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Abstract

Good sleep is important for overall well-being and reduces the risk for many
physical and mental health conditions. Polysomnography is the gold-standard
for measuring sleep and is used to identify the sleep structure of a subject, which
is depicted in a hypnogram. Even though the hypnogram plays an important
role in diagnosing sleep disorders, interpretation by physicians typically relies on
clinical intuition, experience and visual pattern recognition. Therefore, in this
thesis we aimed to identify and interpret aspects within and across hypnograms
that contribute to interpretation by physicians.

We describe how subjective evaluations for hundreds of hypnograms were
obtained and how visualization and machine learning methods were applied to
gain insight into interpretation of the hypnogram. Conventional machine learn-
ing models and convolutional neural networks were used to identify features of
the hypnogram that are associated with interpretation by physicians. In addi-
tion, visualization methods were used to obtain more qualitative insights into
the data and the models. Our results show how fragmentation and distribu-
tion of sleep stages in the hypnogram is strongly associated with interpretation
by physicians. The implications of our work in the area of sleep research are
discussed.
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Chapter 1

Introduction

Humans spend almost one-third of their life asleep, nevertheless there are still a
lot of mysteries surrounding sleep. From an evolutionary perspective, it seems
weird that our bodies spend large amounts of time asleep, a state in which we are
vulnerable to predators. Nevertheless, the importance of sleep is indisputable.
Good sleep has been shown to be important for overall well-being and to reduce
the risk for many physical and mental health conditions [49].

The field of sleep medicine is specialized in diagnosis and therapy of dis-
turbed and disordered sleep. Sleep is typically measured using polysomnogra-
phy (PSG), which remains the current gold-standard for assessing sleep. PSG
focuses on the measurement and analysis of brain activity, eye movements and
muscle activity to determine whether a subject is awake or asleep, and in which
sleep phase someone is. The signals obtained from PSG are split into epochs (20-
30 second frames). Using a set of scoring rules, each epoch is visually inspected
and classified as wake (W), non-rapid eye movement (NREM, subdivided into
N1, N2 and N3) or rapid eye movement (REM) sleep. The resulting sequence
of sleep stages can be visualized in a so-called hypnogram, which displays the
sleep structure of a patient throughout the night.

Three examples of hypnograms are shown in figure 1.1. There are strong
differences in patterns that can be observed in these hypnograms. From a
clinical perspective, the hypnogram contains a wealth of information. It is one
of the most important aspects of the PSG report and is used in combination
with a patient’s background, experienced symptoms and other information to
determine if and which sleep disorder is present and how this should be treated.

Despite being an important aspect of the PSG report, assessment of the
hypnogram by physicians is largely done visually in combination with ”clinical
intuition”. There is only a limited set of quantitative variables extracted from
the hypnogram, examples are the total sleep time and the percentage of REM
sleep. Each parameter summarizes the hypnogram as a single number. These
parameters might be unable to explain the full complexity that is conveyed
by the hypnogram. Instead, the most important information conveyed by the
hypnogram is retrieved based on visual pattern recognition by the physician.
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(a)

(b)

(c)

Figure 1.1: Three example hypnograms showing the sleep structure (sequence
of sleep stages) throughout the night obtained from PSG.

Research on interpretation and clinical relevance of the hypnogram is lim-
ited and the exact role of the hypnogram in diagnosing sleep disorders is not
well understood. Some works have considered automatic detection of specific
aspects (e.g. insomnia, sleep-disordered breathing) from the hypnogram [44, 9].
To the best of our knowledge, there is only one study that tried to relate fea-
tures of the hypnogram with subjective evaluations by physicians. In a small
experiment, it was shown that interpretation of a hypnogram in terms of normal
or abnormal could be predicted accurately from the distribution of sleep stages
in the hypnogram [4].

In this thesis, we aim to provide a more thorough exploration of the role
of the hypnogram and how it is used by physicians. For this purpose, a large
amount of hypnograms was assessed by a small group of physicians. Combining
machine learning and visualization methods can yield solutions that are highly
effective at gaining insight in complex data that contains a temporal dimension
[2]. Therefore, we aim to use a combination of visualization and machine learn-
ing techniques to explore patterns in and across hypnograms. More specifically,
we are interested in patterns in hypnograms that are associated with interpre-
tation by physicians and agreement between physicians. These goals will be
formalized in the next section.
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1.1 Thesis Objectives

Before elaborating on the specific objective of this thesis, it should be noted that
this project is by nature exploratory. We are unaware of any work that explored
the role of the hypnogram and the relations between hypnogram, interpretation
and diagnosis in a similar way. Therefore, the objective of this thesis is quite
broad. Overall, our main objective can be described as:

To use visualization and (explainable) machine learning to identify and
interpret aspects within and across hypnograms that contribute to inter-
pretation by physicians.

Moreover, four research questions were formulated to make this objective
more concrete and to help us in exploring the patterns within and across hypno-
grams:

1. How can visualization and machine learning be used to gain insight into
a large number of hypnograms?

2. Which features of the hypnogram drive interpretation by physicians?

3. Are there previously unknown features of the hypnogram that are associ-
ated with interpretation? Can these features be used for analysis and/or
assessment of hypnograms?

4. Which factors determine and influence disagreement between physicians
and certainty within physicians?

1.2 Thesis Scope

Normally, a physician would use a hypnogram in a clinical setting and take into
consideration experienced symptoms, background of a patient and other PSG
outcomes. In this research, we are emphasizing the structure of the hypnogram
itself, therefore the hypnograms are considered in an artificial research setting
rather than a clinical setting. Activities and information before the hypnogram
is obtained (e.g. raw PSG signals) and other PSG outcomes (e.g. apneas) are
considered out of scope for the current study. The hypnograms that are used
were obtained from PSGs that were conducted and scored by experienced sleep
technicians at Kempenhaeghe as part of the SOMNIA and Healthbed projects
[48]. These PSG recordings were scored using the American Academy of Sleep
Medicine (AASM) scoring rules [7]. Only subjects between 18 and 80 years are
considered.

1.3 Thesis Contributions

In this thesis, we describe how we used visualization and machine learning to
identify and interpret aspects within and across hypnograms that contribute
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to interpretation by physicians. We collected subjective evaluations for hypno-
grams and conducted several experiments to obtain insights in the data.

In chapter 2, we discuss relevant background literature and identify meth-
ods from visualization and machine learning that are suitable for dealing with
hypnograms. Afterwards, in chapter 3, we describe the methods that were used
to obtain and analyse hypnograms and evaluations. The results are presented
in chapter 4. Finally, in chapter 5, we provide a discussion on these results, on
the limitations of our work and on directions for future research.
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Chapter 2

Background

This chapter will highlight some relevant background work. First, relevant work
from the domain of sleep will be discussed in section 2.1, where we will also
further elaborate on hypnograms. In section 2.2, methods from visualization
and machine learning that are applicable to hypnograms are identified. Specific
attention is paid to time-series since the time dimension of a hypnogram makes
it a particularly challenging type of data. A summary is given in section 2.3

2.1 Sleep

As mentioned before, PSG is the gold-standard method for assessing sleep.
The signals obtained from PSG are loaded into the computer and each epoch
(20-30 second time frame) is visually inspected and manually classified as one
of the sleep stages. There are different sets of rules for scoring these epochs;
Rechtschaffen and Kales (R&K) which distinguishes 7 stages and the more novel
AASM that distinguish 5 stages [29, 7]. As mentioned before, the stages dis-
tinguished by AASM are W, N1, N2, N3 and REM, a brief overview of these
stages is presented in table 2.1. The resulting hypnogram h can be seen as a
sequence of sleep stages, this is formalized in equation 2.1, here t is typically
around 1000 assuming an 8-hour long recording.

h := 〈s1, s2, ..., st〉 where each si ∈ {W,N1, N2, N3, REM} (2.1)

In a hypnogram showing a normal sleep structure we would expect to see a
cyclical pattern, where cycles are approximately 90 minutes. Typically, four to
six cycles are observed where NREM is followed by a period of REM sleep [8].
REM sleep is usually observed more frequently in the second half of the night,
whereas deep sleep (N3) is more profound during the first half. The hypnogram
in figure 1.1a illustrates these patterns, N3 is more profound at the start and
the amount of REM increases towards the end, four two-hour cycles of NREM
followed by REM sleep can be distinguished.
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Name Type Time Description

W Wake Person is awake.
N1 NREM 5% Feeling drowsy and dozing off, light sleep, short transi-

tion state from W to N2. Easy to wake up.
N2 NREM 50% Most frequent sleep stage during the night. Character-

ized by k-complexes and spindles in the EEG.
N3 NREM 20% Deep sleep, person is difficult to wake up. Characterized

by slow wave delta activity in the EEG.
REM REM 25% Characterized by rapid eye movements. High amounts

of activity and irregularity, brain paralyzes the muscles.

Table 2.1: Overview of different sleep stages distinguished by the AASM manual.
Estimated times and descriptions are obtained from [10]. Note that the times
per stage are approximate averages; there are large individual differences in how
long a person spends in each stage during the night.

The times shown in table 2.1 are average estimates, in practice there are
strong individual differences in sleep structure. A known factor that has an
influence on sleep structure is age. The amount of N3 reduces with age, for
elderly it is not surprising to see minimal amounts of deep sleep [8]. Moreover,
it is important to be aware that an abnormal sleep structure does not imply
that a person has a sleep disorder and vice versa. For example, in some cases
abnormal sleep structures can be explained as a first-night effect (a person has
a bad night due to the PSG setting).

The results of a PSG are presented in a report, which includes the hypno-
gram and a number of parameters that are computed from the hypnogram.
These parameters quantify certain characteristics of the hypnogram. Typical
parameters include, amongst others, distribution of stages, number of awaken-
ings and sleep onset latency (minutes from lights off till first non-wake). In the
PSG report typically only a small amount of parameters is presented, however
for quantitative analysis more features can be included [4, 9].

There are some limitations to the hypnogram. First, the choice and defini-
tion of scoring rules is important. Parameters, such as sleep onset latency, were
found to be significantly different for hypnograms obtained from the same PSG
with different scoring rules (AASM vs R&K) [29]. Moreover, the scoring rules
are not always easy to apply and leave room for interpretation for the scoring
sleep technician. A comparison of scored stages by sleep technicians of eight
European sleep laboratories in 2004, showed that the inter-rater agreement be-
tween technicians was limited [13]. The technicians scored a large sample of
hypnograms with various disorders, the average agreement between the scorers
was only 76.8%. Five years later, a similar study found that the inter-rater
agreement between scorers was 82% for AASM and 80.6% for R&K [12]. This
implies that for a given PSG, the resulting hypnogram can vary across scor-
ers. Therefore, methods that automatically score the epochs of a PSG can be
more robust. For example, it was shown that automatic insomnia detection
from hypnograms was more accurate when the PSG was not scored by a sleep

14



technician, but rather by an automatic sleep staging model [9]. Those results
emphasize that the hypnogram is not an exact and perfectly accurate repre-
sentation of sleep structure. Instead, it is subject to human choices and noise
introduced by representing the sleep structure as a discrete sequence.

Consequently, novel approaches considered alternative representations for
sleep structure. In [32], an automatic sleep staging model was proposed that is
not limited to 30 second epochs but can provide predictions at higher frequen-
cies. The authors illustrated that their method can provide additional diagnostic
value by showing that higher frequency predictions can lead to a more accurate
separation of OSA from healthy patients. Similarly, a hypnodensity plot can be
used to represent the distribution of sleep stages at each timestamp rather than
a single sleep stage per timestamp [43]. However, these methods are currently
only of scientific interest. In practice the hypnogram is still the default method
for visualizing the sleep stages discovered in a PSG.

2.2 Time-series

Time-series are a type of data where observations are recorded over time. Typ-
ical examples of time-series are ECG recordings and stock-market data, but
also multimedia such as audio and video can be seen as time-series [30]. Since
many real-world phenomena change over time and recent advances allow for
large-scale storage of data, time-series has grown into a large research area.
Hypnograms can also be seen as time-series, more specifically as a univariate
discrete time-series since each timestamp describes a single, discrete value. Re-
search on time-series considers many different tasks including (sub)sequence
matching, anomaly detection, clustering, classification, visualization and fore-
casting [1]. In this section we will mostly focus on classification since the goal of
identifying patterns in the hypnogram that are associated with interpretation
can be formulated as a classification problem.

Methods for time-series problems focus on dealing with the temporal dimen-
sion of time-series. However, the structure of the individual observations at each
timestamp can be different (as seen from the obvious differences between a video
and a hypnogram). Therefore, it is challenging to evaluate algorithmic advances
as their success might not generalize well across time-series problems [5]. As
a solution, the UCR archive1 was created in 2002 and has grown to a total of
128 time-series datasets since [14]. The archive contains a variety of time-series
with different characteristics. In recent years, also multivariate time-series were
introduced as part of the UEA archive [5]. Nowadays, new algorithmic advances
for time-series are often tested on the entire archive.

Typically, time-series contain continuous values, in the UCR repository this
is true for all datasets. In contrast, hypnograms have discrete values, therefore
popular time-series algorithms such as dynamic time warping (DTW) cannot
easily be applied on hypnograms [6]. Time-series are typically expensive to

1https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
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collect as it requires longitudinal data collection [51]. This is also observed in
the UCR repository most of the datasets contain only a few hundred instances,
some exceptions contain more than 1000 instances but overall the datasets are
relatively small.

2.2.1 Classification

Classification is a machine learning (ML) problem, where the goal is to learn a
model that predicts a label based on some input. For this purpose a model is
trained on labeled data, afterwards the model can be used to predict a label for
previously unseen instances. For example, one could learn a model to predict
whether an ECG signal is associated with a healthy or diseased patient. Here
healthy and diseased are the labels and the sequence of ECG values is the input.

In many cases the raw input cannot easily be used to predict the labels.
Therefore, traditional approaches compute features (e.g. amplitude of ECG
signal) that serve as input for the model. More recently, advances in computing
power led to an increasing interest in deep learning (DL). In this area of ML,
deep neural networks are used that can automatically identify relevant features
from raw input data [23].

In the remainder of this section, the traditional ML approach using hand-
crafted features and some examples of this in the context of sleep are discussed.
Moreover, DL approaches for time-series and the challenge of explainability in
DL are discussed.

2.2.1.1 Traditional Machine Learning

As explained in the previous section, traditional machine learning approaches
consider handcrafted features that are computed from the raw input. In the
context of time-series it is important to realize that computing features over the
full series leads to a transformation of the original data to a feature space where
there is no longer an explicit temporal dimension. Instead, the temporal aspect
of the data is captured in the features themselves. Alternatively, a sliding-
window approach can be employed to compute features over subsequences of
the series [54, 2, 3]. In this case, several parameters can be tuned such as the
size of the (adaptive) window and the overlap between subsequent windows, the
result is a matrix of features per window.

The obtained features, either over the full series or using a sliding window,
are used to learn a model predicting the target labels. Commonly used and
fundamental ML classifier algorithms include (Logistic) Regression, Decision
Trees, Naive Bayes, Nearest-Neighbor and Support Vector Machines. Many
others or variants on these exist. Since the amount of feature engineering and
machine learning approaches is extremely large, we consider this out of scope for
this background section. Instead, we will discuss a few concrete examples that
use feature engineering and machine learning in the context of hypnograms.
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Classifying abnormal hypnograms To the best of our knowledge, the only
attempt at relating features of the hypnogram to subjective interpretation by
physicians was done by Amouh (2011) as part of a PhD thesis [4]. In their re-
search, 52 hypnograms were considered of which 29 were labelled abnormal and
23 were labelled normal by domain experts, it is unknown how the hypnograms
were selected. The hypnograms were obtained from PSG using the R&K scoring
rules. From the hypnogram the following features were computed:

• Distribution of stages. Proportion of the recording spent in each stage.

• Minimum and maximum duration per stage. For each stage a tuple
(min,max) describes the minimum and maximum duration in minutes for
the given stage.

The features were used as input for a special type of decision tree classifier
that was created as part of their work. A regular decision tree is a hierarchical
set of rules that, if followed, predicts one of the labels. A decision tree is
typically learned top-down, at each phase a split is created that maximizes the
information gain (i.e. split the data into parts using a specific feature such
that the parts have minimal entropy with respect to the labels) [36]. The tree
that is obtained is pruned to prevent overfitting (i.e. too strictly modelling the
training data leading to rules that do not generalize outside the training data).
The variation of Amouh involves a decision tree that can handle, what they refer
to as structured data, this concretely means that the decision tree can handle
multiple values at once during a split. For example, the distribution of sleep
stages are all used simultaneously in a single split, instead of using a single sleep
stage per split.

The non-overfitting model that was learned by Amouh is shown in figure
2.1, it can be observed that the model only considers a single split and uses
the distribution of sleep stages for this split. From the model we can see that
abnormal hypnograms are in general associated with larger proportions W and
S2; on the other hand they have less REM, S1 and deep sleep (S3 and S4).
Overall the model achieves a 0.90 accuracy which was evaluated using leave-
one-out cross-validation.

Detecting insomnia from hypnogram Another study that used the hypno-
gram for learning a predictive model was done by Chaparro-Vargas et al. (2016),
one of their goals was to detect which subjects were suffering from Insomnia
given the hypnograms [9]. For this task they considered the sleep-onset periods,
i.e. only the first W, N1 and N2 transitions, of 32 subjects.

In contrast to the work of Amouh, they did not compute features over the en-
tire hypnogram, instead the hypnogram was represented as a transition diagram
with stages W, N1 and N2 as shown in figure 2.2. From the hypnogram they
learned the probabilities of all 9 pairwise transitions. These transition proba-
bilities were used as input for a logistic regression model to predict whether a
subject was suffering from insomnia. Using leave-one-out cross validation the
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Figure 2.1: Decision tree for classifying hypnograms as normal (0) or abnormal
(1), directly taken from [4]. The pruned decision tree considers only a single
split. The hypnogram is normal if the stage distribution of the hypnogram is
closer to P = {W, .14;REM, .15;S1, .07;S2, .34;S3, .08;S4, .22} than to Q =
{W, .32;REM, .08;S1, .04;S2, .56;S3, 0;S4, 0}.

model was estimated to have an accuracy of 0.81, with errors equally distributed
across the two classes. They concluded that the hypnogram can be used to de-
rive whether a subject is likely to suffer from insomnia.

In a similar study, transitions systems were used to distinguish between
subjects with and without sleep-disordered breathing (SDB) [44]. Instead of
onset stages, the model considered the states W, REM and NREM. Significant
differences in transition probabilities were found between the SDB and no-SDB
groups, indicating that this disorder is related to changes in sleep structure.

Figure 2.2: Chaparro-Vargas represented the sleep onset period of the hypno-
gram as a transition system. The probabilities associated with the transitions
(edges in the diagram) were used as input for a logistic regression model. Di-
rectly taken from [9].
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2.2.1.2 Deep Learning

Deep learning (DL) is a subset of machine learning where neural networks are
used to automatically extract representations from raw data. In contrast to
traditional ML, neural networks can handle raw and complex data and auto-
matically learn suitable abstract representations using backpropagation. These
methods have shown remarkable state-of-the-art performance in image recogni-
tion, speech processing and many other domains [23].

Fawaz et al. (2019) provide an overview of deep learning applications in
time-series classification (TSC) [15]. They argue that deep learning is under-
utilized for TSC, existing DL methods have benefits over traditional ML ap-
proaches. Different types of deep learning models exist, most known are mul-
tilayer perceptron (MLP), convolutional neural networks (CNN) and recurrent
neural networks (RNN). Despite RNN being known for its ability to handle se-
quences, CNN is the most successful and most applied model for TSC problems
[15]. The reasons for this are that RNNs are mostly useful for sequence-to-
sequence applications [22], they suffer from the vanishing gradient problem and
are avoided because they are difficult and computationally expensive to train
[31].

CNN Convolutional neural networks became popular after AlexNet won the
Imagenet competition in 2012 [21]. The main building block of CNN is the
convolutional layer which consists of convolution units, often referred to as filters
or kernels. The filter, typically length 3, slides across the time-series, at each
point the result of the filter are the input values multiplied by the weights of the
filter [15]. Afterwards, this value is transformed using a non-linear activation
function such as Rectified Linear Unit (ReLU). A convolutional layer consists of
multiple filters that are slided across the input in the same fashion. This means
that a convolutional layer with k filters of size w applied on an input of length
n produces an output of size (k, n − w + 1). By making use of a non-linear
activation function and stacking multiple layers the network can learn complex
representations of the input. Typically, the convolutional layers are followed by
a number of fully-connected layers.

In a CNN one will also often encounter pooling and dropout layers. The
former is used to reduce the dimensionality by reducing an input to local max-
imum or local average values, this is illustrated in figure 2.3. By downsampling
the input with pooling, noise can be surpressed and computational complexity
of the model can be reduced. Moreover, dropout layers are often used to prevent
overfitting. Dropout is used to randomly ignore nodes during training, thereby
approximating a large number of different architectures in parallel [42]. For a
more extensive explanation of the workings of CNN in the context of time-series
we recommend reading section 2.2.2 of [15].

CNN for TSC Applications of CNN are best-known on images, however the
operations of a CNN are also defined on 1-dimensional data. Compared to 2D
data such as images, applications of CNN on time-series (or other 1D data)
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Figure 2.3: Pooling operation on a 2D input. Pooling reduces the size of the
input by taking local maximum or average values, directly taken from [37].

are less computationally complex, contain less layers (often 2-3 CNN layers
are enough), have much less parameters (typically less than 10.000) and conse-
quently training is faster [19]. In their overview paper, Fawaz et al. compared 9
different deep learning architectures for time-series classification, they compared
their performance on all 85 datasets in the UCR repository [15].

A summary of the architectures that were compared is shown in figure 2.4.
It can be observed that most of the networks are fairly similar in the sense
that they contain 3-5 layers of which 2-3 convolutional layers, only notable
exception to this rule is the residual network (ResNet) model proposed by [50].
The differences between the other models concern whether pooling was used
after convolutions and whether fully-connected or global average pooling (GAP)
layers were used as the last layer(s) of the model.

Figure 2.4: Summary of the 9 different DL architectures that were compared
on the UCR repository, directly taken from [15].

The results of the comparison of the models on the UCR repository indi-
cated that the fully-convolutional (FCN) and ResNet models were performing
significantly better than the others [15]. Interestingly, the ResNet model is the
deepest model in their comparison which indicates that deeper models can be
more effective for TSC. Moreover, this suggests that the size of the datasets
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(recall that datasets in the UCR are typically less than 1000 instances) is not a
limiting factor. Therefore, this confirms that 1D CNN applications require less
data for training compared to their 2D counterparts [15, 50, 19]. Fawaz et al.
argue that the success of the FCN and ResNet model can be attributed to the
use of a GAP layer, rather than fully-connected layers at the end. Moreover,
this adds the benefit of being able to compute class activation maps, on which
we will further elaborate later [57].

The FCN and ResNet architecture were both proposed by Wang et al. (2017)
[50]. As those models were outperforming all others on almost all datasets of
the UCR database, we briefly describe their architectures. The architectures
are also shown in figure 2.5.

• FCN stands for fully-convolutional network, this term is used as no pooling
layers are used after convolution as seen in figure 2.5a. Instead, the 3
convolutional layers are all followed by batch normalization. The model
uses ReLu activation function, GAP is used with softmax for obtaining
the final predictions.

• ResNet stands for residual network and has achieved state-of-the art re-
sults for object detection problems [18]. The TSC variant of this model,
seen in figure 2.5b, is characterized by 3 residual blocks that have shortcut
connections to each other. These blocks are followed by a GAP layer and a
softmax layer. The shortcuts enable the model to learn residual functions,
which has been shown to potentially improve accuracy.

(a) FCN architecture

(b) ResNet architecture

Figure 2.5: The FCN and ResNet architectures for TSC as proposed by [50].
These models were found to be the best performing TSC models on the UCR
database [15]. Directly taken from [50].
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2.2.1.3 CNN Explainability

The effectiveness of CNN and other deep learning models comes with a downside;
as the functions that can be learned are complex and non-linear the models are
difficult to interpret [25]. For many applications it is important to understand
why a model makes a certain prediction, therefore a large amount of work has
been done on explaining and interpreting neural networks. Xie et al. (2019)
distinguish three different classes of explainability methods for neural networks:
visualization, model distillation and intrinsic methods [53]. For CNN, the first
two classes are most relevant, applications of intrinsic methods are mostly used
on RNN or more complex network structures [53].

Visualization-based explainability Visualization based methods express
explanations by highlighting characteristics of the input that strongly influence
the output of a neural network [53]. The result, typically demonstrated for
images, is a map that can be placed on top of the image to highlight the relevant
characteristics. Most of these methods are based on computing gradients of
the score that maximizes the class probabilities for a given image [56]. Several
methods exists, making use of slightly different techniques such as deconvolution
or guided-backpropagation [40, 41, 55]. In contrast to using gradients, another
approach is to perturb parts of the input and see how the output of the model
changes [53].

In 2016, Zhou et al. proposed class activation maps (CAM), which is a
method to visualize which parts of an input are discriminative for an output
class and are attended by the CNN [57]. Their method assumes FCN models
that use GAP followed by a softmax layer for classification. Because of this,
CAM is simple and intuitive. As seen in figure 2.6, the CNN feature maps
correspond to samples of the input image, the GAP layer outputs a simple
average of each feature map and the predictions for a given class can be obtained
by simply taking the weighted sum according to the last layer. A more formal
mathematical description can be found in [57]. The presence of a GAP layer is
quite a strong limitation, however models with GAP can provide competitive
results [57]. Also note that the previously seen models that were most successful
for TSC both used a GAP layer [15, 50].

A generalization of CAM is Grad-CAM (gradient-CAM) proposed in [39],
it can be used for a broader range of models including CNN models followed
by fully-connected layers. In this case, class discriminative maps are obtained
by first computing the gradient of the target class score with respect to the
activations of a convolutional layer. A variant that uses guided backpropagation
can be used to obtain more specific and high resolution maps [41].

Model distillation Model distillation methods for explanation develop a sep-
arate explainable model that is trained to mimic the input-output behavior of a
neural network [53]. The explainable model can identify important rules and/or
input features and provide hypotheses for the prediction of the network.
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Figure 2.6: Class activation maps can be computed to visualize which parts of
an input are discriminative of a specific class. By using GAP the importance
for each input sample on the predicted class can be constructed. Directly taken
from [57].

One of the most famous methods for model distillation is LIME (Local Inter-
pretable Model-agnostic Explanations), which is a framework that can provide
explanations for any type of black-box classification model (i.e. it is model-
agnostic) [34]. LIME works by perturbing parts of the input and evaluating
how the output prediction of the model changes, it uses an intrepretable model
to relate local parts of the input to the output of the model. LIME can be
used to provide explanations at an instance level, moreover the LIME frame-
work is publicly available as Python code2. Other model distillation methods
that use local approximations are mostly extensions of LIME [53]. There ex-
ists a method specifically designed for time-series, however this method only
considers time-series with continuous values [17].

Another popular model-agnostic explanation method is SHAP (SHapley Ad-
ditive exPlanations). In contrast to LIME, SHAP provides guarantees on ac-
curacy and consistency [26]. In fact, the authors argue that LIME is actually
a subset of SHAP. The main component of SHAP are Shapley values, which
quantify feature contributions under consideration of all possible combinations
of inputs. As a downside, this is an exhaustive approach which is computa-
tionally much more expensive compared to LIME. In contrast to LIME, SHAP
provides explanations over the full feature space rather than at an instance level.
The code for SHAP is publicly available as a Python module3. There is no sin-
gle best explanation method, instead it depends on characteristics of the model,
the data and the goals of the user [38, 11].

2https://lime-ml.readthedocs.io/en/latest/
3https://shap.readthedocs.io/en/latest/
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2.2.2 Visualization

Visualization of time-series can generally speaking take two directions: either
time is represented by space (e.g. a time-axis in the visualization) or by time
(animation). Animation provides a solution to displaying many and large time-
series, however for analysis purposes static representations of time are more ef-
fective [20]. Time-series data is often high-dimensional, continuous and large in
size. These are typical challenges of time-series data, therefore simplified repre-
sentations are used that can be visualized in a static manner [16]. In particular,
when considering multiple time-series simultaneously these representations can
be effective. This is also true for hypnograms, which can be seen as a simplified,
interpretable representation of a PSG. However, when the number of hypno-
grams grows large, analysis and pattern observation is a challenging task that
could benefit from alternative representations and visualizations.

An influential time-series representation is SAX, which represents a time-
series as a sequence of symbols by taking discrete time intervals and assigning
each interval to a group [24]. Since the representations of a hypnogram and
SAX time-series are both categorical sequences, applications that assume SAX
are also applicable to hypnograms. One such application is SAX-navigator,
which enables exploration of patterns across many time-series [35]. In figure
2.7 it is shown how the tool can help to understand and compare clusters of
sequences. A group of sequences can be represented as a heatmap, the difference
between heatmaps can be visualized with a diverging color scheme to highlight

Figure 2.7: SAX-navigator is a tool that enables interactive clustering and ex-
ploration of categorical sequences [35]. By visualizing a cluster as a heatmap it
can easily be observed which areas define the cluster. Clusters can be compared
by taking the difference of the heatmaps. Directly taken from [35].
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differences. Combined with hierarchical clustering their tool can be used to
explore SAX represented data.

Another solution involves using small multiples, in this case multiple small
plots are shown in the same axes with the same scale to enable easy compari-
son between the plots [46]. For categorical sequences, this can be achieved by
mapping values of a time-series to colors. The resulting color sequence can be
visualized with a fixed height and by stacking and reordering them, patterns
can be revealed. This method was demonstrated to be effective in identifying
EEG patterns that are associated with sleep-disordered breathing [45].

Both SAX navigator and color sequences as small multiples are methods that
preserve the time-dimension in the resulting plot. Another option would be to
project multiple time-series to a representation without a time dimension and
use more conventional visualization methods. High dimensional data can be
projected to 2D by using linear methods such as principal component analysis
(PCA) or non-linear methods such as t-distributed stochastic neighbor embed-
ding (t-SNE) or UMAP [28]. T-SNE measures the distance between instances
in high-dimensional space and maps these to a low-dimensional space such that,
with high probability, similar instances are close and dissimilar instances are far
in the low-dimensional space [47]. These methods can take any representation of
the original data as input, for the hypnogram this can be the raw form, features
(over a sliding window), transition probabilities or it can even be represented by
neural network activations. Variants on these methods exist that are specifically
aimed at addressing time-series [33, 52]. Nevertheless, regular dimensionality
reduction methods can also be effective in gaining insights into time-series that
are represented by (sliding window) features, in particular when combined with
an interactive visual analytics environment [3].

2.3 Summary

• A hypnogram shows the sleep structure of a person throughout the night
described by the stages wake, N1, N2, N3 and REM. An abnormal sleep
structure does not imply a sleep disorder and vice versa.

• A hypnogram is obtained by (manual) visual inspection and classification
of epochs of a PSG. This process is done following AASM (or R&K) scoring
rules. However, these rules leave room for interpretation, therefore the
hypnogram is not a perfectly accurate representation of sleep structure.

• A hypnogram can be seen as a discrete univariate time-series. An entire
research area is dedicated to dealing with the temporal characteristics of
time-series. Typically, time-series data is continuous, which is not true for
hypnograms as they describe discrete sleep stages.

• Hypnograms can be represented by features computed over the full length
or over a sliding window or by transition probabilities. These represen-

25



tations can serve as input for machine learning models in classification
tasks.

• Deep learning models can automatically detect suitable abstract repre-
sentations from time-series. In time-series classification CNN is the most
suitable and effective type of deep learning model.

• Time-series datasets are typically rather small (less than 1000 instances).
Nevertheless, simple models with a relatively small amount of parameters
can be effective. In general, 1D CNN models require less training data
than their 2D counterparts.

• Fully-convolutional networks with GAP and ResNet were shown to be
effective deep learning methods for time-series. If the network is fully-
convolutional and GAP is used, class activation maps can be used for
explanations. Otherwise, more advanced visualization methods such as
Grad-CAM can be used to provide explanations. Alternatively, model
agnostic distillation methods, such as LIME and SHAP can be used to
explain complex neural networks.

• Methods exist that can visualize clusters of discrete time-series. Moreover
visualization methods such as t-SNE and UMAP can be used to gain
insight in high-dimensional data.
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Chapter 3

Methods

The goal of our thesis is to use visualization and (explainable) machine learning
to identify and interpret aspects within and across hypnograms that contribute
to interpretation by physicians. The methods that were used to address this
goal are described in this chapter.

In section 3.1, we describe the data that was used and a data collection that
was conducted to obtain subjective hypnogram evaluations by physicians. In
section 3.2, we describe how t-SNE was used to visualize patterns across hypno-
grams to identify relations between hypnograms, collected evaluations and other
attributes (e.g. diagnosis). Moreover, these visualizations were used to gain in-
sight into disagreement between physicians. Finally, the goal of identifying
features within the hypnograms that are associated with evaluation by physi-
cians was addressed using classification models, which is described in section
3.3.

3.1 Data

Throughout this study we used hypnograms of PSG recordings that were done
at Kempenhaeghe Center for Sleep Medicine as part of the SOMNIA project
[48]. The hypnograms are associated with a diverse set of disorders. In addi-
tion, hypnograms of healthy subjects, that slept at Kempenhaeghe as part of
the HealthBed project, were included. Subjects younger than 18 or older than
80 years were excluded. If the hypnogram of the subject contained stages that
were scored with values other than one of the five AASM stages, it was excluded.
The original PSG recordings were scored according to the AASM rules by ex-
perienced sleep technicians of Kempenhaeghe, which enabled us to reconstruct
the hypnogram.
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3.1.1 Annotations

Recall that the goal of our thesis is to identify aspects of the hypnogram that are
associated with interpretation by physicians. For each hypnogram one or more
associated diagnoses were available, but a specific evaluation of the hypnogram
itself is missing. Therefore, we set up a data collection to obtain subjective
evaluations from a small group of physicians for a large number of hypnograms.
For this purpose, a web-app was created that enabled the physicians to login
and rate hypnograms at their own times and pace. Four physicians participated
in the data collection, the physicians are working at Kempenhaeghe, CIRO1 and
Maxima MC2.

For each hypnogram the physician was asked to rate it as normal or abnormal
(w.r.t sleep structure) and to indicate how certain they were about their assess-
ment. The hypnograms were presented in a restricted research setting with little
clinical information. This was purposely done to emphasize the structure of the
hypnogram itself. Physicians were instructed to go with their first impression
of the hypnogram rather than trying to clinically diagnose the subject.

During a pilot of the web-app with a physician, it was found to be difficult to
objectively assess the sleep structure without considering whether a subject has
a disorder because the physicians are used to diagnosing patients. Therefore, an
extra option was introduced in case the sleep structure was considered abnormal;
the physician was asked whether they suspected the subject to be disordered
or healthy. An abnormal sleep structure in a healthy subject can for example
occur because of a first-night effect. By explicitly asking whether a subject has
a disorder when the hypnogram is seen as abnormal, thinking of sleep structure
and disorder separately was promoted. Moreover, the extra option increases
the richness of the resulting dataset and can help in discovering novel patterns.
Certainty scores were collected on a 5-point Likert scale ranging from very
uncertain (1) to very certain (5).

The main interface of the web-app that was used to collect these evaluations
and confidence scores is shown in figure 3.1. Each hypnogram is presented in the
top-center, the age of the subject was placed to the lower-left of the hypnogram.
In the area below the hypnogram the evaluation could be selected by clicking
the round buttons or by using the keyboard shortcuts that are provided ([Q],
[W] or [E] for sleep structure and [1] to [5] buttons for certainty). The result
could be submitted if an evaluation and certainty were selected. A bar on top
marks the progress that was made, using the previous and next buttons the user
could scroll back and forth between previously evaluated hypnograms. Another
page of the web-app listed the instructions. The question mark button on the
evaluation page provided a shortcut to the instruction screen in case extra help
was needed. Time taken per hypnogram was logged.

Each physician was assigned a personalized sequence of hypnograms with
a fixed and random part. In this sequence it was ensured that each physician
would rate 200 hypnograms that were evaluated by all in the same fixed order,

1https://www.ciro-horn.nl/nl
2https://www.mmc.nl/
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Figure 3.1: Web-app scoring interface, the hypnogram is shown in the top-
center of the screen. (A) The evaluation and certainty options can be selected
below the hypnogram, keyboard shortcuts can be used to select the buttons
(e.g. [Q] for normal sleep structure). (B) When evaluation and certainty are
selected the result can be submitted to continue to the next hypnogram. (C)
Using the previous and next button the user can scroll back and forth between
previously evaluated hypnograms. The current hypnogram and total evaluated
are respectively shown on the left and right of the progress-bar on top. (D) Age
is the only clinical information that is presented (other than the hypnogram).

this enables inter-rater comparison. During a pilot it was found that the first
few hypnograms were more difficult as the task was novel and it required some
time to get used to the diversity of the hypnograms. Therefore the first 50
hypnograms were repeated later in the sequence for each physician to circumvent
this effect, the initial evaluations were discarded for the analysis. A priority
sample of hypnograms was created where a larger proportion of healthy subjects
was included to guarantee increased diversity in the first set of hypnograms.
These hypnograms were prioritized in the order of the sequence.

A meeting was hosted to introduce the study and the scoring application.
The physicians were instructed that there were no right or wrong answers and
were instructed to go with their first impression of the hypnogram.

Technical Details The web-app was created using Flask3 which is a Python4

web-framework. Login functionality of Flask was used to ensure that only
authorized users had access. Results were stored in a SQlite35 database, which
communicated with the web-app using SQLalchemy6. The web-app was hosted
on a protected server of the TU Eindhoven.

3https://flask.palletsprojects.com/en/2.0.x/
4https://www.python.org/
5https://www.sqlite.org
6https://www.sqlalchemy.org/
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3.1.2 Preprocessing

Each subject was associated with one or more diagnoses (except for the healthy
subjects). The number of unique diagnoses was large and many of these diag-
noses were scarce, as shown in appendix A.1. Therefore, it was decided to group
similar diagnoses with the mapping that is included in appendix A.2.

Apnea-hypopnea index (AHI) is a parameter that quantifies the number
of apneas (i.e. breathing stops) per hour. This is an important indicator for
sleep disordered breathing, one of the most common disorders in our data. AHI
values were grouped as normal (less than 5), mild (5 to 15), severe (15 to 30)
and extreme (more than 30).

From the obtained evaluations, disagreement was computed for each hypno-
gram that was annotated by multiple physicians, this was done in two ways:

1. The first measure comprises a simple binary measure indicating whether
the evaluations for a given hypnogram are all the same across physicians,
as shown in 3.1.

d(e1, e2, ..., en) =

{
0, if e1 == e2 == ... == en

1, otherwise

where each ei is a physician’s evaluation of a given hypnogram. (3.1)

2. The other measure also takes into account the confidence scores on the
original 1 to 5 scale. For a pair of evaluations of a given hypnogram, the
disagreement is the absolute difference of confidence scores if the eval-
uations are the same and the sum of confidence scores otherwise. For
example, if two physicians evaluate the hypnogram the same with confi-
dence 3 and 5 respectively, the disagreement is |3−5| = 2. If the evaluation
is different for the same confidence scores, the disagreement is 3 + 5 = 8.
The disagreement for a given hypnogram is obtained by computing the
mean over all pairwise evaluations as shown in equation 3.2. The result-
ing disagreement is in range [0, 10] since each of the terms in the sum is
in this range.

d((e1, c1), ..., (en, cn)) =

( n∑
i=1

n∑
j=1


0, if i == j

|ci − cj |, if ei == ej

ci + cj , otherwise

)/
(n− 1)2

where each ei is a physician’s evaluation for a given hypnogram

and ci is the corresponding confidence score on a scale of 1 to 5. (3.2)

Additional feature engineering and preprocessing was done to prepare the
hypnograms as input for visualization and machine learning methods. However,
as these preprocessing steps are application specific, they will be introduced in
the remainder of the methods chapter in context of the respective applications.

30



3.2 Visualization

Hypnograms are a simplified representation of an all-night sleep recording (i.e.
a PSG), making them inherently suitable for visualization. Nevertheless, vi-
sualizing a large amount of hypnograms simultaneously is not easily done. In
order to reveal patterns across all hypnograms that are associated with interpre-
tation by physicians, t-SNE was used to reduce high-dimensional hypnograms
to a two-dimensional space. All hypnograms were visualized simultaneously as
points in this space and the markers were colored by evaluations and attributes
(e.g. diagnosis) to reveal patterns across hypnograms. Important is that hypno-
grams that are similar in the high-dimensional space are grouped closely in the
low-dimensional space. Naturally, this implies that t-SNE relies on a distance
metric that quantifies similarity between hypnograms.

The original hypnogram is high-dimensional, but measuring similarity be-
tween original hypnograms is a non-trivial problem. Therefore, we experimented
with several high-dimensional hypnogram representations and associated dis-
tance metrics as input for t-SNE. More specifically, we used the original hypno-
grams, features computed over the full hypnogram and features computed over
a sliding window (for various window settings).

Our t-SNE methods are described in section 3.2.1 and the high-dimensional
hypnogram representations and associated similarity metrics are described in
section 3.2.2.

3.2.1 T-SNE

T-SNE was implemented using scikit-learn for Python7. The perplexity pa-
rameter of t-SNE can be thought of as the effective number of nearest neighbors
[27]. Results can vary strongly for different perplexity values. Therefore, we
compared perplexity values of 5, 25, 50 and 100. Using visual inspection, the
most suitable perplexity value was chosen and used for the remainder of the
analysis. A learning rate of 100 was used and the maximum number of itera-
tions was set to 5000. On multiple runs of t-SNE, the results are expected to be
slightly different since t-SNE tries to optimize a non-convex function. Therefore,
it was decided to do 5 runs per input using fixed, but different, random states
and preserve only the result with the minimal Kullback-Leiber (KL) divergence.
This is a valid strategy according to Laurens van der Maaten and ensures that
our results are reproducible and that a suitable random state was used for this
reproducibility [27].

The results of t-SNE were visualized and the markers were colored by diagno-
sis, AHI grouping, evaluations and disagreement between physicians (using the
measure described in equation 3.2). The markers were made partially trans-
parent to mitigate overplotting issues in case of overlapping markers. If the
visualization shows a clear separation of the data with respect to an attribute,
the high-dimensional representation is more suitable for separating the groups

7https://scikit-learn.org/
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for this attribute. Therefore, the visualizations were inspected for clusters and
separability of attributes.

Additionally, the hypnogram pictures were used as markers in the t-SNE
space to interpret associated patterns in the hypnogram. The resulting plot
was quite cluttered, therefore we randomly discarded half of the hypnograms
for this plot and the remaining hypnograms were cropped and down-scaled to
further reduce cluttering. The same technique was used to visualize only the
high-disagreement hypnograms. The resulting plot was used to reveal patterns
associated with disagreement.

3.2.2 Representations

As mentioned before, we considered three different representations for hypno-
grams as input for t-SNE. Namely, the original representation (sequence of sleep-
stages), features computed over the full hypnogram and features computed over
a sliding window. Many applications, in particular unsupervised learning, rely
on the notion of a distance metric which quantifies the (dis)similarity between
two instances. This is also the case for t-SNE, therefore we define one or more
distance metrics per representation.

3.2.2.1 Original

The most simple and intuitive representation that was used is simply the original
form, i.e. as a sequence of sleep stages. This is formalized in 3.3.

horiginal := 〈s1, s2, ..., st〉 where each si ∈ {W,N1, N2, N3, R} (3.3)

For the original representation, distance between two hypnograms was mea-
sured using the Hamming distance which is simply the proportion of disagreeing
sleep stages. The Hamming distance is only defined over equal length sequences,
therefore the distance between two unequal length hypnograms ha and hb was
computed only over the mutual length (i.e. if ha is 6 hours and hb is 8 hours,
only the first 6 hours of hb are considered). This is formally defined in equation
3.4 for two hypnograms in their original representation (i.e. as in 3.3). Obvi-
ously, this notion of distance is quite naive. For example, a hypnogram can be
dissimilar to itself when shifted in time, even though we would intuitively call
it similar.

dhamming(ha, hb) :=

∑t
i=1 s

a
i 6= sbi
t

where t is the min length of ha and hb. (3.4)

3.2.2.2 Features

The second representation that we considered is a hypnogram represented by
features computed over the entire hypnogram. A feature can be understood as
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a mapping from the original representation of a hypnogram to a number (e.g.
percentage of N3 sleep). The features that we considered include parameters of
the PSG report (e.g. Sleep Onset Latency), but also other computed features
(e.g. number of sleep cycles). Each hypnogram can be represented by a feature
vector, this is formalized in 3.5.

hfeature := (f1(h), f2(h), ..., fn(h))

where h is the original hypnogram and each fi is a feature. (3.5)

The full list of 34 included features is presented in table 3.1. Note that some
of the features can either be computed as an absolute count or as an index
(standardized by hypnogram length), these are marked in the table. In this
case, we used only the index version of the feature, not the absolute counts.

Distance between two feature vectors can easily be computed using distance
measures such as euclidean distance or cosine similarity. We chose to use eu-
clidean distance because the difference in magnitude of features was considered
relevant. Features were standardized to have zero mean and unit variance be-
fore applying euclidean distance, this ensures that features measured on larger
scales are not dominant. In contrast to the original representation, features
are a simplified representation of the original data that no longer contains a
time-dimension. Therefore, the features capture global characteristics of the
hypnogram.

3.2.2.3 Sliding Window

The third and final representation was obtained by computing features over a
sliding window. A sliding window was used to extract length w subsequences
of the hypnogram, each consecutive window is shifted with step s. For each
subsequence, a feature vector was computed, this results in a representation of
the hypnogram that is a matrix as shown in equation 3.6.

hwindow :=


f1(s1, ..., sw) f1(s1+s, ..., sw+s) ... f1(s1+ns, ..., st)

f2(s1, ..., sw) f2(s1+s, ..., sw+s) ... f2(s1+ns, ..., st)
...

...
. . .

...

fn(s1, ..., sw) fn(s1+s, ..., sw+s) ... fn(s1+ns, ..., st)


where w is the size of the window, s is the step-size, s1, ...st are the stages

of the original hypnogram, each fi is a feature and n is the smallest integer

such that 1 + ns + w ≤ t holds. (3.6)
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Name Abbreviation Description

Time in Bed TIB Total time of hypnogram
Total Sleep Time TST Total time of hypnogram spent asleep (i.e. not in W)
Sleep Efficiency SE Percentage of hypnograms spent asleep (TST/T *100)
Sleep Onset Latency SOL Number of minutes from the start till first epoch that is not W
Sleep Period Time SPT Number of minutes from sleep onset till final awakening
N3 Onset Latency N3OL Number of minutes from the start till first N3 epoch
REM Onset Latency REMOL Number of minutes from the start till first REM epoch
Wake After Sleep Onset WASO Number of minutes spent in W after sleep onset
Snooze Time ST Number of minutes W at the end of the hypnogram
%W∗ pW Percentage of hypnogram spent in Wake
%N1∗ pN1 Percentage of hypnogram spent in N1
%N2∗ pN2 Percentage of hypnogram spent in N2
%N3∗ pN3 Percentage of hypnogram spent in N3
%REM∗ pREM Percentage of hypnograms spent in REM
Sleep Stage Transitions† SST Total number of transitions from a stage to another
N3 Awakenings† N3WKN Number of transitions from N3 to W
REM Awakenings† REMWKN Number of transitions from REM to W
Long Awakenings† WKNL Number of periods of ≥ 5 minutes consecutive W after sleep

onset and before final awakening
Awakenings† WKN Number of transitions to W
N1 Sleep Stage Transitions† N1SST Number of transitions to N1
N2 Sleep Stage Transitions† N2SST Number of transitions to N2
N3 Sleep Stage Transitions† N3SST Number of transitions to N3
REM Sleep Stage Transitions† REMSST Number of transitions to REM
Max Duration W maxW Maximum amount of minutes consecutively spent in W
Max Duration N1 maxN1 Maximum amount of minutes consecutively spent in N1
Max Duration N2 maxN2 Maximum amount of minutes consecutively spent in N2
Max Duration N3 maxN3 Maximum amount of minutes consecutively spent in N3
Max Duration REM maxREM Maximum amount of minutes consecutively spent in REM
Min Duration W minW Minimum amount of minutes consecutively spent in W
Min Duration N1 minN1 Minimum amount of minutes consecutively spent in N1
Min Duration N2 minN2 Minimum amount of minutes consecutively spent in N2
Min Duration N3 minN3 Minimum amount of minutes consecutively spent in N3
Min Duration REM minREM Minimum amount of minutes consecutively spent in REM
Sleep Cycles† CCL Number of sleep cycles‡

Table 3.1: Hypnogram features

The window features were computed for the window sizes and step sizes as
shown in table 3.2. The step size s was always chosen to be one-third of the
window-size, which implies that each sample (except at the ends) is contained
in exactly three windows. Recall that sleep epochs have a length of 30 seconds,
thus a window of 30 minutes contains 60 samples. For each of the five stages,
the probability of that stage in the window is computed. Moreover, pairwise
transition probabilities are included that are the same as the parameters of a
simple Markov chain (e.g. P(si + 1 = W |si = N2)). This feature is computed
for all 25 pairwise stage combinations (including combinations of a stage with
itself), which brings the total number of features per window to 30.

In contrast to the feature representation, each sliding window representation
still contains a time dimension. Computing distance between two hypnograms
in window representation is therefore less straight-forward than in feature rep-

∗Can also be computed as an absolute feature (e.g. minutes of W)
†Can also be computed as an index feature (e.g. sleep stage transitions per hour)
‡We defined a sleep cycle as a period ≥ tr minutes with at least pr% REM in this period,

followed by a period ≥ tn minutes with a minimum of pn% NREM. The parameters were
chosen to be: tr = 10 minutes, tn = 30 minutes and pr = pn = 55%.
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Name w15 w30 w60 w90 w120

w 15m 30m 60m 90m 120m
s 5m 10m 20m 30m 40m
# samples 30 60 120 180 240

Table 3.2: Window-size w, step size s and number of samples per window of the
five window representations that were computed.

resentation. The sliding window hypnograms have unequal lengths, we dealt
with this in the same way as for the original representation. If two hypnograms
ha and hb have unequal length, distance was computed only over the mutual
part. For example, if ha is described by 20 windows and hb by 22, only the first
20 windows of hb were used for computing the distance.

Distances between hypnograms in window representation were computed
using two different distance metrics: window distance, which was inspired by
euclidean distance, and dynamic time warping distance.

1. Window distance. Euclidean distance would be an inappropriate metric
since the dimensionality varies (hypnogram pairs can have different mu-
tual length). Thus, hypnogram pairs with a large mutual length would
be associated with larger distances as the number of windows is larger.
Instead, it was decided to use the average squared distance between the
window features as a distance metric that controls for different length
hypnogram pairs, this is formalized in 3.7.

dwindow(ha, hb) := (

t∑
i=1

n∑
j=1

(ha
i,j − hb

i,j)
2)/t

where ha and hb are hypnograms in window representation (as in 3.6)

and t is the minimum length of ha and hb. (3.7)

2. Dynamic Time Warping distance. Dynamic Time Warping (DTW)
can be used to compute distances between (multivariate) time-series that
are not perfectly synchronous. In other words, DTW does not necessarily
compare the i-th sample of a time-series with the i-th sample of another
time-series. Instead, DTW can be used to align samples of a time-series
with samples of another time-series that are similar and temporally close,
thereby ’warping’ the time-series to compute an optimal alignment. The
similarity between two time-series is computed after aligning the time-
series. Thus, DTW can partially overcome the limitation that we men-
tioned in the original representation: that a hypnogram can be dissimilar
to itself when shifted in time, even though we would intuitively call it
similar.
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The sliding window representation can be seen as a multivariate time-series
where each feature is a channel and each window is treated as a point in
time. DTW similarity was computed using the dtw method of the tslearn
package for Python1. For hypnograms that varied extremely in length, the
dtw function occasionally returned infinite or empty values. These values
were replaced by the maximum DTW distance over all hypnogram pairs.
Moreover, the dtw function is asymmetric (i.e. h(a, b) 6= h(b, a)), we dealt
with this by defining the distance as the mean of the asymmetric distances
for each pair.

The window features are all in range [0, 1]. Therefore, standardization was
not strictly required before computing distances. Nevertheless, we were
interested in the effect of standardization of window features and how the
results of t-SNE would be different from the non-standardized window
features. Therefore, both non-standardized and standardized window fea-
tures were included. Standardization was applied per feature over all
windows and hypnograms.

3.3 Classification

One of the goals that we defined in section 1.1 concerns identifying which fea-
tures of the hypnogram drive interpretation by physicians. For this purpose
four classifiers were trained that take as input hypnograms and predict for
each hypnogram the evaluation that was collected as described in section 3.1.1,
thereby essentially ’mimicking’ a physician. The normal sleep structure eval-
uation was barely used, therefore it was decided to use a binary grouping of
evaluations; normal sleep structure and abnormal (healthy) were grouped as
healthy and abnormal (disordered) was called disordered. These labels were
used as target variable for all classifiers, thereby making it a binary classifica-
tion problem. The evaluations of the physician who scored the most hypnograms
were used.

In total we used four different models: logistic regression, decision tree and
two CNN models. The logistic model and decision tree take hypnogram features
as input and were chosen for their inherent explainability. The CNN models are
able to derive features automatically and therefore take the raw hypnograms
as input making it a hypothesis-free approach (i.e. we do not make explicit
prior assumptions on which features are relevant). The methods for training
and evaluating these models are described in the remainder of this section.

3.3.1 Decision Tree

A decision tree was trained that takes as input the features, as previously de-
scribed in table 3.1. The model predicts healthy/disordered labels. The decision
tree was implemented using scikit-learn. Optimal splits were found using

1https://tslearn.readthedocs.io/en/stable/user_guide/dtw.html#dtw
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Gini-impurity and balanced class weights ensured that these splits were not
biased towards the over-represented disordered group. Limitations to the maxi-
mum depth and number of samples per leaf/split were set to prevent learning a
perfectly accurate, overfitting model. The best value for these parameters was
chosen using a grid search in combination with 10-fold stratified cross valida-
tion, by using the stratified option it was ensured that each fold had a balanced
class diversity.

Evaluation Evaluation of the tree was done by inspecting the resulting model,
accuracy was computed over the whole dataset and using 10-fold stratified cross
validation. Moreover, a confusion matrix was created to inspect the performance
of the model across the classes. In addition, receiver operating characteristic
(ROC) curve was used to evaluate the performance of the tree at all classification
thresholds and area under the curve (AUC) was used for comparison with the
other classification models. ROC curve depicts the true positive rate (TPR) and
false positive rate (FPR) at different decision thresholds. In our case, healthy
was treated as the positive class. This implies that TPR is the proportion of
actual healthy that is correctly predicted and FPR is the proportion of actual
disordered that is incorrectly predicted.

Due to the subjective nature of the labels we do not expect the classes to be
perfectly separable. Therefore, the accuracy of the model was compared across
confidence levels assigned by the physician. Here we assume that errors on
low-confidence evaluations are less severe than on high-confidence evaluations.
Similarly, for the hypnograms that were evaluated by multiple physicians, we
inspected the model performance with respect to agreement between physicians.
Here we used the simple binary agreement metric that was described in 3.1.2.

3.3.2 Logistic Regression

A logistic regression model was implemented using scikit-learn. The input
features were standardized (zero mean, unit variance) before training to ease
interpretation of model coefficients. Again, balanced class weights were used
to deal with the imbalance between the groups. The model was trained using
L2 regularization which helps in preventing overfitting and dealing with mul-
ticollinearity. The predicted probabilities were binarized at p = 0.5 to obtain
class predictions. Some of the features were excluded for having extremely high
correlations (e.g. sleep efficiency and W% which are perfectly negatively corre-
lated). The model was evaluated using the same evaluation methods as for the
decision tree. In addition, the model coefficients were inspected.

3.3.3 Baseline CNN

The logistic and decision tree model take features as an input, which are a
simplified representation of a hypnogram and describe mainly global character-
istics. It might be that there are other aspects of a hypnogram, not captured in
the feature representation, that can explain interpretation by physicians. The
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advantage of CNN over these traditional machine learning models is that it can
automatically learn such discriminative features of the input.

Since we are unaware of any existing applications of CNN on hypnograms,
we started by fitting a (relatively) simple model to demonstrate feasibility of our
approach. For this we used a FCN model with GAP. This was motivated by their
proven effectiveness for time-series and their inherent explainability through
CAM [50, 57]. It should be noted that, by definition of GAP, such a model
can only detect global features of the hypnogram since any detected feature
is averaged over the full time dimension before class prediction. Therefore,
this model is not able to assign different importance to features based on their
temporal location.

Input The FCN model takes as input the original hypnogram in a one-hot
encoding to enable the model to correctly interpret the discrete stages. In a
one-hot encoding, each hypnogram is represented as a binary matrix of 5 by t
(number of epochs), where each row corresponds to a sleep stage. Each column
of the matrix has the value one exactly once, the remaining values are all zero
(each timestamp describes a single sleep stage). This is shown in 3.8.

hone−hot :=



sW1 sW2 ... sWt

sN1
1 sN1

2 ... sN1
t

sN2
1 sN2

2 ... sN2
t

sN3
1 sN3

2 ... sN3
t

sR1 sR2 ... sRt


where each svi ∈ {0, 1} and each column i has exactly one svi that is 1. (3.8)

Architecture The FCN model consists of a small number of convolutional
layers, followed by a GAP layer that takes the average value for each channel
across the temporal dimension. A suitable number of layers and nodes was se-
lected by experimenting with several combinations. The output of the model
was obtained using a fully-connected final layer with sigmoid activation function
to map the outcome as probabilities. Outcome probabilities larger than 0.5 are
predicted as healthy, otherwise the model predicts disordered. The model was
trained using balanced class weights and binary-cross entropy loss. Implemen-
tation was done using Keras2.

Evaluation For training and evaluation, a fixed train/test split of 70/30 was
used over cross-validation since training the model for multiple folds was consid-
ered too expensive. The FCN model was evaluated in a similar manner as the
previous models using accuracy, confusion matrix, ROC curve and accuracy by

2https://keras.io/api/
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confidence and disagreement. In addition, CAM was implemented as described
in [57]. The resulting heatmap was plotted as background for a group of ran-
domly sampled hypnograms from both classes to evaluate which features of the
hypnogram are used by the model.

3.3.4 Advanced CNN

Recall that one of our goals is to identify (previously) unknown features of
the hypnogram that are associated with interpretation. The decision tree and
logistic model have limited ability in uncovering such features since they take
only global features as input. Similarly, the FCN model cannot, by design, assign
different weight to features based on their the temporal location. Therefore, we
experimented with more advanced architectures to identify novel discriminatory
features that lead to an overall increase in classification performance.

For this purpose, we adapted the FCN model by adding pooling layers af-
ter convolutions, replacing the GAP layer with one or more fully-connected
layers, and adding batch normalization and/or dropout layers to prevent over-
fitting. Moreover, we experimented with splitting the input hypnogram into
equal parts and training a different model for each part (similar to a sliding
window approach), the results of the individual parts were recombined into an
overall prediction.

The input, labels and evaluation methods for the FCN model were also used
for the advanced model. By inspecting the results of the evaluation methods, it
was assessed whether the increased complexity of the model yielded a significant
increase in performance, which might indicate that the model detects and uses
a novel discriminatory feature of the hypnogram.
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Chapter 4

Results

In this chapter we describe the results that were obtained using the previously
described methods, the current chapter follows the same structure as the meth-
ods chapter. In section 4.1, the results of the data collection are described,
followed by the visualization and classification results in section 4.2 and 4.3
respectively.

4.1 Data

A total of 1067 SOMNIA and 100 HealthBed subjects was included. The age
distribution for these subjects is shown in figure 4.1. For most of the subjects
a diagnosis was available, 577 subjects were diagnosed with exactly one disor-
der, 107 subjects were healthy or not diagnosed and the remainder had two to
four diagnoses. The distribution of diagnoses can be seen in figure 4.2. The
three most frequent diagnoses are sleep disordered breathing which occured 653
times (mostly obstructive sleep apnea), insomnia which occured 378 times and
movement disorder which occured 172 times.

Figure 4.1: Subjects older than 18 and younger than 80 were included in the
research.
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Figure 4.2: All diagnoses ordered by frequency. The majority of subjects has
been diagnosed with sleep-disordered breathing.

The distribution of hypnogram length (in hours) is shown in figure 4.3. The
majority of hypnograms are between 8 and 9 hours, another large group is
roughly between 6.5 hours and 10 hours. There are a handful of outliers were
the hypnogram is less than 3.5 hours or more than 11 hours.

Figure 4.3: Boxplot showing durations of hypnograms. The majority of hypno-
grams are between 8 and 9 hours. A handful of hypnograms is shorter than 3.5
hours or longer than 11 hours.

4.1.1 Annotations

We received responses of two physicians who scored respectively 612 and 405
hypnograms. For 242 hypnograms, two annotations were collected, 533 hypno-
grams were annotated by one physician and 445 hypnograms were not anno-
tated at all. The option normal sleep structure was barely used, only 9 (1%)
and 17 (4%), by the two physicians respectively. Therefore, it was decided to
group the evaluations as healthy (normal and abnormal-healthy) and disordered
(abnormal-disordered). Similarly, the lowest-confidence score was only used 13
times in total, therefore confidence was grouped as low (1-2), medium (3) and
high (4-5).
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Most of the hypnograms were evaluated as disordered, this was true for
82% and 72% for physician 2 and 4 respectively. Agreement between the two
physicians was 80%. The frequency for healthy and disordered across confidence
levels and per physician are shown in figure 4.4. From this figure it can be
observed that the disordered evaluations were assigned high confidence by both
physicians (i.e. the left two purple bars are high). In contrast, both physicians
were in general less confident on the healthy evaluations (purple bars on the
right are small and orange bars are relatively large).

For the hypnograms that were associated with exactly one disorder, we com-
puted the evaluations of each physician for the five most frequent diagnoses. The
results are shown in figure 4.5, the orange and blue bars represent physician 2
and 4 respectively. The hypnograms that were not associated with any diagnosis
(i.e. healthy subjects) were evaluated disordered in 63% and 45% of the cases
for physician 2 and 4 respectively. In the ’other’ group, it can be observed that
the evaluations are approximately equally distributed. For the other diagnoses,
the majority of hypnograms was evaluated as disordered, differences between
physicians are small.

Figure 4.4: Overall the majority of hypnograms was evaluated as disordered,
confidence was in general high for those evaluations. In contrast, both physicians
were less confident on the, more rare, healthy evaluations.
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Figure 4.5: Distribution of healthy/disordered evaluations per physician for the
five most frequent diagnoses.

4.2 Visualization

As described in 3.2, we used t-SNE to visualize patterns across all hypnograms.
The high-dimensional hypnogram representations and associated distance met-
rics on which we applied t-SNE are summarized in table 4.1. We compared a
total of 22 feature sets (each window feature set was used in 2x2 combination
with DTW/window distance and standardization). Perplexity values of 5, 25,
50 and 100 were used, perplexity of 5 was clearly too low, observed from small
artifacts in the plots. Differences between 25, 50 and 100 were small, therefore
we only consider perplexity of 50 for the remainder of the results. Furthermore,
it was observed that standardization of window features did not improve sepa-
rability of the data, therefore we excluded standardized window feature sets.

Name Representation w s Distance metric Standardization Dimensions

original original/one-hot Hamming No 1442
features features Euclidean Yes 34
w15 window 15m 5m window/DTW Yes/No 4290
w30 window 30m 10m window/DTW Yes/No 2130
w60 window 60m 20m window/DTW Yes/No 1050
w90 window 90m 30m window/DTW Yes/No 690
w120 window 120m 40m window/DTW Yes/No 510

Table 4.1: Summary of the feature sets that were used and the resulting number
of dimensions per hypnogram.

In figure 4.6, the resulting visualizations for the feature representation are
shown. Each marker represents a hypnogram, markers are colored by diagnosis,
AHI, evaluations and disagreement (as described in 3.1.2) in the four plots in
this figure. It can be observed that the points align like a ball, there are no
disconnected clusters of hypnograms. In the plot for diagnoses (top-left), it is
seen that most of the healthy subjects (the green markers) are quite strongly
clustered together in the upper-left. Similarly, most of the non-REM para-
somnia cases, marked in red, are in the top-center of the plot. For the other
diagnoses, the markers are quite interspersed across the space. The plot for
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AHI (top-right) shows that the hypnograms with normal AHI (i.e. less than 5)
are grouped in the upper-left, in contrast the extreme cases (more than 30) are
mostly at the bottom and right edges of the space. Similarly, the plot for evalu-
ations (bottom-left) shows that most of the healthy evaluations are grouped in
the upper-left, even though cases exist that are more at the center or right of the
space. The hypnograms at the bottom and right edges were always evaluated
as disordered, most often with high confidence. The final plot (bottom-right),
shows the disagreement between physicians (i.e. difference between confidences
on a continuous scale), it can be observed that the cases with medium disagree-
ment (5 ± 1, white/light markers) are mostly towards the centre of the space.
A disagreement of 5 indicates that the two physicians assigned different labels,
but at least one of the two evaluated the hypnogram with low confidence. The
high disagreement cases, indicated by (dark)orange or red markers are more at
the edges of the space.

The same visualizations for the original representation (Hamming distance)
and window feature representations (DTW and window distance) are shown in
appendices B.2 and B.3 respectively. Overall, the t-SNE projections for these
representations show similar patterns as the feature projection, but the markers
are more interspersed with respect to diagnosis, AHI and evaluation. In particu-
lar, the original representation, seen in figure B.2, shows a more mixed pattern.
For the window representations, there is no clear difference between DTW and
window distance. In general, larger window sizes show less interspersed patterns
than smaller window sizes.

There are in total 25 hypnograms for which the disagreement was larger or
equal to 6, which implies that the two physicians assigned a different evaluation
and both with at least medium confidence or one with high confidence. This
corresponds to the orange and red markers in the bottom-right of figure 4.6).
We took the subset of these high-disagreement hypnograms and plotted them in
t-SNE projection of hypnogram features (same space as figure 4.6) while using
the original hypnograms as markers, the result is shown in figure 4.7. There are
some small clusters of hypnograms with high disagreement, in the top-left we
see some hypnograms that show little fragmentation, awakenings occur mostly
at the begin, one of the hypnograms contains some REM right at the start.
The hypnograms on the top-right show many back and forth transitions to N2
while in REM. All of the hypnograms contain several periods of N3 and REM
(although in some cases only short) and show, to some extent, a cyclical pattern.

The same method of plotting hypnograms in the t-SNE feature projection
space was applied on all hypnograms. The resulting plot is quite cluttered
and requires careful observation, nevertheless it provides some more context to
the previous results, therefore this plot and the description of the results are
included in appendix B.4.
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Figure 4.6: Hypnograms as features projected to two-dimensions using T-SNE.
Each point represents a hypnogram, hypnograms with similar features are close
to each other. The markers are colored by diagnosis (top-left), AHI (top-
right), evaluation and confidence (bottom-left) and disagreement (bottom-
right).
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Figure 4.7: Hypnograms where disagreement was equal or higher than six, shown
in the t-SNE projection of hypnogram features. These are the same hypnograms
as the orange and red markers in the bottom-right of figure 4.6
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4.3 Classification

In order to identify which features of the hypnogram drive interpretation by
physicians we trained four classification models predicting healthy/disordered,
as described in section 3.3. We used decision tree and logistic regression models
taking hypnogram features as input for their inherent explainability. As the
ability of these models is always limited by the choice of features, CNN models
were used for their potential to detect novel features that are associated with
interpretation. A baseline FCN with GAP was created to demonstrate the
effectiveness of CNN on hypnograms and a more advanced CNN model was
used that can assign importance to features based on their temporal location.

4.3.1 Decision Tree

Using 10-fold stratified cross validation and grid search the best tree was found
to have depth two. The resulting tree is shown in figure 4.9. Note that the two
right-most leaves of the tree are both labeled disordered, therefore the complete
model translates to the following simple rule:

A hypnogram is ’healthy’ if it has less than 25 awakenings and on average
less than 0.36 long awakenings (five minutes or longer) per hour, otherwise
the hypnogram is ’disordered’.

The decision tree is 82% accurate on all evaluations, the average accuracy of
a tree with depth two over the 10 folds was 77%. The absolute and normalized
confusion matrix are shown in figure 4.8. Even though balanced class weights
were used during training, the model performs better for disordered hypnograms
which it detects with 84% accuracy in comparison to the 72% accuracy on
the healthy hypnograms. In absolute terms, a large amount of the predicted
healthy hypnograms actually belongs to the disordered class, thus the precision
for healthy predictions is quite low.

(a) Absolute counts. (b) Normalized over true label.

Figure 4.8: Confusion matrix for the decision tree.
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Figure 4.9: Decision tree model that predicts a hypnogram as ’healthy’ if it has
less than 25 awakenings and on average less than 0.36 long awakenings (five
minutes or longer) per hour, otherwise the hypnogram is ’disordered’.

The performance of the model across evaluations by confidence level is shown
in figure 4.10. The model performs more accurate on the high-confidence hypno-
grams, on which it is 92% accurate. In contrast, the medium-confidence hypno-
grams were detected 74-75% accurate and the low-confidence hypnograms were
detected with 71% and 67% for disordered and healthy respectively. Similarly,
for the subset of 242 hypnograms that were assessed by both physicians, the
model performs better on the hypnograms where the physicians agree. In case
of agreement between physicians the decision tree is 89% accurate. In contrast,
the accuracy was only 59% when the physicians did not agree.

Finally, each leaf of the tree is associated with a probability (leaves are not
pure). These predicted probabilities were used to create the ROC curve shown
in figure 4.11. The ROC curve shows the TPR and FPR at various binary
decision thresholds, there are only two points on the curve since the decision
tree has two non-pure leaves. The AUC of the curve is 0.84.
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Figure 4.10: Performance of decision tree with respect to physician confidence.

Figure 4.11: ROC curve displaying the trade-off between TPR and FPR across
decision thresholds for the decision tree.

4.3.2 Logistic Regression

The logistic regression model was trained with the same data as the decision
tree model, there were no hyperparameters that we needed to tune. The ob-
tained coefficients of the model are shown in table 4.2. Recall that the features
were standardized, therefore the coefficients can be compared. In the table, the
coefficients are presented in sorted order, positive model outcome means that
a hypnogram has a higher probability for healthy. The largest positively con-
tributing features are percentage REM and N2, the largest negative contributors
are percentage W, REM onset latency (minutes till first REM) and REMSSTi
(number of REM transitions per hour).

Accuracy for the logistic model is 82% over all evaluations, the average ac-
curacy over 10 stratified folds was 77%, which is the same as the decision tree.
The absolute and normalized confusion matrix are shown in figure 4.12. In
contrast to the decision tree, the logistic model performs better on the healthy

49



Feature pREM pN2 CCL pN3 maxN3 maxN2 REMWKNi ST
Coefficient 0.76 0.56 0.38 0.34 0.29 0.28 0.26 0.17

Feature SOL maxN1 maxW WASO WKNL TIB N3SSTi N3OL
Coefficient 0.08 0.07 0.06 -0.05 -0.14 -0.15 -0.19 -0.22

Feature N3WKN pN1 maxREM SSTi WKNi REMSSTi REMOL pW
Coefficient -0.26 -0.32 -0.47 -0.64 -0.67 -0.73 -0.78 -0.79

Table 4.2: Feature coefficients ordered from greatest positive (top-left) to great-
est negative (bottom-right).

hypnograms with 87% accuracy and 81% on the disordered. The model per-
formance by physician confidence is shown in figure 4.13. Again the model is
more accurate on the high confidence hypnograms where it is 94 and 100% ac-
curate for disordered and healthy respectively, in case of low confidence this was
54% and 82%. The logistic model was 94-100% accurate on the high confidence
hypnograms. and 90% accurate on the hypnograms with positive agreement.

The logistic regression model predicts a probability of being healthy for each
hypnogram, by default a binary decision threshold of 0.5 is used. The ROC
curve, shown in figure 4.14, shows the trade-off between TPR and FPR at all
distinct binary decision thresholds, the curve has an AUC of 0.92.

(a) Absolute counts. (b) Normalized over true label.

Figure 4.12: Confusion matrix for the logistic model.
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Figure 4.13: Performance of logistic model with respect to physician confidence.

Figure 4.14: ROC curve displaying the trade-off between TPR and FPR across
decision thresholds for the logistic model.

4.3.3 Baseline CNN

The architecture of the FCN model with GAP that was used as baseline CNN
model is shown in table 4.3. Three convolutional layers were used as this gave a
slight performance improvement over two layers, adding more layers or nodes to
existing layers did not yield performance improvements. The overall accuracy of
the model on the training data was 83 %, on the test data it was 80% accurate.
As seen in figure 4.15, the loss decreased quickly during the first 20 epochs of
training, in the remaining 80 the loss gradually decreased. Meanwhile, accuracy
was mostly decreasing in the beginning and going up and down in the end.

The confusion matrix that describes the performance of the FCN model
on the test data is shown in figure 4.16. The model was 74% accurate on the
healthy hypnograms and 81% on the disordered. Similar to the previous models,
approximately half of the predicted healthy hypnograms was actually evaluated
as disordered, indicating that the model has low precision. The performance of
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Layer # Nodes Activation Size Stride Output Shape # Param
Convolution 1D 15 ReLU 3 1 (1407, 15) 240
Convolution 1D 30 ReLU 3 1 (1407, 30) 1380
Convolution 1D 15 ReLU 3 1 (1407, 15) 1365
Global Average Pooling 15 0
Dense 1 Sigmoid 1 16
Total Param 3001

Table 4.3: Architecture of FCN with GAP

Figure 4.15: Loss and accuracy of the model on the training set during 100
epochs of training.

the model with respect to confidence assigned by physicians is shown in figure
4.17, performance on high-confidence hypnograms is accurate with 94% and
100% on the disordered and healthy respectively. The model performs relatively
well on the low-confidence healthy ones with 78% accuracy, which is higher than
on the medium-confidence hypnograms. In case the physicians agreed on their
evaluation, the model correctly predicts the evaluation in 90% of the cases, in
case of disagreement this is 52%. The ROC curve of the FCN model, which has

(a) Absolute counts. (b) Normalized over true label.

Figure 4.16: Confusion matrix for the FCN model on the test data.
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an AUC of 0.84, is shown in figure 4.18.

Figure 4.17: Performance of the FCN model on the test data with respect to
physician confidence.

Figure 4.18: ROC curve displaying the trade-off between true positives and false
positives across decision thresholds of the binary classification problem for the
FCN model.

Class activation maps of three randomly sampled hypnograms are shown
in figure 4.19. The blue and red regions in these plots contribute to healthy
and disordered predictions respectively. It can be observed that the model
distinguishes between different transitions and continuous presence of specific
stages, assigning each a different weight. The majority of transitions contributes
to disordered prediction, in particular N1 transitions are strongly associated
with disordered. Exception to this rule are transitions from N2 to N3, which
contribute positively. When a stage is continuously present, N1 and W are
negative contributors, the other stages contribute positively.
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(a)

(b)

(c)

Figure 4.19: Three hypnograms and their class activation maps, predictions and
true label. Blue regions contribute to healthy and red regions to disordered.

4.3.4 Advanced CNN

We experimented with several different architectures, however there was little
improvement in terms of performance over the baseline FCN. Changing filter size
and strides and/or adding pooling layers, dropout and batch normalization did
not yield an improved performance. Furthermore, changing the GAP layer to
one or more fully-connected layers improves the theoretical ability of the model
to detect complex patterns, but this did not lead to performance improvement.
Also, removing the GAP layer would hurt the explainability of the resulting
network. As an alternative, we developed a simple, explainable, variant of the
baseline FCN that can take into account temporal location.

This model, which we will refer to as advanced CNN, takes as input a hypno-
gram and splits it into three equal parts (referred to as early, middle and late).
Each part is fed into a separate FCN with GAP as previously described in table
4.3. After the GAP layer the results of the separate models are concatenated
and a dense layer with sigmoid activation was used to obtain output probabili-
ties for the healthy and disordered classes. CAM was implemented as a simple
combination of the CAM of the individual parts.

The same training and test data was used as for the FCN model, resulting
in an accuracy of 85% on the training set and 84% on the test set. Interestingly,
the loss and accuracy reached a plateau during the first few epochs of training,
which is seen in figure 4.20.
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Figure 4.20: Loss and accuracy of the model on the training set during 100
epochs of training.

The confusion matrix that describes the performance of the model on the
test data is shown in figure 4.21. The model is 85% and 77% accurate on
the disordered and healthy evaluations respectively. The performance of the
model with respect to confidence assigned by physicians is shown in figure 4.22,
performance on high-confidence hypnograms is accurate with 97% and 100%
on the disordered and healthy respectively. Accuracy on low- and medium-
confidence hypnograms is lower, between 65 and 75%. For the hypnograms
that were evaluated by both physicians, it was found that the model was 91%
accurate on the cases where the physicians agree and 55% otherwise. AUC for
the the ROC curve is 0.88 as shown in figure 4.23.

Class activation maps for two randomly sampled hypnograms are shown in
figure 4.19. Again, the class activation maps show that the model detects tran-
sitions and continuous presence of stages, however now the impact is different
across the three parts. For example, in the CAM of the hypnogram shown in
figure 4.24a it can be seen that REM has a stronger positive contribution at

(a) Absolute counts. (b) Normalized over true label.

Figure 4.21: Confusion matrix for the model on the test data.
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Figure 4.22: Performance of the model on the test data with respect to physician
confidence.

the start of the night than at the end of the night. In order to systematically
identify these patterns we passed an artificial hypnogram through the network
where each epoch describes the same stage (e.g. a hypnogram that is W at each
epoch) and evaluate the outcome at the three parts. This was done for each of
the five stages, the resulting impact scores for each of the five stages across the
early, middle and late parts are shown in figure 4.25. The model learned that W
most strongly contributes to disordered evaluation when occurring in the middle
of the hypnogram. REM, N2 and N3 contribute positively in the first part of
the hypnogram, neutral in the middle and N3 even contributes negatively when
occurring late in the hypnogram. Presence of N1 contributes negatively during
the middle and late parts of the hypnogram.

Figure 4.23: ROC curve displaying the trade-off between true positives and false
positives across decision thresholds of the binary classification problem.
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(a)

(b)

Figure 4.24: Two hypnograms and their class activation maps, predictions and
true label. Blue regions contribute to healthy and red to disordered.

Figure 4.25: Impact of continuous presence of each of the stages during the three
parts of the night. Impacts were obtained by passing an artificial hypnogram,
describing the same stage at each epoch, through the network and evaluating
the contribution at each part. Points above the dotted zero line contribute to
healthy predictions and below the dotted line to disordered. For each stage, the
impacts were scaled by the maximum absolute value across the three parts.
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Chapter 5

Discussion

Interpretation of the hypnogram is done using ”clinical intuition” and relies
on visual pattern recognition. Therefore, our goal was to identify and inter-
pret aspects within and across hypnograms that contribute to interpretation by
physicians. For this purpose, a data collection was conducted to obtain subjec-
tive evaluations for hypnograms. Machine learning and visualization methods
were used to gain insights into the collected evaluations. In this chapter, we
discuss the implications of our results and reflect on the research questions that
we defined in the first chapter.

The physicians rated most of the hypnograms as disordered and systemat-
ically indicated high confidence for disordered evaluations and low confidence
for healthy evaluations. Even when the subject was healthy, the sleep structure
was evaluated as abnormal with a suspected disorder in approximately half of
the cases. This can be explained by first-night effects that impact the sleep
during first night of PSG. Alternatively, a partial explanation might be that the
notion of normal sleep structure is based on textbook examples that are rarely
seen in practice. In any case, the ability to identify healthy subjects from the
hypnogram itself is limited.

The visualization results illustrate that characteristics of the hypnogram
which are relevant for physician interpretation are best captured by features
computed over the full hypnogram. The similarity measure for the original
representation is arguably naive; but the windowed representation, even when
used with dynamic time warping, could also not compete with the strength of
the features. In the t-SNE plots, interspersed patterns are seen with respect
to evaluations and diagnosis, which implies that hypnograms can be similar
in terms of features even though they are associated with different diagnoses
and/or evaluations. In general, confidence is lowest and disagreement is highest
towards the center of the t-SNE space that was shown in figure 4.6. This is
also the area where the healthy and disordered hypnograms are the most inter-
spersed. These hypnograms can therefore best be understood as edge cases that
contain characteristics of both disordered and healthy sleep structure. There
were no additional strong clusters of hypnograms that were associated with
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high-disagreement.
Overall, presence of REM, N2 and N3 contribute to healthy evaluation and

presence of W, N1 and fragmentation contribute to disordered evaluation. The
four classification models align on these observations and are able to describe
the classes with 77-84% accuracy on hypnograms that were unseen during train-
ing. Note that the evaluations are subjective and the classes are therefore not
expected to be perfectly separable. Accuracy on hypnograms evaluated with
high confidence and where physicians agreed is between 90 and 100%, which
emphasizes the effectiveness of the models and the subjective nature of the
labels. These results are in accordance with the model for normal/abnormal
hypnograms that was described by Amouh [4]. The decision tree, logistic and
FCN model use only simple features of the hypnogram, nevertheless they ac-
curately captured the two classes. The advanced CNN model, distinguishes
between features that occur in the early, middle and late parts of the hypno-
gram. Including those temporal patterns leads to a slight improvement in all
evaluation metrics over the baseline CNN. Stages contribute positively when
occurring continuously in the early part of the hypnogram (N2, N3 and REM),
negatively when occurring in the middle (W and N1) or in the end (N1 and
N3). It should be noted that this model captures quite specific patterns. On
the other hand, physicians gave a quick evaluation and might have captured
less detail. Therefore this model might overemphasize these local patterns that
might be more descriptive of the structure in the hypnograms rather than the
evaluations.

The hypnogram can essentially be seen as a simplified representation of a
PSG recording. This simplification is required as PSG in itself is too com-
plex and large to interpret. However, forcing a rater (either a sleep technician
or an algorithm) to take a stance on a sleep stage while the underlying PSG
signal is continuous, might lead to missing or over-scored fragmentation. Our
results, show that fragmentation is an important driver for physician interpre-
tation, therefore this can be problematic. This limitation of the hypnogram
and the ability of computer models to process and analyze high-dimensional
data at low-cost was a motivation for other researchers to propose alternative
representations for the hypnogram with a higher temporal resolution and de-
scribing a distribution of stages at each timestamp (i.e. a hypnodensity plot)
[32, 43]. These representations contain more information than the hypnogram
which makes them more suitable for computer analysis, this is particularly rel-
evant when the amount of available sleep recordings increases and automatic
analysis becomes more relevant.

To finalize the discussion, we reflect on the research questions that were
defined in section 1.1.

1. How can visualization and machine learning be used to gain insight into a
large number of hypnograms?

In our work, we demonstrated how t-SNE can be applied to visualize a
large number of hypnograms simultaneously, features computed over the
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full hypnogram were found to be most effective for our application. Sim-
ilarly, features were used in other works that tried to automatically label
hypnograms [4, 9, 44]. Nevertheless, a sliding window representation can
be more effective for applications where local patterns in the hypnogram
are relevant. Additionally, we showed that by one-hot encoding a hypno-
gram it can be used as input for neural networks. Other methods exist
that can be used to gain insight into hypnograms, such as small multi-
ple visualization or visual analytics frameworks for (discrete) time-series
[45, 3]. We believe that such methods will become increasingly relevant
for hypnograms when wearable sleep trackers will enable collecting hypno-
grams at a larger scale an over multiple nights.

2. Which features of the hypnogram drive interpretation by physicians?

Transition dynamics and distribution of stages was found to accurately
model the evaluations of the physicians. Presence of REM, N2 and N3
contribute to a positive interpretation whereas W, N1 and fragmentation
are negatively contributing factors.

3. Are there previously unknown features of the hypnogram that are associ-
ated with interpretation? Can these features be used for analysis and/or
assessment of hypnograms?

From our advanced CNN results we identified that temporal location of
features can further explain the interpretations of the physicians. More
specifically, at the beginning of the hypnogram N2, N3 and REM are
particularly strong contributors. In the middle of the hypnogram W and
N1 are negative contributors and at the end of the hypnogram N1 and N3
are negative contributors.

However, these observations are what was learned by the model and might
capture too specific details that were not necessarily motivations for the
physician. Moreover, the other models showed that fragmentation and
stage distribution over the full hypnogram are already strong predictors.
Therefore, the gain of incorporating novel features to account for inter-
pretation will be relatively small with respect to the known features.

4. Which factors determine and influence disagreement between physicians
and certainty within physicians?

In general, physicians were more uncertain on healthy evaluations. Agree-
ment and confidence were high for the strongly fragmented hypnograms
with high AHI, which were all evaluated as disordered. Agreement be-
tween physicians was 80%, but it should be noted that there was 10
percentage point difference between the physicians on how many hypno-
grams were evaluated as healthy. Not surprisingly, it was observed that
many of the cases where the physicians disagreed are edge cases, i.e. they
contain both characteristics of disordered and healthy. Visualization of
high-disagreement hypnograms did not reveal strong clusters.
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5.1 Limitations

The current research is subject to some limitations. First of all, only hypno-
grams that were collected and scored at Kempenhaeghe were considered. Since
Kempenhaeghe is a specialized centre, the data might include more extreme
cases than seen at a regular hospital. Moreover, sleep technicians at Kempen-
haeghe might follow the AASM rules more strictly compared to less specialized
sleep centres and therefore obtain more fragmented hypnograms.

Second, the hypnograms were considered under a restricted research setting
that is in many ways different from a clinical setting. Other information such
as the background of a patient, AHI, snoring, body position and subjective
sleep quality was not included, which would likely change the way the physician
looks at the hypnogram. For example, interpretation of fragmented sleep might
be different when a physician knows whether the fragmentation is associated
with apnea events. In addition, the hypnograms were evaluated at a high pace,
therefore features that stand out more at first glance might be overemphasized
in the current research. Therefore, we suspect that in practice, more specific
local features of the hypnogram might be more relevant.

5.2 Future work

• Increasing amounts of (wearable) sleep trackers are available to consumers,
presenting them with hypnograms. However, a hypnogram is difficult to
interpret and requires experience and domain knowledge. Consequently
the hypnograms presented by these sleep trackers might drive wrong in-
terpretation. Therefore, future research might use our results and aim to
identify how people that are not specialists in the area of sleep can be
supported in correctly interpreting results of surrogate sleep trackers.

• Similarly, the current results can be used to identify a measure that quan-
tifies whether two hypnograms are similar with respect to features that
drive physician interpretation. This can be used to ensure that automatic
sleep staging algorithms are optimized for reconstructing a hypnogram
that contains clinically relevant features, rather than just optimizing for
overall similarity. In addition, such a metric could be used for applications
of unsupervised learning on hypnograms ranging from t-SNE to variational
autoencoders. For example, to identify outlier hypnograms in multi-night
recordings.

• The discrete nature of the hypnogram introduces error (e.g. missing or
over-scored fragmentation). This limitation of the hypnogram and the
ability of computer models to process and analyze high-dimensional data
at low-cost was a motivation for other researchers to propose alterna-
tive representations for the hypnogram with a higher temporal resolution
and describing a distribution of stages at each timestamp (i.e. a hypn-
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odensity plot) [32, 43]. Based on our results we believe that such rep-
resentations can be potentially beneficial. Future work could be done to
associate these alternative representations with interpretation by physi-
cians, similar to the current study. This future work could aim to identify
whether using these representations alongside/instead of hypnograms can
support/improve clinical decision making. After all, the hypnogram or
any alternative representation should support physicians in assessing sleep
structure and/or diagnosing patients.
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Appendix A

Original Diagnosis

A.1 Distribution

Distribution of diagnoses before grouping similar diagnoses using the map in
appendix A.2. The majority of subjects was diagnosed with obstructive sleep
apnea. Many of the original diagnoses occurred only a handful of times in the
data.
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Figure A.1: All diagnoses ordered by frequency. The majority of subjects has
been diagnosed with Obstructive sleep apnea. The vast majority of diagnoses
occur only a handful of times.

A.2 Mapping

The map below was used to group the large amount of unique diagnoses to
groups describing similar diagnoses. The distribution of the original diagnosis
can be found in appendix A.1.
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Old New
Insufficient sleep syndrome Behavioral
Inadequate sleep hygiene Behavioral
Advanced sleep-wake phase disorder Circadian disorder
Shift work disorder Circadian disorder
Irregular sleep-wake rhythm disorder Circadian disorder
Delayed sleep-wake phase disorder Circadian disorder
Idiopathic hypersomnia with normal sleep time Hypersomnia
Idiopathic hypersomnia with long sleep time Hypersomnia
Idiopathic hypersomnia Hypersomnia
Hypersomnia due to a medical disorder Hypersomnia
Hypersomnia associated with a psychiatric disorder Hypersomnia
Kleine-Levin syndrome Hypersomnia
Narcolepsy type 1 Hypersomnia
Narcolepsy type 2 Hypersomnia
Residual hypersomnia in OSA patients with
adequately treated OSA Hypersomnia
Hypersomnia associated with a conversion disorder
or somatic symptom disorder Hypersomnia
Other insomnia disorder Insomnia
Other insomnia disorder Insomnia
Psychophysiological insomnia Insomnia
Insomnia due to (another) mental disorder Insomnia
Paradoxical insomnia Insomnia
Idiopathic insomnia Insomnia
Insomnia due to (a) medical condition Insomnia
Chronic insomnia disorder Insomnia
Sleep related rhythmic movement disorder Movement disorder
Sleep related movement disorder, unspecified Movement disorder
Periodic limb movement disorder Movement disorder
Restless legs syndrome Movement disorder
Confusional arousals Non-REM parasomnia
Sleepwalking Non-REM parasomnia
Sleep terrors Non-REM parasomnia
Sleep related abnormal sexual behaviors Non-REM parasomnia
Healthy None
Geen primaire slaapdiagnose None
Snoring Other
Sleep starts (hypnic jerks) Other
Sleep related leg cramps Other
Sleep related laryngospasm Other
Sleep related headache Other
Sleep related hallucinations Other
Sleep related gastroesophageal reflux Other
Sleep related bruxism Other
Sleep disorder due to sedative, hypnotic or anxiolytic Other
Sleep enuresis Other
Catathrenia Other
Long sleeper Other
Recurrent isolated sleep paralysis Other
Other sleep disorder Other
Short sleeper Other
Parasomnia, unspecified Other
Parasomnia overlap disorder Other
Nightmare disorder REM parasomnia
REM sleep behavior disorder REM parasomnia
Parasomnia due to a medical disorder REM parasomnia
Central sleep apnea with Cheyne-Stokes breathing Sleep disordered breathing
Treatment emergent central sleep apnea Sleep disordered breathing
Idiopathic central alveolar hypoventilation Sleep disordered breathing
Sleep related hypoventilation due to a medication or substance Sleep disordered breathing
Sleep related hypoventilation due to a medical disorder Sleep disordered breathing
Sleep related hypoventilation due to a medical disorder Sleep disordered breathing
Central sleep apnea due to a medication or substance Sleep disordered breathing
Central sleep apnea due to a medical disorder
without Cheyne-Stokes breathing Sleep disordered breathing
Primary central sleep apnea Sleep disordered breathing
Obstructive sleep apnea, adult Sleep disordered breathing
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Appendix B

T-SNE Results

The current appendix lists the plots for the t-SNE results as described in section
4.2. Each plot was obtained with a perplexity of 50, learning-rate of 100 and
maximum of 5000 iterations. A fixed random state was used to ensure repro-
ducibility of the t-SNE result, the fixed random state was chosen as the t-SNE
result with the minimum KL-divergence over 5 runs of the t-SNE algorithm.
The results are provided for the feature, original and window representations.
The results for the window representation include all five window sizes and the
two distance metrics (DTW and window distance) that were described in sec-
tion 3.2.2.3. The results for standardized window features are not included as no
improvement was observed over the non-standardized windows and this would
require including an additional 10 figures.
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B.1 Feature Representation

Figure B.1: T-SNE plots for feature representation.
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B.2 Original Representation

Figure B.2: T-SNE plots for original representation.
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B.3 Sliding Window Representation

B.3.1 W15 Window Distance

Figure B.3: T-SNE plots for 15 minutes sliding window with window distance.
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B.3.2 W15 DTW Distance

Figure B.4: T-SNE plots for 15 minutes sliding window with DTW distance.
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B.3.3 W30 Window Distance

Figure B.5: T-SNE plots for 30 minutes sliding window with window distance.
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B.3.4 W30 DTW Distance

Figure B.6: T-SNE plots for 30 minutes sliding window with DTW distance.

78



B.3.5 W60 Window Distance

Figure B.7: T-SNE plots for 60 minutes sliding window with window distance.
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B.3.6 W60 DTW Distance

Figure B.8: T-SNE plots for 60 minutes sliding window with DTW distance.
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B.3.7 W90 Window Distance

Figure B.9: T-SNE plots for 90 minutes sliding window with window distance.
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B.3.8 W90 DTW Distance

Figure B.10: T-SNE plots for 90 minutes sliding window with DTW distance.
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B.3.9 W120 Window Distance

Figure B.11: T-SNE plots for 120 minutes sliding window with window distance.
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B.3.10 W120 DTW Distance

Figure B.12: T-SNE plots for 120 minutes sliding window with DTW distance.
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B.4 Feature Representation (Hypnogram mark-
ers)

In addition to the t-SNE plots for feature representation shown in appendix B.1
and in the main body in figure 4.6, we used the same t-SNE projection but
replaced the circle markers by the original hypnograms. A random sample of
500 hypnograms was taken and plotted in the t-SNE space, this can be seen on
the next page in figure B.13. The figure is cluttered, which is to be expected
when plotting 500 hypnograms in a single figure. Nevertheless, when zooming
in on the areas of the plot, clear patterns emerge.1

On the left-upper side profound uninterrupted REM sleep can be observed
in many of the hypnograms, little fragmentation is seen. Somewhat more to
the top, there appears to be a large amount of N3 awakenings, which could be
associated with the clusters of NREM parasomnia in this area, as previously
seen in figure 4.6. On the right-side of the figure, there is a clear increase in
fragmentation. Finally, on the bottom of the figure it stands out that hypno-
grams show large amounts of wake. Long sleep-onset times are clustered at the
bottom-left.

1The figure is included as vector graphics in the digital version of this document, therefore
quality is preserved when zooming.
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Figure B.13: T-SNE projection of feature representation for 500 randomly sam-
pled hypnograms. The original cropped and scaled hypnograms are used as
markers.
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