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Abstract

Smart Traffic is a traffic control software application designed by
Sweco. It uses microsimulation model SUMO and data from various
sources, among which detector loop data and floating car data, to simulate
the actual and forecasted traffic image at an intersection. Based on the
forecasted image it calculates the delay and number of stops per vehicle to
determine the most efficient duration of green times. The two main chal-
lenges of the current implementation of Smart Traffic are its use of micro
microsimulation model SUMO, which is too computationally expensive to
predict traffic at large intersections over a longer period of time, and the
lack or inconsistency of data. In the first part of this thesis we replaced
the SUMO model used in the forecasting module of Smart Traffic by a
discrete event model, which models traffic at a signalised intersection as
a series of discrete events. We show that this discrete event model is able
to accurately predict the delay of the vehicles and is more scalable and
faster than the current SUMO model. In the second part of the thesis
we study the inconsistency of the data by modelling traffic at a signalised
intersection as a polling model with switching customers. In the polling
model customers may leave a queue to join another queue, which mimics
the situation in Smart Traffic, where vehicle may switch signal groups due
to updated data. We describe the polling model and analyse its stabil-
ity condition and joint queue length distributions. From an example of
the polling model with switching customers we conclude that the lack or
inconsistency of data may lead to Smart Traffic scheduling non-optimal
green times.
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1 Introduction

This thesis was conducted at the Mobility Solutions division at Sweco Ned-
erland. Sweco, originally Swedish Consultants, is the largest engineering and
consultancy in Europe with over 17.000 employees in 13 countries [1]. In 2015
the Dutch company Grontmij was acquired by Sweco and renamed Sweco Ned-
erland [2]. Sweco advises in efficient infrastructure, environmental technology
and sustainable buildings. Sweco designs and develops cities and societies of
the future.

One of the challenges for cities of the future is the ever increasing amount of
road traffic, which leads to traffic congestion. Traffic congestion is not only time
consuming, but also leads to unsafe and unclear traffic situations. Futhermore,
it increases air pollutant emissions due to an excess of idling vehicles [3]. The
development of intelligently controlled traffic lights is thus essential to keep cities
habitable by reducing traffic congestion [4].

The Mobility Solutions department, part of the Transport and Mobility di-
vision of Sweco, focuses on the development of smart solutions for mobility. One
of the products in development at the department is Smart Traffic. Smart Traf-
fic is a software application intelligently controlling traffic lights, which makes
use of a predictive real-time traffic model. The model combines information
from multiple data sources, ranging from detection loop data to floating car
data broadcasted by connected vehicles. Smart Traffic optimises traffic flow by
predicting the individual waiting time of vehicles. Based on this information
the traffic light controller has complete freedom to determine the most efficient
and fair duration of red en green times. Smart Traffic currently operates only
on isolated junctions, however the objective is to extend the use of Smart Traf-
fic to a network of junctions. A detailed explanation of Smart Traffic is given
in Section 2.1.4. Smart Traffic has already proven its success in the city of
Helmond, where its implementation reduced CO2 emission by 20% and vehicle
waiting times by 22% [5].

The current implementation of Smart Traffic gives rise to two main chal-
lenges. The first is the use of microsimulation model SUMO (Simulation of
Urban MObility). Smart Traffic makes use of SUMO to monitor and predict
the traffic image. The traffic image details the overall traffic situation and po-
sition of the vehicles. SUMO predicts the new position of vehicles for each
time step, making use of detailed information such as vehicle-to-vehicle effects.
Though this level of detailing makes the model rather accurate it is not suitable
for the objective of Sweco: to predict traffic over a longer period of time for a
network of junctions, as the detailing makes the model too computationally ex-
pensive. Thus the next step in improving Smart Traffic is replacing the current
microsimulation model by a discrete event model, which is more scalable and
less complex.

Unlike microsimulation models, discrete event models do not update the
entire system every time step. Discrete event models model the system as a
sequence of discrete events. Every event has a predicted time at which it occurs.
The event most recent in time is executed and the relevant entities are updated.
The simulation then jumps to the next event. Between events it is assumed that
the system does not change or changes according to some deterministic pattern.
A more detailed explanation on discrete event models is given in Section 2.2.
In a previous internship at Sweco a basic discrete event model was created to
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replace SUMO in the Smart Traffic application of Sweco. In the first part of
the thesis we improve upon that model.

The second challenge is the lack or inconsistency of information. The main
data sources used by Smart Traffic, floating car data and detection loop data,
are often incomplete. That is, not all vehicles broadcast floating car data and
not all roads contain detection loops. Furthermore, the received data may not
be accurate. Detection loops may be broken or overly sensitive and indicate the
presence of a vehicle when there are none. Or a vehicle may be expected at a
certain place due to the floating car data, which may be contradicted by the
detection loop data which indicates that no vehicles are present. To overcome
this Smart Traffic makes use of a match sensor which attempts to match the
real-life vehicle with the simulated vehicle. When the match sensor receives
conflicting or updated information simulated vehicles may be added, removed
or switch position. In the second part of the thesis we focus on the effect of
simulated vehicles switching position, due to a correction made by the match
sensor, by modelling traffic at a signalised intersection as a polling model with
switching customers.

The structure of the thesis is as follows. In Section 2 we review the literature
on current traffic light control methods and explain Smart Traffic in more detail.
We also describe discrete event models in general and compare this type of model
to the microsimulation model SUMO. In Section 3 we implement a discrete event
model to predict traffic at an intersection. We give the main assumptions and
a detailed model description. We also describe the main model parameters and
how they may be determined. The results of the discrete event model are given
in Section 4, where we compare the delay calculated by our discrete event model
with the delay given by microsimulation model Vissim, which will function as
a simulated version of reality. We then focus on the polling model. In Section
5 we first review the current literature on polling models and then model a
signalised intersection as a polling model with switching customers. For this
model we determine its stability condition and joint queue length distributions.
In Section 6 we discuss the results of the polling model with switching customers
by considering two examples. In the final section of this thesis we give the
conclusion and discuss the results.
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2 Literature review

In this section we give an overview of the current methods used in traffic light
control and explain Smart Traffic in more detail. We also explain how a discrete
event model works and the main differences between microsimulation models
and discrete event models.

2.1 Traffic signal control

Traffic signal control aims to enable the safe and efficient movement of vehicles
at an intersection. The efficiency of an intersection may be measured in the
total vehicle delay, the number of vehicles in the queue, the number of stops
per vehicle or the throughput of the intersection. Before we describe the most
common strategies for traffic light control, we first introduce some basic notions
and terminology.

A group of traffic lights which give the same signal (e.g. green) simulta-
neously is called a signal group. A possible configuration of (non-conflicting)
signal groups is called a stage. A series of repeating stages is called a cycle.
The duration of one full cycle is called the cycle time. Between two consecutive
stages a brief period in which all traffic signals are red is necessary to ensure
safe crossings. The time in which all traffic signals are either red or amber is
called the intergreen time. An example of a cycle, signal groups and stages can
be seen in Figure 1.

Figure 1: Example of a cycle, signal groups and stages.

The traffic light control methods can be separated into two categories: iso-
lated traffic signal control, which concerns the optimisation of a single junction,
and coordinated traffic signal control, which concerns the optimisation of a net-
work of junctions [6].

Papageorigiou et al. [7] describe the following four possibilities for influenc-
ing traffic conditions at isolated and coordinated intersections through traffic
light control

• Stage specification: An intersection generally has a larger number of pos-
sible stages. The choice of how many, which and in what order stages are
in a cycle may greatly influence the performance of the intersection.
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• Split : The relative duration of the green time of a stage as a fraction of
the cycle time is called the split. Certain directions or signal groups may
see a larger number of vehicles than others. It may thus be more efficient,
in terms of e.g. total vehicle delay, to grant a certain stage a longer green
time duration than other stages.

• Cycle time: A longer cycle time reduces the fraction of intergreen time
and thus increases the capacity of the junction. However, longer cycle
time may also lead to longer waiting times as the stages switch after a
longer period of time.

• Offset : In a network of junctions, green times of successive junctions may
coordinated and optimised to allow for a ”green wave”. The offset is de-
fined as the time relationship between two successive junctions in seconds
or in percentage of the cycle length. Offset optimisation only concerns
coordinated intersections.

In the following subsections we will describe three methods to control traffic
lights: fixed time signal control, vehicle actuated control and self-optimised
real-time control. In Subsection 2.1.4 we describe Smart Traffic in detail.

2.1.1 Fixed cycle control

In fixed cycle control, the green times and cycle times are fixed. The signal
timing plan, which indicates the starting time of signals for every signal group,
is predetermined offline and does not adapt to the current traffic situation.
Multiple time plans may be developed to account for varying circumstances,
e.g. the time plan at night may be different from the time plan at rush hour.

To calculate the delay in a fixed cycle various methods were developed.
Clayton considered a model where arrivals and departures happen at strictly
regular intervals [8]. Webster obtained a formula for calculating the overall
delay by considering Poisson arrivals [8].

An often used and well known software tool aiding the optimisation of fixed
cycle time plans is TRANSYT (Traffic network study tool) [9]. TRANSYT
consists of a macroscopic traffic model and a signal optimiser. Using manually
entered traffic flows and a platoon dispersion model TRANSYT calculates the
Perfomance Index, an economic cost based on the total delay and number of
stops. TRANSYT then optimises by running the traffic model multiple times
for adjusted time plans and adopts the time plan which reduces the Perfomance
Index the most [7]. TRANSYT may be used for a network of junctions, where
it is able to create green waves [9].

As fixed cycle control does not adapt to the current traffic situation, it does
not lead to the optimal time plan. Particularly in light unpredictable traffic,
fixed cycle control performs much worse than other traffic control methods.
Furthermore, the fixed signal time plans need to be regularly updated, as studies
have shown that fixed time plans degrade over time as traffic demands change
[10].

2.1.2 Vehicle actuated control

Vehicle actuated control makes use of detection loops. Detection loops are
induction loops embedded in the road. Short detection loops are usually present

6



at a few meters and a few hundred meters from the stop line. These loops register
the presence of vehicles and are able to count the number of vehicles which pass
by. Between two short loops a long loop may be present which is only able to
detect the presence of traffic.

Vehicle actuated control works by extending the amount of green time for
a given stage based on the detection of vehicles. Every stage has a minimal
green time and maximum green assigned to it. The traffic signal controller
will remain in the current stage for at least the minimal green time. When
a vehicle is detected during the minimal green time an extension interval is
created. As long as the time between two arriving vehicles is shorter than this
extension interval the traffic controller will remain in the current stage, until
the maximum green time is reached [6].

Basic vehicle actuated control does not take traffic in front of the red light
into consideration. Thus vehicle actuated control does not lead to the optimal
time plan.

2.1.3 Self-optimised real-time control

More advanced methods were developed which use real-time input from detec-
tors and do take all signal groups into consideration. We name the following

• MOVA (microprocessor optimised vehicle actuation) is developed by the
British Transport Research Laboratory (TRL) for isolated intersections.
MOVA uses Miller’s algorithm, which decides to extend green times by
weighing the gain to (extra) vehicles passing the junction with the loss
to other vehicles waiting in the queue. MOVA uses a microscopic traffic
model to predict the position of each vehicle and calculates the total delay
every half-second [6].

• SCOOT (Split Cycle Offset Optimisation Technique) is often considered
the on-line version of TRANSYT. Similar to TRANSYT, SCOOT uses a
dispersion model to estimate the arrival patterns. It optimises the split,
cycle and offset times, each with independent optimisation procedures.
Every procedure only considers a small change in signal settings to esti-
mate the delay and number of stops [11].

• SCATS (Sydney Coordinated Adaptive Traffic) was developed in Aus-
tralia. It does not optimise the traffic signal real-time, but uses historic
data and detector information from the previous cycle to determine the
optimal cycle. Since it does not use data real-time, SCATS does not have
a traffic model to estimate the number of vehicles based on data from
upstream detectors, but estimates the number of vehicles directly from in-
formation from stop line detectors. Similar to SCOOT, SCATS optimises
the split, cycle and offset times in independent procedures [11].

• UTOPIA (Urban Traffic Optimisation by Integrated Automation) has a
hierarchical structure of three levels, the local level, the area level and the
town supervisor level. The local level uses detectors at the start of each
link and a microscopic model to estimate the state of the junction and
the delays. The area level estimates the state of the entire network using
a less detailed traffic model and validates the local level results using a
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historic traffic database [11]. The town supervisor level uses a macroscopic
model and integrates UTOPIA with data from SPOT (System for Priority
and Optimisation of Traffic). UTOPIA was specifically designed to give
priority to public transport which SPOT provides [9].

2.1.4 Smart Traffic

Smart Traffic is the software package created by Sweco to intelligently control
traffic lights at an intersection. As the more advanced methods discussed pre-
viously, Smart Traffic makes use of real-time information from detection loops.
In addition to this Smart Traffic combines and makes use of several other data
sources of which floating car data (FCD) is the main data source. FCD is broad-
casted by individual vehicles and contains information on the position and speed
of the vehicle [12]. This real-time data, from detection loops and FCD, is used
to capture the current traffic image. Based on this image and the stage Smart
Traffic predicts the future positions of vehicles using microsimulation model
SUMO and calculates the delay and number of stops per vehicle.

Due to the large number of stages at a given junction and the time-consuming
computational complexity of SUMO, Smart Traffic currently simulates only four
stages, where every signal group gives a green signal in exactly one stage and red
in all others. We will refer to these simulated stages as schedules. The schedules
contain information on which traffic lights are scheduled to turn green at which
specific times.

We will now describe the way Smart Traffic operates. Smart Traffic consists
of four modules: Monitoring, Forecasting, Control and Communications. The
Control module is the main loop which communicates with all other modules.
The loop starts with Control asking a snapshot from the Monitoring module.
Monitoring is responsible for capturing the current traffic image. It does this
based on historic and actual data, such as FCD and data from detection loops.
The snapshot created by Monitoring is then sent to Forecasting together with a
schedule. Forecasting predicts the position of the vehicles under the conditions
of the schedule and calculates the delay and number of stops for each vehicle.
These results get sent back to Control. Control sends the snapshot created
by Monitoring and a schedule to Forecasting four times each with a different
schedule. Finally, based on the results of the four simulations, Control calculates
the delay and number of stops for all stages and optimises over these results.
The optimal stage is then sent to Communications which is responsible for
controlling the actual traffic lights.

Both the Monitoring module and Forecasting module make use of microsim-
ulation model SUMO.

2.2 Discrete Event Simulation

Currently, Smart Traffic uses the microsimulation model SUMO to predict the
delay of vehicle at an intersection. Due the detailing in the microsimulation
model of SUMO, the model is not suitable for the objective of Sweco, which
is to control a network of junctions and predict traffic over a longer period of
time. In this thesis we consider a discrete event simulation as a replacement for
SUMO. We describe how a general discrete event simulation (DES) works and
the main differences between microsimulation models and discrete event models.
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A discrete event simulation models the system as a sequence of discrete
events in time. Every event has a specific (predicted) time at which it takes place
and a type. The type of event determines the changes the system undergoes.
Additionally, the event may contain information on the specific entities involved,
for instance if the event only concerns a single customer, this customer may be
added to the event.

All predicted events are placed in chronologically ordered list called the
Future Event Set (FES). During each step of the simulation the first event,
i.e. the event most recent in time, is removed from the FES. The time of the
simulation is updated to the time of this event and the event is executed. Based
on the type of event the state of the system changes for the relevant entities
involved. During the event, other events may be scheduled. These new events
will also be placed in the FES. After executing the event, the simulation will
jump to the next event. This is again the event most recent in time. The
simulation continues until a certain preset time horizon is reached.

One of the main differences between DES and SUMO is the time advance-
ment method. SUMO uses synchronous time advancement. This means that
the system gets updated at regular time points. Events which take place be-
tween these two time points will be executed at either of the two time points.
SUMO updates the entire system every second. This is computationally expen-
sive, since for every second the entire state of the system has to be calculated.
DES, on the other hand, uses asynchronous time advancement. Rather than
updating the entire system at regular time points, parts of the system get up-
dated at a time point at which an event takes place. This is an efficient way of
modelling discrete event systems, as we only need to calculate the state of the
system, when a significant chance takes place.

Another difference between DES and SUMO is that in DES we only take into
consideration the relevant properties. The extensive detailing used by SUMO
and other microsimulation models, e.g. the vehicle to vehicle interactions, are
often unnecessary. For instance, if we wish to determine the length of a queue, in
terms of the number of vehicles, we do not need to know how far the vehicles are
from the queue, but only when and if they are in the queue. By simulating two
events for each vehicle, one indicating an arrival in the queue and one indicating
a departure from the queue, we are thus able to obtain all information needed,
without simulating the trajectory of each vehicle second by second. This makes
the simulation much less computationally expensive.

A more detailed description on DES can be found in Introduction to Discrete
Event Systems by Cassandras and Lafortune [13]. Discrete event simulations
are used for a wide variety of applications, from health care services to manu-
facturing [14][15]. In this thesis we will consider the arrival and departure of
vehicles at a signalised intersection as a discrete event system.
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3 Implementation discrete event simulation

In this section we implement a discrete event simulation as a replacement of the
Forecasting module of Smart Traffic. The Forecasting module predicts the delay
and number of stops per vehicle based on a snapshot created by the Monitoring
module and the schedule created by Control. Both the Monitoring module and
the Forecasting module make use of SUMO. We do not consider the Monitoring
module, as it runs in real-time and thus is less suitable to be replaced by a
discrete event model.

To validate the model we require access to real-life data to compare the cal-
culated delay and number of stops to the actual delay and number of stops. As
we do not have access to this data we will make use of Vissim. PTV Vissim, is a
microsimulation traffic flow model designed by PTV Planung Transport Verkehr
AG. Similarly to SUMO, Vissim models each entity individually and simulates
complex vehicle-to-vehicle interactions [16]. We will validate and calibrate our
discrete event model using Vissim, which will function as a simulated version
of reality. The decision to use Vissim for this propose was based on its realism
and ease of use. Furthermore, Sweco currently already makes use of Vissim to
calibrate their SUMO model.

3.1 Assumptions

Before we describe the model we first give the main model assumptions:

• Vehicles are either passenger cars or heavy goods vehicles (HGV). We do
not consider busses, trams, cyclists or pedestrians.

• All road users obey traffic rules, e.g. road users will not run a red light.

• All signal groups are non-conflicting. In real-life conflicting signal groups
may be given green simultaneously, e.g. vehicles turning right may be
given green at the same time as cyclists going straight ahead. The vehicles
must then yield to the cyclists. We assume that no such situation occurs
in our model and that the departure of a vehicle is not hindered by the
presence of vehicles at another signal group.

• Road users may only be assigned to a single signal group and may not
change between signal groups.

• No additional road users enter the system during simulation. We only
consider the delay and number of stops of vehicles present in the snapshot
created by Monitoring.

• All input information is correct. We assume all information received by
Forecasting from Control is correct.

In the subsequent we use the terms vehicle and road user interchangeably.

3.2 Model description

We model a single signalised intersection as a discrete event system. For a
detailed explanation of a discrete event simulation we refer back to Section 2.2.
A discrete event system is completely determined by its events. We define the
following type of events:
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• arrival at queue: This event signals an arrival of a vehicle at the queue or
the stop line.

• departure from queue: This event signals that a vehicle wishes to depart
from the queue. If the traffic light is green or amber, the vehicle succeeds
and departs the queue. If the traffic light is red, then the vehicle remains
in the queue.

• trafficlight to red: This event changes the traffic light colour to red.

• trafficlight to amber: This event changes the traffic light colour to amber.

• trafficlight to green: This event changes the traffic light colour to green.

• register results: This event calculates the delay and number of stops per
road user and writes these results into an output file.

Every event in the simulation has a predicted time at which it takes place, a type
and a signal group. The arrival at queue and departure from queue events also
have a road user associated with the event. Additionally, for our simulation we
require a stop simulation event, which prevents the simulation from continuing
beyond the desired time horizon and prevents the program from ending due to
an empty FES.

The SUMO model currently used by Sweco outputs the the delay and the
number of stop per vehicle for all signal groups at timestamps t = 0, ..., 25. As
Sweco wishes to keep the Control module the exact same, the output produced
by our model has to be similar to the output of the SUMO model. Thus the
register result events are executed at the start time of the simulation plus t,
with t ∈ {0, ..., 25}.

The simulation starts by initialising the signal groups, the maximum simu-
lation time and the FES. The model receives input from Control consisting of
the snapshot created by Monitoring and the schedule. Based on this input all
road users will be imported into the model and all traffic light events will be
added to the FES. Additionally, for every road user in the snapshot, we either
schedule an arrival at queue event for the road user or we place the road user
in the queue. If the traffic light is green and there is a queue we also schedule
a departure from queue event for the first road user in the queue.

After initialisation the main simulation loop starts. During the simulation
loop the first event in time will be removed from the FES. The simulation
time will be updated to the time of this event and all relevant entities will be
updated according to the type of event. Depending on the type of event new
events may be scheduled and added to the FES. After executing the event the
simulation jumps in time to the next event until the simulation time has reached
the maximum simulation time.

In the following subsections we describe the initialisation and main simu-
lation loop of the model in more detail. In Subsection 3.3 we introduce and
determine the following four model parameters: service time, the number in
line, the speed boundaries and gap.

3.2.1 Initialisation

The simulation starts with the initialisation. First the maximum time of the
simulation is initialised and the structure of the junction is read from a file. The
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file has for every arrival place the signal groups available from this arrival place.
Each signal group in the file has an identity number, a length, a maximum speed
limit and a number of lanes. The number of lanes determines the number of
queues at a signal group. If a signal group has multiple lanes we ”split” the
signal group into multiple signal subgroups. Each of these subgroups will be
a considered as separate signal group within the program for ease of computa-
tion. All signal subgroups have a single queue and the identity number of the
”original” signal group.

Then a new future event set is created, the road users are imported and the
traffic light events are initialised. The Forecasting module takes the snapshot
from Monitoring as input. This snapshot file consists of a list of road users,
with the following attributes:

• An identity number

• The time at which the road user arrives in the system. This time may be
detected by a detection loop.

• The length of the road user’s vehicle.

• The type of road user or vehicle, e.g. passenger car.

• The arrival place. This may be a detection loop id or a lane id.

• The position of the road user in meters from the stop line.

• An array of cumulative probabilities. This array is used to determine to
which signal group the road user gets assigned. The length of the array is
the amount of signal groups available to this road user.

• The current speed of the vehicle.

• The desired speed of the road user. The desired speed is an attribute
in Vissim and is required to make an accurate comparison between the
Vissim delay and the delay calculated by our discrete event model.

• A number denoting the position of the vehicle in the queue, i.e. what
number in line the vehicle is.

For every road user in the file we determine the signal group to which it belongs.
To do so we use the known arrival place of the road user and the array of
cumulative probabilities. There are a number of signal groups available to the
road user from its arrival place. The array of cumulative probabilities determines
how likely it is a road user gets assigned to a certain available signal group.
Assigning a road user to a signal group is done by drawing a random number
between 0 and 1 and comparing this to the array of probabilities. If the signal
group has multiple lanes we assign the road user to the signal subgroup with
the least amount of vehicles.

After assigning the road user to a signal (sub)group we check if the signal
group has a queue. We assume the signal group has a queue if at least one of
the road users assigned to the signal group has a speed less than 10 km/h.

We will briefly explain this assumption. In the simulation we make use of
two speed boundaries. A road user approaching the back of the queue will be
considered in the queue if they are travelling at a speed of less than 5 km/h
and a road user at the front of the queue will be considered leaving the queue
if they are travelling at a speed of more than 10 km/h. For an explanation on
the values of these speed boundaries we refer to Section 3.3. We will assume
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that the first road user travelling at a speed less than 10 km/h is in the process
of leaving the queue. It is possible that this road user is not in the process of
leaving the queue, but rather decelerating to become the first road user in the
queue. However, putting this road user in the queue early will influence the
simulation less than falsely assuming a road user is not in the process of leaving
the queue.

For every signal group sg we thus have one of the two following cases:

• The signal (sub)group has a queue. The first road user assigned to the
signal (sub)group, ru, gets added to the queue at signal (sub)group sg
and a stop is added to the number of stops of road user ru. The position
of the front of the queue is updated to the position of ru and the position
of the back of the queue is updated to the position of ru plus the length
of ru. We also check if ru is the first road user travelling at a speed less
than 10 km/h. If the signal group is green then a departure from queue
event is scheduled at the current simulation time t for road user ru.

For all other road users assigned to sg we check if they are in the queue.
The queue is defined by the speed boundaries (as explained in Section
3.3). The first vehicle travelling at a speed less than 10 km/h, if this is
not ru, will be added to the queue. All vehicles ahead of this vehicle will
also be added to the queue, as these road users were in the queue prior
to the snapshot. All vehicles behind the first vehicle travelling at a speed
less than 10 km/h will be added to the queue if they are travelling at a
speed of less than 5 km/h. Every time a road user is added to the queue
we update the position of the back of the queue by adding the length
of the vehicle of the road user and the variable gap. Similarly, if during
simulation a road user is removed from the queue we update the position
of the front of the queue by adding the length of the vehicle of the road
user and the variable gap. The first road user in the signal group, ru,
will determine the number in line for all following road users. For all road
users in the queue, we update the number in line to correspond with the
number in line of ru, i.e. if the road user is one place behind the ru the
number is line of this road user is the number in line of ru plus one. We
also add a stop to the number of stops for all road users in the queue.

For all road users not in the queue we schedule an arrival at queue event.
The time of the arrival is calculated as the distance which has to be trav-
elled by the road user divided by the maximum speed. The distance which
has to be travelled by the road user is the position of the vehicle minus
the length of all vehicles ahead and gaps between the vehicles ahead.

• The signal (sub)group does not have a queue. If sg does not have a queue
we schedule arrival at queue events for all road users assigned to sg. The
time of the arrival is calculated as the distance which has to be travelled
by the road user divided by the maximum speed. The distance which has
to be travelled by the road user is the position of the vehicle minus the
length of all vehicles ahead and gaps between the vehicles ahead.

After importing the road users, we initialise the module. For all signal
(sub)groups the traffic light is set to the initial colour, i.e. the colour at the
start time of the simulation, and all traffic light events are scheduled.
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After scheduling the register results events and stop simulation event the
main simulation loop of the program is started.

3.2.2 Main simulation

In this subsection we describe the main simulation loop. The simulation loop
starts by removing the first event in time, e, from the FES. The (current) time
of the simulation, t, is updated to the time of event e. The type of event e
determines which of the following will take place

• arrival at queue: The road user, ru, arrives at the queue at signal (sub)group
sg.

If there are no vehicles in the queue at sg and the traffic light is green
or amber, the road user can directly drive through. The road user, ru,
will leave the system, i.e. pass the stopline, and its departure time, t, is
registered.

If the traffic light is red and there are no vehicles in the queue, arriving
road user ru is the first vehicle in the queue. Thus we update the position
in meters from the stop line of ru to zero and the position in number of
vehicles in line of ru to one. Road user ru gets added to the queue at
signal (sub)group sg and a stop is added to the number of stops of road
user ru.

If there is a queue, the road user gets placed in the queue behind the last
vehicle, thus we do the following:

– Update the position of road user ru in meters to the position of the
back of the queue plus the variable gap, which denotes the distance
in meter between two road users waiting in the queue.

– Get the road user, last ru, which is last in the queue at signal
(sub)group sg.

– Update the number in line of road user ru to the number in line of
road user last ru plus one.

– Add the road user ru to the queue.

– Add a stop to the number of stops of road user ru.

• departure from queue: Road user ru attempts to leave the queue at signal
(sub)group sg.

If the traffic light is green or amber, then the road user succeeds and
passes the stop line. The road user is removed from the queue, leaves the
system and their departure time, t, is registered. Then we check if there
are still other road users waiting in the queue. If this is the case we get the
first road user in the queue, next ru, and schedule a departure from queue
event for road user next ru. This event will take place at time t plus the
service time of road user next ru. The service times are determined in
Section 3.3. Else, if the queue is empty, we reset the position of the back
and front of the queue in meters from the stop line to zero.

If the traffic light is red, then road user ru may not leave the system, as
the traffic light will have turned red before all road users in the queue

14



could leave the system. We initialise the variable position to zero and do
the following for i from 1 to the number of road users in the queue at sg:

– Get i’th road user in the queue: ru.

– Update the position of road user ru in meters to the variable position.

– Update the position of road user ru in number of vehicles in line to
i plus one.

– Add a stop to the number of stops of road user ru.

– Update the variable position by adding the length of (the vehicle of)
road user ru plus the variable gap to it.

• trafficlight to red: Change the traffic light at signal (sub)group sg to red.
Reset the position of the front and back of the queue to, respectively, zero
and the length of the queue (in meters). The length of the queue is defined
as the length of all vehicles in the queue plus the distance between these
vehicles.

• trafficlight to amber: Change the traffic light at signal (sub)group sg to
amber.

• trafficlight to green: Change the traffic light at signal (sub)group sg to
green. If there are road users waiting in the queue in front of the traffic
light, then we get the first road user in the queue, next ru, and schedule
a departure from queue event for road user next ru. This event will take
place at time t plus the service time of road user next ru.

• register results: For every road user we calculate its delay. The delay and
the number of stops of the road user is then written into an output file. For
a detailed explanation on how this delay is calculated we refer to Section
3.2.3.

After executing event e the next event is removed from the FES and executed.
The simulation ends when the simulation time exceeds the maximum simulation
time. The structure of the simulation loop can be seen in Algorithm 1.

The output of the simulation is a file containing the delay and number of
stops of every vehicle sorted by time stamp (of the register result event) and
signal group.

3.2.3 Calculating delay

During the register results event the delay per road user is calculated and written
into an output file together with the number of stops per road user. In this
section we explain how this delay is calculated.

We define the delay as the difference between the total time the road user
has spent in the system minus the minimum time the road user is required to
spend in the system in the most optimal situation. The most optimal situation
denotes a situation in which there are no other vehicles present, the road user
moves at maximum speed and the traffic light is green. The total time the road
user has spent in the system is referred to as the sojourn time. We refer to
the minimum time the road user is required to spend in the system in the most
optimal situation as the minimum travel time. Thus the delay is defined as the
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Algorithm 1 Main simulation

Create new FES
Initialize traffic light colours and add traffic light events to FES
Import all road users
Initialise time t
Schedule register results events
Schedule stop simulation event (at maxTime)
while t < maxTime do

Get the next event e from FES
Update the time t
if type of e = arrival at queue then

Get signal group sg of event e
Get road user ru of event e
if the traffic light is green or amber and the queue is empty at sg then

Register departure time t of road user ru
else if the traffic light is red and the queue is empty at sg then

Update position of road user ru to 0
Update the number in line of ru to 1
Add road user ru to queue at sg
Add a stop to road user ru

else
Update the position of road user ru (to position of the

back of the queue plus the variable gap)
Get last road user in the queue last ru
Update number in line of ru to number in line of last ru +1
Add road user ru to the queue
Add a stop to road user ru

end if
end if
if type of e = departure from queue then

Get signal group sg of event e
if the traffic light is green or amber at sg then

Get road user ru of event e
Remove road user ru from the queue at sg
Register departure time t of road user ru
if there are still road users in the queue at sg then

Get next road user in the queue next ru
Schedule departure from queue for next ru at t + service time

of next ru
else

Reset position of the front and the back of the queue to 0
end if

else
for all road users in the queue at sg do

Update position and number in line
Add extra stop

end for
end if

end if
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if type of e = trafficlight to red then
Get signal group sg of event e
Change traffic light to red for signal group sg
Reset the position of the front of the queue to 0 and the position

of the back of the queue to the current length of the queue (in
meters)

end if
if type of e = trafficlight to amber then

Get signal group sg of event e
Change traffic light to amber for signal group sg

end if
if type of e = trafficlight to green then

Get signal group sg of event e
Change traffic light to green for signal group sg
if there are road users waiting in the queue at sg then

Get the first road user in the queue next ru
Schedule a departure from queue event for road user next ru

at time t+ service time of road user next ru
end if

end if
if type of e = register results then

for every signal group do
Get the signal group sg
for every road user associated with signal group sg do

Get the road user ru
if road user ru has left the system then

Calculate the delay of road user ru using the departure time
else

if road user ru is in the queue then
Calculate the delay of road user ru using current time t

and position of road user ru
else

Calculate the delay by separating the delay into two
sections from the arrival time to the start time and
from the start time to the current time t and
estimating the distance road user ru has travelled

end if
end if
Store delay and number of stops of ru in output file

end for
end for

end if
end while
return results
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sojourn time minus the minimum travel time. As the delay is always greater
than or equal to zero we take the maximum of 0 and the calculated delay. We
consider three different situations:

• The road user has left the system. When a road user leaves the system,
their departure time is registered. The sojourn time of this road user is
thus their departure time minus the arrival time. The minimum travel
time of the road user is calculated by dividing the length of the lane,
which is the distance the road user has travelled, by the maximum speed
allowed on the lane.

• The road user is in the queue. If the road user is still in a queue, the
sojourn time is defined as the current simulation time minus the arrival
time. The minimum travel time is calculated by first determining the
distance the road user has travelled up until then, which is the length
of the lane minus the position of the road user, and then dividing this
distance by the maximum speed allowed on the lane. The position of the
road user is the last known position in meters from the stop line, thus,
in case the road user has travelled since the last time the position was
updated, the delay of the road user may be overestimated.

• The road user is in the system, but not in the queue. If the road user is
not in the queue we separate the calculation of the delay into two parts.
The first part is the delay from the arrival time to the start time of the
simulation. The second part is the delay from the start time of the simu-
lation to the current time of the simulation. Adding the two parts of the
delay then gives the total delay for this road user. Taking the maximum
over 0 and the calculated delay happens only after the two parts of the
delay are summed.

The first part of the delay we can calculate exactly. The sojourn time is
defined as the start time minus the arrival time and the minimum travel
time is defined as the distance travelled by the road user divided by the
maximum speed allowed on the lane. The distance travelled by the road
user is known exactly and is the length of the lane minus the position of
the road user.

For the second part of the delay we define the sojourn time as the current
simulation time minus the start time. The distance travelled by the road
user is then estimated as the sojourn time times the speed of the road user
at the start of the simulation. The minimum travel time is then again the
distance travelled by the road user divided by the maximum speed allowed
on the lane.

In our simulation, when calculating the delay, we replace all instances of the
maximum speed allowed on the lane by the desired speed of the road user. The
desired speed is an attribute given to the road user in Vissim. Vissim uses this
attribute rather than the maximum speed to calculate the delay. As we wish
to compare the delay calculated by our program with the delay calculated in
Vissim, the manner in which the delay is calculated has to be the exact same.
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3.3 Parameters

In this subsection we describe the model parameters. For each of the parameters
we then determine its value. In the model described above we have the following
parameters which need to be determined:

• Service time: The position of the vehicles in the queue is not static. When
the vehicle in front of the queue starts their departure, vehicles further
back may start accelerating and thus change position. We therefore define
the service time of a vehicle as the required travel time from becoming
the first in the queue to passing the stop line. As vehicles at the back
of the queue will have had a longer time to accelerate, the service time
is dependent on the original number in line of the vehicle. A vehicle
approaching a green light without the presence of a queue will have a
service time of zero.

• The number in line: As the service time is dependent on the original
position of the vehicle in the queue, in terms of the number of vehicles in
the queue, we require an additional variable indicating what number in
line the vehicle is. During the simulation we are able to keep track of the
number in line by simply assigning either a one, if the arriving vehicle is
first in the queue, or the number in line of the vehicle ahead plus one, to
the vehicle arriving in the queue. When the traffic light is red we reset
the number in line for all vehicles still in the queue. During initialisation
we do not have access to prior information, thus we need to estimate the
original position for all vehicles in the queue.

• The speed boundaries: During initialisation, for every road user, it has
to be determined whether or not they are in the queue. We use speed
boundaries for this, i.e. below a certain speed the road user is assumed to
be in the queue. We differentiate two boundaries: the speed with which
road user arrive at the queue and the speed with which road users depart
from the queue. These boundaries may be the same value. The speed
boundaries may be determined by simulation. We observe which bound-
aries give the best result, i.e. for which boundaries the delay calculated
by our model is closest to the delay calculated by Vissim, and choose this
boundary. As fitting the speed boundary to the simulation may lead to
overfitting we consider the same speed boundaries as in Vissim.

• Gap: The variable gap is defined as the average distance between two
vehicles waiting in the queue. When the road users are positioned in the
queue, this variable is necessary to estimate the position of the vehicles in
meters from the stop line.

As we do not have access to real life data we use the data from Vissim to
determine the parameter values of our discrete event model. We create a basic
model in Vissim with a single lane and traffic light. We let the vehicles form
a queue in front of the traffic light before turning the traffic light to green and
registering the relevant attributes.
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1 2 3 4 5 6 7 8

Car 1.106 2.719 2.106 1.841 1.836 1.726 1.711 1.675
HGV 1.164 3.845 2.840 2.556 2.529 2.377 2.354 2.286

Table 1: The mean service times for passenger cars and heavy goods vehicles
based on their position in the queue.

To determine the service times of the road users we register the time at
which they pass the stop line. For the first road user in the queue we register
the time from the traffic light turning green to the passing of the stop line. For
all other vehicles we register the time which passes between two vehicles passing
the stop line. We consider two types of vehicles, passenger cars and HGV (heavy
goods vehicles). As the service time of the road user is dependent on the type
of vehicle, we calculate the service times twice, once using only passenger cars
and once using only HGV. We do not consider a mixture of vehicles as the
type of the vehicle and its number in line are the main factors determining its
service time. Furthermore, if we were to consider (all) vehicles ahead of a road
user this would be too computationally expensive, as the number of possible
combinations of their types would be too large. In Table 1 we see the mean
service times after running the basic simulation in Vissim 100 times for every
vehicle type. In Figure 2 and 3 the boxplots of the service times can be seen.

Figure 2: Boxplot of the service times for passenger cars after 100 runs of the
basic Vissim model.
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Figure 3: Boxplot of the service times for HGV after 100 runs of the basic
Vissim model.

From the results of the service times we can conclude that the position of the
road user in the queue, i.e. what number in line the road user is, is a relevant
attribute in determining the service time. A snapshot created by Monitoring is
used during initialisation. At the moment of the snapshot road users in front
of the queue may have already passed the stop line, thus the original number
in line of the road user has to be estimated. We estimate the original number
in line based on the position and speed of the vehicle using a decision tree.
We run the basic Vissim simulation 100 times with a mixture of passenger cars
and HGV and partition the data into training and testing data. We train the
decision tree in R using the speed and position of every vehicle in the queue at
every simulation second, considering only training data acquired after the traffic
light has turned green. Using the testing data we determine that the decision
tree we obtain is 82.3% accurate, meaning that the prediction of the number
in line of our decision tree is equal to the acual number in line in 82.3% of the
cases. In Table 2 we see the prediction of the number in line of our decision tree
compared to the actual number in line.

The third parameter, the speed boundaries, are required to determine whether
a road user is in the queue at initialisation. We run the basic Vissim model 100
times with a mixture of passenger cars and HGV. The Vissim model has an
attribute inQueue, which indicates if a vehicle is in the queue. For every road
user, we consider the first instance that a road user is considered in the queue
and the last instance that a road user is in the queue and examine the speed at
these moments. The average speed at the moment a road user is first considered
in the queue by Vissim is 4.71 km/h. The minimum speed is 2.42 km/h and the
maximum speed is 5.00 km/h. From this we conclude that a vehicle arriving at
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pred.
actual

1 2 3 4 5 6 7 8

1 855 64 1 1 0 0 0 0
2 80 1125 92 7 0 0 0 0
3 8 128 1340 141 20 0 1 0
4 4 6 109 1585 192 18 11 7
5 0 1 22 138 1876 189 50 18
6 0 1 6 22 230 1985 315 72
7 0 2 4 6 68 195 2241 454
8 0 0 0 4 16 48 239 2904

Table 2: Confusion matrix for the prediction of the number in line.

the queue is considered part of the queue when its speed is less than 5 km/h.
Similarly, we determine when a vehicle is last considered to be in the queue and
find an average of 9.51 km/h and a minimum of 8.91 km/h and a maximum of
10.00 km/h. Thus we conclude that a vehicle has left the queue when its speed
is higher than 10.00 km/h.

Figure 4: Boxplot of the variable Gap after running the basic Vissim model 100
times with a mixture of passenger cars and HGV.

Finally, to determine the parameter gap, we again run the basic Vissim sim-
ulation 100 times with a mixture of passenger cars and HGV. We consider only
vehicles which are standing still and determine the gap between two consecutive
vehicles. The resulting boxplot can be seen in Figure 4. Due to the stochastic
nature of the Vissim model the gap between two vehicles varies from 1 meter to
3.5 meters. In our model we will implement the average value of the gap, which
is 2.010249 meter.
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4 Results discrete event simulation

In this section we discuss the results of the discrete event simulation. We will
focus on the difference in the calculated delay of our model and the delay in
the Vissim model, which functions as a representation of reality. We refer to
Appendix A.1.3 for an example output of our model for a single run.

We test our model on a basic junction given to us by Sweco. In Figures 5 and
6 we can see the junction and its signal groups. The junction has four arrival
places. Two arrival places at approximately 100 meters and two arrival place at
approximately 50 meters. From every arrival place a road user may be assigned
to one of three signal groups. As we wish to accurately compare our calculated
delay with the delay from Vissim, we assume that the signal group to which a
road user get assigned is known. Thus every road user will get assigned to the
same signal group in our discrete event simulation as in the Vissim simulation.

We consider a low traffic scenario and a high traffic scenario. In the low traffic
scenario road users arrive at every arrival place with a rate of 300 vehicles per
hour. Thus the total arrival rate at the junction is 1200 vehicles per hour. In
the high traffic scenario the vehicles arrival at a rate of 800 vehicles per hour,
thus the total arrival rate at the junction is 3200 vehicles per hour. For both
scenarios we consider three signal timing plans: one with a cycle time of 40
seconds, one with a cycle time of 60 seconds and one with a cycle time of 80
seconds. The signal timing plan for a cycle of 60 seconds can be see in Table 3.
The signal timing plan for a cycle of 40 or 80 seconds respectively decreases or
increases the amount of green time for every signal group by 5 seconds.

Figure 5: Screenshot of the Vissim model showing the structure of the junction
and its arrival places.
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Figure 6: Screenshot of the Vissim model showing a close up of the junction
used to test our model, with its signal groups.

Start times
Signal Groups Green Amber Red

1,2 and 3 0 12 15
4,5 and 6 15 27 30
7,8 and 9 30 42 45

10,11 and 12 45 57 60

Table 3: The signal timing plan for a cycle of 60 seconds.

We run the Vissim simulation 100 times for each traffic scenario and cycle
time combination. The Vissim simulation lasts 10 minutes and we randomly
choose a simulation second from which we obtain the snapshot. We then run
our discrete event simulation for this snapshot and obtain the delay for every
road user in the snapshot. We compare this delay with the delay in Vissim.
A negative difference signifies an underestimation of the actual delay and a
positive difference signifies an overestimation of the actual delay. We sum all the
differences and average this over the road users to obtain the average difference
per road user. We are also interested in the absolute difference in delay, as a
(large) negative difference and a (large) positive difference may cancel each other
out, which gives the idea that our simulation is accurate, when it is not. The
absolute difference is obtained by taking the absolute value of the difference. We
sum all the absolute differences and average this over the road users to obtain
the average absolute difference per road user.
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(a) Average difference in delay per road user.

(b) Average absolute difference in delay per road user.

Figure 7: The average difference (7a) and average absolute difference (7b) per
road user between the calculated delay of our discrete event model and the delay
in Vissim for each timestamp over 100 snapshots with low traffic (300 veh/h per
arrival place).
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(a) Average difference in delay per road user.

(b) Average absolute difference in delay per road user.

Figure 8: Boxplots of the average difference (8a) and average absolute difference
(8b) per road user between the calculated delay of our discrete event model and
the delay in Vissim for 100 snapshots with low traffic (300 veh/h per arrival
place) after all road users have left the system.

We first look at the results for the low traffic scenario, where road users
arrive at every arrival place with a rate of 300 vehicles per hour. In Figure 7
we can see the average difference and average absolute difference per road user
for every timestamp averaged over 100 snapshots. As can be seen in Subfig-
ure 7a we underestimate the delay at the beginning of the simulation. After
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4 seconds the difference in delay increases again indicating that we start to
underestimate the delay less. For a cycle time of 60 and 80 seconds we start
to overestimate the delay after approximately 12 seconds. For a cycle time of
40 seconds the difference decreases again after around 12 seconds signifying an
increasing underestimation of the delay.

The delay in our model is calculated in three separate ways depending on the
situation the road user is in. At the beginning of the simulation a significant part
of the road users will be in the system, but not in the queue. As the maximum
length of a lane is approximately 100 meters and the maximum speed on the
lane is 50 km/h, a road user at the start of the lane will arrive at the queue
or stop line in less than 8 seconds. The underestimation at the beginning may
thus be caused by the delay calculation for road users not yet in the queue.
The underestimation of the delay after 12 seconds, in case the cycle time is 40
seconds, may be due to road users passing the intersection in our model, while
the road users in reality do not pass the junction. This happens due to the due
to the variability of the service times in Vissim, which can be seen in Figures 2
and 3 in Section 3.3, and the possible faulty estimation of the number in line.
We note that Figures 2 and 3 show that most boxplots skew to higher values,
indicating that the service times may be much larger than the average. This will
lead to road users passing the intersection in our model, due to underestimation
of the service time, when in reality they do not pass the intersection.

From Subfigure 7b we conclude that our model is more accurate for higher
cycle times. Big differences in delay between the Vissim model and our discrete
event model happen when our model predicts a road user passing the intersec-
tion, when it should stop in front of a red light, or when our model predicts a
road user waiting in front of a red light, when it should pass the intersection.
As described before the this happens due to the due to the variability of the
service times in Vissim and the possible faulty estimation of the number in line.
When the cycle length is long, and thus the green time is long, the variability
of the service times has less effect, as all road users will have the chance to
pass the intersection. In Figure 8 the boxplots of the average difference and
average absolute difference per road user after all road user have left the system
is shown. From these boxplots we may conclude that the results show more
variability when the cycle time is shorter.

In Table 4 the average difference and average absolute difference per road
user over 100 snapshots is shown after all road users have left the system. We
note that the average difference is always less than 1 second per road user.

Cycle time Average difference Average absolute difference
per road user per road user

40 -0.403 0.920
60 -0.0190 0.542
80 0.0795 0.329

Table 4: The average difference and average absolute difference in delay between
our discrete event model and Vissim per road user over 100 snapshots with low
traffic (300 veh/h per arrival place) after all road users have left the system.
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(a) Average difference in delay per road user.

(b) Average absolute difference in delay per road user.

Figure 9: The average difference (9a) and average absolute difference (9b) per
road user between the calculated delay of our discrete event model and the delay
in Vissim for each timestamp over 100 snapshots with high traffic (800 veh/h
per arrival place).

We now look at the high traffic scenario, in which road users arrive at every
arrival place with a rate of 800 vehicles per hour, and compare the results with
the low traffic scenario. In Figure 9a the average difference per road user for
each timestamp is shown. We note that for a cycle time of 40 or 60 seconds we
tend to underestimate the delay. For a cycle time of 80 seconds we overestimate
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the delay. In Figure 9b the average absolute difference per road user for each
timestamp is shown and we see that our model, as in the low traffic scenario, is
most accurate for a cycle time of 80 seconds.

(a) Average difference in delay per road user.

(b) Average absolute difference in delay per road user.

Figure 10: Boxplots of the average difference (10a) and average absolute dif-
ference (10b) per road user between the calculated delay of our discrete event
model and the delay in Vissim for 100 snapshots with high traffic (800 veh/h
per arrival place) after all road users have left the system.

In Figure 10 we see that the variability of the results for high traffic is, as
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was the case in low traffic, highest when the cycle time is smaller. As expected
the variability is larger under high traffic than low traffic, as the high traffic
scenario has more road users.

Cycle time Average difference Average absolute difference
per road user per road user

40 -2.466 5.571
60 -1.134 2.483
80 -0.0402 1.220

Table 5: The average difference and average absolute difference in delay between
our discrete event model and Vissim per road user over 100 snapshots with high
traffic (800 veh/h per arrival place) after all road users have left the system.

In Table 5 the average difference and average absolute difference per road
user over 100 snapshots is shown after all road users have left the system. The
average absolute difference per road user is much larger in the high traffic sce-
nario than in the low traffic scenario. This is particularly visible, when the cycle
time is 40 seconds. As described before this is caused by our model simulating
vehicles passing the stop line, when in reality the road users either choose to
not pass the stop line, when the traffic light is amber, or may not pass the stop
line due to road users ahead driving slower than anticipated. As the high traffic
scenario has more road users, the number of road users waiting behind other
road users in line is higher than in the low traffic scenario. Hence, the effect of
the variability of the service times is more pronounced.

We note that the results in Table 4 and Table 5 do not have much relevance
to Sweco, as the delay in Smart Traffic is calculated every second for 25 seconds
after the start time. The delay after 25 seconds is not taken into consideration.
Thus if we focus only on the relevant difference in delay for Sweco, we note that
the maximum absolute difference in delay is less than 1.5 seconds per road user
for both scenarios.

Another relevant performance measure for Sweco is the running time of the
computation, as this is one of the key problems of SUMO. We observe that the
average running time of our model for 100 runs is 1.416 seconds under high
traffic and 0.875 seconds under low traffic.

In the previous examples we considered a mixture of passenger cars and
HGV. We now briefly look at the results in case we only have passenger cars
or only HGV. We run the simulation 100 times for only passenger cars and 100
times for only HGV. Each with a cycle time of 60 and an arrival rate of 500
vehicles per hour per arrival place. In Figure 11 the result of the simulations is
shown. We note that the simulation is more accurate for only passenger cars.
This may be due to the service times of the HGV showing more variance (see
Figure 3). This makes it more likely for vehicles to pass the intersection in our
model than in Vissim, causing the underestimation of the delay for HGV. We
used a similar reasoning to conclude that our model is more accurate for higher
cycle times. Another reason for the inaccuracy, in case we only have HGV, may
be the calculation of the arrival at queue time. As HGV have a longer breaking
distance, HGV will arrive at the queue later than passenger cars and have a
larger delay than passenger cars over the same distance.
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(a) Average difference in delay per road user.

(b) Average absolute difference in delay per road user.

Figure 11: The average difference (11a) and average absolute difference (11b)
per road user between the calculated delay of our discrete event model and
the delay in Vissim for each timestamp over 100 snapshots with 500 veh/h per
arrival place and cycle time 60.
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5 Polling model

In Section 2.1.4 we described the general working of Smart Traffic. One of
the key challenges concerning Smart Traffic is the lack of information on the
routing of vehicles. Currently, the routing of the vehicle is guessed based on
a probability distribution. This means that an assumption on the routing of
the vehicle is made. This assumption is extremely relevant for the performance
of Smart Traffic, since it will calculate the delay of the vehicle based on the
assumed direction of travel. Furthermore, when new information is provided by
detection loops, the routing of the vehicle may be updated in accordance with
its new position.

In this part of the thesis we will take a closer look at the effect this lack
of routing information has on the performance of Smart Traffic by modelling
a signalised intersection as a polling model. The vehicles or customers, as the
actors in a queuing model are usually known, in this polling model may leave a
queue to join another queue. This mimics the situation in Smart Traffic. When
new information is provided on the direction of travel of a vehicle, the vehicle
changes position and thus at which signal group or queue it is located.

5.1 Literature

A polling system is a queuing system consisting of a single server attending mul-
tiple queues. The server attends a single queue at a time serving the customers
in the visited queue. After ending the visit to a queue the server progresses to
the next queue. Between two consecutive queue visits the server may incur a
switch-over time. A visual representation of a classical polling model can be
seen in Figure 12.

Figure 12: Classical polling model.

Polling models were first studied in 1957, where they were used to describe
the problem of a single repairman servicing multiple machines in the cotton
industry [17]. Now polling models find their application in many areas, from
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computer networks to production systems [18] [19]. We refer to [20] and [21] for
more extensive overviews on the applicability of polling models.

In general polling models can be used to describe situations in which multiple
customer types want to make use of the same common resource which is only
available to one type of customer at a time. Traffic at a signalised intersection
may thus also be described as a polling model. Vehicles from different directions
want to make use of the same part of the road. The traffic light will function as
the server, where giving green to a certain direction can be seen as giving service
to this direction. Vehicles which arrive at a red traffic light will form a queue.
When the traffic light turns green, the vehicles depart from the queue one-by-
one. The time it takes for a vehicle to leave the queue may be considered the
service time of the vehicle. The clearance time of the intersection or intergreen
time can be considered the switch-over time.

Among others, polling models can be characterised by the following aspects:

• Arrival process: The arrival process describes the manner in which cus-
tomers arrive at the queue. The usual assumption is that the interarrival
times, i.e. the time between two arriving customers, are independent and
identically distributed. A commonly chosen distribution is the exponential
distribution, making the arrival process of customers a Poisson process.
In literature various other arrival processes have been studied from Lévy
processes to general renewal processes [22][23]. Furthermore, customers
may arrive one-by-one or in batches [24] [25].

• The behaviour of customers: Customers waiting in line may grow impa-
tient and leave the queue. In the literature on queuing systems this is
referred to as impatience, abandonment or reneging. Polling models with
reneging at polling instants, where customers may only abandon queues
at the start of a visit or switch-over period, are studied in [26] and [27]. In
the following we focus on a polling model in which customer may decide
to change queues at polling instances.

• Service process: We usually assume that the service times are i.i.d. dis-
tributed and independent from the interarrival and switch-over times. The
queuing discipline determines in what order the customers waiting in the
queue will be served. Commonly used queuing disciplines are

– First-Come-First-Serve (FCFS)

– Random order

– Last-Come-First-Served (LCFS)

– Priorities (e.g. shortest processing time first)

A classical polling model only consists of a single server, however there
have been studies on polling models with multiple servers [28]. Vlasiou and
Yechiali consider a polling model with an infinite amount of servers [29].
As with arrivals, customers may depart one-by-one or depart in batches
[30].

• The service discipline: One of the most important properties of a polling
model is the service discipline, which determines when a server will switch
to serve another queue. The polling model may be analysed in an exact
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way if the service discipline satisfies the branching property. We describe
the branching property in more detail in Section 5.2.1. Common service
disciplines are

– exhaustive: The server will leave the current queue if it is empty and
it has served all customers.

– gated : The server will only serve the customers which are present at
the start of a visit. Customers arriving during the visit will have to
wait until the next visit period to be served.

– globally gated : Globally gated is a modification of gated service, in-
troduced in [31]. Under globally gated service the server will only
serve customers which are present at the start of a cycle.

– k-limited : The server will leave the current queue if it is empty or if
it has served a predefined number of k customers, whichever occurs
first.

Both exhaustive service and gated service satisfy the Branching property.
Globally gated does not satisfy the Branching property, but does satisfy
a weaker property, see [32], which makes the exact analysis of a polling
model with globally gated service possible. In the following we will focus
on exhaustive and gated service.

• Switch-over process: Between two consecutive queue visits a polling model
may incur a switch-over time. A common assumption is that the switch-
over times are independent from the current state of the system. In [33] the
difference between a classical polling model with and without switch-over
times is studied.

• Server routing : The server routing describes in which order the server
visits the queues. Server routing may be static or dynamic. In a classical
polling model we assume a fixed and cyclic visit order. Among others, al-
ternative server routing mechanisms are periodic server routing, described
in [34] and Markovian server routing, described in [35].

The focus of the polling model considered in this thesis is on the behaviour of
customers. In the subsequent sections we consider a classical polling model with
the additional assumption that customers may leave their queue to join another
queue.

Before introducing our model in detail, we first describe two other polling
models concerning the behaviour of customers, namely the polling model with
smart customers as described in [36] and the polling model with reneging as
discussed in [26]. The polling model with smart customers studies a polling
system in which customers choose to join a queue based on the current position
of the server. Then a polling model is obtained with a varying arrival rate in
each queue based on the location of the server. A polling model with reneging
describes a polling model where customers may choose to abandon the queue
at polling instances. In this case, when focusing on the remaining customers
only, again a polling system where the arrival rates for each queue depend on
the location of the server is obtained. For both systems the cycle time, visit
times waiting time distributions and queue length distributions are studied. The
analysis of the polling model with smart customers and the polling model with
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reneging will serve as a template for our own analysis of the polling model with
switching customers.

5.2 Analysis of polling model with switching customers

5.2.1 Model description and notation

We consider a polling model consisting of a single server serving N queues
denoted by Q1, ..., QN . We assume that the server visits the queues in cyclic
order, thus after the server has finished serving QN it will start serving Q1

again. The visit time of Qi, i.e. the time between the visit beginning and visit
ending at Qi, is denoted by Vi. Customers of type i arrive to Qi according to
a Poisson process with parameter λi. The customers get served in first-come-
first-served (FCFS) order and require a general service time Bi. The Laplace-

Stieltjes transform (LST) of the service time is denoted by B̃i. After the server
ends its visit to Qi and moves to queue Qi+1 the server may incur a switch-over

time Si with LST S̃i. A cycle consists of all visit times and switch-over times
V1, S1, ..., VN , SN . We assume that all switch-over times, interarrival times and
service times are independent of each other.

An important property of a polling model is the service discipline. Every
queue has a service discipline, which determines when the server switches posi-
tion to serve another queue. The tractability of the analysis of a polling model
greatly depends on the type of service discipline. Resing [37] shows that if a
service discipline satisfies the following property the polling model can be anal-
ysed in a rather simple manner:

Property 1 (Branching Property) If the server arrives at Qi to find ki cus-
tomers there, then during the course of the server’s visit, each of these ki cus-
tomers will effectively be replaced in an i.i.d. manner by a random population
having probability generating function (PGF) hi(z1, ..., zN ), which can be any
N -dimensional PGF.

If every queue in the polling models satisfies this branching property the
polling model can be analysed as a Multitype Branching Process (MTBPs) with
immigration [37]. Two common service disciplines which satisfy the branching
property are gated and exhaustive service. In gated service the server will end
its visit to the queue after serving all customers present at the start of the visit
period. Customers arriving during the visit period will not be served and will
need to wait for the next visit period. In exhaustive service the server will end
its visit to the queue when the queue is empty. If the polling model does not
satisfy the branching property, it may only be analysed in an analytical manner
in a few exceptional cases, e.g. symmetric or two-queue models.

In the following we consider a polling system where customers may change
type, i.e. every customer may leave the queue it is currently in to join another
queue. We allow customers to only switch queues at the start of a visit or
switch-over period, these periods are called polling instances. At the beginning
of period P ∈ {V1, S1, ..., VN , SN} a customer i may leave Qi to join Qj with
probability pij . The probability that customer i stays in Qi is given by pii =

1 −
∑N

j=1,j 6=i pij . These probabilities are independent of the position of the
server and the current joint queue length.
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To analyse this model we use a technique previously used by Boon [26]
and artificially split each period P ∈ {V1, S1, ..., VN , SN} in a subperiod a and a
subperiod b, thus visit time Vi is split into Via and Vib and switch-over time Si is
split into Sia and Sib. During Via, right before service starts at Qi, all customers
may leave their queue to immediately join another queue. Thus a customer of
type i may leave Qi and join Qj with probability pij , while simultaneously a
type j customer at Qj may join Qi with probability pji. The customers changing
queues happens instantly and does not require any time, therefore E[Via] = 0.
After the customers have changed queues the actual service will take place at
Qi during period Vib. We thus note that E[Vib] = E[Vi]. During Sia, right before
the beginning of Si, all customers may again leave their queue to immediately
join another queue. The actual switch-over time happens during Sib, hence
E[Sia] = 0 and E[Sib] = E[Si]. The splitting of the visit times and service times
into subperiod is necessary, since the queue length differ between the beginning
of subperiod a and the beginning of subperiod b.

5.2.2 Stability condition

The model described in the previous section can be viewed as a polling model
with varying arrival rates in each queue, depending on the position of the server.
This polling model was first discussed by Boxma et al. [36], who referred to this
model as a polling model with smart customers. The necessary and sufficient
stability condition described by Boxma et al. is that the Perron-Frobenius
eigenvalue of the matrix R − IN should be less then 0, where R is an N by N

matrix with elements ρij := λ
(Vj)
i E[Bi], where λ

(Vj)
i is the effective arrival rate

at Qi during Vj , and IN is the N by N identity matrix.
In order to determine the stability of the polling system we thus have to

calculate λ
(Vj)
i . We can define the effective arrival rate at follows

λ
(P )
i =

N∑
k=1

λk · qQ(P )
k →Qi

, (1)

where q
Q

(P )
k →Qi

is the probability of a customer leaving the system atQi, when it

arrived at Qk during a period P , with P ∈ {V1b, S1b, ..., VNb, SNb}. As E[Via] =
E[Sia] = 0 there are no arrivals during subperiod a. Hence, we only look at the

arrivals during subperiod b and λ
(Vj)
i = λ

(Vjb)
i .

To calculate these probabilities we consider a Markov chain with states Q
(Vib)
j

and Q
(Sib)
j , with i = 1, .., N and j = 1, ..., N . Let us for the moment only

consider a polling system with exhaustive service. Customers which arrive at
the queue which is currently being served will also be served. We thus can

consider Q
(V1b)
1 , Q

(V2b)
2 , ..., Q

(VNb)
N as absorbing states of the Markov chain. In

Figure 13 a schematic representation of this Markov chain is given for N = 2.
Let q

Q
(Vib)

j →Qk
denote the probability that a customer arriving at Qj during

Vib leaves the system at Qk and let q
Q

(Sib)

j →Qk
denote the same for customers
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arriving during Sib. Then we obtain the following system of equations

q
Q

(V1b)

j →Qk
=

N∑
n=1

pjn · qQ(S1b)
n →Qk

, j = 2, ..., N,

q
Q

(S1b)

j →Qk
=

N∑
n=1

pjn · qQ(V2b)
n →Qk

, j = 1, ..., N,

q
Q

(V2b)

j →Qk
=

N∑
n=1

pjn · qQ(S2b)
n →Qk

, j = 1, 3, ..., N,

q
Q

(S2b)

j →Qk
=

N∑
n=1

pjn · qQ(V3b)
n →Qk

, j = 1, ..., N,

...

q
Q

(VNb)

j →Qk
=

N∑
n=1

pjn · qQ(SNb)
n →Qk

, j = 1, ..., N − 1,

q
Q

(SNb)

j →Qk
=

N∑
n=1

pjn · qQ(V1b)
n →Qk

, j = 1, ..., N,

with for the absorbing states

q
Q

(Vib)

j →Qk
=

{
1 if i = j = k,

0 if i = j 6= k.

Solving this system of equations then leads to the needed probabilities.

Figure 13: Schematic representation of the Markov chain for exhaustive service
for N = 2.

In case we have gated service the system of equations differs slightly, since
customers which arrive at Qi during the service of Qi will not get served during

this service. Thus Q
(V1b)
1 , Q

(V2b)
2 , ..., Q

(VNb)
N are no longer absorbing states. We

introduce additional states Q
(V

′
1b)

1 , Q
(V

′
2b)

2 , ..., Q
(V

′
Nb)

N which will act as absorbing
states for customers already in the system. A schematic representation of this
Markov chain with N = 2 is given in Figure 14. Let q

Q
(P )
j →Qk

again denote the

probability that a customer arriving at Qj during P leaves the system at Qk,
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with P ∈ {V1b, S1b, ..., VNb, SNb}. Then we obtain the following set of equations

q
Q

(Vib)

j →Qk
=

N∑
n=1

pjn · qQ(Sib)
n →Qk

,

q
Q

(Sib)

j →Qk
= pj(i+1) · 1{i+ 1 = k}+

N∑
n=1,n6=(i+1)

pjn · q
Q

(V(i+1)b)

n →Qk

,

for i = 1, ..., N and j = 1, ..., N , where we calculate modulo N , thus N + 1 = 1,
and with indicator function

1{i = k} =

{
1 if i = k,

0 if i 6= k.

We can again solve this system of equations to obtain the relevant probabilities.

Figure 14: Schematic representation of the Markov chain for gated service for
N = 2.

From these two examples we can easily see what the Markov chain would
like for a polling system, which has a combination of exhaustive and gated ser-
vice. Filling the relevant probabilities into Equation 1 gives the desired effective
arrival rates required to determine the stability condition.

5.2.3 Joint queue length distribution at polling epochs

In this section we derive the joint queue length distribution at polling epochs,
i.e. the epochs that the server starts or ends a visit to each queue, for every
queue.

Let L̃B
(P )

(z) denote the PGF of the joint queue length at the beginning of
each subperiod P , where P ∈ {V1a, V1b, S1a, S1b, ..., VNa, VNb, SNa, SNb} and z
denotes the vector (z1, ..., zN ). We only consider polling systems which satisfy
the Branching Property and can subsequently use the Buffer occupancy method

to derive an expression for L̃B
(V1a)

(z). The Buffer occupancy method relates
the joint queue length PGF at the end of a visit to the joint queue length PGF at
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the beginning of a visit [38]. As we have split every period into subperiods a and
b, we relate the PGFs of the joint queue length distributions at the beginning
of various subperiods to each other.

We start by relating the PGF of the joint queue length at the beginning of
Via to the PGF of the joint queue length at the beginning of Vib. We have the
following definition of the PGF of the joint queue length at the beginning of
subperiod Vib

L̃B
(Vib)

(z) = E[z
LB

(Vib)

1
1 · ... · zLB

(Vib)

N

N ], (2)

where LB
(Vib)
j denotes the queue length distribution at Qj during period Vib.

We note that the queue length distribution at Qj during period Vib is dependent
on the queue length distribution during period Via and can be written as follows

LB
(Vib)
j = X

(1,j)
1 + ...+X

(1,j)

LB
(Via)
1

+X
(2,j)
1 + ...+X

(2,j)

LB
(Via)
2

+ ...+X
(N,j)
1 + ...

+X
(N,j)

LB
(Via)

N

=

N∑
k=1

LB
(Via)

k∑
l=1

X
(k,j)
l , (3)

where X
(k,j)
l is a Bernoulli random variable representing the l’th customer in

Qk. The l’th customer in Qk leaves Qk to join Qj with probability pkj and does
not join Qj with probability 1− pkj . Similarly, the l’th customer in Qj stays in
Qj with probability pjj and leaves Qj with probability 1− pjj .

We now rewrite (2) using (3) and condition on the length of each queue at
the beginning of V1a to obtain

E[z
LB

(Vib)

1
1 · ... · zLB

(Vib)

N

N ] = E[z
∑N

k=1

∑LB
(Via)
k

l=1 X
(k,1)
l

1 · ... · z
∑N

k=1

∑LB
(Via)
k

l=1 X
(k,N)
l

N ]

=

∞∑
a1,...,aN=0

E[z
∑N

k=1

∑a1
l=1 X

(k,1)
l

1 · ... · z
∑N

k=1

∑aN
l=1 X

(k,N)
l

N ]

· P(LB
(Via)
1 = a1, ..., LB

(Via)
N = aN ) (4)

We note that every customer in the queue is independent from other customers

in the queue, thus X
(k,j)
m ⊥⊥ X

(k,j)
n for all m and n and that queues are inde-

pendent from each other, thus X
(y,j)
l ⊥⊥ X(z,j)

l for all y and z. There obviously
is dependence between the Bernoulli random variables representing the same

customer, i.e. X
(k,i)
l 6⊥⊥ X

(k,j)
l . Using this information we can further rewrite

(4) as follows

∞∑
a1,...,aN=0

(E[z
X

(1,1)
1

1 · ... · zX
(1,N)
1

N ])a1 · ... · (E[z
X

(N,1)
1

1 · ... · zX
(N,N)
1

N ])aN

· P(LB
(Via)
1 = a1, ..., LB

(Via)
N = aN ) (5)

=

∞∑
a1,...,aN=0

(

N∑
k=1

p1kzk)a1 · ... · (
N∑

k=1

pNkzk)aN · P(LB
(Via)
1 = a1, ..., LB

(Via)
N = aN ),
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where we used

E[z
X

(j,1)
1

1 · ... · zX
(j,N)
1

N ] =

∞∑
x1,...,xN=0

P(X
(j,1)
1 = x1, ..., X

(j,N)
1 = xN ) · zx1

1 · ... · z
xN

N

= pj1z1 + ...+ pjNzN =

N∑
k=1

pjkzk.

Equation (5) can be recognised as the PGF of the joint queue length at the
beginning of subperiod Via. Thus we obtain

L̃B
(Vib)

(z) = L̃B
(Via)

(

N∑
k=1

p1kzk, ...,

N∑
k=1

pNkzk).

As the polling system satisfies the Branching Property we can use from its
definition that each customer in Qi at the start of visit period Vib will effectively
be replace in an i.i.d. manner by random population having PGF hi(z1, ..., zN ).
Hence, we find the following relation between the PGF of the joint queue length
at the beginning of Sia and the PGF of the joint queue length at the beginning
of Vib

L̃B
(Sia)

(z) = L̃B
(Vib)(

z1, ..., zi−1, hi(z), zi+1, .., zN
)
.

The PGF hi(z) depends on the type of service discipline. For gated service we

have hi(z) = B̃i

(∑N
j=1 λj(1 − zj)

)
and for exhaustive service we have hi(z) =

B̃P i

(∑
j 6=i λj(1− zj)

)
, where B̃P i is the LST of the duration of a busy period

at Qi.

The relation between L̃B
(Sib)

(z) and L̃B
(Sia)

(z) is similar to the relation

between L̃B
(Vib)

(z) and L̃B
(Via)

(z), as, similar to Via, customers may switch
queues during Sia.

The queue length distribution at beginning V(i+1)a is equal to the queue
length distribution at the beginning of Sib plus all customers which arrived
during the switch-over time Si, thus we obtain the following relation

L̃B
(V(i+1)a)

(z) = L̃B
(Sib)

(z)S̃i(

N∑
j=1

λj(1− zj)).

Relating the PGFs of the joint queue lengths distributions at the beginning
of various subperiods to each other leads to the following set of equations, also
referred to as the laws of motion, which can be solved recursively to obtain an

40



expression for L̃B
(V1a)

(z)

L̃B
(V1b)

(z) = L̃B
(V1a)

(

N∑
k=1

p1kzk, ...,

N∑
k=1

pNkzk),

L̃B
(S1a)

(z) = L̃B
(V1b)

(h1(z), z2, .., zN ),

L̃B
(S1b)

(z) = L̃B
(S1a)

(

N∑
k=1

p1kzk, ...,

N∑
k=1

pNkzk),

L̃B
(V2a)

(z) = L̃B
(S1b)

(z)S̃i(

N∑
j=1

λj(1− zj)),

...

L̃B
(VNb)

(z) = L̃B
(VNa)

(

N∑
k=1

p1kzk, ...,

N∑
k=1

pNkzk),

L̃B
(SNa)

(z) = L̃B
(VNb)

(z1, ..., zN−1, hN (z)),

L̃B
(SNb)

(z) = L̃B
(SNa)

(

N∑
k=1

p1kzk, ...,

N∑
k=1

pNkzk),

L̃B
(V1a)

(z) = L̃B
(SNb)

(z)S̃i(

N∑
j=1

λj(1− zj)).

5.2.4 Joint queue length distribution at arbitrary epochs

In the previous section we derived the joint queue length distribution at polling
epochs. We can now use these results to derive an expression for the joint queue
length distribution at arbitrary epochs.

We start from the following observation made by Eisenberg [39]. All service
beginnings at Qi coincide with a service completion at Qi, except for the first
service beginning which coincides with a visit beginning at Qi. Similarly, all
service completions at Qi coincide with a service beginning at Qi, except for
the last service completion which coincides with a visit completion at Qi. As
shown by Boxma et al. [40], this observation can be used to derive the joint
queue length distribution at an arbitrary epoch.

We first need to calculate the PGF of the joint queue length distribution
at service beginnings at Qi. Let L̃Si(z) and L̃Di(z), respectively, denote the
PGF of the joint queue length distribution at service beginnings and service
completions at Qi. Then, using the observation made by Eisenberg [39] and the
results of Boxma et al. [40], we obtain the following relation

1

λ̂iE[C]
L̃B

(Vib)
(z) + L̃Di(z) = L̃Si(z) +

1

λ̂iE[C]
L̃B

(Sia)
(z), i = 1, ..., N, (6)

where λ̂i is the effective arrival rate at Qi and λ̂iE[C] is the mean number of
customers served at Qi per visit. It is easily seen that we have the following
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relation between L̃Si(z) and L̃Di(z)

L̃Di(z) = L̃Si(z)B̃i

( N∑
j=1

λj(1− zj)
)
/zi, i = 1, ..., N. (7)

Combining Equations (6) and (7) gives the following

L̃Si(z) =
1

λ̂iE[C]

zi

zi − B̃i

(∑N
j=1 λj(1− zj)

) (L̃B
(Vib)

(z)− L̃B
(Sia)

(z)),

L̃Di(z) =
1

λ̂iE[C]

B̃i

(∑N
j=1 λj(1− zj)

)
zi − B̃i

(∑N
j=1 λj(1− zj)

) (L̃B
(Vib)

(z)− L̃B
(Sia)

(z)),

for i = 1, ..., N . We can now use these expressions to derive the joint queue
length distribution at arbitrary epochs.

Let L̃(z) denote the PGF of the joint queue length distribution at an ar-

bitrary epoch and L̃(P )(z) with P ∈ {V1a, V1b, S1a, S1b, ..., VNa, VNb, SNa, SNb}
denote the PGF of the joint queue length distribution at an arbitrary epoch
during P. Then, by the stochastic mean value theorem, we have

L̃(z) =

N∑
i=1

(
E[Vi]

E[C]
L̃(Vib)(z) +

E[Si]

E[C]
L̃(Sib)(z)

)
, (8)

where we use that E[Via] = E[Sia] = 0, E[Vib] = E[Vi] and E[Sib] = E[Si], for all
i = 1, ..., N .

To derive an expression for L̃(Vib)(z) we use an observation by Boxma et
al. [40] stating that the PGF at an arbitrary epoch during period Vib, in which
customers get served, is equal to the PGF at an arbitrary epoch during a service
time Bi. The number of customer at an arbitrary point of time during service
time Bi is equal to the number of customers present at the beginning of service
time Bi plus all customers arriving during the elapsed part of the service. Hence,
we obtain the following

L̃(Vib)(z) = L̃Si(z)B̃i,past

( N∑
j=1

λj(1− zj)
)
,

where B̃i,past(w) is the LST of the elapsed part of service time Bi given by

B̃i,past(w) =
1− B̃i(w)

wE[Bi]
,

see [41]. Thus we find the following expression for L̃(Vib)(z)

L̃(Vib)(z) = L̃Si(z)
1− B̃i

(∑N
j=1 λj(1− zj)

)
∑N

j=1 λj(1− zj)E[Bi]
. (9)
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Similarly, we can define S̃i,past(w) as the LST of the elapsed part of switch-over

time Si to obtain the following expression for L̃(Sib)

L̃(Sib)(z) = L̃B
(Sib)

(z)S̃i,past

( N∑
j=1

λj(1− zj)
)

=
L̃B

(Sib)
(z)− L̃B

(V(i+1)a)
(z)∑N

j=1 λj(1− zj)E[Si]
,

(10)

where we used L̃B
(V(i+1)a)

= S̃i(z)L̃B
(Sib)

(z).
By substituting (9) and (10) into (8) we obtain the PGF of the joint queue

length distribution at an arbitrary epoch,

L̃(z) =

N∑
i=1

(
E[Vi]

E[C]

1

λ̂iE[C]

zi(L̃B
(Vib)

(z)− L̃B
(Sia)

(z))

zi − B̃i

(∑N
j=1 λj(1− zj)

) 1− B̃i

(∑N
j=1 λj(1− zj)

)
∑N

j=1 λj(1− zj)E[Bi]

+
E[Si]

E[C]

L̃B
(Sib)

(z)− L̃B
(V(i+1)a)

(z)∑N
j=1 λj(1− zj)E[Si]

)

=
1

E[C]

N∑
i=1

(
zi(L̃B

(Vib)
(z)− L̃B

(Sia)
(z))

zi − B̃i

(∑N
j=1 λj(1− zj)

) 1− B̃i

(∑N
j=1 λj(1− zj)

)
∑N

j=1 λj(1− zj)

+
L̃B

(Sib)
(z)− L̃B

(V(i+1)a)
(z)∑N

j=1 λj(1− zj)

)
,

where we used E[Vi] = λ̂iE[C][Bi].

5.2.5 Mean cycle time and mean visit times

In the previous section we derive the joint queue length distributions at arbitrary
epochs. The expression found contains the mean cycle time E[C]. In this section
we briefly describe how to obtain the mean cycle time using the LSTs of the
distributions of the visit times Vi.

Let Ṽi(w) denote the LST of the visit time at Qi. For any service discipline

satisfying the branching property, as described in Section 5.2.1, Ṽi(w) can be
expressed in terms of the joint queue length distribution at visit beginnings as
follows

Ṽi(w) = L̃B
(Vi)

(1, ..., 1, θ̃i(w), 1, ..., 1), i = 1, ..., N, (11)

where θ̃i(w) is the LST of the time the server spends at Qi due to the presence of

a single customer. For gated service θ̃i(w) = B̃i(w), and for exhaustive service

θ̃i(w) = B̃P i(w), where B̃P i is the LST of the duration of a busy period at Qi.
By differentiating (11) we obtain the mean visit times E[Vi]. A cycle consists

of all visit times and switch-over times, C = V1 +S1 + ...+VN +SN . The mean
cycle time can thus be obtained using

E[C] =

N∑
i=1

(E[Vi] + E[Si]).
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6 Numerical examples polling model

In this section we consider two examples of a polling model with switching
customers. In the first example we focus on a two-queue polling model and
describe the effects of the parameters. In the second example we consider a
two-queue polling model which mimics the situation in Smart Traffic.

6.1 Example 1: A two-queue polling model

We consider a two-queue polling model with switching customers as described
in the previous section. At the beginning of a polling epoch a customer may
stay in Q1 or Q2 with probability p11 or p22, respectively. All customers which
choose not to stay in the queue will join the other queue.

Figure 15: The expected queue length of Q1 for E[Si] = 1 and varying values of
E[Bi] under gated service.

Figure 16: The expected queue length of Q1 for E[Bi] = 1
4 and varying values

of E[Si] under gated service.
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We assume both queues have the same deterministic service times and switch-
over times, thus E[B1] = E[B2] and E[S1] = E[S2]. The arrival processes are
Poisson with parameter λ1 = 1

20 for Q1 and λ2 = 7
20 for Q2. We denote the

mean queue length at arbitrary epochs by E[Li], i = 1, 2.

(a) p11 = 1, p22 = 1 (b) p11 = 1, p22 = 0

(c) p11 = 0, p22 = 1 (d) p11 = 0, p22 = 0

Figure 17: The expected queue length of Q1 under gated service for E[Bi] = 1
4

and E[Si] = 1.

We study the effect of the model parameters on the mean queue lengths and
consider both exhaustive and gated service. In Figure 15 the effect of E[Bi] on
E[L1] is shown for gated service. The effect is as expected with E[L1] increasing
as E[Bi] increases. In Figure 16 the effect of E[Si], again for E[L1] under gated
service, is shown. E[L1] increases linearly as E[Si] increases. For completeness,
the effect of varying arrival rates λ1 and λ2 on E[L1] under gated service is
shown in Figure 17. When p22 = 1 all customers in Q2 stay in Q2, thus in
this case the effect of λ2 is minimal on the mean queue length of Q1. We do
note that E[L1] is higher when λ2 is higher. As λ2 increases the time between
a visit ending at Q1 and the subsequent visit beginning at Q1 increases, due to
the increased E[V2], leading to an increase in mean queue length at Q1. When
p22 = 0 all customers in Q2 switch to Q1 at polling epochs. The mean queue
length of Q1 is then greatly dependent on the arrival rate at Q2. This is visible
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in Figures 17b and 17d. For E[L1] under exhaustive service and for E[L2] under
both exhaustive and gated service, E[Bi], E[Si] and λi, with i = 1, 2, exhibit
similar behaviour.

After showing that the effect of E[Bi], E[Si] and λi on E[Li] are as expected,
we focus on the more interesting parameters of the model p11 and p22. We
compare the following four systems, with deterministic service and switch-over
times:

(a) E[Bi] = 1 and E[Si] = 1,

(b) E[Bi] = 1 and E[Si] = 10,

(c) E[Bi] = 1.8 and E[Si] = 1,

(d) E[Bi] = 1.8 and E[Si] = 10,

with λ1 = 1
20 and λ2 = 7

20 . In Figures 18-20 we show how the mean queue
length depends on p11 and p22 for the four systems. We omitted the results for
E[L1] under exhaustive service, as exhaustive service shows similar results to
gated service for Q1.

(a) E[Bi] = 1,E[Si] = 1 (b) E[Bi] = 1,E[Si] = 10

(c) E[Bi] = 1.8,E[Si] = 1 (d) E[Bi] = 1.8,E[Si] = 10

Figure 18: E[L1] under gated service.
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In Figure 18 the mean queue length of Q1 under gated service is shown. We
note that the mean queue length is largest when all customers stay in Q1 and
all customers in Q2 join Q1. The second largest mean queue length among the
four extremes (p11 = 0 or 1 and p22 = 0 or 1) is when all customers decide
to change queues. Customer arrive at Q2 at a much higher rate than at Q1.
Since the customers change queues at polling epochs, customers may arrive at
Q1 with rate λ1, switch to Q2 where they are joined by customers with arrival
rate λ2 and then all switch to Q1 again. Thus the effective arrival rate at Q1

in case p11 = p22 = 0 is closer to the average of both arrival rates and thus
higher than the arrival rate in case p11 = p22 = 1. When all customers decide
to leave Q1 and no customers join from Q2 the arrival rate is the lowest. Figure
19 shows the results for the mean queue length of Q2 under gated service.

(a) E[Bi] = 1,E[Si] = 1 (b) E[Bi] = 1,E[Si] = 10

(c) E[Bi] = 1.8,E[Si] = 1 (d) E[Bi] = 1.8,E[Si] = 10

Figure 19: E[L2] under gated service.

Intuitively, one would expect the mean queue length to decrease as the num-
ber of customers opting to leave the queue increases and the number of cus-
tomers joining the queue decreases and similarly one would expect the mean
queue length to increase as the number of customers opting to leave the queue
decreases and the number of customers joining the queue increases. However,
in system (c), depicted in Subfigure 18c and Subfigure 19c, we can note some
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non-monotonic behaviour, where for low values p11 the expected queue length
of Q1, E[L1], may be lower for lower values of p22 and the expected queue length
of Q2, E[L2] may be higher for lower values of p22.

(a) E[Bi] = 1,E[Si] = 1 (b) E[Bi] = 1,E[Si] = 10

(c) E[Bi] = 1.8,E[Si] = 1 (d) E[Bi] = 1.8,E[Si] = 10

Figure 20: E[L2] under exhaustive service.

In Figure 20 the results for the mean queue length in Q2 under the exhaus-
tive discipline are shown. Subfigure 20b shows clear non-monotonic behaviour
for lower values of p11. In system (b), E[Si] is much larger than E[Bi], thus the
switch-over periods become dominant. The parameters p11 and p22 do not influ-
ence the arrivals during the switch-over periods, as the switching of customers
only takes place at polling epochs. When p22 is high and p11 is low, a large
number of customers will stay in Q2 or join Q2 from Q1 at a polling epoch, this
means that the visit period of Q2 will be large. Simultaneously, due to the large
switch-over periods and customers leaving Q1, the amount of customers at the
start of a visit period at Q1 will be small. Consequently, Q1 has a smaller visit
period and thus the the visit period at Q2 will start sooner. Hence, the mean
queue length at Q2 is smaller if Q1 has a smaller visit period. As p11 increases
and p22 decreases, the length of the visit period of Q1 increases, however for
high enough values for p11 or low enough values for p22 this is offset by the (low)
amount of customers in Q2.
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(a) E[Si] = 1

(b) E[Si] = 10

Figure 21: The expected queue length of Q2 for varying values of E[Bi] under
exhaustive service.

In system (d), where E[Bi] = 1.8 and E[Si] = 10, seen in Subfigure 20d, we
see that the expected queue length of Q2 is highest for p11 = 1 and p22 = 0.
Thus all customers leaving Q2 to join Q1 and no customers joining Q1 from Q2

leads to the highest expected queue length in Q2. This seems counter-intuitive,
as Q2 is emptied at each polling epoch and in all other cases studied p11 = 1 and
p22 = 0 gives the lowest expected queue length in Q2, as we can see in Figure
19 and Subfigures 20a, 20b and 20c. To study this counterintuitive behaviour
we plot E[L2] for varying rates of E[Bi] in Figure 21 and note that when E[Bi]
increases E[L2] increases more steeply for p11 = 1, p22 = 0 than the other com-
binations plotted. As described previously, when E[Si] is large, a large number
of customers will accumulate in both Q1 and Q2 and the parameters p11 and p22
will not influence the arrivals during the switch-over periods. Due to the cus-
tomers arriving during the long switch-over periods and all customers from Q2

joining Q1, the busy period at Q1 will start with a large number of customers.
Unlike system (b), system (d) additionally has large mean service times, com-
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bined with the exhaustive service discipline, this leads to an even longer busy
period at Q1. During the busy period of Q1, customers will accumulate at Q2.
These customers will not be served during the busy period, since the server is
at Q1, and will not leave to join Q1 until the next polling epoch. This explains
the behaviour visible in Figure 21 and Subfigure 20d.

We also briefly take a look at the correlation between the queue length of
Q1 and the queue length of Q2. The Pearson correlation coefficient is defined
as

ρL1,L2
=
cov(L1, L2)

σL1
σL2

,

where cov(L1, L2) is the covariance, σL1 is the standard deviation of L1 and
σL2

is the standard deviation of L2 [42]. In Figure 22 the correlation coefficient
can be seen for system (a), which has E[Bi] = 1 and E[Si] = 1, under both
exhaustive and gated service. We note that the correlation coefficient is higher
under gated service.

(a) Exhaustive service (b) Gated service

Figure 22: Correlation coefficient between the queue length of Q1 and the queue
length of Q2 for E[Bi] = 1 and E[Si] = 1 under exhaustive and gated service.

6.2 Example 2: Smart Traffic

In the polling model with switching customers, as described in Section 5, cus-
tomers may change queues at every polling instance. In Smart Traffic the ve-
hicle or customers may change queues, when new information on their position
is available. It is unlikely that new information will lead to a vehicle switch-
ing back to a position it previously was. Hence, it is unlikely that a customer
changes queues twice or more often.

In this example we will focus on a two-queue polling system in which cus-
tomers may only change queues once. To obtain a system which satisfies this
condition we require that customers may not leave one of the queues, thus we
assume p22 = 1. The arrival processes to both queues are Poisson with pa-
rameter 1

6 . We further assume both queues have the same service times and
switch-over times, with E[B1] = E[B2] = 2 and E[S1] = E[S2] = 3.

In Table 6 and 7 we see the expected queue length at the beginning of
period P ∈ {V1a, V1b, S1a, S1b, V2a, V2b, S2a, S2b} under exhaustive service for Q1
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V1a V1b S1a S1b V2a V2b S2a S2b

p11 = 1 2 2 0 0 0.5 0.5 1.5 1.5
p11 = 0.9 1.93 1.73 0 0 0.5 0.45 1.58 1.43
p11 = 0.8 1.83 1.47 0 0 0.5 0.4 1.67 1.33
p11 = 0.7 1.72 1.21 0 0 0.5 0.35 1.75 1.22
p11 = 0.6 1.59 0.956 0 0 0.5 0.3 1.82 1.09
p11 = 0.5 1.44 0.722 0 0 0.5 0.25 1.89 0.944
p11 = 0.4 1.28 0.511 0 0 0.5 0.2 1.94 0.778
p11 = 0.3 1.1 0.329 0 0 0.5 0.15 1.99 0.596
p11 = 0.2 0.902 0.18 0 0 0.5 0.1 2.01 0.402
p11 = 0.1 0.701 0.0701 0 0 0.5 0.05 2.01 0.201
p11 = 0 0.5 0 0 0 0.5 0 2 0

Table 6: The expected queue length of Q1 at the beginning of period P ∈
{V1a, V1b, S1a, S1b, V2a, V2b, S2a, S2b} under exhaustive service.

V1a V1b S1a S1b V2a V2b S2a S2b

p11 = 1 0.5 0.5 1.5 1.5 2 2 0 0
p11 = 0.9 0.658 0.851 1.72 1.72 2.22 2.27 0 0.158
p11 = 0.8 0.833 1.2 2.93 1.93 2.43 2.53 0 0.333
p11 = 0.7 1.02 1.54 2.14 2.14 2.64 2.79 0 0.524
p11 = 0.6 1.23 1.87 2.34 2.34 2.84 3.04 0 0.729
p11 = 0.5 1.44 2.17 2.53 2.53 3.03 3.28 0 0.944
p11 = 0.4 1.67 2.43 2.69 2.69 3.19 3.49 0 1.17
p11 = 0.3 1.189 2.66 2.82 2.82 3.32 3.67 0 1.39
p11 = 0.2 2.11 2.83 2.92 2.92 3.42 3.82 0 1.61
p11 = 0.1 2.31 2.94 2.98 2.98 3.48 3.93 0 1.81
p11 = 0 2.5 3 3 3 3.5 4 0 2

Table 7: The expected queue length of Q2 at the beginning of period P ∈
{V1a, V1b, S1a, S1b, V2a, V2b, S2a, S2b} under exhaustive service.

and Q2 respectively. As expected the expected queue length of Q1 is higher (or
equal) at the start of a subperiod a than the subsequent subperiod b. As, during
subperiod a, the customers in Q1 will leave the queue with probability 1−p11 to
join Q2. Similarly, for Q2 the expected queue length is higher (or equal) at the
start of a subperiod b than the previous subperiod a. We further note that the
sum of the expected queue lengths over both queues at the beginning of period
a is equal to the sum of the expected queue lengths over both queues at the
beginning of period b, thus we conclude that the system behaves as expected.

We can compare these results with the expected queue length at the be-
ginning of period P ∈ {V1a, V1b, S1a, S1b, V2a, V2b, S2a, S2b} under gated service
seen in Table 8 and 9. We note that when p11 = 0, the expected queue length
at the beginning of the periods for Q1 is the same under exhaustive service and
gated service, as all customers leave Q1 before service. We further note that the
system also behaves as expected for gated service.

During simulation vehicles will be assigned to a signal group and correspond-
ing queue. It might only become apparent that a vehicle is in another queue,
when new information on the position of the vehicle becomes available through
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V1a V1b S1a S1b V2a V2b S2a S2b

p11 = 1 3 3 1 1 1.5 1.5 2.5 2.5
p11 = 0.9 2.57 2.32 0.772 0.695 1.19 1.08 2.3 2.07
p11 = 0.8 2.25 1.8 0.599 0.479 0.979 0.784 2.18 1.75
p11 = 0.7 1.98 1.39 0.462 0.323 0.823 0.576 2.11 1.48
p11 = 0.6 1.75 1.05 0.349 0.21 0.71 0.426 2.08 1.25
p11 = 0.5 1.53 0.765 0.255 0.127 0.627 0.314 2.06 1.03
p11 = 0.4 1.32 0.528 0.176 0.0704 0.57 0.228 2.05 0.821
p11 = 0.3 1.11 0.334 0.111 0.0334 0.533 0.16 2.05 0.615
p11 = 0.2 0.908 0.182 0.0606 0.0121 0.512 0.102 2.04 0.408
p11 = 0.1 0.703 0.0703 0.0234 0.00234 0.502 0.0502 2.03 0.203
p11 = 0 0.5 0 0 0 0.5 0 2 0

Table 8: The expected queue length of Q1 at the beginning of period P ∈
{V1a, V1b, S1a, S1b, V2a, V2b, S2a, S2b} under gated service.

V1a V1b S1a S1b V2a V2b S2a S2b

p11 = 1 1.5 1.5 2.5 2.5 3 3 1 1
p11 = 0.9 1.96 2.22 2.99 3.06 3.56 3.68 1.23 1.46
p11 = 0.8 2.34 2.79 3.39 3.51 4.01 4.2 1.4 1.84
p11 = 0.7 2.67 3.27 3.73 3.87 4.37 4.61 1.54 2.17
p11 = 0.6 2.98 3.68 4.03 4.17 4.67 4.95 1.65 2.48
p11 = 0.5 3.27 4.04 4.29 4.42 4.92 5.24 1.75 2.77
p11 = 0.4 3.56 4.35 4.52 4.63 5.13 5.47 1.82 3.06
p11 = 0.3 3.82 4.6 4.71 4.79 5.29 5.67 1.89 3.32
p11 = 0.2 4.07 4.8 4.86 4.91 5.41 5.82 1.94 3.57
p11 = 0.1 4.3 4.93 4.96 4.98 5.48 5.93 1.98 3.8
p11 = 0 4.5 5 5 5 5.5 6 2 4

Table 9: The expected queue length of Q2 at the beginning of period P ∈
{V1a, V1b, S1a, S1b, V2a, V2b, S2a, S2b} under gated service.

vehicles passing the detector near the stop line. As the detector may register
fewer or more vehicles passing. This information only becomes available during
period V1b or V2b. Smart Traffic will predict the traffic image and calculate
the schedule based on information available prior to V1b or V2b. In the most
extreme case p11 = 0, all vehicles will leave Q1, and thus signal group 1, to join
Q2, and thus signal group 2. In this case Smart Traffic will sometimes assume
the presence of some vehicles at signal group 1, as the expected queue length of
Q1 is 0.5 at the start of a visit period. The schedule calculated will then assign
a non-zero green time to signal group 1, whereas the optimal schedule would
assign no green time to signal group 1. For situations in which p11 is higher
than 0, but unequal to 1, this also occurs to a lesser extent and the signal may
stay green longer than optimal.

In the situation posed we only consider a two-queue polling system with
cyclic routing. In Smart Traffic the routing is not cyclic, but is determined
by calculating the most optimal scheme. The lack of information or incorrect
information may thus not only lead to a signal having the non-optimal green
time, but also to the incorrect or non-optimal signal receiving green time.
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7 Conclusion and discussion

In this thesis we presented a discrete event model to predict traffic at a signalised
intersection, as a replacement of microsimulation model SUMO used in the
Forecasting module of Smart Traffic. The SUMO model currently used by
Sweco is not suitable for the objective of Sweco to predict traffic over a longer
period of time for a network of junctions due to its slow computation speed and
complexity.

The performance of the model was measured by comparing it to the mi-
crosimulation traffic flow model Vissim. We found a maximum average absolute
difference in delay between our discrete event model and the Vissim model per
road user of 1.5 seconds.

The accuracy of the model is determined by two main components: the
arrival at queue time and the chosen parameter values. The arrival at queue time
is the predicted time at which a road user arrives at the queue. It is calculated
during initialisation, by dividing the maximum distance a road user is required
to travel and dividing this by the maximum speed. The maximum distance a
road user is required to travel is assumed to be the position of the road user
minus the total length (and gaps) of the road users ahead. We considered several
other options for calculating the arrival at queue time, e.g. dividing by the speed
of the road user at the beginning of the simulation rather than the maximum
speed and using only the position of the road user. The chosen calculation of the
arrival at queue time gave the best results during simulation. However, other
more accurate calculations may be available. Due to time constraints and the
possibility of overfitting, as we only consider one type of junction, we did not
study this further.

We use data from Vissim to determine the parameters of the model. If we
were to implement our discrete event model at a real junction, these parameters
will have to be determined using real-life data from the junction. Traffic may
behave very differently in different countries or cities and under different circum-
stances, such as weather conditions. If the model is not sufficiently calibrated
to the real-life situation, the difference between the calculated the delay and
the real-life delay may be much larger than the average 1.5 seconds found. The
current parameter values are static, however it may be beneficial to investigate
methods to adapt the parameter values based on real-time feedback.

In Section 4 we discussed the results of our discrete event simulation. One
of the assumptions we made was that the signal group to which a road user gets
assigned is known. However, one of the challenges of Smart Traffic is precisely
the lack of knowledge on the vehicle routing. We described and studied the
effect of this lack of knowledge in Sections 5 and 6, by modelling a signalised
intersection as a polling model with switching customers, and concluded that
it may lead to a non-optimal schedule. Currently, the simulation in SUMO
chooses the vehicle routing based on the link a road user is located at, with
every outgoing link having a predetermined chance of being reached. In our
discrete event model we make use of an array of probabilities. In this way the
vehicle routing is an attribute of the road user, rather than an attribute of
the road. This makes it possible to include additional (historic) information to
determine the vehicle routing, such as previous locations of the road user and
public transport timetables. Furthermore, the discrete event model presented
is fast, which makes it possible to perform multiple runs and average over the
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results.
The discrete event model presented in this thesis is easily extendable to

include multiple junctions. Furthermore, it is less computationally expensive,
more scalable and faster than SUMO, with an average runtime of maximal 1.416
seconds, and thus suitable to the objective of Sweco.
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A Appendix: Code

A.1 Discrete event simulation

A.1.1 Simulation files

The Road User class.

1 package swecobasicmodelextended;
2

3 public class Road_User {
4 /* Integer denoting the id number of the road_user */
5 protected int id;
6 /* Double denoting the arrival time of the road user */
7 protected double arrivalTime;
8 /* Double denoting the departure time of the road user */
9 protected double departureTime;

10 /* Double denoting the length of the road user */
11 protected double length; //
12 /* String denoting the type of the road user */
13 protected String type;
14 /* String denoting the arrival place */
15 protected String arrivalPlace;
16 /* Double denoting the postion of the road user from the

stop line in meters */
17 protected double position;
18 /* Array of probabilities for determining the signal group

*/
19 protected double[] probabilities;
20 /* Double denoting the speed of the road user */
21 protected double speed;
22 /* Double denoting the service time of the first vehicle */
23 protected double serviceTimeFirstVehicle;
24 /* Double denoting the service time */
25 protected double serviceTime;
26 /* Boolean indicating whether the road user has left the

system */
27 protected boolean leftSystem;
28 /* Boolean indication whether the road user is in the queue

*/
29 protected boolean inQueue;
30 /* Integer denoting the number of stops */
31 protected int nrStops;
32 /* Integer denoting the number in line */
33 protected int nrInLine;
34 /* Double denoting the desired speed of the road user (in

Vissim) */
35 protected double desSpeed;
36

37

38 public Road_User(int id, double arrivalTime, double length,
String type, String arrivalPlace, double position,

double[] probabilities, double speed, double desSpeed,
int nrInLine){

39 this.id = id;
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40 this.arrivalTime = arrivalTime;
41 this.departureTime = 0;
42 this.length = length;
43 this.type = type;
44 this.leftSystem = false;
45 this.inQueue = false;
46 this.arrivalPlace = arrivalPlace;
47 this.position = position;
48 this.probabilities = probabilities;
49 this.speed = speed;
50 this.nrStops = 0;
51 this.nrInLine = 0;
52 this.serviceTime = 0;
53 this.desSpeed = desSpeed;
54 this.nrInLine = nrInLine;
55 }
56 public int getId(){ //Returns id number
57 return id;
58 }
59 public double getArrivalTime() {//Returns arrival time
60 return arrivalTime;
61 }
62 public double getDepartureTime(){ //Returns the departure

time
63 return departureTime;
64 }
65 public double getLength() {//Returns length
66 return length;
67 }
68 public String getType(){//Returns type
69 return type;
70 }
71 public String getArrivalPlace(){ // Returns arrivalplace
72 return arrivalPlace;
73 }
74 public double getPosition(){ // Returns position
75 return position;
76 }
77 public double[] getProb(){ // Returns probability array
78 return probabilities;
79 }
80 public double getSpeed(){ // Returns speed
81 return speed;
82 }
83 public double getServiceTime(){ // Returns the service time
84 switch (nrInLine) {
85 case 1:
86 if (null != type)switch (type) { //Determine (

residual)serviceTime based on type and
nrInLine

87 case "PASSENGER":
88 this.serviceTime = 1.10566;
89 break;
90 case "TRUCK":
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91 this.serviceTime = 1.164;
92 break;
93 } break;
94 case 2:
95 if (null != type)switch (type) { //Determine (

residual)serviceTime based on type and
nrInLine

96 case "PASSENGER":
97 this.serviceTime = 2.718868;
98 break;
99 case "TRUCK":

100 this.serviceTime = 3.845;
101 break;
102 } break;
103 case 3:
104 if (null != type)switch (type) { //Determine (

residual)serviceTime based on type and
nrInLine

105 case "PASSENGER":
106 this.serviceTime = 2.10566;
107 break;
108 case "TRUCK":
109 this.serviceTime = 2.84;
110 break;
111 } break;
112 case 4:
113 if (null != type)switch (type) { //Determine (

residual)serviceTime based on type and
nrInLine

114 case "PASSENGER":
115 this.serviceTime = 1.840566;
116 break;
117 case "TRUCK":
118 this.serviceTime = 2.556;
119 break;
120 } break;
121 case 5:
122 if (null != type)switch (type) { //Determine (

residual)serviceTime based on type and
nrInLine

123 case "PASSENGER":
124 this.serviceTime = 1.835849;
125 break;
126 case "TRUCK":
127 this.serviceTime = 2.529;
128 break;
129 } break;
130 case 6:
131 if (null != type)switch (type) { //Determine (

residual)serviceTime based on type and
nrInLine

132 case "PASSENGER":
133 this.serviceTime = 1.726415;
134 break;
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135 case "TRUCK":
136 this.serviceTime = 2.377;
137 break;
138 } break;
139 case 7:
140 if (null != type)switch (type) { //Determine (

residual)serviceTime based on type and
nrInLine

141 case "PASSENGER":
142 this.serviceTime = 1.711321;
143 break;
144 case "TRUCK":
145 this.serviceTime = 2.354;
146 break;
147 } break;
148 default: //Vehicles after 7
149 if (null != type)switch (type) { //Determine (

residual)serviceTime based on type and
nrInLine

150 case "PASSENGER":
151 this.serviceTime = 1.674528;
152 break;
153 case "TRUCK":
154 this.serviceTime = 2.286;
155 break;
156 } break;
157 }
158 return serviceTime;
159 }
160

161 public void updatePosition(double d){ // Updates position
to input value

162 position = d;
163 }
164 public void leaveSystem(double t){ //Sets departure time to

input value and set boolean leftSystem to true
165 departureTime = t;
166 leftSystem = true;
167 }
168 public boolean hasLeftSystem(){ // Returns leftSystem
169 return leftSystem;
170 }
171 public boolean inQueue(){ // Returns inQueue
172 return inQueue;
173 }
174 public void addStop(){ // Increase nrStops by one
175 nrStops += 1;
176 }
177 public int getNrStops(){ // Returns nrStops
178 return nrStops;
179 }
180 public void nrInLine(int d){ // Sets the number in line
181 nrInLine = d;
182 }
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183 public int getNrInLine(){ // Returns the number in line
184 return nrInLine;
185 }
186

187 public double getDesSpeed(){ // Returns the desired speed
188 return desSpeed;
189 }
190 }

The Signal Group class.

1 package swecobasicmodelextended;
2

3 import java.util.ArrayList;
4

5 public class Signal_Group {
6 /* Traffic light colours */
7 public static final int RED = 1;
8 public static final int AMBER = 2;
9 public static final int GREEN = 3;

10 /* Double denoting the distance in meter between two road
users waiting in the queue */

11 public static double gap = 2;
12 /* Integer indentifing the signal group */
13 protected int identifier;
14 /* Double denoting the travel time from arrival in the

system to arrival at the traffic light of the signal
group */

15 protected double length;
16 /* Double denoting the maximum speed on the lane associated

with the signal group */
17 protected double maxSpeed;
18 /* Integer denoting the colour of the traffic light */
19 protected int trafficLightColour;
20 /* List of road users associated with signal group */
21 protected ArrayList<Road_User> road_users;
22 /* List of road users in the queue */
23 protected ArrayList<Road_User> road_users_in_queue;
24 /* Doubles denoting the size of the queue in meter and the

distance (in meter) from the trafficlight to the front
and back of the queue */

25 protected double queueLengthInMeter;
26 protected double frontOfQueue;
27 protected double backOfQueue;
28 /* Boolean idicating whether the signal group has a queue

at initialisation */
29 protected boolean hasQueue;
30 /* Boolean idicating whether a road user has been below the

speed boundary (departure boundary) */
31 protected boolean checked;
32

33 public Signal_Group(int identifier, double length, double
maxSpeed){

34 this.identifier = identifier;
35 this.length = length;
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36 this.trafficLightColour = RED;
37 this.road_users = new ArrayList<>();
38 this.road_users_in_queue = new ArrayList<>();
39 this.queueLengthInMeter = 0;
40 this.frontOfQueue = 0;
41 this.backOfQueue = 0;
42 this.maxSpeed = maxSpeed;
43 this.hasQueue = false;
44 this.checked = false;
45 }
46 public int getIdentifier(){ // Returns the identifier
47 return identifier;
48 }
49 public int trafficLightColour() { //Returns the current

traffic light colour
50 return trafficLightColour;
51 }
52 public void changeTrafficLightColour(int

newTrafficLightColour){ //Changes the traffic light
colour to the new traffic light colour

53 trafficLightColour = newTrafficLightColour;
54 }
55 public double getLength(){ //Returns the travel time
56 return length;
57 }
58 public double maxSpeed(){ //Returns the maximum speed on

the lane
59 return maxSpeed;
60 }
61 public void addRoadUser(Road_User ru){//Add road user to

the signal groups
62 road_users.add(ru);
63 }
64 public int nrRoadUsers(){ // Returns the number of road

users associated with the signal group
65 return road_users.size();
66 }
67 public Road_User getRoadUser(int i){ // Returns the i’th

road user
68 return road_users.get(i);
69 }
70 public void addRoadUserToQueue(Road_User ru) { //Add road

user to queue
71 road_users_in_queue.add(ru); // Add the road user to

the queue
72 ru.inQueue = true; // Set inQeueu of the road user to

true
73 backOfQueue += ru.getLength() + gap; //Update position

of the back of queue
74 queueLengthInMeter += ru.getLength() + gap; //Update

length of the queue
75 }
76 public void removeRoadUserFromQueue(Road_User ru) { //

Remove road user from queue
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77 road_users_in_queue.remove(ru); //Removes the road user
from the queue

78 ru.inQueue = false; // Set inQeueu of the road user to
false

79 frontOfQueue += ru.getLength() + gap; //Update position
of the front of queue

80 queueLengthInMeter -= ru.getLength() + gap;//Update
length of the queue

81 }
82 public Road_User getNextRoadUserInQueue(){// Returns the

road user in front of the queue
83 return road_users_in_queue.get(0);
84 }
85 public Road_User getRoadUserInQueue(int i){// Returns the i

’th road user in the queue
86 return road_users_in_queue.get(i);
87 }
88 public Road_User getLastRoadUserInQueue(){// Returns the

road user in front of the queue
89 return road_users_in_queue.get(road_users_in_queue.size

() - 1);
90 }
91 public int queueLength() { // Returns the queue length
92 return road_users_in_queue.size();
93 }
94 public void reset(){ // Reset
95 road_users.clear(); // Empty array with road users
96 road_users_in_queue.clear(); // Empty array with road

users in queue
97 queueLengthInMeter = 0; // Set queuelength in meter to

zero
98 frontOfQueue = 0; // Set position of front of the queue

to zero
99 backOfQueue = 0; // Set position of back of the queue

to zero
100 hasQueue = false; // Set hasQueue to false
101 checked = false; // Set checked to false
102 }
103 public void resetQueue(){ // Sets the position of the back

of the queue to the queuelength in meter and the
position of the front of the queue to zero

104 backOfQueue = queueLengthInMeter;
105 frontOfQueue = 0;
106 }
107 public double getBackOfQueue(){ //Returns the position of

the back of the queue
108 return backOfQueue;
109 }
110

111 public void updateQueue(double q, double l){ // Update
position of the front and back of the queue

112 frontOfQueue = q;
113 backOfQueue = q + l;
114 }
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115 void hasQueue() { // Set hasQueue to true
116 hasQueue = true;
117 }
118 void checked(){ // Set checked to true
119 checked = true;
120 }
121 public boolean getHasQueue() { // Return hasQueue
122 return hasQueue;
123 }
124 public boolean getChecked(){ // Return checked
125 return checked;
126 }
127

128 }

The Event class.

1 package swecobasicmodelextended;
2

3 public class Event {
4 /* Events */
5 /* Arrival and depature events */
6 public static final int ARRIVAL_AT_QUEUE = 1;
7 public static final int DEPARTURE_FROM_QUEUE = 2;
8 /* Trafficlight events */
9 public static final int TRAFFICLIGHT_TO_RED = 3;

10 public static final int TRAFFICLIGHT_TO_AMBER = 4;
11 public static final int TRAFFICLIGHT_TO_GREEN = 5;
12 /* Stop simulation event */
13 public static final int STOP_SIMULATION = 6;
14 /* Register result event */
15 public static final int REGISTER_RESULTS = 7;
16

17 /* Event type */
18 protected int type;
19 /* Event time */
20 protected double time;
21 /* Signal group associated with event*/
22 protected Signal_Group signal_group;
23 /* Road user associated with event*/
24 protected Road_User road_user;
25

26

27 public Event(int type, double time, Signal_Group
signal_group, Road_User road_user) {

28 this.type = type;
29 this.time = time;
30 this.signal_group = signal_group;
31 this.road_user = road_user;
32 }
33 public int getType() {//Returns type
34 return type;
35 }
36 public double getTime() {//Returns time
37 return time;
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38 }
39 public Signal_Group getSignalGroup(){//Returns signal group
40 return signal_group;
41 }
42 public Road_User getRoadUser() {//Returns road user
43 return road_user;
44 }
45

46 }

The FES class.

1 package swecobasicmodelextended;
2

3 import java.util.ArrayList;
4

5 // Future event set
6 public class FES {
7 /* ArrayList of events */
8 protected ArrayList<Event> events;
9

10 public FES() {
11 events = new ArrayList<Event>();
12 }
13

14 public void addEvent(Event newEvent) { //Add event to
arrayList of events

15 int insertIndex = 0;
16 while (insertIndex < events.size()) {
17 Event e = events.get(insertIndex);
18 if (e.getTime() > newEvent.getTime()) break;
19 insertIndex++;
20 }
21 events.add(insertIndex, newEvent);
22 }
23 public Event nextEvent() { //Returns first event (in time)
24 return events.remove(0);
25 }
26

27 }

The SimResults class.

1 package swecobasicmodelextended;
2

3 public class SimResults {
4 /* Performance measures per signal group */
5 protected double[] sumS; // sum of the sojourn times
6 protected double[] totalDelay; // sum of total delay
7 protected double[] totalSquaredDelay; // sum of total

squared delay
8 protected int[] nrTotalStops; // sum of the total number of

stops
9
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10 protected double totalCompare; // Total comparison of delay
(between our model and vissim model)

11 protected double totalPosCompare; // Total comparison of
absolute delay (between our model and vissim model)

12

13 protected double[] totDelayPTS; // Total comparison of
delay (between our model and vissim model) per timestamp

14 protected double[] totPosDelayPTS; // Total comparison of
absolute delay (between our model and vissim model) per
timestamp

15

16 protected double totalComparePerRU; // Total comparison of
delay (between our model and vissim model) per road user

17 protected double totalAbsoluteComparePerRU; // Total
comparison of absolute delay (between our model and
vissim model) per road user

18

19 protected double averageDepTime; // Average departure time
20 protected double nrRu; // Number of road users
21

22 public SimResults(int nrSignalGroups) {
23 this.sumS = new double[nrSignalGroups+1] ;
24 this.totalDelay = new double[nrSignalGroups+1];
25 this.totalSquaredDelay = new double[nrSignalGroups+1];
26 this.nrTotalStops = new int[nrSignalGroups+1];
27 this.totalCompare = 0;
28 this.totalPosCompare = 0;
29 this.totDelayPTS = new double[26];
30 this.totPosDelayPTS = new double[26];
31 this.totalComparePerRU = 0;
32 this.totalAbsoluteComparePerRU = 0;
33 this.averageDepTime = 0;
34 this.nrRu = 0;
35 }
36 void registerSojournTime(double sojournTime, Signal_Group

sg) { //Registers the sojourn time
37 sumS[sg.getIdentifier()] += sojournTime;
38 }
39 void registerDelay(double delay, Signal_Group sg){ //

Registers the total delay and total squared delay
40 totalDelay[sg.getIdentifier()] += delay;
41 totalSquaredDelay[sg.getIdentifier()] += delay*delay;
42 }
43 void registerNrStops(int nrStops, Signal_Group sg) { //

Registers the total number of stops
44 nrTotalStops[sg.getIdentifier()] += nrStops;
45 }
46 public double[] getSojournTime(){//Returns sojourn time
47 return sumS;
48 }
49 public double[] getTotalDelay(){//Returns total delay
50 return totalDelay;
51 }
52 public double[] getTotalSquaredDelay(){//Returns total
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squared delay
53 return totalSquaredDelay;
54 }
55 public int[] getTotalNrStops(){ //Returns the total number

of stops
56 return nrTotalStops;
57 }
58 void registerAbsoluteComparison(double tpc) {// Register

total comparison of absolute delay (between our model
and vissim model)

59 totalPosCompare = tpc;
60 }
61 void registerComparison(double tc) {// Register total

comparison of delay (between our model and vissim model)
62 totalCompare = tc;
63 }
64 public double getTotalComparision(){ // Get total

comparison of delay (between our model and vissim model)
65 return totalCompare;
66 }
67 public double getTotalPosComparision(){ // Get total

comparison of absolute delay (between our model and
vissim model)

68 return totalPosCompare;
69 }
70 void registerComparisonPerTimestamp(int f, double

compareTotalDelay) { // Register total comparison of
delay (between our model and vissim model) per timestamp

71 totDelayPTS[f] = compareTotalDelay;
72 }
73 public double[] getTotDelayPTS(){ // Get total comparison

of delay (between our model and vissim model) per
timestamp

74 return totDelayPTS;
75 }
76 void registerAbsoluteComparisonPerTimestamp(int f, double

compareTotalPosDelay) { // Register total absolute
comparison of delay (between our model and vissim model)
per timestamp

77 totPosDelayPTS[f] = compareTotalPosDelay;
78 }
79 public double[] getTotPosDelayPTS(){ // Get total absolute

comparison of delay (between our model and vissim model)
per timestamp

80 return totPosDelayPTS;
81 }
82

83 void registerComparisonPerRU(double compareTotalFinalDelay,
int nrRU) { // Register total comparison of delay (

between our model and vissim model) per road user
84 totalComparePerRU = compareTotalFinalDelay / nrRU;
85 }
86 public double getComparisonPerRU(){ // Get total comparison

of delay (between our model and vissim model) per road
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user
87 return totalComparePerRU;
88 }
89 void registerAbsoluteComparisonPerRU(double

compareTotalFinalAbsoluteDelay, int nrRU) { // Register
total comparison of absolute delay (between our model and
vissim model) per road user

90 totalAbsoluteComparePerRU =
compareTotalFinalAbsoluteDelay / nrRU;

91 }
92 public double getAbsoluteComparisonPerRU(){ // Get total

comparison of absolute delay (between our model and
vissim model) per road user

93 return totalAbsoluteComparePerRU;
94 }
95

96 void registerAverageDepTime(double depTime){ // Register
average departure time

97 averageDepTime = depTime;
98 }
99 public double getAverageDepTime (){ // Get average

departure time
100 return averageDepTime;
101 }
102

103 void registerNrRU(double nrRU){ // Register number of road
users

104 nrRu = nrRU;
105 }
106 public double getNrRu(){ // Get number of road users
107 return nrRu;
108 }
109

110 }

The Sim class.

1 package swecobasicmodelextended;
2

3 import java.io.File;
4 import java.io.FileNotFoundException;
5 import java.io.PrintWriter;
6 import java.util.*;
7 import java.util.Map.Entry;
8

9 /**
10 *
11 * @author Imke Vromans
12 */
13 public class Sim {
14

15 public SimResults simulate(double startTime, double maxTime
, int nrTimestamps, Map<String, List<Integer>> junction,
Map<Integer, List<Signal_Group>> sgMap, String module,

String road_users, Map<Integer, Double> finalDelayMap,
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Map<Integer, Map<Double, Double>> delayMap) throws
FileNotFoundException {

16 PrintWriter pw = new PrintWriter(new File("Output.txt")
); // Write output to file

17

18 FES fes = new FES(); // Create new future event set
19 int nrSignalGroups = sgMap.size(); // Total number of

signal groups
20 SimResults results = new SimResults(nrSignalGroups); //

Create new simresults
21

22 // Initialize traffic light colour and create
trafficLight events

23 importTrafficLightEvents(startTime, fes, sgMap, module)
;

24

25 // Import all road users
26 importRoadUsers(startTime, fes, junction, sgMap,

road_users);
27

28 double t = startTime; // Initialize time
29

30 // The current output file from SUMO has for all
signalgroups the vehicles and the delay and stops at
timeStamps t=0 to t=25;

31 // So to store the output in the same way we need to
register the delay at every time stamp, for this we
create an event REGISTER_RESULTS

32 int f = 0;
33 for (int i = 0; i < nrTimestamps; i++) {
34 Event RegisterResults = new Event(Event.

REGISTER_RESULTS, startTime + i, null, null);
35 fes.addEvent(RegisterResults);
36 }
37

38 // Schedule the stop simulation event
39 // (this event prevents the simulation from continuing

beyond the desired time horizon and prevents the
program from ending due to an empty FES)

40 Event StopSimulation = new Event(Event.STOP_SIMULATION,
maxTime, null, null);

41 fes.addEvent(StopSimulation);
42

43 // Start simulation loop
44 while (t < maxTime) {
45 Event e = fes.nextEvent();// Get the next event
46 t = e.getTime();// Update the time
47

48 switch (e.getType()) {
49 case Event.ARRIVAL_AT_QUEUE: {
50 Signal_Group sg = e.getSignalGroup();// Get

signal group associated with event
51 Road_User ru = e.getRoadUser(); // Get the

road user
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52 if (((sg.trafficLightColour() ==
Signal_Group.GREEN || (sg.
trafficLightColour() == Signal_Group.
AMBER)) && sg.queueLength() == 0)) {//
If the traffic light is green or amber
and there are no road users in the queue
: Directly drive through (do not add
road user to queue)

53 ru.leaveSystem(t); //Registers
departure time

54 } else if (sg.trafficLightColour() ==
Signal_Group.RED && sg.queueLength() ==
0) { //If the traffic light is red and
there isnt a queue

55 ru.updatePosition(0); // Update current
position of road user

56 ru.nrInLine(1); // Update the position
of the road user in nr of vehicles
in line

57 sg.addRoadUserToQueue(ru);// Add road
user to queue

58 ru.addStop(); // Add stop
59 } else { // If the traffic light is red and

there is a queue
60 ru.updatePosition(sg.getBackOfQueue());

// Update current position of road
user

61 Road_User priorRU = sg.
getLastRoadUserInQueue(); // Get
last road user in queue

62 ru.nrInLine(priorRU.nrInLine + 1); //
Update the position of the road user
in nr of vehicles in line

63 sg.addRoadUserToQueue(ru); // Add road
user to queue

64 ru.addStop(); //Add stop
65 }
66 break;
67 }
68

69 case Event.DEPARTURE_FROM_QUEUE: {
70 Signal_Group sg = e.getSignalGroup(); //

Get signal group associated with event
71 if ((sg.trafficLightColour() ==

Signal_Group.GREEN) || (sg.
trafficLightColour() == Signal_Group.
AMBER)) { //If the traffic light is
green or amber:

72 Road_User ru = e.getRoadUser(); // Get
the road user

73 sg.removeRoadUserFromQueue(ru);//
Remove road user from the queue

74 ru.leaveSystem(t); //Registers
departure time
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75 if (sg.queueLength() > 0) {
76 //If there are still road users in

the queue:
77 Road_User nextRu = sg.

getNextRoadUserInQueue(); //
Get next road user in the queue

78 //Schedule departure for next road
user

79 Event newDepartureFromQueue = new
Event(Event.DEPARTURE_FROM_QUEUE
, t + nextRu.getServiceTime(),
sg, nextRu);

80 fes.addEvent(newDepartureFromQueue)
;

81 } else {
82 sg.resetQueue(); //Else if

queueLength = 0, then the front
and back of the queue get set to
0 again

83 }
84 } else { // If the traffic light is red
85 //Add extra stop to all road users in

queue, since the traffic light will
have turned red before they could
pass the intersection

86 int position = 0;
87 for (int i = 0; i < sg.queueLength(); i

++) {
88 Road_User ru_i_q = sg.

getRoadUserInQueue(i); // Get i’
th road user in the queue

89 ru_i_q.updatePosition(position); //
Update position of road user

90 ru_i_q.nrInLine(i + 1); // Update
the position of the road user in
nr of vehicles in line

91 ru_i_q.addStop(); // Add stop
92 position += ru_i_q.getLength() +

Signal_Group.gap; // Update
value of position to be used for
road user in queue

93 }
94 }
95 break;
96 }
97

98 case Event.TRAFFICLIGHT_TO_RED: {
99 Signal_Group sg = e.getSignalGroup(); //

Get signal group associated with event
100 // Change traffic light to red for signal

group associated with event
101 sg.changeTrafficLightColour(Signal_Group.

RED);
102 sg.resetQueue(); // Reset the position of
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the front and back of queue
103 break;
104 }
105

106 case Event.TRAFFICLIGHT_TO_AMBER: {
107 Signal_Group sg = e.getSignalGroup(); //

Get signal group associated with event
108 // Change traffic light to amber for signal

group associated with event
109 sg.changeTrafficLightColour(Signal_Group.

AMBER);
110 break;
111 }
112

113 case Event.TRAFFICLIGHT_TO_GREEN: {
114 Signal_Group sg = e.getSignalGroup(); //

Get signal group associated with event
115 //Change traffic light to red for signal

group associated with event
116 sg.changeTrafficLightColour(Signal_Group.

GREEN);
117 if (sg.queueLength() > 0) { // If there are

road users waiting in the queue in
front of the trafficlight

118 Road_User nextRu = sg.
getNextRoadUserInQueue(); // Get the
first road user in the queue (the

road user in front of the queue)
119 //Schedule a departure from queue event

for this road user
120 Event newDepartureFromQueue = new Event

(Event.DEPARTURE_FROM_QUEUE, t +
nextRu.getServiceTime(), sg, nextRu)
;

121 fes.addEvent(newDepartureFromQueue);
122 }
123 break;
124 }
125 case Event.REGISTER_RESULTS:
126 double compareTotalDelay = 0;
127 double compareTotalAbsoluteDelay = 0;
128

129 pw.println("Timestamp " + (t-startTime));
130 for (Entry<Integer, List<Signal_Group>>

entry : sgMap.entrySet()) { // For every
signal group

131 List<Signal_Group> sgList = entry.
getValue();

132 pw.println("Signal group " + entry.
getKey());

133 for (Signal_Group sg : sgList) {
134 for (int k = 0; k < sg.nrRoadUsers

(); k++) { // For every road
user in the signal group
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135 Road_User ru = sg.getRoadUser(k
); //Get the road user

136 double delay;
137 double sojournTime;
138 double minTravelTime;
139 if (ru.hasLeftSystem()) { // If

the road user has left the
system

140 sojournTime = ru.
getDepartureTime() - ru.
getArrivalTime(); //
Calculate sojourn time

141 minTravelTime = sg.
getLength() / ru.
getDesSpeed(); //
Calculate minimum travel
time based on the total
length of the lane

142 delay = Math.max(0,
sojournTime -
minTravelTime); //
Calculate delay

143 } else { // If the road user is
still in the system

144 //Calculate delay using
time t

145 if (ru.inQueue()) { // If
the road user is in the
queue

146 sojournTime = t - ru.
getArrivalTime(); //
Calculate sojourn
time

147 minTravelTime = (sg.
getLength() - ru.
getPosition()) / ru.
getDesSpeed();///
Calculate minimum
travel time

148 delay = Math.max(0,
sojournTime -
minTravelTime); //
Calculate delay

149 } else { // If the road
user is not in the queue

150 // Separate into two
sections, from the
arrival time to the
start time and from
the start time to
the current time

151 // The delay from the
arrival time to the
start time is known

74



exactly
152 double sojournTimeATS =

startTime - ru.
getArrivalTime(); //
Calculate sojourn
time from arrival to
start

153 double distanceFromATS
= sg.getLength() -
ru.getPosition(); //
Calculate distance
from arrival to
start

154 double minTravelTimeATS
= distanceFromATS/
ru.getDesSpeed(); //
Calculate minimum
travel time from
arrival to start

155 double delayATS =
sojournTimeATS -
minTravelTimeATS; //
Calculate delay
from arrival to
start

156 // Calculate delay from
start time to
current time

157 double sojournTimeSTC =
t - startTime; //
Calculate sojourn
time start to t

158 double distanceFromSTC
= sojournTimeSTC *
ru.getSpeed(); //
Estimate the
distance the vehicle
has travelled from
start to t

159 double minTravelTimeSTC
= distanceFromSTC /
ru.getDesSpeed();
// Calculate minimum
travel time from
start to t

160 double delaySTC =
sojournTimeSTC -
minTravelTimeSTC; //
Calculate delay
from start to t

161 //Calculate total delay
162 delay = Math.max(0,

delayATS + delaySTC)
;
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163 }
164 }
165 double compareDelay = delay -

delayMap.get(ru.getId()).get
(t); // Compare calculated
delay to vissim delay

166 double compareAbsoluteDelay =
Math.abs(compareDelay); //
Compare calculated delay to
vissim delay in absolute
difference

167 compareTotalDelay =
compareTotalDelay +
compareDelay; // Sum the
difference between
calculated delay and vissim
delay

168 compareTotalAbsoluteDelay =
compareTotalAbsoluteDelay +
compareAbsoluteDelay; // Sum
the absolute difference

between calculated delay and
vissim delay

169 //Write delay and nrStops to
output file

170 pw.println("Road user " + ru.
getId() + " Delay " + delay
+ " NrStops " + ru.
getNrStops());

171 }
172 }
173

174 }
175 // Register the total differences between

calculated delay and vissim delay
176 results.registerComparisonPerTimestamp(f,

compareTotalDelay);
177 results.

registerAbsoluteComparisonPerTimestamp(f
, compareTotalAbsoluteDelay);

178 f++;
179 pw.println();
180 default:
181

182 break;
183 }
184

185 }
186 pw.close();
187

188 // After simulation calculate the final delay (after
all vehicles have left the system)

189 double compareTotalFinalDelay = 0; // Compare
difference between calculated delay and vissim delay
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after all vehicle have left the system
190 double compareTotalFinalAbsoluteDelay = 0; // Compare

absolute difference between calculated delay and
vissim delay after all vehicle have left the system

191

192 int nrRU = 0; // Number of road users
193 double depTime = 0; // Departure time
194

195 for (Entry<Integer, List<Signal_Group>> entry : sgMap.
entrySet()) { // For every signal group

196 List<Signal_Group> sgList = entry.getValue();
197 for (Signal_Group sg : sgList) {
198 int nrRUinSG = sg.nrRoadUsers();
199 for (int k = 0; k < sg.nrRoadUsers(); k++) { //

For every road user in the signal group
200 Road_User ru = sg.getRoadUser(k); // get

the road user
201 double sojournTime = ru.getDepartureTime()

- ru.getArrivalTime(); // Calculate
sojourn time

202 double minTT = sg.getLength() / ru.
getDesSpeed(); // Calculate the minimum
travel time

203 double delay = Math.max(0, sojournTime -
minTT); // Calculate the delay

204

205 // Register performance measures
206 //results.registerSojournTime(sojournTime,

sg); // register sojourntime
207 //results.registerDelay(delay, sg); //

register delay
208 //results.registerNrStops(ru.getNrStops(),

sg); // register number of stops
209

210 // Register difference with Vissim
211 double compareDelay = delay - finalDelayMap

.get(ru.getId()); // Compare difference
between calculated delay and vissim
delay

212 double compareAbsoluteDelay = Math.abs(
delay - finalDelayMap.get(ru.getId()));
// Compare absolute difference between

calculated delay and vissim delay
213 compareTotalFinalDelay =

compareTotalFinalDelay + compareDelay;
// Sum the difference between calculated
delay and vissim delay

214 compareTotalFinalAbsoluteDelay =
compareTotalFinalAbsoluteDelay +
compareAbsoluteDelay; // Sum the
absolute difference between calculated
delay and vissim delay

215

216 depTime += ru.getDepartureTime()-startTime;
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// Calculate departure time
217

218 }
219 nrRU = nrRU + nrRUinSG; // Calculate total

number of road users
220 }
221 }
222 // Register results
223 results.registerAverageDepTime(depTime/nrRU);
224 results.registerNrRU(nrRU);
225

226 results.registerComparisonPerRU(compareTotalFinalDelay,
nrRU);

227 results.registerAbsoluteComparisonPerRU(
compareTotalFinalAbsoluteDelay, nrRU);

228

229 results.registerComparison(compareTotalFinalDelay);
230 results.registerAbsoluteComparison(

compareTotalFinalAbsoluteDelay);
231

232 return results;
233 }
234

235 public void importRoadUsers(double startTime, FES fes, Map<
String, List<Integer>> junction, Map<Integer, List<
Signal_Group>> sgMap, String road_users) {

236 // NOTE: the road users need to be in order from
closest to trafficlight to furtherst from traffic
light

237 // (This is necessary since the queue length needs to
be known before we can schedule arrival at queue
events )

238 int ru_id;
239 //Read road users from file
240 try (Scanner sc = new Scanner(new File(road_users))) {
241 sc.useLocale(Locale.US);
242 while (sc.hasNextLine()) {
243 if (sc.hasNextInt()) {
244 ru_id = sc.nextInt();
245 } else {
246 break;
247 }
248 double arrivalTime = sc.nextDouble();
249 double length = sc.nextDouble();
250 String type = sc.next();
251 String arrivalPlace = sc.next();
252 double position = sc.nextDouble();
253 String a = sc.next();
254 String[] ar = a.split(";");
255 double[] prob = new double[ar.length];
256 for (int i = 0; i < ar.length; i++) {
257 prob[i] = Double.parseDouble(ar[i]);
258 }
259 double speed = sc.nextDouble();
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260 double desSpeed = sc.nextDouble();
261 int nrInLine = sc.nextInt();
262

263 // Create road user
264 Road_User ru = new Road_User(ru_id, arrivalTime

, length, type, arrivalPlace, position, prob
, speed, desSpeed, nrInLine);

265

266 //Determine signal group based on arrivalPlace
and probabilities

267 Signal_Group sg = determineSignalGroup(junction
, sgMap, arrivalPlace, prob);

268 // Add road user to the signal group it belongs
to

269 sg.addRoadUser(ru);
270

271 if (speed < 2.777) { //If any of the vehicles
have speed less than 10km/h, we assume there
is a queue

272 sg.hasQueue();
273 }
274 }
275 sc.close();
276 } catch (FileNotFoundException e) {
277 System.out.println("The road_users file " +

road_users + " could not be found");
278 }
279

280 for (Entry<Integer, List<Signal_Group>> entry : sgMap.
entrySet()) { //For every signal group

281 List<Signal_Group> sgList = entry.getValue();
282 for (Signal_Group sg : sgList) {
283 if (sg.getHasQueue()) { // If the signal group

has a queue
284 Road_User ru = sg.getRoadUser(0); // Get

the first road user
285 sg.updateQueue(ru.getPosition(), ru.

getLength());// Update position of the
queue

286 sg.addRoadUserToQueue(ru); //Add user to
the queue

287 ru.addStop(); //Add stop
288 if (ru.getSpeed() < 2.777){
289 sg.checked();
290 }
291 // If the signal group is green then a

schedule departure from queue event for
this road user

292 if (sg.trafficLightColour() == Signal_Group
.GREEN) {

293 Event newDepartureFromQueue = new Event
(Event.DEPARTURE_FROM_QUEUE,
startTime, sg, ru);

294 fes.addEvent(newDepartureFromQueue);
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295 }
296 // For all other road users
297 double lengthOfRu = ru.getLength() +

Signal_Group.gap;
298 for (int i = 1; i < sg.nrRoadUsers(); i++)

{
299 Road_User nextRu = sg.getRoadUser(i);

// Get the road user
300 lengthOfRu += nextRu.getLength() +

Signal_Group.gap;
301 if (!sg.getChecked() || nextRu.getSpeed

() < 1.388) { //Put them in queue if
they are in the queue according to

the speedboundaries
302 if (nextRu.getSpeed() < 2.777){
303 sg.checked();
304 }
305 sg.addRoadUserToQueue(nextRu); //

Add road user to the queue
306 nextRu.nrInLine(ru.getNrInLine() +

i); // Update nrInLine
307 nextRu.addStop(); //Add stop
308 } else { //Else schedule arrivals
309 double arrivalAtQueueTime = (nextRu

.getPosition() - lengthOfRu) /
sg.maxSpeed(); // Calculate
arrival at queue time

310 //Schedule arrival event for this
road user

311 Event newArrivalAtQueue = new Event
(Event.ARRIVAL_AT_QUEUE,
startTime + arrivalAtQueueTime,
sg, nextRu);

312 fes.addEvent(newArrivalAtQueue);
313 }
314

315 }
316 } else { // If there isnt a queue schedule

arrival events for all road users in the sg
317 double lengthOfRu = 0;
318 for (int i = 0; i < sg.nrRoadUsers(); i++)

{
319 Road_User ru = sg.getRoadUser(i); //

Get the road user
320 lengthOfRu = ru.getLength() + sg.gap;
321 double arrivalAtQueueTime = (ru.

getPosition() - lengthOfRu) / sg.
maxSpeed(); // Calculate arrival at
queue time

322 //Schedule arrival event for this road
user

323 Event newArrivalAtQueue = new Event(
Event.ARRIVAL_AT_QUEUE, startTime +
arrivalAtQueueTime, sg, ru);
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324 fes.addEvent(newArrivalAtQueue);
325 }
326 }
327 }
328 }
329 }
330

331 public Signal_Group determineSignalGroup(Map<String, List<
Integer>> junction, Map<Integer, List<Signal_Group>>
sgMap, String arrivalPlace, double[] prob) {

332 Random rng = new Random(); //Random number generator
333 Signal_Group sg = null; //Initialize sg with dummy
334

335 double U = rng.nextDouble();
336 for (int i = 0; i < prob.length; i++) {
337 if (U < prob[i]) { // If U is less than the

probability then go to that signalgroup
338 int id = junction.get(arrivalPlace).get(i); //

Get the identity number of the signal group
339 List<Signal_Group> sgList = sgMap.get(id); //

Get all signal groups with this identity
number

340 sg = sgList.get(0); // Set sg to the first
signal group with this identity number

341 int ql = sg.nrRoadUsers(); // Get the queue
length of this signal group sg

342 for (int j = 1; j < sgList.size(); j++) { //
For all signal groups with the same identity
number

343 Signal_Group newSG = sgList.get(j); //
Compare the queue length

344 int newQL = newSG.nrRoadUsers();
345 if (newQL < ql) { //If the queuelength is

smaller then set sg to this signal group
346 sg = newSG;
347 ql = newQL;
348 }
349

350 }
351 break;
352 }
353 }
354 return sg;
355 }
356

357 public void importTrafficLightEvents(double startTime, FES
fes, Map<Integer, List<Signal_Group>> sgMap, String
module) {

358 double simSec;
359

360 //Import traffic light events
361 try (Scanner sc = new Scanner(new File(module))) {
362 sc.useLocale(Locale.US);
363 while (sc.hasNextLine()) {
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364 if (sc.hasNextDouble()) {
365 simSec = sc.nextDouble();
366 } else {
367 break;
368 }
369 int sg_id = sc.nextInt();
370 String colour = sc.next();
371 if (simSec <= startTime) { //Initialize

trafficLights
372 List<Signal_Group> sgList = sgMap.get(sg_id

); // Get all signal groups with the
same identity number

373 for (Signal_Group sg : sgList) { //
Initialize traffic light colours for all
signal groups

374 switch (colour) {
375 case "green":
376 sg.changeTrafficLightColour(

Signal_Group.GREEN);
377 break;
378 case "amber":
379 sg.changeTrafficLightColour(

Signal_Group.AMBER);
380 break;
381 case "red":
382 sg.changeTrafficLightColour(

Signal_Group.RED);
383 break;
384 }
385 }
386 } else { //Schedule trafficLight events
387 List<Signal_Group> sgList = sgMap.get(sg_id

); // Get all signal groups with the
same identity number

388 for (Signal_Group sg : sgList) { //Schedule
traffic light events for all these

signal groups
389 switch (colour) {
390 case "green":
391 Event newTrafficEventGreen =

new Event(Event.
TRAFFICLIGHT_TO_GREEN,
simSec, sg, null);

392 fes.addEvent(
newTrafficEventGreen);

393 break;
394 case "amber":
395 Event newTrafficEventAmber =

new Event(Event.
TRAFFICLIGHT_TO_AMBER,
simSec, sg, null);

396 fes.addEvent(
newTrafficEventAmber);

397 break;
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398 case "red":
399 Event newTrafficEventRed = new

Event(Event.
TRAFFICLIGHT_TO_RED, simSec,
sg, null);

400 fes.addEvent(newTrafficEventRed
);

401 break;
402 }
403 }
404 }
405 }
406 sc.close();
407 } catch (FileNotFoundException e) {
408 System.out.println("The module file " + module + "

could not be found");
409 }
410 }
411

412 public static void main(String[] args) throws
FileNotFoundException {

413 //long start = System.nanoTime();
414

415 double maxTime = 600; // Maximum time of simulation
416 int nrTimestamps = 26; // Number of time steps
417 int nrSnapshots = 100; // Number of snapshots
418

419 //Read the junction structure from input file
420 String junction_structure = "Junction_Structure.txt";
421 Map<String, List<Integer>> junction = new HashMap<>();

//Maps the arrival place (string) to a list of the
identifiers of possible signal group (which can be
reached from this arrival place)

422 Map<Integer, List<Signal_Group>> sgMap = new HashMap
<>(); //Maps the identifier of the signal group to a
list of signal (sub)groups

423

424 // Create junction
425 try (Scanner sc = new Scanner(new File(

junction_structure))) {
426 sc.useLocale(Locale.US);
427 while (sc.hasNextLine()) {
428 String arrivalPlace = sc.next();
429 List<Integer> list = new ArrayList<>(); //List

with identifiers available from arrivalPlace
430 while (sc.hasNextInt()) {
431 List<Signal_Group> listSG = new ArrayList

<>(); //List of signal (sub)groups
432 //Read from file: int identifier, double

travelTime, double maxSpeed, int
trafficLightColour and nrLanes

433 int id = sc.nextInt();
434 double length = sc.nextDouble();
435 double maxSpeed = sc.nextDouble();

83



436 int nrLanes = sc.nextInt();
437 // Create signal (sub)groups
438 for (int j = 0; j < nrLanes; j++) { //

Create a signal (sub)group for each lane
439 Signal_Group sg = new Signal_Group(id,

length, maxSpeed); //Create signal (
sub)group

440 listSG.add(sg); //Add these to the list
of signal (sub)groups

441 }
442 list.add(id); // Add id to the list of

identifiers available from arrivalPlace
443 sgMap.put(id, listSG); //Map id to the

signal (sub)groups
444 }
445 junction.put(arrivalPlace, list); //Map

arrivalPlace to the list of identifiers
available from arrivalPlace

446 }
447 sc.close();
448 } catch (FileNotFoundException e) {
449 System.out.println("The junction file " +

junction_structure + " could not be found");
450 }
451

452 // Create arrays to store difference between calculated
delay and Vissim delay

453 double[] compareDelay = new double[nrSnapshots];
454 double[] compareAbsoluteDelay = new double[nrSnapshots

];
455 double[][] compareDelayPTS = new double[nrSnapshots][

nrTimestamps];
456 double[] compareTotalDelayPTS = new double[nrTimestamps

];
457 double[][] compareAbsoluteDelayPTS = new double[

nrSnapshots][nrTimestamps];
458 double[] compareAbsoluteTotalDelayPTS = new double[

nrTimestamps];
459

460 double[] compareTotalDelayPTSperRu = new double[
nrTimestamps];

461 double[] compareAbsoluteTotalDelayPTSperRu = new double
[nrTimestamps];

462

463 double[] comparePerRU = new double[nrSnapshots];
464 double[] compareAbsolutePerRU = new double[nrSnapshots

];
465

466 double[] averageDepTime = new double[nrSnapshots];
467 double[] nrRu = new double[nrSnapshots];
468

469 // Run for every snapshot
470 for (int z = 1; z < (nrSnapshots + 1); z++) {
471 String format = String.format("%03d", z);
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472

473 String simSec = "simSec" + format + ".txt";
474 String module = "Module" + format + ".txt";
475 String road_users = "Roadusers" + format + ".txt";
476

477 String finalDelay = "FinalDelay" + format + ".txt";
478 String delays = "Delay" + format + ".txt";
479

480 // Read simSec file
481 double startTime;
482 try (Scanner sc = new Scanner(new File(simSec))) {
483 sc.useLocale(Locale.US);
484 startTime = sc.nextDouble();
485 }
486

487 // Read FinalDelay file
488 // Create map to compare Vissim final delay to

simulated final delay (after all vehicles have
left the system)

489 Map<Integer, Double> finalDelayMap = new HashMap
<>(); // Maps the identifier of the road user to
the delay

490 try (Scanner sc = new Scanner(new File(finalDelay))
) {

491 sc.useLocale(Locale.US);
492 int ru_id;
493 while (sc.hasNextLine()) {
494 if (sc.hasNextInt()) {
495 ru_id = sc.nextInt();
496 } else {
497 break;
498 }
499 double delayVis = sc.nextDouble();
500 finalDelayMap.put(ru_id, delayVis);
501 }
502 sc.close();
503 } catch (FileNotFoundException e) {
504 System.out.println("The file with final delay "

+ finalDelay + " could not be found");
505 }
506

507 // Read Delay file
508 // Create map to compare Vissim delay to simulated

delay at every timestamp
509 Map<Integer, Map<Double, Double>> delaysMap = new

HashMap<>(); //Maps the identifier of the road
user to the delay

510 try (Scanner sc = new Scanner(new File(delays))) {
511 int ru_id;
512 sc.useLocale(Locale.US);
513 while (sc.hasNextLine()) {
514 Map<Double, Double> secondMap = new HashMap

<>(); // Maps time to the vissim delay
515 if (sc.hasNext()) {
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516 sc.next();
517 ru_id = sc.nextInt();
518 while (sc.hasNextDouble()) {
519 double t = sc.nextDouble();
520 double delay = sc.nextDouble();
521 secondMap.put(t, delay);
522 }
523 } else {
524 break;
525 }
526 delaysMap.put(ru_id, secondMap);
527 }
528 sc.close();
529

530 } catch (FileNotFoundException e) {
531 System.out.println("The file with delays " +

delays + " could not be found");
532 }
533

534 //We can calculate the expected delay over multiple
runs, if the signal groups are assigned on a

stochastic basis
535 //int nrRuns = 1; // Number of runs
536 //int nrSignalGroups = sgMap.size(); //number of

signal groups
537 //double[] sumDelay = new double[nrSignalGroups];

// Sum of delays over all runs
538 //double[] expDelay = new double[nrSignalGroups];

// Expected delay
539

540 //Run simulation
541 Sim sim = new Sim();
542 //for (int j = 0; j < nrRuns; j++) {
543 for (Entry<Integer, List<Signal_Group>> entry :

sgMap.entrySet()) {
544 for (Signal_Group sg : entry.getValue()) {
545 sg.reset(); // Reset all values before

simulation
546 }
547 }
548 SimResults results = sim.simulate(startTime,

maxTime, nrTimestamps, junction, sgMap,
module, road_users, finalDelayMap, delaysMap
);// Simulation

549

550 //Difference in results between java model and
Vissim

551 compareDelay[(z - 1)] = results.
getTotalComparision(); // total difference
in delay between java model and vissim (for
every snapshot)

552 compareAbsoluteDelay[(z - 1)] = results.
getTotalPosComparision(); // total absolute
difference in delay between java model and
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vissim (for every snapshot)
553 compareDelayPTS[(z - 1)] = results.

getTotDelayPTS(); // total difference in
delay per timestamp between java model and
vissim (for every snapshot)

554 compareAbsoluteDelayPTS[(z - 1)] = results.
getTotPosDelayPTS(); // total absolute
difference in delay per timestamp between
java model and vissim (for every snapshot)

555

556 comparePerRU[(z-1)] = results.
getComparisonPerRU(); // total difference in
delay between java model and vissim (for

every snapshot) per road user
557 compareAbsolutePerRU[(z-1)] = results.

getAbsoluteComparisonPerRU(); // total
absolute difference in delay between java
model and vissim (for every snapshot) per
road user

558

559 averageDepTime[(z-1)] = results.
getAverageDepTime(); // average departure
time

560 nrRu[(z-1)] = results.getNrRu(); // number of
road users

561 //double[] delay = results.getTotalDelay();
562 //for (int k = 0; k < nrSignalGroups; k++) {
563 // sumDelay[k] = sumDelay[k] + delay[k]; //

Add delay from run to total delay over all
runs

564 //}
565 //}
566

567 //for (int j = 0; j < nrSignalGroups; j++) { //
Calculate the expected delay

568 // expDelay[j] = sumDelay[j] / nrRuns;
569 //}
570 }
571

572 // Sum the (absolute) delay per timestamp over all
snapshots

573 for (int h = 0; h < nrTimestamps; h++) {
574 for (int g = 0; g < nrSnapshots; g++) {
575 compareTotalDelayPTS[h] = compareTotalDelayPTS[

h] + compareDelayPTS[g][h];
576 compareAbsoluteTotalDelayPTS[h] =

compareAbsoluteTotalDelayPTS[h] +
compareAbsoluteDelayPTS[g][h];

577 }
578 compareTotalDelayPTSperRu[h] = compareTotalDelayPTS

[h]/Arrays.stream(nrRu).sum();
579 compareAbsoluteTotalDelayPTSperRu[h] =

compareAbsoluteTotalDelayPTS[h]/Arrays.stream(
nrRu).sum();
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580 }
581 //long endTime = System.nanoTime();
582

583 //long duration = (endTime - start)/1000000; //divide
by 1000000 to get milliseconds.

584

585

586 System.out.println("RESULTS");
587 System.out.println();
588 System.out.println("Average departure time");
589 System.out.println(Arrays.toString(averageDepTime));
590 System.out.println("Average departure time over all

snapshot: " + Arrays.stream(averageDepTime).sum()
/100);

591 System.out.println();
592 System.out.println("Total number of road users ");
593 System.out.println(Arrays.stream(nrRu).sum());
594 System.out.println();
595 System.out.println("Difference in delay between model

and Vissim per snapshot");
596 System.out.println(Arrays.toString(compareDelay));
597 System.out.println();
598 System.out.println("Difference in absolute delay

between model and Vissim per snapshot");
599 System.out.println(Arrays.toString(compareAbsoluteDelay

));
600 System.out.println();
601 System.out.println("Total difference in delay between

model and Vissim (summed over all snapshots)");
602 System.out.println(Arrays.stream(compareDelay).sum());
603 System.out.println();
604 System.out.println("Total absolute difference in delay

between model and Vissim (summed over all snapshots)
");

605 System.out.println(Arrays.stream(compareAbsoluteDelay).
sum());

606 System.out.println();
607 System.out.println("Total difference in delay between

model and Vissim per timestamp (summed over all
snapshots)");

608 System.out.println(Arrays.toString(compareTotalDelayPTS
));

609 System.out.println();
610 System.out.println("Total absolute difference in delay

between model and Vissim per timestamp (summed over
all snapshots)");

611 System.out.println(Arrays.toString(
compareAbsoluteTotalDelayPTS));

612 System.out.println();
613 System.out.println("Difference in delay between model

and Vissim per snapshot per road user");
614 System.out.println(Arrays.toString(comparePerRU));
615 System.out.println("Total difference in delay between

model and Vissim (summed over all snapshots) per
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road user");
616 System.out.println(Arrays.stream(comparePerRU).sum()

/100);
617 System.out.println("Difference in absolute delay

between model and Vissim per snapshot per road user
");

618 System.out.println(Arrays.toString(compareAbsolutePerRU
));

619 System.out.println("Total absolute difference in delay
between model and Vissim (summed over all snapshots)
per road user ");

620 System.out.println(Arrays.stream(compareAbsolutePerRU).
sum()/100);

621 System.out.println("Total difference in delay between
model and Vissim per timestamp (summed over all
snapshots) average per road user");

622 System.out.println(Arrays.toString(
compareTotalDelayPTSperRu));

623 System.out.println();
624 System.out.println("Total absolute difference in delay

between model and Vissim per timestamp (summed over
all snapshots) average per road user");

625 System.out.println(Arrays.toString(
compareAbsoluteTotalDelayPTSperRu));

626 }
627 }

A.1.2 Example input files

Junction Structure: Txt file containing the structure of the junction. The txt
file has, for every arrival place, the name of an arrival place and below it the id,
the length of the lane, the maximum speed and the number of lanes.

1 Noord
2 1 107.84 13.88 1
3 2 107.84 13.88 1
4 3 107.84 13.88 1
5

6 Oost
7 4 48.29 13.88 1
8 5 48.29 13.88 1
9 6 48.29 13.88 1

10

11 Zuid
12 7 109.53 13.88 1
13 8 109.53 13.88 1
14 9 109.53 13.88 1
15

16 West
17 10 44.24 13.88 1
18 11 44.24 13.88 1
19 12 44.24 13.88 1
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Roadusers: Txt file containing the snapshot. The txt file contains every road
user in the snapshot, with for every road user its id number, arrival time, length,
type, arrival place, position, probability array, speed and number in line.

1 78 263.92 4.76 PASSENGER Zuid 0.824 0.0;0.0;1.0 0 15.43333 1
2 80 272.03 4.76 PASSENGER Zuid 7.944 0.0;0.0;1.0 0.8722222

13.52778 2
3 82 264.75 4.61 PASSENGER Oost 0.895 0.0;1.0;1.0 0 15.43333 1
4 83 276.38 4.01 PASSENGER Noord 9.919 0.0;1.0;1.0 16.64444

20.53333 3
5 88 279.32 4.61 PASSENGER Oost 27.265 1.0;1.0;1.0 10.27778

13.80278 6

simSec: Txt file containing the starting time of the simulation.

1 282

Module: Txt file containing the scheme, with on every line: the simulation
second, the signal group and traffic light colour.

1 280.0 1 green
2 280.0 2 green
3 280.0 3 green
4 280.0 10 red
5 280.0 11 red
6 280.0 12 red
7 270.0 7 red
8 270.0 8 red
9 270.0 9 red

10 260.0 4 red
11 260.0 5 red
12 260.0 6 red
13 287.0 1 amber
14 287.0 2 amber
15 287.0 3 amber
16 290.0 1 red
17 290.0 2 red
18 290.0 3 red
19 290.0 4 green
20 ...

295 597.0 11 amber
296 597.0 12 amber
297 600.0 1 green
298 600.0 2 green
299 600.0 3 green
300 600.0 10 red
301 600.0 11 red
302 600.0 12 red

Delay : Txt file containing the Vissim delay for every road user in the snapshot
per time stamp.

1 newVehicle
2 78
3 282 11.0379
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4 283 12.0379
5 284 13.0379
6 285 14.0379
7 286 15.0379
8 287 16.0379
9 288 17.0379

10 289 18.0379
11 290 19.0379
12 291 20.0379
13 292 21.0379
14 293 22.0379
15 294 23.0379
16 295 24.0379
17 296 25.0379
18 297 26.0379
19 298 27.0379
20 299 28.0379
21 300 29.0379
22 301 29.97376
23 302 29.97376
24 303 29.97376
25 304 29.97376
26 305 29.97376
27 306 29.97376
28 307 29.97376
29 ...

114 newVehicle
115 88
116 282 1.156828
117 283 1.422194
118 284 1.846223
119 285 2.491222
120 286 3.320966
121 287 4.266629
122 288 5.255762
123 289 6.255762
124 290 7.255762
125 291 8.185486
126 292 8.185486
127 293 8.185486
128 294 8.185486
129 295 8.185486
130 296 8.185486
131 297 8.185486
132 298 8.185486
133 299 8.185486
134 300 8.185486
135 301 8.185486
136 302 8.185486
137 303 8.185486
138 304 8.185486
139 305 8.185486
140 306 8.185486
141 307 8.185486
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FinalDelay : Txt file containing the Vissim delay for every road user after they
have left the system.

1 78 30.0
2 80 23.4
3 82 23.1
4 83 0.9
5 88 8.3

A.1.3 Example output file

Ouput : Txt file containing the results. For every timestamp the delay and
number of stop per road user is given by signal group.

1 Timestamp 0.0
2 Signal group 1
3 Signal group 2
4 Road user 83 Delay 1.1998207110098607 NrStops 0
5 Signal group 3
6 Road user 75 Delay 21.885900553279004 NrStops 1
7 Signal group 4
8 Road user 88 Delay 1.2292556571937028 NrStops 0
9 Signal group 5

10 Signal group 6
11 Signal group 7
12 Signal group 8
13 Road user 71 Delay 39.34481556211208 NrStops 1
14 Signal group 9
15 Road user 78 Delay 11.063022225274803 NrStops 1
16 Road user 80 Delay 2.8096602990291046 NrStops 1
17 Signal group 10
18 Road user 81 Delay 23.604481795508626 NrStops 1
19 Road user 87 Delay 4.8452161690455675 NrStops 1
20 Signal group 11
21 Road user 86 Delay 5.989654575991809 NrStops 1
22 Signal group 12
23

24 Timestamp 1.0
25 Signal group 1
26 Signal group 2
27 Road user 83 Delay 1.3680510954628442 NrStops 1
28 Signal group 3
29 Road user 75 Delay 22.885900553279004 NrStops 1
30 Signal group 4
31 Road user 88 Delay 1.4810165343503336 NrStops 0
32 Signal group 5
33 Signal group 6
34 Signal group 7
35 Signal group 8
36 Road user 71 Delay 39.34481556211208 NrStops 1
37 Signal group 9
38 Road user 78 Delay 11.063022225274803 NrStops 1
39 Road user 80 Delay 3.8096602990291046 NrStops 1
40 Signal group 10
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41 Road user 81 Delay 24.604481795508626 NrStops 1
42 Road user 87 Delay 5.8452161690455675 NrStops 1
43 Signal group 11
44 Road user 86 Delay 6.989654575991809 NrStops 1
45 Signal group 12
46 ...

576 Timestamp 25.0
577 Signal group 1
578 Signal group 2
579 Road user 83 Delay 25.368051095462846 NrStops 1
580 Signal group 3
581 Road user 75 Delay 46.885900553279 NrStops 1
582 Signal group 4
583 Road user 88 Delay 24.43142942218887 NrStops 1
584 Signal group 5
585 Signal group 6
586 Signal group 7
587 Signal group 8
588 Road user 71 Delay 39.34481556211208 NrStops 1
589 Signal group 9
590 Road user 78 Delay 11.063022225274803 NrStops 1
591 Road user 80 Delay 3.8889878187551794 NrStops 1
592 Signal group 10
593 Road user 81 Delay 42.63274471873668 NrStops 1
594 Road user 87 Delay 26.2020291649789 NrStops 1
595 Signal group 11
596 Road user 86 Delay 25.03197623965171 NrStops 1
597 Signal group 12

A.2 Polling model with switching customers

A.2.1 Simulation file

1 (*Exact Analysis of Polling System with switching customers*)
2 (*LSTs for branching-type service disciplines*)
3 (*Author : Imke Vromans, June 2021 based on Marko Boon,

November 2013*)
4 (*This Mathematica notebook computes performance measures for

polling systems with switching customers at polling
instances . It implements LSTs, which work for branching-
type service disciplines. In particular, gated and
exhaustive are implemented.*)

5 (*Numerical Input*)
6 (*Provide the moments of the input variables. *)
7 (*Service disciplines*)
8 (*Only exhaustive and gated are implemented. The number of

queues is determined from the length of this list.*)
9 In[904]:= serviceDisciplines={exhaustive,exhaustive};

10 In[905]:= n=Length[serviceDisciplines];
11 (*Arrival intensities*)
12 (*Arrivals *)
13 In[906]:= lambdas={1/10,1/10};
14 Table[Subscript[\[Lambda], i]=lambdas[[i]],{i,1,n}];
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15 (*Routing probabilities*)
16 In[908]:= p[1,1] = 10/10;
17 p[1,2]= 1- p[1,1];
18

19 p[2,2] = 3/10;
20 p[2,1] = 1-p[2,2];
21 (*Service-time distributions*)
22 (*In order to compute the actual queue-length probabilities, we

need to provide the distributions of the service times and
switch - over times. Otherwise, the moments would suffice.*)

23 In[912]:= T1=1;
24 S1=100/10;
25 (*This is a trick to create deterministic distributions:*)
26 In[914]:= Bdists=Table[TransformedDistribution[T1,u\[

Distributed]NormalDistribution[\[Mu],\[Sigma]]],{n}];
27 Sdists=Table[TransformedDistribution[S1,u\[Distributed]

NormalDistribution[\[Mu],\[Sigma]]],{n}];
28 (*Moments of the service time distributions*)
29 In[916]:= EBs=Table[Moment[Bdists[[i]],1],{i,1,n}];
30 EB2s=Table[Moment[Bdists[[i]],2],{i,1,n}];
31 EB3s=Table[Moment[Bdists[[i]],3],{i,1,n}];
32 EB4s=Table[Moment[Bdists[[i]],4],{i,1,n}];
33 In[920]:= Table[Subscript[EB, i]=EBs[[i]],{i,1,n}];
34 Table[Subscript[EB2, i]=EB2s[[i]],{i,1,n}];
35 Table[Subscript[EB3, i]=EB3s[[i]],{i,1,n}];
36 Table[Subscript[EB4, i]=EB4s[[i]],{i,1,n}];
37 (*Moments of the switch-over time distributions (note:

Subscript[S, 1] is switch-over from Subscript[V, 1] to
Subscript[V, 2], regardless of the service disciplines)*)

38 In[924]:= ESs=Table[Moment[Sdists[[i]],1],{i,1,n}];
39 ES2s=Table[Moment[Sdists[[i]],2],{i,1,n}];
40 ES3s=Table[Moment[Sdists[[i]],3],{i,1,n}];
41 ES4s=Table[Moment[Sdists[[i]],4],{i,1,n}];
42 In[928]:= Table[Subscript[ES, i]=ESs[[i]],{i,1,n}];
43 Table[Subscript[ES2, i]=ES2s[[i]],{i,1,n}];
44 Table[Subscript[ES3, i]=ES3s[[i]],{i,1,n}];
45 Table[Subscript[ES4, i]=ES4s[[i]],{i,1,n}];
46 (*Moments of the busy period *)
47 (*Busy period equation*)
48 In[932]:= bpeqn=BPLSTtmp[i][\[Omega]]==BLST[i][\[Omega]+

Subscript[\[Lambda], i](1-BPLSTtmp[i][\[Omega]])];
49 (*First moment*)
50 In[933]:= D[bpeqn,{\[Omega],1}]/.\[Omega]->0;
51 In[934]:= sol =Table[Solve[%,BPLSTtmp[i]’[0]]/.BPLSTtmp[i

][0]->1/.(BLST[i]ˆ\[Prime])[0]->-Subscript[EB, i],{i,1,n}]//
Flatten;

52 In[935]:= Table[Subscript[EBP, i] = -BPLSTtmp[i]’[0]/.sol[[i
]],{i,1,n}]

53 Out[935]= {10/9,10/9}
54 (*Second moment*)
55 In[936]:= D[bpeqn,{\[Omega],2}]/.\[Omega]->0;
56 In[937]:= sol =Table[Solve[%,BPLSTtmp[i]’’[0]]/.BPLSTtmp[i

][0]->1/.(BLST[i]ˆ\[Prime])[0]->-Subscript[EB, i]/.BLST[i
]’’[0]->Subscript[EB2, i]/.(BPLSTtmp[i]ˆ\[Prime])[0]->-
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Subscript[EBP, i],{i,1,n}]//Flatten;
57 In[938]:= Table[Subscript[EBP2, i] = BPLSTtmp[i]’’[0]/.sol[[i

]],{i,1,n}]
58 Out[938]= {1000/729,1000/729}
59 (*Third moment*)
60 In[939]:= D[bpeqn,{\[Omega],3}]/.\[Omega]->0;
61 In[940]:= sol =Table[Solve[%,BPLSTtmp[i]’’’[0]]/.BPLSTtmp[i

][0]->1/.(BLST[i]ˆ\[Prime])[0]->-Subscript[EB, i]/.BLST[i
]’’[0]->Subscript[EB2, i]/.BLST[i]’’’[0]->-Subscript[EB3, i
]/.(BPLSTtmp[i]ˆ\[Prime])[0]->-Subscript[EBP, i]/.(BPLSTtmp[
i]ˆ\[Prime]\[Prime])[0]->Subscript[EBP2, i],{i,1,n}]//
Flatten;

62 In[941]:= Table[Subscript[EBP3, i] = -BPLSTtmp[i]’’’[0]/.sol[[i
]],{i,1,n}]

63 Out[941]= {40000/19683,40000/19683}
64 (*Fourth moment*)
65 In[942]:= D[bpeqn,{\[Omega],4}]/.\[Omega]->0;
66 In[943]:= sol =Table[Solve[%,BPLSTtmp[i]’’’’[0]]/.BPLSTtmp[i

][0]->1/.(BLST[i]ˆ\[Prime])[0]->-Subscript[EB, i]/.BLST[i
]’’[0]->Subscript[EB2, i]/.BLST[i]’’’[0]->-Subscript[EB3, i
]/.BLST[i]’’’’[0]->Subscript[EB4, i]/.(BPLSTtmp[i]ˆ\[Prime])
[0]->-Subscript[EBP, i]/.(BPLSTtmp[i]ˆ\[Prime]\[Prime])[0]->
Subscript[EBP2, i]/.(BPLSTtmp[i]ˆ(3))[0]->-Subscript[EBP3, i
],{i,1,n}]//Flatten;

67 In[944]:= Table[Subscript[EBP4, i] = BPLSTtmp[i]’’’’[0]/.sol[[i
]],{i,1,n}]

68 Out[944]= {6200000/1594323,6200000/1594323}
69 (*Exact Analysis*)
70 In[945]:= Table[Subscript[\[Sigma], i][0]=1,{i,1,n}];
71 Table[Subscript[\[Beta], i][0]=1,{i,1,n}];
72 Table[Subscript[\[Pi], i][0]=1,{i,1,n}];
73 Table[Subscript[\[Sigma], i]’[0]=-Subscript[ES, i],{i,1,n}];
74 Table[Subscript[\[Beta], i]’[0]=-Subscript[EB, i],{i,1,n}];
75 Table[Subscript[\[Pi], i]’[0]=-Subscript[EBP, i],{i,1,n}];
76 Table[Subscript[\[Sigma], i]’’[0]=Subscript[ES2, i],{i,1,n}];
77 Table[Subscript[\[Beta], i]’’[0]=Subscript[EB2, i],{i,1,n}];
78 Table[Subscript[\[Pi], i]’’[0]=Subscript[EBP2, i],{i,1,n}];
79 Table[Subscript[\[Sigma], i]’’’[0]=-Subscript[ES3, i],{i,1,n}];
80 Table[Subscript[\[Beta], i]’’’[0]=-Subscript[EB3, i],{i,1,n}];
81 Table[Subscript[\[Pi], i]’’’[0]=-Subscript[EBP3, i],{i,1,n}];
82 Table[Subscript[\[Sigma], i]’’’’[0]=Subscript[ES4, i],{i,1,n}];
83 Table[Subscript[\[Beta], i]’’’’[0]=Subscript[EB4, i],{i,1,n}];
84 Table[Subscript[\[Pi], i]’’’’[0]=Subscript[EBP4, i],{i,1,n}];
85 In[960]:= zi=Table[Subscript[z, i],{i,1,n}];
86 In[961]:= hi=Table[ If[serviceDisciplines[[i]]===gated,

Subscript[\[Beta], i][\!\(
87 \*UnderoverscriptBox[\(\[Sum]\), \(j = 1\), \(n\)]\(
88 \*SubscriptBox[\(\[Lambda]\), \(j\)] \((1 -
89 \*SubscriptBox[\(z\), \(j\)])\)\)\)],If[serviceDisciplines[[i

]]===exhaustive,Subscript[\[Pi], i][\!\(
90 \*UnderoverscriptBox[\(\[Sum]\), \(j = 1\), \(n\)]\(If[j != i,
91 \*SubscriptBox[\(\[Lambda]\), \(j\)] \((1 -
92 \*SubscriptBox[\(z\), \(j\)])\), 0]\)\)]]],{i,1,n}];
93 gi=Table[Subscript[\[Sigma], i][\!\(
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94 \*UnderoverscriptBox[\(\[Sum]\), \(j = 1\), \(n\)]\(
95 \*SubscriptBox[\(\[Lambda]\), \(j\)] \((1 -
96 \*SubscriptBox[\(z\), \(j\)])\)\)\)],{i,1,n}];
97 (*Joint Queue-length Distribution at polling epochs*)
98 (*The branching property is used here and an implicit equation

for LBˆ(Subscript[V, 1a]) is formed*)
99 In[963]:= md[i_]:=Mod[i-1,n]+1

100

101 LVa[1][zi]=.;
102 joint=RotateRight@Table[
103 LVb[i][zi]=LVa[i][zi]/.Table[Subscript[z, k ]-> \!\(
104 \*UnderoverscriptBox[\(\[Sum]\), \(j = 1\), \(n\)]\(p[k, j]*\
105 \*SubscriptBox[\(z\), \(j\)]\)\),{k,1,n}];
106 LSa[i][zi]=LVb[i][zi]/.Subscript[z, i]->hi[[i]];
107 LSb[i][zi]=LSa[i][zi]/.Table[Subscript[z, k ]-> \!\(
108 \*UnderoverscriptBox[\(\[Sum]\), \(j = 1\), \(n\)]\(p[k, j]*\
109 \*SubscriptBox[\(z\), \(j\)]\)\),{k,1,n}];
110 LVa[md[i+1]][zi]=LSb[i][zi]gi[[i]],{i,1,n}];
111 joint//ColumnForm
112 LVa[1][zi]=.
113 During evaluation of In[963]:= Unset::norep: Assignment on LVa

for LVa[1][{Subscript[z, 1],Subscript[z, 2]}] not found.
114 Out[966]= LVa[1][{Subscript[\[Pi], 1][1/10 (1-(7 Subscript[z,

1])/10-3/10 ((7 Subscript[z, 1])/10+3/10 Subscript[\[Pi],
2][1/10 (1-Subscript[z, 1])]))],7/10 Subscript[\[Pi],
1][1/10 (1-(7 Subscript[z, 1])/10-3/10 ((7 Subscript[z, 1])
/10+3/10 Subscript[\[Pi], 2][1/10 (1-Subscript[z, 1])]))
]+3/10 ((7 Subscript[z, 1])/10+3/10 ((7 Subscript[z, 1])
/10+3/10 Subscript[\[Pi], 2][1/10 (1-Subscript[z, 1])]))}]
Subscript[\[Sigma], 1][1/10 (1-Subscript[z, 1])+1/10 (1-(7
Subscript[z, 1])/10-3/10 Subscript[\[Pi], 2][1/10 (1-
Subscript[z, 1])])] Subscript[\[Sigma], 2][1/10 (1-Subscript
[z, 1])+1/10 (1-Subscript[z, 2])]

115 LVa[1][{Subscript[\[Pi], 1][1/10 (1-(7 Subscript[z, 1])/10-(3
Subscript[z, 2])/10)],3/10 ((7 Subscript[z, 1])/10+(3
Subscript[z, 2])/10)+7/10 Subscript[\[Pi], 1][1/10 (1-(7
Subscript[z, 1])/10-(3 Subscript[z, 2])/10)]}] Subscript[\[
Sigma], 1][1/10 (1-Subscript[z, 1])+1/10 (1-Subscript[z, 2])
]

116

117

118 In[968]:= eqn=LVa[1][zi]==First[joint];
119 ones=Table[1,{n}];
120 LVa[_][ones]=1;
121

122 solution1stMoments=Flatten@Solve[D[eqn,{{zi}}]/.Table[Subscript
[z, i]->1,{i,1,n}]];

123 In[972]:= solution2ndMoments=Flatten@Solve[D[D[eqn,{{zi}}],{{zi
}}]/.Table[Subscript[z, i]->1,{i,1,n}]/.solution1stMoments];

124 solution3rdMoments=Flatten@Solve[D[D[D[eqn,{{zi}}],{{zi}}],{{zi
}}]/.Table[Subscript[z, i]->1,{i,1,n}]/.solution1stMoments/.
solution2ndMoments];

125 In[974]:= Table[LVa[i,j]=LVa[i][zi]/.Table[Subscript[z, k]->If[
j==k,z,1],{k,1,n}],{i,1,n},{j,1,n}];
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126 Table[LVb[i,j]=LVb[i][zi]/.Table[Subscript[z, k]->If[j==k,z
,1],{k,1,n}],{i,1,n},{j,1,n}];

127 Table[LSa[i,j]=LSa[i][zi]/.Table[Subscript[z, k]->If[j==k,z
,1],{k,1,n}],{i,1,n},{j,1,n}];

128 Table[LSb[i,j]=LSb[i][zi]/.Table[Subscript[z, k]->If[j==k,z
,1],{k,1,n}],{i,1,n},{j,1,n}];

129 In[978]:= LVas=Flatten[Table[D[LVa[i,j],z]/.z->1,{i,1,n},{j,1,n
}]/.solution1stMoments]

130 LVbs=Flatten[Table[D[LVb[i,j],z]/.z->1,{i,1,n},{j,1,n}]/.
solution1stMoments]

131 LSas=Flatten[Table[D[LSa[i,j],z]/.z->1,{i,1,n},{j,1,n}]/.
solution1stMoments]

132 LSbs=Flatten[Table[D[LSb[i,j],z]/.z->1,{i,1,n},{j,1,n}]/.
solution1stMoments]

133 Out[978]= {1733/505,1,464/303,124/101}
134 Out[979]= {4173/1010,3/10,3622/1515,186/505}
135 Out[980]= {0,230/303,1228/505,0}
136 Out[981]= {161/303,23/101,1228/505,0}
137 (*Joint Queue-length Distribution at arbitrary epochs *)
138 (*Calculate expected cycle length (by adding expected visit

lengths and expected switch-over times)*)
139 In[982]:= \[Theta]i=Table[If[serviceDisciplines[[i]]===gated,

Subscript[\[Beta], i][\[Omega]],If[serviceDisciplines[[i
]]===exhaustive,Subscript[\[Pi], i][\[Omega]]]],{i,1,n}];

140 In[983]:= Vi = Table[LVb[i][zi]/.Table[If[i!=j,Subscript[z, j
]-> 1, Subscript[z, i ]-> \[Theta]i[[i]]],{j,1,n}],{i,1,n
}];

141 In[984]:= EVs = -D[Vi,\[Omega]]/.\[Omega] ->0/.
solution1stMoments (* expected visit lengths *)

142 Out[984]= {1391/303,124/303}
143 In[985]:= ESs (* expected switch over times *)
144 Out[985]= {10,10}
145 In[986]:= EC = Total[ESs] + Total[EVs] (* expected cycle

length *)
146 Out[986]= 25
147 (*Joint queue-length distribution at arbitrary epochs L(z)*)
148 In[987]:= L[zi] =1/EC \!\(
149 \*UnderoverscriptBox[\(\[Sum]\), \(i = 1\), \(n\)]\((
150 \*FractionBox[\(
151 \*SubscriptBox[\(z\), \(i\)]*\((\(LVb[i]\)[zi] - \ \(LSa[i]\)[

zi])\)*\((1 -
152 \(\*SubscriptBox[\(\[Beta]\), \(i\)]\)[
153 \*UnderoverscriptBox[\(\[Sum]\), \(j = 1\), \(n\)]
154 \*SubscriptBox[\(\[Lambda]\), \(j\)] \((1 -
155 \*SubscriptBox[\(z\), \(j\)])\)])\)\), \(\((
156 \*SubscriptBox[\(z\), \(i\)] -
157 \(\*SubscriptBox[\(\[Beta]\), \(i\)]\)[
158 \*UnderoverscriptBox[\(\[Sum]\), \(j = 1\), \(n\)]
159 \*SubscriptBox[\(\[Lambda]\), \(j\)] \((1 -
160 \*SubscriptBox[\(z\), \(j\)])\)])\)*\(
161 \*UnderoverscriptBox[\(\[Sum]\), \(j = 1\), \(n\)]
162 \*SubscriptBox[\(\[Lambda]\), \(j\)] \((1 -
163 \*SubscriptBox[\(z\), \(j\)])\)\)\)] +
164 \*FractionBox[\(\(LSb[i]\)[zi] - \(LVa[md[i + 1]]\)[zi]\), \(
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165 \*UnderoverscriptBox[\(\[Sum]\), \(j = 1\), \(n\)]
166 \*SubscriptBox[\(\[Lambda]\), \(j\)] \((1 -
167 \*SubscriptBox[\(z\), \(j\)])\)\)])\)\);
168 (*Marginal queue lengths*)
169 In[988]:= Table[L[i]=L[zi]/.Table[Subscript[z, k]->If[i==k,z

,1],{k,1,n}],{i,1,n}];
170 In[989]:= EMLs=Table[D[Series[L[i],{z,1,3}],z]/.z->1/.

solution1stMoments/.solution2ndMoments,{i,1,n}]
171 Out[989]=

{5410514707061/2459012256000,1524833143339/2459012256000}
172 (*Correlation (2 queues) *)
173 Lz = Series[L[zi],{Subscript[z, 1],1,3},{Subscript[z,

2],1,3}];
174 In[991]:= EZ1 = SeriesCoefficient[Lz,{1,0}]/.solution1stMoments

/.solution2ndMoments;
175 In[992]:= EZ2= SeriesCoefficient[Lz,{0,1}]/.solution1stMoments

/.solution2ndMoments;
176 In[993]:= EZ1Z2 = SeriesCoefficient[Lz,{1,1}]/.

solution1stMoments/.solution2ndMoments/.solution3rdMoments;
177 VarZ1 = (2*SeriesCoefficient[Lz,{2,0}]/.solution1stMoments/.

solution2ndMoments/.solution3rdMoments )+ EZ1 - ((EZ1)ˆ2);
178 VarZ2= (2*SeriesCoefficient[Lz,{0,2}]/.solution1stMoments/.

solution2ndMoments/.solution3rdMoments )+ EZ2 - ((EZ2)ˆ2);
179 In[996]:= Cor = (EZ1Z2-EZ1*EZ2)/(Sqrt[VarZ1]*Sqrt[VarZ2])
180 Out[996]= -(893001510383280110806412623/Sqrt

[62079463186633570675272232767854224580878610836333019329])
181 In[1000]:= N[Cor]
182 Out[1000]= -0.113339
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