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2. Literature research: Methods 
Based on the phrased research question of the previous chapter, the following is the stated objective of 

this thesis: “to determine whether the implementation of AI in assessing essentiality of patents in 

technical standards is a suitable solution for systematic assessments. The researched suitability is 

limited to the technical implementation.”  

To stratify this objective and the previously posed research question, the following sub-questions 

were formulated to divide the required knowledge into comprehendible subsections. These questions 

are: 

1. What is essentiality, and what are the methods used to determine essentiality? 

2. What are the available AI technologies, and what is entailed in using them? 

3. What are the use-cases for AI implementation in the essentiality assessment process? 

4. Which AI can be implemented with the previously determined use-cases? 

In addition to answering these questions, an experiment that combines AI and technical standards 

seeks to provide additional persuasive power on the utility of AI when used in essentiality 

assessments. Most of the knowledge discussed in chapters 3, 4, 5 & 6 is necessary for the phrasing of 

the AI experiment. This proof-of-concept experiment is further refined in chapter 7. 

  This section describes the method used to answer the research questions. Two types of 

questions are phrased, questions that aim to study the currently available literature and questions that 

take this literature as a starting point to formulate different scenarios of AI utility and use-cases. 

Questions one and two are answered through a literature review in chapters 3 & 4. Questions three 

and four require chapters 3 & 4 and additional literature and are discussed in chapters 5 & 6.  

2.1 Methodology: Literature Review 
Finding the relevant literature required the use of the following two methods. The snowball method 

was employed for the first, third, and fourth questions, specifically those involving technical 

knowledge and definitions. This method uses a small core of highly relevant literature to find related 

literature by looking at its citations and bibliography. Table 2.1 lists the literature used as the core for 

their listed topics. There were three ways the core literature identified other relevant literature. The 

first method is by reading the texts and checking the relevant references the literature uses. The 

second scoured the bibliographies for relevant literature. Finally, literature aggregators show other 

pieces that use these core papers and reports. The used literature aggregators are WebofScience, 

Scopus, Semanticscholar, and Google Scholar. For non-scientific literature, general-purpose search 

engines such as Google were employed. 
Author Title Publishing Date (d/m/y) Topic 

Bekkers, Henkel, et al., Pilot study for 

essentiality assessment of 

Standard Essential 

Patents 

3/4/2020 Essentiality Assessment, 

Assessment method, AI, 

Stakeholders 

Brachtendorf et al., Approximating the 

standard essentiality of 

Patents – A semantics-

based analysis 

1/8/2019 Patents, Essentiality, AI, 

Vector Space Model, 

Semantic Similarity 

Contreras The Cambridge 

Handbook of Technical 

Standardization Law – 

Antitrust, Competition 

and Patent Law 

14/12/2017 Standardization Law, 

Essentiality, 

Standardization History, 

Essentiality Law 

Table 2.1 The pre-identified literature used for the snowball literature method listing the reference, the source's title, the 

date of publishing, and the identified topics within the literature. 
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2.2 Conceptualizing Roles and applications for Chapters 5 & 6 
Chapters 5 and 6 discuss the different roles of AI in assessing essentiality. The descriptions in chapter 

4 are based on thoughts in Bekkers, Henkel, et al. (2020). Including some of the stakeholders' 

attitudes established in their research. Some works also discussed stakeholder attitudes towards AI 

and possible trade-offs like CRA(2016) in the communication of the European Commission (2017) 

and the analysis of Iplytics (2021). From the details, the scenarios were reasoned through with the 

context of other published literature in mind. However, it should be noted that this context is not a 

replacement for in-depth stakeholder attitude research towards AI.  

  Chapter 6 takes the general roles defined in chapter 5 and attempts to fit the AI technologies 

from chapter 4 in its framework and to deliberate on whether this fit might see any practical use. It 

starts with describing details about the general usage of the AI, followed by surface-level technical 

details that have to be considered. The literature for these technical components was retrieved through 

technical books found through the same search engines used in 2.1.  

  Many of the machine-learning AI papers were not in published literature. Some of this 

literature was available through ResearchGate. Many AI papers were only available on the open-

access repository of arXiv, which primarily focusses on publishing pre (and post) prints of academic 

literature. Many of these articles were very influential but were not (yet) peer-reviewed for 

publishing, with the primary indications of quality being the number of citations and through the 

direct judgment of the articles’ quality. Often these papers contained novel AI methods like new types 

of neural network layers. They might be published someday, but the large body of writing and 

dynamism of AI in science is still subject to the (slower) peer-review when authors wish to publish 

their findings.  
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3. Standard Essential Patents, what is essentiality, and how is it 

determined?  
 This section aims to answer sub-question 2.1 defined in the previous chapter. Specifically, it 

will focus on defining the concept of essentiality and how it is determined when required. The 

following section contains the historical background of essentiality. Then, a deeper dive into the 

meaning of essentiality and its’ different attributes and nuances. Particular attention is spent on 

aspects that can differ between SDOs. The two SDOs which are compared have the most relevant 

literature available in documents and court cases. These are the IEEE and ETSI. Examples of 

contemporary essentiality assessments are given. Placing a focus on who engages in this assessment 

and why this party would want to assess SEPs. Finally, a brief collection of differences between IEEE 

and ETSI is made before the key findings of this chapter.   

3.1 History of Essentiality 
  The inclusion of patents in standards was first explicitly discussed by the ASA (Now known 

as ANSI) in 1932. SDOs associated with ASA were now permitted to include patented technology. 

The specific quote of the minutes was: "if a patentee be willing to grant such rights as will avoid 

monopolistic tendencies, favorable consideration to the inclusion of such patented designs in a 

standard might be given”(ASA Minutes of Meeting Council, 1932). The board of the ASA recognized 

that a formal policy was necessary after an anti-trust case against AT&T and Western Electric in 1956 

(Contreras 2015). Three years later, in 1959, the ASA introduced the first iteration of what became 

known as FRAND. They defined the pre-cursor of what is known as essentiality today; “standards 

should not include items whose production is covered by patents unless the patent holder agrees to 

and does make available to any interested and qualified party a license on reasonable terms”(qtd in 

Contreras, 2017). What Covered implies was not further elaborated upon, with no documents which 

discussed exact definitions or details.   

  In 1969 the ASA became the American National Standards Institute (ANSI). Their policies 

continued with more intensive usage of Covered, being dubbed now as Covering language, which 

then fell out of favor in 1983 for more detailed descriptions. Around the same time, in the early 1980s, 

two European state-monopoly telecom companies decided to experiment with digital cellular radio 

technologies. These French and German telecom companies signed an agreement to run joint R&D 

trials in 1984. This agreement was shortly joined by Italy in 1985, with British telecom joining a bit 

later in 1986 (Temple, n.d). In Annex C of the Digital Cellular Cooperation Agreement (1985), 

“Essential Patents” is defined as “patents from which the standard is directly derived but also as the 

patents which could be considered as absolutely necessary for the realization for the standard.” 

While these parties did not form an official SDO, they explicitly referred to Essential patents, creating 

the foundation for the GSM/2G standard in Europe. This agreement also required the essential patents 

to be made available free of charge, which was standard practice for state monopolies as they made 

most of their income from the services or sold products. This requirement did not sit well with 

essential patent owners who did not consent to these conditions. Parties like IBM relied on these 

patents to secure much of their income in licensing deals.  

  Nonetheless, this cooperation continued, and ETSI was formed in 1988 using the already 

existing cooperation as a foundation, which promptly ran into a sizable legal spat over the previously 

established “Free access to essential patents” policy. As a result, in 1993, ETSI adopted its first 

official patent policy, creating a more nuanced and less troubled definition than what was used in the 

previous agreement. In addition, perhaps a consequence of the legal troubles the prior agreement 

suffered, ETSI and its experts devoted significant attention to the terminology included in their 

governing patent policy. The exact wording they used this time was: 
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“Essential" as applied to IPR means that it is not possible on technical but not commercial 

grounds, taking into account normal technical practice and the state of the art generally 

available at the time of standardisation, to make, sell, lease, otherwise dispose of, repair, use 

or operate equipment or methods which comply with a standard without infringing that IPR. 

For the avoidance of doubt in exceptional cases where a standard can only be implemented 

by technical solutions, all of which are infringements of IPRs, all such IPRs shall be 

considered essential” (ETSI, 1993)  

This wording is present in the policy ETSI uses to this day.  

   Explicit terminology defining “Essential patent claims” (Further elaboration in 3.2.2) 

appeared first in the 2006-07 policy of the IEEE. Essentiality has developed into a generally 

understood concept with different nuances per SDO. Literature has been using Essentiality to take a 

deeper look at how standards function “. A growing field of research, the setting of standards, and its’ 

inclusion of patents have been studied in increasing detail. SDOs have different intellectual property 

requirements and distinctive practices in their setting process. Some elements of which are discussed 

in the following section. 

3.2 Essentiality: Definitions and Attributes 

  3.2.1 General knowledge of essentiality 

While essentiality has different nuances between SDOs, there is a general understanding that 

SDOs, industry experts, and academics share. For example, Bekkers, Henkel, et al. (2020) described 

that while SDO terms can differ, industry professionals seemed to share an understanding of how 

essentiality is to be understood. Noting: “… in our exchanges with stakeholders during the 

preparation of our pilot experiment, it became clear that everyone was happy to work with the same 

working definition”.  

   Essentiality functions as a binary attribute of SEPs. The SEP is necessary to implement the 

standard, or it is not. Therefore, it should be possible to determine whether a given patent is a SEP in 

absolute terms. Nevertheless, this binary is not always reflected in practice. One of the biggest reasons 

is that, as many agree, it is very complex to determine whether something is essential or not for 

reasons further elaborated upon in 3.2.3 and 3.2.4.  

3.2.2 Essential Patents or Essential Claims 

 Patents consist of drawings and a specification, and broadly, the specification of a patent 

consists of a written description of the invention and claims. These claims define the extent of the 

patents’ scope and the patentee’s legal rights (EPO, 2019). However, what if only some patent claims 

are needed to implement the standard? Some literature – and the name of SEPs; 

 “Standard Essential Patent” itself refers to patents, but it is often more accurate to refer to essential 

claims over essential patents (Contreras, 2017). Patents can contain dozens of claims, and only one 

claim could be necessary for a SEP. Exactly how licensing with claims work is dependant on the SEP 

holder and the potential licensee. There is, however, a legal precedent of essential claims being 

foregone for licensing the whole patent, in the court case of re Innovatio IP Ventures, LLC Patent 

Litig (2013). The general applicability is limited (Contreras, 2017), as this case expressly referred to 

an IEEE standard where there was historical correspondence of the prior SEP owner. Innovatios’ 

predecessor Intermec wrote Letters of Assurance promising licenses on the patents to the IEEE, not 

only the essential claims. This letter mentions, “Intermec will grant a nonexclusive, nontransferable 

sole and personal license under any such issued patent ....” (In re Innovatio IP Ventures, LLC Patent 

Litigation, 956 F. Supp. 2d 925 (N.D. Ill. 2013). A decisive general ruling or enshrinement in SDO 

licensing policy has yet to be made, but this ruling set a precedent for other cases to follow.  
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 3.2.3 Linguistics and Semantics of SEPs 

  The Cambridge dictionary defines patents as “the official legal right to make or sell an 

invention for a particular number of years (“Patent,” 2021)”. Patents, and thus SEPs, are written legal 

documents with significant connotations for essentiality. Linguistics and semantics play a vital role in 

understanding the document in written documents.  

  Semantics is the study of meaning, or as Kroeger (2019) calls it, “.. the study of the 

relationship between linguistic form and meaning”. This relationship is rule-governed, where meaning 

is constructed with a vocabulary (Lexicon) and a set of rules that form them into sentences (Syntax). 

Osenga (2006) describes two semantic problems in the basis of claim formation; the first is that 

attempting to concisely explain the complex technical matter in the form of a claim is incredibly 

difficult. The more extensive, more detailed written description suffers from a similar difficulty. The 

second problem is that existing language has problems describing something new. This manifests by 

using words differently from the expected norm, as novel inventions introduce specific attributes into 

new contexts. These problems with claims do translate into further problems in patent applications 

and assessing essentiality. How should these claims be understood if they use highly complex 

language in non-traditional and unexpected ways? There are also patents with purposely vague 

wording that stretch their validity to its broadest legal scope (Chiang & Solum, 2013). When it is 

unclear what a claim implies or means, experts often refer to the technical body text where the 

technical matter of the claims is described in more detail. The legal power of patents is vested in its 

claims. Still, if it is impossible to decipher a claim without using the technical body text, it would 

seem that technical body texts have a measure of de jure legal power. 

 There are two current standards-related court cases where judges noted that the different 

interpretations given by experts were both possible, noting disagreement instead of an erroneous 

judgment. Experts reached different conclusions on individual patents in Unwired Planet vs. Huawei 

(2017) and TCL v Ericsson (2017). The judges noted, “I am not asked to resolve technical 

disagreements at the level of individual patents. Based on my assessment of both experts, I am sure 

the disagreement represents cases in which reasonable people can differ” and “Given the somewhat 

subjective nature of these determinations, "disagreements" is probably a more accurate label than 

"error."”. There are debates whether the nature of this problem is legal or linguistics, but its existence 

should be noted.  

 3.2.4 Semantics and Legal Action: The interpretation of legal documents, laws, and 

the administration of exclusion through the judicial system 

 As previously stated, patents are legal documents. Legal exclusion of use is not something 

inherent to society. Patents are granted their legal powers of exclusion through laws that governments 

pass. Patents give the right to exclude other parties from using that patent; enforcing compliance is 

done by the patent holder, who is obligated to investigate patent violations and bring the matter before 

a court. When one such case is brought before the court, the court is responsible for administrating the 

right of exclusion. This administration includes lump-sum penalties, licensing fees, or injunctions that 

immediately halt potential patent violating technologies. Our legal systems report being neutral. 

However, multiple authors assert that this is not wholly true or possible.  

  Bessen & Meuer (2008) note multiple aspects of the US legal system which do not fully align 

with what they consider “a neutral court.” First, they note that the courts are inconsistent in their 

rulings. Different courts have different outcomes in these cases; The patents and the laws remain the 

same over courts, and the result should be consistent. The most involved court is the Federal 

Appellate Court, which has become increasingly influential in rulings regarding patents. Furthermore, 

even within that court, there are inconsistencies in its outcomes. Second, Bessen & Meuer(2008) note 

that the court is often skeptical of expert testimony and patent examiner information. Third, they state 

that the doctrine of equivalents is often misused to extend the boundaries of a patent as far as possible, 

redefining the patent boundaries according to the presiding judges’ wishes. In the previous segment, 



12 
 

we discussed the possibility of having inconclusive outcomes due to the multiple meanings of 

language. These inconclusive outcomes are infrequent, though they are often stated to be a significant 

problem. Finally, they note that the language used in claims is allowed to change over time. As 

mentioned in the previous section, one challenge is that novel words and word combinations are 

common in patents. As time goes on and technology advances, the meaning of these words and 

combinations change with their usage. Bessen & Meuer(2008) note that the courts allow patent claims 

to assume the more complex and evolved meaning that has developed over time, even if the historical 

meaning of the claim’s language is substantially different. Beyond the scope USPTO examiners have 

agreed on. 

   Both the Federal Appellate court and the Supreme court have been criticized. The Supreme 

court has given warnings to the Appellate court regarding its interpretation and jurisdiction over 

patent law. Murray (2014) states that ambiguous rulings might be complex, but the courts have the 

tools and capabilities to provide a verdict. Their refusal to do so aligns with their biases and not with 

the law. 

  Patents and laws are predetermined, and non-discriminatory outcomes should be based on the 

evidence presented, but the courts are afforded flexibility in their rulings. Though both laws and 

courts can differ, there is variation within the legal ecosystem that can significantly impact the 

outcome of legal proceedings. Often, there is a need to interpret the laws that govern legal processes 

by parties with executive powers. In most cases, if there is a gap between patents, laws, and the 

courts, the courts will be the institution to interpret the evidence and decide the next course of action. 

The legislation defines the proceedings but often only changes ex-post undesired outcomes. Only the 

courts have the power to interpret the law with the immediacy of needing to reach a verdict of running 

legal cases. Moreover, since the courts consist of judges with different interpretations of legal 

principles, it is unsurprising to find biases present in the process and the produced results. This 

difference is visible in conflicting rulings in the US, contrasted with civil law rulings that are more 

prevalent in European countries.   

3.2.5 Essentiality and timing: When are SEPs essential? 

 Time is a significant element in the inclusion of patents in technical standards. Conceptually 

essentiality cannot be determined until the standard (Or that particular version) is finalized (Bekkers, 

Henkel, et al., 2020). In part because the normative elements in the standard are subject to change. 

Some SDOs specify that disclosed patents are essential on the finalization, while some determine 

upon the submission of the technical contribution for the standard (Contreras, 2017). In the former 

case, this sets finalization as the date when disclosed patents are considered SEPs. The IEEE and the 

ETSI have similar policies regarding patents becoming SEPs. IEEE claims are essential “at the time 

of the IEEE Standard's approval.” For ETSI, this is “at the time of standardization.”  

3.2.6 Technical vs. Commercial Essentiality 

 When considering essentiality, two different types are prevalent in SDO policies.  The first is 

Technical Essentiality, where it would be physically impossible to implement the standard without 

infringing the SEP.  The second type is Commercial Essentiality; the product is not commercially 

viable without the patent (Contreras, 2017). In practice, there is a large host of possible reasons why a 

product would not be commercially viable. For example, alternatives requiring expensive materials 

like gold or silver over cheaper plastics could make a patent commercially essential. Commercially 

essentiality does pose new challenges towards SDOs, like defining the boundary of commercial 

viability. While a case-by-case assessment is possible, it would also be costly to determine 

consistently. Commercial viability can also be different for different parties. For example, if a 

technology has a high up-front cost, it affects commercial viability for SMEs more strongly than that 

of larger entities. IEEE does have a commercial essentiality policy: 
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  “Essential Patent Claim” includes any patent claim, the practice of which is necessary to  

implement an IEEE standard, but only if at the time of the standard’s approval “there was  

no commercially and technically feasible non-infringing alternative. 

 The definition was elaborated upon in the Innovatio case mentioned above, where the judges noted 

that in the case of prohibitively expensive alternatives, the clause of commercial essentiality holds. 

However, no definition of what is “prohibitively expensive” was given.  

ETSI, on the other hand, explicitly excludes commercial essentiality in their policy: "ESSENTIAL" as 

applied to IPR means that it is not possible on technical (but not commercial) grounds” (ETSI, 2020). 

 3.2.7 Optional and Alternative normative sections of Standards  

 Standards contain mandatory sections, but also sections that are optional or alternative. There 

are differences between the two, where optional sections can be utilized or ignored without 

consequence for standard compliance. Alternative sections require you to choose from multiple 

possible approaches for compliance. (Contreras, 2017) While the exact definitions of these can vary 

between SSOs, the general rule of thumb is that these optional sections are indicated by words like 

“the implementer should/may” rather than the “the implementer shall” which is used for obligatory 

sections (Contreras, 2017) (ETSI, 2014). Some SDOs do not include any licensing commitments for 

these optional sections. 

Moreover, the implementer often has significantly less leverage in securing a licensing deal in 

these circumstances. Of the studied SDOs, IEEE and ETSI, neither optional nor alternative 

technologies differ from mandatory ones. IEEE distinctly states that there is no difference in policy 

between compulsory and optional elements and only distinguishes between alternative non-infringing 

technologies – similarly treating infringing alternative technologies as essential (IEEE, 2021). ETSI 

(2021b) instead mentions that optional elements are part of the standard, implying that optional 

sections fall under similar conditions as those of the mandatory sections. ETSI(2021b) instead 

defaults to its standard response regarding the alternative technologies, stating that all possible 

technically required IP is essential. 

 3.2.8 Other required Intellectual Property  

  Multiple types of IPR could be essential to implementing a given standard, like copyrighted 

software or utility models (Bekkers & Updegrove, 2012). Some other forms of IPR like Trade Secrets 

have been included in some standards, but these are highly uncommon in comparison.  

 Copyright is a common form of IPR, as required technologies after the implementation are 

not patentable but are sometimes still subject to copyright. To avoid this, many SDOs need the 

working solutions that their working groups develop to be subject to similar conditions as other 

essential IPR. The IEEE, for instance, claims all copyrights to the products of its working groups. 

Previous works are excluded from their working groups unless express copyright permission has been 

given. ETSI places a firm emphasis on copyrighted software in its policies. All software contributions 

are made by their members are to be made available without any cost for implementers. ETSI (2019) 

also notes that “due acknowledgement shall be given to copyrights owned by third parties that are 

identifiable in ETSI copyrighted works” 

 

  3.2.9 Enabling Technologies 

  While standards make efforts to include all vital technologies, sometimes it is impossible to 

have all required technologies in a standard. Often this could be due to a lack of willingness of the 

patent holder, who are often members of the SDOs and know that their technology has a significant 

value which they could exploit beyond RAND-conditions (Bekkers & Updegrove, 2012). These 

technologies are often fundamental and not concerned with the specifics associated with standards. 

Enabling technologies are often explicitly excluded from essential claims and disclosing obligations 

by SDOs like the IEEE. The exact definition of enabling technology could differ. Still, in the court - 

case of re Innovatio IP Ventures, LLC Patent Litigation(2013), they used the following definition for 
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a ruling associated with the IEEE (Contreras, 2017): 

   “any technology that may be necessary to make or use any product or portion thereof that 

complies with the [Proposed] IEEE Standard but is neither explicitly required by nor expressly set 

forth in the [Proposed] IEEE Standard (e.g., semiconductor manufacturing technology, compiler 

technology, object-oriented technology, basic operating system technology, and the like).” 

ETSI, however, does not explicitly exclude enabling technologies.  

3.3 Determining Essentiality: Contemporary Practices and Scenarios 
 Essentiality assessments, or determining whether a SEP is essential for a given standard, is a 

practice that is currently not common for our given SDOs for the plethora of previously mentioned 

reasons in chapter 1. SDOs are not the only interested party; various actors make assessing efforts for 

various purposes. This section describes which actors assess essentiality and how they assess 

essentiality. The current method employed in most studies relies on manual assessments. In these 

manual assessments, technical experts review a given patent and determine its relevance towards the 

standard.  

  The technical experts in these studies originate mainly from consultancy bureaus that 

specialize in intellectual property. The exact methods that these experts employ are unfortunately not 

well documented. Therefore, we do not know which information is used in their judgment or how 

they used it to come to their decision. Bekkers, Henkel, et al.(2020) specifically researched 

essentiality assessment mechanisms. In their research, they have collated several already existing 

tools. The implementations they studied are the essentiality assessments of court cases, patent pools, 

and Hantei-E. The automated approach is also suggested but discussed in chapters 6 & 7. 

 3.3.1 Court Cases 

One of the most common reasons to assess essentiality is their use in court cases. If licensing 

negotiations fall through, a lawsuit is likely to follow in many circumstances. Often, the first suit is 

that of the patent holder, alleging infringements from their former prospective licensees. The content 

of these cases can discuss whether the SEPs are essential, whether the licensing pursued is on FRAND 

ground, and more. In these cases, courts can investigate whether the SEPs are essential to 

implementing the standards. 

 The assessments used in different court cases varied considerably, and there are significant 

differences in how long the assessors had per patent. The composition of the assessors also varied. 

Sometimes it was one subject expert. At other times it was a team of assessors. Sometimes the results 

were validated by a senior expert, sometimes not. Some cases only assessed samples of the total 

patent portfolio, and these samples likewise differed in size, both in absolute and fractional terms. 

This variance in working method makes the findings of these assessments impossible to compare, but 

it does recognize that, ironically, standards for essentiality assessments would be beneficial for these 

proceedings.  

 

 3.3.2 Patent Pools 

Many patent pools require essentiality to be determined before a patent can join the pool. As such, 

patent pool entities have the most experience in systematic essentiality assessments. In submitting 

their patent for the pool, the patent holder must submit a claim interpretation chart. While assessors 

have made known, they consider such a chart to be important. Further research does not necessarily 

this claim as outcomes were not found to differ significantly. In wanting to join a patent pool, fees 

have to be paid without certainty of being allowed to enter the pool. The presence of fees is alleged to 

dissuade unthoughtful disclosure. However, the downside of these fees is that they also discourage 

SME patent holders who have fewer resources to pay for them. Only granted patents can join patent 

pools, reducing the risk of paying for unessential patents. Unlike the courts, patent pools do not allow 

the sampling of patent claims to determine admission. As such, every claim is investigated. The 
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rejection rate of patent pools is low, ranging from 0 to 10%. Allegedly, this is due to costs – both time 

investment for creating claim charts and fees for the essentiality assessment that makes patent holders 

think twice before approaching the patent pool. That this might work for patent pools does not mean 

that a similar policy would work for SDOs, as SDO policy seeks to broaden the scope of the included 

patents to its broadest extent. Finally, most pools publicize which patents are present in their pools, 

which increases the transparency of the patent holders for the interested parties.  

3.3.3 Hantei-E 

The JPO has created an advisory essentiality assessment system named Hantei-E, promoting itself as a 

voluntary, non-binding SEP dispute resolver. This system was introduced in 2018 but has yet to be 

used. The admission criteria for Hantei-E are pretty stringent. The requesting party must be willing to 

assert that the patent is essential, both parties need to agree there is a dispute, and both must be willing 

to fulfill their roles in the process. To qualify, the requesting party needs to create a virtual object 

representing the standard and indicate what part of that virtual object is found in the essential patent 

claims of the requesting party. Furthermore, this is only for a single patent, limiting its potential in 

large-scale assessments common to license disputes. That this mechanism exists could be a great boon 

for two parties in conflict, but its usefulness has yet to be proven.  

3.4 Differences between ETSI and IEEE regarding policies targeting Essentiality 
In the previous paragraphs, some differences in SDO policy; That of ETSI and IEEE, became 

apparent. This section collates those findings in Table 3.1 to emphasize the differences between two 

organizations engaged in the same standardization process.  

Nuances and 

Differences 

ETSI IEEE 

Defines timing of SEP 

status 

At the time of 

standardization 

At the time of the 

IEEE Standard's 

approval 

Commercial 

Essentiality 

Explicitly excludes 

commercial 

essentiality as standard 

policy 

Provision for 

commercial 

essentiality, backed by 

court ruling 

Includes optional and 

alternative sections  

 Treats optional 

sections as essential 

sections. 

Treats optional 

sections as essential 

sections. 

Includes other 

Intellectual property 

Included Software 

needs to be free, other 

copyright is 

“respected.” 

IEEE owns the 

copyright of all Work 

Products. 

Enabling Technology No reference present 

in the policy 

Excludes Enabling 

technologies from 

SDO obligations 
Table 3.1 Overview of differences and some similarities between ETSI and IEEE.  
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3.5 Key Findings on essentiality 
Essentiality is a term that has been historically developed through standards and now has different 

connotations between different SDOs. At its core, it defines patents as those necessary to implement 

the standard and serves as a binary attribute. However, this binary attribute struggles to enact itself 

where essentiality is assessed due to the varying nature of patent linguistics and legal interpretation 

and arbitration. Different SDOs have different times when they consider a SEP to be essential. 

Essentiality has two parallel interpretations, pure technical essentiality(I), which every SDO 

acknowledges. Alternatively, commercial essentiality (II) is present in the policy of some but not all 

SDOs. SEPs can have alternative or optional parts indicated by specific language use and are treated 

as essential under most SDO policies. Other Intellectual Property Rights could be important in 

standards, and depending on the SDO, these rights are handled differently. Enabling technologies of 

standards are sometimes explicitly acknowledged by SDOs, often expressly excluding them from 

falling under standard formation and essentiality.  

  Assessing essentiality is currently done mostly manually. There is little information available 

about the details of the methods that these assessors employ, and the known facts drastically differ 

case-by-case. There are no guidelines or standards on how to enact such an assessment. Several 

parties engage in essentiality assessments, like the courts and patent pools. From research into what is 

vital for these assessments, claim charts were said to be important to patent pool professionals, but no 

empirical evidence proves that claim. Hantei-E is an exciting approach to SEP disputes, but the 

stringent assessment process requires much of all actors involved, leaving the process unproven for 

now.  
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4. Artificial Intelligence; Applications, capabilities, and usage.  
 This chapter aims to answer the second sub-question posed in chapter 2. This question is 

asked to foster a broad understanding of recent AI trends and develop use-cases for these applications 

in the essentiality assessment process. Due to the broad approach for this question, the informing goal 

of this chapter is width over depth with further relevant specifics in later chapters.  

  Artificial Intelligence, or AI for short, is a technology that has seen a recent resurgence in 

popularity due to advancements in processing power. It concerns itself with combining data and 

algorithms to develop applications for the benefit of its user. This section explores AI applications to 

describe what they are capable of and how they can be used. The entire field of AI applications is vast 

and has an extensive literature. In discussing AI, the choice is made to use the WIPO Technology 

Trend 2019 – Artificial Intelligence Report limiting the literature necessary.  This report was chosen 

as the vantage point as it is based on the AI technologies prevalent in patents, implying that these 

trends exist but are also in use and possibly commercial. These applications are listed and described 

from 4.3 onwards, where the description of their function and usage are original with little to no 

overlap on the sources used in the report. The WIPO report collates data globally, implying that 

geographies play a minor role in its data and that it, similarly to this chapter, tries to create a broad 

understanding of the discussed technologies. Not all AI trends in the report will be as relevant to the 

primary goal of this thesis but are included to sketch a complete picture of recent changes regarding 

AI applications. In the sixth chapter, the relevant AI are matched to the use-cases developed in the 

next chapter. 

  The following chapter starts with a summary of the history of AI, followed by a description of 

some core concepts in the literature, and then by describing the current AI trends mentioned in the 

WIPO (2019) report.  

4.1 Defining Artificial Intelligence; A short history 
  

  Pick up any technology-focused magazine or read through any IT-related companies' publicly 

stated goals, and AI will be mentioned. That it is a technology with much potential is true, but what 

defines an AI? Unfortunately, there is no set definition in literature, mainly because the meaning of AI 

changes significantly depending on where it is discussed. Unsurprisingly, the commonalities between 

definitions are Artificial, Created, Synthesized, and Intelligent. Though its popularity is recent, AI has 

conceptually existed for a long time. 

    Current public perception and expectations of AI can be traced back to the 

imaginations of Science Fiction writers in the 1950s. However, these writings were far from the first 

conceptions of constructed intelligence. The ancient Greek author Homer wrote of the mechanical 

tripods created by the god of metalworking Hephaestus, which autonomously took care of his 

household. Another famous – but more recent example is that of the mechanical Turk, a chess-playing 

robot of 1789, though critics have posed that the machine likely contained a person playing in its staid 

(Buchanan, 2006). Returning to a closer time, one of the first stories that contained the mention of AI 

similar to our conception of it today is the story “runaround” by writer Isaac Asimov in 1942. In Great 

Britain, Alan Turing was developing his computer to crack the codes used by the German army in the 

second world war. With further thoughts about computers and intelligence, he developed the Turing 

Test to test the intelligence of machines. In 1956, Artificial Intelligence was officially coined at 

Dartmouth by Marvin Minksy and John McCarthy. Up until 1973, there was much funding for AI 

projects. However, the results were lackluster compared to the promises in books, leading to the “AI 

winter.”  From 1973 until 1997, there was little interest in AI, the computational power was not there, 

and the projects were costly. Investment in AI once again surged when IBMs chess program Deep 

Blue defeated world champion Gary Kasparov in 1997. While the AI winter was a period of 

stagnation in AI investment, several scholars did continue to develop new methods and applications 

that could prove helpful should interest in the topic resurge. As the processing power of computers 
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began to rise steeply, one of the biggest hurdles towards AI was cleared (Haenlein & Kaplan, 2019) 

(McCorduck et al., 1977). This recent change in AI interest “created” (Or rather funded) the field of 

data science. The renewed interest has yet to wane this time. 

4.2 Important Concepts in the field of AI 
The following section briefly explains important AI concepts prevalent in the literature used to 

explain the AI applications of 4.3 and are often not an application in themselves. However, 

understanding these concepts is necessary to understand the strengths and weaknesses of applications. 

This list does not include all essential concepts within AI or is not a broad summary of the field. It 

only summarizes commonly mentioned concepts in the literature used to create this chapter and 

chapter 6. These are only the main concepts present in the context of this thesis and should only be 

considered to be introductory pieces. 

 

  4.2.1 Machine Learning 

Machine learning or ML is often mentioned in the literature that discusses AI concepts and 

applications. In his book, “Machine Learning” Mitchell (1997) states that ML is “… computer 

programs that automatically improve with experience”. Machine learning is an integral part of AI for 

its adaptability. Improvement through experience at its core means that the experiences must be 

generalized to work with new and unseen experiences (Bishop, 2006). Humans learn through 

experiences; ML algorithms learn through data (Alpaydin, 2016). 

                Two types of datasets are used in creating an ML algorithm within the literature. The first is 

the training dataset. When we use ML, we need to feed the algorithm data that will allow it to learn. 

Then the test dataset gives an unbiased evaluation of the algorithm’s performance. (James et al., 

2021). The test set is also often referred to as the validation set.   

 

                If using data to create generalizations sounds familiar, you can find that many forms of ML 

employ statistical methods such as regressions, clustering, or categorization. Many ML methods are 

built on existing statistics literature, though statistical models and ML are different concepts with 

different purposes. ML attempts to maximize its predictive power, while statistical models study the 

inference between variables. Although for ML, the outcome does not have to be perfect and can just 

be a good approximation, the standards for statistical models often tolerate far less ambiguity 

(Carmichael & Marron, 2018). 

                ML is the overarching term used for different learning algorithms, some of which are 

further discussed in this chapter.  

 

4.2.2 Supervised Learning and Unsupervised Learning 

Machine learning algorithms are often classified in either supervised or unsupervised learning; while 

other classifications exist, much of the learning algorithm literature recognizes this division 

(Alloghani et al., 2019). The difference between supervised and unsupervised learning is found in 

labels applied in the training data set. Supervised learning uses labeled input and output data. After 

checking the outcome, the algorithm learns by predicting a value and correcting its answer. 

Unsupervised learning uses all variables as inputs without labeling any outcomes, leaving it to figure 

out connections inherent to the data by itself.  These discovered connections often make for suitable 

labels used in supervised learning (Hoffman, 2001). 

 

4.2.3 Deep Learning 

  One form of Machine Learning that is often used in literature is called “Deep Learning.” It is 

an extension of Artificial Neural Networks (ANN or NN). Deep Learning is the state-of-the-art 

algorithm employed for many applications and will likely be mentioned in some descriptions below. 

The deep refers to the depth – the number of layers employed in the neural network (For an 
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explanation on the functioning of Neural Networks, see Chapter 7.1.4). The exact number of layers 

needed for an ANN to become a Deep Neural Network (DNN) is unclear and highly disputed, with 

some arguing as few as three layers to be the minimum. However, three layers stand in stark contrast 

to DNNs, such as Microsoft’s VinVL with 152 layers (Microsoft, 2021).  

   Based on NNs, many of the limitations and strengths show similarities. However, deep 

learning has some unique characteristics. DNNs perform well with image, audio, and text data and 

quickly adapt to new data. The number and structure of layers can be adjusted for many problems. On 

the other hand, the limitations of DNNs can be significant. DNNs require enormous amounts of data 

and are not suitable for general use. The training of DNNs is computationally intensive and requires 

significant expertise (LeCun et al., 2015).  

4.3 Descriptions of Artificial Intelligence Applications 

  The following section lists recent AI trends. The relevance of these trends originates from the 

2019 AI WIPO report, but the underlying explanations given here have no connection to the report. 

Some of the applications have been clustered, as many smaller applications are based on an 

overarching trend. These clustered trends are listed alphabetically with other applications which were 

unique in their properties. Each header, including the sub-headers in the clustered trends, are 

applications. All applications contain a short description of their base capabilities, with some 

examples of real-life applications. If possible, some of the drawbacks of using the said application are 

mentioned. A detailed description was not possible due to the various approaches each application can 

take, so these are generalizations. A further discussion of the drawbacks of specific applications is 

found in chapter 6 and chapter 7.  

 

4.3.1 Computer Vision 
As the name suggests, computer vision attempts to create applications that can simulate “vision.” This 

vision is not limited to perceiving or displaying what is caught on camera. Instead, it attempts to 

understand the content of that image. For example, we understand what a tree is in concept, we know 

what they look like, and we recognize them when we see them. Nevertheless, how do you explain to a 

computer what a tree is? 

Furthermore, how can we make them recognize one? Computer vision is often referred to as one of 

the overarching names of AI applications that attempt to recognize objects such as trees in videos or 

pictures. A few of the previously discussed applications find their roots in computer vision. The use of 

recognizing objects is quite apparent. From recognizing how many people are present in a building for 

safety reasons to Character Recognition. The number of methods that fall under Computer Vision is 

significant, but to give a technical example of how some applications function:    Create an array the 

same size as an image with each location representing a pixel, fill each location with a weighted sum 

of pixel values of the surrounding locations. You now have an array with descriptive information on a 

group of pixels, creating a distinction between groups, which can be used in further analysis. This 

process is called linear filtering and is a simple but effective technique (Forsyth & Ponce, 2012).  

  Recent developments in Computer Vision include using deep learning (Davies, 2017). Using 

the above example, a deep neural network is exposed to many images or many arrays of combined 

pixel values, and through exposure, learns how to identify particular groups of these values.     

Computer vision is the overarching trend of anything AI and vision-related. It is useful when imagery 

is the algorithm's input. The following applications are all subsets of Computer Vision in their most 

common usage.  
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  Augmented Reality 

  Augmented reality functions by putting a digital layer on top of the real world. This digital 

layer seeks to provide sensory information, which is not normally present, aiming to augment- or 

improve the quality of perception in the real world by superimposing digital context on a user. 

(Chettri & Bera, 2019)(Peddie, 2017).  

 Most applications consist solely of visual components and can be housed on various devices with 

relevant sensors. The most common sensor would be the camera and the most common medium 

smartphones. Well-known examples include roles in Healthcare education (Zhu et al., 2014) or 

Museums/Heritage sites (Geroimenk, 2021). 

                The role AI plays in these circumstances can vary. However, function-wise, the algorithm 

has been trained on a dataset to recognize an entity suitable for projection and, consequently, produces 

a change in the digital layer superimposing said change on the detected entity. As most applications 

are purely visual, recognizing objects is often done through deep learning. Often changes brought 

about in the digital layer are also trained with deep learning if there is a need to reflect changes in the 

physical world. Not all AR requires AI, as some applications merely superimpose without detecting 

entities. The practical usage of this AR is, however, limited. 

                Because more advanced AR uses deep learning, it can be computationally expensive, 

particularly for mobile AR like smartphones. Furthermore, as AR requires using a sensor, the 

capabilities of this sensor can limit its potential (Rabbi & Ullah, 2013). Nevertheless, AR improves 

how users view the available data, how they parse and follow instructions on operations, and how 

they interact and control the machines are programs they use (Porter & Heppelmann, 2020).  

 

Biometrics 

  Humans develop ways to recognize and distinguish between different people from a young 

age. For example, we learn how to recognize family and friends and know whether the person in front 

of us is a stranger or not. This capacity of recognition and distinguishing would be beneficial for 

machines to have in certain situations, such as security matters. Machines having this capacity entails 

that they are using Biometrics. Research by the National Research Council et al. (2010) states that: 

“Biometrics is the automated recognition of individuals based on their behavioral and biological 

characteristics.” 

  Different types of recognition are possible, but well-known examples include fingerprint and 

face identification are growing increasingly common in smartphones. In addition, examining the iris 

or speech or any other physiological characteristics can serve as a starting point of biometrics.   

   Implementing a biometric system requires acquiring data, extracting a defining feature set, 

and then comparing this to the set already present in the database. (Jain et al., 2004). The extraction of 

this defining set includes using a form of recognition, which is mainly trained with deep learning. 

Much of the industry estimates that biometric authentication will become the dominant form of 

authentication over the current password-based authentication. Like other deep learning applications, 

it is challenging to keep the computational cost low (Ribeiro Pinto et al., 2018). Depending on the 

application, privacy laws like GDPR can limit its commercial usage (European Data Protection Board, 

2020). Biometric applications are best used to identify and authenticate people (Thalesgroup, 2021). 

  Character Recognition (OCR)  

Character Recognition, more commonly known as Optical Character Recognition (OCR), is 

about recognizing physically existing characters (Written or printed) and converting these characters 

into a digital format that can then be used for different ends. One example is the recognition of official 

documents such as passports and processing that into a database at country borders. The field has 

existed for longer, though, with the first versions dating back to 1870. Methods of parsing physical 

documents into digital data have been around since 1965 (Yu & Jutamulia, 1998) (Schantz, 1982). 

  Because it translates the physical into the digital, it requires computer vision and algorithms 
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to process the image into digital characters. The original OCR methods used the physical properties of 

specialized lenses to distinguish different characters. The newer methods use deep learning and 

cheaper non-specialized cameras to capture the document (Chaudhuri et al., 2016). A typical 

application of this is the transformation of physical documents to digital documents, but speeding 

traps might also need to read the license plates of cars. Therefore, OCR is best used when physical 

characters need to be translated into digital characters.  

  Image and video segmentation  

  Image and video segmentation applications attempt to “segment” images or video frames into 

unique properties and subset and falls under Computer Vision and is made use of in Object Tracking 

(Ngan & Li, 2014) (Nguyen et al., 2013) &( Gong et al., 2018). Explicitly concerning the extraction 

of objects of interest for advanced analysis, such as defining brain tumors in medical imaging (George 

& Karnan, 2012) or creating detectors for moving objects such as robots or cars (Delmerico et al., 

2011). Many segmentations do not require any form of ML, but many recent developments tend to 

implement deep learning. One simple none-ML version of segmenting is thresholding, where all pixel 

values are forced to conform to either black or white depending on where the threshold lies (Shapiro 

& Stockman, 2001). Image and video segmentation are used when the boundaries of images' 

boundaries need to be recognized (Fritz AI, 2021) (Ngan & Li, 2014). 

 

Object tracking  

  Tracking an object through video is becoming an increasingly common technology: object 

tracking attempts to track cars, people, or other moving objects throughout video footage. Attempting 

to keep every object tracked separately from other objects involves giving unique IDs to each detected 

object. As an application, it is a form of Computer Vision. 

  The obvious example is its usefulness for security purposes, but it also uses healthcare, 

wildlife preservation, and autonomous driving. (Atzori et al., 2010). Some forms of AR need to use 

object tracking to keep images superimposed on the target object. Tracking objects is useful in 

moving video data to separate and track individual objects.   

 

Scene Understanding 

  A “Scene” is an image that depicts several objects and events; scene understanding attempts 

to allow the AI to understand what is happening in a given image or video. This application is a 

highly complex and challenging form of Computer Vision. It requires an understanding of the 

environment of the image, the objects, the way objects interact with each other, and developing an 

understanding of the relationship between the different objects in the image. Advanced versions can 

also include Sentiment Analysis to form a more nuanced understanding of a humans’ presence in the 

scene. One crucial factor is an emphasis on understanding geometry; it attempts to understand scenes 

as a 3D structure (Pawar & Devendran, 2019). This is one of the more advanced implementations 

often found in autonomous driving vehicles. Social media websites also attempt to use scene 

understanding on their users' images to form more accurate profiles and marketing preferences as a 

form of social scene understanding (Bagautdinov et al., 2017). Scene understanding uses much deep 

learning. Much training data is needed to recognize the human context in scenes. The processing 

power necessary for detailed analysis is likely high, and the applications are hard to develop. Scene 

understanding is best used in situations where the relationships between objects in images are 

important for follow-up analysis.  

 

4.3.2 Distributed Artificial Intelligence (DAI) 
Distributed Artificial Intelligence (DAI), or Decentralized AI, is the overarching term for AI systems 

that seek to develop distributed solutions for solving complex problems and difficult decision-making 
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tasks. There are three main types of DAI in current literature: Multiple-Agent Systems (MAS), Agent-

Based Models (ABM), and Swarm Intelligence (SI). At the core of their thinking, “agents” make 

decisions the take other agents into account. In a communication system, for instance, one node is one 

agent, with multiple nodes translating into multiple agents making decisions (Grace & Zhang, 2012). 

Some practical examples include electronic commerce (Particularly in the finance sector), where 

multiple DAI and other types of AI are actively trading for different trading companies (Buchanan, 

2019). DAI also plays a vital role in power-balancing electricity grids with many distributed energy 

resources, improving network stability by controlling and communicating with the resources (Ali & 

Choi, 2020) (AENEAS et al., 2019).  

  The types of DAI have some similarities, and it is often tricky or meaningless to draw a line 

between them. Drawing this line is often based on the approach and design intentions instead of 

underlying mechanical differences. MAS, for instance, has agents communicate based on pre-

determined rules leading to outcomes that are not optimal but suffice. MAS predates the recent 

machine-learning trend but has employed learning networks to form more refined rules for the agents 

to follow. ABM is very similar to MAS, but it differs significantly in its design intentions. ABM 

intends to explore the behavior of the agents in its systems, the exploration of which requires a 

framework that allows to categorize and distinguish between different agents. As for the final form of 

identified DAI, SI is an approach strongly inspired by natural swarms. Natural swarms consist of 

many entities and seem the function as one. Translating this to an algorithm, many homogeneous 

agents interact with each other following basic rules, possessing individual information, and 

communicating directly with surrounding agents or through their shared environment. Through these 

properties, the agents behave over a probabilistic spectrum and self-organize so that information does 

not get stuck in a few “highly-compressed” nodes (Cannon et al., 2016). Some recent approaches seek 

to use a similar system with humans replacing their computerized counterparts (Rosenberg, 2016), 

harnessing their collective intelligence for complex decision making – creating an artificial SI.  

  Most DAI requires large datasets and sizeable computational intelligence to simulate each 

agent in its current state. ML and NNs are used- and can be used in various ways, to define rules for 

agents or to increase complexity or reactivity of the agent's behavior. Historical – and current usage 

often places agents close to geographically dispersed information, such as airplane signaling systems.  

As a field, it offers much potential in automated decision-making and is poised to develop into further 

relevance. DAI is best used when a simulation is more important than precise predictions and when 

the information is geographically dispersed (Corea, 2019).  

4.3.3 Natural Language Processing 
  Natural Language Processing (NLP) is a field that focuses on the interpretation and 

manipulation of human language by computers. It is one of the more prominent applications with 

multiple other trends that use NLP. It processes and analyzes large datasets of natural language data, 

which roughly translates to ordinary language data. There is a long history of using symbolic or 

statistical algorithms in NLP, but deep learning networks dominate the current applications. By using 

deep learning, the algorithm develops an understanding of the contents of the data, and it then 

proceeds to extract information and insights present in the data (Collobert et al., 2011).  

 NLP is responsible for processing human language text, making it fundamental for 

applications that want to use texts. This concerns many applications, from more straightforward 

applications Sentence Boundary Segmentation, which recognizes the ends of sentences, to advanced 

NLP applications like ChatBots, which interprets typed inputs and then responds and acts 

  While some of the more straightforward applications can be let loose on texts without much 

editing, many valuable applications require the text data to be processed in multiple ways before it can 

be meaningfully used in analysis. For instance, the prevalence of certain words like “The” or “and” 

can skew analysis. Something minor like the capitalization of “The” can have significant effects. Even 

if all text is processed into similar forms, many different words will still be present. Large NLP 

lexicons can contain more than 100000 different words, which, when used, creates highly dimensional 
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data and requires significant processing power for further analysis.  

  Modern deep learning applications require a lot of data and processing power to function. 

Human text data is very dimensional and can be challenging to work with, especially if common 

domain-specific terms are present, reducing the possibility of using pre-trained algorithms. NLP is 

used when AI needs to do something with texts, making it highly relevant to most text-driven 

problems.  

Information Extraction 
  Information Extraction (IE) attempts to extract specific information from texts. Initially used 

for extracting dates and headers, it grew to generate fact-summaries from news articles (Andersen et 

al., 1992). Because this textual data can vary depending on the field or source it originates from, the 

rules that government earlier algorithms were particular and manually determined. However, more 

recent efforts attempt to use learning-based approaches to understand and extract information. These 

approaches are often based on Natural Language Processing and are consequently based on deep 

learning (Banko et al., 2008). 

   Much of IE primarily focuses on dates or persons, retrieving names in large sets of 

unstructured text data. Nevertheless, it is not limited to retrieving names. It can retrieve relations 

between objects and even retrieve more complex concepts (Adnan & Akbar, 2019a) (Adnan & Akbar, 

2019b).  There are versions of extraction that attempt to gain meanings from the text, using IE 

techniques with Semantics. Training an IE algorithm can require a large amount of textual data 

intended to be used for specific, more difficult extraction. Large amounts of data imply a considerable 

processing-power cost for its training and potentially for its running. IE is best used for simple 

information extraction but has significant potential for extracting more complex concepts and 

information. (Mechket & Suchanek, 2020). 

 Semantics 

  As discussed before in (3.2.4), semantics study meaning, often specifically related to 

linguistics and logic. Computers do not understand human language, so we are forced to use specific 

coding methods to communicate with them. To allow computers to understand human language, they 

need to understand the semantics of the human language (Turney & Pantel, 2010). Understanding the 

semantics of data translates to understanding the meaning of that data. The meaning of human 

language data is one semantics-related challenge for AI. By parsing data and creating the 

understanding of the meaning of human concepts, many applications become possibilities. By 

understanding the meaning of text queries, it is possible to provide better search results (Bartussek et 

al., 2018), there could be better matching between buyers and sellers in marketplaces (Studer et al., 

2006) or searching for legal concepts in court documents (Leitner et al., 2019). One relevant paper to 

this thesis is, for instance, Brachtendorf, Harhoff & Gaessler (2019), who used Octomine’s text 

mining algorithm (Which is NLP) to turn SEPs and standards-related documents into vectors in a 

Vector Space Model, and then calculated the distance between these vectors to determine Semantic 

Similarity.  

  The semantic meaning of a text can be challenging for humans and is often difficult to 

translate into a form where AI can understand and use it. However, when the semantics of a particular 

dataset is accessible, deep learning becomes a robust tool in allowing an application to use said 

meaning. Furthermore, when appropriately trained, semantics-based algorithms show much potential 

in using the meaning of texts for further analyzing purposes.  

Sentiment Analysis  

  Sentiment Analysis seeks to create automated tools that extract subjective information from 

human language or contexts (Pozzi et al., 2017). This subjective information encompasses opinions 

and sentiments; this information can create actionable knowledge to make decisions (Liu, 2012). 

Understanding what the subjective elements in the data can be related to the specifically used 

language, but can also extend to biometric properties such as tone of voice, body language, or 

properties of the typing of texts like the applied force to keys on the keyboard or the timing between 
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writing words. The most used Sentiment Analysis applications are created for marketing purposes 

(McStay, 2020). However, its applications have been growing towards the security sector, where 

recent options attempt to improve border security by assessing the emotional state of travelers 

(Sánchez-Monedero & Dencik, 2020). In addition, more technical documents such as legal and court 

documents can also be analyzed to identify opinions present within legal discourse (Elliot, 2020).  

  NLP tends to be used for the textual processing of data. For other human contexts such as 

images or live-monitoring data, it is possible to use Computer Vision and Biometrics depending on 

the applications. In their current state, Sentiment Analysis applications are predominantly based on 

deep learning and require much training data to function. A sizeable part of the existing training and 

data originate from Social Media posts and specializes in analyzing the sentiments in the particular 

domain (Zhang et al., 2018). As is common with deep learning, much data, and processing power is 

needed to have an optimally functioning application. As sentiment analysis attempts to recognize 

subjective elements in data, it is best used when knowing the sentiment of the data’s origin is essential 

to another procedure or algorithm. 

 

4.3.4 Knowledge representation and reasoning 

  Knowledge representation and reasoning (KR&R) is not just a particular application of AI but 

a sizeable – and established field of research. KR&R is dedicated to formalizing information from the 

real world so that computer systems can understand and use it for solving complex tasks (Brachman 

& Levesque, 2004). When interpreting the information provided in complex tasks, information is 

rarely provided consistently. Humans interpret information with differing degrees of accuracy, dealing 

with varying terminology and diverse sources of information. As an application, KR&R attempts to 

level the playing field between AI and humans by codifying human knowledge and rules into 

statements an AI can use.  

  One example is Computer-Aided Diagnosis systems, which aid doctors in interpreting 

medical images. It is combined with a form of Computer Vision and then allowed to recognize and 

decide what is present in that image. Modern AI that makes these decisions use deep learning to form 

their underlying bases (Oakden-Rayner, 2019). Transforming data to a machine-readable format is a 

crucial part of Machine Learning in general, and much time is spent to achieve the best format for the 

best outcome. KR&R could drastically decrease the human labor required for many learning 

algorithms by automating and codifying methods in the trial-and-error phase of training networks 

(Bengio et al., 2013). In its current context, though, KR&R is best used when data needs to be 

transformed into other improved parseability.
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4.3.5 Planning/Scheduling 
 

  Planning and Scheduling (PS) is most often used by more intelligent programs because they 

require a degree of autonomy. Examples of these intelligent programs include autonomous vehicles or 

robots. These agents are expected to function by themselves, often for prolonged periods. Planning 

and Scheduling combined are one application, but both are different and require different technologies 

to function. Moreover, they are strongly interconnected for specific applications (Sauer, 2003). 

Autonomous functioning requires the agent in question to determine what they need to do for their 

goal (Planning) and when they need to execute said action (Scheduling). An autonomous car, for 

instance, needs to plan the route towards a chosen destination and decide where it turns or reverses 

(Ghallab, 2016). PS is helpful when an AI application needs to function autonomously. 

4.3.6 Predictive Analytics 
 

  Predictive analytics applications consist of statistical techniques from data mining, predictive 

modeling, and machine learning (Nyce, 2007). A large segment of the discourse regarding AI 

applications is dedicated to predictive analytics (Gandomi & Haider, 2015) as it has potential for 

many industries and in various ways. For example, historical and current data are combined in a 

predictive model to predict future events. For commercial instances, predicting whether placing two 

products in each other’s vicinity increases revenue is a well-known application of predictive analytics. 

Alternatively, insurance companies need to predict how much they will need to pay out based on 

damages in a given year and use that to set their premiums. Or how likely a manufacturing unit is to 

have technical difficulties in a given period (Lee et al., 2014).   

  The commercial applicability has made predictive analytics a vital part of any data-driven 

company. While its role is significant, it is only guiding, not decisive, for most complex predications. 

Nevertheless, for many specialized applications, predictive analytics functions equally or better than 

humans as it lacks the biases industry professionals might have (Ayres, 2007). Using predictive 

analytics often requires substantial databases, which can be hard to come by. Not all variables humans 

perceive translate easily into data, though KR&R has made significant gains over the last years. The 

data fed into predictive analytics can quickly get outdated in dynamic environments, and just like 

most people, it is still vulnerable to large-scale exogenous effects (Davenport, 2016). Predictive 

analytics has much potential to predict the outcome of future events in the presence of a significant 

dataset.  

4.3.7 Robotics 
  Robotic machines or robots are physical entities that attempt to fulfill physical tasks. The 

hardware that is the robot requires applications/software to function. Depending on the robot, 

functioning can get highly complex, making them very hard to code manually. Instead, combined with 

the increasing requirements of having autonomous robots, AI is expected to take the helm of robotics 

and function as the software that enables the robots’ hardware to function (Sparc, 2016). 

  Many of the other trends see an application in robotics, take different forms of Computer 

Vision such as Image & Video Segmentation and Object tracking. These would allow robotics to 

function in independent environments where humans live, as it is possible to recognize – and 

hopefully avoid human beings. Planning and Scheduling applications were originally invented for 

robotics and are still used much in robots today (Sauer, 2003). Scene understanding can be required in 

highly complex robotics, and Speech Recognition and Synthesis could be necessary when interfacing 

with humans. Examples of robotics include autonomous driving vehicles or warehouse robots. Recent 

innovations in AI have enabled robotics to function in more chaotic unstructured environments by 

increasing its adaptability and recognition (Brooks, 1991) (Garcia et al., 2009). Because robotics 

concerns itself with bringing about change in the physical realm, robotics is best used as a 

replacement or addition to physical human labor.  
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4.3.8 Speech Processing   
 

  Speech Processing is the study of speech signals and the methods of processing. It is the 

overarching field of AI speech applications. All following speech – and speaker applications are a part 

of speech processing (Nassif et al., 2019). Speech Processing is quite an old field that used to rely on 

manual coding and statistical principles before deep learning. Many speech processing applications 

use deep learning now, with its data and heavy computational requirements. Speech processing is 

used when spoken data is entered into a computer system. 

Speech Recognition 

  Speech Recognition attempts to identify words of spoken language data and translates that 

into text for further use. It fosters verbal communication with computers; as such, many companies 

are creating an application with a sufficiently large vocabulary that can facilitate their employees. 

Speech recognition is employed in e-learning, health services, and many other industries (AbuZeina & 

Elshafei, 2011). Speech recognition is best used in a context where real-life speech needs to register 

and be used to some end.  

Speech Synthesis 

  Speech Synthesis or Text-to-speech (TTS) attempts to produce human speech employing 

computerized simulation. Recent improvements in this field include control over higher-level speech 

attributes such as emotive expression and speaking cadence (Habib et al., 2020). TTS is commonly 

used in e-learning environments or to improve the accessibility of written content. Speech Synthesis is 

best used when text data needs to become audible for the user’s purposes.  

   

Speaker Recognition 

  Speaker Recognition attempts to recognize the speaker by the characteristic Biometrics of 

their voice. This recognition is beneficial when identification is necessary, and some phone security 

systems have been using speaker recognition for 20 years (Campbell, 1997). Recently the reliability 

of these systems has improved by scientists implementing machine learning systems (Chung et al., 

2020). However, Speaker recognition is best used when authentication is required and is often used 

with other biometrics.  

 

  Speech-to-Speech 

  Speech-to-Speech applications attempt to take one form of speech, transform it, and then give 

the required output (Tjandra et al., 2019). One example of this is a translation application that could, 

for instance, translate a French speakers’ words into German text and then synthesize that text into 

German speech for the recipient. It can also mean improving the speaker’s audio quality by filtering 

out background noise from static originating from the connection or the speaker’s surroundings, 

though that would fall under Speech Recognition (Shrawankar & Thakare, 2010). Broadly, speech-to-

speech requires Speech Recognition to recognize what is being said, Speech Processing to process the 

speech into its new format, and speech synthesis to emit the transformed speech to the recipient. 

Speech-to-Speech applications are best used in environments with audio data, which is hard-to-parse 

for the user on the speaker’s side. 
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4.4 Summary of described applications  

Some might prove helpful in determining essentiality for essentiality assessments from all the 

applications. There is already a (small) history of semantic NLP applications used for semantic 

similarity, and other applications show promise. The primary type of AI present in most applications 

was Deep Learning. This is in line with the increased computational power trend, as deep learning 

requires significant processing power and large databases. It should be noted that even though Deep 

Learning appears to be a large part of the AI trends, it is not required for many of the listed 

technologies. Deep learning is an extension of already existing machine learning techniques. The 

following Table 4.1 lists all applications alphabetically, with a short description of their functionality, 

which AI technique was perceived with it, and its perceived usefulness based on the implementations 

thought up in chapter 6.  

Name of Application Functionality Commonly used 

AI technique 

from recent 

literature  

Perceived 

Usefulness 

for 

Essentiality 

Assessment* 

Augmented Reality Takes (Mostly) visual 

data and overlays 

something digitally 

Deep Learning None 

Biometrics Takes biological data 

(Mostly visual) input 

and uses it to 

recognize/distinguish  

Deep Learning None 

Computer vision Takes visual data and 

processes it 

Deep Learning Low 

Distributed AI Class of Technologies 

that distributes 

processing 

It is the AI 

technique 

Low 

Image and video 

segmentation 

Takes visual data and 

segments pixels into 

unique features 

Deep Learning Low 

Information 

Extraction 

Takes texts and 

identifies information 

Deep Learning High 

Knowledge 

Representation & 

Reasoning (Kr&r)  

Modifies and 

formulates data in line 

with human thinking 

It is the AI 

technique 

Low 

Natural Language 

Processing (NLP) 

Takes human 

language data and 

processes it 

Deep Learning High 

Object Tracking Takes visual data, 

recognizes a unique 

object, and tracks its 

location 

Deep Learning None 

Character 

Recognition 

Takes a visual image 

of text and digitizes it 

Deep Learning None 

Planning/Scheduling Takes mixed data to 

formulate plans and 

schedules 

Reinforcement 

Learning  

None 

Predictive Analytics Uses data to predict a 

future event or state 

ANNs,  

Decision trees 

High 

Robotics Uses inputs for real-

life actions 

Field-

encompassing 

None 
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Semantics Working with the 

meaning of language 

data 

Deep Learning High 

Sentiment Analysis Takes text data and 

attempts to 

understand subjective 

contexts 

Deep Learning Low 

Speaker Recognition Takes audio data and 

attempts to recognize 

a unique person 

Deep Learning None 

Speech Processing   Takes audio data and 

processes 

Deep Learning None 

Speech Recognition Takes spoken data 

and translates it into 

digitized text 

Deep Learning None 

Speech Synthesis Vocalizes written 

texts through 

synthesizing a voice 

Deep Learning None 

Speech-to-Speech Changes speech into 

another form of 

speech 

Deep Learning None 

Table 4.1 A list of all discussed AI technologies, their most recent trend, and their general applicability* based on the use-

cases formulated in Chapter 6. 
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5. Identified opportunities for implementing AI into essentiality 

assessments  
 

 From the processes described in chapter 3 and the knowledge of AI from Chapter 4, this chapter aims 

to pose several use-cases for AI in determining essentiality. Although assessing essentiality is 

currently costly and challenging, this chapter seeks to formulate how AI could contribute value to the 

relevant stakeholders based on assessing essentiality. 

 

 The following options were identified from looking through the essentiality assessment information 

in chapter 3 and as having implementation potential of AI. In addition, some of these possibilities 

were mentioned in the core literature used for the snowball method mentioned in chapter 2.  

1. The screening of submitted patents and SEPs during or after standard formation 

2. Aiding the assessor of manual essentiality assessment 

3. A deep automatic essentiality assessment 

The mentioned use-cases are the overarching lines that the following chapter and the following 

chapter will follow. This chapter will discuss the basics of these use-cases and is then used for the 

next chapter (6), where the potential algorithms, technical requirements, and potential plans of 

approach are discussed. 

 

General Information 

Implementing AI in any form carries potential up- and downsides, which could have different 

significance for the parties involved in essentiality assessments. Although standard formation exists at 

the intersection of industry and public interest, each use case formulated will impact some 

stakeholders. Every form of implementation will result in some form of trade-off, and though this 

thesis does not seek to broker an agreement and does not contain a qualitative analysis of stakeholder 

opinions, speculating about how stakeholders could be affected contributes to the decision power of 

any parties that seek the implement essentiality assessments or are interested in any follow-up 

research.  

                SDOs want to create standards with valuable intellectual property. SEP holders and 

licensees want accurate data on what is and is not valuable, particularly during litigation and licensing 

negotiations. NPEs or SMEs with fewer resources will indicate value before committing to standard 

or essentiality assessments. These parties have different reasons for assessing essentiality, and their 

approval will be pivotal in any use case.  

                Many different factors contribute to AI acceptance. The work of Bengel (2020) and Dahlin 

(2021) discusses some of these factors. There are two big challenges inherent to AI: accountability 

and transparency. Accountable results in that the outcome has to be obvious to understand and 

transparent in showing how the results were obtained. But as both Bengel and Dahlin note, these are 

far from the only two factors. The change to the assessment process itself is also subject to 

stakeholder scrutiny. Having a non-binding commitment of the AI, serving an advisory role, or 

offering opportunities to appeal like in patent pools is an option that could increase acceptance. All 

three of these conditions have their challenges.  

Explainable AI is currently difficult to create if complexity is necessary for accurate results. If 

the results are non-binding, will the AI only generate more work if the patent holders appeal by 

default? Transparency of AI functioning could also pose problems considering a lot of the features 

present in the patents are susceptible to patent holder influence. Feature manipulation is likely if the 

parties involved know that it is important to keep their SEPs in the standard. Moreover, even after 

these challenges have been tackled, stakeholders can still withhold acceptance. Acceptance has been 

linked to organizational differences, the age of whoever needs to sign off on new working methods 

(Bengel,2020), or even a lack of social interfaces between AI and stakeholders (Dahlin, 2021). 
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5.1 Patent screening of declared patents and SEPS 
  Screening refers to a low-cost and rapid pre-selection of patents that are (extremely) unlikely 

to be essential. The algorithm in question would analyze different characteristics and indicators of 

these patents. Depending on the accuracy of such a system, it could notify the SDO of non-essential 

SEPs and decline the patent, serve to provide advice on where to start a manual assessment or 

combine aspects of both. If the accuracy of these AI is only slightly better than randomness, there is 

already a use case for specific implementations. Screening procedures will likely find acceptance 

amongst stakeholders when the results are explainable, non-binding, and transparent. These 

challenges seem significant but are not limited to this specific use case. The ease of a simple 

screening AI could serve as a foundation for more complex and comprehensive AI in the future. 

   The criteria remaining: low-cost and rapid analysis of SEPs. Large-scale essentiality 

assessments seem to benefit from screening procedures especially. Indications over which patents are 

less likely to be essential could help expert assessors prioritize certain patents over others. The 

amorphous pool of SEPs would become a stratified list that can inform further decisions. SDOs could 

target the patents that are least likely to be essential from their standards, enabling systemic 

essentiality assessments. 

It should be noted that to SDOs, false positives from a screening AI are less problematic than false 

negatives. Including false positives is a given and is no different from the current situation. However, 

false negatives could lead to legal complications. Rather than following an even split on estimates, it 

would be more prudent only to skim the top of the least likely-to-be-essential patents. If the screening 

outcome is not binding, it will create prime targets for manual or (deeper) automatic essentiality 

assessments.  

  If the algorithm provides any meaningful values beyond an abstract “essential,” it could 

become a part of defining SEP value influencing portfolios and licensing negotiations. Additionally, if 

the barrier of entry regarding the use of this AI is low enough, SMEs or NPEs could scan their 

portfolios without significant commitment or costs empowering their participation.  

  The downsides of screening are strongly tied to both where it takes place and what 

technologies it is done with, where some potential technologies are discussed next chapter. Whether 

screening proves to be a viable addition to assessing essentiality will depend on its actual execution 

and consequences for the parties involved. 

 

5.2 Aiding the Assessor of manual essentiality assessments 
Having AI replace the manual essentiality assessment is undoubtedly one thing to consider (In 5.4 and 

to a lesser form in 5.1). Another route to take could be augmenting the manual assessment. Rather 

than replacing the assessor, AIs would become a tool to assess the expert assessor. Hopefully, it will 

increase the assessor's accuracy, reliability, or speed. Though the exact threshold of augmenting 

manual assessment for systemic assessment viability is unsure, creating indicative assisting tools is an 

improvement over what we have right now. The aid offered can range from something minor like 

estimating the assessment time of a SEP by examining its characteristics like length and word 

complexity. Alternatively, the AI could do almost all assessment work and only require a human to 

confirm its findings. One opportunity for AI tools is indicating which sections are more likely to 

contain essential information for the standard. A more granular AI could indicate which parts are 

essential or why that segment is essential. More granular and semantically sound AI is prohibitively 

difficult to create and requires significant computational resources. 

To remain in the spirit of short-term accessibility, a balance between costs and benefits is necessary 

when designing such AI.  
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Since SDOs and SEP stakeholders look into systemic essentiality assessments, AI-enhanced 

manual assessments could be a short-term implementation method. Manual assessment is the 

mainstay method. The responsibility of verification lies with the assessor. Augmenting manual 

assessment does not change that part of the process. Assessors rejecting tools is a possibility, but AI 

acceptance will come down to usefulness and usability. If AI tools make it easier to assess 

essentiality, the assessment cost could also decrease. 

Moreover, if these assessments are cheap enough, litigation would need less investment for 

SEP-holders and licensees. SMEs and NPEs would have cheaper access to patent pools requiring 

entry assessments. If the manual assessment were obligatory for access to standards, it would benefit 

all stakeholders to decrease costs without reducing assessment quality. The tools for AI can help with 

work or tools of convenience. Both provide solid use-cases for AI to be implemented in manual 

assessment.    

 

5.3 Full automatic assessment 
A fully automatic assessment would mean that the testing and verification of essentiality assessments 

are all done by AI. In managing admittance to the standard, AI will be the initial authority involved in 

determining whether a declared patent is essential or not. Depending on the extent to which the 

initiators would like to go, it can assess and then further govern communications and negotiations 

with stakeholders. An AI-based use case was also discussed by Bekkers, Henlo, et al. (2020), where 

the likelihood of this scenario was judged to be dependent on stakeholder acceptance, of which 

accuracy is but one crucial aspect. Several reasons seem obvious from formulating an automatic use-

case. First, the creation of such an AI right now is decidedly tricky. An AI that could fulfill 

semantically sound work in an explainable and transparent manner and highly accurate is currently 

not reasonably within our technical reach. Nevertheless, it is still a reasonable prospect for the future 

when feasible.  

                For SDOs, this would be the systemic assessment method that would fulfill most of their 

posed challenges. Though instituting such AI now raises doubts about the AI’s accuracy and cost. The 

accuracy could be in part compensated for through an appeals process, something which similarly 

exists in the decisions made by patent pools. However, that would put an additional burden on the 

SEP holder. Nevertheless, this also creates opportunities where like-minded stakeholders could assess 

all their portfolios with comparative ease, or if the AI is expensive, relevant patents for litigation and 

licensing. Depending on the cost, SMEs could be strongly incentivized to participate. If costs are 

sufficiently low to analyze all new patents, hidden SEP-owners could be found and invited into the 

SDOs fold.   

 

. 
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6. The role of AI in Essentiality Assessment and their Use-

cases 
The previous chapter discussed the general lines of the implementation potential of AI for essentiality 

assessment. This chapter seeks to couple the AI technologies written in chapter three with the 

previous chapter. First, discussing the potential of each identified applicable technology for 

assessment and their roles in each use case. To understand what the process of creating an AI for 

essentiality assessment could look like, two semantic similarity approaches are discussed in more 

detail. Brachtendorf et al. (2019) use a semantics-based algorithm to measure semantic similarity 

between SEPs and Standard specifications, and Younge & Kuhne (2015) mapped the semantic 

similarity of the entire US patent database. Then the implementation potential of the technologies 

themselves is discussed. They have much in common across all use-cases, so every application is first 

discussed, followed by a “plan of approach” relevant to each use-case combined with creating each 

AI. Two technologies are not further discussed because of their limited or overly broad potential. The 

following section first discusses Brachtendorf et al. (2019), followed by relevant technological 

implementations and their use cases.  

6.1 AI creation analysis: Semantics-based approaches of Brachtendorf, 

Gaessler & Harhoff(2019) and Younge & Kuhne (2015) 
As often mentioned in the last three chapters, Brachtendorf, Gaessler & Harhoff (2019) compare 

standard documents' semantic similarity with SEPs and take that as a proxy measure of essentiality. 

The exact method they used to manipulate the data is not available as they used a proprietary 

algorithm named Octimine (Dennemeyer Octimine: Octimine, n.d.). Unfortunately, one of the largest 

challenges of semantic- and text-based approaches is manipulating text data into a form parsable by 

AI. The manipulation of text consists of a set of Natural Language Processing and text mining 

algorithms. The number of algorithms often ranges from three to more than a dozen. Reasonable 

assumptions of this step can be made following similar patent literature like that of Younge & 

Kuhne(2015), who projected the entire USPTO database in a Vector-Space Model (VSM). While the 

corpus processing is not assessable, the other steps are. 

  Starting with some corpus to test all the potential algorithms for use, a text-mining algorithm 

would start working on patent corpus and make it suitable for further analysis by AI. There is a 

difference in wording between the patent claims and the technical description text, and this difference 

has to be accounted for to prevent less generalizable results. Younge & Kuhne(2015) note that 

analyzing claims will not necessarily reflect technical similarity but is more likely to reflect the style 

of drafting the responsible legal representative uses. Even though the claims convey legal power and 

are at the core of its patent exclusion principles; All examined literature removed claims from 

consideration. This decision is not made lightly, and futureproof explainable semantic algorithms 

would require claim text analysis. There are concrete benefits to removing the claims puzzle from 

consideration for the time being. The technical description is a much larger corpus to train on, and it is 

more likely to contain an abundance of technical terms that are useful in distinguishing comparable 

technical portions in standard specifications. One potential solution is to minimize this “linguistic 

legal bias” in claims by removing conjunction and other non-technical words and continuously 

representing the technical words to account for semantically similar words. This process is a complex 

matter, so the intermediate solution most authors have chosen is to remove the claims from the 

semantic analysis altogether.  

  Following Younge & Kuhne’s example, the corpus was subjected to tokenization algorithms 

converting words into instances of their consideration. For example, considering spaces as the 

indicator between different tokens – “It is” are two separate words, and recognizing that “long-

winded” is one word. Synonyms in a process replace many variations of verbs called stemming, 

replacing “Watch/Watched/Watching” into only “Watch.” After stemming, all the words left in the 

manipulated corpus represent semantic text data that AI can manage. Do this for all patents in your 
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database to expand the lexicon into something containing all the relevant words for analysis. In the 

case of Octimine, this lexicon likely already exists in their database and likely includes 

representations that allow for the substitution of each word with synonyms. Some words are deleted 

due to the lack of semantic meaning, such as The, And, Or. Finally, a technique like TFIDF (term 

frequency-inverse document frequency) creates vectors for every document and uses that to construct 

a Vector Space Model (VSM). As TFIDF is widespread, we can only assume it is the technique used 

by Brachtendorf et al., though there are other options like those discussed by Shahmirzadi et al. 

(2018). In Kim et al.’s (2019) study, TFIDF also remained a competitive option. Both authors then 

created their Vector Space Models, which algebraically represent all the vectors (Vectors representing 

patents) inserted into it. Brachtendorfs’ addition is processing the standard documents into the same 

VSM of the patents and allowing for similarity calculations between other documents than just 

patents. Calculating the semantic similarity in these VSMs is done using the cosine similarity between 

the relevant documents. Cosine similarity measures the cosine of the angle between two vectors in a 

multidimensional (VSM) space, which represents the semantic similarity of the compared documents 

(Singhal & Google Inc, 2001). 

  In short, a semantic algorithm requires knowledge of AI techniques in the domains of Natural 

Language Processing, Semantics, and Information Retrieval. As much work with accessible 

documentation already exists, starting a semantic AI would not be incredibly difficult, but it seems 

like it would require a large amount of invested effort. 

6.2 Predictive Analytics applied to SEPs 
By exposing AI to a dataset of SEP-related variables, it might be possible to create an algorithm 

where the submitted patents get categorized on their potential essentiality. Preferably there would be 

categories with a decreasing likelihood of essentiality, which would enable more informed decisions 

about subsequent actions. 

  Predictive analytics could randomly choose variables from a reliable SEP database. AI can 

take all available characteristics in a database. Unsupervised AI might be able to cluster on 

essentiality without providing essential samples. Using every variable or randomly choosing variables 

will likely lead to mixed outcomes. Blindly feeding variables to the AI hoping for serendipitous 

discovery happens but is not a necessary short-term exercise when starting with AI. Instead, 

correlated variables from scientific literature can be picked as a foundation. We know the meaning is 

present in these variables in some (sometimes unintended) form, and this way, AI can use existing 

knowledge instead of reinventing the wheel.  

  For instance, some possibilities are found in Bekkers, Bongard & Nuvolari (2011).  Examples 

of related variables could be the company that owns the SEP, where certain companies have SEPs of 

significant technical merit. It could be the R&D expenditure of the company that owns the SEP, the 

number of forward citations of a given SEP, or the number of inventors listed. The algorithm itself 

would be a machine learning algorithm. The analytics results would be hard to explain unless the 

number of layers and variables is minimal. If the variables used in this process are published and 

controllable by the SEP owner, the AI is vulnerable to gaming by bad-faith actors. Because of this, 

using predictive analytics seems to be unsuitable as a final decisive mechanism. Depending on the 

accuracy of the predictive analytics algorithm, additional appeal mechanisms or additional checks can 

be added. These mechanisms would inevitably require resources to function. Cost and time are two of 

the most important factors for these mechanisms. AI involvement should be inexpensive and quick for 

all stakeholders.  
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Overview  

Necessities Large dataset(s) of SEP related variables, 

Computational Resources, Stakeholder 

agreement 

 

Advantages Quick, Inexpensive 

Weakness Gaming, non-semantic results 
Table 6.1 A short overview of the ups and downsides of using this A.I. technique 

6.2.1 The Technical Requirements of Predictive Analytics 
We have several options if we would like to employ predictive analytics. Based on the current AI 

trends, machine learning will be at the core of categorizing patents into different likelihoods or 

binaries of essentiality. Unsupervised and supervised learning has been used successfully for 

predictive analytics and similarly show potential here. Supervised learning leads to regression or 

categorization algorithms. Focussing on a categorical output classification algorithm seems more 

suited to assessing essentiality as essentiality itself is a category. However, other experimental 

approaches should be considered. After deciding on supervised learning and categorical algorithms, 

there is still a multitude of options; Decision Trees (1), k-Nearest Neighbours (2), Naïve Bayesian (3), 

Artificial Neural Networks (4), or Support Vector Machines (5). These are just individual methods, 

and in supervised learning, it is common to combine several methods into an Ensemble method (6). 

Ensembles or learning models are useful for explaining the relationship between inputs and outputs.  

One such example of an ensemble is the random forest technique (6a), which combines or more 

accurately bags multiple Decision Tree algorithms (Kotu & Deshpande, 2015). The exact reasons to 

choose between specific techniques are very varied. Experience with one of the techniques can be the 

determining factor in deciding to use a technique.  

  6.2.3 Predictive Analytics and Use-cases 
Combining predictive analytics and the formulated chapter 4 use-cases creates a unique scenario and 

impacts the predictive analytics algorithm that might be used. This section seeks to formulate these 

impacts for predictive analytics and offers. The suggestion list is not extensive but only serves as a 

potential route a creator might take. 

 

 

6.2.2 Base Plan of Approach for developing a Predictive Analytics algorithm  

1. Study the available data and examine the properties and variables 

2. Decide which techniques to use depending on the availability of data and the goals of the 

implementer. Additional information on these techniques is available in chapter 7 

3. Manipulate dataset into suitable inputs for algorithm  

4. Divide dataset into training and test set  

5. Train the AI with the training set data 

6. Analyze performance data by using the AI to predict on the test set 

7. Save trained AI for potential future usage/reference 
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6.2.3.1 Screening SEPs 

There are multiple ways to implement the screen, depending on the accountability required by the 

SDO and stakeholders in setting the standards. Related information can be sufficient to indicate 

whether a patent is essential or not. The different stakeholders’ intentions with implementing a 

screening SEP should be researched. In the previous chapter, one of the primary directives of an SDO 

is to include all SEPs within its standards. SDOs want to remove non-essential patents from their 

standards, but it is more critical that essential patents are not removed. SDOs would likely make a 

conscious decision to minimize false negatives, SEPs that are essential but are not indicated by the AI 

as essential. Similar to what was indicated in chapter 4; Top-skimming where a meaningful amount of 

non-essential patents will be discovered compared to a negligible amount of essential patents. Based 

on the premise that the results are available in the shape where top skimming is possible. The start-up 

costs of an experimental screening AI are low, where some significant datasets like the EPO and 

USPTO databases are freely available. Preferably, paid databases like the European Patent Office 

Worldwide Statistical Database, also named Patstat, are also available for preprocessed data. One 

challenge is defining the independent variable: “essentiality.” As there is only one method to 

determine essentiality right now, manual assessment, ideally, the AI would have access to the results 

of a large-scale accurate essentiality assessment. The existence of such a dataset in the present is 

debatable, just like the notion of such a dataset being possible. When essentiality data is not available, 

a proxy is an independent variable. A choice selection of declared patents could serve as a proxy for 

essentiality, though its accuracy would likely be reduced due to the noise present in the data. 

Regardless, predictive analytics is an exciting and viable prospect for screening purposes in the short- 

and long term.  

6.2.3.2 Assisted Manual Assessment 

Regarding manual assessments, predictive analytics can serve as a wide array of different tools that 

can augment the traditional assessment process. The previous chapter described AIs's potential, 

ranging from minor to doing everything but one step. This potential partially holds when only using 

predictive analytics. Predictive analytics is used to predict, and when used as a tool, it can predict 

more than essentiality. Several tools are likely already used by patent assessors. Due to the opaque 

working methods commonplace in manual assessment, which tools is unclear. 

  Making assessments more convenient for assessors could increase efficiency and accuracy, 

though convenience for assessors is a worthwhile pursuit in itself. For instance, several tools such as 

intelligent search engines that can find related literature and legal documents are widely available on 

the market as assessors have indicated to like patent claim charts (Bekkers, Henkel, et al., 2020), 

having an AI that can generate accurate claim charts would be convenient for assessors. In addition, 

having an AI predict how long a patent will take depending on its language complexity, length, and 

the number of claims can help assessors structure their planning.  

  Powerful tools that radically augment the assessment process are possible through predictive 

analytics. Ranking a list of SEPs based on the likelihood of essentiality has ramifications for where 

litigants might reasonably focus their efforts and funds. Outside of essentiality assessments, scholars 

have already been using predictive analytics to predict the outcomes of legal processes like court 

cases (Shaikh, 2020). Even if the assessment itself is not augmented, it will likely still be affected by 

the data-driven decisions of the actors who engage in these cases. Augmenting manual assessments 

through predictive analytics seems like a very plausible prospect. 

6.2.3.3 Full Automatic Assessment 

Allowing the AI to fully take the reins and assess whether a patent is essential, the stakeholders could 

take one direction. Outside of stakeholder acceptance, one could wonder whether semantically sound 

algorithms can result from only using predictive analytics. An algorithm that focuses on analyzing 

surrounding correlated data might not determine and describe essentiality in a meaningful way. 
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Though one question remains, “Does it matter?” if the algorithm produces better results than human 

assessors, why would industry professionals choose to make use of manual assessment? There is no 

short answer to that question, and some form of predictive analytics will likely be involved with 

patent pools soon. In order to make a fully automatic assessment the initiator will likely need 

sufficient available variables, which tend to be plentiful in patent databases. One of the biggest 

obstacles of supervised learning is the lack of a robust independent variable- in this case, determined 

essentiality remains and is likely one of the crucial factors in fully automatic AIs. Recommendations 

on databases that track the results from the essentiality determinations exist (Like the 

recommendations of Bekkers, Henkel, et al., 2020), and we might see a good database that could 

contribute to automatic assessments in the future.   

6.3 Natural Language Processing/Semantics/Information Retrieval: Semantic 

Similarity and Textual Understanding 
  These different forms of technology are often combined as they all pertain to textual data and 

have to be used in conjunction to have the greatest effects. When combining these technologies, two 

options arise. The first is testing the semantic similarity of SEPs with that of the relevant standard 

documents. The second is creating an AI which can “Understand” the textual content of the patents 

and relate it to standard documents. The second option is significantly more complex than the first, of 

which several examples already exist. When it comes to using semantic similarity in screening, 

semantic similarity is taken as a proxy for the similarity of the technical content. The traditional 

method only compares patents with patents. Younge & Kuhne(2015) used VSMs on these patents as a 

new classification method.  The specific case we have seen from Brachtendorf et al. (2019) indicates 

how technically similar the technical body text of a SEP is to the technical specifications of a 

standard. As discussed in the example chapter of 6.1, The technological description is a great short-

term comparison measure due to containing the most text comparison material. Even when a semantic 

similarity score is not perfectly representative of a patents’ contents, it might still have been used for 

other purposes like predictive analytics. Other uses can be found in 6.3.4. If words are used in a 

particular way in both documents, the odds are that the same person has advocated for the word to be 

used this way. In this case, semantic similarity is a proxy of the technical content and the documents' 

writers. 

  Creating an AI that can provide a textual understanding of the patent content is unlikely, 

though not unrealistic. The “granularity” of these similarity scores might enable comparisons between 

documents themselves, but it is possible to generate similar scores for chapters, paragraphs, or 

sentences. One ideal semantic similarity AI would identify a connection from the claim to the relevant 

sections in the technical text to their essentiality in the standard technical specification. Though this 

exact setup does not exist, increasingly refined similarity AI could identify these connections soon. 

Regardless, further testing is needed to understand the current limits of AI when applied to 

essentiality assessments.  

  AI is exceedingly suited towards analyzing textual data. Ergo, semantic similarity and textual 

understanding show much potential for essentiality assessments.  

Overview 

Necessities Large Corpus of Patent Data, High 

Computational Resources, Stakeholder 

agreement 

 

Advantages (Partial) Semantic Meaning, precedent 

Weakness Excluded Claims, Proxy 
Table 6.2 A short overview of the Advantages and weaknesses of the Semantic Similarity Algorithm 
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  6.3.1 Technical Understanding of Semantic Similarity  
A wide range of choices must be made when considering which algorithms are needed for the desired 

result. Limiting the NLP/Semantic/Information retrieval algorithms to just those about semantic 

similarity already offers many choices. A large portion of the required work is getting the database 

into a suitable/acceptable shape in the first place. Due to the amount of work required to go from 

patents to the Vector Space Model, it might be preferable to use existing VSMs. If that is not an 

option due to proprietary or accessibility reasons, constructing your own VSM would become a 

necessity. A decision will have to be made between TFIDF and Doc2Vec as the primary generating 

vectors to place into the VSM. There are other methods of generating vectors, but these are the two 

main ones most prevalent in patent literature. TFIDF or term frequency-inverse document frequency 

has different weighting schemes between the query term weight and the document term weight. 

Doc2Vec is an algorithm that converts a document into a vector through using Word2Vec and by 

assigning paragraphs ids that represent the make-up of a document (Le & Mikolov, 2014). There is a 

trade-off between TFIDF and Doc2Vec, as Shahmirzadi et al. (2018) note. In their experiment, a 

Doc2Vec algorithm had a better performance by 0.4-15.4% depending on the subject, but the 

computational time required was larger in order of several magnitudes. Work that took a Doc2Vec AI 

weeks only took hours for TFIDF. As a starting point, both are available in the open-source library 

GENSIM (2021).  

 Depending on the desired result, the database will require different degrees of processing. For 

example, most semantic AI excludes patent claims. Claims are necessary for results with a legal base, 

so a legally sound semantic AI analyzes claims. These claims need to be processed to remove the 

unique claim language or harmonize novel term usage into more established synonyms. Processing 

techniques include Tokenization, Stemming/Lemmatisation, Synonym Replacement, Semantic 

Tagging, Named Entity Recognition, N-grams, and many more. The most used NLP algorithms are 

the Tokenization and Stemming/Lemmatisation algorithms. Tokenization splits text into separate 

words, recognizing each word as its own thing instead of including the space. Stemming and 

Lemmatisation change conjugations and different forms of words into their root. For instance, 

“Learned” and “Learning” would be recognized as a version of “Learn”. 

Stemming is a simple algorithm that only removes the final part of the word, sometimes 

leading to misspellings. Lemmatization is a more complex technique that recognizes different 

inflections from a list and returns the relevant root that way. Sometimes including stopwords or 

unique words leads to better results, sometimes it does not. The only way to know is to try. After 

vectorizing the documents, all vectors combined form a VSM (Sometimes with added weights like 

TFIDF. As vectors represent points and proximity between two points represents the semantic 

similarity, the only thing left is to calculate the distance between the two points. There are two main 

measures of distances: Cosine Similarity and Euclidean distance. Euclidean distance is preferred for 

text classification but suffers from the curse of dimensionality (Verleysen & François, 2005). Cosine 

Similarity in comparison suffers minor effects. Thus, the cosine similarity is likely to be better for 

highly dimensional semantic similarity algorithms.  

 In both TFIDF and Doc2Vec, understanding the underlying data manipulation is required to 

obtain satisfactory results; for TFIDF, the starting costs are predominantly this data manipulation, but 

Doc2Vec could pose high computational costs. If Doc2Vec (And likely the increased accuracy) is 

required, experimenting with inputs using TFIDF seems to be at least warranted.   
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  6.3.4 Semantic Similarity and use-cases  
Combining semantic similarity and the formulated chapter 4 use-cases creates a unique scenario and 

impacts the semantic similarity algorithm used. This section seeks to formulate these impacts for 

semantic similarity and offers. The suggestion list is not extensive but only serves as a potential route 

a creator might take. 

6.3.4.1 Screening Mechanisms using Semantic Similarity 

Semantic Similarity itself is a score that represents the contents of a patent – to an extent. The legal 

power is located in the claims, and the claims being excluded from analysis makes it difficult to create 

a compelling binding case. The scores represent the technical content, but similar to predictive 

analytics, and it does not directly assess essentiality. Because semantic similarity does not directly 

assess essentiality creating an automatic binding resolution is unlikely to be very palatable for 

stakeholders. However, a screening mechanism on the least related patents is likely to find more 

acceptance. Combining semantic similarity and predictive analytics is also possible, using the 

generated similarity score as input for predictive AI.  

 . The difference between TFIDF and doc2vec being elaborated upon before in 6.3.2, TFIDF 

seems to be the stronger candidate when, the finer points of accuracy are not necessary due to its 

significantly lower computational cost. Ideally, the patents already exist in a VSM, and the only 

additional action is an active comparison between the patent and the standard specification.  

6.3.3 Semantic Similarity Plan of Approach 

0. Obtain an already existing continuous representations of the size (Documents, Chapters, 

Paragraphs) of the texts used in patents. If not possible, constructing your own might be 

necessary.  

1. Decide on what similarity measures you need and the related techniques you want to use. 

Similarity measures like Document to Document, Paragraph-Paragraph. Most common 

techniques include TFIDF or Doc2Vec.  

2. Obtain a list of the relevant patents / documents to be used. 

3. Determine which text altering NLP algorithms that need to be used to make content 

suitable for AI input. Different processes might be necessary depending on the choice of 

analysis technique. 

4. Example list of some possible NLP algorithms 

a – Tokenization algorithm like NLTK Tokenize to recognize instances words 

b – Stemming/Lemmatisation algorithm removing inflection for text 

c – Lexicon construction through algorithms like Word2Vec methods like CBOW or 

Skip-Grams 

d - Synonym replacements through lexicon 

e – Additional required scores/manipulation through N-grams, Named-Entity Recognition 

(NER), Semantic tagging etc.  

5. 4. Generation of semantic similarity vectors through a vectorizing algorithm like TFIDF 

or Doc2Vec 

6. 5. Creation of Vector Space Model placing previously generated vectors 

7. 6. Calculate similarity scores through Cosine Similarity or Euclidean Distance Scores 

8. 7. Use resulting scores for essentiality analysis 
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6.3.4.2 Augmenting Manual Assessments using Semantic Similarity 

Semantic Similarity also offers opportunities in usage when used as tools during manual assessments. 

Similar to predictive analytics, similarity scores can be used as a strategic tool for patent selection. 

The least similar patents would get assessed over the ones that are closer semantically. 

 If more granular/detailed analysis between specific patent sections and the standard 

specification is possible, it could indicate where essential information might be located. This 

“granularity” would happen using TFIDF or doc2vec on paragraphs instead of entire documents. 

Though this method remains untested, following examples of similar text-pieces found in 

Brachtendorf et al., it offers much potential. A deeper analysis would require another algorithm. The 

overall semantic document similarity and the smaller – paragraph/chapter-based similarity can also be 

used in conjunction. The more granular algorithm could speed up an examination when the most 

similar patents are examined. Declaring a patent essential often takes less time than declaring it not 

essential. A fuller analysis that also includes the claims is also possible. There has been headway in 

investigating the semantic relationship of claims to its technical body text (Alderucci & Ashley, 

2020).  

6.3.4.3 Full Automatic Assessment using Semantic Similarity  

If the semantic similarity is sufficiently tied to essentiality, some parties might fully automate the 

assessment process. When the costs are lower and the accuracy higher, private parties might opt to 

start using semantic similarity algorithms in place of manual assessments. There are a few caveats that 

these implementations would likely have; for instance, appeals with manual assessment options would 

likely remain an alternative option. If the first automatic assessment is mandatory, it could dissuade 

patents from a follow-up manual appeal. The manual assessment is the de facto method employed by 

private patent pools. Adding a round that might recognize essential patents without high cost would 

only be a “business as usual but better” type of scenario for them. It is important to note that semantic 

similarity does not represent essentiality, and though it might present strong indications and good 

information, it is no substitute for understanding legal essentiality. In order to enable that type of 

assessment, understandable conclusions would have to be produced from these algorithms over a 

general-purpose score. It would need to understand legal terms and why a particular claim is essential 

to similar patents, which is not accomplished by semantic similarity alone.  

6.4 Artificial Swarm AI  
Another option is an artificial swarm AI, a group structure that uses people as nodes to make 

assessments. There has been much research in using different groups of people to make decisions 

rather than singular experts, and slightly educated groups often win out of the industry experts. The 

artificial swarm AI would process the information received from the people participating and manage 

the interface between them and their answers. Rosenberg(2016) states, “Early testing suggests that 

human swarming has significant potential for harnessing the Collective Intelligence (CI) of online 

groups, often exceeding the natural abilities of individual participants”. If non-experts can perform 

adequately, assessment costs could go down. The magnitude of such a reduction would depend on 

many different factors, the remuneration the participants would receive, the costs of the system, and 

more. Using an AI like this requires some form of structure currently non-existent within essentiality 

assessments, forcing a designer to start from scratch for the systemic components.   

 Some barriers might pose a hindrance towards implementing this system. First, the technical 

and legal knowledge of essentiality in the context of technical standards has high entry barriers, and it 

might be possible that this difference cannot be surmounted through the wisdom of the masses. 

Second, the type of information used in these assessments is highly textual, and the only way to make 

a valuable comparison between segments of text is to indicate other applicable sections already. 
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Otherwise, most of the comparisons made would be meaningless with only a few comparisons of 

meaning. A viable implementation would have to use another algorithm like predictive analytics or 

semantic similarity to give meaningful comparisons to the human section of such a project. 

Another problem is the involvement of more people. Often, things become more expensive when 

including a substantially larger number of people. As a result, a project like this could end up costing 

more than manual assessment, making its adoption less likely instead of more.  

 Though implementing an AI like this might not be optimal in the short term, creating a 

structure for systemic essentiality assessments is highly needed should AI play a more prominent role 

in future essentiality assessments.  

6.5 Image Similarity 
Another possibility for screening is comparing the images used in the patent and those in the standard. 

This comparison would be driven by an application of computer vision and would likely be a 

combination of learning algorithms and SEPs for confirmations. Image similarity is a concept in 

machine learning, but its usefulness in essentiality assessments is likely limited. It would only work 

for standards that are visualized with recognizable SEPs. Most patents have illustrations, so there is a 

technical possibility of recognizing patented components in standards illustrations. Depending on the 

overlap between the way that standard illustrations are made and that of the SEPs, there is minor 

potential in training AI to recognize SEP components. However, it is unlikely for SDOs and SEPs to 

fail to recognize the essentiality of physically present technical components. Implying the usefulness 

would only extend to unclear claim violations. Even then, this would (1) require that these standards 

are visualized in a way comprehendible to that of its composing SEPs, (2) be strictly for components 

that can be illustrated, and that this would (3) result in a blackbox similarity score with the current 

state of AI technology. Short of using an AI that could pinpoint exactly which technical component in 

an illustration violates which essential claim will result in confusing outcomes. Conclusively, the 

application opportunities and the difficulty of creating an understandable algorithm make this 

application unlikely to strongly contribute to the goal of SDOs in instituting an essentiality policy.  

6.6 Blended Approach 
All algorithms mentioned in this thesis generate numbers and scores. If one score is not enough to 

offer a strong result, perhaps combining multiple approaches will. Combining multiple ML 

applications is often referred to as an “Ensemble Method,” some of which are very popular (Opitz & 

Maclin, 1999). There are substantial challenges associated with using ensemble algorithms. For 

instance, if using one algorithm leads to complex results, using multiple algorithms will complicate 

this further. Such an approach is likely to be more costly in computational power and will raise the 

barrier of entry in starting ML work. Nevertheless, the extra work put into creating an ensemble can 

enact itself in multiple ways; it can compensate for less accurate scores and numbers resulting from 

other ML forms or are present in datasets. Purely pursuing accuracy, ensembles have great potential 

despite difficulties forming semantic explanations on their findings. Because blended approaches 

encompass any combination of different technologies, attempting to explain the technical function of 

an ensemble would have to encompass both technologies. As this complexity is unsuited for the 

proof-of-concept defined next chapter, a blended algorithm is not elaborated further.   
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7. Predictive Analytics Screening Experiment; Database and 

design 
After the summation of the last chapter, predictive analytics for screening is chosen due to its relative 

ease of use and low entry barrier. Furthermore, the intentions of a screening mechanism are a strong 

match with the intentions of implementing systemic assessments. This chapter will design an 

experiment as a proof of concept. Then, discuss the different choices and motivate the approach to 

generate chapter 8. The design process is motivated by two main points, (1) attainability and (2) 

transparent decision making. Attainability refers to limiting the used data and limiting the number of 

options discussed to those practical and accessible in usage. Transparent decision-making means that 

when one algorithm or variable is picked over others, it must be clear why I made that decision. 

 The following chapter starts with a technical description of the available machine learning 

techniques for predictive analytics. However, in deciding which is the best choice, it is required to 

understand the dataset and which data manipulation is necessary. Necessary to change the data into a 

form that the algorithm can take and increase the accuracy. So, 7.2 and 7.3 describe the used dataset 

and the performed manipulations. A summary of the set is followed by a more detailed description of 

every variable and their distribution in the training (TrainSet) and validation set (Validationset). This 

is followed by the selection of one algorithm for further use.  

  Paragraph 7.3 discusses more specific decisions made with the chosen machine learning 

technique. First, it elaborates on the design process, taken from initial considerations to predicting the 

independent variable. Then, after the summary of the model, additional evaluation methods used in 

chapter 8 are discussed with the method used to optimize the algorithm for screening. Finally, the 

used code libraries are accredited with their relevant uses in creating the results of chapter 8.  

7.1 Predictive Analytics Algorithm Selection for Screening 
In deciding to focus on a predictive analytics approach for screening, the choice is between the 

choices listed in 6.2.1: Decision Tree (1), k-Nearest Neighbours/KNN (2), Naïve Bayesian (3), 

Artificial Neural Networks (4), Support Vector Machines (5) or an Ensemble (6).  Ensembles could be 

highly effective and will probably become more valuable when AI is more developed in this field. 

They are, however, much more complex and are beyond the scope and aim of this experiment. The 

choice is limited to the previously mentioned five options. These algorithms are discussed in the 

following section, emphasizing their basic functionality and most common defining attributes. 

7.1.1 Decision Tree 
The concept of decision trees is prevalent in and outside of machine learning contexts. There is much 

resemblance between the way machine learning employs decision trees and the more general concept 

of decision trees. In the context of machine learning, decision trees use tree-like structures to classify 

and regress the data it receives. These tree-like structures can be divided into three different types. 

Nodes(i) test the values of specific attributes. Edges/Branches(ii) take the outcome of nodes and then 

connect it to the subsequent node or leaf node. (iii) Leaf nodes are the end of the model and output the 

results. There are multiple ways to design the nodes and branches. It is challenging to determine 

where the tree “breaks” for the nodes and what breakpoint values for their attributes are. One method 

of determining this is ID3 (Quinlan 1986). A more detailed explanation is available in 

Quinlans’(1986) work, but summarize the base principles; ID3 or Iterative Dichtonomizer 3 calculates 

the entropy of every attribute in a dataset. Entropy in this context is the opposite of homogeneity and 

is otherwise a measure of heterogeneity. The attribute with the smallest entropy is chosen as the first 

node, after which the algorithm continues to form nodes with other variables. This method is also 

prone to errors as it can converge on local optima instead of the global dataset optima. 

   

  Many of ID3s weaknesses are shared amongst other decision tree methods. Decision trees can 

quickly overfit. Overfitting is partially mitigated through backpropagation but remains a concern. 
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Alternatively, “Pruning” some nodes and branches might be necessary to have results that can 

generalize for the data. The results tend to be highly complex when using many different variables, 

which lessens accessibility. There is an inherent risk to pruning and removing other considered 

variables; it might remove implicit information. The handling of outliers in the data is complex as the 

branches rely on decisions. These decisions lose information from the continuous variables present in 

the model. Any other relationship that might be present (linear or non-linear) is reduced in a node. 

Nevertheless, for most data, little to no pre-processing is necessary to use the decision trees for good 

results. Decision trees have no assumptions regarding the data distribution, and they handle 

collinearity well. Unlike most other forms of machine learning, decision trees can provide 

understandable and accessible predictions with stylized visual representations of the algorithm's 

decisions. Their simplicity in design makes decision trees cheap to compute, reducing the barrier of 

entry required for parties intending to use them.  

7.1.2 K-Nearest Neighbours (KNN) 
The k-nearest neighbors or KNN algorithm is a non-

parametric statistical method used for regressions and 

classification. The classification methods are relevant 

for our proof-of-concept. In its essence, it seeks to 

identify the most similar data points through numerical 

proximity (Kramer, 2013). Unlike many other types of 

machine learning, KNN does not have a training phase 

before it starts classifying new data, though it does 

need all features to be vectors. All features also need to 

be scaled into a similar format, and there need to be 

known categories. In addition, there needs to be a clear 

understanding of the input domain. KNN also needs the 

influence collinearity and outliers to be minimal. 

Instead of a training phase, the algorithm uses all the 

data. The dataset remains in memory which is 

computationally expensive with large datasets. It is 

possible to generalize and reduce previous data, though 

this leads to the loss of information. KNN is often best 

on small datasets with few features due to these 

properties. 

KNN starts computing distances between pre-classified 

entries and every item already in its memory. Cosine similarity (Like the instance mentioned in 6.1) is 

one of the options used to calculate these distances. It then picks the k closest data points, where k 

refers to the lowest distance data points. Figure 7.1 shows an elementary depiction of how different 

k’s affect classification outcomes. A majority voting algorithm is used on the k-nearest data points, 

each voting for their class, and the highest number of classification votes for that data point defines 

the class. Choosing the k is challenging and is often decided arbitrarily or through an optimizing 

algorithm. If the k is small, it is subject to outliers and noise. If it is too large other categories start 

outvoting the categories by their frequency. In increasing k slowly, the downside of a small and a 

large k can be avoided.  

7.1.3 Naïve Bayes Models 
Naïve Bayes is a probability-based model. It sees much use in applications with vast feature sets and 

is especially well-suited towards natural language processing problems. There are multiple types of 

Naïve Bayes, dealing with different distributions, catering to different types of data and algorithms. 

Though there are many different decisions to be made when using Naïve Bayes, at its base the 

Figure 7.1 Depiction of K-Nearest Neighbor. When deciding 
whether the green circle will be a red triangle or a blue 
square, the majority voting will lead to different results for 
the solid circle and the dotted circles. With a low k, the circle 
will classify as a red triangle. With a higher k, it will classify 
as a blue square. Figure created by Ajan (2007) 
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probability of an object being a particular class is used. Every variable generates its probability of 

defining the object for a given classification (Parsian, 2015). SPAM filters, for instance, use the 

frequency of a word with its probability of defining an email as SPAM.  

  Using Naïve Bayes assumes that all features are mutually independent, even when this 

assumption does not hold. It is also not sensitive to irrelevant features. These two features define the 

Naïve. Despite these downsides, its effectiveness and applicability on complex problems remain high. 

It works well with little training data and does not need the algorithm to relearn old data when new 

data is added. In the rare circumstance that conditional independence is present, it needs fewer 

computation resources than many other applications to finish its runtime. If an immediate answer is 

necessary, odds are Naïve Bayes is present in the architecture. Unfortunately, its predicting capacity is 

lacking compared to alternative techniques.  

7.1.4 Artificial Neural Network 
Artificial Neural Networks (ANN), or just Neural Networks for 

short, is an algorithm that is heavily inspired by the human 

brain (Du & Swamy, 2020). ANNs are a collection of 

connected basic processing units called (artificial) neurons. 

These neurons transmit signals towards other surrounding 

neurons like their human counterparts. These received signals 

then generate an outputting signal. Signals have different 

weights, meaning each signal does not impact each output to a 

similar level. Figure 7.2 contains a visual representation of an 

ANN. There are three main layers: The input layer(1) is where 

the variables enter the ANN. The hidden layer(2) takes these 

inputs and transforms them into the results for outputs and the 

output layer(3) that produces a prediction from hidden layers. 

There is only one hidden layer in the figure, but many networks 

contain multiple.  

   ANNs have a strong advantage in their ability to derive 

meanings from large complex datasets. They do not assume 

that the data is linearly distributed and can handle non-linear distributions. They can process data with 

complex interactions and relationships too hard for traditional methods. ANNs are fault-tolerant, and 

they can handle imprecise, fuzzy, incomplete, and missing information in datasets. They can use real-

world data to predict as-of-yet unknown outcomes through generalization. One of their strongest 

aspects is the capability to approximate most-to-all multivariate functions. 

ANNs also suffer from their limitations. First, the training of ANNs is time-consuming as a lot of the 

training is trial and error. Second, The complexity of the model scales with the number of hidden 

layers so that the features of the data can be captured, increasing the time and resources necessary to 

train the ANN. Third, overfitting can be a problem. Fourth, the model will perform poorly when the 

training data does not represent future cases. Finally, it is hard to determine how ANNs end up with 

their outcomes, with complex ANNs functioning as black boxes. Blackbox results reduce 

accountability and trust due to their opaque nature (Lancashire et al., 2008).  

 

 

7.1.5 Support Vector Machines 
Support Vector Machines (SVM) or kernel machines are supervised learning models used for binary 

classification and regression analysis. Just like Neural Networks, they can approximate most 

multivariate functions. SVMs were developed to handle highly complex, dimensional, and sparse data 

(Kecman, 2005). They attempt to find a hyperplane that separates d-dimensional data. For easy non-

complex problems, the SVM would generate a linear line that passes through the data. However, for 

non-linear solutions, it uses kernel-induced feature space, which casts the data into a higher dimension 

where classification is possible. Casting data in higher dimensions is often done by multiplying the 

Figure 7.2 Outline of a simple Artificial 
Neural Network. Image by Glosser(2013) 
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data by itself, which would lead to different problems for many other algorithms. This would result in 

overfitting for many algorithms, but SVMs only use the dot-product of the feature space. The 

dimensionality of the matters little when it is not dealt with directly (Boswell, 2002). 

    There, however, are some challenges when using SVMs. Because the data is transformed to a 

higher dimension, there is no probabilistic description when classifying new data. As a result, the 

outcomes are harder to explain and visualize. This difficulty also extends to adjusting the SVM, which 

is more complicated than other algorithms in this chapter. In addition, increasing the dimensionality 

of data increases the memory necessary to compute. As a rule of thumb, dataset memory storage 

requirements for SVMs scales quadratically with the number of data entries. The necessary RAM 

makes SVMs unsuitable for large datasets in normal circumstances. Normal SVMs also have 

difficulties dealing with noise in the dataset. Though tools have been developed to deal with this 

noise, these tools require dealing with much more complex optimization problems (Biggio et al., 

2011).  

7.2 Dataset Overview  
The following Table 7.1 contains a small overview of the used variables in this study, the section 

following it will go into finer details on their construction and origins.  

Variable Description 

Control The independent variable in this study. Binary 

classifier states whether it is submitted (0) or 

was added as control (1). It originates from the 

work of Bekkers et al., (2020). 

Application Authority 

(Appln_Authority) 

Binary classifier for the granting authority of 

patent. Two authorities were used in this paper, 

EPO(0) and USPTO(1). Originates from 

PATSTAT Global 2020 v5.15 Spring Edition. 

International Phase (Int_Phase) Binary classifier stating whether the patent is in 

the international phase. No (0) or Yes (1). 

Originates from PATSTAT Global 2020 v5.15 

Spring Edition. 

Regional Phase (Reg_Phase) Binary classifier stating whether the patent is in 

the Regional phase. No (0) or Yes (1). 

Originates from PATSTAT Global 2020 v5.15 

Spring Edition. 

National Phase (Nat_Phase) Binary classifier stating whether the patent is in 

the National phase. No (0) or Yes (1). 

Originates from PATSTAT Global 2020 v5.15 

Spring Edition. 

DOCDB Family Size* 

(Docdb_family_size) 

Size of the reported DOCDB family size. 

Originates from PATSTAT Global 2020 v5.15 

Spring Edition. 

Number of DOCDB family citations * 

(Nb_citing_docdb) 

Number of citations citing docdb family. 

Originates from PATSTAT Global 2020 v5.15 

Spring Edition. 

Number of Applications* 

(Nb_applicants) 

Number of applicants listed on the patent. 

Originates from PATSTAT Global 2020 v5.15 

Spring Edition. 

Number of Inventors* 

(Nb_inventors) 

Number of inventors listed on the patent. 

Originates from PATSTAT Global 2020 v5.15 

Spring Edition. 

Number of IPC-Codes* 

(IPC4) 

Number of IPC codes applicable to patent. A 

compound variable created from PATSTAT 

Global 2020 v5.15 Spring Edition. Only the 
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largest IPC categories were considered (E.g. the 

first two letters).  
Table 7.1 List of used variables in this study. *Indicates whether the variable was normalized from 0 to 1 to increase 

interpretation power. 

All patents in the list were granted. These patents did contain a minor number of duplicate 

DOCDB family patents. They were removed from the dataset, preventing the algorithm from fitting 

on duplicates. The original 93016 patents were reduced to 81404 patents, a reduction of 13%. This list 

of patents contained significantly more control patents. Control patents made up 81% of the patent 

list. The algorithm would likely generalize all patents as control patents unless the given variables can 

provide a significantly higher accuracy, which was confirmed to be the case after some 

experimentation. The classification size stopped dominating the algorithm's predictive power when 

80% of all control patents were randomly removed from the dataset. The new distribution of patents is 

comparable where 53% is declared to 47% control patents.  

The variables appended with a * were normalized. Normalizing input variables for neural 

networks is standard practice. Sola & Sevilla (1997) noticed that normalizing the used variables in 

their complex neural network had two effects. It led to a significant reduction in estimation errors(I) 

and made the computing time of the network faster to an order of magnitude (II). Whether these 

statements apply to the simple neural network in this study is unknown, but these observations have at 

least made it “Good Practice” to normalize variables before inserting them into neural networks. From 

the different types of normalization, the choice was made to use min-max scaling. The values of the 

variables are bounded from 0 to 1 by the scaler from their normal range.  

 

7.2.2 Dataset details & Retrieval 
  

The variables originate from two different datasets. The first dataset was generously made available 

by the authors of “Landscape Study of Potentially Essential Patents Disclosed to ETSI.” Bekkers, 

Raiteri, Martinelli & Tur (2020). Their list of declared and control patents are from the ETSI IPR 

disclosure database of 2019V2.26.2 issued in November 2019. The second database is the PATSTAT 

Global 2020 v5.15 Spring Edition database from which all other variables were retrieved or derived. 

The distributions and peculiarities of these variables are discussed in more detail in appendix A. 

 The declared and controlled patent list is also contained on the relevant Patstat patent entry. 

This list was usable directly, though imbalanced in favor of the control patents. The other variables 

had to be extracted from the Patstat(2020) database through trans-act SQL by first matching the 

entries with the Control variable list and then extracting it from the rest of the dataset. This process 

was relatively simple for almost every variable mentioned in Table 7.1. The only exception was the 

number of IPC-codes, which needed to count the number of listed IPC-codes per patent before the 

total was extracted from the database. These databases are located on the resident Tue TIS group 

terminal REX.  

 

7.2.3 Classifier Choice: Neural Networks 

The most applicable algorithm regarding flexibility, suitability, and my own programming experience 

is neural networks. Decision trees offer much potential, mainly when used in ensembles like Random 

Forest. Pruning and recognizing overfitting requires technical experience I do not have. K-Nearest 

Neighbors and Support Vector Machines offer potential, but both suffer from difficulties with large 

datasets. Though the used dataset described in sections 7.1 and 7.2 is not very large, there would be a 

cap on the growth potential of the proof of concept. Naïve Bayes assumes independent variables, 

which is ill-suited for patent data. Patent variables are various proxies for different forms of patent 
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value, with two of the main concerns being technical merit and economic value. The technical merit 

and economic value of a patent are sometimes correlated to the same metrics (Jaffe & de Rassenfosse, 

2017), the assumption of mutually independent function likely will not hold for Naïve Bayes. From 

the limited choices presented in 7.1, a neural network is the only one that fits the variables, has 

potential scalability towards more variables and data entries, does not require high setup costs, and fits 

my experience. Hence, from 7.3 onwards, the chosen algorithm is a neural network.  

7.3 Designing the Experiment: Neural Network for Predictive Analytics in 

Screening 
  From the previous choices; Neural networks were chosen considering the size of the dataset, 

the intention of using the predictive analytics AI for screening SEPs, and its simplicity in execution. 

There is a number of aspects to consider when creating a neural network. As partially discussed in 

7.2.4, the number of neurons in a layer, the neurons' activation function, the number of layers, and 

which type of layer. Other considerations include the loss function, which the optimizer attempts to 

minimize, and which metric is central in the optimization. For neural networks, it is common to copy 

attributes from similar literature. Unfortunately, outside of the commercial literature (IpLytics, 2021) 

(Pohlmann & IpLytics, 2021) and discussing predictive analytics in the context of essentiality (Lim, 

2019), no other papers were found which attempted to predict essentiality similarly. This lack of 

literature meant many decisions had to be made by trial and error. 

7.3.1 The Experiment 
The to-be-tested concept of using a neural network for predictive analytics requires some boundaries. 

The experiment aims to develop a neural network with a screening function on the independent 

variable of choice. As seen from the dataset description, the data used to predict are declared patents – 

not patents established to be essential. Unfortunately, no such data was openly available, shifting the 

focus from relevant screening results to proof-of-concept screening algorithm. The desired outcome of 

the experimental neural network should be an optimized ratio of False Positive to True Positive 

predicted patents. False-positive patents are declared patents but predicted to be control patents, and 

True Positives are correctly predicted control patents. The minimal number of declared patents to the 

most control patents.  

  Based on the variables in the dataset, the neural network will train on the training dataset with 

the defined specification from 7.3.7. This neural network will test its accuracy on the validation data 

to check for overfitting and generalizable capability. A confusion matrix that lists the different types 

of outcomes from a prediction algorithm will be employed to make comparisons, combined with a 

ROC curve and AUC, which describe model performance at different thresholds. After that, the ratio 

optimization will occur by iterating the ratio at different thresholds and registering the optimal point 

found in the data. The resulting confusion matrix at that threshold numerically describes the models' 

theoretical performance as a screening mechanism. The result from this matrix can evaluate the NN.  

7.3.2 Neural Network: Layers 
In designing a neural network, it is necessary to decide how many layers the network will have. The 

number of layers is often chosen on the probability to converge the loss function – or the training 

speed resulting from the data. Establishing the number of layers requires experimentation to see how 

fast the training goes combined with accuracy increases from differing the number of layers. It is 

common to take similar numbers of layers to similar literature. Unfortunately, no similar literature 

was found, so the number of hidden layers was determined through experimentation within the limits 

of the available computational resources. One train of thought is that more complex forms of data 

(Such as text data) are better classified through more neurons (Complex processing) contained in the 

hidden layers. As said before in chapter 3.2.4 on Deep Learning, it is not uncommon to have more 

than 100 layers for complex datasets. Bigger is not always better. The computational speed and cost 

are also relevant alongside the increased prediction ability. Doc2Vec proves that a 2-layer neural 
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network can compete with many-layered deep networks. The increase in computational cost is rarely 

linear to the increase in accuracy. After some experimentation, three total layers appeared to produce 

consistent predictions. One input layer, one hidden layers, and one output layer. All added layers were 

dense layers that are useful for almost all types of purposes (Goodfellow et al., 2016b), other types 

like dropout layers which reduce overfitting (Srivastava et al., 2014) or more specialized layers like 

convolutional layers for higher-dimensional data (Goodfellow et al., 2016a) did not seem to add 

anything of substance to the model.  

7.3.3 Neural Network: Neurons 
As mentioned before, Neural Networks use 

Neurons to compute relationships between 

different variables. The number of neurons 

in each layer and the activation function are 

also typically chosen through previous 

literature. The exact number of neurons in 

the starting layer is 16, with the intent of 

creating further layers that can be halved in 

each subsequential layer. This number was 

random, but it seemed essential to have the 

number of neurons higher than the initial 

starting variables. Optimization algorithms 

of the number of neurons exist, but this 

remains trial and experience. It is also 

required to choose an activation function 

which “activates” the neuron when it 

receives values. There are multiple 

activation functions, but two different 

functions suit the data and our stated goal. 

The input and hidden layers use one of the 

most common activation functions; the 

ReLU or Rectified Linear Unit function is 

visible in Figure 7.3. The benefit of this 

activation function is that it is almost linear. 

The ReLU does compute any exponentials or divisions, making it fast and cheap to run (Zeiler et al., 

2013). ReLUs sometimes suffer from a unique problem. Their relevant neurons can “die” and get 

stuck on a zero value (Lu et al., 2020). After observation, the network did not contain any dead ReLu 

functions. The other activation function is the Sigmoid Activation function exclusively used in the 

final layer. Figure 7.4 shows the shape of a sigmoid activation function, and the result is between 0 

and 1 in an S-Shape. This function is in line with the binary outcome of the Neural Network, where 

sigmoid activation functions tend to be the standard output layer choice (Zhang et al., 2021).  

7.3.4 Neural Network: Loss Function 
To determine the performance of the NN it is necessary to represent the difference between the 

outcome algorithm with the reality of the dataset. This representation method is called the “loss 

function” of the neural network. Different methods exist depending on the desired outcomes. There 

are two main types of loss functions; Regression Loss Functions and Classification Loss Functions. 

Our independent variable is intended for classification and has a binary result. Several loss functions 

categorize binary outcomes, but the main one used in conjunction with neural networks is named 

Cross-Entropy Loss or specifically Binary Cross-Entropy loss (Zafar et al., 2018). Other popular loss 

functions are hinge loss and squared hinge loss, but these are for Support Vector Machines. Due to its 

Figure 7.3 The shape of a RElU activation function. For X=0 Y is also 0. For 
X>=0 Y is equal to X 

Figure 7.4 The shape of a Sigmoid Activation function. The result of the 
function is bounded between 0 and 1.  
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relevance towards the NNs outcome and its everyday usage for binary results, Binary Cross-Entropy 

is the chosen loss function of the neural network.  

7.3.5 Neural Network: Optimizer 
Another algorithm attempts to minimize the loss by giving feedback to the loss function. These 

algorithms are named “optimizers,” attempting to achieve the optimal loss function. Multiple standard 

optimizers see widespread use, the most common ones considered are Stochastic Gradient Descent 

(SDG), Root Mean Squared Propagation (RMSProp), Adaptive Gradient Algorithm (Adagrad), and 

Adaptive Moment Estimation (Adam). SDG is often used for its speed but lacks accuracy. Adagrad is 

best used with sparse features, and RMSProp is used to deal with noise in the data. Adam has 

combined the properties of Adagrad and RMSProp for a very accurate optimizer. Adam is often the 

optimizer that can find the most accurate global minima for the loss function, though it should be 

noted that much of the optimizers’ capabilities are dependent on tuning different parameters of the 

optimizer. As Adam offers the most accurate results for the dataset, it is the optimizer of choice for 

the loss function.  

7.3.6 Neural Network: Metrics 
Several metrics evaluate neural network performance. The default choice of optimization is prediction 

Accuracy. Other choices include optimizing for different types of accuracy, probabilistic metrics like 

the Poisson metric, or classification metrics based on True/False & Positives/Negatives. As it is the 

default choice, accuracy remained the metric that measures the success of the Neural Network. 

Furthermore, it is easy to interpret and use further in other analyses.  

7.3.7 Neural Network: Model Overview  

 

Figure 7.5 Depiction of the Neural Network used for the experiment. There are ten input variables, while only nine are listed 

in the dataset. One additional variable was set to 1 and did not influence the neural network. This figure was generated with 

the ANN_Visualizer by Shah0150. 
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The above Figure 7.5 provides an overview of the neural network and the neurons. Table 7.2 provides 

a tabular overview of the choices and specifications in the network discussed in more detail in the 

above paragraphs. 

Name: Specification 

Input layer Activation Function: ReLU 

Neurons: 16 

Hidden layer 1  Activation Function: ReLU 

Neurons: 8 

Output layer Activation Function: Sigmoid 

Neurons: 1 

Loss Function Binary Cross-Entropy 

Optimizer Adam 

Metric Accuracy 
Table 7.2 Overview of the Neural network specification discussed in the previous sections. 

 

7.3.8 Neural Network Evaluation: Confusion Matrix 
The standard confusion matrix in Table 7.3 is another evaluation metric. This evaluation was limited 

to post-training, only assessing the resulting NN. This matrix gives a deeper insight into the prediction 

outcomes by dividing what was predicted accurately by what was not. For SDOs in the essentiality 

assessing process, the number of False Positives would have to be minimum. The secondary goal is to 

reduce the number of non-essential patents from the standard, representing the True Positives. The 

Control variable only serves as a stand-in for a more meritorious future independent variable. 

 

Confusion Matrix Predicted 

Negative Positive 

Actual Negative True Negative False Positive 

Positive False Negative True Positive 
Table 7.3 Depiction of a standard confusion matrix. The horizontal is the actual listing versus the vertical prediction result. 

  

7.3.9 Screening Optimization Method 
In order to optimize the threshold for screening, the ratio of False Positives(FP) to True Positives(TP) 

determined the best threshold T. The minimal number of FPs to the maximum number of TPs. This 

threshold represents the dividing point at which the predicted score of the network falls to negative or 

positive. The threshold started at the base T=0.5 or 50% for the dividing line. With an increase of 

0.01, every value between 0.50 and 0.90 generated a new confusion matrix with a new FP-to-TP ratio. 

The T with the best ratio is extracted from this process. The optimal T then generated the final 

confusion matrix for evaluation.  

7.3.10 Code Libraries Selection and the usage  
Several Python libraries offer neural network functionality. Some are for specific types of NNs and 

offer specific functionalities for these NNs. The following libraries were used to create, analyze, 

manage, and depict the neural network and its results. Keras was used to create the neural network, 

and it was created by Chollet & Others (2015). Sci-kit Learn was used to analyze neural network 

results and manipulate parts of the data created by Pedregosa et al., 2011. NumPy was used to 

generate variable statistics (Harris et al., 2020). Pandas was used to manage the dataset created by The 

pandas development team( 2020). Matplotlib, created by Hunter (2007), was used to generate the 

figures for the variables, the figures for neural networks, and depictions of the neural network results. 
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8. Experiment Results: A screening predictive analytics neural 

network 
This chapter describes the experiment's results formulated in the previous chapter through several pre-

defined metrics. Chapter 7 formulated the different methods that a predictive analytics AI could use 

and described and defined the neural network used in the analysis. The performance of the 

classification algorithm is described in terms of accuracy and different prediction rates. A Receiver 

Operator Characteristics (ROC) curve is employed, which visualizes the relationship between the 

True Positives and the False Positive Ratio for different classification thresholds. For screening with 

SEPs specifically, the ratio between False Positives and True Positives is essential. Section 8.3 

specifies the minimalization of this ratio. Finally, a small conclusion on the results is followed by a 

more thorough review in chapter 9.  

8.1 Neural Network Runtime Results 
After running the Neural Network defined in chapter 7, this section describes the results. The 

following figure, 8.1, shows the networks’ loss function development over the epochs. The loss 

function converged within the first 20 epochs, which is rapid but not strange for simple datasets. 

 

Figure 8.1 The development of the Loss function and the accuracy throughout the Neural Networks Epoch. Further details 

on the neural network are found in chapter 7.3. The neural network converged rapidly within the first 20 epochs. There is 

some variation as the algorithm attempts to leave any local optimums, but no other – better optimums seem to converge.  

Upon running its last epoch, the NN had an accuracy of 68.8% on the training set and 68.3% 

on the test set. Similar scores appeared for other randomness seeds. The NN appears to generalize the 

data with at least 68% accuracy. It is not incredibly accurate, but given the simplistic use of data and 

the rudimentary NN, this is a significantly better score than 50% randomness. Due to the slightly 

uneven data distribution, a model predicting only declared patents would reach 53% accuracy at most. 

These findings imply that the difference here represents relevance, leading to companies declaring 

essential patents.  
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8.1.1 Classification Results: Confusion Matrix 
The different categories indicated in the Experiment Design (7.3) are present in the confusion matrix. 

The threshold set for classifying in this matrix is 50%, predictions below 50% are classified as 

declared, and above are classified as control. The trained NN seems to be slightly better at 

recognizing Declared Patents than Control Patents. The number of True Negative predictions is 

significantly higher than the number of True positives. The false positives outnumber the false 

negatives by 9.4%. However, when accounting for the imbalance in patents, the error rate on control 

patents is less than 1% worse.  

TRAINING SET 

RESULT MATRIX 

PREDICTED  

DECLARED (0) 

PREDICTED  

CONTROL (1) 

ERROR RATE 

DECLARED (0) True Negatives: 7810  False Positive: 3444 30.6% 

CONTROL (1) False Negative: 3147 True Positives: 6873 31.4% 

CORRECT CLASS% 71.2% 66.6%  
Table 8.1 The confusion matrix of the training dataset resulting from the Neural Network. The Error Rate and Correct 

Classification expound on different performance qualities of the Neural Network. 

 

8.1.2 Classification results: Describing prediction results 
The results of the prediction are visible in figure 8.2. These predictions show a trend towards their 

correct classification, with most predictions falling into the correct categories. Correct classification is 

in line with the determined accuracy. The frequency of the predicted control patents forms a peak in 

the first 75% of the distribution. The declared patents seem to take the shape of plateaus below 50%, 

even in its false-positive predictions. 

The declared patents distribute more 

evenly in their predictions than the 

control patents. The training and 

validation data results have similar 

shapes, implying that the results do 

generalize on similar datasets.  

Figure 8.2 The distribution of predicted 

probabilities for patents which are declared 

(Blue) or control (Orange) for the training data 

(Top graphs) and the validation data (Bottom 

Graphs). The distributions between train and test 

data are similar, showing similar accuracy 

results for the algorithm predictions.  
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8.2 Receiver Operator Characteristics curve and Area Under Curve 
The following figure 8.3 describes the results 

of the neural network's performance in a 

Receiver Operator Characteristics Curve. 

The roc curve plots the probability of 

detecting True Positives and False Positives 

for a range of cut-off points (Hosmer, 2000). 

The x-axis lists the False Positive Rate, the 

FP/(FP+TN), and the y-axis represents the 

True positive rate which is TP/(TP+FN).  

The most common ROC curve metric is the 

Area Under Curve (AUC), computed for 

training and validation data. The AUC 

measures a model’s ability to discriminate 

between instances that experience the subject 

of interest and those that do not. In our case, 

the AUC measures whether the patent is a 

control patent or a false positive declared 

patent. An AUC score of 0.5 implies 

randomness in results, and an AUC of 1.0 implies perfect predictions. As a general rule, if an AUC is 

between 0.7 and 0.8, it is considered acceptable discrimination (Bosmer, 2000). Higher AUCs 

represent better discrimination capability, but with an AUC of 0.76, the model’s discrimination 

capabilities are acceptable.   

Figure 8.3 The ROC curve with the Blue curve for Training data, and the 
Green curve for the validation data. It plots the False Positive Rate vs the 
True Positive rate.  The red dotted line represents the cut-off threshold 
for randomness at 50%. 

 



53 
 

 

8.3 Optimizing the algorithm 

for screening 
When using this algorithm as a 

screening device for essentiality, the 

network predicts with a classification 

threshold different from the standard 

50% prediction value. The previous 

ROC curve already visualizes this 

principle. Following the predictions' 

distribution, optimizing this threshold 

for the False Positive and True Positive 

ratio is possible. This ratio considers 

excluding the least FPs for the most 

TPs. For SDO screening purposes, 

false negatives align with the SDOs 

mission of inclusion. These are already 

present in the current standards without 

other exclusion mechanisms. 

Therefore, there is no loss with their re-

inclusion, only gains with their 

potential exclusion. Figure 8.4a shows 

a plot of this threshold about the ratio 

of FP and TPs. The optimal ratio is at a 

threshold T of 86%. When compared to 

figure 8.4b, T is close to an 

equilibrium. Table 8.2 shows the 

confusion matrixes of the 86% 

threshold. The ratios of False Positives 

to True positives are 6.6% and 9.2% 

for the Training set and Validation set, 

respectively. 93.4% and 90.8% of the 

remaining predicted control patents 

from the dataset are control patents. With the total number of patents present, only 0.67% and 0.8% of 

the total dataset predict control variables at the optimal ratio.  

Dataset CONTROL status Predicted  

Declared (0) 

Predicted  

Control (1) 

Train Declared (0) 11245 9  

 Control (1) 9885 135 

Validation Declared (0) 3747 5 

 Control (1) 3288 52 
Table 8.2 Describing the confusion matrix of the data after the ratio optimization for both Train and Validation dataset.  

 

 

 

Figure 8.4 A: the top figure shows the ratio of False Positives / True Positives 
(Y-axis) vs different threshold (X-axis). B: The bottom figure shows the 
development of the number of True Positives (Blue), False Negatives (Orange), 
True negatives (Green) and False Positives (Red) vs different classification 
thresholds. 
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8.4 Experiment Conclusions 
Within the confines of testing the potential of predictive analytics and its predictive power in 

screening patents, this experiment with the neural network shows potential in implementing an 

algorithm as a screening algorithm in the context of assessing essentiality. The number of wrongly 

predicted disclosed SEPs reduces by setting different classification thresholds, maximizing the non-

essential disclosed patents. Furthermore, this number can be adjusted to reflect different capacities or 

goals, such as optimizing the effort to cost ratio. Depending on the implementing specifics of a 

screening algorithm, an algorithm like the one demonstrated in this section could be a valuable 

addition to systemic essentiality assessments.  
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9. Reflection and Discussion of results, methods, and findings 
This chapter seeks to discuss and critique the method and contents of this thesis. First, the results of 

the previous chapter are assessed. Then, from discussing the outcomes, a reflection of how the neural 

network was built offers points of consideration in up-and downsides to the methods used.  

  From 9.2, the literature search method and results are discussed in order. This section starts 

with discussing the literature search described in chapter 2, followed by a discussion of the contents of 

chapters 4, 5, and 6. The final paragraph, 9.4, investigates further research recommendations based on 

missing knowledge. The next chapter, the final chapter, summarizes this thesis's results. 

9.1 Discussion on Experiment Outcomes 
The resulting screening mechanism from chapter 8 left us with an acceptable ratio of False Positive to 

True Positives. These patents, however, were likely to contain some predictive outliers due to the 

scaling mechanism. Though the screening mechanism functions differently through these outliers, 

non-disclosed outliers strongly predict non-disclosed patents. The goal of a screening algorithm 

initially aligns with the screening of outliers. These outliers obstruct further progress only when the 

intent is to go beyond superficial screening. 

   One of the most important outcomes of this experiment was the ease through which this 

screening functioned once the relevant decisions for the network were made. The training of the 

network, optimizing parameters, and transforming data took some thought and required research into 

the specifics of the dataset and functioning of NNs. However, creating the neural network and 

screening mechanisms was relatively easy. Most of the existing code libraries delivered acceptable 

results. The coding infrastructure needed for creating, analyzing, and visualizing the journey of 

creating AI is already in place. Creating a predictive AI is relatively simple in concept, though it 

requires an expert to fine-tune and optimize. The existing network might already see usage in 

establishing high-probability targets for (non)-essentiality, but improvements are possible. 

  While I expect a more permanent screening fixture to be conceived through more informed 

decisions and experimentation, I predict that screening potential similarly exists for essentiality once 

the relevant datasets come into existence. As to what form this screening potential will eventually 

take, I am uncertain. Nevertheless, in some form for assessing essentiality, AI seems like it could be 

implemented soon. However, much of the institutional infrastructure still needs to be created. The 

consent and acknowledgment of the stakeholders are likely pivotal in implementing any form of AI.  

9.1.1 Downsides of data manipulation and the weaknesses of the used 

variables 
The scaling used to normalize the variables was a simple min-max scaling. Alternative types of 

scaling might have been more appropriate for dealing with outliers. Using a robust scaler that removes 

the median and scales the data to quantile ranges instead of min-max improves the algorithm's 

accuracy by 1-2%. However, these scaling reduced the performance of the optimization performed in 

8.3. The resulting optimization results from reducing the effects of these outliers dispersed the false 

positive to true positives ratio into a weaker screening device. In addition, the neural network results 

were less polarized, which provided a worse outcome for screening purposes. These findings imply 

that outliers have strong predictive power in determining a small number of non-declared patents. 

This small number initially provides a small set of patents to focus removal efforts on but will limit 

the algorithms' predicting capacity by overfitting on outliers.  

The control variable does not represent essentiality and does not directly function for systemic 

essentiality assessment. The declared patents themselves include false positives. The standards that 

the EC wishes to investigate natively include non-essential patents. There are differences between 

declared and undeclared patents. Declared patents are valuable and should be potentially (or likely) 

essential towards the standard, but the attribute of being declared itself increases the patent value. 

Unfortunately, this distorts the claim that “essential patents are more valuable than non-essential 
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patents.” While that statement is likely to remain valid, it reduces the predictive power of portfolio 

value for essentiality. Alternative variables that are accessible but are excluded from this study 

include the number of claims, the total page count of the patent, or the country of origin of the 

application. Certain variables like the inventor or company names are often significant in their 

inclusion (Bekkers et al., 2020). Though including them in the study might be counterproductive. 

Including these names could mean that an assessment independent from the submitters' identity is not 

attainable. Though fast-tracking companies that mostly submit SEPs above a certain ratio could 

contribute to creating a more efficient process, this is a trade-off SDOs could make in creating an 

institutional assessment process.  

Many starting points and variables of implementing systemic AI assessments function as a 

chicken-and-egg story. To define (non)essentiality, you need to understand predictors, but to define 

the predictors, you need to understand (non)essentiality. Researchers make an effort to make assessing 

essentiality accessible through data. However, many of the issues we currently perceive regarding the 

assessment process are describable as “growing pains” until there are mature industry standards and 

sizable descriptive datasets. Following the recommendations from Bekkers, Henkel, et al. (2020) to 

start creating databases in which essentiality is transparent, accessible, and explorable is a good step 

forward. 

9.1.2 Neural Network Limitations 
Unfortunately, choosing the number of layers and neurons occurred through trial-and-error. A more 

thorough decision process is possible but was not achievable in the given timeframe of this thesis. 

Notably, a robust analysis comparing the results of different layers and neurons would improve the 

design process. The output layer used a Sigmoid function to produce predictions bounded between 0 

to 1. Some scholars, however, state that the tanH activation function is almost always better than 

sigmoid activation functions (Jurafski & Martin, 2021) due to the increased bandwidth from -1 to 1. 

Due to the binary outcome of the prediction results, limiting the bounding to the sigmoid function 

made the further analysis more manageable.  

  The loss function optimizer “Adam” was the best performing optimizer. This optimizer itself 

was not optimized and instead was used “out-of-the-box.” Optimizing the optimizer can improve 

results found by the network and should be considered in future trained networks (Choi et al., 2019). 

The amount of data used for this neural network was also limited, making Adam an efficient 

optimizer. New experiments may choose to include many more patents. In that case, it could warrant a 

reconsideration of a different, faster optimizer.  

9.1.3 Discussion on the Optimization 

The optimization threshold chosen in the result section considers the ratio between FP and TPs. This 

threshold makes sense as a theoretical optimum of effort to cost trade-off, though it does not consider 

any further efforts. Two adjacent ideas color some of the as-of-yet blank canvas. The first idea is non-

binding AI assessments. In a non-binding situation, implementors need to consider the challenges of 

further efforts. For instance, obligatory manual assessments in appeals would prove costly for 

whoever pays the assessment price. But, as Bekkers, Henkel et al., 2020 state, other parties might be 

willing to fund assessments. This cost does not have to define the process, though it very well might. 

If the capacity of manual assessments for the SDO is different from the non-essential predictions, it 

might be better to select a threshold based on the appeals capacity. In that case, the maximum number 

of patents is assessed, corresponding to the combined total of the TP and FP predictions.  
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9.2 Method: Literature Search 
The literature search originates from literature in a dynamic and active field, and keeping up with the 

developments of AI is challenging. This search is only a snapshot of a part of the field at the time of 

writing. The defined “Snowball” method did serve to find some of the relevant literature for the 

literature review. Only a few sources started the literature search, and they were mostly from 

researchers citing a limited number of other researchers. The number of academically invested people 

in researching AI and Standardization practices is low, limiting the number of networks that could 

have been prevalent in this thesis. 

  Other academic and business works improved the identification of use-cases and possible 

implementations. In these use-cases, the implementation and stakeholder acceptance is purely 

theoretical. Envisioning a scenario where “AI will play some role in determining essentiality” enables 

the imagination to have many different outcomes. From these many outcomes, a small selection had 

to be made that seemed feasible with some pre-existing application that can be (re)purposed into 

something with potential. Unfortunately, many potential applications remain unconsidered in this 

process due to (1) a lack of detail of the assessing process and the relative importance of each step 

taken, and (2) a lack of understanding regarding the technical difficulties of a given AI 

implementation.  

9.3 Literature Discussion 
This section discusses the usage of the found literature in each of the chapters. Starting with thoughts 

on the literature used, noting any potential missing knowledge. The following sections discussed are 

Chapter 3, Chapter 4, Chapter 5, and chapter 6.  

9.3.1 Essentiality literature discussion 

Several important points have not had the space to be discussed. The language used in granted patents 

differs significantly between patent offices, legal firms, or per technical field. The relevant legal 

system discussed in chapter 4 tended to rely heavily on the US patent system and only a bit on the 

European system. The differences interpreting essentiality from these legal systems could depend on 

national moral values and the difference between Common and Civil law. Outside of that, there are 

other recognized patent languages of which the legal systems and culture differ from the US or 

European patent regimes. Though most SDOs limit themselves to one working language, English, and 

SDOs like ETSI note that drafters should give more weight to the technical content than presentation. 

Note that ISO/IEC rules for drafting international standards (ISO, 2021) should also be treated as 

ETSI drafting rules(EDR) (ETSI, 2021a). A brief stint on the JPOs’ Hantei-E aside, most other patent 

regimes and their interpretation of essentiality remain unmentioned. Different patent regimes can have 

different outcomes for standards on a national level. 

A more thorough exploration into other patent regimes found in South America, Africa, Asia, 

or Oceania would be necessary to consider the global concept of essentiality. But its functionality for 

a continental standard would be limited. The European and US concepts dominating the English 

literature are logical from a proximity perspective, and they are limited in describing global IPR 

events. The discussion in this thesis is also limited to only two SDOs. Like this, the comparison is 

kept simple with deeper content. The comparison is limited to some SDO differences; more complete 

works indicating these differences include Bekkers & Updegrove (2012) and Contreras (2017). Due to 

the lack of literature studying how essentiality assessments occur (which might also be due to a lack 

of assessments in general), contemporary practices discussed are only at an institutional level. 

Discussing assessments in the context of the assessor might have offered more decisive insights into 

which parts of the process are the most important in determining essentiality. 
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  9.3.2 Artificial Intelligence Literature 

The AI concepts discussed in this chapter are were limited to the most popular broad types of 

algorithms. When discussing their capabilities, the information was often not fully complete, as the 

applicability of different algorithms is incredibly diverse and new – more advanced applications 

appear often. Furthermore, different fields often foray and branch into different and new fields, 

making the separation between different AI implementations sometimes difficult or purely semantic-

or historical.  

  The background of the AI algorithms given in chapter 4 was rudimentary. The simple 

conceptualization was intentional, as discussing these technologies in a complete basic form often 

requires textbooks to fit all the necessary knowledge. Though the primitive nature of the discussion 

sometimes lacked a technical basis, the conceptual basis was the most necessary in seeking to 

understand the potential for assessing essentiality. The approach of “These are most discussed AI 

applications in patents” has value as the discussed applications are contemporary, though this broad 

approach led to many non-relevant AI being included in the discussion. Nonetheless, this broad look 

might help other writers identify novel opportunities in orienting themselves in AI.  

9.3.3 Discussion of identified opportunities 

The chapter regarding the use-cases had some prior knowledge based on already existing applications 

in the literature but based on the previous chapter of AI and combining that with essentiality, some 

existing ideas codify into more agreeable and, more importantly, disagreeable forms. Unfortunately, 

specific use-cases of the manual assessment process were not possible due to the lack of existing 

written methodology or industry standards regarding the assessment process. As a result, the 

identified use-cases were broad in their description, without mentioning any particular attitudes or 

impacts.  

 

9.3.4 Discussion of opportunities and AI 

The combination of use-cases with some of the identified AI leads to conceptualizing in general terms 

and technical terms. The general terms attempted to describe what implementations would look like, 

whereas the technical section described some of the technical considerations in broad terms. Even 

with naming specific technical algorithms, many details that play significant parts in determining the 

success of these algorithms are absent from the chapter. This exclusion is partly due to a lack of 

centralized literature in implementing algorithms for our desired ends but is also endemic to the act of 

conceptualizing and defining novel implementations. Even the proof-of-concept in Chapter 7 only 

designs one implementation to completion. Discussing the implementations resembles the plan of 

approach created for predictive analytics with fewer specifics. Even though some applications were 

without the deeper technical explanation, some of the present concepts are potentially interesting to 

use in essentiality assessments. The lack of the technical description of these concepts is due to the 

range of potential options required to make them work. Due to that, these concepts seemed to either 

be non-functional or too different from an easily implementable AI concept. For example, the 

artificial swarm concept seemed to have potential, mainly if this work comes from willing participants 

– like legal teams/engineers who participate in the standard formation process.  

  While an attempt is made to mention any applications that could improve the manual 

assessment process, the lack of documentation led to general implementations, providing convenience 

but lacking the detail required to describe these ideas' potential fully. This lack undoubtedly implies 

that further novel opportunities exist for AI implementations that can improve efficiency and accuracy 

or make the assessing work easier or more accessible.  
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9.4 Future research recommendations  
One significant obstacle in writing this research was the lack of codified manual assessment 

knowledge. Understanding how the assessors work – why they make the decisions they make during 

the process and how this leads to their outcomes- is critical in understanding manual (human) 

essentiality assessment and could be instrumental in replicating this feat in AI. However, until a 

qualitative description of assessment processes is done, attempting to replicate manual assessment 

will remain superficial. Whether manual assessment should be replicated is a critical question to 

consider. From a systems standpoint, codifying manual assessment is another step toward systemic AI 

assessment. Of particular note is creating a standardized process of assessment, where outcomes of 

essentiality assessments would become more comparable by following the same standardized process. 

A qualitative look at working assessment processes followed by thorough process optimization is one 

future avenue to explore in generating AI-compatible information.  

  Bekkers, Henkel, et al. (2020) discussed AI implementation with assessors and stakeholders, 

and they seemed susceptible to the idea. However, AI as a concept is nebulous and encompasses 

many different executions. Bengel(2020) researched stakeholder acceptance and its different factors 

that might play a role in accepting AI in institutional processes. Stakeholder acceptance of concrete 

systemic AI implementations might differ from the warm reception of having AI involved in the 

process. When AI becomes tangible and sometimes detrimental to stakeholder interests (like personal 

portfolio value), AI becomes a less attractive prospect than initially envisioned. As such, it would be 

prudent to investigate stakeholder attitudes on specific use-cases paired with AI technology like those 

conceptualized in chapter 6 to see if the established carrying capacity of AI changes. The framing of 

the examples would need to be more detailed in its potential outcomes to make interview results more 

tangible. Tangible attitude outcomes could contribute to understanding potential system failures and 

their solutions.  

Future research attempts with neural networks predicting essentiality could add new variables to 

increase the prediction accuracy or threshold ratio. Some variables like the number of claims have 

been mentioned. Other options include other descriptors of patent value like economic patent value, 

historical legal events, a more granular IPC-code analysis, or company R&D expenditure. Existing 

literature attempts to empirically link different variables to essentiality, and these efforts can be 

absorbed into AI research. The opportunities for further exploration exist and could play a role in 

instituting a relevant assessment AI.  

  In attempting to create an algorithm that could predict whether the patent was declared or not, 

other potential algorithms might deserve more extensive observation. For instance, some identified 

options could include combining predictive analytics with semantic similarity scores. Unfortunately, 

ensembles were ignored due to their broad scope but offered much potential for assessment-related 

usage. 
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10. Conclusion  
This research aimed to identify opportunities for implementing AI in the essentiality assessment 

process for technical standards. This chapter concludes the study by summarizing its main findings by 

discussing key findings for the research questions, the experiment, and the value of their contribution. 

Finally, the limitations of this study are discussed alongside future research recommendations.  

 

  This study aimed to investigate the concept of essentiality in Standard Essential Patents, the 

current Artificial Intelligence trends, and how these might be combined for essentiality assessments 

for technical standards. First, the literature review considered definitions of essentiality from previous 

literature, indicating that there can be tangible differences between Standard-Developing 

Organizations and how they define essentiality. Artificial Intelligence trends vary in scope and usage, 

though most rely on Machine Learning, specifically deep learning. The codification of AI's potential 

roles in essentiality assessments identified three ways this can occur. A screening role(1) identifying 

the most obvious non-essential patents, different methods of assisting in manual essential essentiality 

assessment (2), and fully automatic essentiality assessments (3). Through combining AI trends with 

these three identified roles, two potential AI implementations were assessed to have the potential for 

the proof of concept AI implementation. These implementations were semantic AI and Predictive 

Analytics algorithms, where the predictive analytics AI for screening purposes was chosen for the 

experiment. From the options available for predictive analytics algorithms, the neural network aligned 

most with the requirements of the results, data, and available expertise. The results of the trained 

neural network offered insights into the design decisions of these algorithms and showed that AI has 

significant potential in a screening function. 

 The created neural network serves as one proof of concept in using AI for (systemic) 

essentiality assessments. It intends to be a step towards the scientific and practical exploration of AI's 

different opportunities. Though using predictive analytics in the context of essentiality has been 

discussed in other literature, the created neural network is likely one of the first of its kind. The 

implementation of the network was simple and can easily be used with already proposed algorithms 

like that of Semantic Similarity. The network's predictive potential aligns with existing AI visions in 

systemic essentiality assessments for technical standards. While the network proposed here is simple, 

it might already be helpful in manual assessment and screening contexts through establishing high 

priority targets. 

   

  The limitations of the trained neural network stem strongly from the constraints of the 

independent variable. First, no database of established essential patents was available, forcing the 

substitution of declared patents. As declared patents themselves include non-essential patents, the 

predicting essentiality is very limited. One of the key reasons for choosing neural networks was the 

experience with the technique. Other potential algorithms might have served our purpose to a similar 

extent. Finally, time, computing, and experience restraints prevented the foray into semantic similarity 

algorithms and ensembles. Both seem to offer much potential and should continue to be considered in 

future research.  

  

  The essentiality of patents for technical standards is a relative concept with commonalities 

between stakeholders. Using Artificial Intelligence in determining essentiality shows significant 

potential in multiple ways. There are different roles AI could play in determining essentiality. A 

proof-of-concept Neural Network for predictive analytics was made to demonstrate one of the 

potential AI for one of these roles. The predictive power present in the network showed the potential 

AI might have in a screening function when determining essentiality. Further research is necessary for 

the practical implementation of AI in essentiality assessments, but AI could prove to be a functional 

addition.   
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Appendix A: Detailed Dataset Description 
The following section contains more detailed variable descriptions of each of the used variables  

Control 
Bekkers, Raiteri, Martinelli & Tur (2020) obtained the list of declared and control patents in their 

research “Landscape Study of Potentially Essential Patents Disclosed to ETSI.” The authors aim to 

analyze SDO disclosed patents' landscape and discover any differences between the disclosed patents 

and similar non-disclosed patents. This study was done in the context of the European Commission's 

call to increase the transparency of SEPs, where the authors also played a significant role in the 

Bekkers, Henkel, et al. (2020) project. They retrieved this list of patents from the ETSI IPR disclosure 

database of 2019V2.26.2 issued in November. The distribution is visible in table A.1. 

This dataset intended to observe differences between declared and undeclared patents. The control 

patents had to be similar to the declared patents. The quality of patents refers to the patents' technical 

merit and economic value. Legal quality as the likelihood of a patent surviving a legal challenge was 

mentioned but had no further presence in the analysis. The patents originated from the EPO and 

USPTO to avoid institutional differences. USPTO patents tend to, for instance, receive more citations 

(Bekkers et al., 2020).  

The control set was built by matching the declared patents on the relevant patent office, filing year, 

and the IPC main group. The EPO lists IPC codes alphabetically, matching the most recurrent IPC-

code. In order to control for application procedure differences, they further controlled whether there 

was Patent Convention Treaty(PCT) applications of the patent. Finally, they made sure none of the 

control patents were part of the same INPADOC patent family. 

 DECLARED UNDECLARED 

TRAINING SET 11254  10020 

VALIDATION SET 3752  3340 
Table A.1 The distribution of the Control Variable. The number of declared and undeclared (Control) patents in the training 

and validation set dataset.  

Application Authority 
Application Authority states which patent office was responsible for processing the patent application. 

The distribution is visible in table A.2. It should be noted that this is a different variable from the 

country of origin. This study considered only patents processed by the European Patent Office (EPO) 

and the United States Patent Office (USPTO). This decision was made due to the independent 

variable Control, as the patent list was created with only these two instances in mind. There are 

significant differences between the EPO and USPTO themselves as well. The application authority 

was included to account for these differences. This variable was extracted from the PATSTAT Global 

2020 v5.15 Spring Edition database. The training set has an imbalance in favor of the USPTO patents, 

which aligns with Bekkers et al., (2020) description of their data. This imbalance was removed in the 

validation set 

 EPO USPTO 

TRAINING SET 4922  16352 

VALIDATION SET 3752 3340 
Table A.2 The distribution of the EPO and USPTO patents over the training – and validation set.  
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International, Regional, and National Phase 
The international phase variable indicates whether the patent in question has been in an international 

phase in its document history. The distribution is visible in table A.3. This variable is intended to 

describe the patent's route to end up at the relevant authority. This variable was made by noticing the 

presence of international documents or assessing whether the application was an international one 

(Kracker,2016). The Regional Phase variable similarly notes whether the patent is- or has been in a 

regional phase. 

Furthermore, the National Phase checks whether the patent has been in a national phase. These 

variables were extracted from PATSTAT Global 2020 v5.15 Spring Edition. The regional and 

national phases are each-others exact opposites, suggesting a patent either goes through the regional 

or national phases.  

 INTERNATIONAL 

PHASE 

REGIONAL PHASE NATIONAL PHASE 

 No Yes No Yes No Yes 

TRAINING 

SET 

11838 9436 16352 

 

4922 4922 16352 

VALIDATION 

SET 

3986 3106 5445 1647 1647 5445 

Table A.3 The occurrence of patents have been in the International, Regional- and National Phase over the training and 

validation set.  

 

DOCDB Family Size  
Different patents can cover the same subject 

material. When two or more patents define the 

same prior applications as priorities, the EPO 

defines them as belonging to the same 

DOCDB family data. DOCDB is the patent 

enumeration used in the worldwide EPO 

documentation database. DOCDB family 

members most often refer to the same 

invention. The family size refers to the number 

of patents present under the same DOCDB id-

number. Patents with a family size of one have 

their own unique DOCDB id-number. 

International patent family size like DOCDB is 

seen as a particularly valuable predictor. 

(Harhoff, 2003). This variable was extracted 

from the PATSTAT Global 2020 v5.15 Spring 

Edition database. 

 As seen in Table A.4 and Figure A.1, 

the bulk of the patent families present in the 

set is small. However, there are some 

significant outliers present that pull the Mean 

higher. In this case, the presence of these 

outliers is informative (As larger families are 

more likely to be meritorious). Therefore, to 

reduce the influence of these outliers, this 

variable was normalized.  

 

Figure A.1 The distribution of DOCDB family size for the Train and 
Validation set. There are further outliers which are not depicted in the 
upper images, instead a range from 0 to 30 is visible to see the shape of 
most of the data.  
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 MEAN MEDIAN  ST. DEV. MIN MAX 

TRAINING 

SET 

7.75 6 9.23 1 427 

VALIDATION 

SET 

7.61 6 7.6 1 123 

Table A.4 Statistic of the DOCDB family size set within both Training and Validation set. 

 

Number of DOCDB Family Citations 
This number refers to the number of distinct 

DOCDB families citing one or more of the 

publications in the relevant DOCDB family. The 

number of citations received by a given DOCDB 

family indicates technological relevance and 

economic value. This variable was extracted from 

the PATSTAT Global 2020 v5.15 Spring Edition 

database. The distribution is shown in figure A.2 

and table A.5. 

 The majority of the listed patents’ DOCDB 

families have under 30 citations per family.  

 

 

 

 

 

 MEAN MEDIAN  ST. DEV. MIN MAX 

TRAINING 

SET 

27.66 15 42.74 0 1455 

VALIDATION 

SET 

28.97 15 47.60 0 1136 

Table A.5 Statistics of the DOCDB family citations of the training and validation set.  

 

  

Figure A.2 The distribution of the number of DOCDB family citations 
of the training set and the validation set. The bounds were limited 
to show the shape of most the data better. Table 8.6 lists the range 
of which to consider outliers with.  
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Number of Inventors Listed 
The numbers of inventors are listed on the application with Latin letters for names. However, the 

initial reaction to the number of listed inventors is that 

they probably represent larger R&D teams associated 

with value. The distribution is shown in figure A.3 and 

table A.6. Though research indicates the opposite, 

larger numbers of listed inventors negatively affect 

patent value, suggesting that larger R&D teams 

produce more – but less valuable patents (Og et 

al.,2020). This variable was extracted from the 

PATSTAT Global 2020 v5.15 Spring Edition database 

 

 

 MEAN MEDIAN  ST. DEV. MIN MAX 

TRAINING 

SET 

2.89 3 1.72 1 21 

VALIDATION 

SET 

2.90 3 1.75 1 19 

Table A.6 Statistic on the number of inventors listed in the Training and Validation set.  

  

Figure A.3 The distribution of the number of inventors 
listed on the patents in the dataset for both the training 
and validation set. The image has been bounded to show 
the largest amount of the data in more detail. Table 8.7 
lists the range of which to consider outliers with.   
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Number of Applicants  
This variable lists the number of applicants listed on 

the application with Latin-lettered names. Some 

applicants, in this case, had no Latin letters for 

names, instead opting to use other writing systems. 

This statistic is relevant when discussing 

collaborative patents between different parties. The 

distribution is shown in figure A.4 and table A.7. 

When multiple parties collaborate on technology, 

the technology has to be worth the expended effort. 

Therefore, the number of applicants in those cases 

seems to be a proxy for technical merit. However, 

Kerr & Kerr (2018) note that global collaborative 

patents perform similarly to those exclusively 

developed by US-based teams with similar 

companies. They state that collaborative patenting is 

a strategy for a US company to enter countries with 

weaker patenting regimes. This variable was 

extracted from the PATSTAT Global 2020 v5.15 

Spring Edition database. In order to deal with 

outliers, this variable was normalized.  

 

 

 

 MEAN MEDIAN  ST. DEV. MIN MAX 

TRAINING 

SET 

2.38 1 1.92 0 22 

VALIDATION 

SET 

2.40 1 1.95 0 19 

Table A.7 Statistic on the number of applicants in the training and validation set.  

 

  

Figure A.4 Distribution of the number of listed applicants on the 
patents of the training and validation dataset. This data was 
bounded to show most of the entries, the range is available in 
table A.7. 
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Number of listed IPC-Codes 
This variable lists the number of IPC codes listed 

for a relevant patent. The distribution is shown in 

figure A.5 and table A.8. This number only refers 

to the second-largest classification category of 

IPC, the first four numbers of all listed IPC-

codes of the patent. By combining the numbers 

in this form, any additional information about the 

main IPC class or IPC class relevance from 

USPTO patents has unfortunately removed the 

dataset. Bekkers et al. (2020) note that most of 

these relevant patents are governed by the H04 

IPC class covering Electrical communication 

techniques, which makes sense considering the 

declared patents originate from ETSI.  

  Lerner (1994) used IPC codes as proxies 

for the scope of the patent. He observed that 

larger scopes of patents have a strong positive 

impact on evaluating firm value. Therefore, he 

implied that the number of IPC-codes present is a 

proxy for the economic value of a given patent. 

This variable was created from the PATSTAT 

Global 2020 v5.15 Spring Edition database.  

 MEAN MEDIAN  ST. DEV. MIN MAX 

TRAINING 

SET 

2.00 2 1.05 1 30 

VALIDATION 

SET 

2.017 2 1.02 1 12 

Table A.8 The statistics describing the number of ipc-codes listed on patents in the training and validation set.  

 

Figure A.5 The distribution of the number of IPC-codes (4 
digits) listed on the patent in both the training and 
validation set. These figures are bounded to show the 
distribution of most patents. The range is shown in table 
A.8 


