
 Eindhoven University of Technology

MASTER

Model Repository as a Service in a Model Analytics Workflow

Zioual, Anass

Award date:
2021

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/b3379cde-e4b5-4196-bed0-88cc1b13a1ab

Department of Mathematics and Computer Science
Software Engineering and Technology

Model Repository as a Service in a Model
Analytics Workflow

Master Thesis

Anass Zioual

Supervisors:
Prof. Dr. Mark van den Brand

Dr. Önder Babur
MSc. Mahdi Saeedi Nikoo

16-6-2021

Abstract
This thesis defines an architecture for a Model Analytics Automation System (MAAS)

along with an implementation of a running prototype. MAAS is a piece of software running
on top of the Arrowhead Framework as a set of several systems whose purpose are to
collaborate to provide automation tasks in the model analytics workflow of researchers.
The main functions of MAAS are to collect process models from software repositories
through repository mining, validate collected process models against their metamodel,
provide filtering options on their metadata, and offer operations to transform models to
a target format. The presented architecture adopts the SOA-based local cloud concepts
of the Arrowhead Framework, providing several advantages. On the one hand, it adds
an abstraction layer enabling MAAS to be extended with additional services to automate
additional steps in the model analytics workflow. On the other hand, the architecture
permitted flexibility by incorporating several software design patterns. Hence, software
engineers can easily extend the core services with additional services.

We evaluated MAAS through a case study taking a single-case, holistic-design. First,
a group of researchers having a background in the Arrowhead Framework and model
management and analytics used MAAS to collect and prepare a number of process models
for analytics. Next, they were asked to fill in a modified Technology Acceptance Model
(mTAM) questionnaire. Then, the participants were interviewed. Lastly, we conducted a
benchmark comparing the manual approach with the automated approach using MAAS.
We found that using MAAS significantly reduces the effort it takes to prepare models for
analytics. Future studies recommend incorporating the Arrowhead choreographer system
into MAAS and designing and implementing a distributed crawler, allowing horizontal
scaling for increased workloads.

i

Acknowledgments
First and foremost, I would like to thank Dr. Önder Babur for his excellent guidance

and support. He has been of tremendous value providing good feedback and innovating
solutions for the problems we were trying to solve. I would also like to extend my grat-
itude to Mahdi Saeedi Nikoo for sharing his expertise and knowledge in the Arrowhead
Framework throughout the project. I would further like to thank Prof. Dr. Mark van den
Brand for his valuable feedback and supervising this thesis. Our discussions and meetings
made this thesis possible.

Second, I would like to express my gratitude to Weslley Torres, who helped me structure
the evaluation and gave helpful insights throughout the project. I am also grateful to Wan-
Yi Tang for his valuable critique. And I would also like to thank the Arrowhead Framework
team for their support and for building the Framework, which allowed me to work on this
project.

Lastly, I would like to thank my mother and family for their continuous support and
always being there for me.

This research is supported by ECSEL, the Electronic Components and Systems for European Leader-
ship Joint Undertaking under grant agreement No 826452 (Arrowhead Tools project), supported by the
European Union Horizon 2020 research and innovation programme and by the member states.

iii

Contents

Abstract i

List of Figures vii

List of Tables ix

List of Abbreviations x

1 Introduction 1
1.1 Motivation . 1
1.2 Project Scope and Constraints . 2
1.3 Structure of the Thesis . 3

2 Background and Terminology 4
2.1 Data Analytics . 4

2.1.1 Model Analytics . 5
2.2 Business Process Modeling Languages . 6

2.2.1 BPMN: Business Process Model and Notation 6
2.2.2 EPC: Event-driven Process Chain 7

2.3 Arrowhead Framework . 7
2.3.1 Service Oriented Architecture . 8
2.3.2 Systems and Devices . 8
2.3.3 System of Systems . 8
2.3.4 Local Cloud . 9
2.3.5 Core Systems . 9

3 Research Design 11
3.1 Research Design Overview . 11
3.2 Research Objective and Questions . 12

4 Review of Related Work 15
4.1 Model Repositories . 15
4.2 APROMORE: Advanced Process Model Repository 20

4.2.1 Architecture . 20

v

4.2.2 Canonical Process Format . 21
4.3 Software Repository Mining . 22
4.4 Transforming Models . 24

4.4.1 Direct Transformation . 25
4.4.2 Indirect Transformation . 26

4.5 Conclusion . 26

5 Overview of the System 27
5.1 Goals and Requirements . 27
5.2 The Model Analytics Automation System 28

5.2.1 Architecture Overview . 29
5.3 Arrowhead Framework . 30

6 System Implementation 31
6.1 The Repository Management Layer . 31

6.1.1 The Repository Model Miner . 31
6.1.2 Filtering Models . 35
6.1.3 Validating Models . 37
6.1.4 Transforming Models . 37

6.2 The Storage Layer . 38
6.2.1 Elasticsearch . 39
6.2.2 Models and Metadata . 39

6.3 The Presentation Layer . 40
6.3.1 Implementation . 40

7 Evaluation 45
7.1 Methodology . 45

7.1.1 The Case Study . 45
7.1.2 Threats to Validity . 47

7.2 Evaluation Results . 48
7.2.1 Quantitative Results . 48
7.2.2 Qualitative Results . 48

7.3 Discussion . 49

8 Conclusion and Future Work 51
8.1 Conclusion . 51
8.2 Recommendations for Future Work . 53

A Case Study Documents 54
A.1 Questionnaire . 54
A.2 List of Interview Questions . 55

B Case Study Results 56
B.1 Questionnaire Results . 56
B.2 Interview Results . 57

B.2.1 Interview Results: Participant A . 57
B.2.2 Interview Results: Participant B . 65
B.2.3 Interview Results: Participant C . 74

Bibliography 85

vi

List of Figures

2.1 CRISP-DM data analysis reference model [38]. 4
2.2 Overview of the UML collection and analysis process [19]. 5
2.3 Basic elements of BPMN [39]. 6
2.4 The core elements of EPC [25]. 7
2.5 Service exchange between provider and consumer in SOA. 8
2.6 A simple example of a local cloud [7]. 9

3.1 The engineering and design cycle phases. 12
3.2 Template for design problems [53]. 12

4.1 Architecture of the APROMORE process model repository [31]. 20
4.2 Common language constructs in CPF [31]. 22
4.3 Overview of the BPMN mining process [21]. 23
4.4 Architecture of GHS [9]. 24
4.5 Direct transformation from core EPC to BPMN [49] 25
4.6 Example of indirect transformation. 26

5.1 Simplified schema of the Model Analytics Automation System (MAAS)
architecture. 28

5.2 Overview of MAAS with the ability to plug and extend services. 28
5.3 Details of MAAS’s architecture. 29
5.4 An overview of the systems and packages of MAAS running on a Arrowhead

local cloud. The arrows represent a uses relationship. Moreover, the API
Commons package represents the components that are part of MAAS, and
shared by the various subsystems within MAAS. 30

6.1 Architecture overview of the repository miner depicting the two methods of
crawling. 32

6.2 Class diagram of the model crawling service. 35
6.3 Class diagram of the filtering service. 36
6.4 Class diagram of the validation services. 37
6.5 Class diagram of the transformation service. 38
6.6 RDBMS concepts translated to Elasticsearch. 39
6.7 Conceptional schema of the storage layer. 40

vii

6.8 Screenshot of the GUI’s model filterer. 42
6.9 Screenshot of the GUI’s models list page. 43
6.10 Example of an application domain consisting of a set of related tags. 44

7.1 An overview of the identified categories after the card sorting session. Num-
bers in parentheses represent: number of participants/number of statements. 49

viii

List of Tables

3.1 The engineering cycle phases applied in this research project. 14

4.1 A comparison of technologies employing model repositories 19

7.1 Comparison between the two methods of collecting/preparing process models. 48

B.1 The results of the questionnaire. 57

ix

List of Abbreviations

API Application Programming Interface
BPM Business Process Management
BPMN Business Process Model Notation
CPF Canonical Process Format
CRUD Create, Read, Update, and Delete
DBMS Database Management System
EPC Event-driven Process Chain
EPML EPC Markup Language
GUI Graphical User Interface
MAAS Model Analytics Automation System
MDE Model-Driven Engineering
OMG Object Management Group
REST Representation State Transfer
SaaS Software-as-a-Service
SOA Service-Oriented Architecture
SoS System of Systems
SQL Structured Query Language
SUS System Usability Scale
SysML The Systems Modeling Language
TAM Technology Acceptance Model
mTAM modified TAM
NPS Net Promoter Score
PU Perceived Usefulness
PEU Perceived Ease-of-Use
UML Unified Modeling Language
URL Uniform Resource Locator
YAWL Yet Another Workflow Language
XMI XML Metadata Interchange
XML Extensible Markup Language
XSD XML Schema Definition

x

CHAPTER 1

Introduction

In this chapter, an introduction to the topic that motivates this thesis is given in Section
1.1. Afterwards, a definition of the problem scope is provided in Section 1.2, followed by
the structure of the thesis in Section 1.3.

1.1 Motivation
Data analytics is an increasingly important tool for large organizations. Data analytics
refers to the discovery, interpretation, and communication of meaningful patterns in data
[47] (e.g., text, video, audio, etc.). It comprises the processes, tools, and techniques to
examine data with the goal of gaining useful information. Creating business value from
data is at an all-time high, and contemporary organizations are embedding analytics to
transform information into insight in order to attain enterprise operational efficiency [33].

With model analytics, models used in various domains, such as in the engineering
and business domains, are taken as input in the analytical process in order to improve
the decision-making process of organizations [47]. Models are a simplified representation
of specific parts of the considered domain. They leave out details irrelevant to a given
set of criteria while preserving properties of interest concerning a set of requirements.
In the engineering domain, models can relate to the intermediate artifacts used in order
to realize a system. While in the business domain, models (also referred to as business
process models) describe a set of activities achieving a common goal. Models can be
specified by various modeling languages. A modeling language is an artificial language
used to represent knowledge or information about a domain. They are defined in terms
of their metamodels, which state how models are defined, and the rules and constraints
their models must conform to. Examples of two widely used modeling languages are the
Business Process Model Notation (BPMN) and the Unified Modeling Language (UML).

Similar to data analytics, the general model analytics workflow consists of collecting,
preparing, and finally analyzing models and related modeling artifacts. Collection and
preparation of large amounts of data for analysis are typical in many domains, such as
mining biological data for bioinformatics [42], and mining software repositories for source
code [56]. In particular, mining repositories for software artifacts has increased in a steady

1

Chapter 1. Introduction

trend throughout the last years. On the one hand, currently available data mining tech-
niques and tools have made it possible to retrieve large volumes of data from a rich and
heterogeneous spectrum of domains. On the other hand, platforms such as GitHub, Bit-
Bucket, and GitLab which provide a large source of this data, have been increasing in
popularity and usage [21].

Analyzing large volumes of modeling artifacts have been one of the main focuses in
the research field. Several efforts have been initiated to mine public repositories for UML
and BPMN models [21, 19]. Further steps have been initiated to store and manage large
sets of models, and related artifacts [6, 31, 18]. However, there is a common lack of re-
search in tools that unify the model collection and preparation techniques with today’s
model storage and management techniques. Moreover, there is limited research in au-
tomating the steps in model analytics. All issues above hinder researchers in performing
empirical research in their respective areas. This thesis aims to address this issue by intro-
ducing an architecture and implementation of the Model Analytics Automation System
(MAAS) running in the Arrowhead Framework as a set of collaborating systems, providing
model storage and retrieval capabilities as well as an automatic approach in collecting and
preparing models for analysis.

1.2 Project Scope and Constraints
The model analytics workflow encompasses various steps (see Section 2.1), ranging from
collecting modeling artifacts, by leveraging techniques such as repository mining, to the
actual analysis of the artifacts. Designing a system that completely automates the model
analytics workflow is challenging and a time-consuming task. Considering the limitations
of the master’s thesis, it would not be possible to automate the analytical process of
researchers completely. Therefore, it is necessary to select parts of the workflow in terms
of their uniqueness as specific services provided by MAAS. Furthermore, the services
should be useful to the stakeholders (researchers) of MAAS. This was discussed with the
main stakeholder, and based on his proposal, four core services/components were selected:

• Repository Mining. A repository miner component used to mine software repos-
itories such as GitHub for potential process models (e.g. BPMN and EPML).

• Filtering and Validation. The component provides services to filter process mod-
els on their metadata, and the ability to validate process models.

• Model-to-Model Transformation. The transformation of a process model from
a source language to a target language. In particular, BPMN to EPML and the
other way around.

• Model Storage. The ability to store and retrieve process models and related
metadata.

This thesis will focus on the four selected services and will derive an architecture of
the involved components. These components will be designed according to the findings
presented in Chapter 4. Moreover, the architecture must be generic and extensible, sup-
porting the automation of additional steps in the model analytical workflow of researchers
by extending the system with additional services.

An external constraint imposed by the stakeholders on MAAS’s architecture is that it
has to run in the Arrowhead Framework as a system or systems. The framework provides

2

Chapter 1. Introduction

fundamental functionality to efficiently support development, deployment, and operation
of inter-connected, cooperative systems based on the Service-Oriented Architecture (SOA)
[50]. The framework is further elaborated in Section 2.3.

1.3 Structure of the Thesis
The thesis is structured as follows:

• Chapter 2 gives a detailed overview of the concepts regarding model management
and analytics as well as an introduction to the Architecture of the Arrowhead Frame-
work.

• Chapter 3 describes the research design of this project and the steps to be under-
taken throughout its execution.

• Chapter 4 reviews related work available in the context of model repositories,
repository mining, and model transformation.

• Chapter 5 describes the goals, requirements, and the architecture of the model
analytics automation system. First, we present the goals of the system. Next, an
overview of the architecture is given. The overview includes some of the important
components of the model analytics automation system.

• Chapter 6 covers the implementation of the model analytics automation system
based on the ideas discussed in the previous chapter. The construction of the imple-
mentation includes the design and implementation of the various subsystems that
form the complete model analytics automation system.

• Chapter 7 summarizes the evaluation of the initial prototype version of MAAS.
First, the evaluation methodology is presented. Next, the evaluation results are
given. Finally, a discussion and a summary of the evaluation is presented.

• Chapter 8 concludes the thesis with a summary of the conclusions extracted from
the research results. Furthermore, the chapter includes some notes about the future
work.

3

CHAPTER 2

Background and Terminology

In this chapter, background information on model analytics and the Arrowhead Framework
is provided and the terminology related to these areas. First, an introduction of data and
model analytics is given in Section 2.1. The main components of the BPMN and EPC
modeling languages are presented in Section 2.2. Lastly, the chapter concludes with a brief
introduction to the Arrowhead Framework, including its architecture and main concepts
in Section 2.3.

2.1 Data Analytics
Data analytics is the process of discovering, interpreting, and communicating meaningful
patterns in data [47]. It comprises a broad selection of processes, tools, and techniques to
examine data in order to gain useful information to improve the decision-making process
of businesses.

Figure 2.1: CRISP-DM data analysis reference model [38].

4

Chapter 2. Background and Terminology

Figure 2.1 illustrates the CRISP-DM [38] data analysis model, which is a well known
data analytics methodology used in a wide range of research domains. Data collection can
be defined as: “the process of gathering and measuring information on variables of interest,
which enables one to answer research questions, test hypotheses, and evaluate outcomes”
[37]. One of the initial phases in the process is Data understanding. Throughout this
phase, data is collected from various sources. The data understanding phase proceeds
with the activities to get an initial understanding of the data. The phase is followed with
Data preparation, comprising the steps needed to construct the final dataset. The steps
include data cleaning, transformation, and selection of attributes and records required
for the analysis. Consequently, a model or a collection of models using several modeling
techniques are built to conduct the actual data analysis.

An example of a data analysis process is a team of researchers who want to per-
form relationship analysis between the different repositories on GitHub. Following the
CRISP-DM model illustrated in Figure 2.1, one of the initial steps is data understanding.
Researchers use a data collection technique, such as repository mining to collect raw data
from software repositories. After collecting raw data, researchers prepare the final dataset
through data cleaning, transformation, and feature selection to reduce the number of in-
put attributes. Lastly, various statistical analysis techniques like linear regression can be
used to build a model, which the researchers use to answer a set of research questions.

2.1.1 Model Analytics
As mentioned earlier, data analytics takes as source input data, such as text, audio, and
video. Model analytics on the other hand takes models as input with the goal to extract
useful information to improve the decision-making process of businesses. Model analytics
can therefore be seen as a specialization of data analytics, with a particular focus on
modeling artifacts [47]. Hence, the general activities found in data analytics, such as data
collection, preparation, modeling can be applied in model analytics.

Figure 2.2: Overview of the UML collection and analysis process [19].

Figure 2.2 depicts the process used in [19] to collect and prepare large sets of UML
models for analysis. As shown, the process consists of three general activities:

5

Chapter 2. Background and Terminology

1. Data collection. A repository miner is used to mine GitHub for potential UML
models.

2. Filtering and Validation. The collected models are validated if they contain UML
notation.

3. Data extraction and Analysis. The steps are undertaken to prepare the final dataset
in order to perform analysis.

In order to analyze models for useful information, we see that the general steps in
the data analytics workflow are indeed applicable in model analytics. However, existing
techniques more geared towards textual data, such as repository mining for source code,
might not be directly applicable in this context.

2.2 Business Process Modeling Languages
A process modeling language can be defined as: “A language providing appropriate syntax
and semantics to precisely specify business process requirements, in order to support
automated process verification, validation, simulation and process automation” [34]. The
aim of process modeling is to provide specifications independent from the implementation
of such specifications at a general, abstract level [34].

There are two predominant types of process modeling formalisms, namely graph-based
formalisms and rule-based formalisms [34]. Graph-based modeling languages leverage the
concepts in graph theory such as nodes and edges in order to define process models. On
the other hand, rule-based modeling languages are based on formal logic. In this thesis,
we will focus our attention on two widely used graph-based modeling languages, namely
BPMN and EPC.

2.2.1 BPMN: Business Process Model and Notation
Business Process Modeling Notation (BPMN) is a business process modeling methodology
developed by the Business Process Modeling Initiative (BPMI) [52] and has been revised
several times. The first version of the language (i.e. version 1.0) was released in 2003. At
the moment of writing, the most recent version of the language is BPMN 2.0, released in
2011. This version introduced some notable changes, such as a metamodel that defines
a set of rules and constructs required to create a particular BPMN process model and
an interchange format in both XMI and XSD [51]. Furthermore, the language has been
standardized by OMG [1] since version 1.1, released in 2008.

Figure 2.3: Basic elements of BPMN [39].

6

Chapter 2. Background and Terminology

Figure 2.3 illustrates the basic elements of BPMN. BPMN provides five basic constructs
for modeling, that is, Data Objects, Flow Objects, Association Objects, Swim Lanes, and
Artifacts [26]. Furthermore, users can extend the basic constructs by designing artifacts
composed of several basic elements. For instance, a sub-process that contains another pool
or lane [49].

2.2.2 EPC: Event-driven Process Chain
Event-driven Process Chain (EPC) is a business process modeling language. The main
language constructs of EPC are, Functions, Events, and Connectors [26]. Users can use the
main constructs to model a certain business process. However, compatible tools extend
the language with more elements, allowing the construction of more expressive business
process models. The language supports various interchange formats. The most notable
are the proprietary formats VDX and AML used by Visio and ARIS and the open-source
and tool-independent format EPML. In this thesis, we will focus on the EPML format.

Figure 2.4: The core elements of EPC [25].

2.3 Arrowhead Framework
The Arrowhead Framework provides an architecture addressing the capability of building
extensive Internet of Things (IoT) based systems built on the underlying principles of
Systems of Systems (SoS) with an emphasis on [11]:

• Real-time data handling for low latency communication within automation systems.

• Security on automation systems and data.

• Automation system engineering to improve production efficiency and flexibility.

• Scalability of automation systems to support larger automation systems.

At the moment of writing, the most recent version of the framework is 4.2.0, and the
project offers implementations of the framework in both the Java and C++ program-
ming languages. The Java implementation is based on the Spring-Boot Framework for
building RESTful web services [3]. Moreover, the Arrowhead Framework project provides
client skeleton code for numerous programming languages, including: Java, C++, Python,
NodeJS, and Kalix.

7

Chapter 2. Background and Terminology

2.3.1 Service Oriented Architecture
The Service-Oriented Architecture (SOA) refers to a software design style where a dis-
tributed application or system is primarily built as a composition of several distinct ser-
vices [45]. In the Arrowhead Framework, a service is utilized to exchange data between
a providing system and a consuming system. Furthermore, the Arrowhead Framework is
built around the principles of SOA [7]. This allows the framework to address the data
interchangeability concerns between the systems and devices. This concept is further il-
lustrated in Figure 2.5. (1) A service provider registers its services through the service
registry, (2) allowing a service consumer to discover and utilize the provided service.

Service Registry

Service Consumer Service Provider

Discovers

Calls

Registers

Figure 2.5: Service exchange between provider and consumer in SOA.

2.3.2 Systems and Devices
In the context of the Arrowhead Framework, a system is what is supposed to provide or
consume services [7]. Furthermore, a system can be both a provider of one or multiple
services and at the same time a consumer of one or multiple services. In the Arrowhead
Framework, there is a strong distinction between software-based systems and hardware-
based ones. To elaborate, a system is implemented as software running on hardware,
which is referred to as a device. Stated differently, a software application responsible for
providing or consuming services is called the system, whereas the hardware capable of
hosting such software application is called the device. Furthermore, a device is capable of
hosting multiple Arrowhead Framework systems.

2.3.3 System of Systems
A System of Systems (SoS) can be defined as [23]:

“large-scale integrated systems which are heterogeneous and independently operable
on their own but are networked together for a common goal”.

In the context of the Arrowhead Framework, an SoS consists of a set of systems,
which are governed by the core Arrowhead local cloud systems and collaborate to perform
a certain automation task [7]. Therefore, a local cloud is also an SoS in this context.
The collaboration can also be extended to multiple local clouds that exchange services
and information between each other, effectively providing a solution for more complex
automation tasks.

8

Chapter 2. Background and Terminology

2.3.4 Local Cloud
A local cloud can be viewed as a self-contained network, which may include systems and
devices to perform certain largely independent automation tasks. Each local cloud is
materialized by including the three mandatory Arrowhead core systems and at least one
application system. A key characteristic of the local cloud is security from inbound and
outbound network traffic from the open internet. A local cloud provides a boundary,
aiming to “protect” the interior of the local cloud comprising the systems and devices
from external network traffic [7].

In a local cloud, systems collaborate to perform a particular automation task. Com-
munication between devices within a local cloud is also referred to as intra-cloud com-
munication. A local cloud is mainly characterized as a set of systems that collaborate to
form one complex automation system. Therefore, a local cloud essentially becomes an SoS
[7]. Moreover, through inter-cloud communication, that is when two systems reside in two
different local clouds and exchange information, this also becomes an SoS.

Figure 2.6: A simple example of a local cloud [7].

2.3.5 Core Systems
In the Arrowhead local cloud, systems need to utilize several mandatory core Arrowhead
components before they can exchange services and data [7] among each other. In the case
of a service provider system, it needs to utilize the ServiceRegistry and Authorization core
systems. Whereas the service consumer system needs to utilize all three core systems.
The three core systems of a local cloud are:

• Authorization. The Authorization component enables the authentication and autho-
rization of services consumers given a set of rules. A service provider can determine
if a service consumer can use the provided service based on these rules.

• ServiceRegistry. The ServiceRegistry component aims to provide storage capabilities
for the currently active services registered to the local cloud. It also enables the
services to be discoverable for the service consumers.

• Orchestration. The Orchestration component aims to enable the re-use of existing
services to compose new services and functionality. Moreover, the component also

9

Chapter 2. Background and Terminology

aims to provide advanced service discovery by discovering and pairing the service
providers and consumers.

10

CHAPTER 3

Research Design

As we shall see Chapter 4 the problem we find in the state of the art is that all features
regarding model collection, preparation, and storage are scattered among different tools
and platforms. Furthermore, there is limited research in fully automating the analytical
workflow of researchers. Therefore, our aim is to design a tool that can unify these features
under one platform in order to automate the process of collecting and preparing models
for analytics. Hence, this chapter describes the methodology used to develop and evaluate
our work. First, an overview of the research design is provided in Section 3.1. Then, the
research objective and questions are presented, including how the research methodology
applies to this master thesis in Section 3.2.

3.1 Research Design Overview
This research project consists of a literature review and design research. The literature
review aims to identify the latest research in model management and analytics, whose
understanding will ultimately aid in designing an effective artifact supporting the model
analytics workflow. Throughout the course of this thesis, we have followed the research
design methodology as presented by Wieringa [53] which is aimed at conducting design
science in information systems and software engineering research. According to Wieringa,
design science comprises two activities that should be iterated: the design of an artifact
that should improve something for some stakeholders and investigate the effectiveness of
the designed artifact in a particular context. Hence, the goal of a design science project
is to (re)design an artifact in such a way that it contributes to the stakeholders’ desired
outcomes.

The design cycle as presented in [53] describes the general methodology in a design
science project and it comprises of the phases: problem investigation, treatment design,
and treatment validation. In addition to the design cycle, Wieringa presents a larger cycle
called the engineering cycle, which includes the steps of the design cycle and two additional
steps: treatment validation and implementation evaluation.

The phases in the design cycle, as well as the engineering cycle, are shown in Figure
3.1. The first three phases correspond to the design cycle, while the engineering cycle

11

Chapter 3. Research Design

encompasses all five phases. Depending on the outcomes of the validation or evaluation
phases, the cycle has to be iterated again until it produces the desired outcome.

Figure 3.1: The engineering and design cycle phases.

3.2 Research Objective and Questions
To formulate the research objective, the template for defining design problems, as shown
in Figure 3.2 was used. A design problem can be defined as: “a problem to (re)design an
artifact so that it better contributes to the achievement of some goal” [53].

Improve <a problem context>
by <(re)designing an artifact>
that satisfies <some requirements>
in order to <help stakeholders achieve some goals>

Figure 3.2: Template for design problems [53].

Using this template, the objective of this research project can be formulated as:

“Improve the workflow in model analytics by designing a system that satisfies the
requirement of running on the Arrowhead Framework in order to provide model analyt-
ics workflow automation”.

In order to design a treatment achieving the desired outcomes in the problem context, we
need to answer two knowledge questions:

12

Chapter 3. Research Design

First, an artifact enabling model management and model analytical workflow automa-
tion has to be designed. Moreover, the latest work in model repositories and model ana-
lytics has to be identified. Understanding these will aid in designing an effective treatment
for the problem context. The first research question is therefore defined as:

RQ 1: How can we develop or integrate a model analytics automation system in the
Arrowhead Framework?

The second research question aims at determining whether the designed artifact produces
the desired effects in the problem context. This includes the automation of the steps found
in the model analytics workflow and the usability and performance aspects of the system.
The second knowledge question is defined as follows:

RQ 2: How effective is the model analytics automation system in reducing the effort
it takes to prepare models for analytics?

To answer this knowledge question, we defined several sub-questions:

RQ 2.1: Can we reduce the time it takes to prepare models for analytics?

Model analytics and data analytics, in general, encompass various activities prior to the
actual analysis of data. For instance, data needs to be collected from multiple sources,
and often this data needs to be cleaned and transformed. This process can be tedious
and very time-consuming for researchers. The proposed system aims to streamline the
process of collecting and preparing models; it is therefore expected to reduce the effort
and time it takes to prepare models for analysis. We compare the performance of the
manual approach and the automated approach using the system. In particular the model
preparation time between the two approaches.

RQ 2.2: How easy is it to interact with the system?

The system’s primary aim is to reduce the effort it takes to collect and prepare models,
and therefore enhance the researcher’s job in empirical research. Therefore, it is important
to design and implement a simple and easy to learn user interface so that users can effec-
tively operate the system. With this question, we aim to measure the usability aspects of
the system. While usability is a broad term and difficult to quantify, we defined usability
more specifically following the TAM [32] model as described in Section 7.1.1.

The first research question is a combination of a knowledge question and a design problem
[53]. It aims at identifying recent work in model management and analytics whose under-
standing can be used to design a tool that achieves the desired goals of the stakeholders.
At the same time, the remaining research questions are knowledge questions that aim to
evaluate the designed artifact. The application of the engineering cycle phases to this
research project are shown in Table 3.1.

13

Chapter 3. Research Design

research focus method chapter
Problem investigation

State of the art Literature review 4

Treatment design

RQ 1: How can we develop or integrate a
model analytics automation system in the
Arrowhead Framework?

Literature review
Architecture design

4, 5

Treatment implementation

Prototype implementation Tool design 6

Evaluation

RQ 2.1: Can we reduce the time it takes to
prepare models for analytics?

Interview
Benchmark

7

RQ 2.2: How easy is it to interact with the
system?

Interview
Questionnaire

7

Table 3.1: The engineering cycle phases applied in this research project.

14

CHAPTER 4

Review of Related Work

This thesis aims to design and integrate a system that runs on top of the Arrowhead
Framework and enables the automatic execution of some of the steps in the model analytics
workflow. Hence, this chapter explores related literature that provide assistance in model
analytics. In particular, related work on the selected functionalities/services presented in
Section 1.2.

First, an analysis of current model repositories is conducted to know which features
they provide. We observe that they provide some form of automation to improve the
management of models. In particular, they provide model versioning, check-in/check-out,
collaborative modeling, model analytics, and extensibility. Furthermore, a comparison of
the model repositories is provided. After the review on model repositories, a more detailed
analysis of, in our opinion, the most relevant model repository is given: Apromore.

Second, collecting large numbers of models and preparing them for analysis are some
of the main steps in model analytics as well as a feature proposed by the main stakeholder
(see Section 1.2). Hence, a review of repository mining techniques will be conducted,
specifically, crawling and scraping software repositories for process models.

Lastly, an analysis of some model transformation techniques is given. We will see
that there are two methods for model transformation: direct transformation and indirect
transformation. We will focus our attention on two particular model transformations:
BPMN to EPML and the other way around.

4.1 Model Repositories
In recent years there have been several promising approaches regarding model repository
technology. The studies in [55, 15] present a survey of process model repositories that vary
in model management and persistence techniques. The study in [12] explores collaborative
model repositories and their related obstacles and challenges. The study in [40] presents a
survey of existing tools that employ model repositories as a service. This section reviews
existing model repository technology related to MDE and BPM.

ModelBus [20]: is an SOA-based framework that facilitates the integration of het-
erogeneous modeling tools. The framework aims to provide model awareness to Service-
Oriented Architectures. A prototype version was developed. However, it did not conform

15

Chapter 4. Review of Related Work

to some technical specifications. A new and revised version of ModelBus has been devel-
oped and is hosted as an open-source project. The tool provides web service interfaces that
can be extended by the application developer, allowing existing tools to be integrated into
the framework. Once the tool’s integration process is complete, the tool’s provided ser-
vices become available for other tools in the framework to consume. The tool employs an
interaction pattern, consisting of the modeling service, modeling consumer, and repository
components. The interaction pattern’s central component is a model repository, enabling
model sharing between the integrated tools of the framework. The framework comes with
a built-in model repository, providing functionalities for model versioning, partial check-
out, and merging of model versions and fragments. The consumer and service components
communicate with the repository through a skeleton and stub interface. The skeleton and
stub interfaces allow models to be transmitted by a reference instead of a model. It is
also possible for application developers to implement this interface to integrate a custom
model repository.

CDO - Connected Data Objects [48]: is a pure Java model repository. It is
designed to support both EMF models and metamodels. CDO offers some interesting
repository functionalities, including collaborative modeling, model scalability, and model
persistence with customizable database back-ends. CDO leverages the client-server archi-
tecture, supporting EMF-based client applications and providing model repositories on
the server. The repository component comprises two layers, a generic layer that enables
clients to interact with the repository and a database layer, allowing them to connect with
various databases, such as relational- or object databases. One of the main focuses of
the repository is to provide high scalability. This is achieved by employing lazy loading
accompanied by prefetching techniques. These techniques enable on-demand model load-
ing and model caching, resulting in improved performance while accessing large-scale and
complex models.

GenMyModel [4]: is a cloud-based modeling environment, supporting BPMN, UML,
EMF, Database, and Flowchart models. The tool provides a web-based interface with
model management capabilities. It provides querying functionalities, allowing users to
search for existing community projects by name. A filtering functionality is also provided,
enabling users to filter by project types, such as UML or BPMN. Viewing search results
is similar to other model repositories. It is possible to view more detailed information
about a project, by selecting it from the list. Selecting a project provides a visualization
of the project’s model. Similarly to source-code repositories, it is also possible to clone the
selected project, allowing users to reuse community-made models. Moreover, collaborative
modeling is also supported, enabling users to work in real time on the same model. Fur-
thermore, by leveraging an XMI interchange format, models developed on other platforms
can be integrated into the platform. Hence, the tool can also be considered as a generic
collaborative modeling platform.

MDEForge [6]: is an extensible modeling environment. While it was possible to test
an early version of the tool, the project has been dismissed and taken offline. However, it
is still possible to deploy a local instance of the repository. MDEForge aims to support
the MDE community by providing functionalities to discover and reuse existing modeling
artifacts. A feature that sets this repository apart from the others is the possibility to
manage any modeling artifact including models, metamodels, transformations, and editors.
This tool provides a web-based graphical interface to interact with the model repository. It
supports searching and browsing the repository for already developed modeling artifacts.
The repository leverages a three-tier architecture comprising the core, extension, and a
REST API to expose the provided services. The core layer provides basic CRUD services

16

Chapter 4. Review of Related Work

for the modeling artifacts. Users can extend the repository with additional functionalities
through community-made extensions, such as model metrics or advanced model querying.

AMOR - Adaptable Model Versioning [2]: is a framework that attempts to
leverage version control systems in the area of MDE. A model repository is part of the
AMOR framework. Features of the repository include conflict detection, intelligent conflict
resolution, and adaptable model versioning. Precise conflict detection is described as the
avoidance of previously undetected conflicts, and wrongly indicated conflicts. Intelligent
conflict resolution is employed to represent the conflicting changes along with a proposal
of resolution steps. Existing versioning techniques are either generic or tailored explicitly
for a modeling language. Therefore, with adaptable model versioning, the repository aims
to provide users with the ability to balance generality and specificity.

EMFStore [27]: is a model repository aimed to address the problem of model ver-
sioning. The repository is based on the Eclipse Modeling Framework and employs the
client-server architecture, where the repository is deployed on the server. The repository
supports operation-based change tracking, conflict detection, and merging. Operation-
based change tracking is a particular case of change-based change tracking. In contrast to
change-based change tracking, where each change of a model is recorded while it occurs
in the repository, operation-based change tracking records the transformation operations
on the state of a model. Operation-based conflict detection is adopted to detect conflict-
ing operations on an attribute level. In other words, conflict detection marks operations
conflicting if they change the same values of the same attribute to a different result.
Operation-based merging is used to resolve conflicts.

WebGME [35]: is a web- and cloud-based (meta)modeling tool, that aims to provide
scalability and collaborative modeling. The primary purpose of the tool is to support the
design of large-scale and complex models. The tool is implemented using the client-server
architecture, where the front- and back-end are deployed on the client and server respec-
tively. The back-end consists of a model repository and a set of web-services exposing the
models through a REST API accessible by the client. Moreover, the back-end can also
be extended by plug-ins, allowing users to integrate additional tools. The tool leverages
version control techniques as well as object-oriented concepts, such as inheritance and com-
position. Furthermore, novel modeling techniques are introduced to model crosscutting
concerns.

APROMORE [31]: is a business process model repository. The repository is im-
plemented as an open-source Software-as-a-Service (SaaS). It provides users with a wide
range of services, such as analyzing and managing process models. The architecture fol-
lows a three-tier architecture composed of the enterprise (presentation), basic (business
logic), and intermediate (middleware) layers. The repository provides a canonical process
format, allowing heterogeneous modeling languages to be treated the same. Thus, the
model repository is not only constricted to business process models, allowing it to be used
in other domains.

ChronoSphere [18]: is a graph-based EMF model repository. The model reposi-
tory aims to address the problem of managing large and complex models, by leveraging
domain-driven modeling concepts with scalable graph-based model storage techniques and
a custom model querying language. Moreover, advanced model versioning techniques are
also provided through the use of a versioned graph, enabling users to make use of advanced
conflict resolution and merging techniques.

Enterprise Architect [44]: is a modeling platform for heterogeneous modeling lan-
guages including BPMN, UML, and SysML. The tool provides a wide range of services
supporting the software development process, from the analysis of requirements to the

17

Chapter 4. Review of Related Work

maintenance of models. Enterprise Architect provides a desktop application to interact
with the model repository. It is possible to view and connect to repositories either locally,
on a server, or the cloud. The desktop interface allows users to query models by attributes
within multiple model repositories. Query results are presented in the form of a list. It is
possible to select a model from the query results, resulting in a more detailed view of the
chosen model. Furthermore, collaboration features are also provided in the form of dis-
cussions between users as well as reviewing of models. The tool provides design patterns
for a wide range of UML diagrams, allowing users to reuse existing models without having
to start from the ground up.

18

Table 4.1: A comparison of technologies employing model repositories

Technology Managed Artifacts Main Purpose Model Persistence MaaS Open-source Extensible

ModelBus [20]
Models
Metamodels
Transformation rules

Tool integration RDBMS (built-in) 3 3 3

CDO [48] Models
Metamodels Scalability

RDBMS
Documents
Filesystem

3 3 3

Enterprise Architect [44] Models Collaborative modeling RDBMS 3 7 3

GenMyModel [4] Models Collaborative modeling RDBMS 7 7 7

MDEForge [6]

Models
Metamodels
Transformation rules
Editors

Storage Documents 3 3 3

AMOR [2] Models
Metamodels Versioning Filesystem 7 7 3

EMFStore [27] Models
Metamodels Versioning Filesystem 3 3 7

WebGME [35] Models
Metamodels Scalability RDBMS 3 3 3

APROMORE [31] Models
Metamodels Storage RDBMS 3 3 3

ChronoSphere [18] Models
Metamodels Scalability Graph 3 3 3

Chapter 4. Review of Related Work

4.2 APROMORE: Advanced Process Model Repository
Apromore (Advanced Process Model Repository) proposed by La Rosa et al. [31], is
an open-source platform for SaaS (Software-as-a-Service) that resolves, to a greater or
lesser extent, some of the problems laid out in Chapter 1. It “enables storing, retrieving,
transforming, and analyzing the content of process models”.

One of its main characteristics is its ability to treat process models represented by
different modeling languages alike. The idea behind this is to translate process models
to a common format, called the Canonical Process Format, which brings a set of benefits
along with it, such as eliminating the need of having different algorithms for each process
format.

4.2.1 Architecture
In this section the architecture of Apromore is presented.

Figure 4.1: Architecture of the APROMORE process model repository
[31].

Apromore is based on a three-tier architecture composed of the following layers:

• Enterprise layer. The enterprise layer acts as the front-end of the model reposi-
tory. It contains the repository manager service, which provides the common func-
tionalities of the model repository: model querying, import/export, model version-
ing, and security. The service can therefore be seen as the unique access point to

20

Chapter 4. Review of Related Work

the underlying layers of the model repository. Furthermore, through the repository
manager, it is possible to access the services that provide model analytics (process
similarity, clone detection, process merging, etc.) and storing models in the canonical
process format.

• Intermediate layer. The intermediate layer exposes a set of services to the repos-
itory manager, including the Batcher and the Canonization adapter. The batcher
service allows the repository manager to use the logic-centric services provided in
the basic layer. In addition to this, users can batch a set of algorithms through a
simple script. For instance, retrieve a collection of models, perform clone detection,
and visualize the result. The canonization adapter allows the repository manager to
access models both in their original and canonical format. In addition, conversions
capabilities are also provided. For instance, the conversion from YAWL to BPMN.

• Basic layer. The heart of the architecture is the basic layer, which encapsulates
the business and data logic of the model repository. The business logic contains
the algorithms that perform actions on large collections of process models; typical
of this entity are matching algorithms, merging algorithms, and individualization
algorithms. The data logic consists of a set of data-centric services which enable
access to the underlying data of the repository. The five main entities within the
data logic level are:

1. Models archive: this entity contains process models in their original format (i.e.
BPMN, EPML, YAWL, etc.).

2. Canonical models archive: this entity contains the canonical format of each
corresponding model in the models archive.

3. Annotations archive: for each model, the metadata about its representation is
added (i.e. line thickness, positions, etc.).

4. Patterns archive: the pattern archive contains a set of model definitions or
patterns which can be reused by users for defining other process models.

5. Relations archive: relations between process models in their canonical format,
or relations between process models and their extensions are stored here.

4.2.2 Canonical Process Format
The Canonical Process Format (CPF) provides a common unambiguous standard of busi-
ness process models represented in different notations or different abstractions levels, with
the intent that all process models can be treated as processes modelled in the same lan-
guage. The idea is to include only the structural characteristics of a process model that
are common and recurrent in most modeling languages. Since CPF provides a language
purely for the structural type, graphical aspects of models, such as lines, positions, and
shapes, are deemed unnecessary and are stored separately in the form of annotations. The
information stored as annotations is only used when a model needs to be converted back
to its original format.

The authors identify the following benefits of using the CPF:

• Standardization: there is no need to have different versions of algorithms for different
types of models. In other words, algorithms working on the CPF, can be leveraged to
operate on models written in different languages, given that there exists a translation
from the original language to the CPF.

21

Chapter 4. Review of Related Work

• Efficiency: the time of translating a model from one language to another is reduced
significantly. Moreover, models can be indexed on their canonical format elements,
which improves the overall system efficiency of querying models.

• Interchangeability: the non-structural information of models captured as annotations
can be leveraged to transform CPF to the original language, but also other languages.
Furthermore, it is possible to switch between different visual representations while
keeping the same structure of process models.

• Reusability: reusable business process patterns are also stored in the CPF, allowing
users to define new processes without the need of having to design a process from
the ground up.

• Flexibility: the elements of the CPF are defined by an inheritance mechanism, en-
abling processes to be seen, from a higher abstraction level, as directed graphs. This
allows performing operations at different levels of granularity.

Therefore, by leveraging the CPF, eliminates the need of having to implement different
versions of the same algorithm for each modeling language. Figure 4.2 how some of the
common BPMN and EPC constructs are translated to CPF.

Figure 4.2: Common language constructs in CPF [31].

4.3 Software Repository Mining
Software Repository Mining that is the systematic way of collecting, processing, and ana-
lyzing information of software artifacts from software repositories, has grown in popularity
over the last years [21]. Mining the data provided by GitHub for instance can uncover
some interesting information about software engineering projects. While the research field
is mainly centred around mining source code artifacts, other artifacts such as modeling
artifacts can benefits from the same data mining techniques as well [19].

The work in [43, 19], presents a semi-automated approach to retrieve UML models from
GitHub. The authors follow a systematic approach comprising the steps: GitHub Mining,
Identification of UML models, Verification of UML models, and Metadata extraction. This

22

Chapter 4. Review of Related Work

approach resulted in the Lindholm dataset, consisting of over 93,000 publicly available
UML models. As an inspiration, the study in [21], followed a similar systematic approach
to mine GitHub for BPMN models. Figure 4.3, illustrates the mining process.

Figure 4.3: Overview of the BPMN mining process [21].

As can be seen, the mining process consists of the following steps:

1. Repository Selection: the first step in the mining process is the selection of
repositories to mine. The authors consulted the GHTorrent [17] database in order
to select 10% of GitHub repositories that are non-forked and non-deleted.

2. Data Extraction: from the pool of selected repositories, the GitHub API was
queried for the repositories file-tree. The authors noted that the throughput was
severely bottlenecked by using the GitHub API. To overcome this problem, they
used several user credentials. Using this approach reduced time it took for this step
to complete from 100 days to 31 days.

3. Filtering and Cleansing: since BPMN files can come if different file formats, for
instance as an image or as XML files. They kept models that only matched the
BPMN 2.0 metamodel, resulting in a corpus of 8,904 BPMN models.

4. Analysis: the last step in the mining process is the analysis, which the authors
conducted to answer a set of research questions.

In [9] the authors present the GHS (GitHub Search) dataset containing data of 507,871
repositories on GitHub written in 9 programming languages. With this dataset, the au-
thors aim to support researchers in their empirical studies by providing 25 characteristics of
each mined project. Furthermore, the data of each mined project is continuously updated.
The authors use a custom mining tool, leveraging the GitHub Search API in combination
with an HTML page crawler to mine additional information from GitHub projects. The
architecture of the tool is depicted in [9].

The GitHub API Invoker is used to collect a number of characteristics from a list of
repositories written in a certain programming language, and created or updated during
a specific time period. The authors use the latter feature to segment the GitHub Search
query in several time intervals in order to overcome the 1,000 search results limit per
request.

23

Chapter 4. Review of Related Work

The GitHub Website Crawler is used to collect additional repository characteristics.
The component parses HTML pages through the usage of CSS selectors. For this task,
the authors relied on the jsoup and Selenium libraries. The former provided the ability
to parse information from static HTML pages. However, due to the dynamic content of
several GitHub pages, jsoup failed to retrieve some information of interest. The authors
have therefore relied on Selenium in order to extract information from dynamic pages.

Figure 4.4: Architecture of GHS [9].

The Repository Miner is the core component of the GHS tool. The component can
be seen as an orchestrator, commanding the GitHub API Crawler and GitHub Website
Crawler to collect information from GitHub repositories. Furthermore, it leverages a
periodic mining algorithm triggered every six hours to update the collected data in GHS.

4.4 Transforming Models
Business process modeling has become a significant part in the industry, mainly to analyze,
document, and optimize workflows [49]. Currently, Event-Driven Process Chains (EPC)
process models are widely used in the industry. With the current rise of the Business
Process Modeling Notation (BPMN), there is a significant need from the industry for the
transformation of EPC to BPMN [29, 49].

In this section, we will review recent works on model transformations. In particular,
transforming EPC to BPMN and the other way around. We are aware that EPC includes
various heterogeneous formats, such as VDX and AML, which are proprietary formats
constrained to the tools Visio and ARIS respectively. We will therefore limit our review
on a tool-independent format, referred to as the EPC Markup Language (EPML).

There are two general approaches for transforming process models. They can either
be transformed directly or indirectly [49]. With direct transformation, model elements
from one language are directly translated to the other language. On the other hand,
indirect transformation uses an intermediate language to translate model elements from
one language to the other.

24

Chapter 4. Review of Related Work

4.4.1 Direct Transformation
Direct transformation is the direct or “one-to-one” mapping from model elements defined
in one language to the other. For instance, a direct mapping from an EPC function
element to the BPMN task element. An advantage of this method is that no structural or
semantical information is lost, given that there is a direct mapping for every model element
in the two original languages. The study [49] presents a direct approach for mapping EPC
to BPMN. However, because of the semantical differences between the two languages, a
one-to-one mapping was not possible. And thus, only some of the elements of EPC, which
the authors refer to as the core elements, are directly translated to BPMN.

Figure 4.5: Direct transformation from core EPC to BPMN [49]

The work in [29] expands on this and presents a tool for two-way conversion between
EPC and BPMN. In other words, a mapping from EPC to BPMN and the other way
around. The authors intended to enable model interchangeability between different mod-
eling toolsets, since one modeling toolset for EPC models can have more advantages than
a modeling toolset for BPMN models. Similar to [49], it was not possible to map every
element from BPMN to EPC, and the transformation was limited to the core elements of
both languages only.

25

Chapter 4. Review of Related Work

4.4.2 Indirect Transformation
Indirect mapping uses an intermediate language to translate EPC to BPMN. For instance,
EPC is mapped to a Petri net, which is consequently translated to BPMN. An advantage
of this approach is that already existing model mappers can be used to map the two no-
tations. However, this method has some drawbacks. In particular, the expressive power
of the intermediate language can be lower compared to EPC and BPMN. Therefore, some
of the structural and semantical information can get lost during the transformation [49].
In this context, the CPF presented in Section 4.2.2 enables indirect transformation from
one language to the other. A model represented in the EPC language is first mapped
to the CPF and later translated to BPMN. However, as discussed earlier, indirect map-
ping results in a significant structural and semantical information loss if the intermediate
language has a lower expressive power compared to the target and source languages. To
minimize the information loss, the authors in [31] store non-structural information of mod-
els, such as graphical information separately as annotations. The information stored in
the annotations is later combined with the structural information stored as a CPF to
transform models to other languages.

BPMN CPFBPMN2CPF

BPMN Metamodel CPF Metamodel

EPMLCPF2EPML

EPML Metamodel

Conforms to Conforms to Conforms to

Figure 4.6: Example of indirect transformation.

Figure 4.6 illustrates an explanatory indirect model transformation chain. In particu-
lar, BPMN2CPF is a model transformation that converts models conforming to the BPMN
metamodel to models confirming to the CPF metamodel. In addition, CPF2EPML is a
model transformation that converts models conforming to the CPF metamodel to models
conforming to the EPML metamodel.

4.5 Conclusion
We analyzed state of the art regarding the proposed services in Section 1.2. On the one
hand, we presented several model repositories and the features they offer. These features
include check-in/check-out, model versioning, collaborative modeling, model analytics, and
extensibility. These features have been implemented as prototypes as well as production
level solutions. On the other hand, we explained different techniques to mine data from
software repositories and to perform model transformations. After the analysis of the
related work, we conclude that the majority of proposed tools and techniques do not
provide a fully automated solution to assist researchers in their model analytics workflow.
Furthermore, there is a lack of research in unifying the features under one platform.

26

CHAPTER 5

Overview of the System

This chapter presents a detailed overview of the Model Analytics Automation System
(MAAS) so that subsequent chapters can be easily understood. Firstly, the goal of MAAS
is stated as well as the requirements it is constrained by. Next, an explanation of the
architecture of the system and its core elements is given. Finally, information in order to
integrate the system in the Arrowhead Framework, is provided.

5.1 Goals and Requirements
As stated throughout Chapter 1, modeling tools are not at the level yet of providing
complete model analytics workflow automation to the user. In Chapter 4, we have seen
several technologies that offer some of these functionalities to the user. However, after the
literature review, we concluded that all the presented functionalities are scattered among
various tools and technologies.

The goal of this thesis is to design and implement a tool that can integrate the services
presented in Section 1.2. Furthermore, the tool should run in the Arrowhead Framework
as a system composed of several subsystems. In Figure 5.1 we can see a simplified schema
of the system’s architecture. The system follows a multi-layer architecture, allocating the
different responsibilities into different layers. The architecture comprises the following
layers in general:

Presentation (User Interface): the main responsibility of this layer is to transform
results to something the users can understand and provide an interface that can be used
to easily interact with the functions provided by the system.

Logic (Workflow Execution): this layer comprises the business logic to operate the
system. It acts as an intermediate layer, moving data between the presentation and data
layers. This layer handles user requests by loading and saving information in the data layer.

Data (Model Storage/Retrieval): information is stored and retrieved from the data
layer, which is connected to a particular database back-end.

27

Chapter 5. Overview of the System

User

MAAS

User Interface

Workflow Execution

Model Storage/Retrieval

model.bpmn

Figure 5.1: Simplified schema of the Model Analytics Automation System
(MAAS) architecture.

We have already seen that the model analytics workflow encompasses various steps to
prepare models for analysis. The tool should therefore be generic such that new function-
alities can be integrated by extending existing components or adding new components.
Hence, the tool should also allow other components to be plugged to extend its capabilities
and thus automate more tasks in the researcher’s work.

MAAS

User

Workflow Execution

Repository Mining Filtering & Validation Transformation

Crawling/Scraping

Repository Selection

GHTorrent

GitHub

Filtering

Validation

BPMN Metamodel

EPML Metamodel

Tag-based

Content-based

Model-to-Model

EPML2BPMN

BPMN2EPML Service

Functionalities

Functionality

Service

Addition

Functionality

Service
Extension

Figure 5.2: Overview of MAAS with the ability to plug and extend ser-
vices.

Figure 5.2, presents a generalized overview of the tool. As shown, MAAS integrates
a set of services that can be plugged or removed. Furthermore, existing services can be
extended with new functionalities. A few concrete core services are illustrated.

• Repository Mining: this service is responsible for crawling/scraping software
repositories such as GitHub for potential process models.

• Filtering & Validation: consist of validation and filtering services for various
process models.

• Transformation: comprises the functionalities to perform model transformations.

5.2 The Model Analytics Automation System
The goal pursued by the Model Analytics Automation System (MAAS) is to improve the
model analytics workflow. In order to contribute to this goal, MAAS provides automation
of some of the steps found in the model analytics workflow. This section presents the
architecture to achieve this goal.

28

Chapter 5. Overview of the System

First, an overview of the architecture is given. This overview includes the various
required layers to materialize the tool and the interaction between the different components
at a very abstract level.

Then, a detailed explanation for the various layers and their components is given. This
includes the intercommunication between components inside the layers.

5.2.1 Architecture Overview
This section presents a more detailed overview of MAAS’s architecture. As sketched in
Figure 5.3 MAAS is based on a three-tier architecture:

Presentation Layer

Repository Management Layer Storage Layer

User Interface

Repository Manager

Model Preparation Pipeline

Filter &
Validation

Metadata
Extraction

Model2Model
Transformation

Ex
ec

ut
es

Model Storage

Models
Canonical Format

Models

REST API Implementation

User Models

Reply

Request

Repository Miner

Metadata Storage

Domain Repository Elements

Uses

Figure 5.3: Details of MAAS’s architecture.

The Presentation Layer. The presentation layer provides the interface to the model
analytics automation system, which allows users to interact with the underlying subsys-
tems through a GUI. The presentation layer connects to the repository management layer
through a RESTful interface. The core services of MAAS are provided by the repository
management layer, which are accessible through the RESTful interface. Furthermore, the
repository management layer acts as a single point of entry to the services in the under-
lying layers.

The Repository Management Layer. In addition to the repository manager, which is
responsible for the functionalities to communicate with the model repository, the repos-
itory management layer consists of two additional essential entities that are called the
repository miner and the model preparation pipeline. The repository miner is respon-
sible for crawling and scraping software repositories for potential process models. This
entity executes the model preparation pipeline before any process models are stored in
the repository.The first component of the model preparation pipeline is the filtering and
validation component, which provides model cleaning and validation services. The second
component is the metadata extractor, which collects additional metadata about process

29

Chapter 5. Overview of the System

models. The last component is the model2model transformer, enabling model to model
transformation. The three components exchange information with the storage layer to
store the intermediate artifacts produced in the model preparation pipeline.

The Storage Layer. Lastly, the storage layer contains the data of the software architec-
ture, where a set of services are collaborating to deal with the data in the system. It stores
process models and related metadata. Process models are stored both in their original for-
mat and canonical format. In this case, we can significantly improve the transformation
efficiency by reducing the number of intermediate transformations. Furthermore, in most
cases, a transformation from one language to another leads to information loss. Therefore,
having a reference to the original model eliminates the problems caused by the conversion
from one format to the original one.

5.3 Arrowhead Framework
A mandatory requirement that MAAS has to meet is that it has to run on top of the
Arrowhead Framework as a system, allowing other systems in a local cloud to consume
the provided services to automate the steps in model analytics. MAAS is tightly related
to the SOA and SoS concepts of the Arrowhead Framework. To elaborate, we have a tool
comprising a set of services that collaborate to automate some tasks in model analytics.
Moreover, services can be extended or added to extend the functionalities of the tool.
Translated to the Arrowhead Framework, the tool can be seen as a system running on the
local cloud consisting of various sub systems collaborating as an SoS to achieve a particular
automation task.

It is, therefore quite reasonable to think that the architecture of the Arrowhead lo-
cal cloud is designed to accommodate for the modular and service-oriented nature of the
system, like the one shown in Figure 5.4. The architecture allocates the different re-
sponsibilities of MAAS into different (sub)systems that collaborate in order to provide
automation services.

Arrowhead Local Cloud

Repository Manager

System Registry

Model FiltererModel Crawler Model Transformer

Model Storage

MAAS <<HTTPS>>
REST

Elasticsearch

API Commons

Authorization

Orchestration

<<HTTPS>>
REST

<<HTTPS>>
REST

<<uses>>
Canoniser

Validation

Util

Serializer

<<uses>>

<<HTTPS>>
REST

<<uses>>

<<HTTPS>>
REST

Figure 5.4: An overview of the systems and packages of MAAS running
on a Arrowhead local cloud. The arrows represent a uses relationship.
Moreover, the API Commons package represents the components that are

part of MAAS, and shared by the various subsystems within MAAS.

30

CHAPTER 6

System Implementation

This chapter describes the implementation and design decisions for the prototype version
of MAAS. The prototype is implemented using a multi-layer architecture consisting of
the repository management, data, and presentation layers, which can be accessed through
the following repository [57]. Although Arrowhead Framework offers implementations in
both the Java and C++ programming languages, the former has a higher maturity level
compared to the latter. We will therefore present the implementation of MAAS based on
the Java implementation of the Arrowhead Framework. However, in order to generalize
the implementation to other languages, we will discuss the design and implementation as
generic as possible.

First, the design and implementation of the repository management layer are presented.
The implementation is organized using the Repository Miner system and the subsystems
that form the Model Preparation Pipeline. The former comprises the functionalities that
enable repository mining for process models, whilst the latter consist of multiple systems
that prepare models for analytics.

Second, details on the storage layer are given. It consists of information regarding the
database back-end to store models and associated metadata, followed by an explanation
of the data structure and conceptional schema of the repository system.

Finally, the chapter concludes with implementation details of the presentation layer.
The layer consists of a RESTful interface exposing the service provided by the repository
management layer and a web interface acting as the front-end of MAAS.

6.1 The Repository Management Layer
This section will detail how the cores services of MAAS are actually implemented and how
the repository management layer acts as an intermediate layer between the presentation
and model storage layers.

6.1.1 The Repository Model Miner
In Section 5.2, we stated that one of the main components in the repository management
layers is the repository miner. This component collects models from software repositories
in GitHub of a specific modeling language specified by the user. In this section, we present

31

Chapter 6. System Implementation

two methods of crawling models from GitHub. The first method leverages GHTorrent to
select candidate repositories. The second method uses GitHub Search to query GitHub
for process models. In the remainder of this section, we will detail the implementation of
the crawler components and the design decisions.

GitHub provides a public REST API for retrieving a list of available repositories accom-
panied with their metadata. However, the API imposes some limitations on the number
of queries for a given time frame. For non authenticated users, this limitation is 60 queries
per hour, and for authenticated users, the number of queries per hour is 5000. The API can
severely bottleneck crawlers leveraging the GitHub API, and they are usually implemented
using a large set of authenticated user account credentials [21].

In order to solve this problem, our model crawler implementation does not use the
GitHub API to retrieve information about the repositories but an HTML page parsing
approach through CSS selectors. For this task, the crawler uses the jsoup library [24].
However, due to the dynamic nature in GitHub pages, information about some of the
required elements needed by the model crawler is not always available, since it takes some
time to load the remaining elements of a GitHub page, which jsoup fails to do so because
its primarily a static HTML page parser. We have therefore relied on the HtmlUnit
library [22], which allows us to parse dynamic pages. However, using HtmlUnit introduces
a significant performance drawback. To reduce the performance drawback, we only use
HtmlUnit were jsoup fails.

The HTML page parsing approach through CSS selectors may impose some problems in
the near future when GitHub decides to change its UI substantially. Our repository mining
component might require a future update if this is the case. To reduce the maintenance
cost of our crawler, we followed the same procedure as in [9] by making the CSS selectors
as generic as possible. In addition, we have generalized our implementation of the crawler
and made some key components modular, which will be further detailed in the remainder
of this section.

GHTorrent

Model
Storage

Method A
GHTorrent

Method B
GitHub Search

Repository Links

Link
Queue

Crawler

Model Links

Crawler Controller

Page Parser

Scheduler

Link Filtering

Link Parser

Link Parsing

Model Downloader

Model Scraper

Model Preparation

Validation

Metadata Extraction

Transformation

Crawler Jobs

Web Pages

Links

Links

Models

Models and
Metadata

Crawler Job

Submitted
Links

Links

Custom Parser

Figure 6.1: Architecture overview of the repository miner depicting the
two methods of crawling.

To improve the model and metadata collection performance, we conduct multi-threading,

32

Chapter 6. System Implementation

which allows the crawler to download and parse multiple HTML pages in parallel. The
architecture of the multi-threaded crawler is depicted in Figure 6.1. As illustrated, the
general architecture consists of the following key entities:

• The Crawler is the central unit of the repository miner. It is responsible for initiating
multiple crawling jobs exposed by an API. The crawler supports two methods of
crawling, which are discussed in the remainder of this section.

• The Page Parser is responsible for parsing HTML pages and extracting outgoing
links and potential process models. Links are filtered based on a set of criteria (e.g.
links ending with “.bpmn/.epml”) and are sent to the Link Queue for later processing
by the crawler. A Model Scraper is used to extract the contents of a potential process
model. Lastly, the contents of potential process models are transferred to the Model
Preparation Pipeline. The component is generic, allowing for particular parsing
specializations (e.g. a parser for the BitBucket software repository).

• The Scheduler divides the workload over the multiple CPU cores/threads by retriev-
ing the first URL in the queue and scheduling it for a crawling job sent to the crawler.
In order to overcome the problem of circular crawling, the component keeps track of
the submitted links during the crawling process.

• The Model Preparation Pipeline component is used to “prepare” models for analy-
sis. It comprises the steps of validation, metadata extraction, and transformation.
During the validation step, process models are validated against their metamodels
(i.e. BPMN 2.0 and EPML 2.0). Next, the metadata of process models is extracted,
such as the canonical process format elements. Lastly, Transformation is used to
translate models to the canonical process format. Consequently, resulting in two
formats process models: the original format and the canonical process format.

In the remainder of the section, we will discuss our two methods of model crawling.
The first method is inspired by the mining approach discussed in [21]. However, HtmlUnit
imposed a significant performance drawback. Therefore, we have implemented a heuristic
method, which resulted in the crawler collecting models in a reasonable amount of time.

GHTorrent Method
Our first repository mining method was inspired by the approach discussed in [21]. The
approach consists of two steps, for which the first step requires some manual work, while
the system completely automates the last step: (1) Select a sample of available GitHub
repositories, (2) find and extract BPMN/EPML models as well as their repository meta-
data:

1. Repository Selection. The first step in our approach consists of collecting a list of
available repositories from GitHub. Similar to [21], we used the GHTorrent database
[17] to download the most recent database dump (mysql-2019-06-01, 103 GB). Fi-
nally, we queried the projects table to select a random sample of 10% of the reposito-
ries which are not forked and not deleted, resulting in a set of 7,435,722 repositories.

2. Model and Metadata Extraction. After the repository selection step, we used the
crawler to examine the repositories for any BPMN/EPML files by “feeding” it the
list of 7,435,722 URLs to the repositories. For each URL, the crawler uses HtmlUnit

33

Chapter 6. System Implementation

to parse the dynamic content of the HTML pages, followed by jsoup to extract
the URLs of the folders in the repository’s “file-tree” by using CSS selectors. The
extracted URLs would then be put in the queue for later processing by the crawler.
The crawler uses depth-first search to traverse the repository’s file-tree and locate
any potential BPMN/EPML models. Once it locates a potential process model (i.e.
an URL ending with .bpmn), the crawler extracts the model and validates it against
its metamodel. Finally, if the model conforms to its metamodel, it is stored in the
database along with its metadata and canonical process format.

As discussed earlier, HtmlUnit imposes a severe bottleneck on this method. Based on
our observations on smaller selections of repositories (i.e. 100, 1,000), this method alone
would take ∼1456 days to complete. We have therefore opted for a heuristic method,
which is orders of magnitudes faster.

GitHub Search Method
In order to increase the throughput of our model crawler, we, therefore, conducted model
extraction using a heuristic method. This method uses the Search feature of GitHub to
query the repositories for files ending with “.bpmn” or “.epml”. For instance, if we want a
list of BPMN files, the following request is triggered:

https://github.com/search?q=extension:bpmn

This request results in an HTML page containing at most 10 “hits” of the search query
with the ability to “paginate” to the next page for more results. For each item in the list,
we insert the URL in the queue. Additionally, the URL to the next page is inserted in
the queue as well. Similar to [9], to overcome the 1,000 search results per request imposed
by GitHub, we segment our query in multiple sub-queries. In particular, we segment our
queries in multiple file size intervals. In other words, if we want a list of BPMN files,
having file size between a given interval (i.e. 0 and 250 Kilobytes), we use the following
search request:

https://github.com/search?q=extension:bpmn+size:0..250

If the request returns more than 1,000 files for a given size interval, we split the interval
in half, and the new size intervals are inserted in the queue, later processed by the crawler.
Otherwise, if the interval results in 1,000 or fewer results, the crawler iterates over the
resulting list as usual. The crawler extracts the model and the repository’s metadata for
each potential process model (i.e. an URL ending with “.bpmn/.epml”).

Implementing the Model Crawler
The class diagram of the model crawling service is illustrated in Figure 6.2. The entry
point of the service is through the ModelCrawlService, which exposes a set of crawling
functionalities provided by the Crawler.

The class ModelCrawlService provides the functionalities for starting and stopping a
crawler. Moreover, it handles the creation of the Crawler class. Furthermore, the class is
responsible for injecting a PageProcessor in the Crawler class.

The Crawler class is responsible for crawling a given list of URLs. The class uses an
injected instance of the PageProcessor to extract the outgoing links from an HTML page.
Furthermore, it is responsible for the creation of the CrawlerThreadPoolExecutor.

34

Chapter 6. System Implementation

The CrawlerThreadPoolExecutor is a subclass of the ThreadPoolExecutor provided
by the Java library. The class acts as the Scheduler of the crawling service, which is
responsible for scheduling tasks in the CrawlerJob class.

The PageProcessor is the base class of the GitHubPageProcessor and GitHubSearch-
PageProcessor which are responsible for the GHTorrent and GitHub Search methods re-
spectively. The PageProcessor class can be seen as the Parser component of the crawling
service.

The CrawlerStatistics class holds basic statistics of the crawler (i.e. the number of
collected models, number of non-valid models, and number of collected page links).

CrawlerThreadPoolExecutor Crawler

CrawlerJob

ModelCrawlService

PageProcessor

GitHubPageProcessor GitHubSearchPageProcessor

CrawlerStatistics
+ collectedModels: Integer
+ nonValidModels: Integer
+ totalLinksCount: Integer

0..1

0..1

1

1

1

1

1

*

1

*

1*

1

1

PageProcessorFactory
creates

creates

1

0..1

Figure 6.2: Class diagram of the model crawling service.

6.1.2 Filtering Models
In Chapter 5.2, we presented the subsystems that encompass the model analytics automa-
tion system. One of these subsystems is the model filtering system, which provides a set
of services to filter models based on user-provided search criteria. This section describes
how the model filtering system should be set and how it should be implemented in the
Arrowhead Framework.

The model filtering system provides users with the following type of model filtering:

• General filtering.

• Model elements filtering.

• Repository filtering.

General filtering can be applied to select models containing a specific string in their
name (e.g. “shipping” will return all models containing this string), or having a specific
extension (e.g. “.bpmn” or “.epml”).

Models can also be filtered by their canonical format model elements. The user can
issue a predicate followed by an integer to filter on the model elements (e.g. “models hav-
ing more than five elements of the event type”). The user can choose from the following

35

Chapter 6. System Implementation

types of predicates: “greater than”, “lesser than”, “not equals”, and “equals”. Moreover,
the ability to “chain” conditions is provided. With this, the user can initiate filtering
conditions having the following form:

“𝑛𝑢𝑚𝑏𝑒𝑟𝑂 𝑓 𝐸𝑑𝑔𝑒𝑠 > 5 AND 𝑛𝑢𝑚𝑏𝑒𝑟𝑂 𝑓𝑇𝑎𝑠𝑘𝑠 < 3 AND 𝑛𝑢𝑚𝑏𝑒𝑟𝑂 𝑓𝑂𝑅𝐽𝑜𝑖𝑛𝑠 = 1”.

Through repository filtering, models can also be filtered on their metadata of the reposi-
tory (e.g. number of stars or number of forks). Similar to the filtering by model elements,
repository filtering can be leveraged through predicates.

Constructing Filtering Conditions
To determine the filtering conditions, we require two components in the model filtering
system to set the filtering of models in motion:

• When the system receives a filtering request, a Parsing Component must parse and
extract the conditions from the request.

• When the parsing of the conditions is complete, a Query Translation Component
must map the conditions into a database query.

In order to retrieve models based on a set of conditions, the above components must be
implemented. The problem is that the filtering requests are dynamic. Users can initiate a
filtering request based on an arbitrary set of predicates and model attributes. Moreover,
conditions can be chained together, and they can be of any arbitrary size. Hence, manually
coding all possible combinations of filtering conditions is not feasible for this thesis nor a
sound design decision.

To overcome this problem, we applied the Builder [16] design pattern. The builder
pattern is classified as a creational pattern, as it describes how classes should be instanti-
ated. The pattern allows a step by step construction of objects, which is deemed suitable
for the dynamic construction of filtering conditions.

SearchCriteria
operation:SearchOperation
value:String

FilteringService CriteriaBuilder SearchCriteriaBuilderParser

SearchOperation
LESSER_THAN
GREATER_THAN
EQUALS
NOT_EQUALS

CriteriaParser

*

* 1 *

builds

Figure 6.3: Class diagram of the filtering service.

Furthermore, because parsing algorithms tend to be complex in general, it is desirable
to keep them contained or completely independent from the general system. It is suggested
by [16] to isolate complex algorithms by encapsulating them in objects, resulting in easier
interchangeability between the various algorithms at run-time. Therefore, to make the
algorithms interchangeable at run-time, a generic and a concrete parsing class are defined.

36

Chapter 6. System Implementation

6.1.3 Validating Models
We expect to encounter a wide range of process models during the repository mining
process, including models with the same file formats modeled in a different modeling
language versions (i.e. BPMN 1.0 and BPMN 2.0). Fortunately, most process models
define a standard XML-based interchange format, providing tools to import and export
models using this format [21]. This thesis focuses on the BPMN and EPML formats, and
process models of these formats are validated against their BPMN 2.0 and EPML 2.0
metamodel, respectively.

To validate process models against their metamodel, we need to address the following
problem: given that Validation Requests occurs, how do we instantiate the correct type of
Model Validator once it has been triggered.

Determining Model Validators
In order to instantiate the right Model Validator given a model type, we recognized that the
Factory Method [16] design pattern provided the ideal structure for this design problem.
This pattern abstracts the creation process, such that a specific type of an object can be
determined at run-time, given the parameters passed to the factory method. Figure 6.4
shows the classes of the validator component.

ValidationService

Validator

EPMLValidatorBPMNValidatorValidatorFactory

1

0..1

1

0..1

creates

creates

Figure 6.4: Class diagram of the validation services.

6.1.4 Transforming Models
The goal of the Transformation service is to convert a process model from its source
metamodel to a target metamodel. While considering how to implement the required
transformation services, we examined the Apromore codebase and discovered that a set of
plugins existed which supplied the functionalities required to transform process models to
a target language. These plugins will be referred to from now on as the canoniser plugins,
and they provide the features presented in Section 4.2.2.

In light of this, it made more sense to reuse the functionalities of the existing canoniser
plugins, rather than developing our own process model transformation service, which is
out of scope for this thesis. However, although the plugins provided some useful function-
alities to transform models, they did not represent a completely ready-made solution. The

37

Chapter 6. System Implementation

canoniser plugins provided a number of methods through their interfaces. To transform
a model from its source language to the target, numerous method calls would be required
in a particular sequence.

In order to tackle this problem, we realized that the facade [16] pattern was a good
fit for this particular situation. The purpose of this pattern is to create a simplified
representation of a more complex subsystem. This representation can also be described
as a “wrapper” for the functionalities of the complex subsystem beneath the facade.

To transform a BPMN to an EPML model, a number of method calls must be per-
formed upon the canoniser plugins. We realized that encapsulating the method calls
together in one place and provide a single point of access would simplify the transforma-
tion process, rather than performing a series of method calls directly upon the canoniser
plugins themselves.

To implement the facade pattern, we created a new class classed TransformationFacade,
which wrapped the functionalities of the canoniser plugins to perform transformations.

BPMN Canoniser

BPMN20Canoniser BPMN20Schema

CanonicalProcessType

EPML Canoniser

EPMLSchema EPMLType

CanonicalProcessType

TransformationFacade

BPMN2CPF();
CPF2EPML();
EPML2CPF();
CPF2BPMN();

Use Use

TransformationService

1

0..1

Figure 6.5: Class diagram of the transformation service.

As illustrated in Figure 6.5, the TransformationFacade provides multiple methods for
initiating a particular transformation. When one of the methods are called, they perform
numerous method calls to the underlying canoniser plugins, in order to perform the actions
needed to transform models. Hence, the complex sequence of method calls is completely
obscured from the clients using the facade, which is, in this case, the TransformationSer-
vice.

6.2 The Storage Layer
The storage layer provides persistence capabilities for process models and associated meta-
data. As discussed earlier, process models are stored both in their original and canonical
process format for the reasons laid out in Section 4.2.2. We are interested in storing large
volumes of models and additional metadata. While well known traditional RDBMS solu-
tions exist such as MySQL and PostgresSQL, which are easy to set up and query. They
are not well suited for Big Data analytics, requiring support for large quantities of data,
and accommodations for the real-time characteristics of Big Data [28]. In the presence
of large amounts of data, an RDBMS requires the creation of numerous indices, which
imposes some significant performance drawbacks during the data updating process.

Taking the above mentioned problems into consideration, we propose a document-
based storage approach utilizing Elasticsearch as a database back-end, an open-source
search engine, that is designed to be scalable, distributive, and real-time capable [14].

38

Chapter 6. System Implementation

6.2.1 Elasticsearch
Elasticsearch is an open-source search engine, providing full-text search. It is designed to
be scalable, distributive, and real-time capable. A running Elasticsearch instance is called
a node, and two or more nodes may form a Elasticsearch cluster [28]. While RDBMSs and
ElasticSearch may differ in various ways, many core concepts of a traditional RDBMS are
analogous to the concepts in the Elasticsearch world as depicted in Figure 6.6. A field is
like a column in a RDBMS: it stores a value of a certain data type. However, a field may
store multiple values, essentially becoming a list, whereas a column is restricted to one
value only. Analogous to a RDBMS table row is a document in Elasticsearch. A document
is essentially a JSON object in Elasticsearch. It may include multiple fields, similar to
rows which may include multiple columns. A document type is analogous to an RDBMS
table, since it defines the fields that can be specified for a certain document. Mappings are
similar to schema definitions in SQL databases. They define all the document types within
an index. Lastly, an index is like a database in a RDBMS: providing storage, search, and
update capabilities for different types of documents.

RDBMS Elasticsearch

Database

Document types

Rows

Columns

Index

Mapping

Documents

Fields

Schema

Tables

Figure 6.6: RDBMS concepts translated to Elasticsearch.

6.2.2 Models and Metadata
Similar to a schema in an RDBMS, a mapping defines the fields and datatypes that reside
in an index. The mapping consists of two index definitions: an index for the models and
an index for domains. The model index consists of the following fields:

• id: the primary key (PK) of the model table assigned by the database.

• name: the name of a model.

• file_name: the file name of the model.

• description: a long or short description of the model.

• version: the version number.

• modeling_language: the file name of the model.

• path: original path to the model.

• model: the contents of the model.

39

Chapter 6. System Implementation

• c_model: the canonical format of the model.

• elements: metadata about the canonical elements.

• repository: metadata about the original repository.

• domains: domain metadata.

The domain index consists of the following fields:

• id: the primary key (PK) of the domain assigned by the database.

• name: name of the domain.

• tags: a list of domain tags.

Figure 6.7 depicts the conceptual schema of the storage layer. A Repository may
contain multiple Models and Domains. A Model consists of its original file contents and
the canonical process type format. It is composed of different versions and may contain
multiple domains. A Version is a specialization of a Model. A Domain is composed of
multiple tags and may reference zero or multiple models.

Version

Repository

TagDomainModel

originalModel:String
canonicalModel:String

Entity

*

1
*

* *1 * *

Figure 6.7: Conceptional schema of the storage layer.

6.3 The Presentation Layer
The presentation layer provides the user with the ability to interact with MAAS. It presents
a Graphical User Interface (GUI), allowing users to execute commands and queries on the
underlying system. The GUI communicates with the repository management layer through
a REST API. Hence, two ways of interacting with MAAS are (1) through the GUI, (2)
directly through the REST API. In this section, the implementation of the presentation
layer is presented.

6.3.1 Implementation
The implementation of the presentation layer is quite simple. We only need to expose the
functionalities provided by the model repository. In other words, we only need to connect
the layer with the REST API. The implementation of the presentation layer uses a simple
web-based interface since implementing a GUI found in real model repositories is not the
goal of this thesis, and it takes a lot of time to realize. Hence, the GUI of the model
repository system is basic, which only displays the minimal UI components required to
perform CRUD actions and other commands on the system.

40

Chapter 6. System Implementation

The interaction with the system is done using the GUI or directly through the REST
API. The user can interact with the following aspects of the system:

Model Crawling
The API exposes services to initiate or terminate an already running crawling job. To
initiate a crawling job, the user is presented with a set of options. First, the user can
select a crawling method, which is further detailed in Section 6.1.1. Next, the user is
presented with the option to select a model format to crawl (e.g. BPMN or EPML). Once
the required options are set, the user can initiate a crawling job. The following is a list of
functionalities exposed by the crawling API:

• StartCrawler: This function tells the crawler system to start mining GitHub for
process models in the specified format. It supports both the GHTorrent and the
GitHub Search methods. It also instructs the system to prepare models for analysis.
For the BPMN mining example, the StartCrawler function instructs the collected
models to undergo a model preparation pipeline, by consulting the filtering and
transformation systems in the local cloud.

• StopCrawler: This function instructs the system to terminate all currently running
Crawler jobs.

• Status: It is used to get the latest update regarding the number of collected models,
links, and whether the crawler is idle or not.

Model Filtering
Another service exposed by the API is the model filtering service. The web interface of the
model filtering service is presented in Figure 6.8. As shown, users can initiate a filtering
request based on different types of criteria.

General filters (1), can be used to filter models on their name. For example, the name
“medical” will return all models containing this string. It is also possible to filter models
on their model extensions (e.g. files ending with “.bpmn/.epml”).

Models can also be filtered based on their canonical process format elements. Users
can specify a certain predicate (e.g. “<”, “>”, “=”, “!”) followed by a number, giv-
ing the possibility to perform the following search query: “numberOfEdges > 0 AND
numberOfEvents = 3”.

Finally, users can also filter models on their repository metadata (e.g. number of stars,
forks) (3) and repository name.

By pressing the “Search” button, the filtering system will be instructed to collect and
return models satisfying the search criteria, giving users the possibility to downloaded the
models as a bundled archive.

41

Chapter 6. System Implementation

Figure 6.8: Screenshot of the GUI’s model filterer.

Model Management
In our proposed system, model management refers to performing CRUD actions on a set
of models. Following is a list of functionalities exposed by the API:

• Create: The create function is used to upload a model along with additional metadata
to the model repository.

• Get: This function is used to search for the most recent version of a model given a
unique identifier (i.e. “id”). In addition, a version history of the model is also given.

• List: It is used to get a collection of the most recent versions of available models in
the repository.

• Search: Search is used to find a model by its “name” attribute. It is not required to
provide the full name of the model. Therefore, it is possible to fetch a model by its
partial name.

• Update: This function updates an already available instance of a model given its
unique identifier.

• Delete: The delete function is used to remove an existing model from the repository
given its unique identifier.

The model management service will generate a JSON response whenever a call to one
of these functionalities is made. An example of the generated output of the Get function:

"id": 38,
"name": "Dispatch-of-goods",
"file_name" : "file1.bpmn"
"description": "A bpmn diagram",
"modeling_language": "bpmn",
"model": ...

42

Chapter 6. System Implementation

"versions": [
{

"id": 86,
"name": "Dispatch-of-goods",
"file_name" : "file1.bpmn"
"description": "A bpmn diagram",
"modeling_language": "bpmn",
"model": ...,
"version_number": 1.0,
...

},
...
...
]

Figure 6.9 illustrates the web interface section for managing models. The interface
allows users to query models by the “name” attribute. Query results are presented in the
form of a list. By pressing the “Edit” button, it is possible to view the details of the model
(i.e. metadata) and apply some modifications. By pressing the “Add Model” button, users
can upload their own process models and associated metadata.

Figure 6.9: Screenshot of the GUI’s models list page.

Domain Management
Similar to model management, domain management refers to performing CRUD actions
on a set of domains. Users can specify a number of application domains (e.g. healthcare,

43

Chapter 6. System Implementation

banking, and retail) through the domains interface along with associated tags/labels.
The system uses the labels to compute a similarity check between the domains and the
collected process models. Figure 6.10 shows an example of defining a new application
domain including associated tags.

Figure 6.10: Example of an application domain consisting of a set of
related tags.

44

CHAPTER 7

Evaluation

This chapter describes how the different aspects of MAAS are evaluated. In particular,
Section 7.1 describes the evaluation methodology. Then, in Section 7.2 the evaluation
results are provided. Lastly, Sections 7.3 presents the observations based on the evaluation
results.

7.1 Methodology
In order to investigate what impact MAAS has in the model analytics workflow of re-
searchers, we decided to conduct a case study taking a single-case, holistic design [54].
This means that MAAS will be the global unit of analysis. Our approach uses a com-
bination of qualitative and quantitative data analysis, inspired by the work in [36]. In
particular, we collect qualitative data through interviews and quantitative data through
a questionnaire. With the interview results, we aim to understand MAAS’s strong/weak
points and why the participants had particular experiences. In contrast, the questionnaire
results will serve to understand how the participants experienced the usability aspects of
MAAS. In addition to this, a benchmark will be conducted, comparing the manual ap-
proach with the new approach using MAAS. Overall, with the results of this case study,
we aim to derive new hypotheses and build theories regarding the effectiveness of MAAS
in the model analytics workflow of researchers.

7.1.1 The Case Study
As described above, the case study of MAAS consists of a questionnaire, interview, and a
benchmark. The interview questions and questionnaire can both be found in Appendix A.
The questionnaire consists of 12 questions on a seven-point Likert scale about MAAS that
are based on the Technology Acceptance Model (TAM) [32, 36]. Furthermore, we modified
each question to talk about MAAS more specifically. In addition to the 12 questions, we
incorporated a Net Promoter Score (NPS) question [41] to get a better understanding of
whether or not researchers would recommend MAAS to others: “How likely is it that you
would recommend MAAS to others?”.

The TAM questionnaire consists of six perceived usefulness (PU) and six perceived
ease-of-use (PEU) questions. PU is defined as “The degree to which a person believes that

45

Chapter 7. Evaluation

using a particular system would enhance their job performance.” [10]. On the other hand,
PEU refers to “The degree to which a person believes that using a particular system would
be free of effort.” [10]. The purpose of TAM is to predict future use instead of rating the
experience of actual use [36]. We will therefore use the modified TAM (mTAM) proposed
by Lah et al. [32]. In contrast to TAM, in mTAM, respondents can indicate a rating
regarding actual user experience instead of anticipated use. Similar to TAM, the mTAM
questionnaire consists of six PU and six PUE questions, which can be found in Appendix
A.1.

A semi-structured interview will serve as the main input of the case study. This means
that questions are planned before the interviews but not necessarily asked in the same
order as they are listed. In addition, probing questions will be asked with the aim to
get more specific or in-depth information about a subject. By following the interview
guidelines [46], we designed 11 interview questions listed in Appendix A.2. With the
interview questions, we aim to understand MAAS’s strong/weak points regarding usability,
workflow automation, and performance.

Participants were selected based on their experience with the Arrowhead Framework
and model management and analytics. Furthermore, participants were asked via email
to participate (voluntarily) in the case study. This amounted to three participants with
hands-on experience with the Arrowhead Framework and some background in model man-
agement and analytics. Two of the participants are PhD candidates, and one participant
is a PDEng student. All of the participants have varying knowledge about the concepts of
the Arrowhead Framework. An online “tutorial” session was held with the aim of getting
the participants on the same level of understanding. During this session, a demo of MAAS
running on the Arrowhead Framework was given, and participants were asked to perform
some tasks using MAAS with the possibility to ask questions. After the session, partic-
ipants were given four days using MAAS to crawl BPMN models from GitHub, filtering
the crawled models based on some criteria, and transforming the filtered models to the
EPML format.

The mTAM questionnaire was distributed to the three participants via email as a
Word file which the participants could fill in. The interviews were held online through
Microsoft Teams, and every interview took approximately 30-40 minutes. All interviews
were recorded with the permission of the participants, and after each interview session,
audio recordings were transcribed manually, aiming to be as complete as possible. In
some cases, filler words, interjections, and stutters were excluded as they did not directly
contribute to the evaluation. However, the remainder of the interview transcripts were
left verbatim. This resulted in a transcript length of 10 pages on average per interview,
which can be found in Appendix B.2. Furthermore, audio transcripts were sent to the
corresponding interviewees with the opportunity to give some feedback.

The interview transcripts were analyzed using the card sorting method [8, 36], con-
sisting of the preparation phase, execution phase, and analysis phase. First, during the
preparation phase, we selected statements/paragraphs about MAAS and turned these into
so-called cards. In some cases, irrelevant statements, e.g., in-between conversations not
relevant to answering the research questions were omitted. Next, during the execution
phase, we put the extracted cards in an Excel sheet and sorted the cards into meaningful
groups. In general, there are two types of card sorting. Open card sorting does not have
predefined groups, i.e., the groups are identified during the card sorting process. Closed
card sorting on the other hand does have predefined groups. In our case, we used the
open card sorting method. Lastly, for the analysis phases, we constructed a hierarchical

46

Chapter 7. Evaluation

model of the identified themes, aiming to represent the mental model of the participants
regarding MAAS.

7.1.2 Threats to Validity
In order to assess the validity of our empirical study, we use the following validity aspects
[54, 13]: internal validity, external validity, conclusion validity, and construct validity.
Each aspect is discussed further in more detail below.

Internal validity considers the study design itself and is used to determine whether the
results really do follow from the data. In our case, a factor to consider is the fact that the
participants have varying knowledge about the Arrowhead Framework and model man-
agement and analytics in general. For instance, one participant may be more adept with
certain tools related to model analytics compared to another participant. This difference
in knowledge may affect how the participants feel about the usability and overall effec-
tiveness of MAAS. To reduce this knowledge gap as much as possible, we hosted an online
tutorial session where we asked the participants to perform a set of tasks using MAAS. In
addition, participants were allowed to ask questions regarding the tool and the Arrowhead
Framework.

External validity focuses on whether claims regarding the generality of the results are
justified. In our case, the target audience of MAAS are researchers, and the case study
was conducted with two PhD candidates having backgrounds in computer science and one
PDEng student having a background in mechanical engineering. In general, the popu-
lation of researchers have different characteristics and come from different backgrounds.
Because of this, we cannot be certain whether the results of the study can be generalized
to researchers in general. Another factor to consider is the low number of participants in
the study, which may affect the generalizability of the study as well.

Conclusion validity considers whether the conclusions reached in a study are correct. A
factor to consider here is the card sorting method used to analyze the interview transcripts.
In particular, we selected paragraphs/statements about MAAS and turned these into
cards. Consequently, we identified themes that best represented the card statements. A
risk to consider here is that the card sorter can introduce some bias in categorizing the
cards, e.g., fishing for a specific result. To reduce this bias, we conducted card sorting
with another software engineer.

Construct validity considers whether the theoretical constructs are interpreted and
measured correctly. In our case, this refers to the question of whether our study measures
the effectiveness of MAAS in the model analytics workflow of researchers. First of all, this
question is very broad and not really quantifiable. We have, therefore, defined two em-
pirical sub-questions as presented in Section 3.2. One question considers the performance
aspect and another considers the usability aspects of MAAS. For both questions, we used a
combination of qualitative and quantitative research techniques. A risk to consider is the
experience level of the user and the specifications of the test machine for the benchmark,
which may affect the results. However, we do think that the benchmark provides an indi-
cation of how the manual approach compares to the automated approach. Furthermore,
we constructed the interview questions according to the guidelines [46], but there is no
guarantee that they are the right questions.

47

Chapter 7. Evaluation

7.2 Evaluation Results
The interview transcriptions and questionnaire results can be found in Appendix B. In
Section 7.2.1 we describe our findings based on the questionnaire and benchmark results.
Lastly, in Section 7.2.2 we explain how we analyzed the audio transcriptions and report
our findings.

7.2.1 Quantitative Results
Using the questionnaire results (see Appendix B.1), we computed mTAM scores for PU
and PEU following the approach in [32]. MAAS scored 94 on PU and 67 on PUE, leading
to an overall mTAM score of 81. Unfortunately Lah et al. [32] do not specify a way
to interpret the mTAM values. On the other hand, mTAM is intended to be similar to
the System Usability Scale (SUS), and we use corresponding guidelines to interpret SUS
scores [5]. By following these guidelines, MAAS with an mTAM score of 81 would be rated
acceptable on a acceptable/not acceptable scale. Furthermore, MAAS would get a B on
an American grading scale, and a excellent on an adjective scale.

As for the NPS question, two participants answered with an eight, and one participant
answered with a nine, meaning that two participants are neutral, that is, being neither
promoters nor detractors and one participant is a promoter [41]. This translates to an
NPS score of 33, which can be considered as good.

Regarding the benchmark, we measured the model preparation time between the man-
ual approach and the automated approach using MAAS. We define model preparation time
as the execution time to collect ten process models from GitHub, validating the process
models against their metamodel, perform filtering, and finally transforming the filtered
models to a target format. We collected ten process models from GitHub manually and
utilized Apromore for storage for the manual approach. Consequently, we used Apro-
more to validate the collected process models, conduct filtering and finally transforming
the filtered models to a target format. In contrast, for the automated approach, we in-
corporated MAAS to perform the collection/preparation of the ten process models. A
comparison between the two methods is depicted in Table 7.1.

Using MAAS Preparation Time
Preparing 10 process models NO 10 min
Preparing 10 process models YES 1 min

Table 7.1: Comparison between the two methods of collecting/preparing
process models.

7.2.2 Qualitative Results
As mentioned in Section 7.1.1, the interview transcriptions were analyzed using the open
card sorting method. During the card sorting session, categories we rearranged, and in
some cases, deleted or merged if they were redundant. This process amounted to 66 cards
grouped into 29 categories. At the highest level, we found three main categories: tops, tips,
and neutral statements. Furthermore, we found subcategories and even subsubcategories
within the high-level categories. According to the card sorting method, a hierarchical
structure was constructed depicting the identified categories and their relations, which are
illustrated in Figure 7.1.

48

Chapter 7. Evaluation

Tops (3/35)Tips (3/29)

Neutral (1/1)

Automatic GitHub
login (1/1)

Combine Existing Tools
(1/1)

Completeness (3/7)

Crowded/Unclear
Filtering Form (2/3)

Data
Collection/Preparation

(2/3)

Defining Domains (1/2)

Add Predefined
Domains (1/1)

Adding Tags (1/1)

Crawler (2/3)

Startup (1/1)

Shutdown (2/3)

More Advanced
Features (1/2)

Easy To Learn (2/2)

Extensibility (1/2)

Academic Use Case
(1/1) User Interface (1/1)

Increase In
Productivity (1/1)

Saving Time (3/11)More Filtering Options
(2/3)

More Information (2/2)

Obvious Navigation
(1/2)

Other (1/1)

Model Filtering (1/1)

Simplicity (3/4)

Unclear Instructions
(2/4)

Visual Feedback (1/2)

Figure 7.1: An overview of the identified categories after the card sorting
session. Numbers in parentheses represent: number of participants/number

of statements.

7.3 Discussion
Based on the quantitative and qualitative results of the case study, we can make the
following observations about MAAS:

• Generally, participants are satisfied with MAAS (35 tops compared to 29 tips and
an mTAM score of 81). They believe that MAAS incorporates most of the required
functionality and that it saves a significant amount of time in collecting/preparing
models for analytics as demonstrated by the benchmark.

• Most tips refer to the user interface of MAAS and nice-to-have features such as
tooltips, visual feedback, and hints. In contrast, most tops refer to the effectiveness of
MAAS regarding model collection and preparation. These observations are reflected
in the questionnaire results, where PU scored significantly higher than PUE.

• Participants feel that MAAS is easy to use and learn. More specifically, the user
interface is simple, and the provided options do not overwhelm the user.

• Most participants had trouble with operating the model crawler, in particular with
terminating an already running crawler.

• Overall, participants would have liked more filtering options and the ability to hide
segments of the filtering form as they felt the user interface was too crowded/populated.

49

Chapter 7. Evaluation

• There is less consensus when it comes to tips compared with tops. More specifically,
there are tops that all three participants mention. On the other hand, no tips are
mentioned by all participants.

• The tip regarding automatic GitHub login is something we cannot solve at the
moment due to how GitHub handles user authentication.

The case study results provide some valuable insights regarding the effectiveness of
MAAS in the model analytics workflow of researchers. The results suggest that MAAS
is easy to use and it saves a significant amount of time in the model analytics workflow.
However, due to the low number of participants, whether the evaluation results can be
generalized is yet to be seen. In light of this, we hypothesize that: “MAAS is perceived
as an effective tool in reducing the effort it takes to prepare models for analytics”.

50

CHAPTER 8

Conclusion and Future Work

This chapter provides conclusions based on the literature study, implementation, and eval-
uation results. The chapter concludes with the potential future works for the continuation
of this thesis.

8.1 Conclusion
This section iterates over the research questions defined in Section 3.2 and answers those
research questions based on the literature study, implementation, and evaluation results.

RQ 1: How can we develop or integrate a model analytics automation system in the Ar-
rowhead Framework?

Based on the literature study on the state of art model repositories, it can be con-
cluded that there are several tools for managing and storing models. In particular, they
provide check-in/check-out, model versioning, collaborative modeling, and model analyt-
ics features. We have also looked at several tools that implement features that are also
of interest, namely, repository mining, model validation, and model transformation. We
designed an architecture for our model analytics automation system and implemented a
running prototype on the Arrowhead Framework. Our proposed system is elaborated in
Chapters 5 and 6.

The architecture of MAAS is based on a three-tier architecture consisting of the pre-
sentation, repository management, and storage layers. The presentation layer provides
the interface of MAAS, allowing users to interact with the underlying model repository
system and model preparation pipeline. The repository management layer is the central
entity of MAAS, consisting of the business logic of the core components. Furthermore, it
acts as an intermediate layer between the presentation and storage layers. The storage
layer contains the data of the software architecture, where a set of services collaborate to
deal with the system’s data.

Our approach consists of adapting the SOA-based local automation cloud architecture
of the Arrowhead Framework, which provided many advantages. First, it adds an abstrac-
tion layer by which new systems providing additional services can be included into MAAS

51

Chapter 8. Conclusion and Future Work

and all the systems in the local cloud. Hence, a software engineer could design and imple-
ment a new system to automate additional steps or add new features enhancing the model
analytics workflow. Furthermore, we implemented several core systems, providing services
to crawl, store, validate, filter, and transform models, all running as individual systems
in the local cloud, exchanging services to perform an automation task. The architecture
of these systems permits flexibility by applying several software design patterns such as
the factory method. Hence, software engineers can extend these systems with additional
features such as page parsers for different software repositories. And last but not least,
the architecture is able to scale up to meet increased workloads, by incorporating stronger
or additional devices in the local cloud.

RQ 2: How effective is the system in reducing the effort it takes to prepare models for
analytics?

This thesis aims to design and implement an effective treatment supporting the model
analytics workflow of researchers. To determine whether the treatment produces the de-
sired effects in a real-world scenario, we conducted empirical research. More precisely, we
are interested in how effective the treatment reduces the effort it takes to prepare models
for analytics. To answer this empirical question, a single-case study taking a holistic de-
sign was conducted. This means that the treatment was the global unit of analysis. This
empirical research question was divided into two sub-questions which are answered in the
following.

RQ 2.1: Can we reduce the time it takes to prepare models for analytics?

Based on the interview and benchmark results, we can answer that we can significantly
reduce the time it takes to prepare models for analytics. Instead of manually collecting
process models from software repositories, validating, filtering, and finally transforming
them, we can automate the complete process through the system. Thus the execution time
to collect/prepare models is significantly reduced, as demonstrated by the benchmark com-
paring the manual approach with the automated approach. Furthermore, the majority of
participants indicated that the system would reduce a great amount of effort in prepar-
ing models for analytics and thus effectively improving the job performance of researchers.

RQ 2.2: How easy is it to interact with the system?

The questionnaire and interview results have shown that the system is simple and easy
to interact with. Furthermore, participants were generally positive about the system (35
tops compared to 29 tips). Moreover, an mTAM score 81 indicates that the participants
are overall satisfied with the usability aspects of the system. However, participants had
widely different recommendations and nice-to-have features regarding the user interface.
It, therefore, seems unattainable to develop a user interface that meets the requirements
of everyone involved with model management and analytics. However, we do believe
that the interface provides sufficient flexibility and options that make interacting with the
underlying system easier to perform a particular job.

52

Chapter 8. Conclusion and Future Work

8.2 Recommendations for Future Work
This thesis has been subject to time limitations that bound its achievements. For future
work, there are several directions to continue this research.

1. As mentioned in Section 5.3, we only used the core Arrowhead systems to implement
the systems that form the model preparation pipeline of MAAS. In the future, we
recommend incorporating the choreographer system [30] into MAAS. This system
makes it possible to execute pre-defined workflows by levering the orchestration and
service consumption of the Arrowhead Framework [3]. Each workflow consists of
three mandatory components: plans, actions, and steps. With plans, it is possible
to define a workflow by name, consisting of a set of actions grouping together several
steps. Through these workflows, it is possible to execute a number of functionalities
provided by the systems in a particular sequence.

2. As described in Section 6.1.1, we successfully designed and implemented a model
crawler leveraging multi-threading to run crawling jobs in parallel. However, this
design is bounded to one machine/device only. Hence, the design can only scale up
vertically and not horizontally by adding a more powerful machine. In order to scale
horizontally, we recommend designing a distributive crawler. Essentially, allowing
the system to handle the increased workload by adding more devices to the local
cloud.

3. We have implemented a heuristic domain mapping mechanism, which extracts all
the node names from a process model and computes a similarity score between
the defined domains. However, this method is not accurate in mapping domains.
Therefore, we recommend incorporating more sophisticated techniques in mapping
domains with process models such as machine learning.

4. Overall, based on the evaluation results, we would recommend improving the user
interface. In particular, improving the user-friendliness of the interface, by incorpo-
rating clear instructions, hints, and visual feedback. While the current implemen-
tation of the interface provides the required functionality to operate MAAS, it is
very basic and requires some technical knowledge from the user. Furthermore, we
recommend streamlining the user authentication process of the GitHub crawler.

5. We evaluated the usability aspects of MAAS using a semi-structured interview and
an mTAM questionnaire. However, because of the low number of participants, we
cannot claim with certainty that the results can be generalized to a broader audience.
A further improvement would be to replicate the interview and questionnaire with
a larger sample size.

53

APPENDIX A

Case Study Documents

A.1 Questionnaire
Think about the tasks that you performed with the Model Analytics Automation System
(MAAS) while you answer these questions. Some statements refer to a “job”. For these
statements, you can interpret model analysis (e.g. clone detection on large quantities of
process models) as a job. Please read each statement carefully and indicate how strongly
you agree or disagree with the statement (1 = extremely disagree and 7 = extremely
agree) by putting an X in the appropriate table cell.

1 2 3 4 5 6 7
Using MAAS in my job enables me to accomplish tasks
more quickly.
Using MAAS improves my job performance.
Using MAAS in my job increases my productivity.
Using MAAS enhances my effectiveness on the job.
Using MAAS makes it easier to do my job.
I have found MAAS useful in my job.
Learning to operate MAAS was easy for me.
I found it easy to get MAAS to do what I want it to do.
My interaction with MAAS has been clear and understand-
able.
I found MAAS to be flexible to interact with.
It was easy for me to become skillful at using MAAS.
I found MAAS easy to use.

Could you answer the following question, where 0 = not likely and 10 = very likely.

0 1 2 3 4 5 6 7 8 9 10
How likely would you recommend MAAS
to others?

54

Appendix A. Case Study Documents

A.2 List of Interview Questions
1. Background.

(a) Can you tell me a bit about yourself and your experience with the Arrowhead
Framework?

2. Usability.

(a) How easy or hard was it using MAAS?
(b) How easy or hard was it learning to use MAAS?
(c) How useful do you think MAAS might be for preparing models for analytics?
(d) Are the UI elements a good choice for the data management aspects of the

system (i.e. models, domains)? What would you add, change?
(e) Is the proposed “Filtering form” a useful approach for model filtering? Why/Why

not?

3. Workflow Automation.

(a) How do you think MAAS is going to impact the model analytics workflow of
researchers?

(b) Would you say that the provided core systems (providing: crawling, validation,
transformation, filtering) are sufficient in covering the steps in the model ana-
lytics workflow of researchers? What steps are still missing? What additional
steps would you like to be automated by the system?

4. Performance.

(a) How much time do you think you have saved by using MAAS, instead of having
to use a manual approach?

(b) Do you think that MAAS (providing: crawling, validation, transformation,
filtering) will reduce the effort it takes for researchers to prepare models for
analytics? Why/How?

5. Other.

(a) Any additional feedback that you might have for MAAS?

55

APPENDIX B

Case Study Results

B.1 Questionnaire Results
Table B.1 presents the results of the questionnaire. Each column refers to a particular
questionnaire question as follows:

• Q1: Using MAAS in my job enables me to accomplish tasks more quickly.

• Q2: Using MAAS improves my job performance.

• Q3: Using MAAS in my job increases my productivity.

• Q4: Using MAAS enhances my effectiveness on the job.

• Q5: Using MAAS makes it easier to do my job.

• Q6: I have found MAAS useful in my job.

• Q7: Learning to operate MAAS was easy for me.

• Q8: I found it easy to get MAAS to do what I want it to do.

• Q9: My interaction with MAAS has been clear and understandable.

• Q10: I found MAAS to be flexible to interact with.

• Q11: It was easy for me to become skillful at using MAAS.

• Q12: I found MAAS easy to use.

• Q13: How likely would you recommend MAAS to others?

The values for questions 1-12 range from 1 = extremely disagree and 7 = ex-
tremely agree. The values for question 13 range from 0 = not likely and 10 = very
likely.

56

Appendix B. Case Study Results

Participant Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13
A 7 6 6 6 6 6 6 4 5 4 6 5 9
B 7 5 7 7 7 7 5 5 4 3 4 5 8
C 7 7 7 7 7 7 6 6 6 5 5 6 8

Table B.1: The results of the questionnaire.

B.2 Interview Results
This section presents the audio transcriptions of the three interviews.

B.2.1 Interview Results: Participant A
Interviewer: Okay, it’s recording. I will just go over the questions. One by one. The

first question is about your background. So can you tell me about yourself
and your experience with the Arrowhead Framework?

Participant A: Yeah, I actually, my let’s say, my first interaction with the Arrowhead
Framework was when I started my PhD in 2019. And that’s, that was
actually part of my position, I mean, defined as my position, PhD position
and where I wanted to cooperate in this project. First case was between
theory and Philips, so there was an industrial case being done at Philips,
but for some reason, we could not make progress there. But we started
to build our own academic use cases. And, yeah, from there, I started
to learn the framework to work on that. Get some hands on experience.
Yeah, we, I mean, I’ve been working on the framework from that time.
Not I’ve not been, I mean, using it, like, all the time, but at the beginning,
especially it, I spent a lot of time on it to learn what’s going on. But over
time, still, we’ve been using it. There have been a lot of updates on the
framework. I’ve been attending the different workshops, meetings. For the
framework. Yeah, I’ve been following. I mean, technically, like, watching
the progress, what is happening? Trying to adapt.

Interviewer: Yeah. And you already built some services or systems on the framework?

Participant A: Yeah, it was not like real systems. But so, we had two academic use cases
that we started with. One wdents working on similar profile to provide
users, designers, a platform so that they could design their systems. In
Yeah, in there. We had some progress. I mean, I also was involved.
We were working closely with him. We could we did not produce like a
concrete system. It was about design.

Interviewer: Okay, so the architecture.

Participant A: Yeah, the architectural part, system of systems and everything. For the
other projects that you’re also working on now, part of it was about this
model ecosystem. Model and analytics, workflow. And you’re working on
one part of the repository. But there’s also this dashboard to visualize
the models, and also the model analytics system that you built. Yeah.
I mainly focused on the dashboard, and <other researcher name> is re-
sponsible for the analytics part because that was his own research. Yeah,

57

Appendix B. Case Study Results

I had some experience building a system there. And working with the
toolchain, it was not very advanced. But still, we had some working.

Interviewer: And your experience with model analytics and model management?

Participant A: Yeah, that’s actually my research in PhD, analytics and models, finding
similarities, clones in models, and I’m working with this special type of
models, called process models, business process models, you know, about
BPMN and EPML. And yeah. The goal is to find efficient and let’s say,
write algorithms, tools. Develop, right tools for detecting these similarities
as clones, in a good way, and then doing further analysis on these.

Interviewer: Okay. Yeah, so, I think that’s, that’s enough for the background. Let’s go
through the usability aspects of the tool. So how, how easy or hard was
it using the system?

Participant A: Actually, it is. I think it is straightforward. But very difficult. The way
you have made it into tabs, these different tabs of modules based on the
functionality. This is good. This makes it easier to follow what is what
you want to do. But I had a bit problem. I think with the connections
between them. I did not use the tool. Much. But yeah, that was my
first impression, actually, that the links could be better. How you move
through these steps. Back and forth.

Interviewer: So do you mean from the crawler to the filtering part or?

Participant A: Yeah, maybe all of them?

Interviewer: Okay. Yeah.

Participant A: I think it kinda needs to be related in some way. And I just have it open.
Now I’m looking at the UI to see what else is there. Like, these are minor
things, but I don’t know. I mean, generally, I can say it is good. It is
easy to follow. We can see the options. What is there? Of course, you
expected more.

Interviewer: Yeah.

Participant A: Yeah, you always expect the more advanced things. But I understand this
is not on that level. I mean, this is not supposed to be at that level.

Interviewer: Yeah, the web application was supposed to be there. Yeah. Basic not the
main part of the thesis.

Participant A: So yeah, if you want to comment on the UI, I mean, you can find different
things. Why this is here, this should be like this. This should be like that.
I can make such comments, but I don’t know if it’s useful for you.

Interviewer: Yeah, just the general. The main, the main thing, I guess, the yeah, what
was the hardest thing to use?

Participant A: Yeah. At the beginning, for me, the hardest part was this crawler. Yeah.
So it is fully automated. You don’t need to configure anything. That’s the
good part of it. Outside of it. But here, the problem is to get it started.

58

Appendix B. Case Study Results

Interviewer: Yeah, because we have this dummy account already set up in the back-
ground. But it doesn’t work sometimes if you use it on a different machine,
or on a different device. Because, yeah, that’s how GitHub is set up. Yeah,
there is no other way to do it. So then you have to use your own account
credentials.

Participant A: As from a user’s perspective, this is not really a good thing. But again,
just we look at this as an academic case, and we are just looking at how
the system functions. I think we are not focusing much on the, let’s say,
the user interface part. So in that sense, I think that is acceptable.

Interviewer: Yeah. Okay. And how easy or hard was it learning to use the system? So
the first one was about using, and the second one was about learning to
use the system?

Participant A: Yeah, learning. I think it was quick. I think you can learn like the whole
thing in a few minutes. Yeah, you don’t need to spend hours on it. So
yeah. This is easy, I think. I mean, yeah, easy, because you don’t find a
lot. I mean, too many options and features on the UI. Yeah. Maybe a big
part of it is happening, like in the background?

Interviewer: Yeah. A lot of steps are automated,

Participant A: Automated. So actually, there are many options that you can deal with.

Interviewer: Yeah. Wouldn’t you have liked to see more options? Or do you think at
the moment, it’s fine for the system to automate, these options for you?

Participant A: Yeah, I of course, I want it to be automated. Automation is key here. But
I still would expect more options.

Interviewer: Yeah. And what kind of options did you like to see?

Participant A: Yeah, I mean, like, for each of them, for example, for the crawler, if I were
to expect a bit more status, let’s say options and live updates. Like for
the filtering, a bit more instructions on how to use, yeah, total I mean, in
general, I, I find the instructions a bit weak. Yeah. What is happening? I
remember there was something, I don’t know it was in filtering, or I think
it was in filtering that you filter something, and then you search for it, it
makes it a zip file, then you transform the files into other files.

Interviewer: Yeah, you can set the target language to transform.

Participant A: Yeah, for me, I mean, I could not understand this from the UI that this
has happened.

Interviewer: So, it should be more user friendly in that part.

Participant A: Yeah. So yeah, the user should really be able to see that what is really
happening at the moment, the connections. Yeah, maybe some little hints.
Here, and there.

Interviewer: Some labels?

59

Appendix B. Case Study Results

Participant A: Some labels, yeah. To put for the user to know that you, for example, some
explanations. Here, we have this domain tab, for example, but I have no
idea what it means. So I want to see this one paragraph here about what
it means. So such things. And the connections between models like you’re
defining domains, and then where are you going to use these things? Do
you want to see that in the models list? And then when you click on a
model, things like that.

Interviewer: Yeah. So those are the main things, right?

Participant A: Yeah.

Interviewer: Okay, let’s go to the next question. Yeah, so you already have some knowl-
edge about model analytics. And so, yeah, I think also model crawling.
Do you have some experience with that?

Participant A: I did not have previous experience.

Interviewer: Okay. Let’s just say model analytics. So, how useful Do you think the
system might be for preparing models for analytics? How useful do you
think that might be?

Participant A: Yeah, I think it can be very useful if it does really what it says. Like,
GitHub, that you’re crawling, it is a big jungle. I mean, you really get lost
in there. Yeah. If this tool really finds the right models for you. And yeah,
it passes this all through these steps. You know, it, validates, transforms,
stores the model in the right way. So we use it later, then I think this is
a very helpful thing for a researcher. Okay, because, yeah, you provide
the data. So data is the key. In your research, that’s the main input.
Yeah. So yeah, if you prepare this reasonably and acceptably for the user.
I mean, based on what the user expects, then that is really great. I mean,
this system is working well, I think.

Interviewer: yeah. So, yeah, we already discussed this, about the elements and the
labels. So you have already seen the domain model page and the filtering
page, right? Yeah, the UI elements, as you see them currently in the
system. Do you think these are a good choice of UI elements for the
CRUD aspects of the system?

Participant A: Yeah, you actually have, I think, the basic functionality on the UI. Yeah,
maybe. I mean, you can always do a better job on the UI. This is I mean.
I think there is no end to it.

Interviewer: Yeah, yeah. You can keep improving.

Participant A: Yeah, maybe. Also, I don’t know if this is relevant, but maybe somehow
show the flow to the user also on the UI that you have. These are what is
happening, and these are what is supposed to happen. Where are we at
the moment?

Interviewer: Okay. Yeah.

Participant A: Yeah, I think this this could also be nice.

60

Appendix B. Case Study Results

Interviewer: So, show the steps or?

Participant A: Yeah, kind of the steps.

Interviewer: Yes, it would be nice to have. So, you have seen the domain page, and
how to add domains? What do you think about adding tags to a domain?
At the moment, we are just defining a comma-separated string. Do you
think this could be better?

Participant A: This could be better, I think. Yeah, of course, this is like the basic, the
most basic way of defining domains. And yeah, one thing is that I think
there should be predefined domains. That could be nice.

Interviewer: Predefined domains? So?

Participant A: I mean, just a few examples. For example, health, automotive, let’s say
telecommunications.

Interviewer: Something like some default domains, then you can add additional do-
mains if you want.

Participant A: Yeah.

Interviewer: Yeah, okay.

Participant A: And, yeah, and the link tags like this. I think this is very basic. It can be
improved, like, I think having it like as a comma-separated form like this
is not very user friendly. And yeah, I don’t know how else differently this
can be entered. But I can think of... I think there are better ways.

Interviewer: Yeah.

Participant A: I think the tags could be improved.

Interviewer: Yes, maybe a dynamic form is a better way to represent tags?

Participant A: Dynamic form?

Interviewer: Yeah. So maybe you can press on an Add button, and then it adds another
text box for you to put in a tag, so perhaps that’s a better design choice?

Participant A: But yeah, in that case, if you want to add a 100 tags, or a 1000 tags this
can become problematic. Also, for the tags, maybe you could have you
could read it from a file maybe not necessarily.

Interviewer: Yeah. But this file, should also follow some form? It should also be
comma-separated, right?

Participant A: Yeah. Yeah, I was thinking maybe the user could use another tool for
that. And, you know.

Interviewer: Yeah. And then make a comma-separated file.

Participant A: For example, in a normal text file, or CSV file, or an Excel file, like all
these different files could be supported.

61

Appendix B. Case Study Results

Interviewer: Yeah, that’s good. Yeah, let’s just move to the next question because we
have, I think, 20 minutes. So you have seen this filtering form? Where you
can filter models based on the partial name, extension and elements with
some predicates and a number. So, yeah. Do you think this approach is
useful for model filtering? And, why/why not? What would you change?

Participant A: I think the UI could be improved a bit. So here, I see. Three main parts,
I think, general model elements and repository filtering.

Interviewer: That’s right.

Participant A: But yeah, how these are connected. You can’t find out from here, maybe?
Yeah, maybe you see general and model elements as one section that are
related. But maybe you don’t have much idea about repository filters,
how this is. What is the role of this year? I mean, I think this could be
designed in a better way. And it is a bit crowded. I think. The UI for the
model elements, I mean, maybe you could make it simpler. Like here, it
seems that you’re repeating a lot of these fields.

Interviewer: Yeah, another idea is to have one text box. And then you can do your
query, you can type your query in there, but that will be. Yeah, you have
to check a lot of things.

Participant A: Yeah.

Interviewer: So yeah, this was I think, the easiest approach from the UI point of view.

Participant A: Yeah, I can see that. But yeah, with that, you can filter models based on
its content structure. This is really a nice thing. I personally, I think this
is useful. For my research, if it works the way I expect.

Interviewer: Yeah.

Participant A: Yeah, the idea is very nice.

Interviewer: So that’s it about the usability. Let’s go to the other questions. So, you
have used this system, right? And how do you think the system is going
to impact the model analytics workflow for researchers? If we are going
to apply it in, in the real world, how is it going to impact model analytics
workflow?

Participant A: So it’s definitely about the speed? The process?

Interviewer: Yeah, about the process itself, the steps. So in model analytics, we usually
do some data collection and then preparation before the analysis, right?
So, if we introduce this tool, how is it going to impact the workflow of
researchers?

Participant A: Yeah. So, normally you do this manually, right? You mean that right?

Interviewer: Yeah, there are some semi-automated steps, like, crawling. But there are
some other steps that you need to do manually, like transformation or
filtering, maybe also validation. And the system automates that for you.

62

Appendix B. Case Study Results

Participant A: Yeah, these are all automated. All these steps. If there is not a system
like this, you need to do it all by hand. Or maybe there are some tools,
but still, you have to do this, like, separate the connections between them.
Having them all in one place, it is makes the job much easier for the
researcher. But, this is very customized for this model analytics system.

Interviewer: Yeah, but it’s based on the SOA architecture of the Arrowhead Framework.
So you can add other services to extend the system. So it doesn’t have
to be constrained on this. So you can add additional, maybe you can
automate additional steps in the future. So yeah.

Participant A: Yeah. So I like that idea that the design is flexible and scalable. As you
say, you can add other modules based on your need to the system. But the
existing one that we have this is, I mean, customized for our own purpose.
So from that point of view, it makes it easier for the researcher to do their
job.

Interviewer: Okay. Yeah, but don’t you think that the validation and repository mining
are some common steps that every researcher takes?

Participant A: So I think validation needs to be there. Unless you really trust this data
source that you that you know, it really has the right files and data for
you. Yeah. In your case, maybe you don’t need this validation. But in
real life, you don’t have such action to deal with lots of different models
from different sources. Yeah, so you want to test since we’re dealing with
academic cases, we need diversity in our inputs. Diversity comes from
open source, open access data on the internet out there. You really need
this validation. So that is a must-have, I think. Otherwise, I mean, there
are consequences for you later, maybe. If it is not a valid model, then
maybe later, your algorithm will be killed at some point. Yeah. Also, the
same as for crawling. You want to find models from different places, and
projects online? So yeah, if you have no input problem, then maybe you
don’t need any crawling from online resources. But this is, again, I think
it’s something that most researchers need.

Interviewer: Yeah. Let’s, let’s go to the next question. So you have seen that the
system consists of some subsystems running on the local cloud. So we
have crawling, filtering, transformation, and repository systems. Do you
think that these systems are sufficient? in covering the steps of model
analytics? Or what is still missing? Or what additional steps would like
to be automated by the system?

Participant A: Yeah, I think these covered the basic, basic steps, like, you want to get
the right input, right? I mean, that’s the goal here. This is all about
preparing your data at the right data for your input for your tool. So if
you can provide this data, you know, in the desired format for the tool,
then I think you’re doing your job. But you can always have all these
different functionalities features. On top of that, yeah, maybe you can
extend to each of these features. For example, for crawling queue, you
want to specify not only for GitHub but also other types of repositories.
And the same for filtering, I want to customize my filtering differently.

63

Appendix B. Case Study Results

Or transformation, also. I mean, these can be changed. For our research
now, this is enough. I think. This basic functionality works fine. I don’t
know what else can be there for now.

Interviewer: So it’s fine at the moment.

Participant A: Yeah.

Interviewer: Okay, the next questions are about performance. So, how much time do
you think you have saved by using the system instead of using a manual
approach?

Participant A: Yeah, the thing is that I have not actually used it to do a real job for me
getting models and see the results. I mean, for this, you need to spend
some time on it. But I see. I mean, by running the tool for a short while
and see, okay. It is actually working. I mean, but the options that are
listed on the UI, they seem to be useful. So if it works fine, then I think
it is going to save a lot of time. Yeah, I don’t know, like, how we can give
numbers here. I think maybe.

Interviewer: Yeah, just some, do you think weeks days or maybe months?

Participant A: Yeah, I don’t know. Maybe we should maybe decompose it into parts.
Like for each part, for example for crawling, that is one I think, difficult
step, for a researcher. If it is done manually, then you need to do this. I
mean, just you go to the UI, GitHub UI, for example, you type in these
keywords, go over these files in the repository. So it takes hours to get
a few collections of a number of models. You easily spend hours on it.
And the same for filtering I mean, if this is done manually, this is a huge
process actually, you do this for every single model, you have to open it
up, you need to check it for and for some models, for some quantities, even
It is impossible to do this manually. Yeah, transformation. That is also,
it is not possible to do it manually. I mean, for every model. Also the
validation Yeah. These parts, I mean, I think, in small quantities, you can
do this manually. And for part of it, crawling and filtering, but validation
transformation. I don’t think this is the can be done manually. A tool is
needed here. But yeah, even for these little, mini small number of models,
you have to spend a lot of time on it. Simply days, I can say, okay, but
thinking of models of big quantity, like let’s say 1000s of models, under
1000s of models. You cannot really compare to manual. It’s not possible
like that.

Interviewer: Yeah. Yeah. So, we need to be a bit fast because of the time. Do you
think that the system? Yeah, maybe this same question, but yeah, do you
think that the system will reduce the effort it takes for the researchers to
prepare models for analytics?

Participant A: Yes. I think so. Yeah, based on what I saw from the system, I think it’s,
it is able to do the job. Yeah, I can’t really say it is going to be useful,
for example. Not useful, I mean, it is exactly what I want in my example
research. But I know that it is. It is very helpful. Yeah, in general, I
can see that there’s a good use for it. It can be useful. But yeah, I was

64

Appendix B. Case Study Results

thinking of my own case, and because I have not tested the system, I can’t
give like very concrete answers. But definitely, it will reduce the effort.
That’s for sure.

Interviewer: That’s good. So, yeah. Do you have any other feedback for the system?

Participant A: No, I don’t think so. I mean, I think we discussed a lot on the system and
different parts, how it can be improved. I find it a good system overall. I
can say. Yeah. As I mean, as a basic model repository system. Not very
advanced. I think it is a very good start. Yeah, you can build on it. I
mean, it is. Yeah, one thing is I find it that they are I mean, people develop
systems, but it is difficult to continue on it. Yeah, I don’t know your I
know a bit about your design, but I’m not sure about the implementation
of how this is done. But writing good, clear code. I think this is very
important. So that others can get continue on this. Otherwise, yeah, it
is just some nice tool that is nice to have. Hopefully, we can continue on
this one.

Interviewer: Yeah, there are some improvements there. I need to. I need to clean up a
lot. But yeah, so that was the interview. I will stop recording.

B.2.2 Interview Results: Participant B
Interviewer: Okay, so the first question is about your background. So, can you tell me

a bit about yourself and your experience with the Arrowhead Framework?

Participant B: Okay, so generally, my background is in mechatronics system design, so
mostly about mechanical engineering. And I had this one year project
regarding the Arrowhead Framework with Philips. So what I’m doing is
to implement the arrowhead framework to have the interaction between
multiple local clouds. So I am quite familiar with the structure and also
how to implement the arrowhead framework.

Interviewer: Okay. So you know, of the concepts of local clouds

Participant B: Yeah, the local clouds and all the service registry orchestrator and autho-
rization, these core systems and how they interact with the application
system. So that for that part, I’m quite familiar.

Interviewer: Okay, that’s nice. Yeah. So that’s it about the background. The other
questions are regarding the usability of the system.

Participant B: Yeah.

Interviewer: So how easy or hard was it using the system?

Participant B: So for the system? Yeah, I think you provided it. I think it’s quite
straightforward. The user interface is quite clear for me. And so overall, I
would say it’s easy and clear to use, of course, there are some I would say,
like, I think there are some steps that will lead to some point that there’s
no turning back. Well, you probably want to, let’s say to stop the crawler.
It’s like that. It’s a bit. Maybe some drawback there. But overall, I will
say it’s quite easy to use.

65

Appendix B. Case Study Results

Interviewer: So there needs to be the ability to stop the crawler, then initiate another
crawling request?

Participant B: Yeah, I think that’s for now. Right? I had to stop the instance of the
crawler. And besides, I, to be honest, I don’t really understand how it
works. The crawler is going through the whole GitHub repository?

Interviewer: Yes, it, it uses the GitHub search method to search for files ending with
a specific extension, like BPMN, and then it just goes over all these files
and downloads, scrapes these models.

Participant B: So in the scope of the whole GitHub?

Interviewer: Yeah.

Participant B: So and, I realized that every time I do this search, the result will be the
same. So it’s going through the same path, is that correct?

Interviewer: No, that depends on the search. The search doesn’t always return the
same order of the results, it’s always different. But you will get the same
amount of models, but not in the same order.

Participant B: Okay.

Interviewer: And it also takes the modifications of models into consideration. So maybe
models are deleted or added. So yeah.

Participant B: Oh, yeah that part? Yes, I just want to clarify.

Interviewer: Yeah. Let’s go to the next question. So yeah, how easy or hard was it
learning to use the system? So not using but learning?

Participant B: Yeah. To learn it was, I would say, also quite straightforward, especially
that you arrange this demonstration session. So it’s quite clear for me, as
long as I have the system launched in my environment, and then every-
thing’s fine.

Interviewer: Were there any problems you encounterd?

Participant B: During the launch of the system?

Interviewer: Yeah, yeah.

Participant B: I think that the manual you provided is already clear enough. And, and
you also did make that adjustment regarding that typo you made. And, so
besides that, everything’s fine. It’s a, the only, how to say it, ambiguous
part from my side is what these terms really are. I don’t really know what
a crawler is, but after I did some research I got to understand them and
that’s fine.

Interviewer: Yeah. Okay. So maybe the terminology part could be better? And how
useful Do you think the system will be useful for preparing models for
analytics?

Participant B: You may like to get as many models as possible. Is that correct?

66

Appendix B. Case Study Results

Interviewer: Yeah. And then preparing them for analytics?

Participant B: specific format in BPMN, or EPML?

Interviewer: Yeah. And transformation, validation.

Participant B: In that case, I would say, it’s really useful. To be honest, without this
kind of system, I don’t know how people can get, like, huge amount of
models out of GitHub, and from the perspective of the transformation
from BPMN to EPML. And I saw that it’s done. And I have to say, I
don’t know how to verify if it’s correct, but I believe so. It is. Overall,
will say it is useful.

Interviewer: Okay. Yeah. So usually, people go manually over the steps. So there are
crawling tools for crawling repositories. So that can happen automatically.
But the other steps need to be done manually, like the transformation and
validation of models. So there is no other tool to compare it to.

Participant B: And, and if you want to, if you’re looking for a specific type of model,
you just use you call it the tag thing. Yeah, the extension. Yeah. And so
yeah, I think then it will be quite nice to use this system.

Interviewer: Yeah. So it will be useful in your opinion?

Participant B: In my opinion, it will be.

Interviewer: Okay. Another question about usability is. So, you have seen these UI
elements. For crawling or creating new models? Do you think they are
the right choice of UI elements? What would you add or change?

Participant B: In terms of preparing models for analytics?

Interviewer: Yeah, but yeah, overall, the user interface of the web application, you
already have seen some text fields for creating new models. And you saw
UI controls for crawling, doing some filtering.

Participant B: Yeah.

Interviewer: Yeah, what should be changed about this?

Participant B: Maybe I can think I sent you a screenshot before. I just want to review
it again. How can I check this out? Assuming all these types of models,
domains, crawler filter upload, and the corresponding user interface so for
the models part, I think you had this option to add models?

Interviewer: Yeah.

Participant B: And did you have the option to delete them?

Interviewer: Yes. If you go to the Edit page, the update pages of a model, then you
can delete them.

Participant B: Okay. Yeah, I’m just, yeah, I only have a snapshot from the application. I
am not running the system in the background. And, for the domain part.
The domain part is the tag thing I mentioned.

67

Appendix B. Case Study Results

Interviewer: Yeah. We had this big text box, and then you could separate the string
with the format.

Participant B: And, yeah, and the crawler part. Yeah, the only, let’s say the problem with
the crawler, I was gonna say, just how can I stop it? Without shutting
the complete crawler system down?

Interviewer: Yeah, okay. And information-wise, do you? Do you want more information
from the crawler?

Participant B: Do you mean? At least for now I can see from the crawler that you can
see how many links are collected, how many models are collected, and how
many models are skipped. I will say, I think it’s satisfactory for me. I, I’m
not sure in terms of this model, model preparing, like what else, what the
other information is needed that to me, for now, information is sufficient.
And also, the user interface is quite clear, you got different blocks with
different colors in a really clean, clear form style, so it’s fine.

Interviewer: Okay. Yeah, let’s go to the next one. So you have seen this filtering form?

Participant B: Yeah.

Interviewer: Do you think this is a useful approach of filtering? So, you have the option
to choose a predicate, like, larger than, then choose an integer to filter on
some elements of these models. Do you think that’s a useful approach for
filtering?

Participant B: Yeah, I think so. As long as you can, we can have a certain I mean, you
can assign a specific criteria to retrieve the needed information, and then
it’s a perfect function for this kind of system. Okay, and I think you also
have the option to, to say that you want to download it in the BPMN or
EPML format. And the transformation is done automatically. So this is
really nice.

Interviewer: Okay, that’s fine. Let’s go to the next one. How do you think the system
is going to impact the model analytics workflow of researchers?

Participant B: Well, yeah, to my knowledge, as you mentioned, there is no such such
kind of system that even there’s no something similar in the market or in
the anywhere. And I would say, without this kind of system, if you have
to do like, a huge amount of model analytics on your own, or let’s say
manually, then I think this kind of automatic system will definitely have a
huge impact. Especially if I, I mean, if I if I am the researcher who wants
to, let’s say collect a huge amount of models and to check if these different
models have some similarity or compare them and to have a system to
automatically optimize a process of collecting data, it will be perfect.

Interviewer: Okay. And yeah, you have seen that we have these subsystems running
in the local cloud of Arrowhead Framework. So we have this crawling
filtering, transformation and repository systems. Do you think these are
sufficient in covering the steps in the model analytics? Or, yeah, what
do you think is missing? Or what additional steps would you like to be

68

Appendix B. Case Study Results

covered? What additional steps would you like to be automated by the
system?

Participant B: Yeah, before that, what is repository exactly?

Interviewer: A repository is simply a place to store models. Furthermore, it allows
you to retrieve models based on a database query. Just means of storing,
storing retrieving data.

Participant B: Yeah, sufficient? Yeah, I, yeah, I cannot come up with another system
that might be needed. Maybe you can give me something. But yeah.

Interviewer: Yeah, it’s usually dependent. Some researchers think this is sufficient.
And, yeah, others might want even more systems in the local cloud to
automate more steps.

Participant B: I mean, like, I would say, if we can think about this in, in a real scenario, if
a researcher, he wants to, say gather a bunch of models in a certain view,
and then do some, analyzation. And then what he can do is, yeah, he
has this crawler to gather the data. And then he even got the domains to
see which type of data he’s getting. And then, after retrieving a bunch of
data, he can have this filtering system to filter out something not needed.
And then he might need a certain format, and then that can be done with
the transformation system. And then I will say it’s sufficient. I’m like
I say, I’m not experienced with this so I’m not sure. There is any other
system that can add other value into this.

Interviewer: Yeah. Yeah, let’s go to the last few questions. So yeah, these questions
are about the performance, the speed of the system. I don’t know if if I
can ask you this question. Because you don’t have that much knowledge
about model analytics.

Participant B: I really hope I’m not wasting your time.

Interviewer: But I’m still going to ask. Yeah, so how much time do you think you saved
by using the system instead of using a manual approach? Like, how much
time do you think you have saved?

Participant B: So, I just want to clarify, so if, like without this system, and people really
just manually search for the models? They are?

Interviewer: Yeah, you just go over GitHub, you download a model. Yes, let’s just take
one model, for example, you go to GitHub, you download this model from
a certain repository. And then you want to prepare this model, so you
validate it against a metamodel. And then, you want to maybe you want
to extract some metadata, and then transform it to another language and
other formats, like EPML, then store it in a database. So that kind of
scenario you can think of.

Participant B: Yeah, I think that leads to another question I have from my side is with
this crawler function, and how do you know that the crawling process is
enough? Like you get a lot of models, then how do the researchers know,
It is at a point that the amount of models is enough? I’m not sure about

69

Appendix B. Case Study Results

that. And also, like you mentioned, how to validate or verify these models
are ”good” models.

Interviewer: Yeah. I understand what you mean. But let’s say hypothetically. That,
like 1000 models are enough. Do you think you think, you will save more
time with the system? Compared to the manual approach?

Participant B: Yeah, if I have a target amount of models, and with this, yeah, with this
system, they will save a lot of time, and in terms of how much time will
be saved? I don’t know. Just so yeah, the difference between a search
for models for 1000 times manually and the difference? Yeah. And then
to compare it with gather all the 1000 models with a crawler? The time
difference will be like that. I don’t know. I don’t know how people do this
manually for 10000s of models, then you use your own crawler?

Interviewer: There are already some repositories online, that already crawled GitHub
to get some models, and then you can use this repository to query these
models and then download them immediately. But then you have to do
the additional steps manually, like validation against a metamodel and
model transformation, and filtering.

Participant B: Okay. So, it sounds like the difference between your system MAAS, we
can actually just go through the whole scope of GitHub, and then you
get what you want. Yeah. And after that, you do these filtering, or
transformations in your local site. On the other hand, without this, you
just, you have to look for a specific repository on GitHub. And query, and
make queries in that repository. And that difference in terms of time, say?
Is it time-consuming to look for that exact repository? In a GitHub?

Interviewer: No, you don’t have to look for specific repositories on GitHub. In some
cases, we have these databases you can find through a Google search that
crawled repositories on GitHub. So they have already done some work for
you.

Participant B: Okay.

Interviewer: But only for some types of models. And if yeah, for the other types, you
might have to use your own crawler.

Participant B: Okay.

Interviewer: Your own model crawler. So, yeah, it depends on whether it exists or not.
For UML and BPMN models, there are some databases you can use.

Participant B: Yeah?

Interviewer: But for the other types, like EPML, you really need to use a crawler to
crawl these models.

Participant B: Okay, so, so there are some other options to automatically retrieve it, you
have to I mean, you are kind of confined with something provided by the
others.

Interviewer: Yeah, yeah.

70

Appendix B. Case Study Results

Participant B: So how much time to think. So, in terms of how much time will be saved,
I think it depends on what you are looking for. Is that correct?

Interviewer: Yes.

Participant B: And so if I, I put it into like two aspects. So, if you are looking for
something, it’s already available.

Interviewer: Yeah, but they are available, but they are in a raw format. So, they are
not validated.

Participant B: And with your system they are validated?

Interviewer: With my system, they are crawled and then validated against a meta-
model, automatically during the crawling. So, it checks whether it con-
forms to its metamodel, whether the elements are correct.

Participant B: I see. So, yeah what are you looking for, like, an exact time to say, maybe
like a week or hours,

Interviewer: That’s just an estimate. Do you think, a couple of days or what?

Participant B: Yeah, I don’t know, the timescale they spend, as in this kind of scenario.
So usually, would it be like days or weeks?

Interviewer: Yeah. I read some papers online about crawling. And people usually
spend, like, one month to crawl. Although, okay. That’s only the crawling
without validating and filtering, you know, without validating stuff. But
it took 30 days to crawl.

Participant B: Okay, so if we are looking to get a set of data, which is validated and
filtered. And in that case, in comparison with using the existing crawler,
and then validate and filter, on your own, to compare it with that, I think
this will save time. At the scale of weeks, I guess.

Interviewer: Okay.

Participant B: Yeah, it’s just, I don’t really have a clear idea about this. So yes, yeah.

Interviewer: Yeah, no problem. Then we have a similar question. Do you think that
the system will reduce the effort it takes for researchers to prepare models
for analytics? Do you think it will reduce the total effort of researchers?

Participant B: Yeah, I do think so.

Interviewer: And, and why? Or how, why do you think it will reduce the effort?

Participant B: Yeah, from what I learned, I think the validation part and the trans-
formation part are the main time-saving functions. So if you, yeah, for
sure, you get other types of crawler, or you can even implement your own
crawler. But then the part of the validation if you have that, if you have
to do it manually, then it would be way more time consuming than it’s
being automatically done with the system. And the validation part is done
automatically. So it’s not shown in the user interface. Is that correct?

71

Appendix B. Case Study Results

Interviewer: Yeah, it’s automatically.

Participant B: So, all the collected results are already validated?

Interviewer: Yeah, yeah. What you see is validated.

Participant B: So those are not collected? I mean, the model skip is not validated or?

Interviewer: Yeah, model skipped are the models that are not valid. So they are not
stored in the database.

Participant B: So then yeah, also, I would say, that’s a nice feature, you see that there
are that amount of data models are now validated. So and, and also the
transformation part. So, I will say, from my perspective, I see that this
system is addressing the process of collecting models. So, if, for instance, if
we can maybe draw a, like a flow chart or activity diagram of the process,
collecting models, and we can, for sure identify which part is quite time
consuming, maybe the validation part, maybe the transformation part.
And I can see that the system is automating those procedures, which
indeed, even with my limited knowledge, I will assume that can be really
helpful for the researchers to save their time.

Interviewer: Okay. Okay, that’s good.

Participant B: I’m not trying to say something nice. It’s just based on my knowledge if
I’m able to identify something rather nice. I will say that.

Interviewer: Any additional feedback that you might have for the system?

Participant B: Yeah. I’m not sure if it is feasible. But is it possible to have some kind of
progress bar thing?

Interviewer: For the crawling?

Participant B: Yeah, maybe? Crawl? Yeah, crawling.

Interviewer: Yeah, but I guess, for now, the problem is, you need to have a start and
you have to, you need to know the minimum amount. So that’s zero, and
the maximum amount of models, but this maximum amount can change
over time. You know what I mean? You don’t have a fixed amount in
time.

Participant B: I mean, is it possible that? I mean, as a researcher, do they? Are they
looking for a specific amount of models? Or are they just trying to get as
many?

Interviewer: Yeah, as many models as possible. That is the purpose of the crawler to
get as many models as possible.

Participant B: Okay, so progress bar might not be feasible in that case? Because you
don’t know how many models there are there?

Interviewer: Yeah, it can change over time. Especially on GitHub, because there are
many changes committed to the repositories. Some models are added, and
some more models are deleted.

72

Appendix B. Case Study Results

Participant B: Or modified?

Interviewer: Yeah, modified as well.

Participant B: I see.

Interviewer: But, yeah, if it’s modified still. It still stays there. So, that’s not the prob-
lem. It just if models are deleted, or added during the crawling process.

Participant B: Okay, so. And yeah, after the crawling process models are stored in the
repository, or?

Interviewer: Yes, they are. In the Elasticsearch instance. So, in the repository and
the repository uses Elasticsearch as a database back end to store these
models.

Participant B: So the users are actually. Sorry, I mean, are those models actually stored
on the user’s machine?

Interviewer: Yes. But yeah, because we are running it locally. But you can change it
to store it on another server if you want. Yeah, but at the moment, they
are just stored where they are hosted where the systems are running.

Participant B: And so you’re getting the models for that instance. And if the model has
been modified or deleted after your crawler passed by It doesn’t matter?

Interviewer: Do you mean when it’s modified on GitHub or locally?

Participant B: On GitHub.

Interviewer: Yeah. So if it already passed by the model, and the model was modified
on GitHub, then the system does not take into account those changes. It
just gets the most recent version of the model.

Participant B: The one you?

Interviewer: Yeah. The one that you receive, so it doesn’t take into account modifica-
tions.

Participant B: Yeah. I’m not sure. Would that be a problem for them? The researchers?

Interviewer: I don’t think there’s a feasible way to. I think that will be very hard to
implement. I don’t think it feasible for this thesis. And I think you need to
connect to another database system that gets all the events from GitHub,
and then maybe you can filter on these events. So maybe on updates done
on BPMN files, for instance.

Participant B: You need to get like log data?

Interviewer: Yeah.

Participant B: And, see all these different, maybe modifications or all kinds of events?

Interviewer: Yeah. And then, you can sync, synchronize your models with these types
of events. But I think that’s another master thesis by itself.

73

Appendix B. Case Study Results

Participant B: I think that you can immediately come up with a solution. That’s pretty
nice.

Interviewer: So, that’s an idea that, yeah, I don’t know if it’s actually feasible. So was
there anything else? Any other feedback? Or questions?.

Participant B: At the moment, I think it’s quite clear for me, yeah.

Interviewer: Okay. Then I think that’s it for the interview.

B.2.3 Interview Results: Participant C
Interviewer: So the first question is about your background. So yeah. Can you tell me

a bit about yourself and your experience with Arrowhead Framework?

Participant C: Yes. Well, okay, I am a PhD student. Well, I am about to graduate.
Actually, yeah, I’m going to defend my thesis in a couple of months. I’m
going to defend my thesis on September. Yeah, it is about Model Manage-
ment. Basically, we were investigating ways of identifying relationships
between models from different domains. And my experience with Arrow-
head is not that high. I started with this project in a couple of months
ago. I know how Arrowhead Framework works. And I know the process
and the communication between the services. And yeah, I mean, yeah, I
don’t have much experience with Arrowhead. But I have some, I’m going
to extend the tool that I created during my PhD to use Arrowhead.

Interviewer: Okay. Yeah. And you are familiar with the local cloud concept of Arrow-
head?

Participant C: Yes.

Interviewer: Okay. Yeah, that’s the main thing about Arrowhead Framework. So that’s
good.

Participant C: I mean, I am not able to give a lecture. I am not. Yeah, but I know I am
familiar.

Interviewer: That they are composed of systems?

Participant C: Yes.

Interviewer: Collaborating with each other?

Participant C: Yes.

Interviewer: Okay. And your experience with models, model analytics? Your knowl-
edge?

Participant C: Well, with model analytics. It is difficult to define because I would say
that there are several, how can I say, let’s say, model analytics has several
phases? I think, maybe in my opinion, I mean, you can extract several
kinds of information from the models, at least, that’s how I see the model
analytics. And then, you can investigate several themes from model an-
alytics. And then, in my experience, I am more, let’s say, interested in

74

Appendix B. Case Study Results

how information related to relationships and how those models are inter-
connected.

Interviewer: Yes, that is also model analytics.

Participant C: Of course, there are much more than these. I mean, you can extract out
some kind of meta models, meta meta models, yeah, get like other kinds of
information, but the only thing, how to put some codes, the information
that I am more interested, is related to the relationships between them
between the models, especially models from different domains.

Interviewer: Okay.

Participant C: Sorry, from different engineering domains, like electronics and software,
and then like software engineering, and then mechatronics. And now, I
want to identify the relationships between, let’s say, a Simulink MATLAB
model and UML model, then Simulink belongs to the mechatronic domain
and then UML belongs to a software engineering domain.

Interviewer: Yeah, yeah.

Participant C: Okay?

Interviewer: Yeah. Clear. And also, MDE, I think? You have a Model-Driven Engi-
neering?

Participant C: Yes. Yes.

Interviewer: And you also have the other one? Model-Based System Engineering?

Participant C: Well, yeah. Honestly, for me, they’re almost the same.

Interviewer: Yes, yeah. So, I think that’s it for the background. But let’s go to the
usability aspect of the system. So yeah, how easy or hard was it using the
system?

Participant C: Maybe it might be relevant for their previous question is that I am working
on models for, let’s say, five years. Like in this topic, like Model-Driven
Engineering, etc. But I have also working experience, let’s say like two or
three years, like in the industry working with, but in the software engi-
neering, like developing software, but also creating UML models, and also
writing, like, requirements, documents, like, you know like the document
that you write the requirements?

Interviewer: I think it’s just requirements, right?

Participant C: Yeah. Sorry, yeah.

Interviewer: Okay. So that’s actually it for the background. So we are here about
usability. So you used the tool?

Participant C: Yeah.

Interviewer: So how hard was it for you using the tool? I mean, how easy or hard was
it?

75

Appendix B. Case Study Results

Participant C: It was really, let’s say, simple. Also, to install the tool. It was. I didn’t
have problems. I mean, yes, I had one problem, but it was actually related
to my machine. For some reason, Apple. Yeah, for some reason. Apple
automatically uses the eight zero port for bash. And then I had to turn
it off manually. Because it automatically turns on. Yeah. And then yeah.
And then I had problems to identify these internally. But, it was just like
it was my machine not really related to your tool.

Interviewer: Yeah, it’s. I think it’s the Docker, right? Because it uses this specific
port?

Participant C: No, it is. I mean, if you check, do you use? I think you’re using MAC?

Interviewer: Yes. Yeah. I’m using Mac and Linux at the same time. Yeah. They are
almost the same.

Participant C: Yeah. Almost. If you go to the properties, you’re going to find that the
port eight zero has been used by something from Apple.

Interviewer: Okay.

Participant C: Yes. Yes, you can do it later. But you can see that.

Interviewer: Yeah, I can do it later.

Participant C: But in general, I think it was simple to install and also easy to use.

Interviewer: Okay, that’s good.

Participant C: Yeah. I mean, of course, the user interface could be improved. That’s
true. Of course. Yeah. But as a proof of concept, I think it is good
enough. And could easily see the features, the functionalities that your
tool provides. And I think it’s good.

Interviewer: Okay. Yeah, the user interface was not the main focus of the thesis. It
was just to demonstrate these functionalities.

Participant C: I know that, don’t worry.

Interviewer: Yeah, but yeah, it needs some improvement. Some work.

Participant C: Yeah.

Interviewer: I got that from the other interviews as well. So, yeah, I mean, yeah.

Participant C: I am also a software developer, and I have a lot of problems with the front
end, like yeah, I am good with the back end, and with the front end, I am
really bad.

Interviewer: Yeah, especially. Yeah, I think it’s easier with HTML, but yeah, I don’t
know some of the CSS stuff.

Participant C: Exactly. I know when something is beautiful or ugly, but I don’t know
how to make it beautiful. Yeah, that’s true I don’t know if you got my
point, but yeah.

76

Appendix B. Case Study Results

Interviewer: Yeah. So let’s continue. So how easy or hard was it learning to use this
system?

Participant C: Yeah, I think it was easy. Let’s say, I think it took maybe half an hour
from your tutorial. I think it was easy.

Interviewer: Okay. And you didn’t think that you needed more explanation of some of
the parts?

Participant C: Yeah, actually, the definition of domain that your use is different than
mine. And then I had, let’s say, it was a bit confusing for me. But it
was because I was, let’s say biased on the definition of domains that I use,
because the definition of domain that I use is the engineering domains.
But the definition of domain that you use, as far as I understood, is more
like health, like health care, or maybe, let’s say, sports, or maybe like
science, these kind of domains, not really engineering domains. It can be
everything. Yeah, but despite that, I think it was. Yeah, it was easy to
understand.

Interviewer: Okay. Okay. That’s good. Yeah, I think this is a tough question. So,
how useful Do you think the system might be for preparing models for
analytics?

Participant C: Yeah, I mean, we can focus on those specific tasks. That could be: search
for models, download the models and make that analysis. And I believe
that doing that, doing those tasks, using your tool was really easy. And
was also really like, it could be useful compared to doing that manually.
So that’s why I believe it can be useful.

Interviewer: Okay.

Participant C: Yeah.

Interviewer: Okay. Clear. Let’s move on. So, you have seen some of the pages of
the web application, you have seen how to create models, upload models,
create new domains and starting the crawler. And you also have seen the
interface elements that I used. Do you think these are the right choice of
interface elements?

Participant C: Do you mind opening the system? Do you have your system open? No,
you don’t. Because, I don’t remember much but.

Interviewer: Wait, let me open the system.

Participant C: You need to open everything right, or no?

Interviewer: Oh no, I think only the user interface.

Participant C: Okay.

Interviewer: Wait I think it is this folder. Yeah. It will take some time to start.

Participant C: It is okay.

77

Appendix B. Case Study Results

Interviewer: Good, I think it is starting. localhost I think port 80. And it’s working?
Yeah. Okay. What did you want to see? Which one? So you can add the
model here.

Participant C: No, sorry. Can you please return to your question? Ask the question
again. So I can.

Interviewer: Yeah, so here’s the question. So you see these UI elements on the pages?
Do you think these are a good choice? Or do you think there are some
improvements there?

Participant C: Ah, okay. So again, please go to the, yeah.

Interviewer: So, for instance, I want to add the model. Then you see these UI elements.
Do you think these are a good choice for you?

Participant C: I think it’s a good choice. And then maybe you can give some description
of this path, because path of the model, what do you mean with this? Is
it like a local path? Or is it like URL?

Interviewer: Yeah, it is actually the URL to the repository.

Participant C: Yeah. Maybe it could be like URL.

Interviewer: Yeah, we need to add some more hints.

Participant C: So back to the first page. The modeling language, the creation date,
actions. Okay. Yeah, I think it’s okay. Can you please go to domains?

Interviewer: Yeah. Domains is an interesting one. It’s just the same as models list.
But if you add a new domain, you need to give it a name, and then the
tags are separated by a comma, you know? And that was the simplest
design.

Participant C: Yeah, I think it’s okay. Can you please go to crawler?

Interviewer: Uhm, yes.

Participant C: Can you please explain to me again the difference between links collected
and models collected?

Interviewer: So, links are just the URLs collected by the crawler and models collected?
Are the models that are validated and transformed, and stored in the
repository.

Participant C: I see. Yeah, but it’s it again, this is just a minor thing. It could be like
to explain what these links mean. Yeah, yeah. But again, just really like,
minor thing.

Interviewer: And uhm, where is the best position or section I can put this information?

Participant C: You can put like, I forgot the name. But you can. Like when you put
your mouse on?

Interviewer: Oh, on hover?

78

Appendix B. Case Study Results

Participant C: Yes. Yes, exactly.

Interviewer: Okay. Yeah, that’s a good one.

Participant C: You can give like a really short explanation about this. Yeah, but again
this is really, like, really minor thing. And can you please go to filter?

Interviewer: It doesn’t fit the page on my laptop.

Participant C: That’s okay.

Interviewer: I have a 13 inch MacBook so.

Participant C: Model extension? Well, again, it is just a minor thing. What you could do
is just like, hide these model elements, and the repository, features, kind
of hide. And then if the user wants to have, let’s say, advanced search,
and then they would click that plus button, and then this, what was I
gonna say, these, not components but these, these fields would appear.

Interviewer: Yeah.

Participant C: But again, this is really like a minor thing.

Interviewer: Because it’s a bit crowded, right?

Participant C: Yes. Yeah. When you see like uh, as the first thing, it, it might scare the
user a little bit. Because you don’t need to fill in all those things, right?
You just need to fill in their name?

Interviewer: Yeah they are all optional. I got that as well from my other interviews
that it is a bit too crowded, populated.

Participant C: Yeah.

Interviewer: Yeah.

Participant C: But again, I totally understand that it is just like a proof of concept. So
you need to really take care of the small things. Of course, there is room
for improvements everywhere, but yeah.

Interviewer: Yeah always.

Participant C: Always. Exactly.

Interviewer: Yeah, shall we move on?

Participant C: Yes.

Interviewer: Yeah. So here, we can upload multiple models instead of one as a zip file.

Participant C: Yeah, yeah. I think that’s it.

Interviewer: Okay.

Participant C: Okay?

79

Appendix B. Case Study Results

Interviewer: Let’s move on to the next question. So you have seen this filtering form, do
you think this is a useful approach for model filtering? So, you can choose
some predicates here like equals, not equals, and then you can specify an
amount, you know, do you think this is a useful approach for filtering?

Participant C: Uh, let me think. Okay, I will turn this question around? Do you think it
is possible to miss any kind of specific kind of model, if I use these filters?
Like do you think that using these filters I can find the model that I want?

Interviewer: I think so.

Participant C: Okay.

Interviewer: Yeah. Yeah.

Participant C: Like, uhm.

Interviewer: Let’s say you want to filter on specific elements within models.

Participant C: Yeah, but let’s say I just want. I mean, just like, I am guessing, let’s say
that I want to find those models created before 2020. Can I do this?

Interviewer: Before 2020? Yeah, that’s, that can be another text box here. But, you
can’t do that at the moment.

Participant C: Yeah, then maybe like, the user not really the user, but the person who
created, yeah the GitHub user. Can I also filter by them? You have like
a repository name? Right?

Interviewer: Yeah, you can filter by the repository name, the number of starsm, and
the number of forks.

Participant C: Yeah.

Interviewer: Yeah. But you also want to filter by the user?

Participant C: Yeah.

Interviewer: Or the owner of the repository? What do you mean?

Participant C: Yeah, maybe both? I mean.

Interviewer: Okay, okay.

Participant C: Yeah, I am just, let’s say, brainstorming.

Interviewer: Yeah. There are always some more filtering options you can add.

Participant C: Yeah, I mean, I am just saying these things because you ask it right.
I mean, you will wonder what is missing there. Then maybe, like the
creation date, the name of the owner, or maybe the name of the person
who created?

Interviewer: Yeah, these are some additional fields, filters. But what I’m mainly asking
is the way of filtering. So I am choosing predicates here, and then I type
a number to filter on these models. Maybe there are also other options,
like a query language, like OCL or BPMN-Q.

80

Appendix B. Case Study Results

Participant C: Ah I see. No, I honestly, I don’t think the user should. I mean, of course,
you could create, like, let’s say, an option where the user would add, like,
let’s say, let’s call it like a professional query, select the, you know, use the
SQL, whatever. But, honestly, I don’t think it is a good idea. Maybe the
way that you are doing is fine.

Interviewer: Yeah, yeah.

Participant C: Yeah. Oh, sorry. I misunderstood your question.

Interviewer: Yeah. No, both answers are fine for me. Yeah. So let’s move on. That’s
it about usability. Let’s go to workflow automation. So, yeah, this is also
a tricky question. So how do you think the system is going to impact the
model analytics workflow of researchers?

Participant C: Yeah, I mean, yeah, as I mentioned before, it’s tricky, because we would
need to compare the research workflows, but considering only those only
the steps that you’re tool does, uh I think, your tool has potential to
improve their workflow. Yeah, I think it will impact in a positive way, the
research workflow. Like, not only like I would say, mainly, the speed, I
believe the researchers can perform their work faster using your tool.

Interviewer: Okay. Okay.

Participant C: I mean, It’s just that’s what I believe, but I don’t have like, concrete data
to prove it.

Interviewer: To back that up?

Participant C: Yeah.

Interviewer: Okay. And you have seen that the system consists of some subsystems like
the crawling, filtering, the repository manager and transformation. Do
you think that these systems are sufficient in covering the steps in model
analytics? So, what additional steps would you like to be automated? Or
what steps are missing?

Participant C: Yeah, well, this question is really difficult for me. Can you specify the
kind of analysis that you want to perform?

Interviewer: Okay, I will give an example.

Participant C: No, no. Using your tool. Can you specify the kind of analysis that you
want to perform? Let’s say, can you detect clones? Can you measure the
clone detection?

Interviewer: This tool is only for input. You only get input for your analysis, for
your, so let’s say I want to do clone detection. I have this tool separately,
somewhere outside of the system. And this system’s responsibilities are
to only collect these models and prepare them for your tool to conduct
analysis.

Participant C: Okay, yeah. So, well, in that case, yeah, maybe the question should be
rephrased.

81

Appendix B. Case Study Results

Interviewer: Okay. Yeah.

Participant C: Because, you ask if those steps are sufficient in covering the steps in the
workflow?

Interviewer: Yeah.

Participant C: I believed it goes until the analysis, right?

Interviewer: Yeah.

Participant C: Okay. So, excluding the analysis, let’s consider only the input. In that
case, I don’t think anything that can be included is missing. At least not
from the top of my head, but yeah.

Interviewer: So yeah, so it has the basic things included, you think?

Participant C: Yeah, I believe so. At least regarding the input, I think it’s fine. Okay,
I will mention this problem. Just because. But like your tool has, like a
problem that it doesn’t. Let’s say you stop the crawling.

Interviewer: The functionality is there. But not yet in the interface. That’s going to
be added later. Yes, this question also came up in the other interviews.
You have to stop the tool from the command line. But yeah, this function
will be in there in the final version.

Participant C: So maybe, okay, what steps are still missing? This one?

Interviewer: Yeah, like stopping the crawler.

Participant C: Yes, okay. What additional steps would you like to be automated by
the system? Do you think that the analysis of the, you know, the final
output of the analysis should be included in the system as well? Let’s say
I used your system to collect all the data, etc. And then, I performed my
analysis. And do you think that the results of my analysis should also be
included? Or no?

Interviewer: No, this is outside of the system.

Participant C: It’s outside? So, yeah.

Interviewer: Yeah, we are only concerned with collection and preparation, that’s it.

Participant C: Yeah. Well, in that case, I think your tool is fine. I mean, at least I don’t
see any additional steps. That could be automated.

Interviewer: Yeah, because this tool is built on the Arrowhead Framework, composed
of several systems. But maybe in the near future, you want to automate
another step, then you can just write another system and use it in the
Arrowhead Framework.

Participant C: Yes.

Interviewer: So then, you can use the systems to automate more steps for you.

82

Appendix B. Case Study Results

Participant C: Okay, maybe one additional step that could be automated, I mean, it’s
not really an additional step, but maybe a change. Because in the crawler,
we have to use our own credentials, right? We have to put our GitHub
user, and then maybe your tool could provide, let’s say, a default user.

Interviewer: Yeah, we have a default user. But if you use the tool on an unknown
device, GitHub sends a verification code to the email. And my crawler
cannot handle that. So yeah, I don’t know. So that’s why you need to give
your own account credentials. But, what I’m mainly asking is there are
other steps in model analytics, like feature engineering, feature selection.
There are many different steps in data analytics, model analytics that’s
what I meant actually with, with the steps.

Participant C: Not really, I mean, the thing that you can do on these maybe. Yeah,
but it can be transferable to what you’re asking. But then, in any case,
it can be. Because let’s say the definition of a domain that you have is
really generic, then maybe you could use like a specific engineering domain.
And how you are going to implement this, I have no idea. But, like, only
download models from software engineering. So to say, let’s say only UML,
or whatever.

Interviewer: Okay.

Participant C: Or maybe, let’s say, class diagrams. And because there are already tools
that can identify when a model is a class diagram or not. But then, as far
as I know, there is no tool that can download them. Like, let’s say like,
I mean, in your tool, maybe you could, I’m just thinking, you could like,
combine your tool with this other tool that can detect if the model is a
class diagram or not. And then download them.

Interviewer: Yeah. That’s what I meant with the other feature, you can build a system
that is responsible for what you just said, for the UML check for a class
diagram. And then you can just use it as another step for your system.

Participant C: Yeah, but yeah, but I mean, but then you ask me what additional steps
you would like to automate. I really I mean, yeah, I don’t know, we can
spend like, one hour.

Interviewer: Yeah, we can go on.

Participant C: Yeah.

Interviewer: But, these steps that are already in there are sufficient at the moment?

Participant C: Yeah, yeah. I think I they’re fine.

Interviewer: Okay, okay.

Participant C: Yeah. I mean, you can improve the kind of models that you want to down-
load, but by additionally, another system that can improve the filtering.
But again, this is just extracting that. It’s not really necessary.

83

Appendix B. Case Study Results

Interviewer: Okay. Just some minor things. Okay. Yeah, good. Let’s move on. This is
another tough question. So how much time do you think you saved using
the system instead of having to use a manual approach?

Participant C: Oh, it’s. Yeah. I mean, it’s really difficult to estimate. But I believe this
is just what I think that I saved a lot of time using your tool instead of
doing all the processes manually. But I cannot estimate how much.

Interviewer: Okay, just a lot of time?

Participant C: Yeah, I believe it was. At least 50% faster.

Interviewer: Okay. Okay. That’s a good indication.

Participant C: But again, this is just what I believe I don’t have the complete data to.

Interviewer: Yeah. Because you can think about it, like maybe going to a GitHub
repository, download the model, and then do the steps manually compared
to using the tool. Yeah. And if you do it for 1000s of models manually,
and it will. Yeah, it will take some time.

Participant C: Yes.

Interviewer: Yeah.

Participant C: Yeah. That’s why I said at least 50%.

Interviewer: Okay. I think the last main question is, yeah. Do you think that the
system will reduce the effort for researchers to prepare models?

Participant C: Yes, yes. Just like I mentioned in the beginning that, just because I
think it is faster, it will already reduce the effort needed to, you know, to
prepare the documents and everything because having like one tool that
can already provide you all the data that you need. Without this tool,
you would have to collect all the data by yourself. And then it would take
a lot of time. Yeah, that’s what I believe.

Interviewer: Yeah. Okay. Good answer. Is there any additional feedback you might
have for the system?

Participant C: Not really, not with me, of course, there are things here and there that
could be improved, but in general, you know, I mean, just to summarize
the things that could be improved. The front end, of course, I mean, the
user interface, but again.

Interviewer: Yeah, the usability can be better.

Participant C: I mean, it is, again, really a minor issue. Also, you could add some extra
filtering options, let’s say a date when the model was created, and by
whom, these kind of things. Yeah, but I would say that’s all.

Interviewer: Okay. Yeah, I think that’s it for the interview. Let me stop recording.

84

Bibliography

[1] About the Business Process Model And Notation Specification Version 2.0. url:
https://www.omg.org/spec/BPMN/2.0/ (visited on 06/21/2021).

[2] Kerstin Altmanninger et al. “AMOR–towards adaptable model versioning”. In: 1st
International Workshop on Model Co-Evolution and Consistency Management, in
conjunction with MODELS. Vol. 8. 2008, pp. 4–50.

[3] Arrowhead Framework. https://github.com/arrowhead-f/.
[4] Axellience: GenMyModel. https://www.genmymodel.com/.
[5] Aaron Bangor et al. “Determining what individual SUS scores mean: adding an

adjective rating scale”. In: Journal of usability studies 4.3 (2009), pp. 114–123. issn:
1931-3357.

[6] Francesco Basciani et al. “MDEForge: An extensible Web-based modeling platform”.
In: CEUR Workshop Proceedings 1242.619583 (2014), pp. 66–75. issn: 16130073.

[7] Fredrik Blomstedt et al. “The arrowhead approach for SOA application development
and documentation”. In: IECON 2014 - 40th Annual Conference of the IEEE Indus-
trial Electronics Society. 2014, pp. 2631–2637. doi: 10.1109/IECON.2014.7048877.

[8] Card sorting. url: https://github.com/ds4se/chapters/blob/master/zimmermann/
card-sorting.md (visited on 07/30/2021).

[9] Ozren Dabic, Emad Aghajani, and Gabriele Bavota. “Sampling Projects in GitHub
for MSR Studies”. In: (2021). arXiv: 2103.04682. url: http://arxiv.org/abs/
2103.04682.

[10] Fred D. Davis. “Perceived usefulness, perceived ease of use, and user acceptance of
information technology”. In: MIS Quarterly: Management Information Systems 13.3
(1989), pp. 319–339. issn: 02767783. doi: 10.2307/249008.

[11] Jerker T A T T Delsing. IoT automation : arrowhead framework LK. Boca Raton,
2017.

[12] Juri Di Rocco et al. “Collaborative repositories in model-driven engineering”. In:
IEEE Software 32.3 (2015), pp. 28–34.

85

https://www.omg.org/spec/BPMN/2.0/
https://github.com/arrowhead-f/
https://www.genmymodel.com/
https://doi.org/10.1109/IECON.2014.7048877
https://github.com/ds4se/chapters/blob/master/zimmermann/card-sorting.md
https://github.com/ds4se/chapters/blob/master/zimmermann/card-sorting.md
https://arxiv.org/abs/2103.04682
http://arxiv.org/abs/2103.04682
http://arxiv.org/abs/2103.04682
https://doi.org/10.2307/249008

Bibliography

[13] Steve Easterbrook et al. “Selecting Empirical Methods for Software Engineering
Research”. In: Guide to Advanced Empirical Software Engineering. Ed. by Forrest
Shull, Janice Singer, and Dag I K Sjøberg. London: Springer London, 2008, pp. 285–
311. isbn: 978-1-84800-044-5. doi: 10.1007/978-1-84800-044-5_11. url: https:
//doi.org/10.1007/978-1-84800-044-5_11.

[14] Elasticsearch. url: https://github.com/elastic/elasticsearch (visited on
06/21/2021).

[15] Mturi Elias and Paul Johannesson. “A survey of process model reuse repositories”.
In: Communications in Computer and Information Science. Vol. 285 CCIS. 2012,
pp. 64–76. isbn: 9783642291654.

[16] Erich Gamma et al. Design Patterns: Elements of Reusable Object-Oriented Software.
1st ed. Addison-Wesley Professional, 1994. isbn: 0201633612. url: http://www.
amazon . com / Design - Patterns - Elements - Reusable - Object - Oriented / dp /
0201633612/ref=ntt_at_ep_dpi_1.

[17] Georgios Gousios. “The GHTorrent dataset and tool suite”. In: Proceedings of the
10th Working Conference on Mining Software Repositories. MSR ’13. San Francisco,
CA, USA: IEEE Press, 2013, pp. 233–236. isbn: 978-1-4673-2936-1. url: http :
//dl.acm.org/citation.cfm?id=2487085.2487132.

[18] Martin Haeusler et al. “ChronoSphere: a graph-based EMF model repository for IT
landscape models”. In: Software and Systems Modeling 18.6 (2019), pp. 3487–3526.

[19] Regina Hebig et al. “The quest for open source projects that use UML: Mining
GitHub”. In: Proceedings - 19th ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems, MODELS 2016. 2016, pp. 173–183.
isbn: 9781450343213. doi: 10.1145/2976767.2976778.

[20] Christian Hein, Tom Ritter, and Michael Wagner. “Model-driven tool integration
with ModelBus”. In: Future Trends of Model-Driven Development - Proceedings of
the 1st International Workshop on Future Trends of Model-Driven Development -
FTMDD 2009 In Conjunction with ICEIS 2009. 2009, pp. 35–39.

[21] Thomas S. Heinze, Viktor Stefanko, and Wolfram Amme. “Mining BPMN pro-
cesses on GitHub for tool validation and development”. In: Lecture Notes in Busi-
ness Information Processing. Vol. 387 LNBIP. Springer, 2020, pp. 193–208. isbn:
9783030494179. doi: 10.1007/978-3-030-49418-6_13.

[22] HtmlUnit. https://htmlunit.sourceforge.io/.
[23] Mo Jamshidi. Systems of systems engineering: principles and applications. CRC

press, 2017, pp. 2–3.
[24] jsoup: Java HTML Parser. https://jsoup.org/.
[25] Zador Daniel Kelemen et al. “Selecting a Process Modeling Language for Process

Based Unification of Multiple Standards and Models”. In: June 2014 (2013), pp. 1–
14.

[26] Ahsanun Naseh Khudori and Tri Astoto Kurniawan. “Transforming EPC Aris Markup
Language into BPMN Metadata”. In: Proceedings of 2019 4th International Confer-
ence on Sustainable Information Engineering and Technology, SIET 2019 (2019),
pp. 358–363. doi: 10.1109/SIET48054.2019.8986075.

86

https://doi.org/10.1007/978-1-84800-044-5_11
https://doi.org/10.1007/978-1-84800-044-5_11
https://doi.org/10.1007/978-1-84800-044-5_11
https://github.com/elastic/elasticsearch
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=ntt_at_ep_dpi_1
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=ntt_at_ep_dpi_1
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=ntt_at_ep_dpi_1
http://dl.acm.org/citation.cfm?id=2487085.2487132
http://dl.acm.org/citation.cfm?id=2487085.2487132
https://doi.org/10.1145/2976767.2976778
https://doi.org/10.1007/978-3-030-49418-6_13
https://htmlunit.sourceforge.io/
https://jsoup.org/
https://doi.org/10.1109/SIET48054.2019.8986075

Bibliography

[27] Maximilian Koegel and Jonas Helming. “EMFStore - A model repository for EMF
models”. In: Proceedings - International Conference on Software Engineering 2
(2010), pp. 307–308.

[28] Oleksii Kononenko et al. “Mining modern repositories with Elasticsearch”. In: 11th
Working Conference on Mining Software Repositories, MSR 2014 - Proceedings.
Association for Computing Machinery, Inc, 2014, pp. 328–331. isbn: 9781450328630.
doi: 10.1145/2597073.2597091. url: http://dx.doi.org/10.1145/2597073.
2597091.

[29] Vladimir Kotsev, Ivan Stanev, and Katalina Grigorova. “BPMN-EPC-BPMN Con-
verter BPMN-EPC-BPMN Converter”. In: January 2016 (2011).

[30] Daniel Kozma, Pal Varga, and Kristof Szabo. “Achieving Flexible Digital Produc-
tion with the Arrowhead Workflow Choreographer”. In: IECON Proceedings (In-
dustrial Electronics Conference) 2020-October.October (2020), pp. 4503–4510. doi:
10.1109/IECON43393.2020.9254404.

[31] Marcello La Rosa et al. “APROMORE: An advanced process model repository”. In:
Expert Systems with Applications 38.6 (2011), pp. 7029–7040.

[32] Urška Lah, James R Lewis, and Boštjan Šumak. “Perceived Usability and the Mod-
ified Technology Acceptance Model”. In: International Journal of Human-Computer
Interaction 36.13 (2020), pp. 1216–1230. issn: 15327590. doi: 10.1080/10447318.
2020.1727262. url: https://www.tandfonline.com/action/journalInformation?
journalCode=hihc20.

[33] Steve LaValle et al. “Big Data, Analytics and the Path From Insights to Value”.
English. In: MIT Sloan Management Review 52.2 (2011). Copyright - Copyright ©
Massachusetts Institute of Technology, 2011. All rights reserved; Document feature -
Charts; Tables; Diagrams; Last updated - 2020-11-17; CODEN - SMRVAO, pp. 21–
32.

[34] Ruopeng Lu and Shazia Sadiq. “A survey of comparative business process model-
ing approaches”. In: Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 4439
LNCS. Springer Verlag, 2007, pp. 82–94. isbn: 9783540720348. doi: 10.1007/978-
3-540-72035-5_7.

[35] Miklós Maróti et al. “Next generation (Meta)modeling: Web- and cloud-based col-
laborative tool infrastructure”. In: CEUR Workshop Proceedings. Vol. 1237. 2014,
pp. 41–60.

[36] Robin J.P. Mennens. “The Philips Remote AI Streaming (PRAIS) platform”. En-
glish. PdEng Thesis. PhD thesis. Oct. 2020.

[37] Cecilia Titiek Murniati and Ridwan Sanjaya. “Learning technologies in education:
Issues and trends”. In: (2017).

[38] Pete Chapman Ncr et al. “Step-by-step data mining guide”. In: SPSS inc 78 (2000),
pp. 1–78. url: http://www.crisp-dm.org/CRISPWP-0800.pdf.

[39] Object Management Group. “BPMN Core Elements”. In: httpbpmnorgSamplesEle-
mentsCoreBPMNElementshtm (2010). url: https://www.omg.org/bpmn/Samples/
Elements/Core_BPMN_Elements.htmhttp://www.bpmn.org/Samples/Elements/
Core_BPMN_Elements.htm.

87

https://doi.org/10.1145/2597073.2597091
http://dx.doi.org/10.1145/2597073.2597091
http://dx.doi.org/10.1145/2597073.2597091
https://doi.org/10.1109/IECON43393.2020.9254404
https://doi.org/10.1080/10447318.2020.1727262
https://doi.org/10.1080/10447318.2020.1727262
https://www.tandfonline.com/action/journalInformation?journalCode=hihc20
https://www.tandfonline.com/action/journalInformation?journalCode=hihc20
https://doi.org/10.1007/978-3-540-72035-5_7
https://doi.org/10.1007/978-3-540-72035-5_7
http://www.crisp-dm.org/CRISPWP-0800.pdf
https://www.omg.org/bpmn/Samples/Elements/Core_BPMN_Elements.htm http://www.bpmn.org/Samples/Elements/Core_BPMN_Elements.htm
https://www.omg.org/bpmn/Samples/Elements/Core_BPMN_Elements.htm http://www.bpmn.org/Samples/Elements/Core_BPMN_Elements.htm
https://www.omg.org/bpmn/Samples/Elements/Core_BPMN_Elements.htm http://www.bpmn.org/Samples/Elements/Core_BPMN_Elements.htm

Bibliography

[40] Saheed Popoola, Jeffrey Carver, and Jeff Gray. “Modeling as a service: A survey of
existing tools”. In: CEUR Workshop Proceedings. Vol. 2019. 2017, pp. 360–367. url:
https://azure.microsoft.com.

[41] Qualtrics. Net Promoter Score (NPS®) - The Ultimate Guide | Qualtrics. 2021.
url: https: / / www . qualtrics. com / uk / experience- management / customer /
net-promoter-score/?rid=ip&prevsite=en&newsite=uk&geo=GB&geomatch=
ukhttps://www.qualtrics.com/uk/experience-management/customer/net-
promoter-score/ (visited on 07/31/2021).

[42] Khalid Raza. APPLICATION OF DATA MINING IN BIOINFORMATICS. Tech.
rep. 2. 2010, pp. 114–118. url: http://multalin.toulouse.inra.fr/multalin/
multalin.html.

[43] Gregorio Robles et al. “An extensive dataset of UML models in GitHub”. In: IEEE
International Working Conference on Mining Software Repositories May (2017),
pp. 519–522. issn: 21601860. doi: 10.1109/MSR.2017.48.

[44] SPARX Systems: Enterprise Architect. https://sparxsystems.com/.
[45] A.S. Tanenbaum M. van Steen. Distributed Systems. 3rd ed. distributed-systems.net,

2017.
[46] “Strategies for Qualitative Interviews”. In: Harward University (2017), pp. 1–4. url:

http://sociology.fas.harvard.edu/files/sociology/files/interview_
strategies.pdf.

[47] Bedir Tekinerdogan et al. “Introduction to model management and analytics”. In:
Model Management and Analytics for Large Scale Systems. 2020, pp. 3–11. isbn:
9780128166499. doi: 10. 1016 /b978 - 0- 12 - 816649 - 9 . 00009- 0. url: https:
//doi.org/10.1016/B978-0-12-816649-9.00009-0.

[48] The CDO Model Repository. http://www.eclipse.org/cdo.
[49] Willi Tscheschner. Transformation from EPC to BPMN. Tech. rep. 2006.
[50] Pal Varga et al. “Making system of systems interoperable – The core components

of the arrowhead framework”. In: Journal of Network and Computer Applications
81 (2017), pp. 85–95. issn: 1084-8045. doi: https://doi.org/10.1016/j.jnca.
2016.08.028. url: https://www.sciencedirect.com/science/article/pii/
S1084804516301965.

[51] What is New in BPMN 2.0? - BPMN-Guide. url: https://bpmn.gitbook.io/
bpmn-guide/what-is-bpmn/what-is-new-in-bpmn-2.0 (visited on 06/21/2021).

[52] Stephen A White. “Introduction to BPMN”. In: Ibm Cooperation 2.0 (2004), p. 0.
[53] Roel J. Wieringa. Design science methodology: For information systems and software

engineering. 2014, pp. 1–332. isbn: 9783662438398. doi: 10.1007/978- 3- 662-
43839-8.

[54] Claes Wohlin et al. Experimentation in software engineering. Vol. 9783642290442.
2012, pp. 1–236. isbn: 9783642290442. doi: 10.1007/978-3-642-29044-2.

[55] Zhiqiang Yan, Remco Dijkman, and Paul Grefen. “Business process model reposito-
ries - Framework and survey”. In: Information and Software Technology 54.4 (2012),
pp. 380–395. issn: 09505849.

[56] Annie TT Ying et al. “Predicting source code changes by mining change history”.
In: IEEE transactions on Software Engineering 30.9 (2004), pp. 574–586.

88

https://azure.microsoft.com
https://www.qualtrics.com/uk/experience-management/customer/net-promoter-score/?rid=ip&prevsite=en&newsite=uk&geo=GB&geomatch=uk https://www.qualtrics.com/uk/experience-management/customer/net-promoter-score/
https://www.qualtrics.com/uk/experience-management/customer/net-promoter-score/?rid=ip&prevsite=en&newsite=uk&geo=GB&geomatch=uk https://www.qualtrics.com/uk/experience-management/customer/net-promoter-score/
https://www.qualtrics.com/uk/experience-management/customer/net-promoter-score/?rid=ip&prevsite=en&newsite=uk&geo=GB&geomatch=uk https://www.qualtrics.com/uk/experience-management/customer/net-promoter-score/
https://www.qualtrics.com/uk/experience-management/customer/net-promoter-score/?rid=ip&prevsite=en&newsite=uk&geo=GB&geomatch=uk https://www.qualtrics.com/uk/experience-management/customer/net-promoter-score/
http://multalin.toulouse.inra.fr/multalin/multalin.html
http://multalin.toulouse.inra.fr/multalin/multalin.html
https://doi.org/10.1109/MSR.2017.48
https://sparxsystems.com/
http://sociology.fas.harvard.edu/files/sociology/files/interview_strategies.pdf
http://sociology.fas.harvard.edu/files/sociology/files/interview_strategies.pdf
https://doi.org/10.1016/b978-0-12-816649-9.00009-0
https://doi.org/10.1016/B978-0-12-816649-9.00009-0
https://doi.org/10.1016/B978-0-12-816649-9.00009-0
http://www.eclipse.org/cdo
https://doi.org/https://doi.org/10.1016/j.jnca.2016.08.028
https://doi.org/https://doi.org/10.1016/j.jnca.2016.08.028
https://www.sciencedirect.com/science/article/pii/S1084804516301965
https://www.sciencedirect.com/science/article/pii/S1084804516301965
https://bpmn.gitbook.io/bpmn-guide/what-is-bpmn/what-is-new-in-bpmn-2.0
https://bpmn.gitbook.io/bpmn-guide/what-is-bpmn/what-is-new-in-bpmn-2.0
https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1007/978-3-642-29044-2

Bibliography

[57] Anass Zioual. Model Analytics Automation System. Aug. 2021. url: https : / /
github.com/nszioual/MAAS.

89

https://github.com/nszioual/MAAS
https://github.com/nszioual/MAAS

	Abstract
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation
	Project Scope and Constraints
	Structure of the Thesis

	Background and Terminology
	Data Analytics
	Model Analytics

	Business Process Modeling Languages
	BPMN: Business Process Model and Notation
	EPC: Event-driven Process Chain

	Arrowhead Framework
	Service Oriented Architecture
	Systems and Devices
	System of Systems
	Local Cloud
	Core Systems

	Research Design
	Research Design Overview
	Research Objective and Questions

	Review of Related Work
	Model Repositories
	APROMORE: Advanced Process Model Repository
	Architecture
	Canonical Process Format

	Software Repository Mining
	Transforming Models
	Direct Transformation
	Indirect Transformation

	Conclusion

	Overview of the System
	Goals and Requirements
	The Model Analytics Automation System
	Architecture Overview

	Arrowhead Framework

	System Implementation
	The Repository Management Layer
	The Repository Model Miner
	Filtering Models
	Validating Models
	Transforming Models

	The Storage Layer
	Elasticsearch
	Models and Metadata

	The Presentation Layer
	Implementation

	Evaluation
	Methodology
	The Case Study
	Threats to Validity

	Evaluation Results
	Quantitative Results
	Qualitative Results

	Discussion

	Conclusion and Future Work
	Conclusion
	Recommendations for Future Work

	Case Study Documents
	Questionnaire
	List of Interview Questions

	Case Study Results
	Questionnaire Results
	Interview Results
	Interview Results: Participant A
	Interview Results: Participant B
	Interview Results: Participant C

	Bibliography

