Eindhoven University of Technology

MASTER

Improving Smart Traffic

Some insights from queueing theory and an event-driven model for predicting traffic at an intersection

Vromans, Imke

Award date:
2021

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required minimum study period may vary in duration.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain

Eindhoven University of Technology Final project (2MMR30)

Improving Smart Traffic: Some insights from queueing theory and an event-driven model for predicting traffic at an intersection

Author
Imke Vromans
1024722
Company
Sweco Nederland

TU/e Supervisors
R.W. Timmerman, MSc dr. ir. M.A.A. Boon

Company supervisor
Sandra Kamphuis

Abstract

Smart Traffic is a traffic control software application designed by Sweco. It uses microsimulation model SUMO and data from various sources, among which detector loop data and floating car data, to simulate the actual and forecasted traffic image at an intersection. Based on the forecasted image it calculates the delay and number of stops per vehicle to determine the most efficient duration of green times. The two main challenges of the current implementation of Smart Traffic are its use of micro microsimulation model SUMO, which is too computationally expensive to predict traffic at large intersections over a longer period of time, and the lack or inconsistency of data. In the first part of this thesis we replaced the SUMO model used in the forecasting module of Smart Traffic by a discrete event model, which models traffic at a signalised intersection as a series of discrete events. We show that this discrete event model is able to accurately predict the delay of the vehicles and is more scalable and faster than the current SUMO model. In the second part of the thesis we study the inconsistency of the data by modelling traffic at a signalised intersection as a polling model with switching customers. In the polling model customers may leave a queue to join another queue, which mimics the situation in Smart Traffic, where vehicle may switch signal groups due to updated data. We describe the polling model and analyse its stability condition and joint queue length distributions. From an example of the polling model with switching customers we conclude that the lack or inconsistency of data may lead to Smart Traffic scheduling non-optimal green times.

Contents

1 Introduction 3
2 Literature review 5
2.1 Traffic signal control 5
2.1.1 Fixed cycle control 6
2.1.2 Vehicle actuated control 6
2.1.3 Self-optimised real-time control 7
2.1.4 Smart Traffic 8
2.2 Discrete Event Simulation 8
3 Implementation discrete event simulation 10
3.1 Assumptions 10
3.2 Model description 10
3.2.1 Initialisation 11
3.2.2 Main simulation 14
3.2.3 Calculating delay 15
3.3 Parameters 19
4 Results discrete event simulation 23
5 Polling model 32
5.1 Literature 32
5.2 Analysis of polling model with switching customers 35
5.2.1 Model description and notation 35
5.2.2 Stability condition 36
5.2.3 Joint queue length distribution at polling epochs 38
5.2.4 Joint queue length distribution at arbitrary epochs 41
5.2.5 Mean cycle time and mean visit times 43
6 Numerical examples polling model 44
6.1 Example 1: A two-queue polling model 44
6.2 Example 2: Smart Traffic 50
7 Conclusion and discussion 53
A Appendix: Code 58
A. 1 Discrete event simulation 58
A.1.1 Simulation files 58
A.1.2 Example input files 89
A.1.3 Example output file 92
A. 2 Polling model with switching customers 93
A.2.1 Simulation file 93

1 Introduction

This thesis was conducted at the Mobility Solutions division at Sweco Nederland. Sweco, originally Swedish Consultants, is the largest engineering and consultancy in Europe with over 17.000 employees in 13 countries [1]. In 2015 the Dutch company Grontmij was acquired by Sweco and renamed Sweco Nederland [2]. Sweco advises in efficient infrastructure, environmental technology and sustainable buildings. Sweco designs and develops cities and societies of the future.

One of the challenges for cities of the future is the ever increasing amount of road traffic, which leads to traffic congestion. Traffic congestion is not only time consuming, but also leads to unsafe and unclear traffic situations. Futhermore, it increases air pollutant emissions due to an excess of idling vehicles [3]. The development of intelligently controlled traffic lights is thus essential to keep cities habitable by reducing traffic congestion [4].

The Mobility Solutions department, part of the Transport and Mobility division of Sweco, focuses on the development of smart solutions for mobility. One of the products in development at the department is Smart Traffic. Smart Traffic is a software application intelligently controlling traffic lights, which makes use of a predictive real-time traffic model. The model combines information from multiple data sources, ranging from detection loop data to floating car data broadcasted by connected vehicles. Smart Traffic optimises traffic flow by predicting the individual waiting time of vehicles. Based on this information the traffic light controller has complete freedom to determine the most efficient and fair duration of red en green times. Smart Traffic currently operates only on isolated junctions, however the objective is to extend the use of Smart Traffic to a network of junctions. A detailed explanation of Smart Traffic is given in Section 2.1.4. Smart Traffic has already proven its success in the city of Helmond, where its implementation reduced CO_{2} emission by 20% and vehicle waiting times by 22% [5].

The current implementation of Smart Traffic gives rise to two main challenges. The first is the use of microsimulation model SUMO (Simulation of Urban MObility). Smart Traffic makes use of SUMO to monitor and predict the traffic image. The traffic image details the overall traffic situation and position of the vehicles. SUMO predicts the new position of vehicles for each time step, making use of detailed information such as vehicle-to-vehicle effects. Though this level of detailing makes the model rather accurate it is not suitable for the objective of Sweco: to predict traffic over a longer period of time for a network of junctions, as the detailing makes the model too computationally expensive. Thus the next step in improving Smart Traffic is replacing the current microsimulation model by a discrete event model, which is more scalable and less complex.

Unlike microsimulation models, discrete event models do not update the entire system every time step. Discrete event models model the system as a sequence of discrete events. Every event has a predicted time at which it occurs. The event most recent in time is executed and the relevant entities are updated. The simulation then jumps to the next event. Between events it is assumed that the system does not change or changes according to some deterministic pattern. A more detailed explanation on discrete event models is given in Section 2.2 In a previous internship at Sweco a basic discrete event model was created to
replace SUMO in the Smart Traffic application of Sweco. In the first part of the thesis we improve upon that model.

The second challenge is the lack or inconsistency of information. The main data sources used by Smart Traffic, floating car data and detection loop data, are often incomplete. That is, not all vehicles broadcast floating car data and not all roads contain detection loops. Furthermore, the received data may not be accurate. Detection loops may be broken or overly sensitive and indicate the presence of a vehicle when there are none. Or a vehicle may be expected at a certain place due to the floating car data, which may be contradicted by the detection loop data which indicates that no vehicles are present. To overcome this Smart Traffic makes use of a match sensor which attempts to match the real-life vehicle with the simulated vehicle. When the match sensor receives conflicting or updated information simulated vehicles may be added, removed or switch position. In the second part of the thesis we focus on the effect of simulated vehicles switching position, due to a correction made by the match sensor, by modelling traffic at a signalised intersection as a polling model with switching customers.

The structure of the thesis is as follows. In Section 2 we review the literature on current traffic light control methods and explain Smart Traffic in more detail. We also describe discrete event models in general and compare this type of model to the microsimulation model SUMO. In Section 3 we implement a discrete event model to predict traffic at an intersection. We give the main assumptions and a detailed model description. We also describe the main model parameters and how they may be determined. The results of the discrete event model are given in Section 4, where we compare the delay calculated by our discrete event model with the delay given by microsimulation model Vissim, which will function as a simulated version of reality. We then focus on the polling model. In Section 5 we first review the current literature on polling models and then model a signalised intersection as a polling model with switching customers. For this model we determine its stability condition and joint queue length distributions. In Section 6 we discuss the results of the polling model with switching customers by considering two examples. In the final section of this thesis we give the conclusion and discuss the results.

2 Literature review

In this section we give an overview of the current methods used in traffic light control and explain Smart Traffic in more detail. We also explain how a discrete event model works and the main differences between microsimulation models and discrete event models.

2.1 Traffic signal control

Traffic signal control aims to enable the safe and efficient movement of vehicles at an intersection. The efficiency of an intersection may be measured in the total vehicle delay, the number of vehicles in the queue, the number of stops per vehicle or the throughput of the intersection. Before we describe the most common strategies for traffic light control, we first introduce some basic notions and terminology.

A group of traffic lights which give the same signal (e.g. green) simultaneously is called a signal group. A possible configuration of (non-conflicting) signal groups is called a stage. A series of repeating stages is called a cycle. The duration of one full cycle is called the cycle time. Between two consecutive stages a brief period in which all traffic signals are red is necessary to ensure safe crossings. The time in which all traffic signals are either red or amber is called the intergreen time. An example of a cycle, signal groups and stages can be seen in Figure 1.

Figure 1: Example of a cycle, signal groups and stages.

The traffic light control methods can be separated into two categories: isolated traffic signal control, which concerns the optimisation of a single junction, and coordinated traffic signal control, which concerns the optimisation of a network of junctions [6].

Papageorigiou et al. [7] describe the following four possibilities for influencing traffic conditions at isolated and coordinated intersections through traffic light control

- Stage specification: An intersection generally has a larger number of possible stages. The choice of how many, which and in what order stages are in a cycle may greatly influence the performance of the intersection.
- Split: The relative duration of the green time of a stage as a fraction of the cycle time is called the split. Certain directions or signal groups may see a larger number of vehicles than others. It may thus be more efficient, in terms of e.g. total vehicle delay, to grant a certain stage a longer green time duration than other stages.
- Cycle time: A longer cycle time reduces the fraction of intergreen time and thus increases the capacity of the junction. However, longer cycle time may also lead to longer waiting times as the stages switch after a longer period of time.
- Offset: In a network of junctions, green times of successive junctions may coordinated and optimised to allow for a "green wave". The offset is defined as the time relationship between two successive junctions in seconds or in percentage of the cycle length. Offset optimisation only concerns coordinated intersections.

In the following subsections we will describe three methods to control traffic lights: fixed time signal control, vehicle actuated control and self-optimised real-time control. In Subsection 2.1.4 we describe Smart Traffic in detail.

2.1.1 Fixed cycle control

In fixed cycle control, the green times and cycle times are fixed. The signal timing plan, which indicates the starting time of signals for every signal group, is predetermined offline and does not adapt to the current traffic situation. Multiple time plans may be developed to account for varying circumstances, e.g. the time plan at night may be different from the time plan at rush hour.

To calculate the delay in a fixed cycle various methods were developed. Clayton considered a model where arrivals and departures happen at strictly regular intervals [8]. Webster obtained a formula for calculating the overall delay by considering Poisson arrivals [8].

An often used and well known software tool aiding the optimisation of fixed cycle time plans is TRANSYT (Traffic network study tool) [9]. TRANSYT consists of a macroscopic traffic model and a signal optimiser. Using manually entered traffic flows and a platoon dispersion model TRANSYT calculates the Perfomance Index, an economic cost based on the total delay and number of stops. TRANSYT then optimises by running the traffic model multiple times for adjusted time plans and adopts the time plan which reduces the Perfomance Index the most [7]. TRANSYT may be used for a network of junctions, where it is able to create green waves [9].

As fixed cycle control does not adapt to the current traffic situation, it does not lead to the optimal time plan. Particularly in light unpredictable traffic, fixed cycle control performs much worse than other traffic control methods. Furthermore, the fixed signal time plans need to be regularly updated, as studies have shown that fixed time plans degrade over time as traffic demands change [10].

2.1.2 Vehicle actuated control

Vehicle actuated control makes use of detection loops. Detection loops are induction loops embedded in the road. Short detection loops are usually present
at a few meters and a few hundred meters from the stop line. These loops register the presence of vehicles and are able to count the number of vehicles which pass by. Between two short loops a long loop may be present which is only able to detect the presence of traffic.

Vehicle actuated control works by extending the amount of green time for a given stage based on the detection of vehicles. Every stage has a minimal green time and maximum green assigned to it. The traffic signal controller will remain in the current stage for at least the minimal green time. When a vehicle is detected during the minimal green time an extension interval is created. As long as the time between two arriving vehicles is shorter than this extension interval the traffic controller will remain in the current stage, until the maximum green time is reached [6].

Basic vehicle actuated control does not take traffic in front of the red light into consideration. Thus vehicle actuated control does not lead to the optimal time plan.

2.1.3 Self-optimised real-time control

More advanced methods were developed which use real-time input from detectors and do take all signal groups into consideration. We name the following

- MOVA (microprocessor optimised vehicle actuation) is developed by the British Transport Research Laboratory (TRL) for isolated intersections. MOVA uses Miller's algorithm, which decides to extend green times by weighing the gain to (extra) vehicles passing the junction with the loss to other vehicles waiting in the queue. MOVA uses a microscopic traffic model to predict the position of each vehicle and calculates the total delay every half-second [6].
- SCOOT (Split Cycle Offset Optimisation Technique) is often considered the on-line version of TRANSYT. Similar to TRANSYT, SCOOT uses a dispersion model to estimate the arrival patterns. It optimises the split, cycle and offset times, each with independent optimisation procedures. Every procedure only considers a small change in signal settings to estimate the delay and number of stops [11].
- SCATS (Sydney Coordinated Adaptive Traffic) was developed in Australia. It does not optimise the traffic signal real-time, but uses historic data and detector information from the previous cycle to determine the optimal cycle. Since it does not use data real-time, SCATS does not have a traffic model to estimate the number of vehicles based on data from upstream detectors, but estimates the number of vehicles directly from information from stop line detectors. Similar to SCOOT, SCATS optimises the split, cycle and offset times in independent procedures [11].
- UTOPIA (Urban Traffic Optimisation by Integrated Automation) has a hierarchical structure of three levels, the local level, the area level and the town supervisor level. The local level uses detectors at the start of each link and a microscopic model to estimate the state of the junction and the delays. The area level estimates the state of the entire network using a less detailed traffic model and validates the local level results using a
historic traffic database [11]. The town supervisor level uses a macroscopic model and integrates UTOPIA with data from SPOT (System for Priority and Optimisation of Traffic). UTOPIA was specifically designed to give priority to public transport which SPOT provides [9].

2.1.4 Smart Traffic

Smart Traffic is the software package created by Sweco to intelligently control traffic lights at an intersection. As the more advanced methods discussed previously, Smart Traffic makes use of real-time information from detection loops. In addition to this Smart Traffic combines and makes use of several other data sources of which floating car data (FCD) is the main data source. FCD is broadcasted by individual vehicles and contains information on the position and speed of the vehicle [12]. This real-time data, from detection loops and FCD, is used to capture the current traffic image. Based on this image and the stage Smart Traffic predicts the future positions of vehicles using microsimulation model SUMO and calculates the delay and number of stops per vehicle.

Due to the large number of stages at a given junction and the time-consuming computational complexity of SUMO, Smart Traffic currently simulates only four stages, where every signal group gives a green signal in exactly one stage and red in all others. We will refer to these simulated stages as schedules. The schedules contain information on which traffic lights are scheduled to turn green at which specific times.

We will now describe the way Smart Traffic operates. Smart Traffic consists of four modules: Monitoring, Forecasting, Control and Communications. The Control module is the main loop which communicates with all other modules. The loop starts with Control asking a snapshot from the Monitoring module. Monitoring is responsible for capturing the current traffic image. It does this based on historic and actual data, such as FCD and data from detection loops. The snapshot created by Monitoring is then sent to Forecasting together with a schedule. Forecasting predicts the position of the vehicles under the conditions of the schedule and calculates the delay and number of stops for each vehicle. These results get sent back to Control. Control sends the snapshot created by Monitoring and a schedule to Forecasting four times each with a different schedule. Finally, based on the results of the four simulations, Control calculates the delay and number of stops for all stages and optimises over these results. The optimal stage is then sent to Communications which is responsible for controlling the actual traffic lights.

Both the Monitoring module and Forecasting module make use of microsimulation model SUMO.

2.2 Discrete Event Simulation

Currently, Smart Traffic uses the microsimulation model SUMO to predict the delay of vehicle at an intersection. Due the detailing in the microsimulation model of SUMO, the model is not suitable for the objective of Sweco, which is to control a network of junctions and predict traffic over a longer period of time. In this thesis we consider a discrete event simulation as a replacement for SUMO. We describe how a general discrete event simulation (DES) works and the main differences between microsimulation models and discrete event models.

A discrete event simulation models the system as a sequence of discrete events in time. Every event has a specific (predicted) time at which it takes place and a type. The type of event determines the changes the system undergoes. Additionally, the event may contain information on the specific entities involved, for instance if the event only concerns a single customer, this customer may be added to the event.

All predicted events are placed in chronologically ordered list called the Future Event Set (FES). During each step of the simulation the first event, i.e. the event most recent in time, is removed from the FES. The time of the simulation is updated to the time of this event and the event is executed. Based on the type of event the state of the system changes for the relevant entities involved. During the event, other events may be scheduled. These new events will also be placed in the FES. After executing the event, the simulation will jump to the next event. This is again the event most recent in time. The simulation continues until a certain preset time horizon is reached

One of the main differences between DES and SUMO is the time advancement method. SUMO uses synchronous time advancement. This means that the system gets updated at regular time points. Events which take place between these two time points will be executed at either of the two time points. SUMO updates the entire system every second. This is computationally expensive, since for every second the entire state of the system has to be calculated. DES, on the other hand, uses asynchronous time advancement. Rather than updating the entire system at regular time points, parts of the system get updated at a time point at which an event takes place. This is an efficient way of modelling discrete event systems, as we only need to calculate the state of the system, when a significant chance takes place.

Another difference between DES and SUMO is that in DES we only take into consideration the relevant properties. The extensive detailing used by SUMO and other microsimulation models, e.g. the vehicle to vehicle interactions, are often unnecessary. For instance, if we wish to determine the length of a queue, in terms of the number of vehicles, we do not need to know how far the vehicles are from the queue, but only when and if they are in the queue. By simulating two events for each vehicle, one indicating an arrival in the queue and one indicating a departure from the queue, we are thus able to obtain all information needed, without simulating the trajectory of each vehicle second by second. This makes the simulation much less computationally expensive.

A more detailed description on DES can be found in Introduction to Discrete Event Systems by Cassandras and Lafortune [13]. Discrete event simulations are used for a wide variety of applications, from health care services to manufacturing [14][15]. In this thesis we will consider the arrival and departure of vehicles at a signalised intersection as a discrete event system.

3 Implementation discrete event simulation

In this section we implement a discrete event simulation as a replacement of the Forecasting module of Smart Traffic. The Forecasting module predicts the delay and number of stops per vehicle based on a snapshot created by the Monitoring module and the schedule created by Control. Both the Monitoring module and the Forecasting module make use of SUMO. We do not consider the Monitoring module, as it runs in real-time and thus is less suitable to be replaced by a discrete event model.

To validate the model we require access to real-life data to compare the calculated delay and number of stops to the actual delay and number of stops. As we do not have access to this data we will make use of Vissim. PTV Vissim, is a microsimulation traffic flow model designed by PTV Planung Transport Verkehr AG. Similarly to SUMO, Vissim models each entity individually and simulates complex vehicle-to-vehicle interactions [16]. We will validate and calibrate our discrete event model using Vissim, which will function as a simulated version of reality. The decision to use Vissim for this propose was based on its realism and ease of use. Furthermore, Sweco currently already makes use of Vissim to calibrate their SUMO model.

3.1 Assumptions

Before we describe the model we first give the main model assumptions:

- Vehicles are either passenger cars or heavy goods vehicles (HGV). We do not consider busses, trams, cyclists or pedestrians.
- All road users obey traffic rules, e.g. road users will not run a red light.
- All signal groups are non-conflicting. In real-life conflicting signal groups may be given green simultaneously, e.g. vehicles turning right may be given green at the same time as cyclists going straight ahead. The vehicles must then yield to the cyclists. We assume that no such situation occurs in our model and that the departure of a vehicle is not hindered by the presence of vehicles at another signal group.
- Road users may only be assigned to a single signal group and may not change between signal groups.
- No additional road users enter the system during simulation. We only consider the delay and number of stops of vehicles present in the snapshot created by Monitoring.
- All input information is correct. We assume all information received by Forecasting from Control is correct.

In the subsequent we use the terms vehicle and road user interchangeably.

3.2 Model description

We model a single signalised intersection as a discrete event system. For a detailed explanation of a discrete event simulation we refer back to Section 2.2. A discrete event system is completely determined by its events. We define the following type of events:

- arrival_at_queue: This event signals an arrival of a vehicle at the queue or the stop line.
- departure_from_queue: This event signals that a vehicle wishes to depart from the queue. If the traffic light is green or amber, the vehicle succeeds and departs the queue. If the traffic light is red, then the vehicle remains in the queue.
- trafficlight_to_red: This event changes the traffic light colour to red.
- trafficlight_to_amber: This event changes the traffic light colour to amber.
- trafficlight_to_green: This event changes the traffic light colour to green.
- register_results: This event calculates the delay and number of stops per road user and writes these results into an output file.

Every event in the simulation has a predicted time at which it takes place, a type and a signal group. The arrival_at_queue and departure_from_queue events also have a road user associated with the event. Additionally, for our simulation we require a stop_simulation event, which prevents the simulation from continuing beyond the desired time horizon and prevents the program from ending due to an empty FES.

The SUMO model currently used by Sweco outputs the the delay and the number of stop per vehicle for all signal groups at timestamps $t=0, \ldots, 25$. As Sweco wishes to keep the Control module the exact same, the output produced by our model has to be similar to the output of the SUMO model. Thus the register_result events are executed at the start time of the simulation plus t, with $t \in\{0, \ldots, 25\}$.

The simulation starts by initialising the signal groups, the maximum simulation time and the FES. The model receives input from Control consisting of the snapshot created by Monitoring and the schedule. Based on this input all road users will be imported into the model and all traffic light events will be added to the FES. Additionally, for every road user in the snapshot, we either schedule an arrival_at_queue event for the road user or we place the road user in the queue. If the traffic light is green and there is a queue we also schedule a departure_from_queue event for the first road user in the queue.

After initialisation the main simulation loop starts. During the simulation loop the first event in time will be removed from the FES. The simulation time will be updated to the time of this event and all relevant entities will be updated according to the type of event. Depending on the type of event new events may be scheduled and added to the FES. After executing the event the simulation jumps in time to the next event until the simulation time has reached the maximum simulation time.

In the following subsections we describe the initialisation and main simulation loop of the model in more detail. In Subsection 3.3 we introduce and determine the following four model parameters: service time, the number in line, the speed boundaries and gap.

3.2.1 Initialisation

The simulation starts with the initialisation. First the maximum time of the simulation is initialised and the structure of the junction is read from a file. The
file has for every arrival place the signal groups available from this arrival place. Each signal group in the file has an identity number, a length, a maximum speed limit and a number of lanes. The number of lanes determines the number of queues at a signal group. If a signal group has multiple lanes we "split" the signal group into multiple signal subgroups. Each of these subgroups will be a considered as separate signal group within the program for ease of computation. All signal subgroups have a single queue and the identity number of the "original" signal group.

Then a new future event set is created, the road users are imported and the traffic light events are initialised. The Forecasting module takes the snapshot from Monitoring as input. This snapshot file consists of a list of road users, with the following attributes:

- An identity number
- The time at which the road user arrives in the system. This time may be detected by a detection loop.
- The length of the road user's vehicle.
- The type of road user or vehicle, e.g. passenger car.
- The arrival place. This may be a detection loop id or a lane id.
- The position of the road user in meters from the stop line.
- An array of cumulative probabilities. This array is used to determine to which signal group the road user gets assigned. The length of the array is the amount of signal groups available to this road user.
- The current speed of the vehicle.
- The desired speed of the road user. The desired speed is an attribute in Vissim and is required to make an accurate comparison between the Vissim delay and the delay calculated by our discrete event model.
- A number denoting the position of the vehicle in the queue, i.e. what number in line the vehicle is.

For every road user in the file we determine the signal group to which it belongs. To do so we use the known arrival place of the road user and the array of cumulative probabilities. There are a number of signal groups available to the road user from its arrival place. The array of cumulative probabilities determines how likely it is a road user gets assigned to a certain available signal group. Assigning a road user to a signal group is done by drawing a random number between 0 and 1 and comparing this to the array of probabilities. If the signal group has multiple lanes we assign the road user to the signal subgroup with the least amount of vehicles.

After assigning the road user to a signal (sub)group we check if the signal group has a queue. We assume the signal group has a queue if at least one of the road users assigned to the signal group has a speed less than $10 \mathrm{~km} / \mathrm{h}$.

We will briefly explain this assumption. In the simulation we make use of two speed boundaries. A road user approaching the back of the queue will be considered in the queue if they are travelling at a speed of less than $5 \mathrm{~km} / \mathrm{h}$ and a road user at the front of the queue will be considered leaving the queue if they are travelling at a speed of more than $10 \mathrm{~km} / \mathrm{h}$. For an explanation on the values of these speed boundaries we refer to Section 3.3. We will assume
that the first road user travelling at a speed less than $10 \mathrm{~km} / \mathrm{h}$ is in the process of leaving the queue. It is possible that this road user is not in the process of leaving the queue, but rather decelerating to become the first road user in the queue. However, putting this road user in the queue early will influence the simulation less than falsely assuming a road user is not in the process of leaving the queue.

For every signal group $s g$ we thus have one of the two following cases:

- The signal (sub)group has a queue. The first road user assigned to the signal (sub)group, $r u$, gets added to the queue at signal (sub)group $s g$ and a stop is added to the number of stops of road user ru. The position of the front of the queue is updated to the position of $r u$ and the position of the back of the queue is updated to the position of $r u$ plus the length of $r u$. We also check if $r u$ is the first road user travelling at a speed less than $10 \mathrm{~km} / \mathrm{h}$. If the signal group is green then a departure_from_queue event is scheduled at the current simulation time t for road user $r u$.
For all other road users assigned to $s g$ we check if they are in the queue. The queue is defined by the speed boundaries (as explained in Section 3.3). The first vehicle travelling at a speed less than $10 \mathrm{~km} / \mathrm{h}$, if this is not $r u$, will be added to the queue. All vehicles ahead of this vehicle will also be added to the queue, as these road users were in the queue prior to the snapshot. All vehicles behind the first vehicle travelling at a speed less than $10 \mathrm{~km} / \mathrm{h}$ will be added to the queue if they are travelling at a speed of less than $5 \mathrm{~km} / \mathrm{h}$. Every time a road user is added to the queue we update the position of the back of the queue by adding the length of the vehicle of the road user and the variable gap. Similarly, if during simulation a road user is removed from the queue we update the position of the front of the queue by adding the length of the vehicle of the road user and the variable gap. The first road user in the signal group, ru, will determine the number in line for all following road users. For all road users in the queue, we update the number in line to correspond with the number in line of $r u$, i.e. if the road user is one place behind the $r u$ the number is line of this road user is the number in line of $r u$ plus one. We also add a stop to the number of stops for all road users in the queue.
For all road users not in the queue we schedule an arrival_at_queue event. The time of the arrival is calculated as the distance which has to be travelled by the road user divided by the maximum speed. The distance which has to be travelled by the road user is the position of the vehicle minus the length of all vehicles ahead and gaps between the vehicles ahead.
- The signal (sub)group does not have a queue. If $s g$ does not have a queue we schedule arrival_at_queue events for all road users assigned to $s g$. The time of the arrival is calculated as the distance which has to be travelled by the road user divided by the maximum speed. The distance which has to be travelled by the road user is the position of the vehicle minus the length of all vehicles ahead and gaps between the vehicles ahead.

After importing the road users, we initialise the module. For all signal (sub)groups the traffic light is set to the initial colour, i.e. the colour at the start time of the simulation, and all traffic light events are scheduled.

After scheduling the register_results events and stop_simulation event the main simulation loop of the program is started.

3.2.2 Main simulation

In this subsection we describe the main simulation loop. The simulation loop starts by removing the first event in time, e, from the FES. The (current) time of the simulation, t, is updated to the time of event e. The type of event e determines which of the following will take place

- arrival_at_queue: The road user, $r u$, arrives at the queue at signal (sub)group sg.
If there are no vehicles in the queue at $s g$ and the traffic light is green or amber, the road user can directly drive through. The road user, ru, will leave the system, i.e. pass the stopline, and its departure time, t, is registered.
If the traffic light is red and there are no vehicles in the queue, arriving road user $r u$ is the first vehicle in the queue. Thus we update the position in meters from the stop line of $r u$ to zero and the position in number of vehicles in line of $r u$ to one. Road user $r u$ gets added to the queue at signal (sub)group $s g$ and a stop is added to the number of stops of road user $r u$.

If there is a queue, the road user gets placed in the queue behind the last vehicle, thus we do the following:

- Update the position of road user ru in meters to the position of the back of the queue plus the variable $g a p$, which denotes the distance in meter between two road users waiting in the queue.
- Get the road user, last_ru, which is last in the queue at signal (sub)group $s g$.
- Update the number in line of road user $r u$ to the number in line of road user last_ru plus one.
- Add the road user ru to the queue.
- Add a stop to the number of stops of road user ru.
- departure_from_queue: Road user ru attempts to leave the queue at signal (sub)group $s g$.
If the traffic light is green or amber, then the road user succeeds and passes the stop line. The road user is removed from the queue, leaves the system and their departure time, t, is registered. Then we check if there are still other road users waiting in the queue. If this is the case we get the first road user in the queue, next_ru, and schedule a departure_from_queue event for road user next_ru. This event will take place at time t plus the service time of road user next_ru. The service times are determined in Section 3.3. Else, if the queue is empty, we reset the position of the back and front of the queue in meters from the stop line to zero.

If the traffic light is red, then road user $r u$ may not leave the system, as the traffic light will have turned red before all road users in the queue
could leave the system. We initialise the variable position to zero and do the following for i from 1 to the number of road users in the queue at $s g$:

- Get i 'th road user in the queue: ru.
- Update the position of road user ru in meters to the variable position.
- Update the position of road user $r u$ in number of vehicles in line to i plus one.
- Add a stop to the number of stops of road user ru.
- Update the variable position by adding the length of (the vehicle of) road user $r u$ plus the variable gap to it.
- trafficlight_to_red: Change the traffic light at signal (sub)group sg to red. Reset the position of the front and back of the queue to, respectively, zero and the length of the queue (in meters). The length of the queue is defined as the length of all vehicles in the queue plus the distance between these vehicles.
- trafficlight_to_amber: Change the traffic light at signal (sub)group sg to amber.
- trafficlight_to_green: Change the traffic light at signal (sub)group $s g$ to green. If there are road users waiting in the queue in front of the traffic light, then we get the first road user in the queue, next_ru, and schedule a departure_from_queue event for road user next_ru. This event will take place at time t plus the service time of road user next_ru.
- register_results: For every road user we calculate its delay. The delay and the number of stops of the road user is then written into an output file. For a detailed explanation on how this delay is calculated we refer to Section 3.2.3.

After executing event e the next event is removed from the FES and executed. The simulation ends when the simulation time exceeds the maximum simulation time. The structure of the simulation loop can be seen in Algorithm 1.

The output of the simulation is a file containing the delay and number of stops of every vehicle sorted by time stamp (of the register_result event) and signal group.

3.2.3 Calculating delay

During the register_results event the delay per road user is calculated and written into an output file together with the number of stops per road user. In this section we explain how this delay is calculated.

We define the delay as the difference between the total time the road user has spent in the system minus the minimum time the road user is required to spend in the system in the most optimal situation. The most optimal situation denotes a situation in which there are no other vehicles present, the road user moves at maximum speed and the traffic light is green. The total time the road user has spent in the system is referred to as the sojourn time. We refer to the minimum time the road user is required to spend in the system in the most optimal situation as the minimum travel time. Thus the delay is defined as the

```
Algorithm 1 Main simulation
    Create new FES
    Initialize traffic light colours and add traffic light events to FES
    Import all road users
    Initialise time \(t\)
    Schedule register_results events
    Schedule stop_simulation event (at maxTime)
    while \(t<\) maxTime do
        Get the next event \(e\) from FES
        Update the time \(t\)
        if type of \(e=\) arrival_at_queue then
            Get signal group \(s g\) of event \(e\)
            Get road user ru of event \(e\)
            if the traffic light is green or amber and the queue is empty at \(s g\) then
                    Register departure time \(t\) of road user \(r u\)
            else if the traffic light is red and the queue is empty at \(s g\) then
                    Update position of road user \(r u\) to 0
                    Update the number in line of \(r u\) to 1
                    Add road user \(r u\) to queue at \(s g\)
                    Add a stop to road user ru
            else
                    Update the position of road user \(r u\) (to position of the
                        back of the queue plus the variable gap)
                            Get last road user in the queue last_ru
                            Update number in line of \(r u\) to number in line of last_ru +1
                    Add road user \(r u\) to the queue
                    Add a stop to road user ru
            end if
        end if
        if type of \(e=\) departure_from_queue then
            Get signal group \(s g\) of event \(e\)
            if the traffic light is green or amber at \(s g\) then
                    Get road user ru of event \(e\)
                        Remove road user \(r u\) from the queue at \(s g\)
                    Register departure time \(t\) of road user \(r u\)
                    if there are still road users in the queue at \(s g\) then
                            Get next road user in the queue next_ru
                            Schedule departure_from_queue for next_ru at \(t+\) service time
                                of next_ru
                    else
                            Reset position of the front and the back of the queue to 0
                    end if
            else
                    for all road users in the queue at \(s g\) do
                                    Update position and number in line
                                    Add extra stop
                    end for
            end if
        end if
```

```
    if type of e = trafficlight_to_red then
        Get signal group sg of event e
        Change traffic light to red for signal group sg
        Reset the position of the front of the queue to 0 and the position
            of the back of the queue to the current length of the queue (in
            meters)
    end if
    if type of e= trafficlight_to_amber then
        Get signal group sg of event e
        Change traffic light to amber for signal group sg
    end if
    if type of e=trafficlight_to_green then
        Get signal group sg of event e
        Change traffic light to green for signal group sg
        if there are road users waiting in the queue at }sg\mathrm{ then
            Get the first road user in the queue next_ru
            Schedule a departure_from_queue event for road user next_ru
                    at time t+ service time of road user next_ru
        end if
    end if
    if type of e= register_results then
        for every signal group do
            Get the signal group sg
            for every road user associated with signal group sg}\mathrm{ do
                Get the road user ru
                if road user ru has left the system then
                    Calculate the delay of road user ru using the departure time
                    else
                            if road user ru is in the queue then
                            Calculate the delay of road user ru using current time t
                                    and position of road user ru
                    else
                            Calculate the delay by separating the delay into two
                                    sections from the arrival time to the start time and
                                    from the start time to the current time t and
                                    estimating the distance road user ru has travelled
                    end if
                    end if
                    Store delay and number of stops of ru in output file
            end for
        end for
    end if
end while
return results
```

sojourn time minus the minimum travel time. As the delay is always greater than or equal to zero we take the maximum of 0 and the calculated delay. We consider three different situations:

- The road user has left the system. When a road user leaves the system, their departure time is registered. The sojourn time of this road user is thus their departure time minus the arrival time. The minimum travel time of the road user is calculated by dividing the length of the lane, which is the distance the road user has travelled, by the maximum speed allowed on the lane.
- The road user is in the queue. If the road user is still in a queue, the sojourn time is defined as the current simulation time minus the arrival time. The minimum travel time is calculated by first determining the distance the road user has travelled up until then, which is the length of the lane minus the position of the road user, and then dividing this distance by the maximum speed allowed on the lane. The position of the road user is the last known position in meters from the stop line, thus, in case the road user has travelled since the last time the position was updated, the delay of the road user may be overestimated.
- The road user is in the system, but not in the queue. If the road user is not in the queue we separate the calculation of the delay into two parts. The first part is the delay from the arrival time to the start time of the simulation. The second part is the delay from the start time of the simulation to the current time of the simulation. Adding the two parts of the delay then gives the total delay for this road user. Taking the maximum over 0 and the calculated delay happens only after the two parts of the delay are summed.

The first part of the delay we can calculate exactly. The sojourn time is defined as the start time minus the arrival time and the minimum travel time is defined as the distance travelled by the road user divided by the maximum speed allowed on the lane. The distance travelled by the road user is known exactly and is the length of the lane minus the position of the road user.
For the second part of the delay we define the sojourn time as the current simulation time minus the start time. The distance travelled by the road user is then estimated as the sojourn time times the speed of the road user at the start of the simulation. The minimum travel time is then again the distance travelled by the road user divided by the maximum speed allowed on the lane.

In our simulation, when calculating the delay, we replace all instances of the maximum speed allowed on the lane by the desired speed of the road user. The desired speed is an attribute given to the road user in Vissim. Vissim uses this attribute rather than the maximum speed to calculate the delay. As we wish to compare the delay calculated by our program with the delay calculated in Vissim, the manner in which the delay is calculated has to be the exact same.

3.3 Parameters

In this subsection we describe the model parameters. For each of the parameters we then determine its value. In the model described above we have the following parameters which need to be determined:

- Service time: The position of the vehicles in the queue is not static. When the vehicle in front of the queue starts their departure, vehicles further back may start accelerating and thus change position. We therefore define the service time of a vehicle as the required travel time from becoming the first in the queue to passing the stop line. As vehicles at the back of the queue will have had a longer time to accelerate, the service time is dependent on the original number in line of the vehicle. A vehicle approaching a green light without the presence of a queue will have a service time of zero.
- The number in line: As the service time is dependent on the original position of the vehicle in the queue, in terms of the number of vehicles in the queue, we require an additional variable indicating what number in line the vehicle is. During the simulation we are able to keep track of the number in line by simply assigning either a one, if the arriving vehicle is first in the queue, or the number in line of the vehicle ahead plus one, to the vehicle arriving in the queue. When the traffic light is red we reset the number in line for all vehicles still in the queue. During initialisation we do not have access to prior information, thus we need to estimate the original position for all vehicles in the queue.
- The speed boundaries: During initialisation, for every road user, it has to be determined whether or not they are in the queue. We use speed boundaries for this, i.e. below a certain speed the road user is assumed to be in the queue. We differentiate two boundaries: the speed with which road user arrive at the queue and the speed with which road users depart from the queue. These boundaries may be the same value. The speed boundaries may be determined by simulation. We observe which boundaries give the best result, i.e. for which boundaries the delay calculated by our model is closest to the delay calculated by Vissim, and choose this boundary. As fitting the speed boundary to the simulation may lead to overfitting we consider the same speed boundaries as in Vissim.
- Gap: The variable gap is defined as the average distance between two vehicles waiting in the queue. When the road users are positioned in the queue, this variable is necessary to estimate the position of the vehicles in meters from the stop line.

As we do not have access to real life data we use the data from Vissim to determine the parameter values of our discrete event model. We create a basic model in Vissim with a single lane and traffic light. We let the vehicles form a queue in front of the traffic light before turning the traffic light to green and registering the relevant attributes.

	1	2	3	4	5	6	7	8
Car	1.106	2.719	2.106	1.841	1.836	1.726	1.711	1.675
HGV	1.164	3.845	2.840	2.556	2.529	2.377	2.354	2.286

Table 1: The mean service times for passenger cars and heavy goods vehicles based on their position in the queue.

To determine the service times of the road users we register the time at which they pass the stop line. For the first road user in the queue we register the time from the traffic light turning green to the passing of the stop line. For all other vehicles we register the time which passes between two vehicles passing the stop line. We consider two types of vehicles, passenger cars and HGV (heavy goods vehicles). As the service time of the road user is dependent on the type of vehicle, we calculate the service times twice, once using only passenger cars and once using only HGV. We do not consider a mixture of vehicles as the type of the vehicle and its number in line are the main factors determining its service time. Furthermore, if we were to consider (all) vehicles ahead of a road user this would be too computationally expensive, as the number of possible combinations of their types would be too large. In Table 1 we see the mean service times after running the basic simulation in Vissim 100 times for every vehicle type. In Figure 2 and 3 the boxplots of the service times can be seen.

Figure 2: Boxplot of the service times for passenger cars after 100 runs of the basic Vissim model.

Figure 3: Boxplot of the service times for HGV after 100 runs of the basic Vissim model.

From the results of the service times we can conclude that the position of the road user in the queue, i.e. what number in line the road user is, is a relevant attribute in determining the service time. A snapshot created by Monitoring is used during initialisation. At the moment of the snapshot road users in front of the queue may have already passed the stop line, thus the original number in line of the road user has to be estimated. We estimate the original number in line based on the position and speed of the vehicle using a decision tree. We run the basic Vissim simulation 100 times with a mixture of passenger cars and HGV and partition the data into training and testing data. We train the decision tree in R using the speed and position of every vehicle in the queue at every simulation second, considering only training data acquired after the traffic light has turned green. Using the testing data we determine that the decision tree we obtain is 82.3% accurate, meaning that the prediction of the number in line of our decision tree is equal to the acual number in line in 82.3% of the cases. In Table 2 we see the prediction of the number in line of our decision tree compared to the actual number in line.

The third parameter, the speed boundaries, are required to determine whether a road user is in the queue at initialisation. We run the basic Vissim model 100 times with a mixture of passenger cars and HGV. The Vissim model has an attribute inQueue, which indicates if a vehicle is in the queue. For every road user, we consider the first instance that a road user is considered in the queue and the last instance that a road user is in the queue and examine the speed at these moments. The average speed at the moment a road user is first considered in the queue by Vissim is $4.71 \mathrm{~km} / \mathrm{h}$. The minimum speed is $2.42 \mathrm{~km} / \mathrm{h}$ and the maximum speed is $5.00 \mathrm{~km} / \mathrm{h}$. From this we conclude that a vehicle arriving at

pred. actual	1	2	3	4	5	6	7	8
1	855	64	1	1	0	0	0	0
2	80	1125	92	7	0	0	0	0
3	8	128	1340	141	20	0	1	0
4	4	6	109	1585	192	18	11	7
5	0	1	22	138	1876	189	50	18
6	0	1	6	22	230	1985	315	72
7	0	2	4	6	68	195	2241	454
8	0	0	0	4	16	48	239	2904

Table 2: Confusion matrix for the prediction of the number in line.
the queue is considered part of the queue when its speed is less than $5 \mathrm{~km} / \mathrm{h}$. Similarly, we determine when a vehicle is last considered to be in the queue and find an average of $9.51 \mathrm{~km} / \mathrm{h}$ and a minimum of $8.91 \mathrm{~km} / \mathrm{h}$ and a maximum of $10.00 \mathrm{~km} / \mathrm{h}$. Thus we conclude that a vehicle has left the queue when its speed is higher than $10.00 \mathrm{~km} / \mathrm{h}$.

Figure 4: Boxplot of the variable Gap after running the basic Vissim model 100 times with a mixture of passenger cars and HGV.

Finally, to determine the parameter gap, we again run the basic Vissim simulation 100 times with a mixture of passenger cars and HGV. We consider only vehicles which are standing still and determine the gap between two consecutive vehicles. The resulting boxplot can be seen in Figure 4. Due to the stochastic nature of the Vissim model the gap between two vehicles varies from 1 meter to 3.5 meters. In our model we will implement the average value of the gap, which is 2.010249 meter.

4 Results discrete event simulation

In this section we discuss the results of the discrete event simulation. We will focus on the difference in the calculated delay of our model and the delay in the Vissim model, which functions as a representation of reality. We refer to Appendix A.1.3 for an example output of our model for a single run.

We test our model on a basic junction given to us by Sweco. In Figures 5 and 6 we can see the junction and its signal groups. The junction has four arrival places. Two arrival places at approximately 100 meters and two arrival place at approximately 50 meters. From every arrival place a road user may be assigned to one of three signal groups. As we wish to accurately compare our calculated delay with the delay from Vissim, we assume that the signal group to which a road user get assigned is known. Thus every road user will get assigned to the same signal group in our discrete event simulation as in the Vissim simulation.

We consider a low traffic scenario and a high traffic scenario. In the low traffic scenario road users arrive at every arrival place with a rate of 300 vehicles per hour. Thus the total arrival rate at the junction is 1200 vehicles per hour. In the high traffic scenario the vehicles arrival at a rate of 800 vehicles per hour, thus the total arrival rate at the junction is 3200 vehicles per hour. For both scenarios we consider three signal timing plans: one with a cycle time of 40 seconds, one with a cycle time of 60 seconds and one with a cycle time of 80 seconds. The signal timing plan for a cycle of 60 seconds can be see in Table 3. The signal timing plan for a cycle of 40 or 80 seconds respectively decreases or increases the amount of green time for every signal group by 5 seconds.

Figure 5: Screenshot of the Vissim model showing the structure of the junction and its arrival places.

Figure 6: Screenshot of the Vissim model showing a close up of the junction used to test our model, with its signal groups.

	Start times		
Signal Groups	Green	Amber	Red
1,2 and 3	0	12	15
4,5 and 6	15	27	30
7,8 and 9	30	42	45
10,11 and 12	45	57	60

Table 3: The signal timing plan for a cycle of 60 seconds.
We run the Vissim simulation 100 times for each traffic scenario and cycle time combination. The Vissim simulation lasts 10 minutes and we randomly choose a simulation second from which we obtain the snapshot. We then run our discrete event simulation for this snapshot and obtain the delay for every road user in the snapshot. We compare this delay with the delay in Vissim. A negative difference signifies an underestimation of the actual delay and a positive difference signifies an overestimation of the actual delay. We sum all the differences and average this over the road users to obtain the average difference per road user. We are also interested in the absolute difference in delay, as a (large) negative difference and a (large) positive difference may cancel each other out, which gives the idea that our simulation is accurate, when it is not. The absolute difference is obtained by taking the absolute value of the difference. We sum all the absolute differences and average this over the road users to obtain the average absolute difference per road user.

(b) Average absolute difference in delay per road user.

Figure 7: The average difference (7a) and average absolute difference (7b) per road user between the calculated delay of our discrete event model and the delay in Vissim for each timestamp over 100 snapshots with low traffic (300 veh/h per arrival place).

Figure 8: Boxplots of the average difference (8a) and average absolute difference (8b) per road user between the calculated delay of our discrete event model and the delay in Vissim for 100 snapshots with low traffic (300 veh/h per arrival place) after all road users have left the system.

We first look at the results for the low traffic scenario, where road users arrive at every arrival place with a rate of 300 vehicles per hour. In Figure 7 we can see the average difference and average absolute difference per road user for every timestamp averaged over 100 snapshots. As can be seen in Subfigure 7a we underestimate the delay at the beginning of the simulation. After

4 seconds the difference in delay increases again indicating that we start to underestimate the delay less. For a cycle time of 60 and 80 seconds we start to overestimate the delay after approximately 12 seconds. For a cycle time of 40 seconds the difference decreases again after around 12 seconds signifying an increasing underestimation of the delay.

The delay in our model is calculated in three separate ways depending on the situation the road user is in. At the beginning of the simulation a significant part of the road users will be in the system, but not in the queue. As the maximum length of a lane is approximately 100 meters and the maximum speed on the lane is $50 \mathrm{~km} / \mathrm{h}$, a road user at the start of the lane will arrive at the queue or stop line in less than 8 seconds. The underestimation at the beginning may thus be caused by the delay calculation for road users not yet in the queue. The underestimation of the delay after 12 seconds, in case the cycle time is 40 seconds, may be due to road users passing the intersection in our model, while the road users in reality do not pass the junction. This happens due to the due to the variability of the service times in Vissim, which can be seen in Figures 2 and 3 in Section 3.3, and the possible faulty estimation of the number in line. We note that Figures 2 and 3 show that most boxplots skew to higher values, indicating that the service times may be much larger than the average. This will lead to road users passing the intersection in our model, due to underestimation of the service time, when in reality they do not pass the intersection.

From Subfigure 7b we conclude that our model is more accurate for higher cycle times. Big differences in delay between the Vissim model and our discrete event model happen when our model predicts a road user passing the intersection, when it should stop in front of a red light, or when our model predicts a road user waiting in front of a red light, when it should pass the intersection. As described before the this happens due to the due to the variability of the service times in Vissim and the possible faulty estimation of the number in line. When the cycle length is long, and thus the green time is long, the variability of the service times has less effect, as all road users will have the chance to pass the intersection. In Figure 8 the boxplots of the average difference and average absolute difference per road user after all road user have left the system is shown. From these boxplots we may conclude that the results show more variability when the cycle time is shorter.

In Table 4 the average difference and average absolute difference per road user over 100 snapshots is shown after all road users have left the system. We note that the average difference is always less than 1 second per road user.

Cycle time	Average difference per road user	Average absolute difference per road user
40	-0.403	0.920
60	-0.0190	0.542
80	0.0795	0.329

Table 4: The average difference and average absolute difference in delay between our discrete event model and Vissim per road user over 100 snapshots with low traffic (300 veh/h per arrival place) after all road users have left the system.

(b) Average absolute difference in delay per road user.

Figure 9: The average difference (9a) and average absolute difference (9b) per road user between the calculated delay of our discrete event model and the delay in Vissim for each timestamp over 100 snapshots with high traffic (800 veh/h per arrival place).

We now look at the high traffic scenario, in which road users arrive at every arrival place with a rate of 800 vehicles per hour, and compare the results with the low traffic scenario. In Figure 9a the average difference per road user for each timestamp is shown. We note that for a cycle time of 40 or 60 seconds we tend to underestimate the delay. For a cycle time of 80 seconds we overestimate
the delay. In Figure 9b the average absolute difference per road user for each timestamp is shown and we see that our model, as in the low traffic scenario, is most accurate for a cycle time of 80 seconds.

(b) Average absolute difference in delay per road user.

Figure 10: Boxplots of the average difference (10a) and average absolute difference (10b) per road user between the calculated delay of our discrete event model and the delay in Vissim for 100 snapshots with high traffic ($800 \mathrm{veh} / \mathrm{h}$ per arrival place) after all road users have left the system.

In Figure 10 we see that the variability of the results for high traffic is, as
was the case in low traffic, highest when the cycle time is smaller. As expected the variability is larger under high traffic than low traffic, as the high traffic scenario has more road users.

Cycle time	Average difference per road user	Average absolute difference per road user
40	-2.466	5.571
60	-1.134	2.483
80	-0.0402	1.220

Table 5: The average difference and average absolute difference in delay between our discrete event model and Vissim per road user over 100 snapshots with high traffic (800 veh/h per arrival place) after all road users have left the system.

In Table 5 the average difference and average absolute difference per road user over 100 snapshots is shown after all road users have left the system. The average absolute difference per road user is much larger in the high traffic scenario than in the low traffic scenario. This is particularly visible, when the cycle time is 40 seconds. As described before this is caused by our model simulating vehicles passing the stop line, when in reality the road users either choose to not pass the stop line, when the traffic light is amber, or may not pass the stop line due to road users ahead driving slower than anticipated. As the high traffic scenario has more road users, the number of road users waiting behind other road users in line is higher than in the low traffic scenario. Hence, the effect of the variability of the service times is more pronounced.

We note that the results in Table 4 and Table 5 do not have much relevance to Sweco, as the delay in Smart Traffic is calculated every second for 25 seconds after the start time. The delay after 25 seconds is not taken into consideration. Thus if we focus only on the relevant difference in delay for Sweco, we note that the maximum absolute difference in delay is less than 1.5 seconds per road user for both scenarios.

Another relevant performance measure for Sweco is the running time of the computation, as this is one of the key problems of SUMO. We observe that the average running time of our model for 100 runs is 1.416 seconds under high traffic and 0.875 seconds under low traffic.

In the previous examples we considered a mixture of passenger cars and HGV. We now briefly look at the results in case we only have passenger cars or only HGV. We run the simulation 100 times for only passenger cars and 100 times for only HGV. Each with a cycle time of 60 and an arrival rate of 500 vehicles per hour per arrival place. In Figure 11 the result of the simulations is shown. We note that the simulation is more accurate for only passenger cars. This may be due to the service times of the HGV showing more variance (see Figure 3). This makes it more likely for vehicles to pass the intersection in our model than in Vissim, causing the underestimation of the delay for HGV. We used a similar reasoning to conclude that our model is more accurate for higher cycle times. Another reason for the inaccuracy, in case we only have HGV, may be the calculation of the arrival at queue time. As HGV have a longer breaking distance, HGV will arrive at the queue later than passenger cars and have a larger delay than passenger cars over the same distance.

(b) Average absolute difference in delay per road user.

Figure 11: The average difference (11a) and average absolute difference (11b) per road user between the calculated delay of our discrete event model and the delay in Vissim for each timestamp over 100 snapshots with 500 veh/h per arrival place and cycle time 60 .

5 Polling model

In Section 2.1.4 we described the general working of Smart Traffic. One of the key challenges concerning Smart Traffic is the lack of information on the routing of vehicles. Currently, the routing of the vehicle is guessed based on a probability distribution. This means that an assumption on the routing of the vehicle is made. This assumption is extremely relevant for the performance of Smart Traffic, since it will calculate the delay of the vehicle based on the assumed direction of travel. Furthermore, when new information is provided by detection loops, the routing of the vehicle may be updated in accordance with its new position.

In this part of the thesis we will take a closer look at the effect this lack of routing information has on the performance of Smart Traffic by modelling a signalised intersection as a polling model. The vehicles or customers, as the actors in a queuing model are usually known, in this polling model may leave a queue to join another queue. This mimics the situation in Smart Traffic. When new information is provided on the direction of travel of a vehicle, the vehicle changes position and thus at which signal group or queue it is located.

5.1 Literature

A polling system is a queuing system consisting of a single server attending multiple queues. The server attends a single queue at a time serving the customers in the visited queue. After ending the visit to a queue the server progresses to the next queue. Between two consecutive queue visits the server may incur a switch-over time. A visual representation of a classical polling model can be seen in Figure 12.

Figure 12: Classical polling model.

Polling models were first studied in 1957, where they were used to describe the problem of a single repairman servicing multiple machines in the cotton industry [17]. Now polling models find their application in many areas, from
computer networks to production systems [18] [19]. We refer to [20] and [21] for more extensive overviews on the applicability of polling models.

In general polling models can be used to describe situations in which multiple customer types want to make use of the same common resource which is only available to one type of customer at a time. Traffic at a signalised intersection may thus also be described as a polling model. Vehicles from different directions want to make use of the same part of the road. The traffic light will function as the server, where giving green to a certain direction can be seen as giving service to this direction. Vehicles which arrive at a red traffic light will form a queue. When the traffic light turns green, the vehicles depart from the queue one-byone. The time it takes for a vehicle to leave the queue may be considered the service time of the vehicle. The clearance time of the intersection or intergreen time can be considered the switch-over time.

Among others, polling models can be characterised by the following aspects:

- Arrival process: The arrival process describes the manner in which customers arrive at the queue. The usual assumption is that the interarrival times, i.e. the time between two arriving customers, are independent and identically distributed. A commonly chosen distribution is the exponential distribution, making the arrival process of customers a Poisson process. In literature various other arrival processes have been studied from Lévy processes to general renewal processes [22][23]. Furthermore, customers may arrive one-by-one or in batches [24] [25].
- The behaviour of customers: Customers waiting in line may grow impatient and leave the queue. In the literature on queuing systems this is referred to as impatience, abandonment or reneging. Polling models with reneging at polling instants, where customers may only abandon queues at the start of a visit or switch-over period, are studied in [26] and [27]. In the following we focus on a polling model in which customer may decide to change queues at polling instances.
- Service process: We usually assume that the service times are i.i.d. distributed and independent from the interarrival and switch-over times. The queuing discipline determines in what order the customers waiting in the queue will be served. Commonly used queuing disciplines are
- First-Come-First-Serve (FCFS)
- Random order
- Last-Come-First-Served (LCFS)
- Priorities (e.g. shortest processing time first)

A classical polling model only consists of a single server, however there have been studies on polling models with multiple servers [28]. Vlasiou and Yechiali consider a polling model with an infinite amount of servers [29]. As with arrivals, customers may depart one-by-one or depart in batches [30].

- The service discipline: One of the most important properties of a polling model is the service discipline, which determines when a server will switch to serve another queue. The polling model may be analysed in an exact
way if the service discipline satisfies the branching property. We describe the branching property in more detail in Section 5.2.1. Common service disciplines are
- exhaustive: The server will leave the current queue if it is empty and it has served all customers.
- gated: The server will only serve the customers which are present at the start of a visit. Customers arriving during the visit will have to wait until the next visit period to be served.
- globally gated: Globally gated is a modification of gated service, introduced in [31]. Under globally gated service the server will only serve customers which are present at the start of a cycle.
- k-limited: The server will leave the current queue if it is empty or if it has served a predefined number of k customers, whichever occurs first.

Both exhaustive service and gated service satisfy the Branching property. Globally gated does not satisfy the Branching property, but does satisfy a weaker property, see [32], which makes the exact analysis of a polling model with globally gated service possible. In the following we will focus on exhaustive and gated service.

- Switch-over process: Between two consecutive queue visits a polling model may incur a switch-over time. A common assumption is that the switchover times are independent from the current state of the system. In [33] the difference between a classical polling model with and without switch-over times is studied.
- Server routing: The server routing describes in which order the server visits the queues. Server routing may be static or dynamic. In a classical polling model we assume a fixed and cyclic visit order. Among others, alternative server routing mechanisms are periodic server routing, described in [34] and Markovian server routing, described in [35].

The focus of the polling model considered in this thesis is on the behaviour of customers. In the subsequent sections we consider a classical polling model with the additional assumption that customers may leave their queue to join another queue.

Before introducing our model in detail, we first describe two other polling models concerning the behaviour of customers, namely the polling model with smart customers as described in [36] and the polling model with reneging as discussed in [26]. The polling model with smart customers studies a polling system in which customers choose to join a queue based on the current position of the server. Then a polling model is obtained with a varying arrival rate in each queue based on the location of the server. A polling model with reneging describes a polling model where customers may choose to abandon the queue at polling instances. In this case, when focusing on the remaining customers only, again a polling system where the arrival rates for each queue depend on the location of the server is obtained. For both systems the cycle time, visit times waiting time distributions and queue length distributions are studied. The analysis of the polling model with smart customers and the polling model with
reneging will serve as a template for our own analysis of the polling model with switching customers.

5.2 Analysis of polling model with switching customers

5.2.1 Model description and notation

We consider a polling model consisting of a single server serving N queues denoted by Q_{1}, \ldots, Q_{N}. We assume that the server visits the queues in cyclic order, thus after the server has finished serving Q_{N} it will start serving Q_{1} again. The visit time of Q_{i}, i.e. the time between the visit beginning and visit ending at Q_{i}, is denoted by V_{i}. Customers of type i arrive to Q_{i} according to a Poisson process with parameter λ_{i}. The customers get served in first-come-first-served (FCFS) order and require a general service time B_{i}. The LaplaceStieltjes transform (LST) of the service time is denoted by \widetilde{B}_{i}. After the server ends its visit to Q_{i} and moves to queue Q_{i+1} the server may incur a switch-over time S_{i} with LST \widetilde{S}_{i}. A cycle consists of all visit times and switch-over times $V_{1}, S_{1}, \ldots, V_{N}, S_{N}$. We assume that all switch-over times, interarrival times and service times are independent of each other.

An important property of a polling model is the service discipline. Every queue has a service discipline, which determines when the server switches position to serve another queue. The tractability of the analysis of a polling model greatly depends on the type of service discipline. Resing [37] shows that if a service discipline satisfies the following property the polling model can be analysed in a rather simple manner:

Property 1 (Branching Property) If the server arrives at Q_{i} to find k_{i} customers there, then during the course of the server's visit, each of these k_{i} customers will effectively be replaced in an i.i.d. manner by a random population having probability generating function (PGF) $h_{i}\left(z_{1}, \ldots, z_{N}\right)$, which can be any N-dimensional PGF.

If every queue in the polling models satisfies this branching property the polling model can be analysed as a Multitype Branching Process (MTBPs) with immigration [37]. Two common service disciplines which satisfy the branching property are gated and exhaustive service. In gated service the server will end its visit to the queue after serving all customers present at the start of the visit period. Customers arriving during the visit period will not be served and will need to wait for the next visit period. In exhaustive service the server will end its visit to the queue when the queue is empty. If the polling model does not satisfy the branching property, it may only be analysed in an analytical manner in a few exceptional cases, e.g. symmetric or two-queue models.

In the following we consider a polling system where customers may change type, i.e. every customer may leave the queue it is currently in to join another queue. We allow customers to only switch queues at the start of a visit or switch-over period, these periods are called polling instances. At the beginning of period $P \in\left\{V_{1}, S_{1}, \ldots, V_{N}, S_{N}\right\}$ a customer i may leave Q_{i} to join Q_{j} with probability $p_{i j}$. The probability that customer i stays in Q_{i} is given by $p_{i i}=$ $1-\sum_{j=1, j \neq i}^{N} p_{i j}$. These probabilities are independent of the position of the server and the current joint queue length.

To analyse this model we use a technique previously used by Boon [26] and artificially split each period $P \in\left\{V_{1}, S_{1}, \ldots, V_{N}, S_{N}\right\}$ in a subperiod a and a subperiod b, thus visit time V_{i} is split into $V_{i a}$ and $V_{i b}$ and switch-over time S_{i} is split into $S_{i a}$ and $S_{i b}$. During $V_{i a}$, right before service starts at Q_{i}, all customers may leave their queue to immediately join another queue. Thus a customer of type i may leave Q_{i} and join Q_{j} with probability $p_{i j}$, while simultaneously a type j customer at Q_{j} may join Q_{i} with probability $p_{j i}$. The customers changing queues happens instantly and does not require any time, therefore $\mathbb{E}\left[V_{i a}\right]=0$. After the customers have changed queues the actual service will take place at Q_{i} during period $V_{i b}$. We thus note that $\mathbb{E}\left[V_{i b}\right]=\mathbb{E}\left[V_{i}\right]$. During $S_{i a}$, right before the beginning of S_{i}, all customers may again leave their queue to immediately join another queue. The actual switch-over time happens during $S_{i b}$, hence $\mathbb{E}\left[S_{i a}\right]=0$ and $\mathbb{E}\left[S_{i b}\right]=\mathbb{E}\left[S_{i}\right]$. The splitting of the visit times and service times into subperiod is necessary, since the queue length differ between the beginning of subperiod a and the beginning of subperiod b.

5.2.2 Stability condition

The model described in the previous section can be viewed as a polling model with varying arrival rates in each queue, depending on the position of the server. This polling model was first discussed by Boxma et al. [36], who referred to this model as a polling model with smart customers. The necessary and sufficient stability condition described by Boxma et al. is that the Perron-Frobenius eigenvalue of the matrix $R-I_{N}$ should be less then 0 , where R is an N by N matrix with elements $\rho_{i j}:=\lambda_{i}^{\left(V_{j}\right)} \mathbb{E}\left[B_{i}\right]$, where $\lambda_{i}^{\left(V_{j}\right)}$ is the effective arrival rate at Q_{i} during V_{j}, and I_{N} is the N by N identity matrix.

In order to determine the stability of the polling system we thus have to calculate $\lambda_{i}^{\left(V_{j}\right)}$. We can define the effective arrival rate at follows

$$
\begin{equation*}
\lambda_{i}^{(P)}=\sum_{k=1}^{N} \lambda_{k} \cdot q_{Q_{k}^{(P)} \rightarrow Q_{i}} \tag{1}
\end{equation*}
$$

where $q_{Q_{k}^{(P)} \rightarrow Q_{i}}$ is the probability of a customer leaving the system at Q_{i}, when it arrived at Q_{k} during a period P, with $P \in\left\{V_{1 b}, S_{1 b}, \ldots, V_{N b}, S_{N b}\right\}$. As $\mathbb{E}\left[V_{i a}\right]=$ $\mathbb{E}\left[S_{i a}\right]=0$ there are no arrivals during subperiod a. Hence, we only look at the arrivals during subperiod b and $\lambda_{i}^{\left(V_{j}\right)}=\lambda_{i}^{\left(V_{j b}\right)}$.

To calculate these probabilities we consider a Markov chain with states $Q_{j}^{\left(V_{i b}\right)}$ and $Q_{j}^{\left(S_{i b}\right)}$, with $i=1, . ., N$ and $j=1, \ldots, N$. Let us for the moment only consider a polling system with exhaustive service. Customers which arrive at the queue which is currently being served will also be served. We thus can consider $Q_{1}^{\left(V_{1 b}\right)}, Q_{2}^{\left(V_{2 b}\right)}, \ldots, Q_{N}^{\left(V_{N b}\right)}$ as absorbing states of the Markov chain. In Figure 13 a schematic representation of this Markov chain is given for $N=2$. Let $q_{Q_{j}^{\left(V_{i b}\right)} \rightarrow Q_{k}}$ denote the probability that a customer arriving at Q_{j} during $V_{i b}$ leaves the system at Q_{k} and let $q_{Q_{j}^{\left(S_{i b)} \rightarrow Q_{k}\right.}}$ denote the same for customers
arriving during $S_{i b}$. Then we obtain the following system of equations

$$
\begin{aligned}
& q_{Q_{j}^{\left(V_{1 b}\right)} \rightarrow Q_{k}}=\sum_{n=1}^{N} p_{j n} \cdot q_{Q_{n}^{\left(S_{1 b}\right)} \rightarrow Q_{k}}, \quad j=2, \ldots, N, \\
& q_{Q_{j}^{\left(S_{1 b}\right)} \rightarrow Q_{k}}=\sum_{n=1}^{N} p_{j n} \cdot q_{Q_{n}^{\left(V_{2 b}\right)} \rightarrow Q_{k}}, \quad j=1, \ldots, N, \\
& q_{Q_{j}^{\left(V_{2 b}\right)} \rightarrow Q_{k}}=\sum_{n=1}^{N} p_{j n} \cdot q_{Q_{n}^{\left(S_{2 b}\right)} \rightarrow Q_{k}}, \quad j=1,3, \ldots, N, \\
& q_{Q_{j}^{\left(S_{2 b}\right)} \rightarrow Q_{k}}=\sum_{n=1}^{N} p_{j n} \cdot q_{Q_{n}^{\left(V_{3 b}\right)} \rightarrow Q_{k}}, \quad j=1, \ldots, N, \\
& q_{Q_{j}^{\left(V_{N b}\right)} \rightarrow Q_{k}}=\sum_{n=1}^{N} p_{j n} \cdot q_{Q_{n}^{\left(S_{N b}\right)} \rightarrow Q_{k}}, \quad j=1, \ldots, N-1, \\
& q_{Q_{j}^{\left(S_{N b}\right)} \rightarrow Q_{k}}=\sum_{n=1}^{N} p_{j n} \cdot q_{Q_{n}^{\left(V_{1 b}\right)} \rightarrow Q_{k}}, \quad j=1, \ldots, N,
\end{aligned}
$$

with for the absorbing states

$$
q_{Q_{j}^{\left(V_{i b}\right)} \rightarrow Q_{k}}= \begin{cases}1 & \text { if } i=j=k \\ 0 & \text { if } i=j \neq k\end{cases}
$$

Solving this system of equations then leads to the needed probabilities.

Figure 13: Schematic representation of the Markov chain for exhaustive service for $N=2$.

In case we have gated service the system of equations differs slightly, since customers which arrive at Q_{i} during the service of Q_{i} will not get served during this service. Thus $Q_{1}^{\left(V_{1 b}\right)}, Q_{2}^{\left(V_{2 b}\right)}, \ldots, Q_{N}^{\left(V_{N b}\right)}$ are no longer absorbing states. We introduce additional states $Q_{1}^{\left(V_{1 b}^{\prime}\right)}, Q_{2}^{\left(V_{2 b}^{\prime}\right)}, \ldots, Q_{N}^{\left(V_{N b}^{\prime}\right)}$ which will act as absorbing states for customers already in the system. A schematic representation of this Markov chain with $N=2$ is given in Figure 14. Let $q_{Q_{j}^{(P)} \rightarrow Q_{k}}$ again denote the probability that a customer arriving at Q_{j} during P leaves the system at Q_{k},
with $P \in\left\{V_{1 b}, S_{1 b}, \ldots, V_{N b}, S_{N b}\right\}$. Then we obtain the following set of equations

$$
\begin{aligned}
& q_{Q_{j}^{\left(V_{i b)} \rightarrow Q_{k}\right.}}=\sum_{n=1}^{N} p_{j n} \cdot q_{Q_{n}^{\left(S_{i b)} \rightarrow Q_{k}\right.}} \\
& q_{Q_{j}^{\left(S_{i b)} \rightarrow Q_{k}\right.}}=p_{j(i+1)} \cdot \mathbf{1}\{i+1=k\}+\sum_{n=1, n \neq(i+1)}^{N} p_{j n} \cdot q_{Q_{n}^{\left(V_{(i+1) b}\right)} \rightarrow Q_{k}},
\end{aligned}
$$

for $i=1, \ldots, N$ and $j=1, \ldots, N$, where we calculate modulo N, thus $N+1=1$, and with indicator function

$$
\mathbf{1}\{i=k\}= \begin{cases}1 & \text { if } i=k \\ 0 & \text { if } i \neq k\end{cases}
$$

We can again solve this system of equations to obtain the relevant probabilities.

Figure 14: Schematic representation of the Markov chain for gated service for $N=2$.

From these two examples we can easily see what the Markov chain would like for a polling system, which has a combination of exhaustive and gated service. Filling the relevant probabilities into Equation 1 gives the desired effective arrival rates required to determine the stability condition.

5.2.3 Joint queue length distribution at polling epochs

In this section we derive the joint queue length distribution at polling epochs, i.e. the epochs that the server starts or ends a visit to each queue, for every queue.

Let $\widetilde{L B}^{(P)}(\mathbf{z})$ denote the PGF of the joint queue length at the beginning of each subperiod P, where $P \in\left\{V_{1 a}, V_{1 b}, S_{1 a}, S_{1 b}, \ldots, V_{N a}, V_{N b}, S_{N a}, S_{N b}\right\}$ and \mathbf{z} denotes the vector $\left(z_{1}, \ldots, z_{N}\right)$. We only consider polling systems which satisfy the Branching Property and can subsequently use the Buffer occupancy method to derive an expression for $\widetilde{L B}^{\left(V_{1 a}\right)}(\mathbf{z})$. The Buffer occupancy method relates the joint queue length PGF at the end of a visit to the joint queue length PGF at
the beginning of a visit [38]. As we have split every period into subperiods a and b, we relate the PGFs of the joint queue length distributions at the beginning of various subperiods to each other.

We start by relating the PGF of the joint queue length at the beginning of $V_{i a}$ to the PGF of the joint queue length at the beginning of $V_{i b}$. We have the following definition of the PGF of the joint queue length at the beginning of subperiod $V_{i b}$

$$
\begin{equation*}
\widetilde{L B}^{\left(V_{i b}\right)}(\mathbf{z})=\mathbb{E}\left[z_{1}^{L B_{1}^{\left(V_{i b}\right)}} \cdot \ldots \cdot z_{N}^{L B_{N}^{\left(V_{i b}\right)}}\right] \tag{2}
\end{equation*}
$$

where $L B_{j}^{\left(V_{i b}\right)}$ denotes the queue length distribution at Q_{j} during period $V_{i b}$. We note that the queue length distribution at Q_{j} during period $V_{i b}$ is dependent on the queue length distribution during period $V_{i a}$ and can be written as follows

$$
\begin{align*}
L B_{j}^{\left(V_{i b}\right)} & =X_{1}^{(1, j)}+\ldots+X_{L B_{1}^{\left(V_{i a}\right)}}^{(1, j)}+X_{1}^{(2, j)}+\ldots+X_{L B_{2}^{\left(V_{i a}\right)}}^{(2, j)}+\ldots+X_{1}^{(N, j)}+\ldots \\
& +X_{L B_{N}^{\left(V_{i a}\right)}}^{(N, j)}=\sum_{k=1}^{N} \sum_{l=1}^{L B_{k}^{\left(V_{i a}\right)}} X_{l}^{(k, j)} \tag{3}
\end{align*}
$$

where $X_{l}^{(k, j)}$ is a Bernoulli random variable representing the l 'th customer in Q_{k}. The l 'th customer in Q_{k} leaves Q_{k} to join Q_{j} with probability $p_{k j}$ and does not join Q_{j} with probability $1-p_{k j}$. Similarly, the l 'th customer in Q_{j} stays in Q_{j} with probability $p_{j j}$ and leaves Q_{j} with probability $1-p_{j j}$.

We now rewrite (2) using (3) and condition on the length of each queue at the beginning of $V_{1 a}$ to obtain

$$
\begin{align*}
\mathbb{E}\left[z_{1}^{L B_{1}^{\left(V_{i b}\right)}} \cdot \ldots \cdot z_{N}^{L B_{N}^{\left(V_{i b}\right)}}\right]= & \mathbb{E}\left[z_{1}^{\sum_{k=1}^{N} \sum_{l=1}^{L B_{k}^{(V i a)}} X_{l}^{(k, 1)} \cdot \ldots \cdot z_{N}^{\left.\sum_{k=1}^{N} \sum_{l=1}^{L B_{k}^{\left(V_{i a}\right)}} X_{l}^{(k, N)}\right]}} \begin{array}{rl}
= & \sum_{a_{1}, \ldots, a_{N}=0}^{\infty} \mathbb{E}\left[z_{1}^{\sum_{k=1}^{N} \sum_{l=1}^{a_{1}} X_{l}^{(k, 1)}} \cdot \ldots \cdot z_{N}^{\sum_{k=1}^{N} \sum_{l=1}^{a_{N}} X_{l}^{(k, N)}}\right] \\
& \cdot \mathbb{P}\left(L B_{1}^{\left(V_{i a}\right)}=a_{1}, \ldots, L B_{N}^{\left(V_{i a}\right)}=a_{N}\right)
\end{array}\right.
\end{align*}
$$

We note that every customer in the queue is independent from other customers in the queue, thus $X_{m}^{(k, j)} \Perp X_{n}^{(k, j)}$ for all m and n and that queues are independent from each other, thus $X_{l}^{(y, j)} \Perp X_{l}^{(z, j)}$ for all y and z. There obviously is dependence between the Bernoulli random variables representing the same customer, i.e. $X_{l}^{(k, i)} \not \Perp X_{l}^{(k, j)}$. Using this information we can further rewrite (4) as follows

$$
\begin{align*}
& \sum_{a_{1}, \ldots, a_{N}=0}^{\infty}\left(\mathbb{E}\left[z_{1}^{X_{1}^{(1,1)}} \cdot \ldots \cdot z_{N}^{X_{1}^{(1, N)}}\right]\right)^{a_{1}} \cdot \ldots \cdot\left(\mathbb{E}\left[z_{1}^{X_{1}^{(N, 1)}} \cdot \ldots \cdot z_{N}^{X_{1}^{(N, N)}}\right]\right)^{a_{N}} \\
& \cdot \mathbb{P}\left(L B_{1}^{\left(V_{i a}\right)}=a_{1}, \ldots, L B_{N}^{\left(V_{i a}\right)}=a_{N}\right) \tag{5}\\
& =\sum_{a_{1}, \ldots, a_{N}=0}^{\infty}\left(\sum_{k=1}^{N} p_{1 k} z_{k}\right)^{a_{1}} \cdot \ldots \cdot\left(\sum_{k=1}^{N} p_{N k} z_{k}\right)^{a_{N}} \cdot \mathbb{P}\left(L B_{1}^{\left(V_{i a}\right)}=a_{1}, \ldots, L B_{N}^{\left(V_{i a}\right)}=a_{N}\right),
\end{align*}
$$

where we used

$$
\begin{aligned}
\mathbb{E}\left[z_{1}^{X_{1}^{(j, 1)}} \cdot \ldots \cdot z_{N}^{X_{1}^{(j, N)}}\right] & =\sum_{x_{1}, \ldots, x_{N}=0}^{\infty} \mathbb{P}\left(X_{1}^{(j, 1)}=x_{1}, \ldots, X_{1}^{(j, N)}=x_{N}\right) \cdot z_{1}^{x_{1}} \cdot \ldots \cdot z_{N}^{x_{N}} \\
& =p_{j 1} z_{1}+\ldots+p_{j N} z_{N}=\sum_{k=1}^{N} p_{j k} z_{k}
\end{aligned}
$$

Equation (5) can be recognised as the PGF of the joint queue length at the beginning of subperiod $V_{i a}$. Thus we obtain

$$
\widetilde{L B}^{\left(V_{i b}\right)}(\mathbf{z})=\widetilde{L B}^{\left(V_{i a}\right)}\left(\sum_{k=1}^{N} p_{1 k} z_{k}, \ldots, \sum_{k=1}^{N} p_{N k} z_{k}\right)
$$

As the polling system satisfies the Branching Property we can use from its definition that each customer in Q_{i} at the start of visit period $V_{i b}$ will effectively be replace in an i.i.d. manner by random population having PGF $h_{i}\left(z_{1}, \ldots, z_{N}\right)$. Hence, we find the following relation between the PGF of the joint queue length at the beginning of $S_{i a}$ and the PGF of the joint queue length at the beginning of $V_{i b}$

$$
\widetilde{L B}^{\left(S_{i a}\right)}(\mathbf{z})=\widetilde{L B}^{\left(V_{i b}\right)}\left(z_{1}, \ldots, z_{i-1}, h_{i}(\mathbf{z}), z_{i+1}, . ., z_{N}\right)
$$

The PGF $h_{i}(\mathbf{z})$ depends on the type of service discipline. For gated service we have $h_{i}(\mathbf{z})=\widetilde{B}_{i}\left(\sum_{j=1}^{N} \lambda_{j}\left(1-z_{j}\right)\right)$ and for exhaustive service we have $h_{i}(\mathbf{z})=$ $\widetilde{B P}_{i}\left(\sum_{j \neq i} \lambda_{j}\left(1-z_{j}\right)\right)$, where $\widetilde{B P}_{i}$ is the LST of the duration of a busy period at Q_{i}.

The relation between $\widetilde{L B}^{\left(S_{i b}\right)}(\mathbf{z})$ and $\widetilde{L B}^{\left(S_{i a}\right)}(\mathbf{z})$ is similar to the relation between $\widetilde{L B}{ }^{\left(V_{i b}\right)}(\mathbf{z})$ and $\widetilde{L B}{ }^{\left(V_{i a}\right)}(\mathbf{z})$, as, similar to $V_{i a}$, customers may switch queues during $S_{i a}$.

The queue length distribution at beginning $V_{(i+1) a}$ is equal to the queue length distribution at the beginning of $S_{i b}$ plus all customers which arrived during the switch-over time S_{i}, thus we obtain the following relation

$$
\widetilde{L B}^{\left(V_{(i+1) a}\right)}(\mathbf{z})=\widetilde{L B}^{\left(S_{i b}\right)}(\mathbf{z}) \widetilde{S}_{i}\left(\sum_{j=1}^{N} \lambda_{j}\left(1-z_{j}\right)\right)
$$

Relating the PGFs of the joint queue lengths distributions at the beginning of various subperiods to each other leads to the following set of equations, also referred to as the laws of motion, which can be solved recursively to obtain an
expression for $\widetilde{L B}^{\left(V_{1 a}\right)}(\mathbf{z})$

$$
\begin{aligned}
\widetilde{L B}^{\left(V_{1 b}\right)}(\mathbf{z}) & =\widetilde{L B}^{\left(V_{1 a}\right)}\left(\sum_{k=1}^{N} p_{1 k} z_{k}, \ldots, \sum_{k=1}^{N} p_{N k} z_{k}\right), \\
\widetilde{L B}^{\left(S_{1 a}\right)}(\mathbf{z}) & =\widetilde{L B}^{\left(V_{1 b}\right)}\left(h_{1}(\mathbf{z}), z_{2}, . ., z_{N}\right), \\
\widetilde{L B}^{\left(S_{1 b}\right)}(\mathbf{z}) & =\widetilde{L B}^{\left(S_{1 a}\right)}\left(\sum_{k=1}^{N} p_{1 k} z_{k}, \ldots, \sum_{k=1}^{N} p_{N k} z_{k}\right), \\
\widetilde{L B}^{\left(V_{2 a}\right)}(\mathbf{z}) & =\widetilde{L B}^{\left(S_{1 b}\right)}(\mathbf{z}) \widetilde{S}_{i}\left(\sum_{j=1}^{N} \lambda_{j}\left(1-z_{j}\right)\right), \\
& \vdots \\
\widetilde{L B}^{\left(V_{N b}\right)}(\mathbf{z}) & =\widetilde{L B}^{\left(V_{N a}\right)}\left(\sum_{k=1}^{N} p_{1 k} z_{k}, \ldots, \sum_{k=1}^{N} p_{N k} z_{k}\right), \\
\widetilde{L B} & \\
\left.\widetilde{L S}_{N a}\right)(\mathbf{z}) & =\widetilde{L B}^{\left(S_{N b}\right)}\left(z_{1}, \ldots, z_{N-1}, h_{N}(\mathbf{z})\right), \\
(\mathbf{z}) & =\widetilde{L B}^{\left(S_{N a}\right)}\left(\sum_{k=1}^{N} p_{1 k} z_{k}, \ldots, \sum_{k=1}^{N} p_{N k} z_{k}\right), \\
\widetilde{L B} & \left(V_{1 a}\right) \\
(\mathbf{z}) & =\widetilde{L B}^{\left(S_{N b}\right)}(\mathbf{z}) \widetilde{S}_{i}\left(\sum_{j=1}^{N} \lambda_{j}\left(1-z_{j}\right)\right) .
\end{aligned}
$$

5.2.4 Joint queue length distribution at arbitrary epochs

In the previous section we derived the joint queue length distribution at polling epochs. We can now use these results to derive an expression for the joint queue length distribution at arbitrary epochs.

We start from the following observation made by Eisenberg [39]. All service beginnings at Q_{i} coincide with a service completion at Q_{i}, except for the first service beginning which coincides with a visit beginning at Q_{i}. Similarly, all service completions at Q_{i} coincide with a service beginning at Q_{i}, except for the last service completion which coincides with a visit completion at Q_{i}. As shown by Boxma et al. [40], this observation can be used to derive the joint queue length distribution at an arbitrary epoch.

We first need to calculate the PGF of the joint queue length distribution at service beginnings at Q_{i}. Let $\widetilde{L S}_{i}(\mathbf{z})$ and $\widetilde{L D}_{i}(\mathbf{z})$, respectively, denote the PGF of the joint queue length distribution at service beginnings and service completions at Q_{i}. Then, using the observation made by Eisenberg [39] and the results of Boxma et al. [40], we obtain the following relation

$$
\begin{equation*}
\frac{1}{\hat{\lambda}_{i} \mathbb{E}[C]} \widetilde{L B}^{\left(V_{i b}\right)}(\mathbf{z})+\widetilde{L D}_{i}(\mathbf{z})=\widetilde{L S}_{i}(\mathbf{z})+\frac{1}{\hat{\lambda}_{i} \mathbb{E}[C]} \widetilde{L B}^{\left(S_{i a}\right)}(\mathbf{z}), \quad i=1, \ldots, N \tag{6}
\end{equation*}
$$

where $\hat{\lambda}_{i}$ is the effective arrival rate at Q_{i} and $\hat{\lambda}_{i} \mathbb{E}[C]$ is the mean number of customers served at Q_{i} per visit. It is easily seen that we have the following
relation between $\widetilde{L S}_{i}(\mathbf{z})$ and $\widetilde{L D}_{i}(\mathbf{z})$

$$
\begin{equation*}
\widetilde{L D}_{i}(\mathbf{z})=\widetilde{L S}_{i}(\mathbf{z}) \widetilde{B}_{i}\left(\sum_{j=1}^{N} \lambda_{j}\left(1-z_{j}\right)\right) / z_{i}, \quad i=1, \ldots, N \tag{7}
\end{equation*}
$$

Combining Equations (6) and (7) gives the following

$$
\begin{aligned}
& \widetilde{L S}_{i}(\mathbf{z})=\frac{1}{\hat{\lambda}_{i} \mathbb{E}[C]} \frac{z_{i}}{z_{i}-\widetilde{B}_{i}\left(\sum_{j=1}^{N} \lambda_{j}\left(1-z_{j}\right)\right)}\left(\widetilde{L B}^{\left(V_{i b}\right)}(\mathbf{z})-\widetilde{L B}^{\left(S_{i a}\right)}(\mathbf{z})\right), \\
& \widetilde{L D}_{i}(\mathbf{z})=\frac{1}{\hat{\lambda}_{i} \mathbb{E}[C]} \frac{\widetilde{B}_{i}\left(\sum_{j=1}^{N} \lambda_{j}\left(1-z_{j}\right)\right)}{z_{i}-\widetilde{B}_{i}\left(\sum_{j=1}^{N} \lambda_{j}\left(1-z_{j}\right)\right)}(\widetilde{L B}
\end{aligned}
$$

for $i=1, \ldots, N$. We can now use these expressions to derive the joint queue length distribution at arbitrary epochs.

Let $\widetilde{L}(\mathbf{z})$ denote the PGF of the joint queue length distribution at an arbitrary epoch and $\widetilde{L}^{(P)}(\mathbf{z})$ with $P \in\left\{V_{1 a}, V_{1 b}, S_{1 a}, S_{1 b}, \ldots, V_{N a}, V_{N b}, S_{N a}, S_{N b}\right\}$ denote the PGF of the joint queue length distribution at an arbitrary epoch during P. Then, by the stochastic mean value theorem, we have

$$
\begin{equation*}
\widetilde{L}(\mathbf{z})=\sum_{i=1}^{N}\left(\frac{\mathbb{E}\left[V_{i}\right]}{\mathbb{E}[C]} \widetilde{L}^{\left(V_{i b}\right)}(\mathbf{z})+\frac{\mathbb{E}\left[S_{i}\right]}{\mathbb{E}[C]} \widetilde{L}^{\left(S_{i b}\right)}(\mathbf{z})\right) \tag{8}
\end{equation*}
$$

where we use that $\mathbb{E}\left[V_{i a}\right]=\mathbb{E}\left[S_{i a}\right]=0, \mathbb{E}\left[V_{i b}\right]=\mathbb{E}\left[V_{i}\right]$ and $\mathbb{E}\left[S_{i b}\right]=\mathbb{E}\left[S_{i}\right]$, for all $i=1, \ldots, N$.

To derive an expression for $\widetilde{L}^{\left(V_{i b}\right)}(\mathbf{z})$ we use an observation by Boxma et al. [40] stating that the PGF at an arbitrary epoch during period $V_{i b}$, in which customers get served, is equal to the PGF at an arbitrary epoch during a service time B_{i}. The number of customer at an arbitrary point of time during service time B_{i} is equal to the number of customers present at the beginning of service time B_{i} plus all customers arriving during the elapsed part of the service. Hence, we obtain the following

$$
\widetilde{L}^{\left(V_{i b}\right)}(\mathbf{z})=\widetilde{L S}_{i}(\mathbf{z}) \widetilde{B}_{i, p a s t}\left(\sum_{j=1}^{N} \lambda_{j}\left(1-z_{j}\right)\right),
$$

where $\widetilde{B}_{i, p a s t}(\mathbf{w})$ is the LST of the elapsed part of service time B_{i} given by

$$
\widetilde{B}_{i, p a s t}(\mathbf{w})=\frac{1-\widetilde{B}_{i}(\mathbf{w})}{\mathbf{w} \mathbb{E}\left[B_{i}\right]}
$$

see [41]. Thus we find the following expression for $\widetilde{L}^{\left(V_{i b}\right)}(\mathbf{z})$

$$
\begin{equation*}
\widetilde{L}^{\left(V_{i b}\right)}(\mathbf{z})=\widetilde{L S}_{i}(\mathbf{z}) \frac{1-\widetilde{B}_{i}\left(\sum_{j=1}^{N} \lambda_{j}\left(1-z_{j}\right)\right)}{\sum_{j=1}^{N} \lambda_{j}\left(1-z_{j}\right) \mathbb{E}\left[B_{i}\right]} . \tag{9}
\end{equation*}
$$

Similarly, we can define $\widetilde{S}_{i, p a s t}(\mathbf{w})$ as the LST of the elapsed part of switch-over time S_{i} to obtain the following expression for $\widetilde{L}^{\left(S_{i b}\right)}$

$$
\begin{equation*}
\widetilde{L}^{\left(S_{i b}\right)}(\mathbf{z})=\widetilde{L B}^{\left(S_{i b}\right)}(\mathbf{z}) \widetilde{S}_{i, \text { past }}\left(\sum_{j=1}^{N} \lambda_{j}\left(1-z_{j}\right)\right)=\frac{\widetilde{L B}^{\left(S_{i b}\right)}(\mathbf{z})-\widetilde{L B}^{\left(V_{(i+1) a}\right)}(\mathbf{z})}{\sum_{j=1}^{N} \lambda_{j}\left(1-z_{j}\right) \mathbb{E}\left[S_{i}\right]} \tag{10}
\end{equation*}
$$

where we used $\widetilde{L B}^{\left(V_{(i+1) a}\right)}=\widetilde{S}_{i}(\mathbf{z}) \widetilde{L B}^{\left(S_{i b}\right)}(\mathbf{z})$.
By substituting (9) and (10) into (8) we obtain the PGF of the joint queue length distribution at an arbitrary epoch,

$$
\left.\begin{array}{rl}
\widetilde{L}(\mathbf{z}) & =\sum_{i=1}^{N}\left(\frac{\mathbb{E}\left[V_{i}\right]}{\mathbb{E}[C]} \frac{1}{\hat{\lambda}_{i} \mathbb{E}[C]} \frac{z_{i}\left(\widetilde{L B}^{\left(V_{i b}\right)}(\mathbf{z})-\widetilde{L B}^{\left(S_{i a}\right)}(\mathbf{z})\right)}{z_{i}-\widetilde{B}_{i}\left(\sum_{j=1}^{N} \lambda_{j}\left(1-z_{j}\right)\right)} \frac{1-\widetilde{B}_{i}\left(\sum_{j=1}^{N} \lambda_{j}\left(1-z_{j}\right)\right)}{\sum_{j=1}^{N} \lambda_{j}\left(1-z_{j}\right) \mathbb{E}\left[B_{i}\right]}\right. \\
& +\frac{\mathbb{E}\left[S_{i}\right]}{\mathbb{E}[C]} \frac{\widetilde{L B}}{}{ }^{\left(S_{i b}\right)}(\mathbf{z})-\widetilde{L B}\left(V_{(i+1) a}(\mathbf{z})\right. \\
\sum_{j=1}^{N} \lambda_{j}\left(1-z_{j}\right) \mathbb{E}\left[S_{i}\right]
\end{array}\right) .
$$

where we used $\mathbb{E}\left[V_{i}\right]=\hat{\lambda}_{i} \mathbb{E}[C]\left[B_{i}\right]$.

5.2.5 Mean cycle time and mean visit times

In the previous section we derive the joint queue length distributions at arbitrary epochs. The expression found contains the mean cycle time $\mathbb{E}[C]$. In this section we briefly describe how to obtain the mean cycle time using the LSTs of the distributions of the visit times V_{i}.

Let $\widetilde{V}_{i}(w)$ denote the LST of the visit time at Q_{i}. For any service discipline satisfying the branching property, as described in Section 5.2.1, $\widetilde{V}_{i}(w)$ can be expressed in terms of the joint queue length distribution at visit beginnings as follows

$$
\begin{equation*}
\widetilde{V}_{i}(w)=\widetilde{L B}^{\left(V_{i}\right)}\left(1, \ldots, 1, \widetilde{\theta}_{i}(w), 1, \ldots, 1\right), i=1, \ldots, N \tag{11}
\end{equation*}
$$

where $\widetilde{\theta}_{i}(w)$ is the LST of the time the server spends at Q_{i} due to the presence of a single customer. For gated service $\widetilde{\theta}_{i}(w)=\widetilde{B}_{i}(w)$, and for exhaustive service $\widetilde{\theta}_{i}(w)=\widetilde{B P}_{i}(w)$, where $\widetilde{B P}_{i}$ is the LST of the duration of a busy period at Q_{i}.

By differentiating (11) we obtain the mean visit times $\mathbb{E}\left[V_{i}\right]$. A cycle consists of all visit times and switch-over times, $C=V_{1}+S_{1}+\ldots+V_{N}+S_{N}$. The mean cycle time can thus be obtained using

$$
\mathbb{E}[C]=\sum_{i=1}^{N}\left(\mathbb{E}\left[V_{i}\right]+\mathbb{E}\left[S_{i}\right]\right)
$$

6 Numerical examples polling model

In this section we consider two examples of a polling model with switching customers. In the first example we focus on a two-queue polling model and describe the effects of the parameters. In the second example we consider a two-queue polling model which mimics the situation in Smart Traffic.

6.1 Example 1: A two-queue polling model

We consider a two-queue polling model with switching customers as described in the previous section. At the beginning of a polling epoch a customer may stay in Q_{1} or Q_{2} with probability p_{11} or p_{22}, respectively. All customers which choose not to stay in the queue will join the other queue.

Figure 15: The expected queue length of Q_{1} for $\mathbb{E}\left[S_{i}\right]=1$ and varying values of $\mathbb{E}\left[B_{i}\right]$ under gated service.

Figure 16: The expected queue length of Q_{1} for $\mathbb{E}\left[B_{i}\right]=\frac{1}{4}$ and varying values of $\mathbb{E}\left[S_{i}\right]$ under gated service.

We assume both queues have the same deterministic service times and switchover times, thus $\mathbb{E}\left[B_{1}\right]=\mathbb{E}\left[B_{2}\right]$ and $\mathbb{E}\left[S_{1}\right]=\mathbb{E}\left[S_{2}\right]$. The arrival processes are Poisson with parameter $\lambda_{1}=\frac{1}{20}$ for Q_{1} and $\lambda_{2}=\frac{7}{20}$ for Q_{2}. We denote the mean queue length at arbitrary epochs by $\mathbb{E}\left[L_{i}\right], i=1,2$.

Figure 17: The expected queue length of Q_{1} under gated service for $\mathbb{E}\left[B_{i}\right]=\frac{1}{4}$ and $\mathbb{E}\left[S_{i}\right]=1$.

We study the effect of the model parameters on the mean queue lengths and consider both exhaustive and gated service. In Figure 15 the effect of $\mathbb{E}\left[B_{i}\right]$ on $\mathbb{E}\left[L_{1}\right]$ is shown for gated service. The effect is as expected with $\mathbb{E}\left[L_{1}\right]$ increasing as $\mathbb{E}\left[B_{i}\right]$ increases. In Figure 16 the effect of $\mathbb{E}\left[S_{i}\right]$, again for $\mathbb{E}\left[L_{1}\right]$ under gated service, is shown. $\mathbb{E}\left[L_{1}\right]$ increases linearly as $\mathbb{E}\left[S_{i}\right]$ increases. For completeness, the effect of varying arrival rates λ_{1} and λ_{2} on $\mathbb{E}\left[L_{1}\right]$ under gated service is shown in Figure 17. When $p_{22}=1$ all customers in Q_{2} stay in Q_{2}, thus in this case the effect of λ_{2} is minimal on the mean queue length of Q_{1}. We do note that $\mathbb{E}\left[L_{1}\right]$ is higher when λ_{2} is higher. As λ_{2} increases the time between a visit ending at Q_{1} and the subsequent visit beginning at Q_{1} increases, due to the increased $\mathbb{E}\left[V_{2}\right]$, leading to an increase in mean queue length at Q_{1}. When $p_{22}=0$ all customers in Q_{2} switch to Q_{1} at polling epochs. The mean queue length of Q_{1} is then greatly dependent on the arrival rate at Q_{2}. This is visible
in Figures 17 b and 17 d . For $\mathbb{E}\left[L_{1}\right]$ under exhaustive service and for $\mathbb{E}\left[L_{2}\right]$ under both exhaustive and gated service, $\mathbb{E}\left[B_{i}\right], \mathbb{E}\left[S_{i}\right]$ and λ_{i}, with $i=1,2$, exhibit similar behaviour.

After showing that the effect of $\mathbb{E}\left[B_{i}\right], \mathbb{E}\left[S_{i}\right]$ and λ_{i} on $\mathbb{E}\left[L_{i}\right]$ are as expected, we focus on the more interesting parameters of the model p_{11} and p_{22}. We compare the following four systems, with deterministic service and switch-over times:
(a) $\mathbb{E}\left[B_{i}\right]=1$ and $\mathbb{E}\left[S_{i}\right]=1$,
(b) $\mathbb{E}\left[B_{i}\right]=1$ and $\mathbb{E}\left[S_{i}\right]=10$,
(c) $\mathbb{E}\left[B_{i}\right]=1.8$ and $\mathbb{E}\left[S_{i}\right]=1$,
(d) $\mathbb{E}\left[B_{i}\right]=1.8$ and $\mathbb{E}\left[S_{i}\right]=10$,
with $\lambda_{1}=\frac{1}{20}$ and $\lambda_{2}=\frac{7}{20}$. In Figures $18-20$ we show how the mean queue length depends on p_{11} and p_{22} for the four systems. We omitted the results for $\mathbb{E}\left[L_{1}\right]$ under exhaustive service, as exhaustive service shows similar results to gated service for Q_{1}.

Figure 18: $\mathbb{E}\left[L_{1}\right]$ under gated service.

In Figure 18 the mean queue length of Q_{1} under gated service is shown. We note that the mean queue length is largest when all customers stay in Q_{1} and all customers in Q_{2} join Q_{1}. The second largest mean queue length among the four extremes $\left(p_{1} 1=0\right.$ or 1 and $p_{2} 2=0$ or 1$)$ is when all customers decide to change queues. Customer arrive at Q_{2} at a much higher rate than at Q_{1}. Since the customers change queues at polling epochs, customers may arrive at Q_{1} with rate λ_{1}, switch to Q_{2} where they are joined by customers with arrival rate λ_{2} and then all switch to Q_{1} again. Thus the effective arrival rate at Q_{1} in case $p_{11}=p_{22}=0$ is closer to the average of both arrival rates and thus higher than the arrival rate in case $p_{11}=p_{22}=1$. When all customers decide to leave Q_{1} and no customers join from Q_{2} the arrival rate is the lowest. Figure 19 shows the results for the mean queue length of Q_{2} under gated service.

Figure 19: $\mathbb{E}\left[L_{2}\right]$ under gated service.

Intuitively, one would expect the mean queue length to decrease as the number of customers opting to leave the queue increases and the number of customers joining the queue decreases and similarly one would expect the mean queue length to increase as the number of customers opting to leave the queue decreases and the number of customers joining the queue increases. However, in system (c), depicted in Subfigure 18c and Subfigure 19c, we can note some
non-monotonic behaviour, where for low values p_{11} the expected queue length of $Q_{1}, \mathbb{E}\left[L_{1}\right]$, may be lower for lower values of p_{22} and the expected queue length of $Q_{2}, \mathbb{E}\left[L_{2}\right]$ may be higher for lower values of p_{22}.

Figure 20: $\mathbb{E}\left[L_{2}\right]$ under exhaustive service.

In Figure 20 the results for the mean queue length in Q_{2} under the exhaustive discipline are shown. Subfigure 20b shows clear non-monotonic behaviour for lower values of p_{11}. In system (b), $\mathbb{E}\left[S_{i}\right]$ is much larger than $\mathbb{E}\left[B_{i}\right]$, thus the switch-over periods become dominant. The parameters p_{11} and p_{22} do not influence the arrivals during the switch-over periods, as the switching of customers only takes place at polling epochs. When p_{22} is high and p_{11} is low, a large number of customers will stay in Q_{2} or join Q_{2} from Q_{1} at a polling epoch, this means that the visit period of Q_{2} will be large. Simultaneously, due to the large switch-over periods and customers leaving Q_{1}, the amount of customers at the start of a visit period at Q_{1} will be small. Consequently, Q_{1} has a smaller visit period and thus the the visit period at Q_{2} will start sooner. Hence, the mean queue length at Q_{2} is smaller if Q_{1} has a smaller visit period. As p_{11} increases and p_{22} decreases, the length of the visit period of Q_{1} increases, however for high enough values for p_{11} or low enough values for p_{22} this is offset by the (low) amount of customers in Q_{2}.

(b) $\mathbb{E}\left[S_{i}\right]=10$

Figure 21: The expected queue length of Q_{2} for varying values of $\mathbb{E}\left[B_{i}\right]$ under exhaustive service.

In system (d), where $\mathbb{E}\left[B_{i}\right]=1.8$ and $\mathbb{E}\left[S_{i}\right]=10$, seen in Subfigure 20d, we see that the expected queue length of Q_{2} is highest for $p_{11}=1$ and $p_{22}=0$. Thus all customers leaving Q_{2} to join Q_{1} and no customers joining Q_{1} from Q_{2} leads to the highest expected queue length in Q_{2}. This seems counter-intuitive, as Q_{2} is emptied at each polling epoch and in all other cases studied $p_{11}=1$ and $p_{22}=0$ gives the lowest expected queue length in Q_{2}, as we can see in Figure 19 and Subfigures 20a, 20b and 20c. To study this counterintuitive behaviour we plot $\mathbb{E}\left[L_{2}\right]$ for varying rates of $\mathbb{E}\left[B_{i}\right]$ in Figure 21 and note that when $\mathbb{E}\left[B_{i}\right]$ increases $\mathbb{E}\left[L_{2}\right]$ increases more steeply for $p_{11}=1, p_{22}=0$ than the other combinations plotted. As described previously, when $\mathbb{E}\left[S_{i}\right]$ is large, a large number of customers will accumulate in both Q_{1} and Q_{2} and the parameters p_{11} and p_{22} will not influence the arrivals during the switch-over periods. Due to the customers arriving during the long switch-over periods and all customers from Q_{2} joining Q_{1}, the busy period at Q_{1} will start with a large number of customers. Unlike system (b), system (d) additionally has large mean service times, com-
bined with the exhaustive service discipline, this leads to an even longer busy period at Q_{1}. During the busy period of Q_{1}, customers will accumulate at Q_{2}. These customers will not be served during the busy period, since the server is at Q_{1}, and will not leave to join Q_{1} until the next polling epoch. This explains the behaviour visible in Figure 21 and Subfigure 20d.

We also briefly take a look at the correlation between the queue length of Q_{1} and the queue length of Q_{2}. The Pearson correlation coefficient is defined as

$$
\rho_{L_{1}, L_{2}}=\frac{\operatorname{cov}\left(L_{1}, L_{2}\right)}{\sigma_{L_{1}} \sigma_{L_{2}}}
$$

where $\operatorname{cov}\left(L_{1}, L_{2}\right)$ is the covariance, $\sigma_{L_{1}}$ is the standard deviation of L_{1} and $\sigma_{L_{2}}$ is the standard deviation of L_{2} [42]. In Figure 22 the correlation coefficient can be seen for system (a), which has $\mathbb{E}\left[B_{i}\right]=1$ and $\mathbb{E}\left[S_{i}\right]=1$, under both exhaustive and gated service. We note that the correlation coefficient is higher under gated service.

Figure 22: Correlation coefficient between the queue length of Q_{1} and the queue length of Q_{2} for $\mathbb{E}\left[B_{i}\right]=1$ and $\mathbb{E}\left[S_{i}\right]=1$ under exhaustive and gated service.

6.2 Example 2: Smart Traffic

In the polling model with switching customers, as described in Section 5, customers may change queues at every polling instance. In Smart Traffic the vehicle or customers may change queues, when new information on their position is available. It is unlikely that new information will lead to a vehicle switching back to a position it previously was. Hence, it is unlikely that a customer changes queues twice or more often.

In this example we will focus on a two-queue polling system in which customers may only change queues once. To obtain a system which satisfies this condition we require that customers may not leave one of the queues, thus we assume $p_{22}=1$. The arrival processes to both queues are Poisson with parameter $\frac{1}{6}$. We further assume both queues have the same service times and switch-over times, with $\mathbb{E}\left[B_{1}\right]=\mathbb{E}\left[B_{2}\right]=2$ and $\mathbb{E}\left[S_{1}\right]=\mathbb{E}\left[S_{2}\right]=3$.

In Table 6 and 7 we see the expected queue length at the beginning of period $P \in\left\{V_{1 a}, V_{1 b}, S_{1 a}, S_{1 b}, V_{2 a}, V_{2 b}, S_{2 a}, S_{2 b}\right\}$ under exhaustive service for Q_{1}

	$V_{1 a}$	$V_{1 b}$	$S_{1 a}$	$S_{1 b}$	$V_{2 a}$	$V_{2 b}$	$S_{2 a}$	$S_{2 b}$
$p_{11}=1$	2	2	0	0	0.5	0.5	1.5	1.5
$p_{11}=0.9$	1.93	1.73	0	0	0.5	0.45	1.58	1.43
$p_{11}=0.8$	1.83	1.47	0	0	0.5	0.4	1.67	1.33
$p_{11}=0.7$	1.72	1.21	0	0	0.5	0.35	1.75	1.22
$p_{11}=0.6$	1.59	0.956	0	0	0.5	0.3	1.82	1.09
$p_{11}=0.5$	1.44	0.722	0	0	0.5	0.25	1.89	0.944
$p_{11}=0.4$	1.28	0.511	0	0	0.5	0.2	1.94	0.778
$p_{11}=0.3$	1.1	0.329	0	0	0.5	0.15	1.99	0.596
$p_{11}=0.2$	0.902	0.18	0	0	0.5	0.1	2.01	0.402
$p_{11}=0.1$	0.701	0.0701	0	0	0.5	0.05	2.01	0.201
$p_{11}=0$	0.5	0	0	0	0.5	0	2	0

Table 6: The expected queue length of Q_{1} at the beginning of period $P \in$ $\left\{V_{1 a}, V_{1 b}, S_{1 a}, S_{1 b}, V_{2 a}, V_{2 b}, S_{2 a}, S_{2 b}\right\}$ under exhaustive service.

	$V_{1 a}$	$V_{1 b}$	$S_{1 a}$	$S_{1 b}$	$V_{2 a}$	$V_{2 b}$	$S_{2 a}$	$S_{2 b}$
$p_{11}=1$	0.5	0.5	1.5	1.5	2	2	0	0
$p_{11}=0.9$	0.658	0.851	1.72	1.72	2.22	2.27	0	0.158
$p_{11}=0.8$	0.833	1.2	2.93	1.93	2.43	2.53	0	0.333
$p_{11}=0.7$	1.02	1.54	2.14	2.14	2.64	2.79	0	0.524
$p_{11}=0.6$	1.23	1.87	2.34	2.34	2.84	3.04	0	0.729
$p_{11}=0.5$	1.44	2.17	2.53	2.53	3.03	3.28	0	0.944
$p_{11}=0.4$	1.67	2.43	2.69	2.69	3.19	3.49	0	1.17
$p_{11}=0.3$	1.189	2.66	2.82	2.82	3.32	3.67	0	1.39
$p_{11}=0.2$	2.11	2.83	2.92	2.92	3.42	3.82	0	1.61
$p_{11}=0.1$	2.31	2.94	2.98	2.98	3.48	3.93	0	1.81
$p_{11}=0$	2.5	3	3	3	3.5	4	0	2

Table 7: The expected queue length of Q_{2} at the beginning of period $P \in$ $\left\{V_{1 a}, V_{1 b}, S_{1 a}, S_{1 b}, V_{2 a}, V_{2 b}, S_{2 a}, S_{2 b}\right\}$ under exhaustive service.
and Q_{2} respectively. As expected the expected queue length of Q_{1} is higher (or equal) at the start of a subperiod a than the subsequent subperiod b. As, during subperiod a, the customers in Q_{1} will leave the queue with probability 1- p_{11} to join Q_{2}. Similarly, for Q_{2} the expected queue length is higher (or equal) at the start of a subperiod b than the previous subperiod a. We further note that the sum of the expected queue lengths over both queues at the beginning of period a is equal to the sum of the expected queue lengths over both queues at the beginning of period b, thus we conclude that the system behaves as expected.

We can compare these results with the expected queue length at the beginning of period $P \in\left\{V_{1 a}, V_{1 b}, S_{1 a}, S_{1 b}, V_{2 a}, V_{2 b}, S_{2 a}, S_{2 b}\right\}$ under gated service seen in Table 8 and 9 . We note that when $p_{11}=0$, the expected queue length at the beginning of the periods for Q_{1} is the same under exhaustive service and gated service, as all customers leave Q_{1} before service. We further note that the system also behaves as expected for gated service.

During simulation vehicles will be assigned to a signal group and corresponding queue. It might only become apparent that a vehicle is in another queue, when new information on the position of the vehicle becomes available through

	$V_{1 a}$	$V_{1 b}$	$S_{1 a}$	$S_{1 b}$	$V_{2 a}$	$V_{2 b}$	$S_{2 a}$	$S_{2 b}$
$p_{11}=1$	3	3	1	1	1.5	1.5	2.5	2.5
$p_{11}=0.9$	2.57	2.32	0.772	0.695	1.19	1.08	2.3	2.07
$p_{11}=0.8$	2.25	1.8	0.599	0.479	0.979	0.784	2.18	1.75
$p_{11}=0.7$	1.98	1.39	0.462	0.323	0.823	0.576	2.11	1.48
$p_{11}=0.6$	1.75	1.05	0.349	0.21	0.71	0.426	2.08	1.25
$p_{11}=0.5$	1.53	0.765	0.255	0.127	0.627	0.314	2.06	1.03
$p_{11}=0.4$	1.32	0.528	0.176	0.0704	0.57	0.228	2.05	0.821
$p_{11}=0.3$	1.11	0.334	0.111	0.0334	0.533	0.16	2.05	0.615
$p_{11}=0.2$	0.908	0.182	0.0606	0.0121	0.512	0.102	2.04	0.408
$p_{11}=0.1$	0.703	0.0703	0.0234	0.00234	0.502	0.0502	2.03	0.203
$p_{11}=0$	0.5	0	0	0	0.5	0	2	0

Table 8: The expected queue length of Q_{1} at the beginning of period $P \in$ $\left\{V_{1 a}, V_{1 b}, S_{1 a}, S_{1 b}, V_{2 a}, V_{2 b}, S_{2 a}, S_{2 b}\right\}$ under gated service.

	$V_{1 a}$	$V_{1 b}$	$S_{1 a}$	$S_{1 b}$	$V_{2 a}$	$V_{2 b}$	$S_{2 a}$	$S_{2 b}$
$p_{11}=1$	1.5	1.5	2.5	2.5	3	3	1	1
$p_{11}=0.9$	1.96	2.22	2.99	3.06	3.56	3.68	1.23	1.46
$p_{11}=0.8$	2.34	2.79	3.39	3.51	4.01	4.2	1.4	1.84
$p_{11}=0.7$	2.67	3.27	3.73	3.87	4.37	4.61	1.54	2.17
$p_{11}=0.6$	2.98	3.68	4.03	4.17	4.67	4.95	1.65	2.48
$p_{11}=0.5$	3.27	4.04	4.29	4.42	4.92	5.24	1.75	2.77
$p_{11}=0.4$	3.56	4.35	4.52	4.63	5.13	5.47	1.82	3.06
$p_{11}=0.3$	3.82	4.6	4.71	4.79	5.29	5.67	1.89	3.32
$p_{11}=0.2$	4.07	4.8	4.86	4.91	5.41	5.82	1.94	3.57
$p_{11}=0.1$	4.3	4.93	4.96	4.98	5.48	5.93	1.98	3.8
$p_{11}=0$	4.5	5	5	5	5.5	6	2	4

Table 9: The expected queue length of Q_{2} at the beginning of period $P \in$ $\left\{V_{1 a}, V_{1 b}, S_{1 a}, S_{1 b}, V_{2 a}, V_{2 b}, S_{2 a}, S_{2 b}\right\}$ under gated service.
vehicles passing the detector near the stop line. As the detector may register fewer or more vehicles passing. This information only becomes available during period $V_{1 b}$ or $V_{2 b}$. Smart Traffic will predict the traffic image and calculate the schedule based on information available prior to $V_{1 b}$ or $V_{2 b}$. In the most extreme case $p_{11}=0$, all vehicles will leave Q_{1}, and thus signal group 1, to join Q_{2}, and thus signal group 2. In this case Smart Traffic will sometimes assume the presence of some vehicles at signal group 1, as the expected queue length of Q_{1} is 0.5 at the start of a visit period. The schedule calculated will then assign a non-zero green time to signal group 1, whereas the optimal schedule would assign no green time to signal group 1. For situations in which p_{11} is higher than 0 , but unequal to 1 , this also occurs to a lesser extent and the signal may stay green longer than optimal.

In the situation posed we only consider a two-queue polling system with cyclic routing. In Smart Traffic the routing is not cyclic, but is determined by calculating the most optimal scheme. The lack of information or incorrect information may thus not only lead to a signal having the non-optimal green time, but also to the incorrect or non-optimal signal receiving green time.

7 Conclusion and discussion

In this thesis we presented a discrete event model to predict traffic at a signalised intersection, as a replacement of microsimulation model SUMO used in the Forecasting module of Smart Traffic. The SUMO model currently used by Sweco is not suitable for the objective of Sweco to predict traffic over a longer period of time for a network of junctions due to its slow computation speed and complexity.

The performance of the model was measured by comparing it to the microsimulation traffic flow model Vissim. We found a maximum average absolute difference in delay between our discrete event model and the Vissim model per road user of 1.5 seconds.

The accuracy of the model is determined by two main components: the arrival at queue time and the chosen parameter values. The arrival at queue time is the predicted time at which a road user arrives at the queue. It is calculated during initialisation, by dividing the maximum distance a road user is required to travel and dividing this by the maximum speed. The maximum distance a road user is required to travel is assumed to be the position of the road user minus the total length (and gaps) of the road users ahead. We considered several other options for calculating the arrival at queue time, e.g. dividing by the speed of the road user at the beginning of the simulation rather than the maximum speed and using only the position of the road user. The chosen calculation of the arrival at queue time gave the best results during simulation. However, other more accurate calculations may be available. Due to time constraints and the possibility of overfitting, as we only consider one type of junction, we did not study this further.

We use data from Vissim to determine the parameters of the model. If we were to implement our discrete event model at a real junction, these parameters will have to be determined using real-life data from the junction. Traffic may behave very differently in different countries or cities and under different circumstances, such as weather conditions. If the model is not sufficiently calibrated to the real-life situation, the difference between the calculated the delay and the real-life delay may be much larger than the average 1.5 seconds found. The current parameter values are static, however it may be beneficial to investigate methods to adapt the parameter values based on real-time feedback.

In Section 4 we discussed the results of our discrete event simulation. One of the assumptions we made was that the signal group to which a road user gets assigned is known. However, one of the challenges of Smart Traffic is precisely the lack of knowledge on the vehicle routing. We described and studied the effect of this lack of knowledge in Sections 5 and 6, by modelling a signalised intersection as a polling model with switching customers, and concluded that it may lead to a non-optimal schedule. Currently, the simulation in SUMO chooses the vehicle routing based on the link a road user is located at, with every outgoing link having a predetermined chance of being reached. In our discrete event model we make use of an array of probabilities. In this way the vehicle routing is an attribute of the road user, rather than an attribute of the road. This makes it possible to include additional (historic) information to determine the vehicle routing, such as previous locations of the road user and public transport timetables. Furthermore, the discrete event model presented is fast, which makes it possible to perform multiple runs and average over the
results.
The discrete event model presented in this thesis is easily extendable to include multiple junctions. Furthermore, it is less computationally expensive, more scalable and faster than SUMO, with an average runtime of maximal 1.416 seconds, and thus suitable to the objective of Sweco.

References

[1] Sweco, "Sweco annual report 2020," www.swecogroup.com/wp-content/uploads/sites/2/2021/04/sweco-annual-report-2020.pdf, 2021.
[2] Sweco.nl, "Grontmij heeft een nieuwe naam sweco," https://www.sweco.nl/actueel/nieuws/grontmij-heeft-een-nieuwe-naamsweco/, accessed: June 30, 2021.
[3] S. Pandian, S. Gokhale, and A. K. Ghoshal, "Evaluating effects of traffic and vehicle characteristics on vehicular emissions near traffic intersections," Transportation Research Part D: Transport and Environment, vol. 14, no. 3, pp. 180-196, 2009.
[4] C. Dobre, A. Szekeres, F. Pop, and V. Cristea, "Intelligent traffic lights to reduce vehicle emissions," Proceedings - 26th European Conference on Modelling and Simulation, ECMS 2012, 2012.
[5] Sweco.nl, "Smart mobility voor een leefbare stad en minder co2-uitstoot," https://www.sweco.nl/innovaties/Smart-Mobility-voor-een-leefbare-stad-en-minder-CO2-uitstoot/, accessed: June 30, 2021.
[6] A. Al-Mudhaffar, K.-L. Bång, and N. M. P. Rouphail, Impacts of Traffic Signal Control Strategies. KTH, 2006.
[7] M. Papageorgiou, C. Diakaki, V. Dinopoulou, A. Kotsialos, and Y. Wang, "Review of road traffic control strategies," Proceedings of the IEEE, vol. 91, no. 12, pp. 2043-2067, 2003.
[8] A. J. Miller, "Settings for fixed-cycle traffic signals," $O R$, vol. 14, no. 4, pp. 373-386, 1963.
[9] A. Hamilton, B. Waterson, T. Cherrett, A. Robinson, and I. Snell, "The evolution of urban traffic control: changing policy and technology," Transportation Planning and Technology, vol. 36, no. 1, pp. 24-43, 2013.
[10] M. C. Bell and R. Bretherton, "Ageing of fixed-time traffic signal plans," in International conference on road traffic control, 1986.
[11] M. Papageorgiou, M. Ben-Akiva, J. Bottom, P. Bovy, S. Hoogendoorn, N. Hounsell, A. Kotsialos, and M. McDonald, "Its and traffic management," in Transportation. Elsevier, 2007, vol. 14, pp. 715-774.
[12] M. Treiber and A. Kesting, Trajectory and Floating-Car Data. Springer Berlin Heidelberg, 2013, pp. 7-12.
[13] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems. Springer US, 2008.
[14] S. H. Jacobson, S. N. Hall, and J. R. Swisher, Discrete-Event Simulation of Health Care Systems. Springer US, 2006, pp. 211-252.
[15] S.-Y. D. Wu and R. A. Wysk, "An application of discrete-event simulation to on-line control and scheduling in flexible manufacturing," International Journal of Production Research, vol. 27, no. 9, pp. 1603-1623, 1989.
[16] M. Fellendorf and P. Vortisch, "Validation of the microscopic traffic flow model vissim in different real-world situations," in Transportation Research Board (TRB), 2001.
[17] C. Mack, T. Murphy, and N. L. Webb, "The efficiency of n machines unidirectionally patrolled by one operative when walking time and repair times are constants," Journal of the Royal Statistical Society. Series B (Methodological), vol. 19, no. 1, pp. 166-172, 1957.
[18] H. Takagi, "Application of polling models to computer networks," Computer Networks and ISDN Systems, vol. 22, no. 3, pp. 193-211, 1991.
[19] A. Federgruen and Z. Katalan, "The stochastic economic lot scheduling problem: Cyclical base-stock policies with idle times," Management Science, vol. 42, no. 6, pp. 783-796, 1996.
[20] M. Boon, R. van der Mei, and E. Winands, "Applications of polling systems," Surveys in Operations Research and Management Science, vol. 16, no. 2, pp. 67-82, 2011.
[21] H. Takagi, "Analysis and application of polling models," Lecture Notes in Computer Science, vol. 1769, pp. 423-442, 2000.
[22] O. Boxma, J. Ivanovs, K. Kosinski, and M. Mandjes, "Lévy-driven polling systems and continuous-state branching processes," Stochastic Systems, vol. 1, no. 2, pp. 411-436, 2011.
[23] R. van der Mei and E. Winands, "Polling models with renewal arrivals: A new method to derive heavy-traffic asymptotics," Performance Evaluation, vol. 64, no. 9, pp. 1029-1040, 2007.
[24] R. van der Mei, "Polling systems with simultaneous batch arrivals," Stochastic Models, vol. 17, no. 3, pp. 271-292, 2001.
[25] H. Levy and M. Sidi, "Polling systems with simultaneous arrivals," IEEE Transactions on Communications, vol. 39, no. 6, pp. 823-827, 1991.
[26] M. Boon, "A polling model with reneging at polling instants," Annals of Operations Research, vol. 198, no. 1, pp. 5-23, 2012.
[27] I. Adan, A. Economou, and S. Kapodistria, "Synchronized reneging in queueing systems with vacations," Queueing Systems: Theory and Applications, vol. 62, no. 1, pp. 1-33, 2009.
[28] S. Borst, "Polling systems with multiple coupled servers," Queueing Systems, vol. 20, pp. 369-393, 1995.
[29] M. Vlasiou and U. Yechiali, "M/g/ ∞ polling systems with random visit times," Probability in the Engineering and Informational Sciences, vol. 22, no. 1, p. 81-106, 2008.
[30] O. Boxma, J. Wal, van der, and U. Yechiali, "Polling with batch service," Stochastic Models, vol. 24, no. 4, pp. 604-625, 2008.
[31] O. Boxma, H. Levy, and U. Yechiali, "Cyclic reservation schemes for efficient operation of multiple-queue single-server systems," Annals of Operations Research, vol. 35, pp. 187-208, 1992.
[32] S. Borst, Polling systems. Centrum voor Wiskunde en Informatica, 1996.
[33] S. Borst and O. Boxma, "Polling models with and without switchover times," Operations Research, vol. 45, no. 4, pp. 536-543, 1997.
[34] T. L. Olsen and R. van der Mei, "Polling systems with periodic server routeing in heavy traffic: distribution of the delay," Journal of Applied Probability, vol. 40, no. 2, p. 305-326, 2003.
[35] O. Boxma and J. Weststrate, "Waiting times in polling systems with markovian server routing," in Messung, Modellierung und Bewertung von Rechensystemen und Netzen. Springer Berlin Heidelberg, 1989, pp. 89-104.
[36] M. Boon, A. Wijk, van, I. Adan, and O. Boxma, "A polling model with smart customers," Queueing Systems: Theory and Applications, vol. 66, no. 3, pp. 239-274, 2010.
[37] J. Resing, "Polling systems and multitype branching processes," Queueing Systems: Theory and Applications, vol. 13, no. 4, pp. 409-426, 1993.
[38] R. B. Cooper and G. Murray, "Queues served in cyclic order," The Bell System Technical Journal, vol. 48, no. 3, pp. 675-689, 1969.
[39] M. Eisenberg, "Queues with periodic service and changeover time," Operations Research, vol. 20, no. 2, pp. 440-451, 1972.
[40] O. Boxma, O. Kella, and K. Kosinski, "Queue lengths and workloads in polling systems," Operations Research Letters, vol. 39, no. 6, pp. $401-405$, 2011.
[41] I. Adan and M. Haviv, "Conditional ages and residual service times in the m/g/1 queue," Stochastic Models, vol. 25, pp. 110-128, 2009.
[42] J. Benesty, J. Chen, Y. Huang, and I. Cohen, "Pearson correlation coefficient," in Noise reduction in speech processing. Springer, 2009, pp. 1-4.

A Appendix: Code

A. 1 Discrete event simulation

A.1.1 Simulation files

The Road_User class.

```
package swecobasicmodelextended;
public class Road_User {
    /* Integer denoting the id number of the road_user */
    protected int id;
    /* Double denoting the arrival time of the road user */
    protected double arrivalTime;
    /* Double denoting the departure time of the road user */
    protected double departureTime;
    /* Double denoting the length of the road user */
    protected double length; //
    /* String denoting the type of the road user */
    protected String type;
    /* String denoting the arrival place */
    protected String arrivalPlace;
    /* Double denoting the postion of the road user from the
        stop line in meters */
    protected double position;
    /* Array of probabilities for determining the signal group
        */
    protected double[] probabilities;
    /* Double denoting the speed of the road user */
    protected double speed;
    /* Double denoting the service time of the first vehicle */
    protected double serviceTimeFirstVehicle;
    /* Double denoting the service time */
    protected double serviceTime;
    /* Boolean indicating whether the road user has left the
        system */
    protected boolean leftSystem;
    /* Boolean indication whether the road user is in the queue
        */
    protected boolean inQueue;
    /* Integer denoting the number of stops */
    protected int nrStops;
    /* Integer denoting the number in line */
    protected int nrInLine;
        /* Double denoting the desired speed of the road user (in
            Vissim) */
    protected double desSpeed;
    public Road_User(int id, double arrivalTime, double length,
        String type, String arrivalPlace, double position,
        double[] probabilities, double speed, double desSpeed,
        int nrInLine){
        this.id = id;
```

```
        this.arrivalTime = arrivalTime;
        this.departureTime = 0;
        this.length = length;
        this.type = type;
        this.leftSystem = false;
        this.inQueue = false;
        this.arrivalPlace = arrivalPlace;
        this.position = position;
        this.probabilities = probabilities;
        this.speed = speed;
        this.nrStops = 0;
        this.nrInLine = 0;
        this.serviceTime = 0;
        this.desSpeed = desSpeed;
        this.nrInLine = nrInLine;
}
public int getId(){ //Returns id number
    return id;
}
public double getArrivalTime() {//Returns arrival time
        return arrivalTime;
}
public double getDepartureTime(){ //Returns the departure
    time
    return departureTime;
}
public double getLength() {//Returns length
    return length;
}
public String getType(){//Returns type
    return type;
}
public String getArrivalPlace(){ // Returns arrivalplace
    return arrivalPlace;
}
public double getPosition(){ // Returns position
    return position;
}
public double[] getProb(){ // Returns probability array
    return probabilities;
}
public double getSpeed(){ // Returns speed
    return speed;
}
public double getServiceTime(){ // Returns the service time
    switch (nrInLine) {
        case 1:
            if (null != type)switch (type) { //Determine (
                    residual)serviceTime based on type and
                    nrInLine
                    case "PASSENGER":
                        this.serviceTime = 1.10566;
                break;
            case "TRUCK":
```

```
                    this.serviceTime = 1.164;
                break;
    } break;
case 2:
    if (null != type)switch (type) { //Determine (
        residual)serviceTime based on type and
        nrInLine
        case "PASSENGER":
            this.serviceTime = 2.718868;
            break;
        case "TRUCK":
            this.serviceTime = 3.845;
            break;
    } break;
case 3:
    if (null != type)switch (type) { //Determine (
        residual)serviceTime based on type and
        nrInLine
        case "PASSENGER":
            this.serviceTime = 2.10566;
            break;
        case "TRUCK":
            this.serviceTime = 2.84;
            break;
    } break;
case 4:
    if (null != type)switch (type) { //Determine (
        residual)serviceTime based on type and
        nrInLine
        case "PASSENGER":
            this.serviceTime = 1.840566;
            break;
        case "TRUCK":
            this.serviceTime = 2.556;
            break;
    } break;
case 5:
    if (null != type)switch (type) { //Determine (
        residual)serviceTime based on type and
        nrInLine
        case "PASSENGER":
            this.serviceTime = 1.835849;
            break;
        case "TRUCK":
            this.serviceTime = 2.529;
                    break;
    } break;
    case 6:
    if (null != type)switch (type) { //Determine (
        residual)serviceTime based on type and
        nrInLine
        case "PASSENGER":
            this.serviceTime = 1.726415;
            break;
```

```
                    case "TRUCK":
                    this.serviceTime = 2.377;
                        break;
                break;
            case 7:
            if (null != type)switch (type) { //Determine (
                    residual)serviceTime based on type and
                    nrInLine
                    case "PASSENGER":
                        this.serviceTime = 1.711321;
                        break;
                case "TRUCK":
                    this.serviceTime = 2.354;
                        break;
            } break;
        default: //Vehicles after 7
            if (null != type)switch (type) { //Determine (
                residual)serviceTime based on type and
                nrInLine
                case "PASSENGER":
                    this.serviceTime = 1.674528;
                    break;
                case "TRUCK":
                    this.serviceTime = 2.286;
                    break;
            } break;
        }
        return serviceTime;
}
public void updatePosition(double d){ // Updates position
        to input value
        position = d;
}
public void leaveSystem(double t){ //Sets departure time to
            input value and set boolean leftSystem to true
            departureTime = t;
            leftSystem = true;
}
public boolean hasLeftSystem(){ // Returns leftSystem
    return leftSystem;
}
public boolean inQueue(){ // Returns inQueue
    return inQueue;
}
public void addStop(){ // Increase nrStops by one
    nrStops += 1;
}
public int getNrStops(){ // Returns nrStops
    return nrStops;
}
public void nrInLine(int d){ // Sets the number in line
    nrInLine = d;
}
```

```
83 public int getNrInLine() { // Returns the number in line
        return nrInLine;
    }
    public double getDesSpeed() { // Returns the desired speed
        return desspeed;
    }
}
```

The Signal_Group class.

```
package swecobasicmodelextended;
import java.util.ArrayList;
public class Signal_Group {
    /* Traffic light colours */
    public static final int RED = 1;
    public static final int AMBER = 2;
    public static final int GREEN = 3;
    /* Double denoting the distance in meter between two road
            users waiting in the queue */
    public static double gap = 2;
    /* Integer indentifing the signal group */
    protected int identifier;
    /* Double denoting the travel time from arrival in the
        system to arrival at the traffic light of the signal
        group */
    protected double length;
    /* Double denoting the maximum speed on the lane associated
            with the signal group */
    protected double maxSpeed;
    /* Integer denoting the colour of the traffic light */
    protected int trafficLightColour;
    /* List of road users associated with signal group */
    protected ArrayList<Road_User> road_users;
    /* List of road users in the queue */
    protected ArrayList<Road_User> road_users_in_queue;
    /* Doubles denoting the size of the queue in meter and the
        distance (in meter) from the trafficlight to the front
        and back of the queue */
    protected double queueLengthInMeter;
    protected double frontOfQueue;
    protected double backOfQueue;
    /* Boolean idicating whether the signal group has a queue
        at initialisation */
    protected boolean hasQueue;
    /* Boolean idicating whether a road user has been below the
        speed boundary (departure boundary) */
    protected boolean checked;
    public Signal_Group(int identifier, double length, double
        maxSpeed) {
        this.identifier = identifier;
        this.length = length;
```

```
    this.trafficLightColour = RED;
    this.road_users = new ArrayList<>();
    this.road_users_in_queue = new ArrayList<>();
    this.queueLengthInMeter = 0;
    this.frontOfQueue = 0;
    this.backOfQueue = 0;
    this.maxSpeed = maxSpeed;
    this.hasQueue = false;
    this.checked = false;
}
public int getIdentifier(){ // Returns the identifier
    return identifier;
}
public int trafficLightColour() { //Returns the current
    traffic light colour
    return trafficLightColour;
}
public void changeTrafficLightColour(int
    newTrafficLightColour){ //Changes the traffic light
    colour to the new traffic light colour
    trafficLightColour = newTrafficLightColour;
}
public double getLength(){ //Returns the travel time
    return length;
}
public double maxSpeed(){ //Returns the maximum speed on
    the lane
    return maxSpeed;
}
public void addRoadUser(Road_User ru){//Add road user to
    the signal groups
    road_users.add(ru);
}
public int nrRoadUsers(){ // Returns the number of road
    users associated with the signal group
    return road_users.size();
}
public Road_User getRoadUser(int i){ // Returns the i'th
        road user
        return road_users.get(i);
}
public void addRoadUserToQueue(Road_User ru) { //Add road
    user to queue
    road_users_in_queue.add(ru); // Add the road user to
        the queue
    ru.inQueue = true; // Set inQeueu of the road user to
        true
    backOfQueue += ru.getLength() + gap; //Update position
        of the back of queue
    queueLengthInMeter += ru.getLength() + gap; //Update
        length of the queue
}
public void removeRoadUserFromQueue(Road_User ru) { //
    Remove road user from queue
```

```
    road_users_in_queue.remove(ru); //Removes the road user
        from the queue
    ru.inQueue = false; // Set inQeueu of the road user to
        false
    frontOfQueue += ru.getLength() + gap; //Update position
        of the front of queue
    queueLengthInMeter -= ru.getLength() + gap;//Update
        length of the queue
}
public Road_User getNextRoadUserInQueue() {// Returns the
    road user in front of the queue
    return road_users_in_queue.get(0);
}
public Road_User getRoadUserInQueue(int i){// Returns the i
    'th road user in the queue
    return road_users_in_queue.get(i);
}
public Road_User getLastRoadUserInQueue() {// Returns the
    road user in front of the queue
    return road_users_in_queue.get(road_users_in_queue.size
        () - 1);
}
public int queueLength() { // Returns the queue length
    return road_users_in_queue.size();
}
public void reset() { // Reset
    road_users.clear(); // Empty array with road users
    road_users_in_queue.clear(); // Empty array with road
        users in queue
    queueLengthInMeter = 0; // Set queuelength in meter to
        zero
    frontOfQueue = 0; // Set position of front of the queue
        to zero
    backOfQueue = 0; // Set position of back of the queue
        to zero
    hasQueue = false; // Set hasQueue to false
    checked = false; // Set checked to false
}
public void resetQueue(){ // Sets the position of the back
    of the queue to the queuelength in meter and the
    position of the front of the queue to zero
    backOfQueue = queueLengthInMeter;
    frontOfQueue = 0;
}
public double getBackOfQueue(){ //Returns the position of
    the back of the queue
    return backOfQueue;
}
public void updateQueue(double q, double l){ // Update
    position of the front and back of the queue
    frontOfQueue = q;
    backOfQueue = q + l;
}
```

```
    void hasQueue() { // Set hasQueue to true
        hasQueue = true;
    }
    void checked(){ // Set checked to true
        checked = true;
    }
    public boolean getHasQueue() { // Return hasQueue
        return hasQueue;
    }
    public boolean getChecked(){ // Return checked
        return checked;
    }
}
```

The Event class.

```
package swecobasicmodelextended;
public class Event {
    /* Events */
    /* Arrival and depature events */
    public static final int ARRIVAL_AT_QUEUE = 1;
    public static final int DEPARTURE_FROM_QUEUE = 2;
    /* Trafficlight events */
    public static final int TRAFFICLIGHT_TO_RED = 3;
    public static final int TRAFFICLIGHT_TO_AMBER = 4;
    public static final int TRAFFICLIGHT_TO_GREEN = 5;
    /* Stop simulation event */
    public static final int STOP_SIMULATION = 6;
    /* Register result event */
    public static final int REGISTER_RESULTS = 7;
    /* Event type */
    protected int type;
    /* Event time */
    protected double time;
    /* Signal group associated with event*/
    protected Signal_Group signal_group;
    /* Road user associated with event*/
    protected Road_User road_user;
    public Event(int type, double time, Signal_Group
        signal_group, Road_User road_user) {
        this.type = type;
        this.time = time;
        this.signal_group = signal_group;
        this.road_user = road_user;
    }
    public int getType() {//Returns type
        return type;
    }
    public double getTime() {//Returns time
        return time;
```

```
38 }
    public Signal_Group getSignalGroup(){//Returns signal group
        return signal_group;
    }
    public Road_User getRoadUser() {//Returns road user
        return road_user;
    }
}
```

The FES class.

```
package swecobasicmodelextended;
import java.util.ArrayList;
// Future event set
public class FES {
        /* ArrayList of events */
        protected ArrayList<Event> events;
        public FES() {
            events = new ArrayList<Event>();
        }
        public void addEvent(Event newEvent) { //Add event to
            arrayList of events
        int insertIndex = 0;
        while (insertIndex < events.size()) {
            Event e = events.get(insertIndex);
            if (e.getTime() > newEvent.getTime()) break;
            insertIndex++;
        }
        events.add(insertIndex, newEvent);
    }
    public Event nextEvent() { //Returns first event (in time)
        return events.remove(0);
    }
}
```

The SimResults class.

```
package swecobasicmodelextended;
public class SimResults {
    /* Performance measures per signal group */
    protected double[] sumS; // sum of the sojourn times
    protected double[] totalDelay; // sum of total delay
    protected double[] totalSquaredDelay; // sum of total
        squared delay
        protected int[] nrTotalStops; // sum of the total number of
        stops
```

```
protected double totalCompare; // Total comparison of delay
            (between our model and vissim model)
protected double totalPosCompare; // Total comparison of
        absolute delay (between our model and vissim model)
protected double[] totDelayPTS; // Total comparison of
        delay (between our model and vissim model) per timestamp
protected double[] totPosDelayPTS; // Total comparison of
        absolute delay (between our model and vissim model) per
        timestamp
protected double totalComparePerRU; // Total comparison of
    delay (between our model and vissim model) per road user
protected double totalAbsoluteComparePerRU; // Total
    comparison of absolute delay (between our model and
    vissim model) per road user
protected double averageDepTime; // Average departure time
protected double nrRu; // Number of road users
public SimResults(int nrSignalGroups) {
        this.sumS = new double[nrSignalGroups+1] ;
        this.totalDelay = new double[nrSignalGroups+1];
        this.totalSquaredDelay = new double[nrSignalGroups+1];
        this.nrTotalStops = new int[nrSignalGroups+1];
        this.totalCompare = 0;
        this.totalPosCompare = 0;
        this.totDelayPTS = new double[26];
        this.totPosDelayPTS = new double[26];
        this.totalComparePerRU = 0;
        this.totalAbsoluteComparePerRU = 0;
        this.averageDepTime = 0;
        this.nrRu = 0;
}
void registerSojournTime(double sojournTime, Signal_Group
        sg) { //Registers the sojourn time
        sumS[sg.getIdentifier()] += sojournTime;
}
void registerDelay(double delay, Signal_Group sg) { //
        Registers the total delay and total squared delay
        totalDelay[sg.getIdentifier()] += delay;
        totalSquaredDelay[sg.getIdentifier()] += delay*delay;
}
void registerNrStops(int nrStops, Signal_Group sg) { //
        Registers the total number of stops
        nrTotalStops[sg.getIdentifier()] += nrStops;
}
public double[] getSojournTime(){//Returns sojourn time
    return sumS;
}
public double[] getTotalDelay(){//Returns total delay
    return totalDelay;
}
public double[] getTotalSquaredDelay(){//Returns total
```

```
        squared delay
        return totalSquaredDelay;
}
public int[] getTotalNrStops(){ //Returns the total number
        of stops
        return nrTotalStops;
}
void registerAbsoluteComparison(double tpc) {// Register
    total comparison of absolute delay (between our model
        and vissim model)
    totalPosCompare = tpc;
}
void registerComparison(double tc) {// Register total
        comparison of delay (between our model and vissim model)
    totalCompare = tc;
}
public double getTotalComparision(){ // Get total
        comparison of delay (between our model and vissim model)
        return totalCompare;
}
public double getTotalPosComparision(){ // Get total
    comparison of absolute delay (between our model and
    vissim model)
    return totalPosCompare;
}
void registerComparisonPerTimestamp(int f, double
    compareTotalDelay) { // Register total comparison of
        delay (between our model and vissim model) per timestamp
        totDelayPTS[f] = compareTotalDelay;
}
public double[] getTotDelayPTS(){ // Get total comparison
    of delay (between our model and vissim model) per
    timestamp
    return totDelayPTS;
}
void registerAbsoluteComparisonPerTimestamp(int f, double
    compareTotalPosDelay) { // Register total absolute
    comparison of delay (between our model and vissim model)
    per timestamp
    totPosDelayPTS[f] = compareTotalPosDelay;
}
public double[] getTotPosDelayPTS(){ // Get total absolute
    comparison of delay (between our model and vissim model)
        per timestamp
    return totPosDelayPTS;
}
void registerComparisonPerRU(double compareTotalFinalDelay,
            int nrRU) { // Register total comparison of delay (
        between our model and vissim model) per road user
        totalComparePerRU = compareTotalFinalDelay / nrRU;
}
public double getComparisonPerRU(){ // Get total comparison
    of delay (between our model and vissim model) per road
```

```
        user
        return totalComparePerRU;
    }
    void registerAbsoluteComparisonPerRU(double
        compareTotalFinalAbsoluteDelay, int nrRU) { // Register
        total comparison of absolute delay (between our model and
            vissim model) per road user
        totalAbsoluteComparePerRU =
            compareTotalFinalAbsoluteDelay / nrRU;
    }
    public double getAbsoluteComparisonPerRU(){ // Get total
        comparison of absolute delay (between our model and
        vissim model) per road user
        return totalAbsoluteComparePerRU;
    }
    void registerAverageDepTime(double depTime) { // Register
        average departure time
        averageDepTime = depTime;
    }
    public double getAverageDepTime (){ // Get average
        departure time
        return averageDepTime;
    }
    void registerNrRU(double nrRU){ // Register number of road
        users
        nrRu = nrRU;
    }
    public double getNrRu(){ // Get number of road users
    return nrRu;
    }
}
```

The Sim class.

```
package swecobasicmodelextended;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.PrintWriter;
import java.util.*;
import java.util.Map.Entry;
/**
    *
    * @author Imke Vromans
    * /
public class Sim {
        public SimResults simulate(double startTime, double maxTime
        , int nrTimestamps, Map<String, List<Integer>> junction,
            Map<Integer, List<Signal_Group>> sgMap, String module,
        String road_users, Map<Integer, Double> finalDelayMap,
```

```
Map<Integer, Map<Double, Double>> delayMap) throws
FileNotFoundException {
PrintWriter pw = new PrintWriter(new File("Output.txt")
    ); // Write output to file
FES fes = new FES(); // Create new future event set
int nrSignalGroups = sgMap.size(); // Total number of
    signal groups
SimResults results = new SimResults(nrSignalGroups); //
        Create new simresults
// Initialize traffic light colour and create
    trafficLight events
importTrafficLightEvents(startTime, fes, sgMap, module)
    ;
// Import all road users
importRoadUsers(startTime, fes, junction, sgMap,
    road_users);
double t = startTime; // Initialize time
// The current output file from SUMO has for all
    signalgroups the vehicles and the delay and stops at
        timeStamps t=0 to t=25;
// So to store the output in the same way we need to
    register the delay at every time stamp, for this we
    create an event REGISTER_RESULTS
int f = 0;
for (int i = 0; i < nrTimestamps; i++) {
    Event RegisterResults = new Event(Event.
            REGISTER_RESULTS, startTime + i, null, null);
        fes.addEvent(RegisterResults);
}
// Schedule the stop simulation event
// (this event prevents the simulation from continuing
        beyond the desired time horizon and prevents the
        program from ending due to an empty FES)
Event StopSimulation = new Event(Event.STOP_SIMULATION,
        maxTime, null, null);
fes.addEvent(StopSimulation);
// Start simulation loop
while (t < maxTime) {
        Event e = fes.nextEvent();// Get the next event
        t = e.getTime();// Update the time
        switch (e.getType()) {
            case Event.ARRIVAL_AT_QUEUE: {
            Signal_Group sg = e.getSignalGroup();// Get
                    signal group associated with event
                    Road_User ru = e.getRoadUser(); // Get the
                                    road user
```

QUEUE: \{
Signal_Group sg = e.getSignalGroup(); //
Get signal group associated with event
if ((sg.trafficLightColour() ==
Signal_Group.GREEN) | (sg.
trafficLightColour() == Signal_Group.
AMBER)) \{ //If the traffic light is
green or amber:
Road_User ru $=$ e.getRoadUser(); // Get
the road user
sg.removeRoadUserFromQueue (ru) ; / /
Remove road user from the queue
ru.leavesystem(t); //Registers
departure time
वै
76
77
78
79
80
81
\} else \{ // If the traffic light is red //Add extra stop to all road users in queue, since the traffic light will have turned red before they could pass the intersection
int position $=0$; for (int $i=0 ; i<s g$.queueLength(); i ++) \{ Road_User ru_i_q $=$ sg.
getRoadUserInQueue(i); // Get i'
th road user in the queue ru_i_q.updatePosition(position); // Update position of road user ru_i_q.nrInLine(i + 1); // Update the position of the road user in nr of vehicles in line ru_i_q.addStop(); // Add stop position $+=$ ru_i_q.getLength() + Signal_Group.gap; // Update value of position to be used for road user in queue
$\}$
\}
break;
$\}$
case Event.TRAFFICLIGHT_TO_RED: \{
Signal_Group sg = e.getSignalGroup(); //
Get signal group associated with event
// Change traffic light to red for signal group associated with event
sg. changeTrafficLightColour (Signal_Group. RED) ;
sg.resetQueue(); // Reset the position of

```
                the front and back of queue
    break;
}
case Event.TRAFFICLIGHT_TO_AMBER: {
    Signal_Group sg = e.getSignalGroup(); //
        Get signal group associated with event
    // Change traffic light to amber for signal
                group associated with event
    sg.changeTrafficLightColour(Signal_Group.
        AMBER);
    break;
}
case Event.TRAFFICLIGHT_TO_GREEN: {
    Signal_Group sg = e.getSignalGroup(); //
        Get signal group associated with event
    //Change traffic light to red for signal
        group associated with event
    sg.changeTrafficLightColour(Signal_Group.
        GREEN);
    if (sg.queueLength() > 0) { // If there are
                road users waiting in the queue in
        front of the trafficlight
        Road_User nextRu = sg.
                getNextRoadUserInQueue(); // Get the
                    first road user in the queue (the
                road user in front of the queue)
        //Schedule a departure from queue event
                    for this road user
        Event newDepartureFromQueue = new Event
                (Event.DEPARTURE_FROM_QUEUE, t +
                nextRu.getServiceTime(), sg, nextRu)
                ;
        fes.addEvent(newDepartureFromQueue);
    }
    break;
}
case Event.REGISTER_RESULTS:
    double compareTotalDelay = 0;
    double compareTotalAbsoluteDelay = 0;
    pw.println("Timestamp " + (t-startTime));
    for (Entry<Integer, List<Signal_Group>>
        entry : sgMap.entrySet()) { // For every
            signal group
        List<Signal_Group> sgList = entry.
            getValue();
        pw.println("Signal group " + entry.
                getKey());
            for (Signal_Group sg : sgList) {
                for (int k = 0; k < sg.nrRoadUsers
                    (); k++) { // For every road
                    user in the signal group
```


163 164

```
    }
                    }
                double compareDelay = delay -
                                    delayMap.get(ru.getId()).get
                                    (t); // Compare calculated
                                    delay to vissim delay
                                double compareAbsoluteDelay =
                                    Math.abs(compareDelay); //
                                    Compare calculated delay to
                                    vissim delay in absolute
                                    difference
                                    compareTotalDelay =
                                    compareTotalDelay +
                                    compareDelay; // Sum the
                                    difference between
                                    calculated delay and vissim
                                    delay
                                    compareTotalAbsoluteDelay =
                                    compareTotalAbsoluteDelay +
                                    compareAbsoluteDelay; // Sum
                                    the absolute difference
                                    between calculated delay and
                                    vissim delay
                                    //Write delay and nrStops to
                                    output file
                                    pw.println("Road user " + ru.
                                    getId() + " Delay " + delay
                                    + " NrStops " + ru.
                                    getNrStops());
                    }
            }
            }
            // Register the total differences between
        calculated delay and vissim delay
            results.registerComparisonPerTimestamp(f,
                compareTotalDelay);
results.
        registerAbsoluteComparisonPerTimestamp(f
                , compareTotalAbsoluteDelay);
                    f++;
                    pw.println();
                    default:
                    break;
    }
}
pw.close();
// After simulation calculate the final delay (after
    all vehicles have left the system)
double compareTotalFinalDelay = 0; // Compare
    difference between calculated delay and vissim delay
```

after all vehicle have left the system
double compareTotalFinalAbsoluteDelay $=0 ; / /$ Compare
absolute difference between calculated delay and
vissim delay after all vehicle have left the system
int $\operatorname{nrRU}=0 ; / /$ Number of road users
double depTime $=0 ; / /$ Departure time
for (Entry<Integer, List<Signal_Group>> entry : sgMap.
entrySet()) \{ // For every signal group
List<Signal_Group> sgList = entry.getValue();
for (Signal_Group sg : sgList) \{
int nrRUinSG $=$ sg.nrRoadUsers();
for (int $k=0 ; k<s g . n r R o a d U s e r s() ; k++$) $/ / /$
For every road user in the signal group
Road_User ru $=$ sg.getRoadUser(k); // get
the road user
double sojournTime $=$ ru.getDepartureTime()
- ru.getArrivalTime(); // Calculate
sojourn time
double minTT $=$ sg.getLength() / ru.
getDesSpeed(); // Calculate the minimum
travel time
double delay $=$ Math.max $(0$, sojournTime -
minTT); // Calculate the delay
// Register performance measures
//results.registerSojournTime (sojournTime,
sg); // register sojourntime
//results.registerDelay(delay, sg); //
register delay
//results.registerNrStops(ru.getNrStops(),
sg); // register number of stops
// Register difference with Vissim
double compareDelay = delay - finalDelayMap
.get(ru.getId()); // Compare difference
between calculated delay and vissim
delay
double compareAbsoluteDelay = Math.abs(
delay - finalDelayMap.get(ru.getId()));
// Compare absolute difference between
calculated delay and vissim delay
compareTotalFinalDelay =
compareTotalFinalDelay + compareDelay;
// Sum the difference between calculated
delay and vissim delay
compareTotalFinalAbsoluteDelay =
compareTotalFinalAbsoluteDelay +
compareAbsoluteDelay; // Sum the
absolute difference between calculated
delay and vissim delay
depTime += ru.getDepartureTime()-startTime;

```
                                    // Calculate departure time
            }
            nrRU = nrRU + nrRUinSG; // Calculate total
                number of road users
        }
    }
    // Register results
    results.registerAverageDepTime(depTime/nrRU);
    results.registerNrRU(nrRU);
    results.registerComparisonPerRU(compareTotalFinalDelay,
        nrRU);
    results.registerAbsoluteComparisonPerRU(
        compareTotalFinalAbsoluteDelay, nrRU);
    results.registerComparison(compareTotalFinalDelay);
    results.registerAbsoluteComparison(
        compareTotalFinalAbsoluteDelay);
        return results;
}
public void importRoadUsers(double startTime, FES fes, Map<
    String, List<Integer>> junction, Map<Integer, List<
Signal_Group>> sgMap, String road_users) {
// NOTE: the road users need to be in order from
        closest to trafficlight to furtherst from traffic
        light
// (This is necessary since the queue length needs to
        be known before we can schedule arrival at queue
        events )
int ru_id;
//Read road users from file
try (Scanner sc = new Scanner(new File(road_users))) {
            sc.useLocale(Locale.US);
            while (sc.hasNextLine()) {
                if (sc.hasNextInt()) {
                    ru_id = sc.nextInt();
            } else {
                    break;
            }
            double arrivalTime = sc.nextDouble();
            double length = sc.nextDouble();
            String type = sc.next();
            String arrivalPlace = sc.next();
            double position = sc.nextDouble();
            String a = sc.next();
            String[] ar = a.split(";");
            double[] prob = new double[ar.length];
            for (int i = 0; i < ar.length; i++) {
                    prob[i] = Double.parseDouble(ar[i]);
            }
            double speed = sc.nextDouble();
```



```
~
public Signal_Group determineSignalGroup(Map<String, List<
    Integer>> junction, Map<Integer, List<Signal_Group>>
    sgMap, String arrivalPlace, double[] prob) {
    Random rng = new Random(); //Random number generator
    Signal_Group sg = null; //Initialize sg with dummy
    double U = rng.nextDouble()
    for (int i = 0; i < prob.length; i++) {
        if (U < prob[i]) { // If U is less than the
                probability then go to that signalgroup
                int id = junction.get(arrivalPlace).get(i); //
                    Get the identity number of the signal group
                List<Signal_Group> sgList = sgMap.get(id); //
                    Get all signal groups with this identity
                    number
                sg = sgList.get(0); // Set sg to the first
                signal group with this identity number
                int ql = sg.nrRoadUsers(); // Get the queue
                    length of this signal group sg
                for (int j = 1; j < sgList.size(); j++) { //
                    For all signal groups with the same identity
                    number
                Signal_Group newSG = sgList.get(j); //
                    Compare the queue length
                int newQL = newSG.nrRoadUsers();
                if (newQL < ql) { //If the queuelength is
                    smaller then set sg to this signal group
                                    sg = newSG;
                                    ql = newQL;
                }
                }
                break;
            }
    }
    return sg;
}
public void importTrafficLightEvents(double startTime, FES
    fes, Map<Integer, List<Signal_Group>> sgMap, String
    module) {
    double simSec;
    //Import traffic light events
    try (Scanner sc = new Scanner(new File(module))) {
        sc.useLocale(Locale.US);
        while (sc.hasNextLine()) {
```



```
                int nrLanes = sc.nextInt()
                // Create signal (sub)groups
                for (int j = 0; j < nrLanes; j++) { //
                    Create a signal (sub)group for each lane
                    Signal_Group sg = new Signal_Group(id,
                                    length, maxSpeed); //Create signal
                                    su.b) group
                    listSG.add(sg); //Add these to the list
                                    of signal (su.b)groups
                }
                list.add(id); // Add id to the list of
                    identifiers available from arrivalPlace
                    sgMap.put(id, listSG); //Map id to the
                            signal (sub)groups
            }
            junction.put(arrivalPlace, list); //Map
                    arrivalPlace to the list of identifiers
                    available from arrivalPlace
    }
    sc.close();
} catch (FileNotFoundException e) {
        System.out.println("The junction file " +
            junction_structure + " could not be found");
}
// Create arrays to store difference between calculated
    delay and Vissim delay
double[] compareDelay = new double[nrSnapshots];
double[] compareAbsoluteDelay = new double[nrSnapshots
    ];
double[][] compareDelayPTS = new double[nrSnapshots][
    nrTimestamps];
double[] compareTotalDelayPTS = new double[nrTimestamps
    ];
double[][] compareAbsoluteDelayPTS = new double[
    nrSnapshots][nrTimestamps];
double[] compareAbsoluteTotalDelayPTS = new double[
    nrTimestamps];
double[] compareTotalDelayPTSperRu = new double[
    nrTimestamps];
double[] compareAbsoluteTotalDelayPTSperRu = new double
        [nrTimestamps];
double[] comparePerRU = new double[nrSnapshots];
double[] compareAbsolutePerRU = new double[nrSnapshots
    ];
double[] averageDepTime = new double[nrSnapshots];
double[] nrRu = new double[nrSnapshots];
// Run for every snapshot
for (int z = 1; z < (nrSnapshots + 1); z++) {
    String format = String.format("%03d", z);
```

String simSec $=$ "simSec" + format + ".txt";
String module = "Module" + format + ".txt";
String road_users = "Roadusers" + format + ".txt";
String finalDelay = "FinalDelay" + format + ".txt";
String delays = "Delay" + format + ".txt";
// Read simSec file
double startTime;
try (Scanner $\mathrm{sc}=$ new Scanner(new File(simSec))) \{
sc.useLocale(Locale.US);
startTime $=$ sc.nextDouble();
\}
// Read FinalDelay file
// Create map to compare Vissim final delay to
simulated final delay (after all vehicles have
left the system)
Map<Integer, Double> finalDelayMap = new HashMap
<>(); // Maps the identifier of the road user to
the delay
try (Scanner $s c=$ new Scanner(new File(finalDelay))
) \{
sc.useLocale(Locale.US);
int ru_id;
while (sc.hasNextLine()) \{
if (sc.hasNextInt()) \{
ru_id = sc.nextInt();
\} else \{
break;
\}
double delayVis = sc.nextDouble();
finalDelayMap.put(ru_id, delayVis);
\}
sc.close();
\} catch (FileNotFoundException e) \{
System.out.println("The file with final delay "
+ finalDelay + " could not be found");
\}
// Read Delay file
// Create map to compare Vissim delay to simulated
delay at every timestamp
Map<Integer, Map<Double, Double>> delaysMap = new
HashMap<>(); //Maps the identifier of the road
user to the delay
try (Scanner $s c=$ new Scanner(new File(delays))) \{
int ru_id;
sc.useLocale(Locale.US);
while (sc.hasNextLine()) \{
Map<Double, Double> secondMap = new HashMap
<>(); // Maps time to the vissim delay
if (sc.hasNext()) \{


```
                    vissim (for every snapshot)
        compareDelayPTS[(z - 1)] = results.
            getTotDelayPTS(); // total difference in
                    delay per timestamp between java model and
            vissim (for every snapshot)
        compareAbsoluteDelayPTS[(z - 1)] = results.
            getTotPosDelayPTS(); // total absolute
            difference in delay per timestamp between
            java model and vissim (for every snapshot)
        comparePerRU[(z-1)] = results.
            getComparisonPerRU(); // total difference in
                    delay between java model and vissim (for
            every snapshot) per road user
        compareAbsolutePerRU[(z-1)] = results.
            getAbsoluteComparisonPerRU(); // total
            absolute difference in delay between java
            model and vissim (for every snapshot) per
            road user
        averageDepTime[(z-1)] = results.
            getAverageDepTime(); // average departure
            time
        nrRu[(z-1)] = results.getNrRu(); // number of
            road users
        //double[] delay = results.getTotalDelay();
        //for (int k = 0; k < nrSignalGroups; k++) {
            // sumDelay[k] = sumDelay[k] + delay[k]; //
                Add delay from run to total delay over all
                    runs
        //}
        //}
    //for (int j = 0; j < nrSignalGroups; j++) { //
        Calculate the expected delay
        // expDelay[j] = sumDelay[j] / nrRuns;
    //}
}
// Sum the (absolute) delay per timestamp over all
        snapshots
for (int h = 0; h < nrTimestamps; h++) {
    for (int g = 0; g < nrSnapshots; g++) {
        compareTotalDelayPTS[h] = compareTotalDelayPTS[
            h] + compareDelayPTS[g][h];
        compareAbsoluteTotalDelayPTS[h] =
            compareAbsoluteTotalDelayPTS[h] +
            compareAbsoluteDelayPTS[g][h];
        }
        compareTotalDelayPTSperRu[h] = compareTotalDelayPTS
        [h]/Arrays.stream(nrRu).sum();
    compareAbsoluteTotalDelayPTSperRu[h] =
        compareAbsoluteTotalDelayPTS[h]/Arrays.stream(
        nrRu).sum();
```



```
    road user");
    System.out.println(Arrays.stream(comparePerRU).sum()
        /100);
        System.out.println("Difference in absolute delay
        between model and Vissim per snapshot per road user
        ");
        System.out.println(Arrays.toString(compareAbsolutePerRU
        ) ) ;
        System.out.println("Total absolute difference in delay
    between model and Vissim (summed over all snapshots)
        per road user ");
    System.out.println(Arrays.stream (compareAbsolutePerRU).
        sum()/100);
        System.out.println("Total difference in delay between
        model and Vissim per timestamp (summed over all
        snapshots) average per road user");
        System. out. println(Arrays.toString (
        compareTotalDelayPTSperRu));
        System.out.println();
        System.out.println("Total absolute difference in delay
        between model and Vissim per timestamp (summed over
        all snapshots) average per road user");
        System.out.println(Arrays.toString
        compareAbsoluteTotalDelayPTSperRu));
    \}
\}
```


A.1.2 Example input files

Junction_Structure: Txt file containing the structure of the junction. The txt file has, for every arrival place, the name of an arrival place and below it the id, the length of the lane, the maximum speed and the number of lanes.

```
Noord
1 107.84 13.88 1
2 107.84 13.88 1
3 107.84 13.88 1
Oost
4 48.29 13.88 1
5 48.29 13.88 1
648.29 13.88 1
Zuid
7 109.53 13.88 1
8 109.53 13.88 1
9 109.53 13.88 1
West
10 44.24 13.88 1
11 44.24 13.88 1
12 44.24 13.88 1
```

Roadusers: Txt file containing the snapshot. The txt file contains every road user in the snapshot, with for every road user its id number, arrival time, length, type, arrival place, position, probability array, speed and number in line.

```
78 263.92 4.76 PASSENGER Zuid 0.824 0.0;0.0;1.0 0 15.43333 1
80 272.03 4.76 PASSENGER Zuid 7.944 0.0;0.0;1.0 0.8722222
    13.52778 2
82 264.75 4.61 PASSENGER Oost 0.895 0.0;1.0;1.0 0 15.43333 1
83 276.38 4.01 PASSENGER Noord 9.919 0.0;1.0;1.0 16.64444
    20.53333 3
88 279.32 4.61 PASSENGER Oost 27.265 1.0;1.0;1.0 10.27778
    13.80278 6
```

simSec: Txt file containing the starting time of the simulation.

```
282
```

Module: Txt file containing the scheme, with on every line: the simulation second, the signal group and traffic light colour.

```
280.0 1 green
280.0 2 green
280.0 3 green
280.0 10 red
280.0 11 red
280.0 12 red
270.0 7 red
270.0 8 red
270.0 9 red
260.0 4 red
260.0 5 red
260.0 6 red
287.0 1 amber
287.0 2 amber
287.0 3 amber
290.0 1 red
290.0 2 red
290.0 3 red
290.04 green
...
597.0 11 amber
597.0 12 amber
600.0 1 green
600.0 2 green
600.0 3 green
600.0 10 red
600.0 11 red
600.0 12 red
```

Delay: Txt file containing the Vissim delay for every road user in the snapshot per time stamp.

```
newVehicle
78
282 11.0379
```

```
283 12.0379
284 13.0379
285 14.0379
286 15.0379
287 16.0379
288 17.0379
289 18.0379
290 19.0379
291 20.0379
292 21.0379
293 22.0379
294 23.0379
295 24.0379
296 25.0379
297 26.0379
298 27.0379
299 28.0379
300 29.0379
301 29.97376
302 29.97376
303 29.97376
304 29.97376
305 29.97376
306 29.97376
307 29.97376
...
newVehicle
88
282 1.156828
283 1.422194
284 1.846223
285 2.491222
286 3.320966
287 4.266629
288 5.255762
2896.255762
290 7.255762
291 8.185486
292 8.185486
293 8.185486
294 8.185486
295 8.185486
296 8.185486
297 8.185486
298 8.185486
299 8.185486
300 8.185486
301 8.185486
302 8.185486
303 8.185486
304 8.185486
305 8.185486
306 8.185486
307 8.185486
```

FinalDelay: Txt file containing the Vissim delay for every road user after they have left the system.

```
78 30.0
80 23.4
82 23.1
83 0.9
88 8.3
```


A.1.3 Example output file

Ouput: Txt file containing the results. For every timestamp the delay and number of stop per road user is given by signal group.

```
Timestamp 0.0
Signal group 1
Signal group 2
Road user 83 Delay 1.1998207110098607 NrStops 0
Signal group 3
Road user 75 Delay 21.885900553279004 NrStops 1
Signal group 4
Road user 88 Delay 1.2292556571937028 NrStops 0
Signal group 5
Signal group 6
Signal group 7
Signal group 8
Road user 71 Delay 39.34481556211208 NrStops 1
Signal group 9
Road user 78 Delay 11.063022225274803 NrStops 1
Road user 80 Delay 2.8096602990291046 NrStops 1
Signal group 10
Road user 81 Delay 23.604481795508626 NrStops 1
Road user 87 Delay 4.8452161690455675 NrStops 1
Signal group 11
Road user 86 Delay 5.989654575991809 NrStops 1
Signal group 12
Timestamp 1.0
Signal group 1
Signal group 2
Road user 83 Delay 1.3680510954628442 NrStops 1
Signal group 3
Road user 75 Delay 22.885900553279004 NrStops 1
Signal group 4
Road user 88 Delay 1.4810165343503336 NrStops 0
Signal group 5
Signal group 6
Signal group 7
Signal group 8
Road user 71 Delay 39.34481556211208 NrStops 1
Signal group 9
Road user 78 Delay 11.063022225274803 NrStops 1
Road user 80 Delay 3.8096602990291046 NrStops 1
Signal group 10
```

```
Road user 81 Delay 24.604481795508626 NrStops 1
Road user 87 Delay 5.8452161690455675 NrStops 1
Signal group 11
Road user 86 Delay 6.989654575991809 NrStops 1
Signal group 12
. . .
Timestamp 25.0
Signal group 1
Signal group 2
Road user 83 Delay 25.368051095462846 NrStops 1
Signal group 3
Road user 75 Delay 46.885900553279 NrStops 1
Signal group 4
Road user 88 Delay 24.43142942218887 NrStops 1
Signal group 5
Signal group 6
Signal group 7
Signal group 8
Road user 71 Delay 39.34481556211208 NrStops 1
Signal group 9
Road user 78 Delay 11.063022225274803 NrStops 1
Road user 80 Delay 3.8889878187551794 NrStops 1
Signal group 10
Road user 81 Delay 42.63274471873668 NrStops 1
Road user 87 Delay 26.2020291649789 NrStops 1
Signal group 11
Road user 86 Delay 25.03197623965171 NrStops 1
Signal group 12
```


A. 2 Polling model with switching customers

A.2.1 Simulation file

```
(*Exact Analysis of Polling System with switching customers*)
(*LSTs for branching-type service disciplines*)
(*Author : Imke Vromans, June 2021 based on Marko Boon,
        November 2013*)
(*This Mathematica notebook computes performance measures for
    polling systems with switching customers at polling
    instances . It implements LSTs, which work for branching-
    type service disciplines. In particular, gated and
    exhaustive are implemented.*)
(*Numerical Input*)
(*Provide the moments of the input variables. *)
(*Service disciplines*)
(*Only exhaustive and gated are implemented. The number of
    queues is determined from the length of this list.*)
In[904]:= serviceDisciplines={exhaustive,exhaustive};
In[905]:= n=Length[serviceDisciplines];
(*Arrival intensities*)
(*Arrivals *)
In[906]:= lambdas={1/10,1/10};
Table[Subscript[\[Lambda], i]=lambdas[[i]],{i,1,n}];
```

```
(*Routing probabilities*)
In[908]:= p[1,1] = 10/10;
p[1,2]= 1- p[1,1];
p[2,2] = 3/10;
p[2,1] = 1-p[2,2];
(*Service-time distributions*)
(*In order to compute the actual queue-length probabilities, we
    need to provide the distributions of the service times and
    switch - over times. Otherwise, the moments would suffice.*)
In[912]:= T1=1;
S1=100/10;
(*This is a trick to create deterministic distributions:*)
In[914]:= Bdists=Table[TransformedDistribution[T1,u\[
    Distributed]NormalDistribution[\[Mu],\[Sigma]]],{n}];
Sdists=Table[TransformedDistribution[S1,u\[Distributed]
    NormalDistribution[\[Mu],\[Sigma]]],{n}];
(*Moments of the service time distributions*)
In[916]:= EBs=Table[Moment[Bdists[[i]],1],{i,1,n}];
EB2s=Table[Moment[Bdists[[i]],2],{i,1,n}];
EB3s=Table[Moment[Bdists[[i]],3],{i,1,n}];
EB4s=Table[Moment[Bdists[[i]],4],{i,1,n}];
In[920]:= Table[Subscript[EB, i]=EBs[[i]],{i,1,n}];
Table[Subscript[EB2, i]=EB2s[[i]],{i,1,n}];
Table[Subscript[EB3, i]=EB3s[[i]],{i,1,n}];
Table[Subscript[EB4, i]=EB4s[[i]],{i,1,n}];
(*Moments of the switch-over time distributions (note:
    Subscript[S, 1] is switch-over from Subscript[V, 1] to
    Subscript[V, 2], regardless of the service disciplines)*)
In[924]:= ESs=Table[Moment[Sdists[[i]],1],{i,1,n}];
ES2s=Table[Moment[Sdists[[i]],2],{i,1,n}];
ES3s=Table[Moment[Sdists[[i]],3],{i,1,n}];
ES4s=Table[Moment[Sdists[[i]],4],{i,1,n}];
In[928]:= Table[Subscript[ES, i]=ESs[[i]],{i,1,n}];
Table[Subscript[ES2, i]=ES2s[[i]],{i,1,n}];
Table[Subscript[ES3, i]=ES3s[[i]],{i,1,n}];
Table[Subscript[ES4, i]=ES4s[[i]],{i,1,n}];
(*Moments of the busy period *)
(*Busy period equation*)
In[932]:= bpeqn=BPLSTtmp[i][\[Omega]]==BLST[i][\[Omega]+
    Subscript[\[Lambda], i](1-BPLSTtmp[i][\[Omega]])];
(*First moment*)
In[933]:= D[bpeqn,{\[Omega],1}]/.\[Omega]->0;
In[934]:= sol =Table[Solve[%,BPLSTtmp[i]'[0]]/.BPLSTtmp[i
    ][0]->1/.(BLST[i]^\[Prime])[0]->-Subscript[EB, i],{i,1,n}]//
    Flatten;
In[935]:= Table[Subscript[EBP, i] = -BPLSTtmp[i]'[0]/.sol[[i
    ]],{i,1,n}]
Out[935]={10/9,10/9}
(*Second moment*)
In[936]:= D[bpeqn,{\[Omega], 2}]/.\[Omega]->0;
In[937]:= sol =Table[Solve[%,BPLSTtmp[i]''[0]]/.BPLSTtmp[i
    ][0]->1/.(BLST[i]^\[Prime])[0]->-Subscript[EB, i]/.BLST[i
    ]''[0]->Subscript[EB2, i]/.(BPLSTtmp[i]^\[Prime])[0]->-
```

```
    Subscript[EBP, i],{i,1,n}]//Flatten;
```

In [938]:= Table[Subscript[EBP2, i] = BPLSTtmp[i]''[0]/.sol[[i
]], $\{$ i, 1, n\}]
Out [938]= \{1000/729,1000/729\}
(*Third moment*)
$\operatorname{In}[939]:=\mathrm{D}[$ bpeqn, $\{\backslash[$ Omega $], 3\}] / . \backslash[$ Omega] $->0$;
In[940]:= sol =Table[Solve[\%,BPLSTtmp[i]'''[0]]/.BPLSTtmp[i

][0]->1/.(BLST[i]^\[Prime])[0]->-Subscript[EB, i]/.BLST[i
]''[0]->Subscript[EB2, i]/.BLST[i]'''[0]->-Subscript[EB3, i
]/.(BPLSTtmp[i]^ \Prime]) [0]->-Subscript[EBP, i]/.(BPLSTtmp[
 i] \} \backslash \text { [Prime] \[Prime]) [0]->Subscript[EBP2, i], \{i,1,n\}]// }
 Flatten;
 In [941]:= Table[Subscript[EBP3, i] = -BPLSTtmp[i]'r'[0]/.sol[[i
]], $\{\mathrm{i}, 1, \mathrm{n}\}]$
Out [941] $=\{40000 / 19683,40000 / 19683\}$
(*Fourth moment*)

In [942]:= D[bpeqn, $\{\backslash[$ Omega], 4\}]/. \[Omega]->0;
In [943]: $=$ sol =Table[Solve[\%, BPLSTtmp[i]''r'[0]]/.BPLSTtmp[i

][0]->1/.(BLST[i]^ \[Prime]) [0]->-Subscript[EB, i]/.BLST[i
]''[0]->Subscript[EB2, i]/.BLST[i]'''[0]->-Subscript[EB3, i
]/.BLST[i]''''[0]->Subscript[EB4, i]/.(BPLSTtmp[i]^\[Prime])
 [0]->-Subscript[EBP, i]/.(BPLSTtmp[i]^\[Prime] \[Prime]) [0]->
 Subscript[EBP2, i]/.(BPLSTtmp[i]^(3))[0]->-Subscript[EBP3, i
], \{i, 1, n\}]//Flatten;
 In [944]:= Table[Subscript[EBP4, i] = BPLSTtmp[i]'r'r[0]/.sol[[i
]], $\{\mathrm{i}, 1, \mathrm{n}\}]$
Out [944]=\{6200000/1594323,6200000/1594323\}
(*Exact Analysis*)

In [945]:= Table[Subscript[\[Sigma], i][0]=1, \{i,1,n\}];
Table[Subscript[\[Beta], i][0]=1,\{i,1,n\}];
Table[Subscript[\[Pi], i][0]=1, \{i,1,n\}];
Table[Subscript[\[Sigma], i]'[0]=-Subscript[ES, i],\{i,1,n\}];
Table[Subscript[\[Beta], i]'[0]=-Subscript[EB, i],\{i,1,n\}];
Table[Subscript[\[Pi], i]' [0]=-Subscript[EBP, i],\{i,1,n\}];
Table[Subscript[\[Sigma], i]''[0]=Subscript[ES2, i],\{i,1,n\}];
Table[Subscript[\[Beta], i]''[0]=Subscript[EB2, i],\{i,1,n\}];
Table[Subscript[\[Pi], i]''[0]=Subscript[EBP2, i],\{i,1,n\}];
Table[Subscript[\[Sigma], i]'''[0]=-Subscript[ES3, i],\{i,1,n\}];
Table[Subscript[\[Beta], i]'''[0]=-Subscript[EB3, i],\{i,1,n\}];
Table[Subscript[\[Pi], i]'''[0]=-Subscript[EBP3, i],\{i,1,n\}];
Table[Subscript[\[Sigma], i]''''[0]=Subscript[ES4, i],\{i,1,n\}];
Table[Subscript[\[Beta], i]'''' [0]=Subscript[EB4, i],\{i,1,n\}];
Table[Subscript[\[Pi], i]'r'r[0]=Subscript[EBP4, i],\{i,1,n\}];
In [960]:= zi=Table[Subscript[z, i],\{i,1,n\}];
In [961]:= hi=Table[If[serviceDisciplines[[i]]===gated,
Subscript[\[Beta], i][\!
(
$\backslash *$ UnderoverscriptBox[$\backslash(\backslash[$ Sum $] \backslash), ~ \(j=1 \backslash), ~ \(n \backslash)] \backslash($
$\backslash *$ SubscriptBox[
(\[Lambda]
),
(j
)]
((1 -
$\backslash *$ SubscriptBox[$\backslash(z \backslash), \backslash(j \backslash)]) \backslash) \backslash) \backslash)]$, If [serviceDisciplines[[i
]] ===exhaustive, Subscript[\[Pi], i][\!
(
$\backslash *$ UnderoverscriptBox[
(\[Sum]
),
(j = 1
),
(n
)]
(If[j !=i,
$\backslash *$ SubscriptBox[
(\[Lambda]
),
(j
)]
((1-
$\backslash *$ SubscriptBox[$\backslash(z \backslash), \backslash(j \backslash)]) \backslash), 0] \backslash) \backslash)]]],\{i, 1, n\}]$;
gi=Table[Subscript[\[Sigma], i][\!
(
*UnderoverscriptBox[
(\[Sum]
),
(j = 1
),
(n
)]
(
*SubscriptBox[
(\[Lambda]
),
(j
)]
((1-
$\backslash *$ SubscriptBox[
(z
),
(j
)])
)
)
)],\{i,1,n\}];
(*Joint Queue-length Distribution at polling epochs*)
(*The branching property is used here and an implicit equation
for LB^{\wedge} (Subscript[V, 1a]) is formed*)
$\operatorname{In}[963]:=\operatorname{md}\left[i _\right]:=\operatorname{Mod}[i-1, n]+1$
LVa[1][zi]=.;
joint=RotateRight@Table[
LVb[i][zi]=LVa[i][zi]/.Table[Subscript[z, k]-> \!
(
$\backslash *$ UnderoverscriptBox[$\[Sum]$, $j = 1$, n]$p[k, j]*\}
\(\backslash *$ SubscriptBox[
(z
),
(j
)]
)
),\{k,1,n\}];
LSa[i][zi]=LVb[i][zi]/.Subscript[z, i]->hi[[i]];
LSb[i][zi]=LSa[i][zi]/.Table[Subscript[z, k]-> \!
(
$\backslash *$ UnderoverscriptBox[
(\[Sum]
), $\backslash(j=1 \backslash), \backslash(n \backslash)] \backslash(p[k, j] * \backslash$
$\backslash *$ SubscriptBox[
(z
),
(j
)]
)
),\{k,1,n\}];
LVa[md[i+1]][zi]=LSb[i][zi]gi[[i]],\{i,1,n\}];
joint//ColumnForm
LVa[1][zi]=.
During evaluation of In[963]:= Unset::norep: Assignment on LVa
for LVa[1][\{Subscript[z, 1], Subscript[z, 2]\}] not found.
Out [966] = LVa[1][\{Subscript[\[Pi], 1][1/10 (1-(7 Subscript[z,
1])/10-3/10 ((7 Subscript[z, 1])/10+3/10 Subscript[\[Pi],
2][1/10 (1-Subscript[z, 1])]))],7/10 Subscript[\[Pi],
1] [1/10 (1-(7 Subscript[z, 1])/10-3/10 ((7 Subscript[z, 1])
/10+3/10 Subscript[\[Pi], 2][1/10 (1-Subscript[z, 1])]))
] $+3 / 10$ (7 Subscript $[z, 1]) / 10+3 / 10$ ((7 Subscript $[z, ~ 1])$
$/ 10+3 / 10$ Subscript[\[Pi], 2][1/10 (1-Subscript[z, 1])]))\}]
Subscript[\[Sigma], 1][1/10 (1-Subscript[z, 1])+1/10 (1-(7
Subscript[z, 1])/10-3/10 Subscript[\[Pi], 2][1/10 (1-
Subscript[z, 1])])] Subscript[\[Sigma], 2][1/10 (1-Subscript
$[z, 1])+1 / 10$ (1-Subscript[z, 2])]
LVa[1][\{Subscript[\[Pi], 1][1/10 (1-(7 Subscript[z, 1])/10-(3
Subscript [z, 2])/10)],3/10 ((7 Subscript[z, 1])/10+(3
Subscript[z, 2])/10)+7/10 Subscript[\[Pi], 1][1/10 (1-(7
Subscript[z, 1])/10-(3 Subscript[z, 2])/10)]\}] Subscript[\[
Sigma], 1][1/10 (1-Subscript[z, 1])+1/10 (1-Subscript[z, 2])
]
In[968]:= eqn=LVa[1][zi]==First[joint];
ones=Table[1, \{n\}];
LVa [_] [ones] =1;
solution1stMoments=Flatten@Solve[D[eqn, \{\{zi\}\}]/.Table[Subscript
$[z, i]->1,\{i, 1, n\}]]$;
In [972]:= solution2ndMoments=Flatten@Solve[D[D[eqn, \{\{zi\}\}],\{\{zi
\}\}]/.Table[Subscript[z, i]->1, \{i,1, n\}]/.solution1stMoments];
solution3rdMoments=Flatten@Solve[D[D[D[eqn, \{\{zi\}\}],\{\{zi\}\}],\{\{zi
\}\}]/.Table[Subscript[z, i]->1,\{i,1,n\}]/.solution1stMoments/.
solution2ndMoments];
In [974]:= Table[LVa[i,j]=LVa[i][zi]/.Table[Subscript[z, k]->If[
$j==k, z, 1],\{k, 1, n\}],\{i, 1, n\},\{j, 1, n\}]$;

```
Table[LVb[i,j]=LVb[i][zi]/.Table[Subscript[z, k]->If[j==k,z
    ,1],{k,1,n}],{i,1,n},{j,1,n}];
Table[LSa[i,j]=LSa[i][zi]/.Table[Subscript[z, k]->If[j==k,z
    ,1],{k,1,n}],{i,1,n},{j,1,n}];
Table[LSb[i,j]=LSb[i][zi]/.Table[Subscript[z, k]->If[j==k,z
        ,1],{k,1,n}],{i,1,n},{j,1,n}];
In[978]:= LVas=Flatten[Table[D[LVa[i,j],z]/.z->1,{i,1,n},{j,1,n
        }]/.solution1stMoments]
LVbs=Flatten[Table[D[LVb[i,j],z]/.z->1,{i,1,n},{j,1,n}]/.
    solution1stMoments]
LSas=Flatten[Table[D[LSa[i,j],z]/.z->1,{i,1,n},{j,1,n}]/.
    solution1stMoments]
LSbs=Flatten[Table[D[LSb[i,j],z]/.z->1,{i,1,n},{j,1,n}]/.
    solution1stMoments]
Out[978]= {1733/505,1,464/303,124/101}
Out [979]={4173/1010,3/10,3622/1515,186/505}
Out [980]={0,230/303,1228/505,0}
Out[981]={161/303,23/101,1228/505,0}
(*Joint Queue-length Distribution at arbitrary epochs *)
(*Calculate expected cycle length (by adding expected visit
    lengths and expected switch-over times)*)
In[982]:= \[Theta]i=Table[If[serviceDisciplines[[i]]===gated,
    Subscript[\[Beta], i][\[Omega]],If[serviceDisciplines[[i
    ]]===exhaustive,Subscript[\[Pi], i][\[Omega]]]],{i,1,n}];
In[983]:= Vi = Table[LVb[i][zi]/.Table[If[i!=j,Subscript[z, j
        ]-> 1, Subscript[z, i ]-> \[Theta]i[[i]]],{j,1,n}],{i,1,n
        }];
In[984]:= EVs = -D[Vi,\[Omega]]/.\[Omega] ->0/.
        solution1stMoments (* expected visit lengths *)
Out[984]= {1391/303,124/303}
In[985]:= ESs (* expected switch over times *)
Out[985]= {10,10}
In[986]:= EC = Total[ESs] + Total[EVs] (* expected cycle
    length *)
Out[986]=25
(*Joint queue-length distribution at arbitrary epochs L(z)*)
In[987]:= L[zi] =1/EC \!\(
\*UnderoverscriptBox[\(\[Sum]\), \(i = 1\), \(n\)]\((
\*FractionBox[\(
\*SubscriptBox[\(z\), \(i\)]*\((\(LVb[i]\)[zi] - \ \(LSa[i]\)[
        zi])\)*\((1 -
\(\*SubscriptBox[\(\[Beta]\), \(i\)]\)[
\*UnderoverscriptBox[\(\[Sum]\), \(j = 1\), \(n\)]
\*SubscriptBox[\(\[Lambda]\), \(j\)] \((1 -
\*SubscriptBox[\(z\), \(j\)])\)])\)\), \(\((
\*SubscriptBox[\(z\), \(i\)] -
\(\*SubscriptBox[\(\[Beta]\), \(i\)]\)[
\*UnderoverscriptBox[\(\[Sum]\), \(j = 1\), \(n\)]
\*SubscriptBox[\(\[Lambda]\), \(j\)] \((1 -
\*SubscriptBox[\(z\), \(j\)])\)])\)*\(
\*UnderoverscriptBox[\(\[Sum]\), \(j = 1\), \(n\)]
\*SubscriptBox[\(\[Lambda]\), \(j\)] \((1 -
\*SubscriptBox[\(z\), \(j\)])\)\)\)] +
\*FractionBox[\(\(LSb[i]\)[zi] - \(LVa[md[i + 1]]\)[zi]\), \(
```

```
\*UnderoverscriptBox[\(\[Sum]\), \(j = 1\), \(n\)]
\*SubscriptBox[\(\[Lambda]\), \(j\)] \((1 -
\*SubscriptBox[\(z\), \(j\)])\)\)])\)\);
(*Marginal queue lengths*)
In[988]:= Table[L[i]=L[zi]/.Table[Subscript[z, k]->If[i==k,z
    ,1],{k,1,n}],{i,1,n}];
In[989]:= EMLs=Table[D[Series[L[i],{z,1,3}],z]/.z->1/.
    solution1stMoments/.solution2ndMoments,{i,1,n}]
Out[989]=
    {5410514707061/2459012256000,1524833143339/2459012256000}
(*Correlation (2 queues) *)
Lz = Series[L[zi],{Subscript[z, 1],1,3},{Subscript[z,
    2],1,3}];
In[991]:= EZ1 = SeriesCoefficient[Lz,{1,0}]/.solution1stMoments
    /.solution2ndMoments;
In[992]:= EZ2= SeriesCoefficient[Lz,{0,1}]/.solution1stMoments
    /.solution2ndMoments;
In[993]:= EZ1Z2 = SeriesCoefficient[Lz,{1,1}]/.
    solution1stMoments/.solution2ndMoments/.solution3rdMoments;
VarZ1 = (2*SeriesCoefficient[Lz,{2,0}]/.solution1stMoments/.
    solution2ndMoments/.solution3rdMoments ) + EZ1 - ((EZ1)^2);
VarZ2= (2*SeriesCoefficient[Lz, {0, 2}]/.solution1stMoments/.
    solution2ndMoments/.solution3rdMoments )+ EZ2 - ((EZ2)^2);
In[996]:= Cor = (EZ1Z2-EZ1*EZ2)/(Sqrt[VarZ1]*Sqrt[VarZ2])
Out[996]= -(893001510383280110806412623/Sqrt
    [62079463186633570675272232767854224580878610836333019329])
In[1000]:= N[Cor]
Out[1000]= -0.113339
```

