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Abstract

The map matching is an essential preprocessing step for many location-based or trajectory-based
applications since it can improve the accuracy of the trajectories. It matches a series of user loc-
ation points collected from the Global Positioning System (GPS) to road segments in an existing
road network. However, GPS suffers from invisible satellite signals and multipath effects due to tall
buildings in urban areas, and this leads to inaccuracy in user location points, which influences the
performance of map matching. Although many approaches have been employed to match traject-
ories to paths in a road network, the idea that combines multipath mitigation and map matching
is still not well exploited. Therefore, this study proposed a method in which multipath mitigation
is integrated with Hidden Markov Model (HMM) map matching. The proposed algorithm uses
3D building models to detect non-line-of-slight (NLOS) signals, mitigates multipath effects and
computes a more reasonable probability distribution among the road segment candidates. Then
the HMM map matching is employed on these candidates with improved probabilities to select
the globally optimal path.

The proposed method was verified through experimental tests in urban areas in Newcastle upon
Tyne, the UK. We collected data in this urban area including 7 trajectories, the 2D building map,
elevation and satellite positions, and performed the proposed algorithm. The results show that
the proposed method slightly improved the performance of the HMM map matching as it provides
a better matching path for 5 trajectories. For the other two trajectories, it degraded the accuracy
of the conventional matching only in a few specific places. Regardless of the occasional instability
of the proposed method, this study reveals the potential of combining multipath mitigation with
the conventional map matching, especially for trajectories in urban canyons.
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Chapter 1

Introduction

1.1 Problem Description

Nowadays, the successful construction of Global Navigation Satellite Systems (GNSSs) and wide
deployment of GNSS sensors have benefited position fixing which is frequently involved in our
daily used services, such as route guidance, fleet management, road user charging, accident and
emergency response and other location-based services (LBS) [32]. GNSS sensors determine posi-
tions based on satellite signals received from GNSSs and a successful position fixing relies on good
quality of signals. For many LBS, the accuracy of the position data is one of the most important
prerequisites but the accuracy not only depends on the hardware of sensors. The environment is
another factor that should be taken into consideration and some challenging environments lead to
bad quality position data. For instance, when surveying in city areas with many skyscrapers, often
call an urban canyon, the positioning performance often dramatically degrades due to blocked,
reflected and diffracted satellite signals.
There are three possible situations for bad quality signals:

1. When signals are completely blocked, they will not reach a GNSS sensor. And this usually
results in loss of lock, which means the sensor cannot decode position data due to fewer
visible satellite signals [22].

2. Sometimes GNSS sensors can still receive a blocked signal via a reflected path and these
kind of signals are called non-line-of-sight (NLOS) signals (see Figure 1.1a). A NLOS signal
takes a longer path from the satellite, resulting in an overestimation of the distance between
the satellite and the sensor.

3. Also, interference occurs when both NLOS signals and the direct line-of-sight (LOS) signal for
a same satellite reach the sensor. Simply speaking, the NLOS signals interfere the reception
of the LOS signal (see Figure 1.1Db).

The latter two phenomena are usually referred to as multipath but they require different mitigation
techniques [11, 13, 27]. But in some other literature like [20, 28, 4], multipath only refers to the
third phenomenon and the second is called NLOS problem. In this project, we follow the definition
in [11, 13, 27] but distinguish these two phenomena by NLOS errors and multipath interference
errors.

Map-matching algorithms take positioning data as input and supplement this with the road
network to provide an enhanced positioning output [32] or to find the user’s travel route. Map
matching is a preprocessing step for some LBS applications, like navigation, vehicle tracking and
traffic surveillance [5]. For noisy positioning data, a map-matching process is usually performed to
infer a path on the road network to eliminate the influence of observation errors. However, the drift
of GNSS positioning caused by multipath errors can be large sometimes and influences the map
matching results, especially in urban areas. Figure 1.2 shows an example trajectory influenced by
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(a) The NLOS signal. (b) Multipath interference.

Figure 1.1: Two phenomena of multipath.

multipath errors. Naturally, we hope to mitigate the influence of multipath error and this process
is known as multipath mitigation. Therefore, we consider combining multipath mitigation with
the map matching process, which means to resolve some potential positions regarding multipath
before matching.
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Figure 1.2: An example trajectory influenced by multipath errors. The trajectory consists of 6
green dots and the road segment marked in red is where the sensor actually passed.

In this final project, we aim at improving existing map matching techniques by using local
building geometry and information of satellites to mitigate potential multipath errors. The rest of
paper is structured as follows: in later sections of this chapter, we discuss some existing techniques
for multipath mitigation and map matching, as well as introduce the overall design of our project.
In Chapter 2 we describe some background knowledge and notations. Then the process and details
of data preparation are explained in Chapter 3. In Chapter 4 and 5, we display the principles
of the key parts of our project, multipath mitigation and map matching. Later we compare the
results in Chapter 6 and draw a conclusion in Chapter 7.

1.2 Literature Survey

There are many different approaches to mitigate multipath errors including NLOS and interference
errors. According to [4, 13, 28], multipath mitigation techniques constitute the following high-level
solutions:

1. Hardware mitigation. In this category, the advanced features of hardwares are utilized to
minimize the multipath effect, including antenna design, receiver-based techniques and using
signal quality parameters, such as signal-to-noise ratio (SNR), Doppler frequency and so on,
These methods mainly mitigate the effects of multipath interference errors and do little work
on NLOS [13].

2. Identification. Except for making use of hardware, the rest of techniques can be subsumed
to this category where NLOS signals are identified for further processing. Depending on the
way of further processing, these methods can be subdivided into:

(a) Elimination, which means to eliminate NLOS effects after identifying them. For in-
stance, to modify the receiver’s processing strategy to achieve better performance, or
to make use of explicit models (e.g. environmental models) to filter and smooth NLOS
signals [3].

2 HMM Map Matching for Trajectories in City Areas with Multipath Errors



CHAPTER 1. INTRODUCTION

(b) Exploitation. Instead of mitigating multipath at its root (directly eliminate NLOS
signals), they identify NLOS signals and take advantage of these information to improve
current results. Methods under this group includes using 3D city models [24, 25, 6],
consistency checking which computes positions for different combination of satellite
signals, and etc.

3. Physically avoiding NLOS, which means to avoid surveying in challenging areas.

Based on the classification above, the idea of using 3D building models to mitigate multipath
errors falls in the category of exploitation. Compared to hardware mitigation and elimination,
methods in the category of exploitation are more feasible for us since we can not improve the
receiver itself. Many works have been done to mitigate multipath errors by using 3D building
models. In [6], Drevelle et al. represented 3D area maps and GPS pseudo range measurements
by geometric constraints, turning the positioning problem into a constraint satisfaction problem.
Their method has a 95% probability to provide consistent error bounds with 16-meter average
radius location zones. In another work of Kumar et al.[19], they proposed a positioning method of
predicting NLOS signal delays from those observed pseudo ranges using a 3D city model. Through
this method, the errors are bounded by 15 meters. Miura et al.[24, 25] proposed a positioning
method by simulating possible paths for multipath signals. They proved that the method provides
error bounds with 13.5 meters maximum. Among these methods, we decide to adapt the method of
[24] and integrate it with map matching. Our adaption simplifies the original method. After all, our
purpose is to find the most possible match for a trajectory sample instead of generating a precise
position after correction. Detailed information about the adapted multipath mitigation method
is described in Chapter 4. According to [12], 3D building models can have a fair performance in
mitigating NLOS errors but do not work for interference errors. Since dealing with interference
errors are always related to hardware and waves, it is not something that can be done with data
and equipment we currently have. Thus, we decide to focus on mitigating NLOS errors.

Map matching techniques, on the other hand, can be divided into four groups as proposed by
the work of Chao et al.[5]:

1. Similarity models. This category is equivalent to geometric and topological analysis models
in [32] that returns the road segments that are geometrically or topologically closest to the
trajectory. These approaches match points/curves to closest curves where the closeness is
defined by different similarity metrics[5].For example, except for Euclidean distance, Fréchet
distance and longest common subsequence can also be used to measure geometric similarity.

2. State-transition models. These models return global optima solutions. The rational of this
kind of methods is to build a state machine where states refer to the possible routes the user
travels at a particular moment and transition between states are labelled by a transition
possibility. This category includes Hidden Markov model (HMM), Conditional Random
Field (CRF) and Weighted Graph Technique (WGT).

3. Candidate-evolving models. These models hold a candidate set during the whole process
and the candidate set is updated by adding new road segment candidates while pruning
candidates that are less irrelevant.

4. Scoring models. They build a sequence of candidate sets for each sample in the trajectory and
choose a combination of road segments that can maximizes the predefined scoring function.

Among all the methods mentioned above, HMM model is one of the most widely used map
matching algorithms in practice as it simulates the road network topology[5] and it well suits the
process of finding the most suitable matching road (i.e., hidden state) to each GPS point (i.e.,
observed state) on the road network [7]. Also, it can be extended to many variants by using
different probability functions. The idea of using HMM in map matching was first proposed by
Pink et al. in [30] where they increased the robustness of map matching by using an extended
Kalman filter and incorporating the road network topology constructed by HMM. Later Newson

HMM Map Matching for Trajectories in City Areas with Multipath Errors 3
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et al. [26] proposed a novel map matching algorithm that completely uses HMM to find the most
likely path. They proved that this method performs well in high-sampling trajectories and will not
significantly degrade when the sampling rate decreases and the measurement noise increases. Then
more restrictions and influence factors are considered and integrated into HMM-based algorithms,
such as the number of turns [29] and velocity changes[9]. Detailed description for HMM map
matching can be seen in Chapter 5.

1.3 Overall Design

In this section, we will discuss the design and structure of our project at a high level. Figure
1.3 shows the common workflow of HMM map matching algorithms. From this figure and the
discussion in the previous section, we can see that an HMM map matching algorithm can be
briefly divided into two main parts:

e Candidate selection. In this part, some potential positions (or road segments) are selected
for each sample in the trajectory. The candidate set is prepared for further processing in
the following steps.

e The matching process. The concrete methods in this matching process differ according
to map matching algorithms themselves. Generally, road segments are selected from the
candidate sets to formulate a route.

Input a Trajectory o Query road segments as
; i=1 >
[[.shp] with n samples ~ candidates for the i N sample

Match the i 11 sample fo a road
zegment candidate

Qutput the
matched path

Figure 1.3: The common workflow of HMM map matching algorithms. The process in yellow box
is the process of candidate selection.

i i th .
Input a Trajectory o Is'the i " sample Query road segments as
[[.shp] with m samples i=1 A accurate? | Ne candidates forthe i 1N sample

and perform multipath mitigation
l‘r‘es

to improve the candidate set.

Query road segments as
candidates for the i th sample
[

v

[Match the i th sample fo a road]

segment candidate

Cutput the
matched path

Figure 1.4: The workflow of map matching integrated with multipath mitigation. The steps in
yellow boxes are belong to the part of candidate selection.

In our project, we aim to improve the performance of map matching by integrating multipath
mitigation when selecting candidates. An enhanced procedure is shown in Figure 1.4. The differ-
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CHAPTER 1. INTRODUCTION

ence between this workflow and the previous one is the incorporation with multipath mitigation.
For every sample that is not accurate enough in the trajectory, an extra step is performed to
mitigate the multipath effect.

For the common procedure of HMM map matching algorithms as shown in Figure 1.3, the
details of candidate selection are described in Figure 1.5. Basically, it computes the distance from
a road segment candidate to the sample. The smaller the distance is, the higher probability to be
selected the candidate has.

Given a search radius R
— ¥

Take segments that are in distance R fo the i th sample as the
candidate set. The candidate set has m road segment candidates.

Query road segments as
candidates for the i I sample ] h J
ASsign a probability Pp to the ji1 candidate. The
probability Pp is inversely related to the shortest distance

- hetween the i th sample and the jth candidate

Candidate
selection finished

Figure 1.5: The details in candidate selection for common map matching algorithms.

Given a search radius R
Take segments that are in distance Rto the i i sample as the
candidate set. The candidate set has m road segment candidates.

l Assign a probability Pp to the ;i candidate. The
probability Pp is inversely related to the shortest distance
Query road segments as th th
th between the i " sample and the j"' candidate

candidates forthe i ' sample -
and perform multipath mitigation
to improve the candidate set.

Simulate multipath effect in the jlh candidate and perform positioning fixing to
compute an assumed position. Compute the distance Dy, between the

assumed position and the observed sample.

Assign a probability Py, to the ! candidate. The
probability Py is inversely related to Dy

Candidate
selection finished

Figure 1.6: The details in candidate selection for map matching integrated with multipath mitig-
ation. The steps in green boxed are extra procedure to mitigate multipath error.

In our project instead, the process of candidate selection becomes more complicated as Figure
1.6. After computing the shortest distance between the sample in trajectory and road segment
candidates and Pp, we also need to mitigate multipath errors and provide a probability correction

HMM Map Matching for Trajectories in City Areas with Multipath Errors 5
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to candidates. Then we compute the distance D,,, between the assumed position and the observed
position of the candidate. After obtaining D,,, it is taken as the input of a probability function
and output probability P,,. The final probability P of this road segment candidate is obtained
from Pp and P,,.

From the discussion above, we can list the data we need: (1) trajectory data; (2) road network
of the city to search candidates; (3) satellite positions in order to simulate multipath error; (4)
3D city models to simulate blocked and reflected signals. However, 3D city models are not easy
to obtain. An alternative way is to build up 3D building environment using a 2D building map
and building heights as proposed in some literature [15, 24, 25, 27].

6 HMM Map Matching for Trajectories in City Areas with Multipath Errors



Chapter 2

Preliminaries

In this chapter, we will introduce some necessary background knowledge. Since we use multiple
datasets in different format, we start by stating the notations used in later description in order to
clarify their differences.

Definition 1 (Trajectory) A trajectory T is a sequence of n ordered positions T : pg — p1 —

. — DPn—1 that records a travel path of a moving object. The element p; is called a trajectory
sample/point/observation and it consists of a coordinate (;,y;, 2;), a timestamp t;, and a list of
visible satellites L;. That is, p; = (x4, Vs, 2i, tiy L;).

Definition 2 (Road Network) A road network is a undirected graph G = (V, E) where vertices
represent the intersection of roads or the end of road and edges represent the road starting from
vertex v; to v; with v, vy € E. An edge e is called a road segment or a polyline, which goes through
a sequence of positions.

Definition 3 (Building Map) A building map refers to a 2D map that only contains building
location and the outline-shape of buildings. A building B containing n vertices is expressed by a
closed chain B : pyg — p1 = .. = Dpn—1 — Po. And py,P1, ..., Pn—1 are in clockwise order.

2.1 Geographic Coordinate System

Generally, a Geographic Coordinate System (GCS) is a coordinate system used to express a
position on Earth. In our project, we use three primary GCSs:

1. Ellipsoidal Coordinate System. It defines the position of a point on the surface of an ellipsoid
that approximately fits the globe by longitude, latitude and elevation [33].

2. Projected Map Coordinate System. It projects the surface of the Earth to a plane by different
projection algorithms so it is a 2D coordinate system.

3. Earth-fixed Cartesian Coordinate System. A 3D coordinate system which takes the center
of the ellipsoid as the origin.

The Ellipsoidal Coordinate System mainly refers to World Geodetic System 1984, or WGS84 in
short. The coordinate origin of WGS84 falls at the mass centre of the Earth and it approximates
the Earth into an oblate spheroid with the equatorial radius o = 6378.137 km and the polar radius
B = 6356.75231424518 km [16]. A position on the Earth can then be recognized by the longitude,
latitude and ellipsoidal height which is the shortest distance measured from the position to the
spheroid surface.

As for the Projected Map Coordinate System, we are using two map projection algorithms
in the project. The most general coordinate system we used to render the data and check the

HMM Map Matching for Trajectories in City Areas with Multipath Errors 7
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performance of the output on the plane is WGS 1984 Web Mercator. As it has great capabil-
ity for multiple maps, it is used virtually by all online map providers, including Google Maps,
OpenStreetMap and ESRI. By using this projected coordinate system in our project, we can take
online maps as references to evaluate our outputs. Another projected coordinate system is British
National Grid + OSGB 1936. Projection from 3D to 2D always leads to distortion and different
map projections result in deformation in different locations. Thus, British National Grid + OSGB
1936 is used to map the UK accurately. It is a horizontal coordinate system consisting of a tradi-
tional geodetic datum using the Airy ellipsoid; a Terrestrial Reference Frames called OSGB 1936
(Ordnance Survey Great Britain 1936); a Transverse Mercator map projection allowing the use of
easting and northing coordinates [33].

The Earth-fixed Coordinate System is essential when simulating interactions between a GPS
sensor on the Earth and satellites. It is not reasonable to describe the locations of satellites and
the GPS sensor by longitude, latitude and height in this case, because we cannot compute the
distances between them directly from longitudes and latitudes. A regular Cartesian coordinate
system using three perpendicular axes X, Y and Z can make this work. The X and Y axes lie
in the equator of the ellipsoid and pass through 0 and 90 longitude respectively. The Z axis is
perpendicular to the equator and points toward the North Pole. Also, the data unit in Earth-fixed
Coordinate System is kilometers or meters instead of degrees.

Note that transformation between each pair of GCS we discussed above is possible. And this
transformation can be performed by some geographic information systems (GISs) easily.

2.2 Elevation System

The elevation of a geographic position is its height above or below a reference surface. Depending
on different datum, elevation can be classified into two catalogs: ellipsoidal height and orthometric
height. The difference between ellipsoidal and orthometric height can be seen in Figure 2.1. The
orthometric height, which is H, in Figure 2.1, describes the height above or below the mean sea
level, or say the geoid in common. The ellipsoidal height H. is the height above or below an
ellipsoid. The ellipsoidal model we consider in the project is the one with an equatorial radius
a = 6378.137 km and a polar radius S = 6356.75231424518 km in WGS84. Therefore, the relation
between H, and H, is

H,=H,+N (2.1)

where N is the geoid height, also called geoidal separation, which is the shortest distance measured
from the geoid to the ellipsoid.

Ellipsoid
\ / ——— Earth Surface

\\_/ Geoid

Figure 2.1: The difference between ellipsoidal height and orthometric height.
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2.3 Geographic Information System and Arcpy

Geographic information systems (GISs) have become an indispensable tool in terms of urban
planning and mapping practice during the past few decades [23]. The data processed by GIS is
mostly spatial data which has connectivity to a geographic reference on Earth [34]. Later some GIS
techniques analyse this spatial data, construct a geographic model and output some geographic
products, like all kinds of maps. Thanks to the rapid development of GIS over the past two
decades, multiple enterprise GIS platforms, which are complete software systems that can satisfy
most geospatial needs, support our studies and do some basic spatial analysis for us.

One of the most famous and commonly used GIS is ArcGIS maintained by the Environmental
Systems Research Institute (ESRI). ArcGIS has been in operation for 21 years and it includes
functionalities of data management, geoprocessing, data conversion, spatial analysis, map preview
or production. Another contribution of ESRI is the spatial data format shapefile (.shp). Shapefile
is a geospatial vector data format for storing the geometric location and attribute information
of geographic features. A geometric object in shapefile is called a geometry. According to the
shape of the object, there are three types of geometries in definition: point, polyline and polygon.
A position can be expressed as a point geometry. A bikeline is a polyline geometry which might
contains an array of segments and a building is a polygon geometry. Points, polylines and polygons
that are grouped into layers have an associated row in an attribute table which records geographic
features, for example, the name of the geometry. Therefore, we can connect the definition of our
dataset with their format: each trajectory as Definition 1 is stored as a layer of point geometries;
road network in Definition 2 is considered as a set of polyline geometries and a polyline can only
intersect with other polylines at its endpoints; the building map in Definition 3 is an array of
polygon geometries.

Another GIS used in our study is QGIS. It is also known as a free and open-source GIS
platform and it also supports the shapefile format. Compared with ArcGIS, QGIS usually takes
less processing time with a better rendering capability. But ArcGIS performs better at spatial
topological analysis and has more advanced spatial functionalities in mapping *.

ArcPy is a Python site package that provides a useful and productive way to perform func-
tionalities as ArcGIS does. All tools in the ArcGIS platform are encapsulated in Arcpy. Since we
are using an early version of ArcGIS (10.2), the Arcpy library is consistent with Python 2.7 or
lower version. Thus we are intended to use Python 2.7 for our project.

2.4 Global Navigation Satellite System and Positioning

Global Navigation Satellite System (GNSS) refers to a constellation of satellites providing accurate
positioning services, such as GPS in America, GLONASS in Russia, Galileo in Europe, Beidou in
China and so on. Among these, the Global Positioning System (GPS), consisting of 24 satellites,
is the first constructed and most widely used system. Also, we collected trajectory data by a GPS
sensor.

Positioning, or say position fixing, is the main purpose and the fundamental feature of a GNSS.
As stated by [2] and [10], positioning techniques can be categorized into the following five catalogs:
proximity, ranging, angular positioning, Doppler positioning and pattern matching. Before we go
deep into each method, we first define the common notation needed: the receiver/sensor position
is defined as the measured user position; in contrast, actual/real positions indicate the actual user
position; landmark positions are the positions of transmitters, base stations, satellites or other
spatial references.

Proximity positioning, as its name implies, is an approximate positioning method, which meas-
ures the receiver position by the average landmark position. It is natural to conclude that proximity
positioning is more suited to short-range radio signals like indoor positioning by WiFi or Bluetooth

I Differences between ArcGIS and QGIS: https://planningtank.com/geographic-information-system /differences-
qgis-arcgis
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[10]. This method can hardly be extended to a large 3D space since it is too expensive to setup
evenly distributed transmitters in such a space.

Landmark A Landmark B
Landmark A Landmark B .

* . Receiver position

A

Receiver position .
Actual position

Actual position gy .

° Landmark C
Landmark C

(b) The sensor receives one radio signals from land-
(a) The sensor receives three radio signals. mark A. The receiver position is exactly at the posi-
tion of Landmark A.

Figure 2.2: Proximity positioning. The triangle shows the actual user position and the star marks
the measured receiver position. The dash lines in blue indicate the radio signals received by the
receiver.

To fix a position by ranging, we have to measure the range which is actually the distance
between the receiver and the spatial references. Take satellites as an example, the distance that
signal travels, named pseudo range, is computed for each satellite that the receiver connects to.
Each pseudo range for a satellite defines a spherical surface (a circular line of position in 2D, also
written as LOP). Therefore, together with the positions of four satellites and their pseudo ranges,
the receiver position can then be computed. Figure 2.3 shows the principle of position fixing using
ranging.

- ~

/

o
/ Satellite D

Satellite A Satelllte “ @ y PSEUdO range of C
RebQ/er p})s;bn ) \\
[ Satellite C \

Pseudo range of A ‘\ ’ ‘

X /

LOP of A and B\\ /,,,//

Pseudo range of C
Figure 2.3: The principle of positioning fixing using ranging.

Angular positioning is in fact similar to ranging positioning. Instead of using the distance
between the user and spatial references, this method measures the angle between the north direc-
tion and the line consisting of the user position as well as the landmark. Each angle of a landmark
can determine a straight LOP and two of that can serve the purpose of positioning in 2D space
(see Figure 2.4). This method can also be extended to 3D space by adding an elevation angle to
a landmark.

Doppler positioning measures the Doppler shift to determine the distance between the user and
the transmitter, which requires relative motion between them. The Doppler shift is the change
in frequency of a wave in relation to an observer who is moving relative to the wave source [8].
After obtaining the distance between the user and the transmitter, Doppler positioning performs
similar steps as ranging positioning to compute a location.

The last positioning method, pattern matching, maintains a database that stores features that

10 HMM Map Matching for Trajectories in City Areas with Multipath Errors
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@ Landmark A

North Angu!,ar"i

@
Landmark B

Figure 2.4: The principle of angular positioning.

vary with position, like geometric attributes and signal information [10]. Then the parameters
measured from the user position are taken as the input of a matching algorithm to find a receiver
position.

Ranging positioning is the most suitable technique for us to use. The reasons are as follows.
Proximity positioning is less accurate and can hardly simulate a large space including Earth and
satellites in GPS even though it is fast and simple. As for angular positioning, this method is
accurate enough but it is easier to compute distance than angular since GPS emits ranging codes
from which the distance can be obtained. And in terms of our purpose of multipath mitigation,
distance is better to obtain and use in a 3D building model. Also, we do not have raw data to
measure Doppler shift not to mention performing Doppler positioning. Finally, it is relatively
more expensive to maintain a database containing features of positions spreading all over the city,
so pattern matching positioning will not be a better choice.
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Chapter 3

Data Preparation

This chapter will introduce the details of data preparation for our project, including by which way
we collect the data and how the data is processed for later use. The data we concentrate on in
this chapter is listed as follows:

1. Road Network (see Definition 2).
2. 3D building model. Since it is not easily accessed, we construct it by the following data:

(a) Building map (see Definition 3). In order to detect multi-path error and find possible
signal reflections for a position, 3D scene of the surroundings has to be built. Thus, 2D
building map is needed.

(b) Elevation data. As compensation for the building map, elevation data can decide the
heights of buildings.

3. Position data for satellites. To simulate a scene of multi-path error, the positions for satellites
should be known.

4. Trajectory data (see Definition 1). The input of the project, a set of positions with timestamps
recorded by a GPS sensor.

To create a complete accessible dataset for the project, we chose Newcastle upon Tyne, a city of
the UK in this project.

3.1 Road Network and Building map

The road network and building map are extracted from OpenStreetMap (OSM), an open-source
project including geodata of the world. There are two ways to make use of OSM data: online and
offline. For the road network and low-rate-sampling trajectories in a large scale area, such as for
the whole country of the UK, it might be a better choice to request partial data online instead of
storing geodata locally since the number of segments and buildings may reach the magnitude of
millions. However, each round of request and response will cost around 0.5 seconds, which slows
down the whole process. In our experiments, trajectories were collected from the southeastern
part of Newcastle upon Tyne and thus, it is reasonable to keep all data local. By querying OSM
database, we downloaded geodata of Newcastle upon Tyne from OSM database via an API called
Overpass'.

The preliminary road network downloaded contains over 19,000 polylines representing over-
passes, motorways, streets, and alleys for the whole city, except small footpaths. The size of the
road network shrank to about 3,000 once we eliminated roads out of the area of interest. However,
for the purpose of map matching, these roads are not standard enough. Figure 3.1a and 3.1b show

IThe interface address: http://www.overpass-api.de/query_form.html
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i\ u S~ T~
(a) The smallest unit (in blue) before (b) The matched result (in blue) before
planarizing polylines. planarizing polylines.

t A /\M,\

(¢) The smallest unit (in blue) after (d) The matched result (in blue) after
planarizing polylines. planarizing polylines.

Figure 3.1: Planarize polylines in the road network.

what these roads look like and why they are not appropriate. As Figure 3.1a shows, the selected
polyline (in blue) is inseparable since polylines are considered as the smallest unit and the matched
result of a trajectory is a set of polylines. In such a condition, the matched route of a trajectory is
shown in Figure 3.1b where a long polyline would be selected even if the trajectory goes no more
than 1/4 of it. A trivial solution for this is to planarize polylines . That is, we break the road
segments into smaller ones by splitting them at intersection points with other roads. In this way,
we shortened the smallest unit (as Figure 3.1c shows) and allowed flexible turns at intersections in
results (see Figure 3.1d for example). After this step, the number of polylines in the road network
increased from 3,000 to around 7,000 and the average length of road segments in the road network
is 38.9 meters.

To obtain the building map, we downloaded the polygon layer of the city from the OSM server.
There are not only buildings but also other facilities in this layer, for instance, squares, parks,
district boundaries and so on. There is an attribute ”building” associated with the polygon layer
stating the characteristic of polygons. According to values of the ”building” attribute (shown
in Table 3.1), we extracted buildings from this layer ®. The final dataset includes about 1,200
buildings.

Values of ”building”
is building Yes, building, school, university, hospital,
stadium, terrace, tower, church
is not building No, parking, square, district

Table 3.1: Values of the attribute ”building” in the polygon layer.

However, errors exist in both datasets of the road network and the building map. As a collab-

2More details for the tool in https://desktop.arcgis.com/en/arcmap/10.3/manage-data/editing-existing-
features/splitting-lines-at-intersections-with-planarize.htm

3More details for the tool in https://desktop.arcgis.com/en/arcmap/10.3/map/working-with-layers/using-select-
by-attributes.htm
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orative project, OSM data is created by individual mappers and sometimes contains topological
errors and data redundancy. Figure 3.2 shows some details of the errors in our datasets. Com-
pared with the city layout on Google map (Figure 3.2a), there are some unnecessary segments
in the road network. Furthermore, the topological relationship between buildings and roads in
our datasets does not completely consistent with that on Google map. Accordingly, we manually
edited the road network and the dataset of buildings to tackle the inconsistency.

55 Degrees North
6 Cris
Bar 52 Newcastle N}

'

Cuthbert House

(a) Google map. (b) Google Earth. (¢) Our datasets.

Figure 3.2: Topological errors and data redundancy in road network and the dataset of buildings.

3.2 Elevation Data

To detect and simulate multipath error in a city area, a 3-dimensional representation of city view
is required. The 2D layout of buildings we obtained in Chapter 3.1 cannot serve this purpose since
the height of buildings is missing. Inspired by the work by Obst et al. [27], we tend to create 3D
building models from the 2D building layout and height data of buildings.

The height data for buildings can be extracted from digital terrain models (DTM) and digital
element models (DEM) according to [27]. These terms including DTM, DEM and also DSM
(digital surface models) are defined as digital representations of elevation data but they differ
from each other even if they are often considered to be similar. The term DTM represents the
height of the solid base of the earth (as the blue line shows in Figure 3.3) with regards to its
natural features, including land forms, terrain features, natural resources and environments [21].
DSM reflects the elevation of the earth surface (the yellow line in Figure 3.3) including all objects,
both natural and manufactured, on top of it [36]. The term DEM, on the other hand, has multiple
definitions. Some definitions make it equal to DTM [31] or DSM [27] and others use it as a generic
term to describe both DTM and DSM [14]. Therefore, we can extract height data from DSM and
DTM. That is, the building height

hyuitding = hpsa — hpTar. (3.1)

We download DTM and DSM for the purpose of computing the height of buildings as the UK
government published high-resolution DTM* and DSM® of Newcastle upon Tyne to the public.
Both two are in a resolution of 2 meters. The raw data is originally in .asc format and following
a tutorial® .asc files can be transformed into TIFF images. Note that raw data is in a projected
coordinate system of British National Grid + OSGB 1936 and these images have to be transformed
to images in WGS 84 since our road network, building map and trajectory data are in WGS 84.

4The website for DTM data: https://data.gov.uk/dataset/002d24f0-0056-4176-b55e-171ba7f0e0d5/lidar-
composite-dtm-2017-2m

5The website for DSM data: https://data.gov.uk/dataset/fbal2e80-519f-4be2-806f-41be9e26ab96/lidar-
composite-dsm-2017-2m.

6Tutorial: How to download the LIDAR datasets from the UK Environment Agency web-
site: https://www.roger-pearse.com/weblog/2019/07/08/tutorial-how-to-download-the-lidar-datasets-from-the-uk-
environment-agency-website/
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Digital Surface Model

mm———  Dijgital Terrain Model

Mountain

Buildings

Figure 3.3: The way to extract height data from DTM and DSM.

Figure 3.4 shows parts of DSM and DTM and Table 3.2 lists detail information about DSM and
DTM.

(a) DSM (b) DTM

Figure 3.4: DSM and DTM

Property Value
Image size 5000 (columns), 5056 (rows)
Cell size  3.1421079x 1075 , 1.7871655x 105

Top 55.024138607
Left -1.689395002
Right -1.532289605
Bottom 54.933779517

Table 3.2: Detail information of TIFF images for DTM and DSM.

After obtaining DSM and DTM of Newcastle upon Tyne, the next step is to extract elevation
data from these two images for a given position. A trivial idea to achieve this goal is that we
first transform the position from longitude and latitude to numbers of columns and rows based on
the information in Table 3.2. Then we can read the float value of a cell positioning by the new
coordinates and this float value is the elevation of the given position.

The elevation data collected via or related to satellites is typically measured above the ellips-
oidal model of the earth, whereas DTM and DSM are using an orthometric model. The ellipsoidal
height of the given position can also be known once the values (orthometric height) of cells in
TIFF images are read. The difference and transformation between ellipsoidal height and ortho-
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metric height can be seen in Chapter 3.2. Following the instruction by ArcGIS” and the principle
in Chapter 3.2, the geoidal separation between these two can be approximated by a constant
(+50 meters). Put it simply, after we read orthometric height H, from DTM/DSM, we store
H, = H, + 50 for later use.

3.3 Satellite Data

Accurate positions of satellites are essential in simulating the formation of multipath errors. The
International GNSS Service provides many satellite orbit products that can support precise meas-
urement of satellite positions. These products come in multiple flavors, including Rapid (IGR),
Ultra-rapid (IGU) and Final (IGS) products. Table 3.3% summarizes the differences among IGR,
IGU and IGS in terms of orbit accuracy’ and satellite clock accuracy (clock accuracy computed
by standard deviation (SDEV)), latency and sampling frequency. We can see that IGU and IGS
have higher quality but they take longer time to become available compared to IGR.

IGR IGU IGS
Orbit Accuracy < 5cm < 2.5cm < 2.5cm
Clock Accuracy (SDEV) < 1.5ns < 25ps < 20ps
Latency Realtime or 3-9 hours 17-41 hours 12-18 days
Sample Interval 15 min 15 min 15 min

Table 3.3: Differences among IGR, IGU and IGS products.

x 2020 6 6 0 0 0.00000000
67 -21707.149557  -0.190816 12 12 10 77
20519.319675 - 14695458763 8820520323 -467.595779 10 6 5105
6
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PGO5 1060
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PG14 -16288.389288 9852.616941 -18092.642154  -7.955853 2 7 6 69
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PG17 14913.025063 -26.523317 -21554.430556 276.245378 106

PG18 -17179.895035 -8367.990544 18447.069102 211.791036)1
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PG21 -22227.821891 —2646906530 14857 5379

PG26 18712 180997 1821.869845 18809. 961244 220007175 8 5 7122
PG27 -12313.554893 20341402751 11330.948008 -313.016565 6 5 7113
PG28 20594.359380 9662.673004 -13003.250031 711.159583 8 7 5 87
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Figure 3.5: The structure of an IGS fragment.

We take advantage of the IGS product for accuracy instead of low latency. Each IGS file
includes orbit data for one day, named by GPS time. GPS time is used by satellites for their own
timescale, including two factors: the week number and the elapsed number of days within that
week. The week number is counted from time zero which is UTC 0 : 00 on January 6, 1980.

7Converting from orthometric to ellipsoidal heights: https://pro.arcgis.com/en/pro-
app/latest/help/data/imagery/converting-from-orthometric-to-ellipsoidal-heights-pro.htm

8Data collected from https://www.igs.org/products/.

90rbit accuracies are 1D mean root-mean-square values over the three XYZ geocentric components.
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Note that trajectories collected before March 28" are in standard UTC time, but the time stamps
for trajectories collected after that day are in UTC+1 time since it switches to summer time.

The IGS files store positions of GPS satellites per 15 min. Figure 3.5 explains the structure of
an IGS fragment. Given positions for satellites per 15 min, we can predict satellite positions at
any time using Lagrangian interpolation. The problem can be simplified as follows:

Definition 4 (Lagrangian interpolation for satellite positions) Given four sets of k+ 1 values to,
t1,.0ey thy X0, T1seeey Thi YO, Y1,---» Ye; and 2o, 21,..., 2k. 1LThe interpolation polynomials in the
Lagrange form are linear combinations

k
Lo(t) =Y a;lf(t)
j=0
k
Ly(t) ==Y y;1Y(1) (32)
j=0

k
Lo(t) =) zl3(t)
j=0

of Lagrange basis polynomial

t—t

() := | I e

J S

0<m < meti ti—tm (3.3)
pe{z,y,z}

where 0 < j < k. The satellite positions at anytime can be computed by plugging the time stamp
into Equations 3.2. Note that all coordinates are in Earth-fized Coordinate System.

To decide the value of k in Definition 4, we tested for values from 3 to 9, trying to find a
balance between accuracy and time cost. However, the time spent on Lagrangian interpolation is
negligible so that k = 9 is chosen with an accuracy of 5 x 10~ %km.

3.4 Trajectory Data

Initially, we planned to choose an existing dataset of trajectories in Beijing'’. Those trajectories
are collected from 2006 to 2012 by sorts of transportation such as by cars, buses, subways, trains
and on foot. However, many problems arose when we tried to access other data required. The
first problem is the road network of Beijing. What we found on OSM and other online maps are
always collected in recent years and not consistent with the trajectories. The situation happens
that we cannot match a trajectory to any road according to our road network since the road
network changed significantly during these years (see Figure 3.6 for examples).

In addition to the road network, the lack of elevation data made the situation even worst. We
could not get free access to high-resolution DTM and DSM, not to mention related data in 2008.
Also, the Beijing dataset is preprocessed data from which we cannot tell which satellites were
visible at that time. Additionally, without knowing the actual routes users passed, it is difficult to
evaluate the results of our project. For all the reasons above, we decided to make the trajectory
data ourselves.

We used a Leica GS18 T GNSS RTK Rover for positioning and making trajectories. The Leica
GS18 T has two modes when collecting data: (1) discrete mode where the device does a location
measurement only when the user presses the measure button; (2) continuous mode where the
machine records raw GPS data and this data can be processed into positioning data by the Leica
Captivate field software afterwards. In the discrete mode, the position and timestamp are given
once the button is pressed, whereas in the continuous mode, it records pseudo ranges of satellites

OData from https://www.microsoft.com/en-us/download/details.aspx?id
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Figure 3.6: Inconsistency between trajectories (consisting of black dots) and the road network in
Beijing. Road segments marked in red shows the map matching results for these trajectories.
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per second, which means it distinguishes different satellite signals. As we could not find a way
to customize the parameters we preferred, we decided to run both two modes in parallel. That
is, we position locations manually but in the back end, it records detailed signal data per second.
Finally, we collected 7 trajectories consisting of 800 points in total. Figure 3.7 shows the machine
we used and how we collected data.

(a) Leica GS18 T GNSS RTK Rover.

(b) Use Leica GS18 T to collect position
data.

Figure 3.7: Trajectory data collection.

The output includes two parts. The output of the discrete mode is two files including locations
(longitude, latitude and height) and timestamps separately. The output of the continuous mode
is .0 and .n files. From .o files we can extract available satellites for each point in the trajectories
according to the timestamps. We integrated these files into a shapefile (shp) product which stores
the position, ellipsoidal height, timestamp, available satellites and total signal number for each
point in the trajectory as shown in Figure 3.8.
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(a) Points in the trajectory.

FID Name Ellp_Hgt Signal_ Num Time Avail Stl
0 | GPE0016 106. 612 5| 20210325166710 |GOE, G18, G20, 526, 529
1| GP30017 50. 743 6| 20210325155532 | G16, G18, G26, G27, G249, G31
2 | GPEO018 96, 463 7| 20210325166955 |G16, G18, G20, (26, G27, 529, G31
3 | GP30019 52,334 6| 20210325160014 | G16, G18, G20, 626, G27, (31
4 | GPE0020 92. 312 6| 20210325160015 | G16, G18, G20, G26, G27, (31
5 | GP30021 54. 635 5| 20210385160147 | G16, G18, G26, 627, 531
§ | GPE0022 50. 826 8| 2021032516025% |G16, G18, G20, G523, 626, G27, 629, 531
7 | GPE0023 91, 67 7| 202103251680319 | G16, G1B, G20, 523, G26, 627,529
8 | GPE0024 51, 457 8| 20210325160336 | GO5, G186, G18, G20, G23, G26, 627, 529
9 | GPE0025 90. 474 8| 20210325160351 |05, G186, G18, 520, 526, G27, 529, 531
10 | GPS0026 52. 336 9| 20210325160417 | GOE, G186, G158, G20, G23, (26, G27, 625, 631
11 | GPS0027 97. 239 9| 20210325160430 | GOL, G186, G18, G20, G23, 526, G27, 629, G31
12 | GPS0028 52.43 3| 20210325160444 | GOE, G186, G18, G20, 626, G27, 629, 531
13 | GPS0029 91. 673 9| 20210325160E02 | GOE, G186, G185, G20, G23, (26, G27, (2%, 631
14 | GPS0030 54. 012 9| 20210325160523 | GO5, G16, G18, G20, G23, 26, G27, G259, G31
15 | GPS0031 91. 663 9| 20210325160548 | GOE, G186, G185, G20, G23, (26, G27, (2%, 631
16 | GPS0032 52. 862 6| 20210325180608 | G16, G18, G26, 627, G249, G31
17 | GPS0033 92. 273 8| 20210325160626 |GO5, G186, G18, G20, 626, G27, 629, 531
18 | GPS0034 80. 776 7| 202103251680650 |GO5, G186, G18, G20, G23, 526, G31
19 | GPS0035 116. 126 7| 20210325180712 | GOE, G186, G18, (23, G26, 627,529
20 | GPE0036 121. 695 5| 20210325160728 | GOL, G186, G20, 523, 526
21 | GPE00O3T 117. 302 5| 2021032510740 | G16, G20, G26, 627,529
22 | GPE003E 94, 458 6| 20210325160800 | G16, G20, G26, 627,629, G31
23 | GPE003Y 120. 88 6| 20210325160836 | GO5, G16, 618, G26, G27, G258
24 | GPE0040 98, 726 8| 2021032516085E |GOE, (16, G1R, G20, 526, G27, 529, 531
25 | GPS0041 108. 093 7|20210385160%11 | GOE, G16, G18, G20, G26, G27, G29
26 | GPE0042 112. 657 71202103251680%34 | G16, G18, G20, (23, G26, 27,529
27 | GP50043 72,853 8| 202103251681247 |GO5, G186, G18, G20, 523, 626, 529, 531
28 | GPE0044 34, 218 7 20210325181302 |GOE, G186, G18, G20, G23, 26,529
29 | GP50045 83. 6 7| 202103251681315 |GO5, G16,G18, G20, G23, G26, 529
30 | GPE004K 82. 27 6| 20210325161330 | G16, G18, G20, G23, G26, G25
31 | GPE00D4Y 86, 104 7|20210325161344 | GOE, G186, G18, G20,G23, 26,529
32 | GPE0048 86. 361 7| 20210325161356 |GOE, G186, G18, G20, G23, (26,529
33 | GPE00D4G 87. 178 720210325161416 |G16, GLB, G20, (23, G26, (27,529

(b) Attributes for

points in the

trajectory.

Figure 3.8: The shapefile product for trajectories.




Chapter 4

Multipath Mitigation

In this chapter, we are going to describe the technique we used to mitigate the multipath effect,
especially NLOS errors. We will first introduce the procedure of the mitigation in the first section
and look into its detailed steps in the following sections.

4.1 Pipeline for Multipath Mitigation

In a traditional HMM map matching algorithm (see Figure 1.5), a road segment candidate set
is constructed for each observation in the trajectory and a probability is assigned to each road
segment candidate indicating its likelihood that it is indeed part of the real path. Commonly,
this likelihood is inversely related to the shortest distance between the segment and the sample.
That is, the nearest road segment gets the highest probability value. However, the drift in the
observation caused by multipath errors may result in a poor probability distribution among all
segment candidates. Therefore, we aim at mitigating possible multipath effects for each trajectory
sample and reveal a more reliable probability distribution among these candidates.

Before we describe the pipeline, here are some notations to clarify first. The distance func-
tion dist(p;,p;) measures the Euclidean distance between positions p; and p;. And the ranging
positioning function RP(v1,7Y2,73, V4, ---) takes at least four pseudo ranges as input and outputs
a position. We use three adjectives to describe a pseudo range:

e direct pseudo ranges, which refer to the shortest distance between the satellite and the
receiver position.

e measured pseudo ranges, which are the distances that the receiver actually measures. These
distances might be affected by NLOS errors, interference errors and other measurement
errors.

e hypothesis pseudo ranges, which are measured by geometric models and include NLOS errors.

Also, we define ¢; to be the multipath error for road segment candidate e;. That is, &; is a non-
negative number computed by the difference between hypothesis and direct pseudo ranges. Note
that e; = 0 if there is no multipath exists. Besides, recall that an observation in the trajectory
is defined to be p = (z,y,2,t, L) where (x,y, z) is the coordinate of the observation, ¢ is the
timestamp and L is a list of visible satellites.

The idea of the multipath mitigation method in our project is first to assume that a position
p¢ is the actual user position, and then simulate the process of position fixing influenced by NLOS
errors to see if the computed hypothesis position ppyp, is consistent with the observation. The
position p® has a sufficiently large probability to be the actual user position if ppyp, is sufficiently
close to the observation. Generally, the method has four steps:

1. construct 3D building model;
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2. test intersections between signals and buildings to find obstructed signals (Chapter 4.2 In-
tersection Test);

3. find reflected path to compute NLOS errors if obstructed signals exist (Chapter 4.3 Multipath
Error Simulation);

4. perform ranging positioning and compare the computed position to the observation (Chapter
4.4 Ranging Positioning).

Algorithm 1: Pipeline for Multipath Mitigation for an observation.

input: An observation p = (x,y, z,t, L) where L = {s1, 82, ..., Sm } ;
A road segment candidate set E = {ej, e, ...,e,};
A search radius r.
output: A set of positioning drift caused by multipath errors for each road segment
candidate F, = {di,da,...,d,}.

1 for satellite s; € L do

2 ‘ Query the position pj of the satellite s; by timestamp ¢ using Lagrangian Interpolation;
3 end

4 fore; € F do

5 Extract a point candidate p§ from the road segment candidate e;;

6 Query the building map by p§ and a search radius r. B < {By, Ba, ...};

7 for B; € B do

8 ‘ Query the elevation h; of B; from DSM and DTM;

9 end
10 for s; € L do

11 [+« -1

12 for B, € B do

13 Test intersection for the signal from p; to p7 and B. ; // see Algorithm 2
14 if intersection exists then

15 ‘ [z

16 end

17 end

18 if f = -1 then

19 No multipath effects;

20 g; < 0;

21 v; < dist(p§, p;);

22 else

23 for B, € B\ By do

24 Simulate the signal path with multipath errors for Byz;

25 Compute the multipath error ¢, ; // see Algorithm 3
26 end

27 gj < minl ((g;5);

28 Compute the hypothesis pseudo ranges v; < dist(pj, i) +¢€;

29 end
30 end
31 Compute the hypothesis GPS position ppypo < RP (71,72, ..., Ym) using hypothesis

pseudo ranges ; // see Algorithm 4

32 Compute the positioning drift caused by the multipath error d; < dist(phypo, p)

33 end

Algorithm 1 describes the detailed method of multipath mitigation for a candidate set con-
taining n road segments E = {ej,es,...,e,} of an observation p = (x,y,z2,t,L) where L =
{$1,82, ..., Sm }. In the first loop (line 1 to line 3), we compute the positions of visible satellites by
Lagrangian Interpolation (methodology in Definition 4).
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Most of the heavy work is done in the second loop. Theoretically, for a road segment candidate,
we should extract some possible positions along the road segment to approximate the actual user
position and measure multipath errors. But in practice (as line 5 shows), we choose only one
position on the road segment that is closest to the observation in order to cut down the computation
cost. This is feasible since the road segments are not very long (with an average length of 38.9
meters). After that, simulation for multipath is performed on this position candidate instead of
the road segment candidate. In other words, we assume that we are receiving GPS signals from
this point candidate. From line 5 to 9 of Algorithm 1, data of the surrounding environment is
collected from the building map (details in Chapter 3.1), DTM and DSM (details in Chapter 3.2).

Later we perform an intersection test for each direct signal of visible satellites and the sur-
rounded environment model from line 11 to 17 (Chapter 4.2 illustrates the intersection test step
by step). If the direct signal is not obstructed by any building, we consider that NLOS errors do
not exist and the hypothesis pseudo range is equal to the direct pseudo range as shown in line 18
to 21. Conversely, we simulate multipath and compute NLOS errors in hypothesis pseudo ranges
as shown in line 22 to 29 (detailed solution for multipath simulation is shown in Chapter 4.3).
Sometimes, the situation happens that there are multiple paths for a NLOS signal to travel and
reach the point candidate. We take the shortest path to minimize the NLOS error.

After the correction of the direct signals by adding up NLOS errors, we then use ranging
positioning (method described in Chapter 4.4) to compute a hypothesis position ppyp.. We realize
that the calculated hypothesis position pp,,, must appear around the observation p if those pseudo
ranges are affected by the multipath in the same way as the measured pseudo ranges are. So we
store the distance between ppyp, and the observation p as an indicator of the likelihood value for
this point candidate and also the road segment candidate.

4.2 Intersection Test

The intersection test, or say ray-object intersection test is a technique in ray tracing and it is
typically where most of the running time is spent [1]. Trivially, to test if a ray intersects a cube,
we need to solve if the ray intersects at least one plane of the cube, which requires at most
six times of ray-plane intersection tests. As for an environment containing buildings in different
shapes, simply performing an exhaustive search consumes enormous time and effort. The principle
for solutions to this is to cull objects which are clearly not in the path of the ray. According to
[35], there are two strategies for ray-object intersection culling:

e Hierarchical bounding volumes. These bounding volumes with simple shapes, such as cuboid
and sphere, envelop complicated objects that contain multiple planes and take a long time
to test intersection. Before testing intersection between a ray and an object, these simpler
bounding volumes are tested first to exclude some objects that are far away from the path
of the ray. For a complex environment with many complicated objects, a tree for bounding
volume is constructed and a volume placed around the entire scene is the root of the tree.

e Space partitioning. This strategy partitions the whole space into regions or voxels. We only
need to check those objects in voxels that the ray goes through.

In our case to test intersection between satellite signals and surrounded buildings, neither
hierarchical bounding volumes nor space partitioning works, because for less complicated scenes
like this, it is not worth it to construct a hierarchical tree or to build up a spacial index for voxels.
Therefore, we only adapt the simple bounding volumes to cull unnecessary intersection tests. It is
worth mentioning that we only care about if the ray intersects with the bounding volume instead
of where the intersection is [35]. Figure 4.1 shows the principle of the intersection test for ray and
bounding volumes. Simply speaking, we project the signal to z,y, z directions and compute the
interval in each direction.
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Y2

(a) The ray and the bounding volume.

Y1 — Y1 Z;

N

\21

\ Y2 Y2

Xg Xz Xg X, X; Xz

(b) The interval between x1 and (c) The interval between y1 and (d) The interval between z1 and
2. Y2. zZ2.

(e) Three intervals overlap with each other so the ray intersects with the bounding volume. The
overlapping part is the part on the ray that goes inside the bounding volume.

Figure 4.1: The principle of the intersection test for the ray and the bounding volume. Figure 4.2b
and 4.1c are captured along the —z direction while Figure 4.1d is captured along —y direction.

If these three intervals overlap with each other as Figure 4.1e shows, the ray intersects with
the bounding volume and further computation is required. Otherwise, the ray does not have
intersections with the bounding volume, not to mention the complicated object inside. In this way,
we can easily cull down the computation cost. Algorithm 2 shows the details of the intersection
test for a building.
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Algorithm 2: Intersection test for a ray and an object.

input: A bounding volume V = (z1, 22, ¥1, Y2, 21, 22);
A ray [ goes from satellite p°® to a point candidate p©.
A building B and its height.
output: True if [ intersects B; False otherwise.
1 Initialize D to be the direction of the ray, D <« p® — p°;
2 if D is parallel to x, y or z axis then
3 check if [ intersects with B directly;

4 return True if it intersects and False otherwise;
5 else
6 {tay, tao} + {H5EE Pl M} where tz < tzg ; // Compute the interval
between 1,22
7 {ty1,ty2} {%, y2gi'y}, where ty; < tys ; // Compute the interval
between vy1,y2
8 {tz1,tz2} < {Z1 Pz Z2D’; 2}, where tz; < tzo ; // Compute the interval between
21,22
9 tstart < min(txy,tyr, t21), tend ¢ max(tzs, tys, tzs);
10 if t5iart < teng then
11 Compute the intersection between the ray and each plane of the building;
12 Return False if no such plane exists and True otherwise;
13 else
14 ‘ Return False;
15 end
16 end

4.3 Multipath Error Simulation

If the direct pseudo range is proved to be obstructed by buildings in the intersection test, a mul-
tipath error simulation is performed subsequently. Briefly, the simulation examines a hypothesis
pseudo range and outputs NLOS error if it really exists. Algorithm 3 describes the basic principle
in the multipath error simulation. Algorithm 3 finds the NLOS error for a point candidate p©
and one building. Note that we only consider a single reflection for each possible NLOS signal.
Furthermore, the multipath error simulation phase for the point candidate p¢, or say the road seg-
ment candidate e, is only finished when Algorithm 3 computes NLOS errors for all the buildings
BekB.

In the first loop of Algorithm 3 from line 2 to 17, we try to construct a multipath for each plane
of the building (except for the top and the bottom) and prove its existence. The very first step is
to examine the visibility of the plane and remove hidden surfaces (line 2). A multipath will not
exist for a plane if the plane can not be seen from the receiver position. A simple and quick way to
remove hidden surfaces is to compute the angle between the norm of the plane (pointing outside
of the building) and our line-of-sight. If the angle is smaller than 180°, our line-of-sight cannot
reach it. However, this hidden-surface test can only give out false negative results, which cannot
filter out all invisible planes. Thus, further steps are needed to compute the actual intersection
between our line-of-sight and the plane to prove the visibility of the plane. The basic principle
of line 4 to 15 can be seen in Figure 4.2 [24]. We assume that all the buildings are constructed
using perfectly reflective materials and the generation of a multipath obeys the laws of reflection.
Therefore, the reflected path will only exist when the point of reflection is inside the surface (line
6) and the reflected path is not blocked by some other structures (line 7 to 10).

In the second loop of Algorithm 3 from line 18 to 22, we selected the smallest positive value
as the NLOS error for the building. If all the values are negative, then there is no multipath exist
for this building.
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Algorithm 3: Basic principle of the multipath error simulation.

input: A point candidate p° and a satellite position p*
A building B with n vertices and its height.
output: NLOS error € (in kilometers) if a hypothesis seudo range exists; 0 otherwise.
1 Build a 3D model M of the building using 2D information B and its height;
2 for each vertical plane F; € M do

3 if F; is visible from p® then
4 Compute a symmetric position p¢’ of the point candidate p® to the plane Fj;
5 Connect the symmetric position p¢’ and the satellite position p*, named ray I’;
6 if I intersects with F; then
7 Perform intersection test between I’ and other surroundings;
8 if I’ isn’t blocked by other buildings then
9 ‘ €' < dist(p®,p°®) — dist(p®, p®);
10 else
11 ‘ No multipath exists for this plane, € < —1;
12 end
13 else
14 ‘ No multipath exists for this plane, €’ < —1;
15 end
16 end
17 end
18 if maz!_)e; == —1 then
19 ‘ No multipath exists for this building, € + 0;
20 else
21 | e+ min({e'le # -1,0<i<n—1});
22 end

23 Return ¢;

' ~
S

0
etric position p®’

A point candidate p® A point candidate p®

(a) A multipath exists for this surface. (b) A multipath does not exist for this surface.

Figure 4.2: The principle of constructing a multipath.
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4.4 Ranging Positioning

In line 31 of Algorithm 1, a hypothesis GPS position is computed by ranging positioning which
takes at least four pseduo ranges as parameters. We adapt the weighted least square solver to
achieve this goal. In the rest of this section, we are going to introduce weighted least square solver
in detail based on [17, 24].

Given a satellite position p; = (xf,y¢, z7) and the actual receiver position p* = (24, Yu, 2u), &
measured pseudo range R; is theoretically written as

R; = \/(x —@u)? + (Y Fyu)? + (27 —2)? Fexdti+ 1+ T+ e (4.1)

where c is the speed of light and dt is the clock offset between signal emission and reception; I
and T denotes the ionospheric delay distance and the tropospheric delay distance respectively; e
refers to the errors produced by multipath, noise and so on. However in our case, a hypothesis
pseudo range -y; is measured directly by geometric models and includes NLOS errors such that it
can be written as

Vi = \/(l‘f - Iu)Q + (yis - yu)2 + (Zzs - zu)Q + €mul + €other (42)

where we don’t need to consider errors caused by clock offset and atmosphere. Suppose the
hypothesis position we want to compute is defined as ppypo = (£, 9, £), then Equation 4.2 can be
linearized by expanding Taylor’s series around ppyp, and neglecting the higher terms [17]. Defining
i as v; at Phypo gives:

A’Yz =% — ')71 = b?Axu + bzlAyu + bgAZu + €other (43)

where

pi=yf(ws &)+ (= 9)” + (25 — 27
- s -~ s 2 s 44
P o Y TYi e FT A (44)

B = d
Pi Pi Pi

K2

For positioning with n available satellites, Equation 4.7 can be rewritten into matrix format:

L=AX+V (4.5)
where 0 . )
by by b A
bbb Az Ay
A= . . . , X=|Ay|, L= . (4.6)
bO' bll b2. A A .
n—1 n—1 n—1 Tn—1

and V is the residual matrix. The weighted least square solver minimizes the residual by minim-
izing VTV, which equals to

svrtv _

X

0 (4.7
By solving Equation 4.7, we can get
VIiA=0 = ATV=0 = AT(L-AX)=0 = X=(ATA)'(ATL) (4.8)

Therefore, following the principle stated above, we start with an approximate position and keep
computing an correction X to the position until X is small enough. The procedure of ranging
positioning using weighted least square solver is desribed in Algorithm 4.
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Algorithm 4: The procedure of ranging positioning using weighted least square solver.

Initialize the approximate position ppypo;
Initialize the correction matrix X;
while || X]|| > 1 do
Construct Matrix A and L;
Compute X according to Equation 4.8;
Phypo — Phypo + XT;
end
Return ppypo;
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Chapter 5

HMM Map Matching

In this chapter, we introduce the principle of the Hidden Markov Model (HMM) map matching
and how we integrate it with multipath mitigation.

5.1 The Hidden Markov Model

The HMM is based on the Markov chain, which is a model describing the probabilities of sequences
of variables, like road segments. It has a strong assumption that if we want to predict the future
variables in the sequence, only the current state matters. That is, considering a sequence of state
variables q1, g2, ..., ¢;, a Markov chain describes

P(q; = alq1g2...qi-1) = P(q; = algi—1) (5.1)

However, HMM is interested in hidden events. For example in the map matching case, we don’t
observe road segments the user passed directly. Instead, the data we obtain is the GPS trajectory.
The previous events are called hidden events and the latter are called observed events. According
to Chapter A in [18], the HMM can be defined as Definition 5.

Definition 5 (Hidden Markov Model) The Hidden Markov Model HMM(Q, A, O, B) is a state
machine with the following components:

e a set of N states/hidden events Q = {q1,q2, ..., qN };

a1 ai2 a1N
N . . a2y azz2 ... Qa2N ) )
e q transition probability matrix A =| . . . where a;; describes the probabil-
an1y anz2 ... QNN

ity of moving from q; to q;;

e q sequence of n observed events O = 0105...0n;

bll b12 ces bln
o N ‘ bar b ... b2 ‘
e a emission probability matrix B =| . . . where b;; representing the prob-
by1 bn2 ... byn

ability of the observed event o; being generated from state g;.

We can re-organize the map matching problem based on Definition 5: the road network is

equivalent to @ which contains all possible states/hidden events; a GPS trajectory is equivalent
to O where a trajectory sample is an observed event. Therefore, the fundamental problem we try

HMM Map Matching for Trajectories in City Areas with Multipath Errors 29



CHAPTER 5. HMM MAP MATCHING

to tackle is: given an observation sequence O, discover the best possible hidden event sequence
that is most likely to have generated such an observation sequence.

The most common algorithm for solving such a problem in HMM is the Viterbi Algorithm
which is a kind of dynamic programming [18]. Let v(i,j) denotes the probability that the HMM
stays in state ¢; after experiencing j observed events 01, 02, ..., 0;. Together with the hidden Markov
model HM M (Q, A, O, B), the Viterbi Algorithm computes

{U(i7j) = bj; when j =1 (5.2)

v(i,§) = bjj x maz_v(t,j — 1)ay; otherwise

and the best score is mamlev(i, n) and the best possible hidden state sequence can be computed
by tracing back from the state argmazY v(i, n).

5.2 Implementation

In the implementation of adapting HMM to map matching, the first problem is how to define the
transition probability matrix A and the emission probability matrix B. According to the idea of
Newson et al. [26], we make use of topological and geometric information of the road network
to define the transition probability matrix. For example from state g; to ¢; (note that ¢; and g;
are road segments), a;; is 0 if g; is not reachable from g;. Conversely, if ¢; is reachable, we first
compute the the shortest path from ¢; to ¢;. We denote the Euclidean distance along the shortest
path by dists,(gi,q;), and take distsp(g;,q;) as an indicator of the transition probability a;:

1
diStsp(Qiy‘Jj) (5.3)

Qi =
UYL wrma
t=1 distsp(qi,qt)

The emission probability b;; measures the possibility of a trajectory sample o; being generated
on the road segment g;. Commonly, b;; considers the shortest distance between the trajectory
sample and the road segment. The larger distance they have, the smaller b;; will be. However,
multipath errors might influence the performance of positioning and thus influence the distribution
of b;;. This is where we integrate multipath mitigation and make use of the output of Algorithm
1. Equation 5.4 shows how we define the emission probability b;; with the distance function
distpi(05,¢;) which computes the shortest distance from a point o; to a segment g;.

(5.4)

N S . . )
{bij = Tty when there is no multipath effect;

ij = w1 wa B
bz] T edistpi(of,44)/C1 + odij/C2 when d” >0

Note that d;;, the distance between the hypothesis GPS position and the observation o;, is com-
puted by Algorithm 1. Also, C7,C5 are the decay constant and they describe the decrease rate
of a quality. Smaller decay constants in Equation 4.4 make the quality vanish more quickly. And
w1, we are weights where wy 4+ we = 1.

It is important to mention that, in the actual implementation, v(Z,j) from Equation 5.2 be-
comes extremely small when there is a long chain of observations. In case of running out of digits
in Python, we add an extra step

v'(i,§) = v(i, §) /maz{(t, 5) (5.5)

which means to scale up the possibilities. In this case, the maximum possibility in this round
mazxl¥_v'(t,7) (after experiencing j observations) is 1.
We adapted an existing implementation of HMM map matching ! and integrate the idea of

'HMM map matcher: https://github.com/simonscheider/mapmatching
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multipath mitigation into it. Algorithm 5 briefly describes the whole process.

Algorithm 5: The process of HMM map matching with multipath mitigation.

1 Let t,, stores the subscript of previously selected road segment, initialise it to -1;
2 for every sample o; in the trajectory do

3 Select a road segment candidate set F;

4 Run Algorithm 1;

5 for each road segment candidate ¢; € E do

6 Compute ay,, ; (Equation 5.3) if ¢,, is not -1;

7 Compute b;; (Equation 5.4) using the output of Algorithm I;

8 Compute v'(i, j) by Equation 5.5;

9 end

10 Select the road segment with maximum probability and store its subscript,
tpr <— argmazy,epv(i, n);

11 end
12 Select the path with the highest probability and trace back to output the path;
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Chapter 6

Results

We tested the program on 7 trajectories. Table 6.1 shows the parameters we used in experimental
tests. We tested different values of parameters for one trajectory and the values in Table 6.1 can
output relatively good results. However, these values may not be optimal since we didn’t check
all possible value combinations for these parameters. In this chapter, we present the results of the

Trajectory id r Ci Co w1 wo
0325-1 30m 50 100 0.5 0.5
0325-2 30m 50 100 0.5 0.5
0325-3 30m 50 100 0.5 0.5

0401-1 30m 100 200 0.5 0.5
0401-2 30m 50 100 0.5 0.5
0405 50m 50 100 0.5 0.5
0407 30m 50 100 0.5 0.5

Table 6.1: Parameter configuration in experimental tests.

experimental tests and compared them with the results of the conventional HMM map matching
in order to investigate the general ability for multipath mitigation to help map matching.

6.1 Analysis

Figure 6.1 shows the actual path and the matching results of the conventional and the proposed
methods for Trajectory 0325-1. Figure 6.2 zooms in and highlights the differences between the
matching results for Trajectory 0325-1. In the case of Trajectory 0325-1, the proposed method
with multipath mitigation cannot correct the matching errors in the conventional HMM map
matching (the first, second and fourth columns in Figure 6.2). And it even degraded the matching
as the third column in Figure 6.2 shows. The performance of the proposed method on Trajectory
0325-1 didn’t meet our expectations.
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(c) The path computed by the HMM map matching with multipath mitigation for Trajectory 0325-1.

Figure 6.1: Map matching results for Trajectory 0325-1.

*

Figure 6.2: Differences between the matching results of the conventional and proposed methods
for Trajectory 0325-1.
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The results of Trajectory 0325-2 are shown in Figure 6.3. With fewer trajectory samples and
more spare road network around them, both the conventional and proposed methods work well.
But the proposed methods slightly improved the match by correcting the left bottom corner of
the result of the conventional method.

(b) The path computed by the conventional HMM map matching for
Trajectory 0325-2.

(c) The path computed by the HMM map matching with multipath
mitigation for Trajectory 0325-2.

Figure 6.3: Map matching results for Trajectory 0325-2.
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Figure 6.4 and Figure 6.5 compare the results of conventional and proposed methods to the
actual path for Trajectory 0325-3. From the second and third columns of Figure 6.5 we can see
that the proposed map matching method managed to eliminate redundant wrong tracks and select
the correct road segments for Trajectory 0325-3.

(c) The path computed by the HMM map matching with multipath mitigation for Trajectory 0325-3.

Figure 6.4: Map matching results for Trajectory 0325-3.
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Figure 6.5: Differences between the matching results of the conventional and proposed methods
for Trajectory 0325-3.

36 HMM Map Matching for Trajectories in City Areas with Multipath Errors



CHAPTER 6. RESULTS

Samples in Trajectory 0401-1 are not of a good quality and thus, neither of these two map
matching methods can give out a fair result as shown in Figure 6.7. Figure 6.6 highlights differences
between the results of the conventional and proposed map matching methods. Compared to the
result of the conventional method, the output of the proposed method is more accurate (like the
first and second columns in Figure 6.6). Even though it failed to correct the match, it slightly
improved the performance of map matching by filling the missing road segments (the third column
in Figure 6.6) and eliminating redundant segments (the fourth column in Figure 6.6).
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Figure 6.6: Differences between the matching results of the conventional and proposed methods
for Trajectory 0401-1.
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(c¢) The path computed by the HMM map matching with multipath mitigation for Trajectory 0401-1.

Figure 6.7: Map matching results for Trajectory 0401-1.
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In the case of Trajectory 0401-2, the proposed method had a better performance than the
conventional method. Figure 6.8 displays the outputs of these two methods and Figure 6.9 points
out their differences. Similar to Trajectory 0401-1, the proposed method can partially correct the
match errors in the conventional HMM map matching.

(¢) The path computed by the HMM map matching with multipath mitigation for Trajectory 0401-2.

Figure 6.8: Map matching results for Trajectory 0401-2.
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Figure 6.9: Differences between the matching results of the conventional and proposed methods
for Trajectory 0401-2.

Figure 6.11 shows the matching results for Trajectory 0405 and Figure 6.10 points out their
differences. The proposed method eliminated redundant segments but it also made a wrong
correction as the third column shows in Figure 6.10. The matching results of the conventional
and proposed method for Trajectory 0407 and the comparison between them are shown in Figure
6.12 and Figure 6.13.

Figure 6.10: Differences between the matching results of the conventional and proposed methods
for Trajectory 0405.
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(a) The actual path for Trajectory 0405.

(b) The path computed by the conventional HMM map matching for Trajectory 0405.

(c) The path computed by the HMM map matching with multipath mitigation for Trajectory 0405.

Figure 6.11: Map matching results for Trajectory 0405.
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(c) The path computed by the HMM map matching with multipath mitigation for Trajectory 0407.

Figure 6.12: Map matching results for Trajectory 0407.
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Figure 6.13: Differences between the matching results of the conventional and proposed methods
for Trajectory 0407.

Trajectory id Improvements Deterioration Draws

0325-1 0 2 3
0325-2 1 0 0
0325-3 2 0 1
0401-1 3 0 5
0401-2 3 0 )

0405 2 3 5

0407 7 3 7

Table 6.2: Statistics on improvements, deterioration and draws between the results of the proposed
method and the conventional method.

By comparing the results of the proposed and conventional methods, Table 6.2 counts the num-
bers of the improvements, deterioration and draws, the places that neither the proposed method
nor the conventional method provides a good match. It only provides a rough overview of how the
proposed HMM map matching method performs on our dataset. It is hard to make a conclusion on
the general performance of the proposed HMM map matching method with multipath mitigation,
because the trajectory data we collected is not big enough. Based on the examples we have, the
proposed method had a positive influence on the results sometimes. In most cases, the proposed
method could not correct the mismatch that happened in the conventional HMM map matching.
And in a few cases, it selected the wrong road segments, degrading the accuracy of map matching.
On the dataset we collected, the proposed method slightly improved the map matching results in
general without largely degrading the accuracy in any specific places.

Then we analyse the experiments from a deeper perspective which refers to the candidates
and their probabilities for each observed location. However, it is hard to analyse the whole map
matching process step by step, because (1) HMM map matching selects the global optima instead
of local optima; (2) we didn’t implement a canvas to draw intermediate results; (3) the output
shapefile (polyline) cannot store intermediate results including points and polyline. Therefore,
we make it output the candidates generated and their possibilities (v'(7,7) in Equation 5.5) for
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some specific trajectory samples. In this way, we hope to check if the proposed method provided
candidates with a better probability distribution, especially in an urban canyon.

Figure 6.14 shows the candidate sets for a part of Trajectory 0325-1. The real world envir-
onment for this part of trajectory is complicated with an urban canyon (see Figure 6.14a) and
multipath errors, especially NLOS, would likely happen. Figure 6.14b and 6.14c compare the
candidate sets generated by the conventional and proposed methods. Subfigures in the bottom
right corner of Figure 6.14b and 6.14c recall the map matching results of the conventional and
proposed methods. We can see that both conventional and proposed methods made the correct
match while the probability distributions of candidates are different. Compared to the conven-
tional method, the proposed method assigned higher probabilities to candidates who are on the
correct road segments.

\
ChristiChurch
CEPrimary'School &

/

(b) The candidate sets for GPS0036 to GPS0042 (c¢) The candidate sets for GPS0036 to GPS0042
computed by the conventional method. The color of computed by the proposed method. The color of
the candidates indicates the probability they have. the candidates indicates the probability they have.
The bottom right corner shows the map matching The bottom right corner shows the map matching
result of the conventional method. result of the proposed method.

Figure 6.14: Candidate sets for GPS0036 to GPS0042 in Trajectory 0325-1.

Another part we focus on is shown in Figure 6.15. This time the proposed method successfully
corrected the mismatch in the conventional method. From 6.15a, we can see that NLOS errors
might happen because buildings stand on both sides of the street. The proposed method did
provide candidate sets with better probability distributions compared to the conventional method
as shown in Figure 6.15b and 6.15c.

The third example is Figure 6.16. In this example, neither the conventional and proposed
method could provide a correct match. Even though the proposed method made a small influence
on the probabilities of candidate sets, incorrect road segments were still selected. This is probably
because the inaccuracy in positioning here is not mainly related to NLOS errors, but interference
errors. Clearly, in Figure 6.16a, the first half of the route didn’t pass an area with a city canyon.
With tall buildings only standing on one side of the street, multipath interference is more likely
to happen rather than NLOS problems (see Figure 1.1).
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(a) The real world environment for this part of Trajectory 0401-1.

© 0.000000 - 0.
© 0.200001 - 0.
@ 0.400001 - 0.
@ 0.600001 - 0.
® 0.800001 - 1.
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(b) The candidate sets for GPS0236 to GPS0244 (c) The candidate sets for GPS0236 to GPS0244
computed by the conventional method. The color computed by the proposed method. The color of
of the candidates indicates the probability they the candidates indicates the probability they have.
have. The top right corner shows the map match- The top right corner shows the map matching res-
ing result of the conventional method. ult of the proposed method.

Figure 6.15: Candidate sets for GPS0236 to GPS0244 in Trajectory 0401-1.

(a) The real world environment for this part of Trajectory 0407.

© 0.000000 - 0.200000

(b) The candidate sets computed by the conven- (c) The candidate sets computed by the proposed
tional method. method.

Figure 6.16: Candidate sets for GPS0654 to GPS0678 in Trajectory 0407.

HMM Map Matching for Trajectories in City Areas with Multipath Errors 45



CHAPTER 6. RESULTS

Similar to the previous example, neither of the conventional and proposed methods outputs
the correct match as shown in Figure 6.17. But the real world environment for this example shows
that the NLOS errors happened. We went through the candidates and their probabilities and we
found that the mismatch is because the search radius is not big enough. As Figure 6.18 shows, the
sample marked in the red circle can only have one road segment candidate due to the small search
radius. Once we increase the searching radius from 30 meters to 50 meters, both two methods can
give the correct match.

£ 0.000000 - 0.200000 © 0.000000 -

© 0.200001 - 0.400000 © 0.200001 - 0
@ 0.400001 - 0.600000 © 0.400001 - 0.
@ 0.600001 - 0.800000 @ 0.600001 - 0.

@ 0.800001 - 1.000000 @ 0.800001 - 1.

(b) The candidate sets computed by the conven- (c) The candidate sets computed by the proposed
tional method. method.

Figure 6.17: Candidate sets for GPS0208 to GPS0222 in Trajectory 0401-1.

Figure 6.18: Green dots are trajectory samples. The sample marked can only have one candidate
close to it due to the small search radius.

Based on the analysis above, the proposed method can slightly improve the accuracy of map
matching when NLOS errors are the dominant reason to degrade positioning. But it degrades the
accuracy of the conventional one in a few specific places. Possible reasons are:

1. Inappropriate parameters like a small searching radius.

2. The inaccuracy in the trajectory samples is not caused by NLOS errors. In this case, the
proposed method will not do any contributions.

3. General errors like the observation errors in our dataset exclude trajectory data, for example,
the errors in satellite positions and buildings heights.
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6.2 Computation Time

We tested the program on 7 trajectories on two machines with different configurations. Machine
1 is shipped with Intel Core i7-6560U and 8 GB memory while Machine 2 uses Intel Core 15-1140
with 16GB memory. Table 6.3 lists the information about these trajectories and the running time
they cost.

Trajectory id ~ Sample size Time (Machine 1) Time (Machine 2)

0325-1 92 1050.6 s 33 s
0325-2 20 518.2 s 72s
0325-3 o4 585.7 s 11.1s
0401-1 84 793.9 s 30.4 s
0401-2 135 692.9 s 279 s
0405 140 1881.3 s 85.7 s
0407 268 1075.9 s 64.4 s

Table 6.3: Time cost for trajectories on different machine.
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Chapter 7

Conclusions

In this final project, we focused on the problem of how we can improve the accuracy of map
matching in urban areas. We realized that the bad quality of trajectories in urban areas is mainly
caused by multipath errors. Hence, we developed an idea of integrating multipath mitigation
(mainly for NLOS errors) into the map matching techniques.

We have proposed an algorithm that uses 3D building models and geometric methods to
simulate multipath, and then mitigates them to improve the accuracy of the conventional HMM
map matching. By using our geometric methods, obstructed satellite signals can be effectively
recognized and the potential NLOS errors can be estimated. By constructing the hypothesis pseudo
ranges from direct pseudo ranges and NLOS errors, we can compute the hypothesis position for a
GPS trajectory sample using the weighted least square solver. If the calculated position is close to
the sample we measured, the road segment that the position stays on is more likely to be selected
as a match to the sample. Conversely, the road segment is less likely to be selected. By doing so,
we adjust the probability of those road segment candidates for each trajectory sample. Finally, we
run HMM map matching on these road segment candidate sets to select the global optima path.

The algorithm was evaluated through experiments on a real world dataset. Trajectory data was
manually collected in Newcastle upon Tyne, the UK and the rest of data, including road network,
3D building model and satellite position data were accessed online. It was found that running
on this dataset, the proposed algorithm can improve the accuracy of map matching by pruning
redundant road segments while filling correct segments to the path. However, the improvement in
performance is slight and unstable as the algorithm conducts incorrect modifications and degrades
the accuracy in a few specific places. The algorithm slightly degrades the accuracy in a few cases.
But from a global perspective of the data set, the improvement overweights the degradation.

The algorithm is time-consuming with a speed of about 100 trajectory samples per 30 seconds
on a machine shipping with Intel Core i5-11400 and 16GB memory, or approximately 100 trajectory
samples per 1000 seconds on a machine with Intel Core i7-6560U and 8 GB memory.

However, the conclusion above is based on the dataset we have with only 7 trajectories. The
algorithm should be tested on a larger dataset with more trajectories in future work. With a
larger dataset, we can measure the similarity between the result of the proposed method and the
actual path by some functions like Fréchet distance. By comparing to the similarity between the
result of the conventional method and the actual path, we can then evaluate the performance
of the proposed algorithm in general. Also, some details in the proposed algorithm need further
discussion. For example, for one road segment candidate, we pick one point from it to do the
simulation. It may be better to pick multiple points along a road segment candidate. Furthermore,
we only considered NLOS errors in the trajectories for the proposed method and the remaining
errors like interference errors need to be investigated in the future.
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