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Abstract

Autonomous mobile robots have relied on the real-time operation to achieve safe, deterministic
behavior and smooth trajectory control. The environment in which mobile robots operate may
be irregular and changing with time. One of the key features required to provide autonomy to
mobile robots is the perception of geometry and the detection of obstacles. Thus, it is crucial to
provide fast, accurate, and efficient obstacle detection for autonomous mobile robots.

In this work, we first discuss the obstacle detection algorithm based on 2D LiDAR in a ROS-
based system. The study of obstacle detection algorithms using 2D LiDAR and the implementation
of the selected algorithm are introduced. Obstacles existing in the robot workspace are represen-
ted by point sets against their outlines, and their information is initialized and updated via the
raw laser measurement points. The algorithm follows three main steps: pre-processing, splitting
and clustering, and classification of consequent measurements. Then, we propose a pipeline im-
plementation for the obstacle detection algorithm, which allows splitting complex processing tasks
into separate processes and aims to reduce run time for 2D laser point cloud input within the
ROS framework. Experiments performed in the simulation indicate that the data overhead for
message transmission is a bottleneck of the performance of the proposed method with the node
configuration and separate processes and influences timing negatively. The total transmission
overhead takes up to around 50% of the end-to-end response time in the pipelined implement-
ation. The end-to-end latency increases 84% comparing to the execution time of the sequential
implementation.

ii Performance evaluation and improvement of LiDAR-based obstacle detection algorithm



Preface

This thesis marks the end of my graduate study. I am deeply grateful to everyone who has helped
and supported me during my master education.

I would first thank my supervisor, Dr. Goswami, for providing guidance and feedback through
each stage of the project. Without his patient instructions and constructive suggestions, this
project would not have been completed.

I would also like to thank my tutor Saeid Dehnavi, who helped me solve the problems and gave
me encouragement when facing difficulties in this project.

Finally, I would express my gratitude to my family and friends. Their support and company
helped me go through all the toughness during my studies, especially during the pandemic.

Performance evaluation and improvement of LiDAR-based obstacle detection algorithm iii





Contents

Contents v

List of Figures vii

List of Tables viii

1 Introduction 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Related Work 3

2.1 LiDAR-based obstacle detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Grid-based obstacle detection method . . . . . . . . . . . . . . . . . . . . . 4

2.1.2 Vector-based obstacle detection method . . . . . . . . . . . . . . . . . . . . 5

2.2 Pipelined execution in ROS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Problem Statement 6

3.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Simulation setup and case studies 7

4.1 Environment configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.2 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.2.1 ROS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.2.2 Gazebo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.2.3 2D LiDAR sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.3 Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.3.1 Environment simulation in Gazebo . . . . . . . . . . . . . . . . . . . . . . . 11

4.3.2 Interaction between robot and world simulation . . . . . . . . . . . . . . . . 11

5 Selection of the algorithm 13

5.1 Algorithm framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.2 Data pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.3 Splitting and clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.4 Obstacle structure classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.4.1 Segmentation and merging . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.4.2 Circle extraction and merging . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.5 Algorithm selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Performance evaluation and improvement of LiDAR-based obstacle detection algorithm v



CONTENTS

6 Pipelined implementation in ROS 20
6.1 Implementation of the normal version in ROS . . . . . . . . . . . . . . . . . . . . . 20

6.1.1 Overall structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.1.2 Obstacle detection in ROS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6.2 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.2.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.2.2 Execution time analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.3 Implementation of the pipelined version in ROS . . . . . . . . . . . . . . . . . . . . 25

7 Results and analysis 28
7.1 Message loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.2 Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.3 Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

8 Conclusion and Future works 32
8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
8.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Bibliography 34

Appendix 37

vi Performance evaluation and improvement of LiDAR-based obstacle detection algorithm



List of Figures

1.1 The general indoor and outdoor applications of autonomous mobile robots. [28] . 1

2.1 An example of occupancy grid representation of the environment [30] . . . . . . . . 4

4.1 The publisher/subscriber ROS communication . . . . . . . . . . . . . . . . . . . . 8
4.2 The server/client ROS communication . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.3 The structure of Gazebo components [24] . . . . . . . . . . . . . . . . . . . . . . . 9
4.4 The urdf model of the robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.5 RPLiDAR and an overview of a LiDAR scanning in one axis with a single beam

[29]. The blue square and the green circle represent the LiDAR and an obstacle
respectively. The top images depict the laser’s path through a basic scene with
a cylinder obstacle; the bottom images show the sensor’s output after it has been
converted from polar to Cartesian coordinates. . . . . . . . . . . . . . . . . . . . . 11

4.6 The created Gazebo world environment . . . . . . . . . . . . . . . . . . . . . . . . 12

5.1 Obstacle detection algorithm process flow . . . . . . . . . . . . . . . . . . . . . . . 14
5.2 Grouping laser-point groups [39] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.3 Splitting laser-point groups [39] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.4 Segmentation from each subset (A), testing the connection between segments (B),

testing segments collinear (C) [39] . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.5 Extracting circle from a segment (A), circles merging (B) [39] . . . . . . . . . . . . 18
5.6 The circle shape extraction [15] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6.1 ROS Implementation architecture for obstacle detection . . . . . . . . . . . . . . . 21
6.2 Structure of the obstacle detection algorithm . . . . . . . . . . . . . . . . . . . . . 21
6.3 Simulation result of obstacle detection algorithm and visualize in Rvz . . . . . . . 23
6.4 Pie chart of function execution time in the algorithm . . . . . . . . . . . . . . . . . 25
6.5 Structure of the pipelined obstacle detection algorithm . . . . . . . . . . . . . . . . 26

7.1 Sequential architecture of the obstacle detection algorithm running on a single node 29
7.2 Pipelined architecture of the obstacle detection algorithm running on three nodes . 30
7.3 Throughput in the normal and pipelined version of implementation of the obstacle

detection algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Performance evaluation and improvement of LiDAR-based obstacle detection algorithm vii



List of Tables

4.1 System configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 The measurement performance of RPLiDAR . . . . . . . . . . . . . . . . . . . . . 10
4.3 The coordinate of the obstacles in the world . . . . . . . . . . . . . . . . . . . . . . 12

6.1 List of parameters used for the experiment . . . . . . . . . . . . . . . . . . . . . . . 23
6.2 Function execution time in the algorithm . . . . . . . . . . . . . . . . . . . . . . . 25
6.3 Execution time in the pipelined algorithm . . . . . . . . . . . . . . . . . . . . . . . 27

7.1 Execution time in the pipelined algorithm when queue size = 10 . . . . . . . . . . 30
7.2 Execution time in the pipelined algorithm when queue size = 100 . . . . . . . . . 30

viii Performance evaluation and improvement of LiDAR-based obstacle detection algorithm



Chapter 1

Introduction

1.1 Introduction

Autonomous mobile robots have become more significant recently due to their relevance and
applications in the world. They are used in different scenarios such as hospitals, institutions,
agriculture, companies, and homes to improve services and perform daily tasks [4]. The general
indoor and outdoor applications of autonomous mobile robots are shown in Figure 1.1.

Figure 1.1: The general indoor and outdoor applications of autonomous mobile robots. [28]

As the new concept of Industry 4.0 has emerged and is representing the current trend of
automation and data exchange in manufacturing technology by creating a ”smart factory” [51], it
has brought new challenges to autonomous mobile robots, that is, they have real-time and safety
requirements. Industry 4.0 is characterized by increasing reliance on automation and system
interconnection, thus mobile robot navigation turns to be an important tool. Autonomous mobile
robots must have the ability to react correctly and safely to eventualities when moving around,
which means that they must avoid obstacles placed within the confinement of movement without
human intervention. Because mobile robots undertake the tasks of transportation and coordination
in a dynamic environment, one of the important issues that need to be solved is the real-time
identification of obstacles. Furthermore, these robots are consequently equipped with sensors that
can respond quickly and processing units with the ability to interpret all the data in real-time. In
this case, they often have constraints in memory, processing speed, and other aspects.

The sensors should be effective and real-time, some of the commonly used sensors include vision
sensors, ultrasonic sensors, and LiDAR sensors. The vision sensors excel at semantic understand-
ing, but require high processing and material costs and are sensitive to illumination. Ultrasonic
sensors are less expensive and require less power, but their accuracy and resolution are inferior
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CHAPTER 1. INTRODUCTION

to those of the others. Compared to other types of sensors, LiDAR sensors have the advantages
in distance measurement, such as high scanning precision, large detection range, large detection
range, and insensitivity to lighting conditions [8]. Thus, they are widely used in obstacle detection
systems. In this thesis, we consider the 2D point-cloud measurement from a 2D LiDAR, which
makes sensing the presence of surrounding material obstacles reliable and simple.

The objective of the thesis is to implement an obstacle detection algorithm and parallel the
algorithm to achieve time efficiency.

1.2 Motivation

Robot mapping and navigation are the basis of many robotic applications, such as service robots,
warehouse management, patrolling and autonomous driving [42]. The recent focus is on developing
applications in a variety of cyber-physical systems (CPS). CPSs are developed to integrate physical
processes and virtual computing processes [12]. The robot’s ability to intelligently interact with
the world supporting embedded computing and communication, real-time control, and perception
of the surrounding environment.

With the development of robot navigation and sensor compactness, robots can map the en-
vironment accurately and complete complex autonomous navigation tasks [42]. The task of the
navigation system is to guide the robot to the target point without a collision with obstacles. In
the presence of obstacles, one of the significant issues in robotics is to design a fast and efficient
procedure for obstacle detection. The obstacle detection algorithm should have the ability to
determine the underlying model of the obstacles.

Obstacle detection plays a crucial role in perceiving the environment. When mobile robots run
in an unstructured environment, their execution is often uncertain, because the prior knowledge of
the environment may not be known and the environment may not be static [43]. Thus, autonomous
mobile robots should perceive the environment and detect obstacles accurately in real-time when
they are moving. It is also considered a bottleneck due to complex logic control architecture
and dynamic environments that must be processed. Thus, fast, accurate, and efficient obstacle
detection is a must for autonomous mobile robots.

1.3 Thesis structure

This thesis is divided into eight chapters. The rest of the chapters are organized as follows.
Chapter 2 describes the related works on LiDAR-based obstacle detection approaches and pipelined
execution in ROS. Chapter 3 discusses the problems to be solved in this thesis and lists the
contribution of the project. Chapter 4 presents the simulation setup and case studies. Chapter 5
talks about the selection of obstacle detection algorithm. Chapter 6 explains the implementation
of the pipeline version of the selected algorithm. Chapter 7 evaluates the results and gives an
analysis. Finally, a brief conclusion and future work suggestions are given in Chapter 8.

2 Performance evaluation and improvement of LiDAR-based obstacle detection algorithm



Chapter 2

Related Work

In this chapter, we introduce some related work about the thesis. Chapter 2.1 discusses 2D LiDAR-
based obstacle detection methods, which include two main categories to describe the environment:
grid-based and vector-based methods. Next, we introduce the pipeline in ROS and how ROS can
be a great help for the pipeline.

2.1 LiDAR-based obstacle detection

One of the most important features of autonomous mobile robots is their perception of environ-
mental geometry. The perception system of robots often interprets the surroundings using visual
cameras and/or laser scanners. The visual sensors have advantages, particularly in scene under-
standing, but one of their major drawbacks is their sensitivity to light changes, and the detection
accuracy is greatly decreased in complex shadows or bad weather conditions. We consider the
2D point cloud measurement from a 2D LiDAR, which makes sensing the presence of surround-
ing material obstacles reliable and simple due to 2D LiDAR’s advantages of high precision, large
detection range with a wide FOV, fast scanning frequency, and ability in inclement weather condi-
tions. However, in many cases, utilizing raw data from LiDAR devices is not effective for obstacle
detection. Extracting more concise information from obtained data is critical between sensing and
actuation [39].

Detection methods based on 2D LiDAR often incorporate region segmentation or clustering
algorithms to divide distance measurements into correlated blocks from which different practical
properties can be derived [49]. Then, the shapes of obstacles can be estimated and the stored data
amount can be decreased. The segmentation process often compares two subsequent laser scan
points from the LiDAR measurements, where the distance threshold is determined as constants
or adapted to the scenarios. In [35], the authors divided the measurements into segments and
constructed polygonal obstacles using line fitting and corner extraction. The extracted lines and
corners were matched with the global lines and corners to obtain the pose of the robot. A detailed
comparison and explanation of some segment extraction methods from 2D Lidar laser points are
shown in [32]. Premebida [38] discussed some algorithms for segmenting 2D laser scans, as well as
different approaches for feature recognition and extraction of three geometric primitives, including
lines, circles, and ellipses. Clustering laser point clouds is to extract ordered obstacle information
and from cluttered point clouds and then intuitively obtain obstacle information [54]. In [17],
Fernández et al. used a convolution operation to slit the laser data into clusters, then detected
lines in each previously detected cluster. The clustering process helps the robot fully recognize
obstacles and perceive the environment.

In terms of representing the surrounding spatial environment, the obstacle detection process
using LiDAR sensors can be mainly classified into two representation approaches: grid-based and
vector-based methods.

Performance evaluation and improvement of LiDAR-based obstacle detection algorithm 3
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2.1.1 Grid-based obstacle detection method

To depict the environment, many techniques use a 2D occupancy grid (grid-based). Occupancy
grid maps are divided into evenly spaced grid cells and represent complex geometries for detection
and tracking obstacles if the grid resolution is sufficiently high. The laser points lying into a grid
cell indicate that the cell is occupied by the obstacle. A sample of occupancy grid representing
the environment cited from [30] is shown in Figure 2.1, where black cells are marked as obstacles,
gray cells describe the unknown area in the environment, and white cells are empty space. Each
cell models a square area of the environment and stores a value representing whether the area is
occupied. The cells can be labeled with either three occupancy state values of ”occupied”, ”un-
known” and ”free” or occupancy probability [5]. Grid-based methods have no a priori knowledge
of objects that can be present in the scene, meaning that the types of elements it can detect has
no restriction [49]. Vu et al. in [50] updated the surrounding occupancy grid maps incrementally
and dynamic objects were detected with no need of a priori knowledge of the targets. In [31],
Mori et al. used grid trajectories acquired by ordering laser points on the grid map to detect
dynamic obstacles, which helped in segmentation and depicting the speed and size of dynamic ob-
jects. Chen et al. proposed a grid-based approach to identify real-time moving obstacles through
comparing previous temporal sequential grid maps to achieve the state of the same grid cells [9].
The local map stored in the occupancy grid map was considered as a pixel map, which was merged
into the CNN to determine the road direction in [22].

Figure 2.1: An example of occupancy grid representation of the environment [30]

Grid-based methods can describe environments where features are difficult to identify and
detect, making them particularly suitable for noise sensors in outdoor environments. The methods
also have a mechanism for integrating different types of sensors in the same framework while
considering the uncertainty of sensors’ data input [50]. Since the densely packed laser points can
be mapped to the same grid cell in grid maps, the point clouds will be reduced. If an appropriate
resolution is chosen, the data can be searched easily while also keeping adequate information
of detected obstacles [52]. However, higher grid resolution demands more memory and extensive
computational power for the divided grids. Additionally, the boundaries of the environment require
to be established. For example, in a setting with many open spaces, such as a park, it is difficult to
acquire enough free space. The grid-based methods compromise accuracy to simplify and reduce
bounded data processing [30].

4 Performance evaluation and improvement of LiDAR-based obstacle detection algorithm



CHAPTER 2. RELATED WORK

2.1.2 Vector-based obstacle detection method

Another widely adopted method to represent the environment is the vector-based method, which
models obstacles by predefined geometric features such as lines, circles, boxes, ellipses, and rect-
angles. Therefore, obstacles described by geometric features can be expressed by the pose of the
feature, including its position and orientation [15]. This representation enables the use of analyt-
ical geometry to calculate the distance and similarity between objects [14]. Mertz et al. proposed
a system aiming to deal with non-rigid objects such as pedestrians or foliage. They figured out the
stable features, reasoned about occlusion geometry, and then identified objects [27]. Petrovskaya
and Thrun [36] modeled the geometric features of the tracked vehicles and predicted their forms,
resulting in more stable vehicle reference points over time. MacLachlan and Mertz [26] trailed
fitting a rectangular model to the laser points and used the rectangle’s corners as features accord-
ing to the characteristics of the laser scanner. In [53], the authors introduced a feature extraction
approach based on prediction to detect lines and circles from the LiDAR data without prior in-
formation of the surrounding environment. In [6], they detected the legs of people in an indoor
environment by extracting fourteen features from the laser scan and using AdaBoost to develop a
classifier model of legs.

The obstacle detection methods based on geometric features require each obstacle to have at
least one major feature or defined shape. These methods have prior knowledge about the elements
to be detected and search for them at each frame. However, it brings the downside of the methods
that the real shape of the obstacles is lost. As a result, knowing the similarity of two obstacles
provides little information [14]. Compared with the grid-based methods, the vector-based approach
with the compact representation of the surrounding environment is suitable for sparse scenarios
because of the low memory usage [15].

2.2 Pipelined execution in ROS

Using a processing pipeline within Robot Operating System (ROS) framework1 aims to generate
a measurement, position, or messages2 to the reuse of the components. Coşar and Bellotto in [11]
focused on a software pipeline for human re-identification with a thermal camera. The complete
pipeline was implemented as a ROS node3 and the node subscribed to the raw and color thermal
images and published a ROS topic4 of the name of the recognized person. In [23], Josyula et al.
proposed a point cloud segmentation pipeline, which first divided point clouds into slices based
on the radical measurements from the LiDAR. Each algorithm step turned to be a parallel stage
in the pipeline, passing slices from one stage to the next. The goal of the pipeline was to optimize
the execution time of the conventional algorithm and maximize its throughput. In their method,
the stages were implemented using the ROS nodelets5. It allows zero-copy transport between
publisher and subscriber nodelets belonging to the same node. The run time of the pipeline was
defined by the timing of each stage. For this reason, the pipeline was optimized by making all the
stages execute as close as possible. In [25], the authors showed a real-time perception pipeline,
which began with people detection modules based on ROS using RGB-D and 2D LiDAR data and
progressed with nodes for aggregating detection from different sensors. The individual components
in all stages of the pipeline can be reused for custom setups, where the communication between
the stages of the pipeline used ROS messages. The node-based modular structure in ROS allows
for the easy separation of complex processing tasks into independent processes that can run on
multiple CPU cores or even other computers without considerable extensive reconfiguration. They
also integrated a GPU-accelerated detector into the framework to speedup the processing of RGB
images.

1 http://wiki.ros.org/ROS/Introduction
2 http://wiki.ros.org/Messages
3 http://wiki.ros.org/Nodes
4 http://wiki.ros.org/Topics
5 http://wiki.ros.org/nodelet
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Chapter 3

Problem Statement

In this chapter, we introduce the research questions in this thesis and summarize the contributions
of the thesis.

3.1 Problem Statement

Autonomous mobile robots have relied on the real-time operation to achieve safe, deterministic
behavior and smooth trajectory control. Since autonomous robots are designed to operate in
dynamic and may face unstructured environments, they need to adjust their behavior to new
operating conditions and consider multiple goals to settle effective action plans. Their capabilit-
ies of adaptability and autonomous operation are achieved through more intelligent perception,
movement, and reasoning ability. It is crucial for autonomous mobile robots to perceive the envir-
onment and detect obstacles accurately in real-time when they are moving, which is also considered
a bottleneck due to complex logic control architecture and dynamic environments that must be
processed [7]. Additionally, a large number of correlated vectors put forward high requirements for
the real-time operation of obstacle detection. Thus, fast, accurate, and efficient obstacle detection
is a premise for autonomous mobile robots.

Therefore, the research questions for this thesis are listed below:

• What obstacle detection algorithm can be implemented on multi-core platforms?

• How to deploy a selected obstacle detection algorithm in a ROS-based system?

• How to deploy pipelined execution of the obstacle detection algorithm in a ROS-based sys-
tem?

3.2 Contributions

The contribution of this thesis include the following:

1. Study obstacle detection algorithms and justify their feasibility.

2. Select the appropriate obstacle detection algorithm and create a simulation environment in
Gazebo to evaluate the performance.

3. Propose a pipeline of the obstacle detection algorithm and implement it in a ROS-based
system.

4. Analyze the performance of the pipeline version of the obstacle detection algorithm.

6 Performance evaluation and improvement of LiDAR-based obstacle detection algorithm



Chapter 4

Simulation setup and case studies

4.1 Environment configuration

The table below lists the system configuration used in the development. The environment is
deployed on the Ubuntu 18.04 operation system. An Intel i7-7820HQ processor with x86 64
architecture is utilized. The default Gazebo version is used for the ROS Melodic distribution, it
should be noted that using a gazebo version other than the official version delivered from the ROS
repositories may result in conflicts or other issues with ROS packages.

Parameters Type and version
Virtual Machine Virtualbox 6.1

Host OS Platform macOS Catalina 10.15.7 version
Guest OS Platform Ubuntu 18.04.5 LTS

CPU Intel(R) Core(TM) i7-7820HQ CPU @ 2.90GHz
processor numbers 4
VM memory size 8429MB

ROS version ROS Melodic Morenia

Table 4.1: System configuration

4.2 Simulation setup

In this section, we introduce some background information about ROS communication mechan-
isms, robot simulation in the Gazebo simulator, and the LiDAR configuration.

4.2.1 ROS

Robot Operating System (ROS) is an open-source middleware, which has been used for various
robotics applications. The official ROS package provides sufficient functionalities for common
robotic tasks, as well as APIs to build packages or interact with external systems [18]. Func-
tionally, ROS presents standard operating system services and high-level functionalities such as
asynchronous and synchronous calls, centralized database, and robot configuration systems [33].

The essential components of ROS implementation contain nodes, messages, topics, and services
[16, 41]. One of the main goals of ROS is to promote communication between ROS nodes. Nodes
are processes performing computations or tasks, which represent executable codes. Each node can
accomplish specific tasks of a system. For example, one node can obtain the sensing data from a
LiDAR and send it to another node after processing, the second node can use the received data to
perform some detection or navigation algorithms and send some commands to a third node to give
feedback to control the robot. A node communicates with other nodes through topics, which define
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the transmitted messages. Messages are data formats that support a structured combination of
primitive types, constants, or arrays.

There are mainly two types of message communication between nodes, including the topic-
based asynchronous publisher/subscriber mode and service-based synchronous server/client pat-
tern. In the publisher/subscriber mode, the publisher nodes send messages into the topics directly
to any subscriber nodes that want to receive the data. The topic is one-way and pertains to the
sensor data that requires continuous message transmission. Figure 4.1 illustrates an example of
the pub/sub communication in ROS. In the server/client pattern, a node advertises a service on
request. Any service client can connect to it and wait for the response after sending the request
call. Unlike topics in the publisher/subscriber mode, the service is a one-time message communic-
ation. Thus, the two connected nodes will disconnect once the request and response of the service
are complete [13]. Figure 4.2 shows an example of service-based communication in ROS. A ROS
master node manages the naming and registration for the nodes in the system, tracks the topics
and services for both communication mechanisms, and notifies the nodes of the information.

Since the continuous sensor data is kept advertising at a certain rate, other nodes continue
to perform subsequent operations after receiving the data, the asynchronous publisher/subscriber
pattern is adopted in this project, while the service-based approach is more suitable for logic
processing.

Figure 4.1: The publisher/subscriber ROS communication

Figure 4.2: The server/client ROS communication

4.2.2 Gazebo

Gazebo is a 3D open-source dynamics simulator that can accurately simulate a population of
robots, sensors, and objects in indoor and outdoor environments. Similar to game engines, Gazebo
provides higher-fidelity physical simulation, a set of sensors, and interfaces for users and programs.
It not only provides realistic sensor feedback but also generates physical interactions between
objects, including accurate simulation of rigid body physics [40]. Even though Gazebo was designed
to close the gap in realistic robot simulation in outside environments, it is largely utilized by
academics and developers for indoor simulation. It attempts to create a real-world for robots
relying heavily on physics-based features [44]. The Gazebo simulator has many crucial advantages,
such as a robust physics engine, open-source code, and user-friendly graphical interfaces. Users
can import existed simulated robots or construct new models using geometrical primitives. The
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actual robots can be substituted by the simulation model with the robot movement calculation
through odometer and sensor data [47].

Figure 4.3 depicts a general architecture of Gazebo components. In Gazebo, a world contains
a collection of robots and objects in the simulated environment, including the robot model, the
created environment, and global parameters such as ambient, lighting, and physics properties. In
the middle hierarchy, the model consists of a combination of joints, sensors, and bodies. Librar-
ies interact with Gazebo at the bottom level, which keeps the model from being influenced by
the changes of specific tools. Lastly, models use the shared memory interface to receive client
commands and return data [24].

Figure 4.3: The structure of Gazebo components [24]

When designing a mobile robot, we aim to create a model that has the required capabilities
(such as accuracy and speed), as well as the levels of reliability and maneuverability to stabilize
the mechanical structures. The analysis is morphology-dependent and can be used to analyze the
optimal arrangement of components such as actuators and sensors to meet the robot’s goal [44].

The Universal Robot Description Format (URDF) is used [2] to introduce the robot model in
ROS. URDF is an XML file format used in ROS to describe the dynamic and kinematic properties
of a robot. The two main basic elements are 〈joint〉and 〈link〉. The 〈link〉forms the structure of the
robot, such as its physical forms and mass, friction, bounce factor, and rendering characteristics
like color, texture, and transparency. The 〈joint〉forms the connections between links of the robot
body and sets motion constraints. Figure 4.4 shows the urdf model of the created robot. The
created robot comprises multiple links and joints, a LiDAR sensor is linked to the main body of
the robot. The base link is the robot’s rigid body. As the links are connected by joints, then the
position of a link is determined by the joint that connects it. The xyz and rpy parameters specify
the coordinate transformation relative to the parent link, where xyz is the relative position and
rpy represents roll, pitch, and yaw angles in radians.

To integrate ROS with stand-alone Gazebo, gazebo ros pkgs, a collection of ROS packages,
provide interfaces to simulate robots in Gazebo using ROS messages, services, and dynamic recon-
figuration [1]. From the package, it provides Gazebo plugins [37] to give the models access to the
functionalities through C++ classes and tie in ROS messages and service calls for motor inputs
and sensor output. The skid steering drive plugin provided by libgazebo ros diff drive.so is used
to control the wheels of the robot.
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Figure 4.4: The urdf model of the robot

4.2.3 2D LiDAR sensor

LiDAR is a remote sensing technology, configured as a range measurement sensor that uses rotating
beams to repeatedly transmit pulsed light into 360◦ direction, and calculate the distance between
the obstacle and itself based on the reflected pulsed light. By repeating the operation in quick
succession, the LiDAR uses the surface it measures to establish a complex distance map of the
surrounding operating environment. LiDAR has 2D and 3D types. 2D LiDAR does not have
depth information and is flattened by 2D space, while 3D LiDAR generates a large amount of
point cloud data when obtaining height information, which leads to high computation cost and is
more expensive than 2D LiDAR [19]. In this project, we focus on a 2D LiDAR sensor.

The RPLiDAR [3] is a 360-degree two-dimensional laser range finder. While measuring the
range, it rotates 360 degrees and continuously obtains angle information. Figure 4.5 illustrates
the LiDAR scanning in one axis with a single beam. The upper images show the laser path going
through a basic scene and the bottom images depict the LiDAR sensor output in Cartesian co-
ordinates. The blue square and the green circle represent the LiDAR and an obstacle respectively.
The LiDAR has a maximum range of 6 meters. The motor speed frequency ranges from 5 Hz to 15
Hz; its ranging frequency can be customized, which is up to 8 kHz. The measurement performance
of YDLiDAR X4 is shown in Table 4.2. In the Gazebo simulator, this sensor attached to the robot
is exposed by a Gazebo laser scan plugin interface to acquire point cloud data, which is provided
by libgazebo ros ray sensor.so.

Parameters Values
Sampling Frequency 8000 Hz
Scanning Frequency 5Hz-15Hz

Range 0.1m - 6m
Angular Range 360 deg

Distance Resolution 1% of the range
Angular Resolution 1 deg

Table 4.2: The measurement performance of RPLiDAR
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Figure 4.5: RPLiDAR and an overview of a LiDAR scanning in one axis with a single beam [29].
The blue square and the green circle represent the LiDAR and an obstacle respectively. The top
images depict the laser’s path through a basic scene with a cylinder obstacle; the bottom images
show the sensor’s output after it has been converted from polar to Cartesian coordinates.

4.3 Case studies

This section presents the robot and the simulation environment in Gazebo used to perform the
obstacle detection task.

4.3.1 Environment simulation in Gazebo

The physics of the represented environment must be simulated visually. In Gazebo the graphical
environment is called world, in which various static and/or dynamic objects are represented [44].
A world file contains a set of robots and objects in the simulated environment, including the robot
model, the created environment, and global parameters such as ambient lighting and physics
properties. Gazebo has a graphical building editor to assist in the creation of the environment.
We may change the levels of the structures, edit the walls, floors, windows, doors, add colors and
textures with this tool.

The world environment in Gazebo is shown in Figure 4.6. The spheres, cubes and cylinders,
and walls denote obstacles in the simulation. The objects and models created are linked to the
Gazebo world, their sizes and detailed information are listed in the URDF files. The spheres and
cylinders have a radius of 0.5m. The edge of the cube is 1m. The wall covers the dimensions of
12x12 m2. Table 4.3 lists the coordinates values of the center of the obstacles on the x-y plane
with respect to the Gazebo world origin.

4.3.2 Interaction between robot and world simulation

The movement of the robot in the simulation can be conducted via the keyboard keys, which
commands the robot to move in the forward, left, and right direction. The teleop node converts
the linear and angular input velocities and publishes the robot speed information to a topic named

Performance evaluation and improvement of LiDAR-based obstacle detection algorithm 11



CHAPTER 4. SIMULATION SETUP AND CASE STUDIES

Figure 4.6: The created Gazebo world environment

Obstacle X-coordinate (m) Y-coordinate (m)
Sphere a -4 4
Sphere b 2.5 -0.5
Cube a -2 -2
Cube b -0.5 3.5
Cube c -4 -4

Cylinder a 3 3
Cylinder b 2 -2.5
Cylinder c -4.5 -0.5

Table 4.3: The coordinate of the obstacles in the world

cml vel. Following that, the controller steers the robot’s wheels responding to the received velocity
inputs.

With the LiDAR attached to the robot, ROS initiates the communication between them. When
ROS sends a request message to the LiDAR, the LiDAR sends a return message back and starts
to perform related operations after receiving the request message from ROS. The LiDAR attached
publish sensor msgs/LaserScan message to the scan topic by the Gazebo plugin.

The data generated from these topics can then be used for the obstacle detection algorithm.
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Chapter 5

Selection of the algorithm

As discussed in Chapter 2, there are two mains approaches of spatial data representation for
obstacle detection grid-based and vector-based forms. Compared to the first category, the vector-
based approach with the compact representation of the surrounding environment is especially
suited for describing a sparse scenario due to its low memory consumption. In this thesis, we
concentrate on obstacle detection by 2D vector-based representatives.

The process of 2D vector-based obstacle detection algorithms available in the literature gen-
erally contains three parts: point cloud preprocessing, segmentation and clustering, and feature
extraction. The obstacle information is obtained via LiDAR and stored in point clouds. Point
cloud preprocessing consists primarily of correction and filtering, with correction restoring the dis-
torted point cloud and filtering removing unnecessary points. Segmentation and clustering aim to
group measured laser point clouds and extract ordered obstacle information from cluttered point
clouds and construct intuitive obstacle information. The feature extraction considers certain shape
properties of the objects expected to be identified.

The algorithms available in the literature have a similar process as discussed and are slightly
different in each step. In this chapter, we present the selection of an obstacle detection algorithm.
The study of the work in three papers from [15, 34, 39] are described and the selection is justified.

5.1 Algorithm framework

The framework of the algorithms is shown in Figure 5.1. Considering the properties of the laser
point cloud data, the whole process is mainly divided into these steps: data preprocessing, seg-
mentation and merging, feature extraction, and obstacle structure prediction.

5.2 Data pre-processing

The accuracy of measurement may be affected by environmental factors. The outliers can lead
certain laser points to fail to represent an obstacle because they may be unstable or noise points
in real scenarios. Thus, the laser data points need to be processed further to get closer to the real
data after acquisition.

The point clouds obtained by LiDAR is in the polar coordinates, a set p with N measurement
points is from each scan. We represent each raw point pi in p in polar coordinate (Ri, θi) as follows:

p , {pi = (Ri, θi)}, i ∈ [1, N ] (5.1)

To facilitate the calculation for subsequent steps, the sequence is converted from the polar
coordinate system to the Cartesian coordinate system. The coordinate conversion formula is as
below. {

xi = Ricosθi
yi = Risinθi

(5.2)
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Figure 5.1: Obstacle detection algorithm process flow

In [15, 34], the authors use a 3x3 median filtering window at the laser-point cloud data. A
range filter is also integrated to exclude useless points with invalid values or beyond the range.
Median filtering can remove occasional noise peaks while maintaining the integrity of the original
data. A 3-neighbor temporal median filter window shown below is applied to clean up noise in
the data from the LiDAR sensor. At the current time t, the distance of a laser point i from a
laser scan is R(t, i). The median of the nine values in the median filter matrix is taken as the
distance between the laser point i and the LiDAR attached to the robot at time t. In this way, it
discards noise points taking space and time into account, decreases the complexity, and improves
the accuracy of obstacle detection. R(t-1,i-1) R(t-1,i) R(t-1,i+1)

R(t,i-1) R(t,i) R(t,i+1)
R(t+1,i-1) R(t+1,i) R(t+1,i+1)

 (5.3)

5.3 Splitting and clustering

The distance data collected by the LiDAR is preprocessed to generate the point cloud as the input
of the obstacle detection algorithm. The algorithm extracts local geometrical obstacles from 2D
laser point cloud data. The visible part of the laser point cloud sampled from surrounding objects
is interpreted.

Due to the uneven distribution of laser-scan points, the measurement density in the LiDAR
data diminishes and point distribution becomes sparse as the measured distance grows. After
filtering out the noise points, the distance between consecutive laser points is first examined to
distinguish laser-point cloud blocks for each frame. The distance difference of two sequential
points, point −→p i with distance Ri at angle θi and its consecutive point −→p i−1 with distance Ri−1
at angle θi+1 (θi + ∆θ), should approach 0 for all laser points bundled on the same obstacle. If
the distance between two consecutive laser points is less than a certain threshold, the two points
belong to the same laser-point cloud block. Otherwise, the point is assigned to represent a new
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obstacle [45].

In [39]: The thresholds for segmentation are selected for different laser scan points to be
consistent with the real environment feature model. In this step, a collection of point subsets
Sj (j ∈ 1, ..., NS) is provided to represent possibly separate obstacles. The point −→p i is assigned
to the same laser-point cloud block of point −→p i−1 in the case of the distance criterion below,
where d(Ri−1, Ri) denotes the measurement distance between points −→p i and −→p i−1, Ri is the
range of laser point −→p i, dp is defined as the proportion factor to enlarge the distance between
consecutive points, and dgroup defines the parameter for grouping the points. Finally, for each
frame of distance data, the laser-point cloud is divided into several independent laser-point cloud
groups. The process is shown in Figure 5.2.

d(Ri−1, Ri) < Ridp + dgroup (5.4)

Figure 5.2: Grouping laser-point groups [39]

Each laser-point cloud group Sj is further subdivided into separate point subsets. If the
number of points in a separate group exceeds the threshold Np, the procedure of splitting relies
on the Iterative End Point Fit algorithm, which builds a line to connect the start point −→p s and
termination point −→p t of the group, then identify the point −→p f within the group locating the
farthest from the line and acquire the maximum distance Dmax between this point and the line.
The procedure is illustrated in Figure 5.3. The laser-point cloud group that containing fewer
points than the threshold Np is not processed for simplicity. The criterion that divides the groups
into point subsets is defined as below:

Dmax > Rfdp + dsplit (5.5)

where Rf denotes the range of the farthest laser point −→p f from the line in the group and dsplit
defines the parameter for subset splitting. For each obtained new subset, the above process is
recursively repeated until all the subsets fail to match the split criterion.

In [15]: The threshold for segmentation is set in the case that if the distance d(Ri−1, Ri)
between points −→p i and −→p i−1 is larger than kW , the laser-point cloud block is segmented into
two small blocks, where W is the robot width and k is a dynamic amplification factor to adjust
the distance threshold between the two consecutive points with the width of the robot and the
measured distance changing, as shown below. Td is a threshold of the measured distance.{

k = W ·Ri·Ri−1

100(Ri+Ri−1)
, Ri+Ri−1

2 > Td

k = 0.5, 0 < Ri+Ri−1

2 ≤ Td
(5.6)
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Figure 5.3: Splitting laser-point groups [39]

The two laser-point cloud blocks can be clustered into one when the gap between two blocks L <
W . N compensated points are added between the two blocks to make them spatially continuous.
The distance of the compensated point i is represented as follows, where daver is the average
distance of the adjacent points of two point-cloud blocks.

Ri = Rp + i · Rq −Rp

N
,N =

L

daver
(5.7)

In [34]: The proposed algorithm uses the same method as [15] in this step, except that the
parameter k is not specifically defined.

5.4 Obstacle structure classification

After splitting and clustering, the raw LiDAR point cloud forms a set of independent point cloud
blocks. The blocks can subsequently be expressed as fundamental outlines, such as line, rect-
angular, and circle shapes. The underlying model of the obstacles that can be approximated
is considered acceptable since the shapes extracted mean to enclose the laser points while not
covering much open space rather than find a best-fitting graph that represents the points. The
geometric approximation of the features of the blocks brings the benefits of simplifying the compu-
tation. Instead of using a collection of discrete laser points, simple parameters like the radius and
position of extreme points are used to represent the obstacles. Also, the averaging effect of model
extraction can be robust to the measurement noise, which may be accompanied by sacrificing some
unnecessary motion space loss of the robot.

To express the obstacles, a set of obstacles is constructed as O, O,{L,C,R}, where L,C,R
describes line, circle and rectangle shape obstacles.

5.4.1 Segmentation and merging

In [39]: After splitting, every point cloud subset Sm (m ∈ 1, ..., N+
S ) is extracted using a fitting

line lm. The fitting line requires finding the optimum equation of lines that is close to the discrete
Nm laser points in the subset [10]. The process is shown in Figure 5.4. There are many line
fitting methods, including the standard least-squares method and the total least squares regression
method. The standard least-squares method only minimizes the sum of the squared vertical
distances between the laser points and the fitting line, which may result in inadequate parameter
estimation, while the total least squares regression minimizes the sum of the squared perpendicular
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distance of each laser point to the fitting line [20]. For this reason, the total least squares regression
is adopted to model the fitting line with the equation:

ax+ by + c = 0 (5.8)

where a, b, c are coefficients, and at least one of a and b is not 0. The distance dl from a laser
point (x, y) within the subset to its fitting line is calculated by the equation (5.9).

dl =
|ax+ by + c|√

a2 + b2
(5.9)

To provide a solution to the line fitting model, set c 6= 0 and a, b can be solved by equation
(5.10). The final segment is constructed by projecting the start and termination points onto the
fitting line.

[
a
b

]
=

x1 y1
...

...
xn yn


† −c...
−c

 (5.10)

A merging process is considered to combine the extracted segments. From Figure 5.4, d0 is the
distance between the end point of the subset Sm and the start point of the subset Sn (Sm, Sn ∈ S).
lthreshold is the threshold for connecting the segments. The closeness of the two segments should
satisfy d0 < lthreshold. Then the new fitting line is constructed based on the combined segment.

The segments collinear is also checked. In criterion (5.11), d1, d2, d3, d4 are distances between
the starting and termination index points of segments and the new fitting line, dthreshold is a
parameter for combining the two segments into one segment. If both conditions are met, the
extreme points of segments are projected onto the new fitting line and the two original segments
are combined into a new segment.

max(d1, d2, d3, d4) < dthreshold (5.11)

The extracted segment is compared with any other segments to see if they can be merged, as
the merging process can happen between any two segments in the set. Set L is composed of the
final extracted segments.

In [15], if the number of points in a separate group exceeds the threshold Np, equation (5.8)
is also used to connect the starting point and termination point of the group, then identify the
point −→p f within the group locating farthest from the line and acquire the maximum distance
Dmax between this point and the line. |s| is the distance between the starting point −→p s and the
termination point −→p t. If Dmax < 0.2 |s|, this point-cloud block will be fit to a line segment with
the two endpoints. Otherwise, if Dmax > 0.2 |s|, for each obtained new subset, the above process
is recursively repeated until the number of points in a separate group is smaller than the threshold
Np.

While in [34], it is different from the method in [15] that if Dmax > 0.2 |s|, the points in the
group are clustered into rectangle, which return the rectangle’s four endpoints. This method can
be treated as 4 lines.

5.4.2 Circle extraction and merging

In [39]: The circle shape is extracted based on each segment ln in the set L. Firstly, an equilateral
triangle with a base of the segment and its central point that is not at the origin. Then, using
the triangle as a foundation, we create an escribed circle with radius and center as in Figure 5.5,
where rn is the radius of the circle and l̄n is segment length, ~nn is the normal vector of the segment
pointing towards the origin. The radius of the circle is also enlarged by a margin value defined
as a safe distance rd. The circle is added to the set C if the resulting radius is smaller than the
threshold rmax, otherwise, it will be discarded.
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Figure 5.4: Segmentation from each subset (A), testing the connection between segments (B),
testing segments collinear (C) [39]

rn =

√
3

3
l̄n, ~p0n = 0.5(~p1n + ~p2n − rn~nn) (5.12)

The circles in the set are further processed to a merging process. When two circles intersect, a
new segment is formed between their centers, and a new circle is formed upon this segment. The
new circle’s radius is then enlarged by the larger obstacle’s radius. If it is smaller than rmax, the
new circle replaces the two previous ones to add in the set C. Figure 5.5 shows the process of
extracting a circle from a segment and circles merging.

Figure 5.5: Extracting circle from a segment (A), circles merging (B) [39]

In [15, 34], if the number of points in the point-cloud block is less than Np, the circle shape is
extracted. The midpoint of the line segment between the starting point ps and termination point
pt is set as the center of the circle.

Specifically, In [15], when Dmax < 0.2 |s|, the radius is the distance between the center and
the maximum-distance point in the group. Otherwise, an algorithm based on vector cross product
is used to determine the convexity or concavity of the point-cloud block. The radius of the circle
is also enlarged by a margin value as in [39]. The process is shown in Figure 5.6. The right
three graphs depict how to extract the circle shape based on the convexity or concavity of the
point-cloud block.
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Figure 5.6: The circle shape extraction [15]

5.5 Algorithm selection

Based on the study of the papers, the obstacle detection algorithms discussed have a similar
process flow. As the presented papers not only focus on obstacle detection but also involve
obstacle tracking or avoidance algorithm, the direct experiments and performance of the obstacle
detection algorithm are not given. Since our goal is not to propose an obstacle detection algorithm,
we adopt the work in paper [39]. It provides a ROS obstacle detector package, which provides
utilities to detect and track obstacles from data provided by 2D LiDARs and is easier for us to
work on pipelining or paralleling the existing algorithm.

The representation of the line and the circle obstacle models is threefold. First of all, large
obstacles such as long walls are expressed by lines with two endpoints. Then, smaller obstacles
such as pillars or desks in real scenarios are modeled as cylinder shapes. Last, the circular model
in the 2D plane requires fewer computing resources compared to occupancy grids. By adding a
margin to the dimension of the circles, it allows a safe distance between the robot and the obstacle.
In terms of preprocessing, we first apply the median filter to remove noise from the 2D point cloud
obtained from the 2D LiDAR before segmenting it into discrete laser-point cloud blocks. After
that, the grouping of laser-point cloud blocks is accomplished based on the distance gap between
consecutive laser points, followed by splitting laser-point cloud blocks using Iterative End Point
Fit algorithm. Furthermore, all detected obstacles are modeled as lines and circles.
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Pipelined implementation in ROS

6.1 Implementation of the normal version in ROS

6.1.1 Overall structure

In general, the obstacle detection algorithm runs as an independent node and subscribes messages
from the /scan topic published by the LiDAR attached to the robot. If the algorithm works
properly, the algorithm will publish the custom geometry information of line-shape and circle-
shape obstacles and point clouds of the filtered LiDAR data and obstacles. The ROS system
architecture for the obstacle detection node is illustrated in Figure 6.1.

The process flow of the detection can be divided into several components, including subscriber,
median filtering, point processing, and publishers. Some Details of the components are explained
as follows:

• Subscriber. The subscriber is responsible for receiving messages by subscribing to /scan
topic from the simulation. It makes a call to the ROS master node, which keeps a registry
of the subscribing and publishing nodes. The messages in the topic are passed to a callback
function and fed into the detection node with time stamps.

• Median filtering. When the callback function gets called, a 3x3 median filtering matrix is
applied to new messages of the laser data.

• Points processing. This component processes the filtered LiDAR data and contains the main
execution of the obstacle detection algorithm, including grouping points, merging segments,
detecting circles, merging circles, and publishing obstacle information.

• Publishers. The publishers keep publishing geometry information of the obstacles, which
are defined in ROS and custom message format. The publishers are registered to the ROS
master node.

6.1.2 Obstacle detection in ROS

The implementation structure of the obstacle detection algorithm is shown in Figure 6.2.

Median filtering

The LiDAR data is passed in as a ROS laser data format sensor msgs :: LaserScan. Each raw
measurement point is expressed in the form of polar coordinates (distance and angle value) and
Cartesian coordinate relative to the LiDAR. The distance value is also restricted within the range
limit which is defined in the sensor msgs :: LaserScan. After that, the 3x3 median filtering
matrix mentioned in (5.3) is applied to smoothing the laser point data.

The implementation of median filtering is shown in the pseudocode in Algorithm 1.
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Figure 6.1: ROS Implementation architecture for obstacle detection

Figure 6.2: Structure of the obstacle detection algorithm

Point cloud processing

The point cloud is generated after preprocessing distance data which serves as input to obstacle de-
tection algorithm. The algorithm consists of several functions: groupPoints(), mergeSegments(),
detectCircles(), mergeCircles(), publishObstacles().

• groupPoints() : the laser points in the filtered laser point cloud are divided into several
independent groups following the criterion 5.4, while also detecting segments for each point
cloud block using a function detectSegments(). The detectSegments() function uses the
Iterative End Point Fit algorithm to split the divided independent groups. Then if the
criterion 5.5 is met, for each obtained new subset, the function is recursively repeated until
all the subsets fail to match the split criterion. Also, to approximate the line fitting model
for every laser point subsets, a fitSegment() function uses Armadillo C++ library [46] for
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Algorithm 1 Implementation of the 3-neighbor temporal median filtering

Input: curPoints: vector storing the laser points at time i; prevPoints: vector storing the laser
points at time i− 1; prevP lusPoints: vector storing laser points at time i− 2;

Output: inputPoints: vector storing laser points for further steps after median filtering
1: init← bool parameter checking whether to start median filtering, initindex← index to count

the frame of received laser data, tmpRadius ← vector storing the distance of points in the
3x3 median filtering matrix.

2: if init ← false then
3: repeat
4: prevP lusPoints.swap(prevPoints);
5: prevPoints.swap(curPoints);
6: until initindex > 3;
7: init ← true ;
8: else
9: for i ← 1to curPoints.size− 1 do

10: if i < prevP lusPoints.size− 1 and i < prevPoints.size().size− 1 then
11: push back ranges of curPoints[i], curPoints[i+1], curPoints[i−1] into tempRadius;
12: push back ranges of prevPoints[i], prevPoints[i+ 1], prevPoints[i− 1];

into tempRadius;
13: push back ranges of prevP lusPoints[i], prevP lusPoints[i+ 1],

prevP lusPoints[i− 1] into tempRadius;
14: sort(tmpRadius.begin(), tmpRadius.end());
15: push back range of tempRadius[4] into inputPoints;
16: end if
17: end for
18: PrevP lusPoints.swap(PrevPoints);
19: PrevPoints.swap(curPoints);
20: end if

matrix algebra.

• mergeSegments() : as explained in Chapter 5, the segment merging process means to find
pairs of segments that could comprise a single object, which is composed of two parts, the
connectivity test and collinear test. These two tests are executed separately by bool function
checkSegmentsProximity() and checkSegmentsCollinearity().

• detectCircles() : this function extracts circles based on the extracted segments and enlarges
the radius by an additional margin.

• mergeCircles() : the circle merging process compares the two circles and forms the final
circles as described in section 5.4.2.

• publishObstacles() : two types of messages are published, one is point clouds (sensor msgs ::
PointCloud2 type) of line segments and circles, and the other is custom message format
detect :: Obstacles, which consists of arrays of SegmentObstacle and CircleObstacle.

A SegmentObstacle message has the following attributes:

– first point [geometry msgs/Point]: the coordinate position of start point of the segment
relative to the LiDAR.

– last point [geometry msgs/Point]: the coordinate position of the termination point of
the segment relative to the LiDAR.

A CircleObstacle message contains the following attributes:
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– center [geometry msgs/Point]: the coordinate position of the central point of the
extracted circle.

– true radius [float64]: the true measured radius of the circle.

– radius [float64]: the measured radius with additional margin.

6.2 Simulation results

6.2.1 Experiments

The algorithm’s required parameter values are chosen empirically, based on intuition and trial.
The list of parameters and their values used for the experiment is shown in Table 6.1.

Name Parameter Value
distance proportion dp 0.006 rad

min. group points num. Np 5
group threshold dgroup 0.055 m

splitting threshold dsplit 0.5 m
segment connectivity threshold lthreshold 0.5 m

segment spread threshold dthreshold 0.5 m
radius margin rd 0.3 m

max. circle radius rmax 0.9 m

Table 6.1: List of parameters used for the experiment

Figure 6.3 shows the simulation result of the algorithm in ROS visualization tool Rviz1. The
robot is located at the origin of the simulation. In the right image, the white points are raw LiDAR
data, while the blue points indicate the filtered LiDAR data. The green points are laser point
cloud that published in the /circle topic, which means that the detected obstacles are modeled in
the circle shape.

Figure 6.3: Simulation result of obstacle detection algorithm and visualize in Rvz

1 http://wiki.ros.org/rviz
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The obstacle information published in topic /obstacle info is shown below. From the snippet,
the five objects in the simulation are all extracted as circles. The x-y coordinate of the central
point of circles and their measured radius and radius with added margin are also given.

header :
s e q : 379
stamp:

s e c s : 1321
n s e c s : 857000000

f r ame i d : ” l a s e r l i n k ”
segments : [ ]
c i r c l e s :

−
c e n t e r :

x : −1.73287030017
y : −1.70470579381
z : 0 . 0

t r u e r a d i u s : 0 .325738516696
r a d i u s : 0 .625738516696

−
c e n t e r :

x : 1 .810270813
y : −2.28750880609
z : 0 . 0

t r u e r a d i u s : 0 .353169548662
r a d i u s : 0 .653169548662

−
c e n t e r :

x : 2 .2952118137
y : −0.466178677633
z : 0 . 0

t r u e r a d i u s : 0 .327052671133
r a d i u s : 0 .627052671133

−
c e n t e r :

x : 2 .75255870275
y : 2 .78722595582
z : 0 . 0

t r u e r a d i u s : 0 .295148330745
r a d i u s : 0 .595148330745

−
c e n t e r :

x : −0.491135327639
y : 3 .26856169893
z : 0 . 0

t r u e r a d i u s : 0 .538672655174
r a d i u s : 0 .838672655174

−−−

6.2.2 Execution time analysis

Table 6.2 shows the average execution time of the main functions in the obstacle detection al-
gorithm. The robot locates at the position shown in Figure 6.3 and we sample 2000 frames of
LiDAR data input to calculate the average timings of the functions. The std :: chrono library
in C++ is used to find out the time consumed by different parts of the algorithm. We use the
system clock provided by the library to achieve the current system time. We get the timepoints
before and after each function is called, take the interval of the time passed in between, and cast
the duration to the millisecond time unit. As mentioned in Chapter 4, one scan of the LiDAR
can supply 360 measurements corresponding to an angular range from 0 to 360 degrees with an
angular resolution of 1 degree. The average filtered laser point size is 191. The queue size is set
to 1.

According to the pie chart shown in Figure 6.4, the groupPoints() function accounts for slightly
over 60% of the total execution time. The medianfilter() function is the next longest function
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that makes up nearly 20% proportion of whole execution. It is also noticeable that except for the
execution time of the main functions in the algorithm, the remaining work costs 11.56% of the
execution time, which contains the time to clear data in the vectors, load different data types to
the buffer, and other related work. The other main functions altogether in the algorithm take less
than 10% of the proportion.

Function Time (ms)
medianfilter() 0.0804
groupPoints() 0.2571

mergeSegment() 0.0148
detectCircles() 0.0015
mergeCircles() 0.0004

publishObstacles() 0.0164
others 0.0484

scancallback() 0.4189

Table 6.2: Function execution time in the algorithm

Figure 6.4: Pie chart of function execution time in the algorithm

6.3 Implementation of the pipelined version in ROS

The obstacle detection algorithm is sequentially executed and the implementation structure is
shown in Figure 6.2, we can split the algorithm into a series of successive tasks which may contain
a few of the functions so that the data flow in the direction specified by the interconnection
structure. Thus, the algorithm can be formulated in a pipeline pattern. The principle of the
pipeline is to divide the sequential steps of the algorithm into stages that run in parallel. Each
pipeline stage passes necessary data to the next stage in the sequence.

From the execution time analysis in section 6.2.2, we can see that the groupPoints() function
and medianfilter() function are the most time-consuming processing parts in the obstacle detec-
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tion algorithm. Thus, we consider deploying these two functions as separate stages on different
nodes and the other main functions in the algorithm are on one node. As a result, the stages are
deployed on three ROS nodes. Each node subscribes to ROS topics containing messages that are
the previous node’s outputs. In this case, it is expected that the pipeline approach can yield an
increase in execution processing speed.

While the ROS nodes are used to pipeline the algorithm, we need to consider the data overhead
while streaming data between nodes as it may affect the performance of the pipeline. Data
overhead refers to the time lost in transferring messages of inter-process communication between
nodes. Data messages are serialized at the publisher’s end, then transferred and deserialized at
the subscriber’s end. Therefore, it is possible that any processing time spent will be lost with
regard to data overhead. The run time of the pipeline approach is determined by the run time of
individual nodes.

Figure 6.5 shows the implementation architecture of the pipelined obstacle detection algorithm.
Node 1 publishes and streams the filtered LiDAR data obtained from the /scan topic to Node 2.
Node 2 extracts raw segments and publishes a custom message format containing an array of point
sets with attributes of a number of points [int64], the coordinate position of extreme points of the
segment [float64], and a bool value indicating whether the point set is occluded by other point
sets [bool]. The results are transferred to Node 3 and processed through the left main functions,
the final obstacle information, and point clouds are published to the terminal and Rviz.

Figure 6.5: Structure of the pipelined obstacle detection algorithm

The pipelined algorithm is run in the same simulation as the normal version. Considering the
performance of the implementation, the two main aspects are the algorithmic computation time
and the communication overhead. Table 6.3 gives some time measurement of the three nodes in
the pipeline, including the execution time of the main functions, the average communication over-
head between nodes, the computation time of individual nodes, and the end-to-end latency. The
transmitted data between nodes is different. Between node 1 and node 2, the filtered LiDAR data
in the message format of sensor msgs/LaseScan is transmitted, which contains 191 measurement
points. An array of laser point subsets in the form of custom messages is sent from node 2 to node
3. The communication overhead is measured by recording the system-wide clock time from node
i transmitting message to the message reception at node i+ 1 with an accuracy in the nanosecond
range. The results are based on the sampled around 2000 frames of LiDAR data as input. The
queue size is set to 1.

Comparing to the execution time of the main functions in only one node shown in table
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Node Time (ms)

Node 1
medianfilter() 0.0810

publish
FilteredData()

0.0315

Node 1
execution time

0.1050

Communication overhead
between Node 1 and Node 2

0.2082

Node 2

receive data from Node 1 0.2545
groupPoints() 0.1832

publishSegments() 0.0366
Node 2

execution time
0.2564

Communication overhead
between Node 2 and Node 3

0.1776

Node 3

receive data from Node 2 0.0021
mergeSegment() 0.0137
detectCircles() 0.0011
mergeCircles() 0.0006

publishObstacles() 0.0026
Node 3

execution time
0.0276

End-to-end response time 0.7708

Table 6.3: Execution time in the pipelined algorithm

6.2, we can see that for each separate function, the execution time in the pipelined version is
similar with at most 0.001 ms time difference. The communication overhead is the time spent
transmitting a message between nodes due to the ROS interaction and OS communication layer.
The communication latency is measured as: Li,i+1 = Ti+1,start − Ti,end. Table 6.3 shows the
average overhead Li,i+1 for all the two communication paths between three nodes. In ROS,
the message communication among nodes is realized through network sockets using TCPROS
and UDPROS, which are both connection-oriented and connection-less and defined on top of the
standard TCP and UDP protocols. TCPROS transmits message data using standard TCP/IP
sockets. Inbound connections are received via a TCP Server Socket, which includes a header with
information of message data type and routing [48]. The time values for the latency in the table are
in the sub-millisecond range when nodes are configured. However, the total transmission overhead
takes up to around 50% of the end-to-end response time. Since the data packets transmitted
between nodes in the implementation are not quite large, the latency stays rather steady, otherwise,
the transmission latency would become rather unpredictable. The end-to-end response time of the
pipelined algorithm is measured as a time duration from the start of node 1 to the end of node
3. The end-to-end latency increases 84% comparing to the execution time in running all in one
node. Apart from data transmission between nodes, each node needs to publish or receive the
data transferred, which also accounts for the time for data communication.
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Results and analysis

In Chapter 6, we analyze the performance of the normal implementation of the obstacle detection
algorithm in one node and the pipelined version. The time measurement includes the execution
time of the main functions in the obstacle detection algorithm, the average communication over-
head between nodes, the computation time of individual nodes and the end-to-end latency. In
addition, we evaluate two parameters that relates to the efficiency of the two implementation:
1) message loss: the messages unsuccessfully received and the total ROS messages sent over the
network, 2) time measurement with different queue sizes, and 3) the throughput of the implement-
ation.

7.1 Message loss

When creating publishers in ROS, the advertise() function is used to publish on a specific topic.
The format is as follows:

r o s : : P u b l i s h e r adv e r t i s e ( const s t d : : s t r i n g& topic , u i n t 32 t queue s i z e , bool l a t ch
= f a l s e ) ;

The second parameter to advertise() is the size of the outgoing message to be queued for
publishing messages. If messages are published more quickly than we can send them, the number
specifies how many messages to be buffered before dropping the old messages.

Also, when creating subscribers in ROS, the subscribe() call is used to show that we want to
receive messages on a given topic. The format is shown below:

r o s : : S u b s c r i b e r sub s c r i b e ( const s t d : : s t r i n g& topic , u i n t 32 t queue s i z e , <ca l l b a ck>
, const r o s : :T ran spo r tH in t s& t r an spo r t h i n t s = ro s : :T ran spo r tH in t s ( ) ) ;

The queue size indicates the maximum incoming message size that will be buffered before the
the oldest ones are discarded if messages arrive faster than they can be processed. To subscribe to
messages, the spin must be called to process events. ROS :: spin() loops continuously until ROS
invokes a shutdown and calls message callbacks as quick as possible when a new message arrives.

When a publisher is called, it adds the message into the queue and returns immediately. When
the publish function returns, ROS decides what to do next through ros :: spin(), it may serialize
and send incoming messages and publish. Hence, a queue is needed and it is useful for high-latency
and low-bandwidth communication channels. The choice of the queue size depends on the system.
Setting queue size to none or zero is not recommended. The first one causes a blocking subscriber
to block all publishing process and the latter one results in infinite memory usage. If the system is
not overloaded then the dispatcher thread could pick up the queued messages within 1/10 second.
Therefore, a queue size of 1, 2 or 3 would be sufficient for 10 Hz. Setting queue size to one can
make sure that new published data is processed. Bigger queue size with ten or more may prevent
losing messages but uses more memory when processing falls behind.
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In our experiments, we set a fixed scanning frequency of the LiDAR to 10 Hz, and increase the
message queue sizes in the algorithm with the values 1, 10, 100 and 1000. All the queue sizes in
the nodes are consistent and the experiment is carried out 2000 iterations.

• Normal version: as the measured in table 6.2, the execution time of the node is less than
0.5 ms, which is lower than the interval of the LiDAR sending data (0.1 s). Thus, the rate
at which the LiDAR sends data is lower than the processing speed of the algorithm. The
results of experiments show that the messages are all successfully received in the process.

• Pipelined version: the nodes are launched sequentially. Since the first node performs median
filtering on the LiDAR data, the node publishes the filtered LiDAR data at the fourth frame
based on the implementation.

– queue size=1: when the queue size is set to one, the second node receives the 4th frame
of the LiDAR data, and the third node executes 2 or three frames after the second node
execution. After the third node receives the data, messages are successfully received.

– queue size =10: when the queue size is set to 10, the second node receives the 7th
frame of the LiDAR data, and the third node starts to execute 2 or 3 frames later than
the execution of the second node. After the third node receives the data, messages are
successfully received.

– queue size =100/1000: when the queue size is set to 100 or greater, the second node
receives around the 8th frame of the LiDAR data, and the third node starts to execute
the same frame as the second node . After the third node receives the data, messages
are successfully received.

The starting frames of each node in every experiment have slightly different results, as they can
be affected by the initialization of launching the node and the execution of the operating system.
Also, the low scanning frequency of the LiDAR used in the simulation indicates that the messages
published in the /scan topic would not arrive faster than they can be processed. According to the
results, we can see that the few frames of messages are lost during initial transmission between
nodes.

7.2 Latency

Figure 7.1 shows the sequential architecture of the obstacle detection algorithm running on a
single node. In the figure, we have three LiDAR data sample frames from i to i+ 2. Each LiDAR
sample data frame goes through the three stages, which correspond to the three components that
are divided in the pipelined version. After completing all the stages, the next LiDAR sample data
frame is obtained, and the three stages are completed consecutively.

Figure 7.1: Sequential architecture of the obstacle detection algorithm running on a single node

In Chapter 6, the execution time of both implementations is measured when queue size is
set to 1. The scanning frequency of the LiDAR is set to 5.5 Hz. Under the same conditions,
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we increase the queue size in the pipelined version of the algorithm to 10, 100. Table 7.1 and
table 7.2 shows the time measurement when queue size are 10 and 100. Comparing the results
to the table 6.3, we can see that the execution time of each node, the communication overhead
between nodes, and the end-to-end response time are not affected by the change of queue size.
Since the publishing rate of the LiDAR is set low, the nodes in the pipelined implementation
process the messages immediately when they arrive. However, we can expect that if the messages
arrive faster and are buffered in the queue, when the queue size is also large, it might lead to the
communication between nodes blocking for an indefinite amount of time.

Node Time (ms)
Node 1 execution time 0.1364

Communication overhead
between Node 1 and Node 2

0.1686

Node 2 execution time 0.2178
Communication overhead

between Node 2 and Node 3
0.2183

Node 3 execution time 0.0212
End-to-end response time 0.7622

Table 7.1: Execution time in the pipelined algorithm when queue size = 10

Node Time (ms)
Node 1 execution time 0.1102

Communication overhead
between Node 1 and Node 2

0.2443

Node 2 execution time 0.2660
Communication overhead

between Node 2 and Node 3
0.2079

Node 3 execution time 0.0242
End-to-end response time 0.8526

Table 7.2: Execution time in the pipelined algorithm when queue size = 100

Figure 7.2 shows the pipeline architecture of the obstacle detection algorithm running on three
nodes. In the figure, we have three LiDAR data sample frames from i to i + 2. Each LiDAR
sample data frame should experience the three stages to finish a obstacle detection job. The
communication overhead between nodes is considered.

Figure 7.2: Pipelined architecture of the obstacle detection algorithm running on three nodes
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7.3 Throughput

Here we compare the throughput of both implementations, we measure the throughput by the
number of frames of LiDAR the implementations can process in two minutes. We set a fixed
queue size in the implementation to 10, and vary the LiDAR scanning frequency within the range
from 5 Hz to 15 Hz. Then, we calculate the number of frames that can be executed for both imple-
mentations in two minutes. As shown in Figure 7.3, we can see that as the scanning frequency of
the LiDAR increases, the number of processed frames in both implementations increases. Because
the pipelined version has a longer response time, the frames it can process are generally fewer
than the normal implementation. When there are no data overhead and message serialization,
the pipeline’s run time is determined by the run time of individual nodes, which can result in a
positive pipeline speedup. Thus, the data overhead when transferring data between nodes is a
bottleneck. This disadvantage can be improved by deploying the algorithm on a multi-core system
and intra-process communication in ROS.

Figure 7.3: Throughput in the normal and pipelined version of implementation of the obstacle
detection algorithm
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Conclusion and Future works

8.1 Conclusion

In this work, we first discuss the obstacle detection algorithm based on 2D LiDAR in a ROS-based
system. The study of obstacle detection algorithms using 2D LidAR and the implementation of
the selected algorithm are introduced. Obstacles existing in the robot workspace are represented
by point sets against their outlines, and their information is initialized and updated via the raw
laser measurement points. The algorithm follows three main steps: pre-processing, splitting and
clustering, classification of consequent measurements.

Then, we propose a pipeline implementation for the obstacle detection algorithm, which allows
splitting complex processing tasks into separate processes and aims to reduce run time for 2D
laser point cloud input within the ROS framework.

Finally, we evaluate the ROS message communication overhead between nodes and analyze the
latency and through the ROS system. Experiments performed in the simulation indicate that the
proposed method with the node configuration and separate processes for each stage shows that the
time guarantee for message transmission is a bottleneck of the performance and influences timing
negatively. The total transmission overhead takes up to around 50% of the end-to-end response
time in the pipelined implementation. The end-to-end latency increases 84% comparing to the
execution time of the sequential implementation.

8.2 Future works

There are some future works for improvement and further research after the completion of the
thesis.

In our work, we pipeline the obstacle detection algorithm on three nodes, which entails latency
to the system. The experiments show that the main disadvantage is in the area of real-time
performance and message transmission overhead. The node configuration and separate processes
yield limited and somewhat unpredictable results. Thus, this work can be improved by using
shared memory or intra-process communication to reduce latency significantly.

Message serialization and deserialization occur only during inter-process communication, which
is the data exchange between nodes. Nodelets, i.e. intra-process communication, can be used for
each stage of the obstacle detection algorithm, which has the benefit of omitting serialization
overhead and highly reasonable timings. It is also suitable for large data packets transmission.
Nodelets enable classes to be dynamically loaded to the same node but behave as independent
processes. This realizes zero-copy transmission between publisher and subscriber nodelets, which
means the pointers to data are passed between nodelets [23]. The difference between nodes and
nodelets is that each node is assigned to a separate OS process, while nodelets can be grouped
together within a single OS process with resource sharing.
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Furthermore, ROS is not real-time capable due to its current system architecture, since real-
time capabilities for inter-process and inter-machine communication is one of the main features
of ROS 2, it can address the issues in our experiments and provide a system that is closer to the
status quo of real-time processing [21].
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