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Abstract

In this thesis, we introduce the GViZDoom Benchmark, a suite containing
game-like simulation environments with levels of difficulty, designed to research
and evaluate generalization in vision-based reinforcement learning (RL). The
environments are situated in a semi-realistic 3D world, which the agent navigates
and interacts with in the first person perspective. The notion of task difficulty is
established in terms of visual modifications to the simulation environment. The
benchmark is highly customizable by modifying the parameters and properties of
difficulty attributes, and expandable by creating additional scenarios and tasks
with novel objectives. We provide detailed experimental protocols for running
several experiments using GViZDoom. We first empirically demonstrate that
our proposed notion of difficulty, in terms of combining visual modifications of
the environment, provides a sensible spectrum of complexity to an agent being
trained on a state-of-the-art model-free value-based algorithm. We then use
the benchmark to determine how a different number of training tasks impacts
the generalizability of our agent. We further establish that GViZDoom is
applicable for comparing RL methods of varying efficacy. We finally show, that
an agent, trained on multiple low level tasks in parallel, has poor generalizability
competence on unseen tasks with increased levels of difficulty. We believe this
suite to be beneficial to the RL community, since previous benchmarks, such
as Procgen and Arcade Learning Environment, have stimulated research by
enabling researchers to shift their focus from designing appropriate environments
to algorithmic advancements and novel techniques.
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Chapter 1

Introduction

Generalization is one of the most fundamental challenges in deep reinforcement
learning (DRL). Where as humans are able to seamlessly generalize across simi-
lar tasks, this competence is predominantly absent in RL agents, who tend to
become exceedingly specialized to the environments which they encounter during
training. This problem makes DRL agents unreliable for real world applications
where robustness is important. Thus, obtaining human-like skills is particularly
important, considering the potential applicability of self-learning systems to real-
world robotics applications [44]. Video games have progressively been used as
DRL benchmarks during recent times. Great progress has been made regarding
agent generalizability in the 2D game domain [15, 14, 58, 37, 50]. RL research
directed at 3D environments, such as first-person shooter (FPS) games, have
been attaining evermore focus in past years [9, 2, 33, 65, 23, 59, 48, 16]. There
is yet, however, a lot to accomplish for developing competently generalizable
agents, as the 3D setting provides more challenging control problems due to the
vast complexity of effectively perceiving, interpreting, and learning the game
environment. Arguably, targeting generalization is necessary in order to make
progress on artificial general intelligence (AGI), rather than just solving individ-
ual problems.

FPS games directly simulate reality as humans perceive it (in a first-person
perspective) [66]. Mastering such games requires the agent to possess human-like
attributes, as the game sets novel and competitive goals, such as navigation,
localization, memory, self-awareness, exploration, and precision [79]. In order
to surmount the continually varying objectives and situations, the agent has to
make tactical and strategic decisions on which courses of action to take. The
overall managing of such skills is much desired for general intelligence, as it
enables the AI to thrive in conditions it has not yet encountered.

An RL agent inevitably needs to encounter a variety of situations in order
to acquire a concept of universality. Moreover, to properly assess such acquired
competence, the trained agent should be tested in an unfamiliar setting. Hence,

8



CHAPTER 1. INTRODUCTION

one of the key challenges of developing agents to prevail in unencountered sit-
uations, is the design of suitable training and evaluation environments, which
sufficiently differ from one another, while maintaining some necessary degrees
of similarity (e.g., the observation space and action space). RL agents, trained
in a set of environments with limited diversity, tend to suffer from overfitting
and fail to generalize to unseen testing environments [82, 15, 14]. To resolve this
issue, previous works have explored data augmentation techniques to increase
the data diversity [22, 43, 83, 45, 46]. These approaches, however, merely tend
to locally perturb the observations regardless of the training environments [74],
showing limited effectiveness on enhancing the data diversity and the generaliza-
tion performance. To better cultivate the ability of generalization, one common
practice is to employ the agent to learn from multiple tasks in parallel [21, 40, 80],
known as multi-task learning [8]. Another option is to train the agent on a set of
progressively more challenging tasks, known as curriculum learning, which is is
anything but new [51, 5, 78, 55, 36], having had much focus within the broader
machine learning context. In this thesis, we design the GViZDoom benchmark
which enables the use of both training practices.

Proper benchmark functions are crucial for the improvement of RL agents, as
they provide suitable means of effortlessly comparing the performance of different
methods and techniques. A growing trend in RL generalizability research is
procedurally generating new environment content [32] which the agent has not
yet encountered. However, we speculate that randomly created environments may
not offer the best consistency in terms of accurately comparing agents. We hence
propose a benchmark consisting of manually designed 3D environments with a
multitude of tasks, adhering to a coherent notion of difficulty across multiple
levels to overcome the limitations of previous game-based AI benchmarks, offering
a broad and deep challenge. It is vital to note that difficulty is expressed in
visual terms within the game, since the agent only receives raw pixels as input.
Previous benchmarks [80, 50] primarily define difficulty as an implicit property
of the game’s mechanics [14, 6], the reasoning capacity required [35], or the
relevant competencies necessary to reach an objective [11]. This may be proper
for assessing a human player, but we speculate that this does not offer the current
state-of-the-art RL agents sufficient leverage for superior generalization, due
to the vast difference of how neural networks and human cognition function.
Every modification of an environment in our benchmark (e.g., applying noisy
textures, or changing the size and shape of enemies) has a visual disparity, and
thus directly grants the agent new input to aid in learning generalization.

1.1 Problem Statement
The main goal of this thesis is to design and implement a novel RL benchmark
with difficulty levels for researching and evaluating the agents generalization in
FPS games. We state the following objectives to achieving this end:

• Design a set of easily configurable and expandable simulation environments,

9 GViZDoom: A Benchmark for Generalization of FPS Games in Deep
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which require different competencies of mastering FPS games

• Implement a notion of measurable progressive difficulty in terms of visual
depiction in the simulation environments

• Determine the appropriate number of parallel training environments in the
benchmark to acquire the best means of generalization

• Demonstrate the viability of the benchmark for evaluating DRL methods
of different efficacy

1.2 Thesis Structure
We hereby present the structure of this thesis. Chapter 2 outlines the relevant
prior research conducted in the domain of generalizable DRL agents, and describes
how this thesis complements the previous work. In Chapter 3, we propose
the GViZDoom benchmark, comprised of four simulation environments with
numerous subtasks of varying complexity. Chapter 4 provides essential theoretical
background of DRL methods and techniques for training the agents in our
experiments. In Chapter 5, we describe the experiments conducted on the
benchmark. We then present and discuss their results. Finally, Chapter 6
concludes our work, states the accomplishments, outlines the deficiencies, and
proposes further possible directions for future research.

10 GViZDoom: A Benchmark for Generalization of FPS Games in Deep
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Chapter 2

Related Work

A great number of RL benchmarks and research platforms tackling generalization
in various ways having emerged during recent years, e.g., improving general-
izability from the training tasks to inference tasks by parametrizing synthetic
scenes [38], or domain randomization [72, 60, 52]. In this chapter we describe
various existing platforms, benchmarks, and other RL generalization research
related to our work.

2.1 2D Benchmarks and Platforms
2D simulation environments are well suited and have been widely used for
researching and benchmarking RL techniques and methods, as they generally
provide a modest observation space and dense rewards.

2.1.1 Arcade Learning Environment
The Arcade Learning Environment (ALE) [4] has long served as a gold standard
in RL, with the diversity between games being one of its greatest strengths. The
benchmark has further been extended [50] to support a form of stochasticity
called sticky actions, and combinations of game modes and difficulty levels called
flavors. A select subset of games and modes from this extension have been used
to evaluate generalization properties of DQN [17]. The game modes, however,
are not ranked in terms of complexity, and there is little overlap in terms of
characteristics. Further, the formulation of difficulty widely differs between
environments, as the games are of very different nature. We design a more
abundant set of attributes for each scenario, which determine the game difficulty.
Several of these factors are present across multiple environments. Moreover,
combining a set of attributes of a game scenario provide a coherent mechanism
for determining the difficulty level, as the agent is faced with more complexity.

11
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2.1.2 Sonic
The Sonic benchmark [57] separates levels of the Sonic the Hedgehog™video game
into training and holdout sets for measuring generalization in RL. However, due
to a limited number of training levels and difficulties in measuring progress, RL
agents did not succeed in proper generalization. In our solution, we emphasize
on designing an abundant suite of scenarios with subtasks, having a definite
success metric for each.

2.1.3 BabyAI
The BabyAI platform [11] comprises an extensible suite of 19 scenarios of
increasing difficulty for grounded language learning. The levels are built in
MiniGrid [12], a partially observable 2D gridworld environment. They design
a set of informally defined competencies, which specify what an agent should
be capable of. The scenarios are built by selecting a subset of competencies
necessary for each level. The missions generated for a level are thus only solvable
by an agent possessing the select competencies. We follow a similar approach in
designing our level structure, in which difficulty increases with the competencies
required from the agent. However, in our solution, complexity is expressed
directly in terms of the input to the agent via visual information from the 3D
environment. Moreover, they empirically determine the difficulty of a scenario
based on experimental results, whereas we defined it as the number of attributes
expressing complexity. We further group tasks of scenarios with the same number
of attributes together into levels of difficulty.

2.1.4 Safety Gym
Safety Gym [30] provides a suite of 18 high-dimensional continuous control
environments for studying safe exploration and constrained RL. All Safety Gym
environments are comprised of comprehensive randomization to prevent agents
from overfitting to particular environment layouts. These environments thus
enforce a need for generalization, although it is not explicitly addressed within
the benchmark. While the environments do have a high level of randomization,
the primary objective is to enforce safety and to minimize the constraint cost.

2.1.5 CoinRun
CoinRun [15] is a procedurally generated environment designed as a benchmark
for generalization in RL. The authors observe the extent to which agents can
overfit to a fixed training set, reporting that the number of training environments
required for good generalization is much larger than the number used by prior
work on transfer in RL. We run a similar experiment on our benchmark in
Section 5.2.2, investigating how a different number of training tasks affect the
generalization ability of the agent in a 3D environment. They also demonstrate
that deeper convolutional architectures and forms of regularization significantly

12 GViZDoom: A Benchmark for Generalization of FPS Games in Deep
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improve generalization, as do methods traditionally found in supervised learning,
including L2 regularization, dropout, data augmentation and batch normaliza-
tion.

The paper proposes a metric to quantify overfitting by measuring the percent-
age of levels solved between training and testing. Not all environments in the
GViZDoom benchmark have a clear notion of solvability. Moreover, the scoring
metric for evaluating an agent varies according to the objective and nature of
the scenario. We therefore heuristically set an upper bound on the score to
each scenario, and introduce an indicator of performance, which measures the
percentage of success according to the upper bound of each individual task
from a scenario. The performance indicators for training and testing across
all environments can then likewise be compared to assess generalization and
overfitting.

2.1.6 Animal-AI
The Animal-AI Environment [6] utilizes tasks inspired by the extensive literature
on animal cognition to evaluate the generalizability of the agent on unseen test
tasks. It keeps all the positive elements of standard gaming environments, but
is explicitly designed to contain only the necessary ingredients for performing
cognitive testing built up from perception, navigation, and animal-like artificial
cognition. The environment has a deterministic state transition function based
on a simulated physics engine. The authors found that satisfactory performance
depends on generalizing well from particular training configurations. They
further state that using a single unified environment makes the prospect of
generalization substantially more tenable. The experimental results indicate
that there are many tasks in the environment, that some animals can solve that
were considered too complex for the agents to solve.

2.1.7 Meta-World
Meta-World [80] explores how existing state-of-the-art meta-learning algorithms
can quickly learn qualitatively new tasks when meta-trained on a sufficiently
broad and structured task distribution of up to 50 unique continuous control
environments, which are split up into training and testing tasks. The shared
physics and mechanics between the environments give rise to the conceivable
expectation of generalization, given that the specificalities of test tasks are novel
to the agent.

2.1.8 Procgen
The Procgen Benchmark [14] consists of 16 unique environments designed to
measure both sample efficiency and generalization in RL. The benchmark is
specifically designed to evaluate generalization, since distinct training and test
sets can be generated in each environment. It is also well-suited to evaluate

13 GViZDoom: A Benchmark for Generalization of FPS Games in Deep
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sample efficiency, since all environments pose diverse and compelling challenges
for RL agents. The intrinsic diversity of the environments demands the agents to
learn robust policies; overfitting to narrow regions in state space will not suffice,
i.e., the generalization ability becomes an integral part of success when agents
are faced with constantly changing levels.

2.2 3D Benchmarks and Platforms
As DRL methods have significantly improved during recent years, 3D environ-
ments have become more comprehensible to agents, and thus feasible to be
employed as research platforms and test-beds. The motivation behind using 3D
environments is much higher, as they provide more challenging control problems
and direct applicability of self-learning systems to real-world tasks and robotics
applications. Moreover, they subtly pave the road towards AGI.

2.2.1 DeepMind Lab
DeepMind Lab [2] is an extensible first-person game platform designed for
research and development of AGI and ML systems in a 3D world with rich
science fiction visuals and simulated real-world physics. DeepMind Lab facilitates
the development of a wide range of creative tasks, navigational challenges,
environments, intelligence tests on visual cues, and can be used to study how
autonomous RL agents can learn complex tasks in a large, partially observed, and
visually diverse worlds. It is built upon Quake III Arena [29] from id Software.
Agents interact with the game via an RL API, which has been built on top of
the game engine, and provides the agents with complex observations and accepts
a variety of actions. We adopt the ViZDoom platform for out benchmark, which
is faster (up to 7000 frames per second on modern computers), more lightweight,
and highly customizable via a convenient mechanism of user scenarios, enables
off-screen rendering and frame skipping, and provides access to the renderer’s
depth buffer [39].

2.2.2 Project Malmo
The Project Malmo platform [33] is based on the popular block-based 3D
computer game Minecraft, where it is possible to task the agent with objectives
ranging from navigation and survival to collaboration and problem solving. The
open-world nature of Minecraft provides a convenient platform for exploring RL
and AI [20], as the environment is open, dynamic, complex, and diverse. The
platform thus provides abundant opportunities for creating tasks and scenarios.

2.2.3 Obstacle Tower
The Obstacle Tower benchmark [35] is a high fidelity procedurally generated
3D environment in the third-person perspective, where agents are required to

14 GViZDoom: A Benchmark for Generalization of FPS Games in Deep
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solve both low-level control and high-level planning problems. The environment
consists of up to 100 floors, each of which can contain a puzzle to solve, enemies
to defeat, obstacles to evade, or a key to open a locked door. The environment
has high visual fidelity, procedurally generated floors, rooms, and visuals, and a
physics-driven interaction. Similarly to our benchmark, Obstacle Tower has a
progressive notion of difficulty, since the contents and layout of the rooms within
each floor becomes more complex at higher floors. However, Obstacle Tower
was specifically developed to offer a broad and deep challenge, the solving of
which would require major advancements in RL. Our benchmark is designed to
provide a wider spectrum of complexity, meaning that lower level tasks are easily
solvable by current RL methods, whereas we leave open the possibility to further
combine difficulty attributes to create higher level tasks, which provide a greater
challenge. Moreover, GViZDoom functions from the first-person perspective,
which has more tangible implications to real world problems and applications.

2.2.4 MazeExplorer
MazeExplorer [23] is a customizable 3D benchmark based on the ViZDoom
platform for assessing generalization in terms of navigation and exploration. It
uses domain randomization, which we have likewise adopted in some aspects of
the GViZDoom environments. One of the main differences of our benchmark and
MazeExplorer is the usage of procedurally generated content (PCG). Further,
MazeExplorer only endorses competencies of navigation and localization, whereas
the scenarios of our benchmark are not constrained in this regard. GViZDoom
thrives to cultivate and assess all the necessary skills required to master the
game of Doom.

2.2.5 CRLMaze
CRLMaze [48] is a benchmark for assessing continual RL techniques in a complex
non-stationary 3D object-picking task based on ViZDoom, subject to constant
environmental changes. The task consists of learning how to navigate in a
complex maze, and pick up a specific type of objects while avoiding another.
Similarly to the first iteration of our benchmark, it consists of 4 scenarios. The
CRLMaze task is very similar to the Poison task in the Health Gathering scenario
in our benchmark. GViZDoom includes a wider variety of targeted competencies,
environments, difficulty levels, and tasks, which are subject to modifications,
and therefore provides a more reliable assessment of any RL techniques.

2.3 Procedurally Generated Content
Numerous standardized game environment benchmarks with fixed structures
[4, 30, 80] often lack an explicit split between the training and testing phases,
when evaluating the generalizability of a model. To overcome this issue, recent
works [59, 58, 15, 23, 14] use environments that utilize different approaches
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of PCG [32]. The approach of Progressive PCG [37] has been employed to
demonstrate that dynamically adapting the level difficulty during training allows
the agent to solve more complex levels, rather than training it on the most
difficult levels directly, as agents tend to heavily overfit to the specific training
set. It has further been shown [10], that adding surprise minimizing information
through rewards learned by the density model on states of the training history
can improve generalization on PCG game levels that are unseen during training.

PCG enables the algorithmic creation of a near-infinite supply of highly ran-
domized levels and content [62]. Every such level exhibits a unique configuration
of underlying factors of variation, such as layout, positions of game entities, asset
appearances, or even different rules governing environment transitions. PCG
further enables the model to be trained and evaluated on a distinct seed, which
defines a unique instance of an environment for each episode, thus guaranteeing
an unequivocal split, and being suitable for evaluating systematic generalization
in RL. In the GViZDoom Benchmark, however, we default to use a manual
approach for level design. We find that unconstrained PCG causes too much
randomness in our environments, such that the difficulty of a given level will no
longer be properly ascertainable. Moreover, generating a random map layout
using PCG may too heavily impact the root essence of a scenario, thus creating
a high variance of complexity between different runs, or making the objective
outright unsolvable. We do however use domain randomization to the extent of
some scenario-specific characteristics and certain task-specific difficulty attributes
(e.g., enemy size, agent height, and respawn intervals).
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Chapter 3

GViZDoom Benchmark

The initial version of the GViZDoom benchmark consists of four manually
designed environments, each with subtasks of progressing levels of difficulty.
Every scenario is designed with a particular narrow objective in terms of FPS
game complexity, nevertheless establishing novel skill requirements. This set
of competencies are commonplace for human players to effectively master FPS
games. The general properties of scenarios are described in Table 3.1. Each
environment of the benchmark is built upon an original map from ViZDoom
[39], a flexible AI research platform for RL from raw visual information, based
on the classical FPS video game, Doom [28].

In this chapter, we describe the problem of generalization on different en-
vironments, and how the GViZDoom benchmark contributes to solving this
conundrum. We further outline the designed scenarios and their subtasks, along
with the configurable parameters, provided state spaces, action spaces, and
reward functions.

3.1 Environment
We denote an environment as Ei, each of which consists of a number of subtasks
Ti. For a given environment, we train a policy π parameterized by θ on a set
of predefined training tasks T tri ⊂ Ti, and evaluate the policy on a set of test
tasks T tei ⊂ Ti, such that T tri ∩ T tei = ∅. For every environment Ei, we define
a performance indicator scorei, which aligns with the primary objective of the
scenario (see Table 3.1). A higher metric indicates superior performance. The
objective is to train the policy πθ on the set of training tasks T tri on environment
Ei, such that the agent then achieves a maximal score averaged across the set of
evaluation tasks T tei , which we measure as the performance indicator Pi:

Pi(πθ) = max
θ

(
1

|T tei |
∑
t∈T te

i

scorei
(
t(πθ)

))
, (3.1)
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where i is the environment index. In order to assess the overall performance
of an agent on multiple scenarios with varying score functions and evaluation
metrics, we assign an upper bound scorei,max to each metric as the best possible
achievable score in every environment Ei. For scenarios with the objective
of survival, this bound is set as the number of frames after the episode is
automatically terminated, and for the enemy elimination tasks, we heuristically
set it as the maximal number of kills the agent could execute within a single
episode. For the Seek and Kill scenario, this value is scoremax = 20. We then
use these upper bounds to normalize each evaluation score Pi,norm, and find the
mean of performance indicators:

Pnorm =
1

|E|

|E|∑
i=0

Pi
scorei,max

, (3.2)

where |E| is the number of evaluated environments. The mean performance
indicator will thus be a value in the range of P = (0, 1], where a value close to 1
indicates that the agent has reached near-optimal performance on the evaluated
of all used scenarios, and a value close to 0 signifies a complete lack of acquired
competence. In our experiments we report the values as percentages for better
comprehensibility.

In order to represent policies for multiple tasks using a single model, we
ensure that the observation and action spaces contain significant similarities in
structure between tasks [80]. Most attributes of a scenario (e.g., observation
space, action space, rewards) can be modified with little effort. Moreover, the
benchmark is designed to enable the introduction of new scenarios and subtasks
in a straightforward manner, granted by the modular architecture.

Table 3.1: Scenario properties

Scenario Objective (Success
Metric) Action Space Game Variables Episode Timeout

(Frames) Enemies Weapon

Defend the Center Survival (Frames
Alive)

ATTACK,
TURN_LEFT,
TURN_RIGHT

KILLCOUNT,
AMMO2, HEALTH 1100 Yes Yes

Health Gathering Survival (Frames
Alive)

MOVE_FORWARD,
TURN_LEFT,
TURN_RIGHT

HEALTH 2100 No No

Seek and Kill Enemy Elimination
(Kill Count)

ATTACK, SPEED,
MOVE_FORWARD,
TURN_LEFT,
TURN_RIGHT

KILLCOUNT,
AMMO2,
HEALTH,

POSITION_X,
POSITION_Y

1200 Yes Yes

Dodge Projectiles Survival (Frames
Alive)

SPEED,
MOVE_LEFT,
MOVE_RIGHT

HEALTH 2100 Yes No

18 GViZDoom: A Benchmark for Generalization of FPS Games in Deep
Reinforcement Learning



CHAPTER 3. GVIZDOOM BENCHMARK

3.1.1 Observation Space
Doom is by far not a complete information game, since at a single point in
time, the agent can spatially occupy only one location of the entire environment
and observe a portion of its surroundings. More precisely, we use a 16:9 in-
game resolution, which grants a 108 degree field of view (FoV). Alternatively,
a 90 degree FoV is obtainable by applying a 4:3 resolution [44]. We define
the observation space O of every environment as a rendered pixel image of
the environment from a first person perspective. This image is rendered in a
640× 480 resolution with 3-channels of 8-bit values in RGB, and is downscaled
to a 84 × 84 pixel grayscale image during preprocessing. Using RGB images
as input to the model is computationally more expensive, but crucial in our
benchmark, since color conveys vital information to the agent (e.g., making it
more feasible to distinguish beneficial items from harmful ones, and separate
enemies from textures or decorations).

3.1.2 Action Space
To speed up the training process and reduce unnecessary overhead of redundant
operations, we restrict the executable actions to ones which are most essential
to a given environment in terms of achieving adequate performance. We use a
discrete action space A which varies across scenarios, but remains fixed among
tasks within one. The available actions in each environment are shown in Table
3.1.

3.1.3 Reward Function
The reward function R of each scenario is comprised of different components,
contingent on the characteristics of the environment, and remains identical across
subtasks. After every game iteration, each scenario in our benchmark returns a
pre-configured list of in-game variables presented in Table 3.1, which are used
for calculating the reward. The precise function to this end is described in detail
under each scenario in Section 3.4.

3.1.4 Specifications
The environments are of pseudorandom nature, which manifests in the ran-
domized behaviour of enemies, fluctuating damage inflicted by attacks, and the
spawning locations of items, enemies, and the agent. All enemies in our scenarios
are configured to have 1 health by default, thus it only requires the agent to fire
a single gun shot to eliminate them. The weapon1 and heads-up display (HUD)
are visually rendered in the game by default, whereas the crosshair, particles
and decals (materials projected onto existing surfaces) are not, if not specified
otherwise. Each scenario is automatically terminated after a predetermined

1The weapon is only rendered in environments in which the agent is granted a weapon (see
Table 3.1)
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number of frames. If the objective of a given scenario is survival, then we consider
the environment solved, if an agent subsists the corresponding number of frames
for 10 consecutive episodes. The Health Gathering and Seek and Kill scenarios
have multiple spawn points to endorse a wider variety of experience that the
agent could gather. In these environments, the agent is spawned in one such
predetermined locations, which is sampled uniformly at the beginning of each
new episode.

3.2 Difficulty Levels
We assign a difficulty level d ∈ {0, 1, . . . , 4} to each task t ∈ Ti. We further define
the set of all tasks of difficulty d in an environment Ei as Ti,d ⊂ Ti. The level
of a task is determined by difficulty attributes in said task. The default task of
every scenario, is level d = 0 with no added complexity. Level 1 tasks include a
single modification, whereas higher level tasks are comprised of a combination of
such variations. The difficulty attributes thus overlap across levels. A level is
in accordance with the number of variations it is comprised of (e.g., a level 3
task has three types of modifications). However, in the initial iteration of the
benchmark we consider the task including all scenario specific difficulty attributes
to be of level 4. We make this exception to avoid an unnecessary number of levels,
because our experiments in the later chapter of this thesis indicate that the
performance difference above three or more difficulty attributes is negligible when
training or evaluating the Rainbow agent, a current state-of-the-art value-based
DRL method. There is no level gap in the benchmark, as the scenarios could be
modified in numerous additional ways, nor is the number of tasks per level fixed.

The modified characteristics of a scenario are not targeted on increasing
implicit in-game difficulty, as it is traditionally implemented in FPS games, but
changing the visual appearance of the environment. We regard this approach
of adding complexity essential for evaluating DRL algorithms, since the agent
only receives raw pixels as input to its decision making. Hence, the agent is
granted the opportunity to learn from the new visual information for superior
generalizability in unencountered environments. The difficulty attributes across
environments primarily include the following:

• Introducing new enemy and item types

• Rendering enemies and items in a different size, or style

• Applying noisy textures, which increase the challenge of distinguishing
relevant enemies or items from the background

• Adding decorations to the environment, which either act as obstacles
by hindering the navigation of the agent, or confuse the agent as being
potential relevant targets
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Increasingly combining these modifications hence forms a progression of
difficulty levels, established in a similar fashion to the competencies in the work
by Chevalier et al. [11]. To master higher level tasks without previously having
encountered them, the agent needs to have learned a policy that is robust across
all axes of variation. Screenshots of the default and seven level 1 tasks of every
scenario are presented in Table 3.2. All task with their difficulty attributes are
presented in Tables A.1, A.2, A.3, and A.4.

To provide an evident recognition of tasks in literature, we adopt an evidently
discernible nomenclature. The name of a level 1 task represents the difficulty
attribute it incorporates. The names of tasks may thus overlap across scenarios.
Naming higher levels tasks, we concatenate the difficulty attributes which the
task is comprised of. We consider this method feasible for the initial iteration of
the benchmark, as there are not an inconceivable number of levels which would
excessively lengthen the names of tasks.

Doom additionally includes a configurable in-game difficulty setting, which
determines the speed and aggressiveness of enemies, the damage factor of the
player, and further characteristics, which are not relevant to our environments.
We set this parameter to a value of 3 from the range of 1-5 for all scenarios.

3.3 Implementation
We use the map editing tool SLADE3 [34] to modify the Internal WAD2 (IWAD)
files of the original scenarios from ViZDoom. We prepare an independent IWAD
for each task of a scenario. To achieve our desired environment variations, we
modify two key components of the IWAD. To change textures, place initial
starting items in the environment, add decorations, and set agent spawn points,
we adjust the TextMap file, composed in Universal Doom Map Format (UDMF),
a specification for laying out Doom maps in a textual way. SLADE includes
a built-in user interface to provide a more comprehensive manner of adjusting
such attributes. To customize the in-game properties and subroutines of a
scenario (e.g., enemy characteristics and behaviour, spawning intervals, rendering
properties, player attributes), we modify the Scripts file in the IWAD, composed
in Action Script Code (ACS), a miniature programming language, structured
much like C/C++.

3.4 Scenarios
In this section we describe the four scenarios in the initial version of the GViZ-
Doom benchmark. We outline the core objectives, and provide the motivation
behind the design in terms of what relevance each scenario bears in relation to

2A WAD file is a game data file used by FPS games running on the original Doom engine.
It contains data such as sprites (graphics), level information, and items.
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Table 3.2: Screenshots of level 0 and 1 tasks

Scenario Tasks
D
ef
en

d
th
e
C
en
te
r

Default Gore Mossy Bricks Stone Wall

Fuzzy Enemies Resized Enemies Fast Enemies Flying Enemies

H
ea
lt
h
G
at
h
er
in
g

Default Obstacles Supreme Poison

Lava Stimpacks Resized Kits Shaded Kits

S
ee
k
an

d
K
il
l

Default Blue Mixed Enemies Invulnerable

Shadows Resized Enemies Obstacles Red

D
od

ge
P
ro
je
ct
il
es

Default Flames Resized Agent Mancubus

Barons Cacodemons Flaming Skulls City
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FPS games in general.

Every environment is an extension of an original scenario in the ViZDoom
[39] platform. The subtasks of each are described in Appendix B. We define the
default task by outlining the modifications to the corresponding original scenario.
All other tasks are derived from the default task.

3.4.1 Defend the Center
In this scenario3, the agent is positioned in the center of a circular room. Enemies
are spawned at fixed positions alongside the wall of the area. Once they are
eliminated, they respawn at their original location after a fixed time delay. The
enemies do not possess a projectile attack and therefore have to make their
way within melee range of the agent to inflict damage. The agent is rendered
immobile, being equipped with a weapon and a limited amount of ammunition
to fend off the approaching enemies.

The core objective of the agent is to maximize its survival, the success of
which is measured by how many frames an episode lasts. The episode ends when
the health of the agent reaches 0. This scenario assesses the aiming accuracy and
enemy detection ability of the agent, which are an integral part of FPS games.
The agent ought to ideally make a tactical trade-off in terms of prioritization.
Shooting enemies at close range has a higher likelihood of a successful shot,
which prevents them from getting close enough to inflict damage. To repel a
maximum number of enclosing enemies, the agent should not unnecessarily waste
the limited ammunition. The reward rt of a single iteration is defined as follows:

rt = 1{kt} − 1{dt} − 0.11{mt < mt−1} − 0.21{ht < ht−1}, (3.3)

where k indicates a killed enemy, d indicates death, m is the remaining ammo, h
is the remaining health, and t is the time step.

3.4.2 Health Gathering
In this scenario4, the agent is spawned in an environment with an acid surface,
which slowly, but constantly, inflicts damage, and decreases the agent’s health.
An episode of the game ends when the agent’s health reaches 0. Different items,
granting a varying amount of health, spawn in random locations at specified
time intervals. The default health item is a MediKit, which heals the agent for 25
hit points. Certain sub-tasks also include poison vials as a complexity attribute,
which inflict damage to the agent instead of providing health.

This scenario relates to FPS games in terms of locating and collecting relevant
items in the environment with optimal navigation abilities. The agent’s objective

3Demo available at https://www.youtube.com/watch?v=hbGCBlBNUik
4Demo available at https://www.youtube.com/watch?v=13-rBxaoWFE
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is to stay alive a maximal number of frames. The agent should thus identify the
items which grant health and navigate around the map to collect these items
quickly enough to avoid running out of health, while averting damage inflicting
items. The agent is granted a small reward for every frame it manages to survive.
The reward rt of a single iteration is defined as follows:

rt = 0.01− 1{dt} − 1{pt}+ 1{ht > ht−1}, (3.4)

where p indicates whether poison was picked up, d indicates death, h is the
remaining health, and t is the time step.

3.4.3 Seek and Kill
Seek and Kill is based on the health_gathering_supreme.wad scenario5 from the
ViZDoom platform. In this scenario, the agent is randomly spawned in one of
the 20 predefined locations within a maze-like environment, and equipped with
a weapon and unlimited ammunition. A fixed number of enemies are spawned
at random locations at the beginning of an episode. Additional enemies are
spawned at random unoccupied locations after a specified time interval. The
enemies are rendered immobile, forcing them to remain at their fixed locations.
This demands the agent to locate them by navigating around the maze.

The goal of the agent in this scenario is to maximize the number of enemies
it is able to locate and kill in a limited time span. The agent is expected to learn
how to efficiently navigate the environment and identify enemies, which is a
prevalent factor in FPS games. In order to encourage traversal of the maze, the
agent is granted an additional linearly scaling reward for how far it has relocated
relative to its previous position five frames ago. We define the reward function
rt of a single iteration as follows:

rt = 1{kt} − 1{dt} − 0.1 · 1{mt < mt−1} − 0.01

−0.3 · 1{ht > ht−1}+ 0.005 ·
∥∥lt − lt−5∥∥22, (3.5)

where k indicates a killed enemy, d indicates death, m is the remaining ammo, h
is the remaining health, l is the location and t is the time step.

3.4.4 Dodge Projectiles
This scenario6 is a modified version of defend_the_line.wad from ViZDoom.
The agent is positioned in one end of a rectangular room, facing the opposite
wall. A number of immobile projectiles firing enemies are spawned at the other
side of the area with equal distance from one another. The agent is not equipped
with any weapon nor ammunition, and cannot look around. It can only move
left or right. To balance the difficulty between tasks of the same difficulty level,

5Demo available at https://www.youtube.com/watch?v=6POupU974u4
6Demo available at https://www.youtube.com/watch?v=nh4_FW0ebRY
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the damage factor of enemies is adjusted accordingly.

The goal of the agent in this scenario is to minimize taking damage and
maximize its survival by evading incoming projectiles via lateral movement. The
performance of the agent is measured by the number of frames in an episode.
The reward rt of a single iteration is defined as follows:

rt = 0.01− 1{ht < ht−1}, (3.6)

where d indicates death, h is the remaining health, and t is the time step.
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Theoretical Background

In this chapter we describe the fundamental techniques for training a generalizable
DRL agent to play Doom. The key idea is to apply image recognition on an
agent’s field of vision using a convolutional neural network (CNN), extract
relevant features from the game frames and determine the next best course of
action granting maximal utility. It is worth noting, that a naive reinforcement
learning approach is applicable to all scenarios in the Benchmark, as by design
it has been made very probable to obtain positive rewards by a random series of
actions.

4.1 Deep Q-Networks
The environments in our benchmark are partially observable, since the model’s
input only contains a portion of the visual information of the entire state xt,
due to the limited view angle. We therefore consider a sequences of actions
and observations (st = x1, a1, x2, . . . , at−1, xt) to build a policy [53]. This is
formalized as a finite Markov Decision Process (MDP), in which every sequence
is a distinct state. An MPD is a tuple (S,A, P,R, γ), where S is the set of states,
A is the set of actions the agent can take at each time step t, γ is a discount
factor [7], P is the transition probability of going from state s to s′ using action
a, R is the reward function, defining the feedback signal that the agent receives
after taking an action and changing the state. The objective is therefore to
learn a policy π : s → a that maximizes the expected discounted cumulative
reward over the agent’s run [7], by using the complete sequence st as the state
representation at time t.

Such a policy can be attained using Q-Learning [77], in which the action-
value function Qπ(s, a) is learned iteratively, so as to gradually approximate
the expected reward in a model-free fashion. Before the learning begins, the
Q-table is initialized to arbitrary fixed values. Then, at each time step t, the
agent selects an action at, observes a reward rt, and enters a new state st+1,
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after which we update Q. The core of the algorithm is a Bellman equation as a
simple value iteration update, using the weighted average of the old value and
the new information:

Qnew(st, at)← Q(st, at) + α

(
rtγmax

a
Q(st+1, a)−Q(st, at)

)
(4.1)

where rt is the reward received when moving from the state st to the state st+1,
and α is the learning rate (0 < α ≤ 1).

High-dimensional environments in FPS games, however, make it infeasible to
use simple Q-learning due to the curse of dimensionality [7]. Deep-Q Networks
(DQN) extend model-free RL algorithms, like Q-Learning, to use Deep Neural
Networks as function approximators, implicitly capturing hierarchies in the state
representation that make the RL problem scale even to visual input states. The
objective now becomes to find a policy that maximizes the expected sum of
discounted rewards:

Rt =

T∑
t′=t

γt
′−trt′ , (4.2)

where γ ∈ [0, 1] is a discount factor that determines the importance of future
rewards, and T is the time at which the game terminates. The Q-function of a
given policy π is now defined as the expected return from executing an action a
in a state s:

Qπ(s, a) = E
[
Rt|st = s, at = a

]
. (4.3)

It is more feasible to use a function approximator to estimate the action-value
function Q. In particular, we use a neural network parameterized by θ to obtain
an estimate of the Q-function of the current policy, which is close to the optimal
Q-function Q∗, defined as the highest return that can be expected to achieve by
following any strategy:

Q∗(s, a) = max
π

E
[
Rt|st = s, at = a, π

]
= max

π
Qπ(s, a). (4.4)

The optimal action-value function obeys the Bellman optimality equation, in
which given the optimal value Q∗(s′, a′) of the sequence s′ at the following
time-step for all possible actions a′, the optimal strategy is to select the action
a′, maximizing the expected value of r+ γQ∗(s′, a′) [53] in the following fashion:

Q∗(s, a) = Es′∼E
[
r + γmax

a′
Q∗(s′, a′)

∣∣s, a]. (4.5)

The objective thus becomes to estimate the action-value function by using a
non-linear approximator, and finding θ such that Qθ(s, a) ≈ Q∗(s, a) [44]. This
network can be trained by minimising a sequence of loss functions Lt(θt) that
changes at each time step t,

Lt(θt) = Es,a∼ρ(s,a)
[(
yt −Qθt(s, a)

)2]
, (4.6)
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where yt = Es′∼E
[
r + γmaxa′ Q

∗(s′, a′)
∣∣s, a] is the target for time step t, and

ρ(s, a) is the behavior distribution [53]. Differentiating the given loss function
with respect to θ leads to the following gradient:

OθtLt(θt) = Es,a∼ρ(s,a);s′∼E
[(
r+γmax

a′
Q(s′, a′; θt−1)−Q(s, a; θt)

)
OθtQθt(s, a)

]
.

(4.7)
Rather than computing the accurate expectations in the above gradient, we use
a rough approximation for the updates:

OθtLt(θt) ≈
(
yt −Qθ(s, a)

)
OθtQθt(s, a). (4.8)

4.1.1 Experience Replay
Experience replay [47] enables RL agents to memorize past experiences and
reuse them for the upcoming situations [81]. Using memory replay has many
advantages over the standard Q-learning. First of all, every step of an experience
has the potential to be used in several weight updates, which grants superior data
efficiency. Further, it is inefficient to learn directly from consecutive samples,
due to the strong correlations between them. Randomizing the samples breaks
these correlations and thus decreases the variance of the updates. Moreover,
experience replay averages the behaviour distribution over many of its previous
states, thus avoiding oscillations or divergence in the parameters and smoothing
out learning. This is important because unwanted feedback loops may arise
and the parameters could get stuck in a poor local minimum due to the ten-
dency of training batches being dominated by samples of maximizing actions [54].

To perform experience replay, the experiences of an agent et = (st, at, rt, st+1)
are stored at every time-step t in a buffer Dt = {e1, . . . , et}, which are then
pooled across numerous games. During Q-learning, updates are applied on
samples of transitions (s, a, r, s′) ∼ U(D), drawn uniformly at random from
the pool of stored samples [53]. To ensure superior data usage, we include a
fixed number of most recently acquired transitions to the end of the batch of
experience, replacing the randomly sampled ones.

4.1.2 Target Network
In vanilla DQN, the same network is used for making predictions during the feed-
forward pass, and performing gradient updates during backpropagation. This
approach has the tendency to increase Q(st+1, a) for every a, given an update
that increases Q(st, at). It may further lead to a rapid increase or decrease of
the target yt, causing severe undesirable oscillations in the policy. In order to
improve stability, we clone our regular network Q after every predetermined
n updates to obtain a target network Q̂, which is then used for generating
the learning targets in the following n updates for Q. Using an older set of
parameters, this way of generating targets adds a delay between the time an

28 GViZDoom: A Benchmark for Generalization of FPS Games in Deep
Reinforcement Learning



CHAPTER 4. THEORETICAL BACKGROUND

update is made to Q and the time the targets yt are affected by the update.
This makes oscillations in the policy less likely, because in standard Q-learning, .
Generating the targets using an older set of parameters adds a delay between
the time an update is made and the time the update affects the targets, making
divergence or oscillations much more unlikely [54].

4.1.3 Frame Skipping
In order to accelerate training, we use the frame skipping [4] technique, in which
the agent receives input of the screen only every k+1 frames, where k represents
the parameter for the number of frames skipped for each step. A single action,
which the agent has determined as most rewarding, is then repeated over all
the following k frames. Too high of a frame skipping rate may, however, inhibit
performance, since the agent becomes unable to receive sufficient input about the
state, and loses its ability to respond accordingly. The objectives in our designed
scenarios in the GViZDoom Benchmark (e.g., accurately firing at enemies, or
maneuvering away from multiple incoming projectiles) require swift reaction
from the agent, as the state may change to a great extent in a matter of a
few frames. If the agent were to repeat a single action for too many times, it
may either over-rotate and miss the enemy, or over-navigate and get hit by the
incoming projectile. We use a frame skip rate of k = 4, since it has been found
most suitable in former research on the ViZDoom platform [44, 41].

4.1.4 Algorithm
As basis for training a poor baseline in our experiments, we use DQN with
experience replay and a target network. We modify the initial algorithm pro-
posed by Mnih et al. [53] by including a target network for generating the
targets (Algorithm 1), as described in Section 4.1.2. The use of experience replay
and target networks enables relatively stable learning of Q-values, which has
previously led to superhuman performance on several Atari games [27].

The learning task is solved directly using samples from the environment,
without explicit estimations of transitions or rewards. The algorithm is off-
policy [69], meaning that it ensures reasonable exploration of the state space
by basing its actions on a behaviour distribution. More formally, the agent per-
forms a random action with probability ε, while also learning the greedy policy
a = argmaxa′Q(s, a

′; θ), by maximizing its returned rewards with probability
1− ε. The value of ε decays over time, meaning that the rate of exploration also
decreases.
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Algorithm 1: Deep Q-learning with Experience Replay and a a Fixed
Target Q-Network
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights θ
Initialize target action-value function Q̂ with weights θ− = θ
for episode = 1, M do

Initialize sequence s1 = {x1} and preprocessed sequence φ1 = φ(s1);
for t = 1, T do

With probability ε select a random action at
otherwise select at = argmaxaQ(φ(st), a;θ)
Perform action at, and observe the reward rt and next image xt+1

Set st+1 = st, at, xt+1 and preprocess φt+1 = φ(st+1)
Store the transition (φt, at, rt, φt+1) in D
Sample random minibatch of transitions (φt, at, rt, φj+1) from D

Set yt =

{
rt for terminal φj+1

rt + γmaxa′Q(φj+1, a
′;θ), for non-terminal φj+1

Perform a gradient descent step on (yt −Q(φt, at;θ))
2 according

to equation 4.7
Reset Q̂ = Q after every a fixed number of steps.

end
end

4.1.5 Model Architecture
We use the CNN architecture proposed by Hausknecht and Stone [25], consisting
of three convolutional blocks, as depicted in Figure 4.1. This schematic is only
applicable for a single frame, since the actual input consists of multiple stacked
frames. All of the three RGB feature maps are used, as grayscale images have
been found to decrease performance [44]. Using raw Doom frames (640×480
pixel images with a 256 color palette) directly, is computationally too demanding.
In order to reduce dimensionality, we first preprocessed the raw frames by down-
sampling them to a 84×84 pixel image. The function φ from Algorithm 1 applies
this preprocessing to the last 4 frames of a previous experience and stacks them
afterwards [53]. This is used as input to the neural network and is convoluted
three times with a decreasing kernel size, after which a rectifier nonlinearity is
applied. We use strided convolutional layers instead of Max-Pooling layers, since
they enhance the CNN accuracy and reduce the model size [67]. The resulting
activations are flattened to a single dimension, by processing them through a
linear 4096-unit fully-connected layer. The final layer of the model provides us
with Q-Values after a softmax operation, having a single output for each of the
possible actions a ∈ A〉 for a given environment Ei. This kind of architecture,
having only the state representation as the input to the neural network, and
a separate output unit for each possible action, has the ability of computing
Q-values for all of the possible actions in a single state with only passing through
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Figure 4.1: DQN model architecture with for an action space of |A| = 3

the network once [53]. We initialize the weights of our model uniformly, using
the initializer proposed by Kaiming He [26].

4.1.6 Reward Shaping
In order to facilitate the learning process of the agent, and tackle the problem
of delayed rewards and a sparse replay table, we use reward shaping [56], in
which we adjust the rewards to provide more appropriate feedback relative to the
objective. This is crucial for the learning a favourable policy, as our environments
are of very diverse nature. The reward shaping functions of all scenarios are
outlined in Section 3.4.

4.2 Rainbow
Rainbow [27] combines several state-of-the-art DRL improvements to the DQN
algorithm into a single learning agent. In the following, we describe the six
techniques, which comprise Rainbow, and are complementary to one another to
a certain extent.

4.2.1 Double Q-Learning
The conventional Q-learning algorithm performs poorly in some stochastic
environments due to a large overestimation bias for action values during the
maximization step in Equation 4.1 [71]. The reason behind this is that the
selected samples are used for both deciding which action is the best in terms of
yielding highest expected reward and for estimating that action-value. Thus, to
overcome the overestimation problem, Double Q-learning [24] uses two Q-value
functions to effectively decouple the selection of the action from its evaluation in
the maximization performed for the bootstrap target. In particular, similarly to
standard Q-Learning, the value of the greedy policy is still evaluated according to
the current values in the online network θ, and the action is selected accordingly.
However, we now use a second set of weights θ̂ to evaluate the value of this
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policy. This can effectively be combined with DQN [73], using the following loss
function:

L =

(
rt+1 + γt+1Qθ̂

(
st+1, argmax

a′
Qθ(st+1, a

′)
)
−Qθ(st, at)

)2

. (4.9)

Updating the weights of the target network remains unchanged from the vanilla
DQN, making a periodic copy of the online network, as explained in section
4.1.2.

4.2.2 Dueling Networks
The state-action values Q(s, a) can be composed into two fundamental values: a
state-value function V (s), estimating the importance of being in a particular
state s, and an action-value function A (a), estimating the advantage of selecting
action a instead of other actions. Since it is often unnecessary to estimate both
of these values in many MDPs, we could use a separate stream of fully connected
layers in the DQN to obtain an estimation for both V (s) and A (a). This type
of neural architecture designed for value based RL is called a dueling network
[76] (Figure 4.2). The streams share a convolutional encoder, and their outputs
are merged by a predefined aggregator. We can thus combine the two streams
to generate a single output as follows:

Qθ(s, a) = vη(fξ(s)) + aψ(fξ(s), a)−
∑
a′ aψ(fξ(s), a

′)

|A|
, (4.10)

where A is the action space; ξ, η, and ψ respectively represent the parameters
of the shared convolutional encoder fξ, the value stream vη, and the advantage
stream aψ; and θ = {ξ, η, ψ} is their concatenation. The loss function can be
combined in a similar fashion to Equation 4.6. This network architecture helps
to generalize across actions and significantly improves performance.

Figure 4.2: Dueling network architecture from the work by Wang et al. [76].
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4.2.3 Prioritized Experience Replay
The standard experience replay mechanism enables the agent to remember and
reuse past transitions. In particular, experiences are sampled from the replay
buffer uniformly. This approach, however, completely disregards the significance
of the experiences, as it simply replays transitions at the same frequency as
the agent originally encountered them. Experiences, which are rich in terms
of providing the agent a lot to learn from them, occur rarely, which makes
the chance of them being selected very low. Sampling such transitions more
frequently would improve data efficiency, and thus lead to a more desirable policy
in lesser training time.

Adding prioritization to the tuples of experience in the replay buffer [64]
precisely enables us to focus the more on relevant transitions. This is achieved
by taking priority in experiences in which during training there was a great
difference between the agent’s prediction and the temporal difference (TD) target.
In other words, we sample transitions with a probability related to the previously
encountered absolute value of the magnitude of the TD error. We thus find the
priority of an experience as follows:

pt = |δt|+ e, (4.11)

where δt is the magnitude at time step t, and e is a constant assuring that
no experience has 0 probability of being selected. We find the probability of
selecting a transition i by normalizing by all priority values in the replay buffer:

P (i) =
pai∑
k p

a
k

, (4.12)

where a ∈ [0, 1] is a hyperparameter used to introduce stochasticity in the
experience selection. In order to correct for the introduced bias towards high-
priority samples, and avert the risk of overfitting, we use importance sampling
(IS) weights, which shall adjust the update by reducing the weights of the
prevalent samples:

wi =

(
1

N · P (i)

)β
, (4.13)

where N is the replay buffer size, and β controls how much the IS weights
affect learning. The value of this parameter is linearly annealed throughout the
duration of training from its initial value to 1. This use useful, because the IS
weights are more relevant when the Q-Values begin to converge.

Instead of sorting an array or using a dequeue as with standard experience
replay, we initialize the replay buffer as an unsorted SumTree, a version of a
binary tree, where the value of a parent node is equal to the sum of the values of
its children. This grants us O(log(n)) efficiency in updating and sampling from
the tree. New transitions are inserted into the buffer with maximum priority.
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4.2.4 Noisy Nets
A Noisy Net [19] is a type of stochastic neural network in which the bias and
weights are repeatedly flustered during training by a parametric noise function.
This is generally achieved by adding Gaussian noise to the last fully connected
layers of the network, but is applicable to any number of layers. The amount
of noise is adjustable during training, which grants control over when and to
what degree it is desirable to introduce uncertainty to the model weights. Over
time, the network can thus learn to ignore the noisy stream, but will do so at
various rates in different parts of the state space, allowing a form of self-annealing
exploration conditional to the state.

The limitations of using ε-greedy policies for exploration are palpable in
environments, where it takes a myriad number of actions before encountering a
positive reward. The noisy network is implemented by first replacing the ε-greedy
policy by a randomized action-value function. Afterwards, the selected layers of
the value network are parameterized with noise, in which the parameters are
drawn from the parameter distribution of the noisy network after each iteration
of training. For experience replay, the given noisy network parameter sample
is held fixed across the given batch. Re-sampling is performed before every
action, in case an optimization step is taken for every step of action. In more
mathematical terms, we utilize a noisy linear layer that combines a deterministic
and noisy stream, such that

y = (b+Wx) + (bnoisy � εb + (W noisy � εw)x), (4.14)

where εb and εw are random variables, and � denotes the elements-wise product
[27].

4.2.5 Multi-Step Learning
Bootstrapping in standard Q-learning is performed by accumulating a single
reward, and then using the greedy action at the next step. Alternatively, to
propagate newly observed rewards faster to earlier visited states, forward-view
multi-step targets can be used [68]. In particular, the truncated n-step return
from a given state st can be defined as

r
(n)
t ≡

n−1∑
k=0

γ
(k)
t rt+k+1. (4.15)

we can thus define a multi-step variant of DQN by minimizing the alternative
loss:

L =
(
r
(n)
t + γ

(n)
t max

a′
Qθ̂(st+n, a

′)−Qθ(st, at)
)2
. (4.16)

Learning from a suitably tuned number of multi-step bootstrap targets helps
create a shift in the bias-variance trade-off, and often leads to faster learning
[70].
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4.2.6 Distributional RL
The standard DQN described in section 4.1 uses the Bellman equation to approx-
imate the expected value of future rewards. However, given that the environment
is stochastic in nature like the scenarios in the GViZDoom Benchmark, and the
future rewards follow a multimodal distribution, selecting actions solely based
on expected values may not lead to the optimal outcome. This can be improved
using distributional Q-learning [3], in which we use a categorical distribution
to approximate the distribution of discounted returns instead of the expected
return. In particular, given that Z(st, at) is the return obtained from executing
action at in state st following the current policy, then Q(st, at) = E[Z(st, at)],
where Z represents the distribution of future rewards [49]. We can therefore
obtain the distributional version of Bellman equation as follows:

Z(s, a) = r + γZ(s, a). (4.17)

The performance relies heavily on how well the distribution function Z in defined.
More specifically, we define a discrete support vector z with Natoms ∈ N+atoms,
defined by zi = vmin + (i− 1) vmax−vmin

Natoms−1 for i ∈ {1, . . . , Natoms} [27]. We form a
categorical distribution, placing probability masses on z, from which at every
time step t, we can find the approximating distribution dt, with a probability
mass of piθ(st, at) on every atom i, such that dt = (z, zθ(st, at)). The goal is
thus to optimize θ, such that the distribution dt well approximates the ground
truth distribution of returns. Under an optimal policy π∗, for a state st and
action at, the distribution of the returns should therefore exactly match a target
distribution. We find this distribution by first taking the distribution for the
next state st+1 and the optimal action according to our policy a∗t+1 = π∗(st+1).
We further use the discount to contract it towards zero, and then shift it by the
reward. We construct a new support for the target distribution, and minimize
the Kullbeck-Leibler (KL) divergence between the target and approximating
(dt) distributions. We represent the θ as a neural network, as in DQN, but
with Natoms ×Nactions outputs. For each action dimension of the output, we
independently apply a softmax activation to ensure that the distribution for
each action is appropriately normalized.

4.3 Multi-Task Learning
Since we are using multiple training tasks T tr to train a single model, we
formulate this task into a multi-task learning (MTL) problem. MTL improves
generalization by leveraging the domain-specific information contained in the
training signals of related tasks [8]. The goal of multi-task RL is to learn a single,
task conditioned policy π(a|s, z), where z indicates an encoding of the task ID.
This policy should maximize the average expected return across all tasks from
the task distribution p(T ) [80], given by

ET ∼p(T )

[
Eπ
[ T∑
t=0

γtrt(st, at)
]]
. (4.18)
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We train the model asynchronously, by using a shared experience replay
buffer D across each task Tj ,

{
Sj ,Aj .pj(s1), pj(s

′|s, a), rj(s, a)
}
in the set of

training tasks T tri in environment Ei. We use hard parameters sharing with no
task-specific output layers in the model. The agent executes the feed-forward
of all tasks in parallel by making use of the shared target network θ̂. In our
simulation environment, each task is run on a separate instance of the Doom
game. Given that N is the memory capacity, we collect experience by storing
transitions of each task DTi =

{
(s1:N , a1:N , r1:N , s

′
1:N )

}
into the shared replay

buffer D ← D ∪DTi .

4.3.1 Example-Level Prioritization
Backpropagation is performed in a separate thread, which trains the online
network θ. We sample a batch of transitions from the shared buffer Db ∼ D .
This is performed uniformly for our DQN baseline, which grants experiences from
every task an equal probability of being selected. However, it has been previously
observed that imbalances in task difficulty can lead to unnecessary emphasis
on easier tasks, thus neglecting and slowing progress on difficult tasks [21]. On
the contrary, since Rainbow uses prioritized replay, more difficult tasks with
experiences of higher priority will be sampled more often, and thus dominate
the weight updates.

4.3.2 Task-Level Prioritization
In traditional multitask learning [8], a model continues to invest the same level
of emphasis on easy tasks, even after mastering them. Perfecting such simple
tasks is a waste of valuable resources. As a result, challenging tasks, which
may require additional learning, learn slowly and perform poorly, compared to
easier tasks [31]. We thus use key performance indicators (KPIs) as progress
signals to dynamically prioritize more difficult tasks by assigning more weight
to samples from such tasks when computing the loss [21]. We use the success
metrics outlined in Table 3.1 as KPIs for a given scenario. We find the KPI
value of a task Tj as the running mean of the success metric across the last k
iterations:

KPITj =
1

k

k∑
l=0

scorei(πt−l), (4.19)

where t is the current time step, i is the index of the environment, and π is our
policy at a certain time step. We use this value to linearly scale the weights of
samples from a task Tj as follows:

wj =
maxTi KPITi

KPITj
. (4.20)
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Hence, the samples from a task with the highest performance KPImax at a
given time step t are assigned a weight of w = 1, and all other samples of more
difficult tasks receive a higher weight.
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Chapter 5

Experimental Results and
Discussion

In this chapter we outline our experimental setup, and conduct four experiments
using the GViZDoom benchmark. First, we assess the level difficulty in our
benchmark. Second, we evaluate the impact of the training set size on generaliz-
ability. Third, we compare two value-base RL algorithms. Fourth, we evaluate
our trained Rainbow agent on tasks of all difficulty levels. Finally, we present
and discuss the results of our experiments.

5.1 Experimental Setup
In this section, we describe the general experimental protocols, the software
built for the benchmark, the hardware for training the models, the methods and
algorithms with their corresponding hyperparameters for training and evaluating
the agents.

5.1.1 Protocol
For our experiments, we use every scenario in the benchmark. The tasks of
these scenarios with their attributes are described in Tables A.1, A.2, A.3,
and A.4. Screenshots of some lower level tasks are provided in Table 3.2. To
evaluate the generalization competence of an agent, we default to using lower
level tasks for training and higher level ones for inference. To provide means of
reproducibility, and to increase the reliability of the experimental results, we
control the pseudorandom nature of the environments in a similar fashion as in
the work by Cobbe et al.[14], by using a respective predefined seed s ∈ S for
training each model. Every task in our experiments is thus trained using three
seeds S = [1111, 2222, 3333]. The evaluation score for a task is determined by
the corresponding success metric (see Table 3.1) of the scenario from which the
task originates.
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5.1.2 Algorithms
Since our environments have a very limited discrete action space, we employ
two value-based DRL methods in our experiments. As an initial baseline,
we use DQN, a popular algorithm for RL in high-dimensional environments,
such as video games. The hyperparameters used for training the vanilla DQN
are brought in Table 5.1. As an improved variant, we use Rainbow [27], a
combination of state-of-the-art improvements to DQN. We apply the same
parameters as used for DQN in Table 5.1. Additional hyperparameters, specific
to Rainbow, are presented in Table 5.2. We retain the architecture and most
of the hyperparameters from [27], with a few minor changes. First, we use a
priority exponent ω = 0.6 for Prioritized Experience Replay (PER). Second,
we use a replay buffer size of 100K instead of 1M to lower the algorithm’s
memory consumption. Third, to initialize the weights in the noisy stream, we set
σ0 = 0.017, as proposed in the original paper for noisy networks[19]. The value
of σ0 = 0.5 used in [27] yielded poor performance in our experiments. Lastly, we
apply the distributional min and max values according to the reward spectrum
of the scenario used for training. We use the Rainbow algorithm for running an
experiment by default, if not specified otherwise. The agent is trained using the
Huber loss function, the Adam [42] optimizer, and the convolutional architecture
outlined in section 4.1.5.

Table 5.1: DQN hyperparameters

Hyperparameter Value

Replay memory capacity 50K
Target network period 3000
Frames per action 4
Gathering experience 10K
Annealing epsilon 50K
Initial epsilon 1.0
Final epsilon 0.001
Discount factor γ 0.99
Adam learning rate α 10−4

Adam ε 10−7

Mini-batch size 32

Table 5.2: Rainbow hyperparame-
ters

Hyperparameter Value

Multi-step returns n 3
Noisy Nets σ0 0.017
PER exponent ω 0.6
PER importance β 0.4 → 1.0
PER minimum priority 0.01
Distributional atoms 51

5.1.3 Hardware
The GPU used for running our experiments is an ASUS Turbo GeForce GTX
1080 Ti, with 11GB RAM, 3584 CUDA cores, and a compute capability of
6.1. We use an Intel Xeon Broadwell-EP 2683v4 CPU with 1024GB RAM, 64
hyperthreads, and a processing speed of 2.1GHz.
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5.1.4 Software
GViZDoom1 is written in the Python programming language. The program
is executable via the command line with all the configurable parameters. We
use Keras [13] with a TensorFlow [1] backend for constructing and training the
models. The software architecture of value-based DRL methods is illustrated
in Figure 5.1. To implement and use custom algorithms in the benchmark,
one needs to extend the Agent class. Likewise, extending the Scenario class
enables the creation of a new scenario. To facilitate separating the usage of
the CPU and GPU for better optimization, simulation in the environment, and
the computation heavy backpropagation are configurable to be executed asyn-
chronously in separate threads. Moreover, it is possible to run multiple threads
for independently training the online network. Although ViZDoom is rather
lightweight to run [39], experience from the environment can be gathered more
efficiently in this manner when using value-based methods. As we formulated in
Section 4.3, every task of a scenario is run in a separate thread which holds a
Doom game instance, and transitions are collected into a shared replay buffer.

Figure 5.1: Software architecture of value-based DRL methods.

5.2 Generalization Experiments
In this section we use the GViZDoom benchmark to run four experiments. We
then present and discuss the results.

1The code is made available at https://github.com/TTomilin/GViZDoom
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5.2.1 Training Difficulty
We first demonstrate how our difficulty level design (outlined in Section 3.2)
impacts the training performance of the Rainbow agent. The model is trained
for 500K steps on every individual task of each selected scenario on three seeds.
The performance statistics are aggregated and stored after every 5000 iterations.
We find the mean score of a task across all seeds, and then average the scores
of tasks belonging to the same level. We hypothesize that the agent performs
poorly on tasks of higher levels with more difficulty attributes. We additionally
wish to observe whether training converges for all levels of every scenario, and
how long it takes. Knowing the approximate number of iterations required for
convergence, we can propose a lower bound for further experiments with the
same training protocol.

(a) Defend the Center (b) Health Gathering

(c) Seek and Kill (d) Dodge Projectiles

Figure 5.2: The training performance of the Rainbow Agent on individual tasks
of all difficulty levels.

The training curves are plotted on Figures 5.2a, 5.2b, 5.2c, and 5.2d. It can
be observed that the training of most models converges before 200K iterations.
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Scenario Level 0 Level 1 Level 2 Level 3 Level 4 Average

Defend the Center 87.48 60.11 40.35 34.46 29.69 50.42
Health Gathering 86.68 78.60 55.64 36.13 27.43 56.90
Seek and Kill 59.69 42.02 28.87 24.11 13.92 33.72
Dodge Projectiles 86.10 84.18 46.79 28.66 28.21 54.79
Average (Pnorm) 79.99 66.23 42.91 30.84 24.81 48.96

Table 5.3: Normalized performance indicators of training the Rainbow agent on
all tasks of each level across the full training duration. The values are reported
across 3 seeds.

We will hence use this number of training steps for the following experiments.
We can further acknowledge that the agent has roughly solved the default task
on all scenarios with the Frames Alive performance metric, since the plotted
line is contiguous to the number of frames, when the episode is automatically
terminated. It can also be noticed, that barely any progress has been made
on the final level 4 task in the course of the entire training process. For more
rigorous comparison, we use the formulas in Equations 3.1 and 3.2 to calculate
the performance indicator for each level, which we present in Table 5.6. We
can observe, that every level of higher difficulty has a progressively lower indica-
tor, which matches our hypothesis. The most noticeable performance decrease
(23.3%) appears between levels 1 and 2. Hence, adding a second difficulty at-
tribute has the seemingly highest relative impediment to the Rainbow agent.
The lowest performance difference is among levels 3 and 4 (6.0%), signaling
that our agent struggles to prevail in a task with three or more complexity
attributes, since the level 4 tasks is comprised of all the attributes. From
the results of this experiment we can thus conclude that our design of level dif-
ficulty indeed presents the agent with increasing complexity as the levels progress.

The training curve of level 1 tasks of the Defend the Center scenario on
Figure 5.2a appears to have one of the highest variances among the levels of all
scenarios. We additionally plot the individual results of tasks of this difficulty
level in Figure 5.3 to examine the origin of the high deviation. We can indeed
observe that although the tasks belong to the same difficulty level according
to our benchmark design, our Rainbow agent does not perform equally well on
all of them. This indicates that the specific setup for training or evaluation of
selected tasks from a single level can substantially impact the outcome.

5.2.2 Training Set Size
We further wish to determine how the number of training tasks impacts the
acquired generalizability abilities of the agent using our benchmark, and what
the appropriate number of tasks for training should be. To this end, we compare
the performance of our Rainbow agent on unseen test tasks of higher difficulty
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Figure 5.3: Training curves of all level 1 tasks of the Defend the Center scenario.
We report the mean and standard deviation across three seeds.

levels, after having trained it on a different number of lower level training tasks.
We use three training setups per scenario:

1. Single task of level 0

2. Four tasks of levels 0 and 1

3. Eight tasks of levels 0 and 1

A training set with multiple tasks is trained in an MTL setting, as described in
Section 4.3. We train each model for 200K iterations, saving 20 intermediate
checkpoints of the model throughout the training process, one after every 10K
training iterations. Every such checkpoint is thereafter evaluated for 100 episodes
on each of the selected holdout tasks. We use a total of seven test tasks per
scenario for evaluation: three tasks of levels d = 2 and d = 3 each, and the final
complete task (d = 4), including all the scenario specific complexity attributes.
We accordingly define a distinct set of difficulty levels Dte = {2, 3, 4} and
tasks T tei = Ti,2 ∪ Ti,3 ∪ Ti,4 for evaluation. It is important to note that we
allow the difficulty attributes to overlap across training and test tasks. The
performance of a single test task is determined by finding the mean score across
3 seeds, according to the environment specific metric scorei. Applying the use
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Scenario 1 Task 4 Tasks 8 Tasks

Defend the Center 38.87 41.56 56.06
Health Gathering 27.92 35.75 32.91
Seek and Kill 27.34 33.25 23.92
Dodge Projectiles 35.21 42.30 36.42
Average (Pnorm) 32.34 38.22 37.33

Table 5.4: Performance indicators of different training set sizes across 3 seeds
and pre-selected evaluation tasks of levels 2-4. Since multi training on a higher
number of tasks requires more iterations to converge, we only use the evaluation
results of the last 5 model checkpoints to ensure a more accurate comparison.

of seeds and the distinction of difficulty levels in our experimental protocol,
we complement Equation 3.1 to calculate the evaluation performance in this
experiment as follows:

Pi(πθ) =
1

|Dte| · |T tei | · |S|
∑
d∈Dte

∑
t∈T te

i,d

∑
s∈S

scorei
(
ts(πθ)

)
. (5.1)

Note that the calculated performance indicators using our setup are heavily con-
tingent on the tasks selected for evaluation, and is thus only directly comparable
if the experimental setup of scenarios and test tasks matches. We hypothesize
that a multi-task training setting with a higher number of tasks reaps a substan-
tially favorable outcome in terms of generalizability, compared to using a single
training task.

The evaluation scores of the experiment are plotted on Figure 5.4, and the
performance indicators and presented in Table 5.4. We can observe that the
Rainbow agent, with a training set size of 4, comprehensively dominates most
evaluation tasks of the Seek and Kill, Health Gathering and Dodge Projectiles
scenarios, whereas the training protocol with 8 tasks has predominantly prevailed
in the Defend the Center scenario. We speculate that the latter environment
has more variability across the tasks, and thus requires a larger training set size
to acquire considerable proficiency. The results of the complete tasks do not
follow the same trend. We suppose that this is caused by all agents having very
poor performance on this task, since it is the most complex undertaking. As
we already established in Section 5.2.1, our implementation of the Rainbow is
evidently not able to make any progression on the complete task even if directly
trained on it. Averaging the performance indicators across scenarios, we conclude
that a training set of multiple tasks is indeed superior than using a single task
(+5.88% and +4.99%). Moreover, the 4 task setup is slightly better (0.89%)
than using 8 training tasks.
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Figure 5.4: Generalization performance in each environment as a function of
training set size. The mean and standard deviation is shown across 3 seeds. The
tasks are ordered in an ascending manner according to the difficulty level.
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Scenario DQN Rainbow

Defend the Center 36.90 56.06
Health Gathering 19.65 35.75
Seek and Kill 16.76 33.25
Dodge Projectiles 20.44 42.30
Average (Pnorm) 23.44 41.84

Table 5.5: Performance indicators of DQN and Rainbow on selected tasks of
levels 2-4, after having been trained on all level 0 and 1 tasks on 3 seeds. The
tasks are ordered in an ascending manner according to the difficulty level.

5.2.3 Algorithm Comparison
To demonstrate the usefulness of the GViZDoom Benchmark in providing mean-
ingful grounds for comparison between algorithms of varying adequacy, we
determine how a generic DRL algorithm, such as DQN, performs on our bench-
mark in comparison to our implementation of Rainbow, a more recent algorithm,
combining several state-of-the-art extensions to DQN.

We train the agent on each environment Ei on four tasks of levelsDtr = {0, 1},
as that training set size indicated the most promising results in the previous
experiment in Section 5.2.2. We thus use a training task set of T tri = Ti,0 ∪ Ti,1.
Apart from using a single training task set, the rest of the experimental protocol
is identical to the previous section. We hypothesize, that Rainbow manages to
achieve a significantly higher result compared to DQN.

As can be observed from the results in Table 5.5, our implementation of Rain-
bow performed significantly better than the vanilla DQN on all scenarios. The
highest improvement took place in scenario Dodge Projectiles (+19.16%), and
the lowest in Health Gathering (+16.10%). The average improvement among all
scenarios is 18.40±2.68%. The standard deviation of evaluation score differences
between the methods among scenarios are rather insignificant, indicating that
the environments provide a similar scale of complexity.

The evaluation plots on Figure 5.5 indicate that the DQN agent did not
manage to learn anything useful from the multi-task training setting, as the
evaluation scores of later model checkpoints do not noticeably increase. The
agent was hence unable to sufficiently perform on the holdout task set, essentially
resulting in similar competence to an agent selecting its actions at random. The
difference in performance between the two methods is less noticeable on level 3
tasks, since the Rainbow agent had lower evaluation scores compared to tasks of
level 2 difficulty. On the level 4 task complete it is no longer surmisable whether
the Rainbow agent has better performance.
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Figure 5.5: A comparison between DQN and Rainbow. The agent is trained on
four level 0 and 1 tasks, and evaluated on tasks of higher levels. We report the
mean and standard deviation across three seeds.
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5.2.4 Rainbow Evaluation
As a final experiment, we evaluate how our trained Rainbow agent from the
previous experiment in Section 5.2.3 performs on tasks of progressive levels of
difficulty. We test every trained model checkpoint for 100 episodes on all tasks
of each level.

(a) Defend the Center (b) Health Gathering

(c) Seek and Kill (d) Dodge Projectiles

Figure 5.6: Rainbow agent evaluated on all tasks of progressive difficulty levels,
after being trained on four level 0 and 1 tasks. The mean and standard deviation
for all scenarios is shown across 3 seeds.

The performance indicators are brought in table 5.6 and the evaluation
curves are presented on Figure 5.6. Similarly to our confirmed hypothesis in
Section 5.2.1, the performance of the agent drops as the difficulty increases.
The Health Gathering scenario has the most distinct separation of performance
between difficulty levels. The Defend the Center and Seek and Kill scenarios
have higher variance, converge slower, and have more loosely separated difficulty
levels according to the results of our Rainbow agent, than the other two scenarios.
Likewise to the training difficulty experiment, it can once again be observed that
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Scenario Level 0 Level 1 Level 2 Level 3 Level 4 Average

Defend the Center 76.38 71.25 66.70 52.27 35.48 60.42
Health Gathering 98.55 71.53 43.13 27.32 18.99 51.91
Seek and Kill 74.66 60.70 45.62 31.80 18.59 46.27
Dodge Projectiles 79.37 63.07 52.85 24.68 22.40 48.47
Average (Pnorm) 82.24 66.64 52.08 34.02 23.87 51.77

Table 5.6: Normalized performance indicators of training the Rainbow agent on
all tasks of each level across the full training duration. The values are reported
across 3 seeds. Similarly to the results in table 5.4, we only use the evaluation
results of the last 5 model checkpoints to ensure a more accurate comparison.

the level 3 and 4 tasks have very little noticeable improvement throughout the
evaluation process.
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Conclusion

Training proficient agents, who are able to generalize across environments, cur-
rently remains one of the greatest challenges in reinforcement learning. We
created the GViZDoom Benchmark to aid the community in grappling with
this challenge. We have presented a novel approach of simulation environment
design for 3D FPS video games, incorporating tasks of progressing difficulty
levels, formed by combining visually observable modifications.

Even though the environments of our benchmark are tailored towards acquir-
ing a narrow competence in the realm of FPS games, we have demonstrated
in Section 5.2.1, that our approach of difficulty level design, by tweaking the
environment in terms of adding or changing attributes, negatively affects the
learning capability. Moreover, combining such slight visual modifications of
textures, decorations, surroundings, and enemies further exacerbates perfor-
mance, and can completely derail an agent from achieving the limited established
objectives. Our implementation of Rainbow has nearly solved the default task
of most environments, and performs nearly as poorly as a random agent on the
complete task of the highest level. The first iteration of the benchmark hence
provides a reasonable spectrum of complexity according to current state-of-the-
art value-based DRL methods.

The same phenomena emerges, when employing a trained agent in an en-
vironment, which it has not yet encountered. This can be concluded from the
relatively poor performance with a decreasing evaluation score of our trained
Rainbow agent on held out tasks of higher difficulty levels in Section 5.2.4.
Despite being far more elementary in nature than actual full-fledged FPS games,
the modified simulation environment hinders the agent to fulfill the assigned
goal. Our preliminary results suggest that performing well on a select number of
training tasks does not grant the agent having learned any general concepts of
the game. Instead of acquiring the relevant competencies, the policy network
may simply be memorizing what action to take for a large number of observations
that it has continuously been encountering. In order acquire a reliable assessment
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of competence, it is therefore vital to evaluate the agent on several holdout tasks
with varying unfamiliar characteristics, as our benchmark enables to do.

From the results of the experiment in Section 5.2.2 we can conclude that the
number of training tasks has a substantial impact on the acquired competence
of the agent. Training on a single task is evidently insufficient to achieve proper
means of generalizability. We further surmise that the scenarios in our bench-
mark require a varying number of training tasks for appropriate performance.
The optimal training set size for any GViZDoom environment nevertheless re-
mains unclear from our experiment, and requires further research to ascertain.
Moreover, we acknowledge that a different combination of an equal number of
training tasks may yield a profoundly different result, i.e., there might not exists
an optimal fixed training set size for a scenario.

In Section 5.2.3 we have shown that the benchmark is appropriate for com-
paring DRL methods of varying adequacy. In our experiment, a more competent
technique, such as Rainbow, clearly outperformed a rather rudimentary value-
based algorithm DQN by a significant degree on all scenarios of the benchmark.
Our experiment further suggests that the scenarios provide a similar scale of
difficulty for algorithm comparison.

GViZDoom grants the opportunity to design new scenarios which demand
different competencies, the possibility to modify the reward functions, and to
create tasks with levels of even higher difficulty. Thus, as the generalization
abilities of DRL agents improves over time, and current tasks are rendered too
simplistic, the benchmark is simply modifiable to further complicate the scenarios,
by introducing new difficulty attributes, or enhancing existing ones by adjusting
the relevant parameters. We hope that these extensions not only make the
benchmark a useful high-end benchmark of agent competencies, but also position
GViZDoom as a tool of academic study and a general customizable environment
for presenting novel tasks to RL agents. We expect it to facilitate the design of
more efficient and capable algorithms by leveraging these environments in more
complex settings.

6.1 Limitations
In this section we address the limitations of our work.

6.1.1 Action Space
The environments in the initial version of the GViZDoom benchmark all have
a distinct action space, which is tailored towards the objective and nature of
the given scenario. We disregarded all possible irrelevant actions to reduce the
model complexity and training time. This, however, negates the possibility to
train or evaluate agents in a cross-environment setting. Having a unified action
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space between scenarios opens the door to further opportunities in terms of
researching generalization. With the expectation of improved DRL methods
from future research, a consolidated action space could be implemented in the
benchmark. Doing so would require the modification of some scenarios, e.g.,
physically limiting the movement of the agent in Defend the Center and Dodge
Projectiles, instead of simply restricting the agent from using the relevant actions
of movement.

6.1.2 High Variance
Our experimental results have a very high variance. This is most likely caused
by the highly random nature of the environment, but more importantly due to
a substantial difference in complexity between some of the difficulty attributes.
We could observe this from the presented training results of the tasks belonging
to the same level of the Defend the Center scenario in Figure 5.3. Hence, our
proposed difficulty attributes might not be not ideal for providing an even degree
of complexity among tasks of a single level. Combining multiple such challenging
attributes for constructing higher level tasks may even further exacerbate this
performance gap.

6.1.3 Multi-Task Learning
Our experiments only used off-policy model-free DRL methods, which sample
past transitions from an experience buffer for learning. Training on more than
one task in parallel complicates these matters, as the knowledge acquired from
training on one task begins to interfere with that from another. Transferring this
knowledge may inversely hurt the target performance, a phenomenon known as
negative transfer [75]. Moreover, tasks may learn at different rates, which further
hinders learning. We did not use any advanced multi-task learning techniques in
our work, as this was not one of the main focus points, and defaulted to simply
storing the experiences from all tasks in a single replay buffer. This approach
may, however, result in poor sample-efficiency and inadequate utilization of the
collected transitions. To mitigate the effect, we used both example-level and
task-level prioritization, as described in Sections 4.3.1 and 4.3.2. Nevertheless,
this does not guarantee an optimal usage of the replay buffer. Furthermore,
the model and parameters were fully shared across the tasks, without any task-
specific layers. This may also decrease the potential performance of our agents.
A solution to this could be to share less parameters and weights across tasks or
train a bigger network.

6.1.4 Value-Based Methods
In our generalization experiments, we only applied value-based methods due
to small discrete action spaces in our environments. Nevertheless, there are
some general disadvantages compared to policy-based methods. One problem
with value-based methods is that they may have substantial oscillations in the
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training process, since having a small change in the estimated action values has
the potential to trigger a significant change in the choice of the next action.
Policy-based methods tend to possess superior convergence properties, as they
simply follow the gradient to find the best parameters, leading to smoother
updates at each time step. They are also able to learn stochastic policies, which
don’t require the explicit implementation of an exploration/exploitation trade-off.

6.1.5 Algorithm Evaluation
The GViZDoom benchmark does not imply constraints on using a predetermined
protocol in terms of tasks and difficulty levels. Users of the benchmark may thus
select different tasks for training and evaluating DRL agents. The downside of
this, is that the resulting performance indicators of generalizability from two
experiments with varying arrangement are not directly comparable. Hence, to
have a meaningful comparison of outcome with results of past research, users are
required to either adopt the same setup, or rerun the previous experiment with
the new setup. The reason being, that some tasks from the same difficulty level
may have a substantial variance of complexity, meaning that simply selecting
the same number of different tasks from a desired level might grant considerable
advantages or disadvantages in scores.

6.2 Future Work
The approach and experimental results in this thesis leave ample opportunities for
further research in various directions. In this section we outline some promising
directions for future work, and briefly discuss how more research could improve
the results and outcomes of this thesis.

6.2.1 Environment
Our initial version of the GViZDoom benchmark only consists of four scenarios,
which cover a narrow subset of the possible competencies that FPS video games
require the player to master. A great deal of more such environments could be
designed for the benchmark to both cultivate and assess other capabilities of the
agent, e.g., selecting the appropriate weapon for a given situation, accomplishing
tactical or strategic objectives, obtaining items to access locked areas in the
environment, accurately aiming with projectile-firing weapons, cooperating with
other agents. We present a few ideas for future scenarios that cover some of such
competencies:

• The agent is required to navigate to a room with a locked door, having
previously located the skull key or keycard with the correct color for
said door. The evaluation metric is the time required to accomplish the
objective. The spatial layout of the scenario is randomly generated each
episode, and the agent is spawned in an unoccupied randomized location.
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• The agent is granted a weapon without any bullets. It needs to locate and
collect the correct type of ammunition for the equipped weapon from the
ground, and use it to eliminate hostile enemies. The agent is rewarded
for picking up the correct bullets, staying alive, and killing enemies. The
performance is measured in the number of enemies eliminated.

• The agent is rendered immobile at one end of a room, equipped with a
rocket launcher. A number of enemies with increased movements speed are
bound to the other end of the environment in substantial distance. The
agent needs to anticipate the movement trajectory of the enemies and fire
the weapon accordingly in the appropriate direction to eliminate them.
Additional enemies continually spawn to a fixed maximum amount at a
predetermined time interval. The performance of the agent is measured in
the number of eliminated enemies in an episode with limited time.

• The agent needs to navigate to a location in the environment, which is
guarded by enemies. The destination is unreachable without first eliminat-
ing the enemies. The agent receives a small reward for killing enemies and
moving closer to its destination, and is highly rewarded for reaching the
end location.

An option to improve the benchmark in terms of variability, is to procedurally
generate the subtasks of scenarios, randomizing some or all of the proposed
difficulty attributes. We did not use PCG due to the inability of guaranteeing
the solvability of a task, and properly assessing the complexity of a level between
runs. If these hindrances were to be overcome, PCG would enable expanding the
benchmark with far less manual work, and to reduce the tendency of overfitting
to a fixed environment.

6.2.2 Training Protocol
In our work, we attempted to get an idea of what an appropriate training set size
should be for using the benchmark to yield the best generalization ability. We
showed that multiple tasks are required, but did not reach a definite conclusion of
the optimal number. To more accurately determine the most suitable number and
combination of training tasks, further experiments are required to be conducted.

6.2.3 Agent Performance
Although it is not the main focus of this paper, our experimental results leave
substantial room for improvement in terms of performance, since there are more
powerful techniques and algorithms that can be utilized in this setting. The
particular methods and parameter values chosen for training the agents in the
paper might not be optimal after all. There are several directions to take to
improve the performance of the agent. Some of which include the following:

• Using a different CNN architecture or augmenting the visual input
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• Running a broad grid search for tuning the hyperparameter of our proposed
method

• Applying state-of-the-art policy gradient based methods (PPO, TRPO,
A3C, SAC), which work with a discrete action space

• Choosing a better training setup by determining the optimal number,
difficulty, and combination of training tasks, such that the agent is faced
with sufficient challenge in terms of variability while not being overwhelming
of excess inconsistency

• Using more advanced MTL techniques for learning multiple tasks in parallel
or sequentially

• Tweaking the reward function of scenarios to yield better feedback from
the environment, and creating additional intermediary rewards to guide
the agent in the correct direction

6.2.4 Curriculum Learning
It is yet to be determined how the benchmark conforms with curriculum learning
[5], as it was not in the scope of this thesis. Previous DRL research on the
ViZDoom platform [78] has demonstrated that utilizing curriculum training
can lead to outstanding results. We thus regard it as a promising method to
acquire excellent means of generalizability, especially since the environments in
our benchmark have clearly defined difficulty levels. The agent could therefore
be sequentially trained on tasks of gradually progressing levels. Moreover, meta-
learning techniques (e.g., model-agnostic meta-learning (MAML) [18, 63], or
probabilistic embeddings for actor-critic RL (PEARL) [61]) could be incorporated
in the training process to further improve efficacy and performance.
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Appendix A

Task Attributes

In this chapter, we display which difficulty attributes comprise the scenario tasks.

A.1 Defend the Center

Table A.1: Task difficulty attributes of the Defend the Center scenario

Task
Noisy
Tex-
tures

DecorationsEnemy
Size

Enemy
Render-
ing

Enemy
Type

Enemy
Speed

Defend the Center
Level = 0

Default
Level = 1

Gore X
Mossy Bricks X

Stone Wall X
Fuzzy Enemies X

Resized Enemies X
Fast Enemies X

Flying Enemies X
Level = 2

Fast Flying Enemies X X
Gore + Mossy Bricks X X

Resized Fuzzy Enemies X X
Stone Wall + Flying Enemies X X

Fast Fuzzy Enemies X X
Resized Enemies + Gore X X

Level = 3
Resized Flying Enemies + Mossy Bricks X X X

Gore + Stone Wall + Fuzzy Enemies X X X
Fast Resized Enemies + Gore X X X

Level = 4
Complete X X X X X X
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A.2 Health Gathering

Table A.2: Task difficulty attributes of the Health Gathering scenario

Task
Noisy
Tex-
tures

Decorations ItemSize

Item
Render-
ing

Item
Type

Poison
Vials

New
Map

Agent
Height

Health Gathering
Level = 0

Default
Level = 1

Obstacles X
Slime X
Lava X

Water X
Stimpacks X
Supreme X

Resized Kits X
Short Agent X

Poison X
Shaded Kits X

Level = 2
Slime + Obstacles X X
Shaded Stimpacks X X
Supreme + Poison X X

Resized Kits + Lava X X
Short Agent + Water X X
Resized Shaded Kits X X
Stimpacks + Poison X X

Level = 3
Lava + Supreme + Short Agent X X X
Obstacles + Slime + Stimpacks X X X
Poison + Resized Shaded Kits X X X

Level = 4
Complete X X X X X X X X
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A.3 Seek and Kill

Table A.3: Task difficulty attributes of the Seek and Kill scenario

Task
Noisy
Tex-
tures

DecorationsEnemy
Type

Enemy
Size

Enemy
Render-
ing

Seek and Kill
Level = 0

Default
Level = 1

Blue X
Red X

Obstacles X
Resized Enemies X

Shadows X
Mixed Enemies X

Invulnerable X
Level = 2

Blue + Shadows X X
Obstacles + Resized Enemies X X

Red + Mixed Enemies X X
Invulnerable + Blue X X

Resized Enemies + Red X X
Shadows + Obstacles X X

Level = 3
Blue + Mixed Resized Enemies X X X
Red + Obstacles + Invulnerable X X X
Resized Shadows + Invulnerable X X X

Level = 4
Complete X X X X X
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A.4 Dodge Projectiles

Table A.4: Task difficulty attributes of the Dodge Projectiles scenario

Task
Noisy
Tex-
tures

DecorationsProjectileType
Homing
Missiles

Rapid-
Fire

Agent
Height

Dodge Projectiles
Level = 0

Default
Level = 1

City X
Flames X

Flaming Skulls X
Mancubus X

Barons X
Cacodemons X

Resized Agent X
Level = 2

Revenants X X
City + Resized Agent X X

Arachnotron X X
Barons + Flaming Skulls X X
Cacodemons + Flames X X X

Mancubus + Resized Agent X X
Level = 3

Flames + Flaming Skulls + Mancubus X X X
Resized Agent + Revenants X X X

City + Arachnotron X X X
Level = 4

Complete X X X X X X
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Task Modifications

In this chapter, we describe how all base tasks of scenarios have been created.
The modifications of every default is presented in relation to the original map in
the ViZDoom platform, and the variations of higher level tasks are described in
comparison to the default task. The tasks not mentioned in the following list
are combinations of base tasks, i.e., the base tasks, of which the unmentioned
higher level task name is comprised, were combined to create it.

B.1 Defend the Center
1. Default

• Original defend_the_center.wad from VizDoom [39]

2. Gore

• A total of 15 decoration items of 3 different types with in-game id’s
[26, 28, 29] are constructed at fixed locations

3. Mossy Bricks

• Wall texture A-MOSBRI

• Floor texture FLOOR4_6

• Ceiling texture CEIL5_1

4. Stone Wall

• Wall texture FLAT5_7

• Floor texture FLOOR1_6

• Ceiling texture CEIL3_3

5. Fuzzy Enemies
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• The actor property APROP_RenderStyle of enemies is set to STYLE_Fuzzy

6. Resized Enemies

• The actor properties APROP_ScaleX and APROP_ScaleY of every
enemy are randomized in the range of [0.3, 3.0]

7. Fast Enemies

• The actor property APROP_Speed of enemies is set to 20

• The actor property APROP_DamageFactor of the agent is set to 0.3

8. Flying enemies

• New enemy: LostSoul

B.2 Health Gathering
1. Default

• Original health_gathering.wad from VizDoom [39]

2. Obstacles

• A total of 17 obstacles of 3 different types with in-game id’s [30, 32,
36] are constructed at fixed locations, blocking the agent’s movement

3. Slime

• Wall texture A-CAMO3

• Floor texture SLIME04

• Ceiling texture GRASS2

4. Lava

• Wall texture AQCONC14

• Floor texture LAVA1

• Ceiling texture CEIL1_1

5. Water

• Wall texture AQSECT09

• Floor texture FWATER1

• Ceiling texture AQF052

6. Stimpacks

• New item: Stimpack
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• Half of the MediKits are replaced with Stimpacks, which grant 10
health on picking up

7. Supreme

• Original health_gathering_supreme scenario from VizDoom [39]

• Removed Poison

8. Resized Kits

• The actor properties APROP_ScaleX and APROP_ScaleY of every
health item are randomized in the range of [0.3, 3.0]

9. Resized Agent

• The actor property APROP_ViewHeight of the agent is randomized
between [0.0, 100.0]

10. Poison

• New item: Poison

• 2 vials of Poison are spawned at the start of the scenario

• A new vial of Poison is spawned after every 30 game ticks

• Poison inflicts 30 damage to the agent

11. Shaded Kits

• The actor property APROP_RenderStyle of every health item is set
to STYLE_Shaded

B.3 Seek and Kill
1. Default

• Original health_gathering_supreme.wad from VizDoom [39]

• Wall textures ICKWALL3

• Floor texture AQF051

• Ceiling texture FLAT19

• The surface no longer inflicts damage to the agent

• Enemies are spawned at random locations around the map

• Enemies are rendered immobile by setting the actor property APROP_Speed
to 0

• The default enemy type is Demon

• The number of initially spawned enemies is set to 20

• The spawn delay of every subsequent enemy is set to 30 game ticks
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• The agent is equipped with a pistol and 200 bullets

2. Obstacles

• A total of 25 elements with in-game id’s [44, 45, 46] are constructed
at fixed locations of the map, which act as obstacles

3. Blue

• Wall texture FIREBLU2

• Floor texture FLAT14

• Ceiling texture CEIL4_3

4. Red

• Wall texture FIREWALL

• Floor texture CRACKLE4

• Ceiling texture DORED

5. Resized Enemies

• The actor properties APROP_ScaleX and APROP_ScaleY of ene-
mies are randomized in the range of [0.3, 3.0]

6. Shadows

• The actor property APROP_RenderStyle of enemies is set to STYLE_Shadow

7. Mixed Enemies

• Removed enemy: Demon

• Added enemies: ZombieMan, MarineChainsaw, DoomImp, Cacode-
mon, LostSoul

• The number of initially spawned enemies is set to 3 per type

8. Invulnerable

• Removed enemy: Demon

• Added enemies: Arachnotron, Fatso, PainElemental, Archvile, Revenant

• The number of initially spawned enemies is set to 3 per type

• The actor property APROP_Invulnerable of the agent is set to True
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B.4 Dodge Projectiles
1. Default

• Original defend_the_line.wad from VizDoom [39]

• The agent is not granted any weapons nor ammunition

• 10 enemies of type DoomImp are spawned at equal distance from one
another

• Enemies are rendered immobile by setting the actor property APROP_Speed
to 0

• The actor property APROP_DamageFactor of the agent is set to 0.7

2. Flames

• Wall texture SWATER1

• Floor texture RROCK02

• Ceiling texture CAVERN1

3. City

• Wall texture SKY2

• Floor texture ROCKRED1

• Ceiling texture CEIL4_1

4. Flaming Skulls

• A total of 7 decorations, with an in-game id of 42, are constructed at
fixed locations, impeding the agent’s line of sight

5. Resized Agent

• The actor property APROP_ViewHeight of the agent is randomized
between [0.0, 100.0]

6. Cacodemons

• New enemy Cacodemon

• The number of enemies is reduced to 5

• The actor property APROP_DamageFactor of the agent is set to 0.5

7. Barons

• New enemy Baron

• The number of enemies is reduced to 5

• The actor property APROP_DamageFactor of the agent is set to 0.4

8. Revenants
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• New enemy Revenant

• The number of enemies is reduced to 3

• The actor property APROP_DamageFactor of the agent is set to 0.3

• The projectiles attacks are homing, meaning they trace the agent,
making dodging more difficult

9. Mancubus

• New enemy Mancubus

• The number of enemies is reduced to 2

• The actor property APROP_DamageFactor of the agent is set to 0.5

10. Arachnotron

• New enemy Arachnotron

• The number of enemies is reduced to 1

• The actor property APROP_DamageFactor of the agent is set to 0.3
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