
 Eindhoven University of Technology

MASTER

Advances in Understanding and Initializing Einsum Networks

Smits, Julian

Award date:
2021

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/fcf00705-8ac5-46df-aa5c-10c745afe1a4

Advances in Understanding and
Initializing Einsum Networks

Master Thesis

Julian Smits

Department of Mathematics and Computer Science
Uncertainty in Artificial Intelligence Research Group

Supervisor:
Dr. habil. Cassio de Campos

Assessment Committee:
Dr. habil. Cassio de Campos

Dr. Sibylle Hess

Dr. Yali Du

Eindhoven, July 26, 2021

Abstract

Exact and tractable inference is the reason why probabilistic circuits are such an interesting field
of research. With Einsum Networks, probabilistic circuits achieve much faster training times.
However the problem of proper initialization has never been researched before in the context of
probabilistic circuits. To perform robust research, this work firstly aims at achieving a better
understanding of probabilistic circuits by performing multiple experiments. The second goal of
improving on the current state of the art is achieved by introducing new initialization algorithms
and online training algorithms.

Constructing a good machine learning setup for a certain task is very important. Therefore
different training approaches and network structures are tested on multiple tasks. This gives in-
sight in the best setups for either a generative task, a discriminative task or even a combination of
both. One major finding is that the so-called class discriminative structure does greatly improve
the discriminative task without harming the ability to learn a generative task.

Initialization has been a topic with very promising results in the field of neural networks. This
is the reason why initialization has been further explored in the context of Einsum Networks.
The algorithms proposed in this work improve the initial state of the Einsum Networks by a lot.
This is achieved by a hierarchical clustering of the training samples to initialize the weights of the
Einsum Networks.

Further improving Einsum Networks after which they are trained is called online training. The
novel idea of using the initialization of a network to later on process new training samples, with
the goal to improve the performance of the network, is presented in this work. The parameters
of the Einsum Networks are updated by using the hierarchical clustering, executed during the
initialization, to assign the new samples to certain regions of the Einsum Networks and update
the weights coherently. This approach excels in scenarios where there is a lack of resources and
time to completely retrain the Einsum Network.

Advances in Understanding and Initializing Einsum Networks iii

Contents

Contents v

List of Figures vii

1 Problem Statement and Research Context 1

1.1 Introduction . 1

1.2 Problem Statement . 1

1.3 Probabilistic Circuits . 2

1.4 Parameter Learning . 6

1.5 Structure Learning . 6

1.6 Einsum Networks . 8

2 Literature Review 11

2.1 General Theory . 11

2.2 Structure Learning . 12

2.3 Parameter Learning . 14

2.4 Extensions . 15

2.5 Applications . 16

2.6 Context to this Research . 17

3 Network Analysis 19

3.1 Motivation . 19

3.2 RAT-SPN Structure . 19

3.2.1 Setup . 20

3.2.2 Experiments . 20

3.2.3 Discussion . 22

3.3 Training Approaches . 22

3.3.1 Setup . 22

3.3.2 Experiments . 24

3.3.3 Impressions . 25

3.3.4 Observations . 26

3.3.5 Discussion . 27

4 Initialization 29

4.1 Motivation . 29

4.2 Algorithms . 29

4.3 Experiments . 32

4.4 Discussion . 36

Advances in Understanding and Initializing Einsum Networks v

CONTENTS

5 Online Adaptation 37
5.1 Motivation . 37
5.2 Algorithms . 37
5.3 Experiments . 40
5.4 Minimal Results . 44
5.5 LearnSPN . 45
5.6 Discussion . 48

6 Conclusion and Future Work 49
6.1 Network Analysis . 49
6.2 Initialization . 50
6.3 Online Adaptation . 50
6.4 Possible Extensions . 50

Bibliography 53

vi Advances in Understanding and Initializing Einsum Networks

List of Figures

1.1 A single Gaussian distribution . 3
1.2 A factorization over three different input distributions 3
1.3 A mixture over two different input distributions . 4
1.4 Different combinations of building blocks resulting in complex structures 4

3.1 Results of a RAT-SPN structure with variable width 21
3.2 Results of a RAT-SPN structure with variable depth 21
3.3 Results of a RAT-SPN structure with both increasing depth and width 22
3.4 Results of experiments 1 to 8 . 28

4.1 Results of testing different initialization algorithms directly after initialization . . . 34
4.2 Results of different initialization methods after every epoch 35

5.1 Results of Online Adaptation for Cluster initialization (45k init, 5k online) 41
5.2 Results of Online Adaptation for Einsum Cluster initialization (45k init, 5k online) 42
5.3 Results of Online Adaptation for Einsum Cluster initialization (45k init, 1k online) 43
5.4 Results of Online Adaptation for Einsum Cluster initialization (1k init, 1k online) 43
5.5 Results of Online Adaptation for Einsum Cluster initialization (2k init, 1k online) 44
5.6 Results of Online Adaptation for LearnSPN on Spoken Arabic Digit dataset 47
5.7 Results of Online Adaptation for LearnSPN on Tamilnadu Electricity dataset . . . 47
5.8 Results of Online Adaptation for LearnSPN on Skin Segmentation dataset 48

Advances in Understanding and Initializing Einsum Networks vii

Chapter 1

Problem Statement and Research
Context

1.1 Introduction

Probabilistic circuits are a promising area of research that have received more and more attention
over the last years. Since probabilistic circuits provide a high level of expressiveness accompan-
ied with tractable inference, it is a very interesting and promising research topic in the field of
uncertainty in artificial intelligence. Probabilistic circuits have different variances, which are spe-
cified by their underlying properties. Examples of this are sum-product networks and Einsum
Networks. Research has already been done in the learning of the structure of such probabilistic
circuits. However, to achieve the full potential from probabilistic circuits, further research has to
be conducted in this topic. This work focuses on research in comparing learning approaches for
different tasks, initialization methods and online training methods.

In the further sections of this chapter the problem statement will be further motivated and
the research context will be explained. A literature review is presented in chapter 2 of this work.
The structure of RAT-SPNs is analyzed Chapter 3 accompanied with the experiments regarding
different learning approaches and setups are performed in this chapter. Then different initialization
methods are introduced and analyzed in chapter 4. Chapter 5 extends the initialization methods
to online learning approaches. Finally, chapter 6 elaborates on conclusions that can be drawn and
goes into the possible research directions.

1.2 Problem Statement

Neural networks are a widely accepted model for machine learning because of their high level of
expressive power. However, neural networks are not able to do exact tractable inference. Tractable
inference is important in solving several probabilistic queries. These queries consists of complete
evidence queries (EVI), marginal queries (MAR), conditional queries (CON) and Maximum A
posteriori queries (MAP).

Probabilistic circuits (PCs) do solve this problem of tractable inference and are therefore a
promising research topic. To make sure that the queries are indeed tractable certain properties
have to be specified for PCs. In order to specify these properties it is required to understand how
a PC is constructed. This will be explained in the following sections of this chapter. A PC can
be seen as a special kind of neural network [29].

In order to improve on the state of the art in probabilistic circuits Peharz et al. specify Ein-

Advances in Understanding and Initializing Einsum Networks 1

CHAPTER 1. PROBLEM STATEMENT AND RESEARCH CONTEXT

sum Networks (EiNets) as a novel implementation design for a PC [29]. Einsum Networks are a
probabilistic circuit which adhere to the smoothness and decomposability properties of PCs and
are therefore able to solve tractable MAR and tractable CON queries. The EiNets proposed are
open for further improvement in different fields, for example learning the structure of the network,
improve the initialization and learning the parameters. In this work most research will be done
on Einsum Networks. This choice has been made since EiNets are a novel implementation of PCs.
EiNets have shown very promising results in improving learning time and memory consumption,
up to two orders of magnitude [29].

This work starts with exploring different different training approaches of Einsum Networks.
Probabilistic circuits are generative models by nature. To further explore these models, both
generative and discriminative training methods will be tested to gain insight into performance
differences. These methods will both be tested on generative and discriminative tasks. These ex-
periments should provide insight into possible optimal setups for the Einsum Networks in regard
with training them for a certain task.

Improving the initialization of Einsum Networks will be the second focus. Initialization has
been found as a very important aspect in speeding up the training of neural networks [46]. In
addition to speeding up the training of neural networks, research has also been conducted on us-
ing initialization to avoid local minimum [45]. Since initialization provides such promising results
in neural networks this should also be applicable to probabilistic circuits. What initialization
means in the context of Einsum Networks is the following. The leaf nodes, which are formed
by distributions (i.e. Gaussians or Binomials), should be initialized. In addition to the initializa-
tion of the leaf distributions, also the weights of the sum nodes of the network should be initialized.

Finally, online training methods will be explored. This will be done in such a manner that
the initialization methods are used to determine online update rules. This is a very interesting
topic since fully re-training a model takes too much time in specific cases. In these cases a faster
method to improve the model in an online fashion will be beneficial to the task, which is executed
by the model.

1.3 Probabilistic Circuits

In this section, probabilistic circuits are explained more thoroughly. The images and formulas from
this section are taken from the lecture on probabilistic circuits presented during the European con-
ference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases
[31].

Distributions as Computational Graphs
In probabilistic circuits a graph is constructed, this graph consists of nodes which all do a certain
computation, therefore this is called a computational graph. This means that it is possible to
provide an input to the computational graph after which it provides an output for that particular
input. This simplest possible computational graph consists of a single distribution. This distribu-
tion is modeled by an exponential family which expresses the value of a single random variable.
This exponential family can, for example, be a Gaussian distribution. A single distribution should
be able to answer certain questions efficiently. The queries that a single distribution is able to
answer tractably are the complete evidence (EVI) query, the marginal (MAR) query and the Max-
imum A Posteriori (MAP) query. For the EVI query the distribution takes an input value and
gives back the denstiy or the probability value. An example for the EVI query is the following
question, what is the probability of a certain car being 2 meters long? For the MAR query the
distribution calculates the integral of the distribution, which is always one if the distribution is
normalized. The MAP query, or most probable explanation query, is calculated by computing the
mean value of the distribution.

2 Advances in Understanding and Initializing Einsum Networks

CHAPTER 1. PROBLEM STATEMENT AND RESEARCH CONTEXT

A single distribution is only able to model a single variable and is often depicted as shown
in figure 1.1. To answer harder questions, it is desired to model more complex distributions over
possibly multiple random variables. Therefore these single distributions are used as input nodes
in a larger network to model these more complex distributions.

Figure 1.1: A single Gaussian distribution

Factorizations
When modeling a certain distribution over multiple variables, factorizations are needed to manage
complexity. A Factorization is able to do this since it can split a distribution over multiple variables
into multiple independent distributions of a single variable. More precisely, factorization means
that, when a probability over a certain joint probability distribution is known, the assumption
can be made that, this probability is computed by multiplying the probabilities of all the single
variables in this joint probability distribution. This is mathematically depicted as the following
formula, where X1, X2 and X3 are random variables as input distributions:

p(X1, X2, X3) = p(X1) · p(X2) · p(X3) (1.1)

For this reason the factorizations in a probabilistic circuit are modeled by a product node. The
factorization shown in figure 1.2 is a factorization over three different input distributions.

Figure 1.2: A factorization over three different input distributions

Mixtures
Factorizations are able to combine the input distributions and therefore add more variables to our
network. Factorizations are not able to make the distributions more complex and fitting. This is
where mixtures come in. A mixture combines two distributions over the same random variable into
a more complex distribution. This is done by specifying a weight to each of the distributions that
are mixed together. Mathematically this is depicted in the following formula, here X is an input
distribution over the some random variable, p1 and p2 depict two different distributions over this
random variable X and w1 and w2 are weights corresponding to both of the input distributions.

p(X) = w1 · p1(X) + w2 · p2(X) (1.2)

In a probabilistic circuits a mixture is implemented by a sum node. This is shown in figure
1.3. This sum node mixes two input distributions.

Constructing a Circuit and Maintaining Tractability
A single distribution, factorization or mixture itself do not model complex distributions. But
when combining multiple of these nodes together into a graph, such a complex distribution can

Advances in Understanding and Initializing Einsum Networks 3

CHAPTER 1. PROBLEM STATEMENT AND RESEARCH CONTEXT

Figure 1.3: A mixture over two different input distributions

be formed. Figure 1.4 shows how the different nodes can be combined into a complex structure.

Figure 1.4: Different combinations of building blocks resulting in complex structures

Putting random nodes together in a network results in the model not being tractable anymore.
Therefore some structural constraints are necessary to guarantee tractability. These structural
constraints are decomposability and smoothness.

The decomposability constraint is a structural constraint over the product nodes. It originates
from the factorization mentioned earlier and states that each random variable, which a product
node factorizes, should be different. More formally, each child of the product node should have
a pairwise disjoint scope. When multiplying the different distributions, over different random
variables, a joint probability function arises, which is desired.

The smoothness constraint is a structural constraint over the sum nodes. To generate a mixture
from two separate distributions, which a sum node does, both distributions should have identical
scopes. Otherwise the distributions cannot be mixed into a more complex distribution. All the
networks shown in figure 1.4 adhere to both of these properties, as can be observed.

A MAR query computes the probability of a certain event or multiple events. To calculate a
MAR query, it is desired to calculate the integrals over the complete network. This means that
both the product nodes and the sum nodes have to be able to calculate the integral in a single
step to guarantee tractability.

Due to the decomposability constraint the following formula holds:

p(x, y) = p(x)p(y) (1.3)

4 Advances in Understanding and Initializing Einsum Networks

CHAPTER 1. PROBLEM STATEMENT AND RESEARCH CONTEXT

This means, when calculating the integral over this formula, the following steps can be taken:∫ ∫
p(x, y)dxdy =

∫ ∫
p(x)p(y)dxdy =

∫
p(x)dx

∫
p(y)dy (1.4)

What this formula shows is that the integrals are pushed down to the children of the decomposable
product node.

For a sum node a similar derivation can be made, only this time using the smoothness structural
constraint. Namely due to the smoothess constraint the following formula holds:

p(x) =
∑
i

wipi(x) (1.5)

This means, when calculating the integral over this formula, the following steps can be taken:∫
p(x)dx =

∫ ∑
i

wipi(x)dx =
∑
i

wi

∫
pi(x)dx (1.6)

Again this formula shows that the integrals are pushed down to the children of the smooth sum
node.

This pushing down of the integrals can be done in a single step for a single node. The input
distributions are also able to calculate the integrals in a single step, as explained earlier. This
means that a smooth and decomposable circuit is able to solve MAR queries tractable.

A conditional (CON) query can also be calculated with the same derivations, since a conditional
query can be rewritten as two MAR queries. This is done in the following formula:

p(x|y) =
p(x, y)

p(y)
(1.7)

Therefore a CON query can also be solved tractably by a smooth and decomposable circuit.

For tractable MAP queries a third constraint is necessary. As explained earlier, the goal of
a MAP query is to find out the highest probability, or likelihood of all the random variables for
some observation. In mathematics this is expressed by the following formula:

max
x

p(x|y) (1.8)

This maximum cannot be propagated to the children of a sum node when only adhering to
the smoothness and decomposability constraint. This is where the determinism constraint comes
in. The determinism constraint is a structural constraint over the sum nodes. It states that only
one of the children of the sum nodes can have a non-zero output, for any input. Due to this
determinism constraint the following formula holds for a sum node:

p(x, y) =
∑
i

wipi(x, y) = max
i

wipi(x, y) (1.9)

This means, when calculating the MAP query the following steps can be taken:

max
x

p(x|y) = max
x

∑
i

wipi(x, y) = max
x

max
i

wipi(x, y) = max
i

max
x

wipi(x, y) (1.10)

These steps show that the MAP query can be propagated downwards to the children of a sum node
in a single step. The decomposability constraint for product nodes is enough to also propagate
the MAP query downwards to the children of this product node. This is done in a similar way as
the MAR query. Therefore when a probabilistic circuit also adheres to the determinism structural
constraint, it is also able to solve the MAP queries tractably.

Advances in Understanding and Initializing Einsum Networks 5

CHAPTER 1. PROBLEM STATEMENT AND RESEARCH CONTEXT

1.4 Parameter Learning

Learning the parameters of a probabilistic circuits consists of two parts, namely learning the input
distributions and learning the weights in the sum nodes. Both can be learned by a standard back
propagation algorithm, for example Stochastic Gradient Descent (SGD). However, there are also
other approaches to learn probabilistic circuits. The one which is most popular is Expectation
Maximization (EM). This is explained in this paragraph. Expectation Maximization is a more
probabilistic circuit tailored approach, which is able to exploit the tractability of PCs due to the
structural properties which the PCs adhere to.

Input Distributions
Explaining how probabilistic circuits are learned, starts again at a single distribution. As ex-
plained earlier, a single distribution is modeled by an exponential family. The parameters of an
exponential family can be learned by performing a maximum likelihood estimation over the data.
This consists of simply taking the average, for a parameter of the exponential family, over the
complete dataset.

Sum Nodes
As explained earlier, a sum node represents a mixture over multiple input distributions. However,
sum nodes can also be interpreted as latent variable models, which is explained by Peharz et al
[28]. This means that the sum node models an unknown variable. Now it is desired to apply
maximum likelihood learning to the parameters of this single sum node. However, maximum like-
lihood learning requires to know all the variables in the model and the latent variable in the sum
node is not known. This is where Expectation Maximization is introduced, which is essentially
maximum likelihood learning under missing data.

Similar to the maximum likelihood learning for exponential families, maximum likelihood learn-
ing for sum nodes means counting the number of times a sum node goes in a certain direction and
dividing by the number of samples in the dataset. However it is not known exactly how often a
sum node goes in a certain direction due to the latent variable interpretation of the sum node.
Therefore this hard counting is replaced by a so-called soft counting. The soft counting consists of
deriving the latent variable, by calculating the posterior over the data using the current weights
of the sum node, and then counting the number of times the sum node goes in a certain direction.

Extension to Probabilistic Circuits
To apply these learning principles to the complete probabilistic circuit, it is also required to know
whether or not a certain sum node or input distribution is reached. This is also not know exactly,
but this can again be derived by performing a backward pass over the network, using the current
weights. In a single backward pass this can be derived for every node in the probabilistic circuit.
After which it is known whether or not a sum-node or input distribution is reached, the above
explained methods are used to update the weights.

1.5 Structure Learning

Learning the structure of a probabilistic circuit consists of constructing a graph using the sum
nodes, product nodes and the input distributions. This can be done in various ways. A lot of
research is conducted on this part of the probabilistic circuits. This research is presented in the
next chapter of this work.

The structure of a probabilistic circuit is directed acyclic graph (DAG) which consists of sum
nodes and product nodes. The leafs of this DAG consist of exponential families which represent
the input distributions. These structures can range from very simple to very sophisticated graphs.

6 Advances in Understanding and Initializing Einsum Networks

CHAPTER 1. PROBLEM STATEMENT AND RESEARCH CONTEXT

The graphs can also be extended to contain cycles, this gives the model more expressiveness while
keeping the number of parameters in the model the same. In this work, two different structures
are used, namely the structures generated by the RAT-SPN and the LearnSPN algorithms. These
are explained in more detail in this section.

RAT-SPN
The RAT-SPN algorithm is introduced by Peharz et al [32]. RAT-SPN stands for random-and-
tensorized sum-product network. The RAT-SPN structure performs particularly well when used
for generative tasks and shows good results under missing features in the input data.

The algorithm starts with constructing a region graph, the region graph divides the random
variables, which the network should model, over the different regions. The region graph consists
of regions and partitions. The child of a region is always a partition and vice versa. A region
contains all the random variables which that particular region models. A partition is a division
of the random variables of the parent region into two balanced groups of random variables. To
construct the random region graph the following parameters are required: X: The list of random
variables of the complete model, D: the depth of each of the recursions when constructing the
Random Region Graph, resulting in an SPN of depth 2D and R: the number of recursive splittings
in the Random Region Graph. The pseudocode for constructing the Random Region Graph is
shown in algorithm 1

Algorithm 1 Random Region Graph

1: procedure RandomRegionGraph(X, D, R)

2: Create an empty region graph R
3: Insert X in R
4: for r = 1...R do
5: Split(R, X, D)
6: end for

1: procedure Split(R, R, D)

2: Draw balanced partition P = R1,R2 of R
3: Insert R1,R2 in R
4: Insert P in R
5: if D > 1 then
6: if |R1| > 1 then
7: Split(R, R1, D-1)
8: end if
9: if |R2| > 1 then

10: Split(R, R2, D-1)
11: end if
12: end if

The second part of constructing the RAT-SPN structure is building the actual SPN from the
Random Region Graph. This is done by iterating over the Random Region Graph. For every
region in the Random Region Graph, the algorithm either assigns sum nodes or in the case of
leaf regions, distribution nodes. The partitions are translated into product nodes. The algorithm
requires the following parameters: R: the Random Region Graph, C: the number of root nodes,
S: the number of sum nodes per region and I: the number of distributions per leaf region. The
algorithm is shown in Algorithm 2

Advances in Understanding and Initializing Einsum Networks 7

CHAPTER 1. PROBLEM STATEMENT AND RESEARCH CONTEXT

Algorithm 2 Construct SPN from Random Region Graph

1: procedure ConstructSPN(R, C, S, I)

2: Construct empty SPN
3: for R ∈ R do
4: if R is a leaf region then
5: Equip R with I distribution nodes
6: else if R is the root region then
7: Equip R with C sum nodes
8: else
9: Equip R with S sum nodes

10: end if
11: end for
12: for P = {R1,R2} ∈ R do
13: let NR be the nodes for region R
14: for N1 ∈ NR1

, N2 ∈ NR2
do

15: Introduce product P = N1 × N2

16: Let P be a child for each N ∈ NR1∪R2

17: end for
18: end for
19: return SPN

LearnSPN
Gens et al. also propose an algorithm for learning the structure of sum-product networks [14]. The
algorithm is called LearnSPN. LearnSPN is able to take full advantage of the expressiveness of
sum-product networks. The idea behind the algorithm is to partition the variables of the training
instances into independant subsets, when this is possible a product node is created. When this
is not possible, the training instances are grouped into similar subsets. For these subsets a sum
node is created. In both cases the algorithm makes a recursion downwards until only a single
variable is left in the training instances, then it creates a leaf distribution. The parameters that
the LearnSPN algorithm requires are: T : the set of training instances and V : the set of variables.
The pseudocode for LearnSPN is shown in Algorithm 3.

Algorithm 3 LearnSPN(T , V)

1: if |V | = 1 then
2: return univariate distribution estimated from the variable’s values in T
3: else
4: partition V into approximately independent subsets Vj

5: if success then return
∏

j LearnSPN(T , Vj)
6: else
7: partition T into subsets of similar instances Ti

8: return
∑

i
|Ti|
|T | · LearnSPN(Ti, V)

9: end if
10: end if

1.6 Einsum Networks

Most experiments in this work are performed in the Einsum Network library [29]. Einsum Net-
works are a novel implementation of probabilistic circuits proposed by Peharz et al. Einsum
Networks aim at improving the learning speed of probabilistic circuits. In Einsum Networks the
nodes of the probabilistic circuit are vectorized. This improves the efficiency of the layout of the
probabilistic circuit. More concretely, this means that a leaf node is re-defined to be be a vector of

8 Advances in Understanding and Initializing Einsum Networks

CHAPTER 1. PROBLEM STATEMENT AND RESEARCH CONTEXT

K densities rather than a single density. Here each density still has its own private parameters. A
product node is re-defined to be an outer product over its children, hence containing the products
of all possible combinations of densities. The sum nodes are re-defined to be a vector of K weighted
sums, where each individual sum operation has its private weights. By re-defining the nodes of
PCs to their vectorized version in Einsum Networks, the structural properties of smoothness and
decomposability are preserved. This means that Einsum Networks are able to solve CON and
MAR queries tractably.

This vectorization of the nodes results in a much larger amount of parameters in the network.
Normally, when updating each of these parameters, this would take more time. However in Einsum
Networks, a smart application of the Einstein summation convention is used to perform a large
amount of arithmetic operations in a single operation. This single operation is called the einsum
operation, hence the name Einsum Networks. It is possible to use this einsum operation due to
the smart representation of the vectorized nodes. The einsum operation is able to take advantage
of the GPU very well, since a lot of parallel computations are executed. This results in speeding
up the learning time and reducing the memory consumption both up to two orders of magnitude,
which enables probabilistic circuits to much larger datasets.

The Einsum Networks itself are not a structure learning algorithm on its own, but only a smart
vectorized representation of probabilistic circuits. This means that multiple structure learners, for
example the earlier explained RAT-SPN structure, can be applied in combination with Einsum
Networks.

Advances in Understanding and Initializing Einsum Networks 9

Chapter 2

Literature Review

The literature review, presented in this work, will focus on presenting the current literature of
the topic of Probabilistic Circuits. More specifically Sum-Product Networks are a major focus.
In addition the earlier explained Einsum Networks will be shortly touched on. For each of the
sections in this literature review, the papers are presented in the same order as they are published.
Finally the relation between the current research and the research conducted in this work will be
explained.

2.1 General Theory

In 2011 Poon and Domingos propose a new kind of deep architecture named sum-product net-
works (SPNs) [33]. SPNs aim at solving hard queries while still maintaining tractable inference.
A SPN is a directed acyclic graph of both sum nodes and product nodes. These nodes combine
different distributions such that a more complex distribution is formed by the complete network.
Backpropagation can be applied to all the nodes of an SPN, which makes it possible to train the
sum-product networks. Poon and Domingos show that, when an SPN adheres to the structural
constraints of completeness and consistency, the goal of tractable inference is reached for some
hard queries.

Delalleau and Bengio investigate the representational power of sum-product networks [7]. In
their work, deep architectures are compared to shallow architectures. Delalleau et al. show
that certain probabilistic functions can be modeled better by a deep network. More specifically
Delalleau et al. show that a shallow network will need to grow exponentially in terms of its para-
meters, where the deep network only needs to grow linearly, to model the same functions. This
work contributes to better understand the theoretical properties of sum-product networks.

Martens et al. did make a deep analysis of properties that provide tractable inference [21].
Namely, the decomposability and the completeness constraints are thoroughly examined. In this
work some distributions are highlighted which cannot be modeled when also adhering to the de-
composability and completeness constraints. This work provides a deeper understanding of the
decomposable and complete sum-product networks and hence added to the theory of probabilistic
models.

In addition to better understanding the decomposability and completeness properties, Peharz
et al. made an analysis on the theoretical properties of sum-product networks [30]. One of the
major findings from Peharz et al. is that a complete and consistent SPN can always be put into a
locally normalized form without losing any modeling power of the SPN. This means that weights
for a certain sum node can always be normalized. It is also established that consistent SPNs
cannot model distributions exponentially more compact than decomposable SPNs. This paper

Advances in Understanding and Initializing Einsum Networks 11

CHAPTER 2. LITERATURE REVIEW

provides a much deeper understand of sum-product networks.

Zhao et al. show the relationship between sum-product networks and Bayesian networks [48].
Zhao et al. prove that every SPN can be converted to a Bayesian network. With the meth-
ods proposed their work it is also possible to transform the generated Bayesian network back to
a sum-product network. It is also shown that SPNs are not more powerful than Bayesian networks.

2.2 Structure Learning

Dennis and Ventura propose an algorithm to learn the structure of a sum-product network [8].
Earlier only a static structure was used. Dennis et al. show that learning the structure of an SPN
from the data using their algorithm significantly improves the performance of the sum-product
network. The idea of clustering is used to identify similar groups of data instances in the training
data. These groups are then used to construct the structure of a SPN. This is the first algorithm
proposed to learn the structure of sum-product networks from data.

After introducing the discriminative learning method of sum-product networks, Gens and
Domingos propose an algorithm that learns the structure of the SPN from data [15]. The LearnSPN
algorithm that is proposed by Gens and Domingos is already explained in section 1 of this work.
The LearnSPN algorithm divides the data into independent subsets at each step. These subsets
are splitted again in a recursive manner. The algorithm uses these splits to construct the SPN.
This results in models that are superior in inference speed and accuracy.

In earlier proposed structure learning algorithms, every method uses a top-down approach.
Peharz et al. propose a method that constructs an SPN from the bottom up [26]. The main idea
behind the algorithm is that it merges small probablistic models into more complex ones. Peharz
et al show that this algorithm is competing well with the current structure learning algorithms.
The algorithm does not rely on properties of images, which makes the algorithm suitable for many
applications.

Learning the structure of SPNs from data is a very usefull feature. But in some instances not
all data is present when constructing the sum-product network. This gives rise to online structure
learning algorithms. Lee et al. propose an online incremental structure learning method for sum-
product networks [20]. The proposed method depends on an online clustering of the data. This
means that, when new instances come in, the clustering of the data can change, which results in a
change of the tree structure of the SPN. Lee et al. show that the algorithm reaches performances
of other structure learning algorithms where all the training data is already present.

The structure learning approaches suggested earlier are either focusing on a top-down ap-
proach, which captures the similarities of data sample groups and mixes them, or on a bottom-up
approach, which captures the interactions between data sample groups. Rooshenas et al. propose
an algorithm, ID-SPN, which combines both approaches [37]. The results presented by Rooshenas
et al. show that the algorithm performs very well, which suggests that the most effective probab-
ilistic models should combine both the mixing of components as well as the interactions between
components to construct an optimal structure for sum-product networks.

Adel et al. provide two structure learning algorithms, one that focuses on the generative cases
and another one that focuses on discriminative cases [1]. These algorithms are based on recurs-
ively extracting rank-one submatrices from the input data. This means that the algorithm is not
dependant on locally splitting the data but instead splits the data globally. These algorithms
provide state of the art results on image datasets and digit classifications.

12 Advances in Understanding and Initializing Einsum Networks

CHAPTER 2. LITERATURE REVIEW

Most structure learning algorithms proposed earlier generally construct tree structures. Dennis
et al. propose an algorithm called SearchSPN which learns the structure of an SPN from data
based on a greedy search approach [9]. It uses some principles which are already proposed, how-
ever the main advantage of SearchSPN is the learning of the structure such that the sum-product
networks are less-restrictive and non-tree like. By doing this the network size does not increase
dramatically at any point in the algorithm as opposed to other structure learning algorithms.

The earlier proposed LearnSPN structure learning algorithm is further investigated and im-
proved by Vergari et al [43]. Vergari et al. improve both structural quality and the performance of
the networks. These improvements are made by better understanding the building process of the
network by the LearnSPN algorithm. The first improvement on the algorithm includes limiting
the number of node children in the LearnSPN algorithm, which resulted in much simpler and
deeper networks. Secondly, bagging is used in the sum nodes to improve the robustness of the
models. Vergari et al. proved their methods to be effective, since experiments showed improved
results on multiple datasets. These ideas could also be used in other structure learning algorithms.

The earlier proposed LearnSPN algorithm is a structure learning algorithm which assumes that
variables are discrete. It also assumes that there is no missing data. Krakovna et al. propose an
algorithm MiniSPN which is a practical and simplified version of LearnSPN [19]. MiniSPN runs
faster and is able to handle missing data and heterogeneous features which are both very common
in real world applications. MiniSPN is an algorithm very suitable for messy real world datasets.

As mentioned before, many structure learning algorithms provide tree structures for sum-
product networks. Rahman et al. propose post-processing approaches which induce graph SPNs
from tree SPNs by merging similar sub-structures [34]. The benefits of graph SPNs include smaller
computational complexity which provides faster online inference and better generalization accur-
acy. Rahman et al. show that graph SPNs can significantly boost the accuracy and prediction
time of tree SPNs. This is the case due to the substantially reduced number of parameters in the
sum-product network.

Most structure learning algorithm proposed to date are suitable for inputs of static length.
Melibari et al. propose dynamic sum product networks (DSPNs) for sequence data of varying
length [23]. A DSPN consists of a template network which is repeated a certain amount of times
based on the input sequence. The structure of the template model is learned by making use of a
local search technique. Melibari et al. compare the DSPN to a dynamic Bayesian network (DBN).
The DSPN fits sequential data better than static SPNs produced by for example LearnSPN. The
DSPNs also outperform the DBNs on several datasets.

The earlier proposed SearchSPN algorithm contains properties which are very suitable for
making it an online structure learning algorithm. Dennis et al. propose OnlineSearchSPN which
adapts SearchSPN such that it is able to use in an online fashion [11]. It is compared to a fast
learning, but poor performing model and to a slow learning, but good performing model. Dennis et
al. show how OnlineSeachSPN is able to show comparable performance to the slow learning model
with a learning time comparable to the fast learning model. This means that OnlineSearchSPN
shows very promising results.

Jaini et al. propose an structure learning algorithm called Prometheus [16]. Prometheus is
a graph partitioning based algorithm which creates multiple variable decompositions for learning
sum-product networks. Prometheus is able to function in low data regimes. The proposed al-
gorithm is tested thoroughly and is able to perform state of the art results on multiple datasets.

Peharz et al. propose the earlier explained RAT-SPNs [32]. RAT-SPNs are random mod-
els constructed from the input data. RAT-SPNs are able to perform predictive tasks as well as
generative modeling. The models are also highly robust when the input data contains missing

Advances in Understanding and Initializing Einsum Networks 13

CHAPTER 2. LITERATURE REVIEW

features. The RAT-SPNs are able to be trained in a classical deep learning manner, this means
by employing automatic differentiation, which results in easy use of GPUs.

Since most structure learners of sum-product networks are mostly based on intuition rather
than a clear learning approach, Trapp et al. propose an Bayesian framework for SPN structure
learning [41]. A very crucial part of the proposed structure learning algorithm is that the learning
of the computational graph is separated from the learning of the scope function over this com-
putational graph. The Bayesian SPNs proposed by Trapp et al. often improve test likelihoods
over other structure learning algorithms. Due to the Bayesian properties of the framework, the
networks are protected against overfitting. This makes them function very well in cases where
little data is present, since there is no need for a validation set.

2.3 Parameter Learning

Since sum-product networks are generative models by nature, these have been learned generatively
in the beginning. Gens and Domingos are the first to propose a discriminative learning algorithm
for SPNs [13]. This is done using an efficient backpropagation-style algorithm. Here, one prob-
lem to overcome, is the diffusion of the gradients when using a gradient descent algorithm. This
problem is solved using a so-called ’hard’ gradent descent. This means that marginal inference is
replaced by MPE inference. Gens and Domingos reach the best results to date on the CIFAR-10
dataset. Introducing a discriminative learning method opens up possibilities for more architec-
tures of SPNs.

Peharz, Gens and Domingos introduce a new constraint on sum-product networks [27]. This is
the selectivity constraint, which allows each sum node to only have one non-zero output for each
possible input. This constraint makes it possible to use new structure learning and optimization
approaches. This restricted class of SPNs is competing with the state of the art which makes them
viable and therefore expands the research on probabilistic models.

Rashwan et al. propose an algorithm called online Bayesian moment matching (oBMM) [36].
Since the current SPNs do not scale easiliy to large datasets, an online algorithm for parameter
learning is proposed by Rashwan et al. The oBMM algorithm can be distributed easily over many
machines, which makes it much more applicable to larger datasets. Rashwan et al. also compare
the online Bayesian moment matching to online versions of gradient descent. oBMM outperforms
other algorithms due to the distribution over multiple machines.

The current learning approaches of SPNs are largely based on the maximum likelihood prin-
ciple. This makes these approaches subject to overfitting. Zhao et al. propose an algorithm called
CVB-SPN which stands for collapsed variational inference for SPNs [47]. CVB-SPN is a determ-
inistic approximate Bayesian inference algorithm which is able to learn the parameters of an SPN
without it being subject to overfitting. The proposed algorithm is able to compete with state of
the art learning algorithms and is able to learn both in batch mode as in online settings.

Sum nodes in sum-product networks are earlier described as latent variables. However this
approach is in conflict with the completeness condition in sum-product networks. Peharz et al.
further explore the latent variable interpretation in sum-product networks [28]. Peharz et al. also
propose an algorithm, SPN augmentation, which proposes a remedy for this conflict. From the
SPN augmentation algorithm Peharz et al. find a sound derivation of the EM algorithm for sum-
product networks. The theory provided by peharz et al. is proven to be correct by verifying it on
many real-world datasets.

Learning the parameters of sum-product networks is mostly done by improving the internal

14 Advances in Understanding and Initializing Einsum Networks

CHAPTER 2. LITERATURE REVIEW

weights of the SPNs. Desana et al. focus on improving complex leaf distributions [12]. Desana et
al. propose an efficient method to learn leaf distributions with Expectation Maximization. This
is done by making use of the maximum likelihood function. The models proposed by Desana et
al. outperform state of the art parameter learning approaches, while containing a significantly
smaller amount of parameters.

Annotated classification data is often expensive to obtain, where on the other hand unlabelled
data is much easier to collect. Trapp et al. propose an algorithm which is able to perform semi-
supervised learning for sum-product networks [40]. This method has multiple advantages, firstly,
it is able to perform generative as well as discriminative semi-supervised learning. In addition
it guarantees that a model can only be improved when adding unlabelled data to the training.
The algorithm is also computationally efficient and does not enforce structural limitations on the
data. Because of these reasons this approach allows for a wide applicability in real-world problems.

Rashwan et al. propose a discriminative learning algorithm for sum-product networks, which is
based on the Extended Baum-Welch (EBW) algorithm [35]. A conditional data likelihood function
is formulated which is maximized by the EBW algorithm. Rashwan et al. show better results than
both the generative Expectation-Maximization algorithm and the discriminative gradient descent.

2.4 Extensions

Sum-product networks are often used to perform classification tasks. However Mauà et al. state
that this classification is often prone to overconfidence. Mauà et al. propose credal sum-product
networks, which are able to distinguish between reliable and unreliable classifications [22]. This
adds a layer of robustness to the SPNs.

Dennis et al. propose an algorithm which combines autoencoders with sum-product networks
[10]. The autoencoder-SPN (AESPN) combines two SPNs and an autoencoder into a single model.
It shows improved results when sampling from the AESPN compared to just a single SPN. This is
the case when sampling all the variables in the input, but also when sampling a subset of variables.
This makes the AESPNs very suitable for image reconstruction.

In sum-product networks, a choice has to be made what kind of representation is desired for
the random variables, i.e. Gaussian, Poisson or Logit functions. Molina et al. propose Mixed
SPNs, which is a deep architecture for hybrid domains [24]. By doing this there is no need for the
user to specify what kind of random variable representation should be used. The Mixed SPNs are
able to capture complex distributions across hybrid domains.

Sharir et al. propose sum-product quotient networks (SPQNs) which are a extension of sum-
product networks [39]. SPQNs are able to boost the expressive power of SPNs significantly. Sharir
et al. show how SPQNs are able to model distributions which can only be modelled by exponen-
tially large SPNs. The core concept of SPQNs is to incorporate conditional distributions in the
quotient nodes. Sharir et al. also prove how the SPQNs are still tractable models.

As mentioned earlier sum-product networks may be prone to robustness issues, particularly
when training them with scarce data. Conaty et al. further investigate this issue [6]. Conaty et al.
use a robustness measure to determine the reliability of a classification. When the classification
turns out to be unreliable, the task is given to another model. This method can be used to improve
the classification accuracy. Here the credal sum-product networks, as described earlier, are used
to determine the reliability.

Ko et al. mention the connection between sum-product networks and tensor networks [18].

Advances in Understanding and Initializing Einsum Networks 15

CHAPTER 2. LITERATURE REVIEW

This connection gives rise to tensor SPNs (tSPNs) which is a highly efficient model in terms of
its parameters compared to a normal SPN. The parameter compression does not influence the
accuracy of the networks by a high amount.

Sum-product networks struggle with capturing complex spatial relationships in image data.
Wolfshaar et al. propose Deep Generalized Convolutional sum-product networks (DGC-SPNs)
which are able to encode spatial features similarly to how CNNs do this [42]. This is all done while
perserving the validity of the SPN. DGC-SPNs are outperforming the standard SPN structure on
both generative and discriminative tasks, which include image inpainting and classification. The
DGC-SPNs are implemented in the well known Keras and TensorFlow frameworks, which makes
them efficient and straightforward to implement.

The current sum-product networks are still difficult to train on real-world data sets. Peharz et
al. propose Einsum Networks (EiNets) which are a novel implementation of sum-product networks
[29]. EiNets combine a large number of arithmetic operations in a single einsum-operation. This
means that much less memory is required and the networks are able to learn much faster.

2.5 Applications

Cheng et al. are the first ones to explore the field of speach in combination with sum-product
networks [5]. Cheng et al. use SPNs to model complex dependencies among words. Due to the
tractable inference and learning times, sum-product networks form a suitable framework for lan-
guage modeling. Cheng et al. show that the SPNs are able to capture rich dependencies among
words. The SPNs are outperforming other language models.

Amer et al. show how sum-product networks can be used for activity recognition in videos [2].
The focus of this work is on activities with multiple, alternative structures. The main example that
is used is classification of different activities in a volleyball game. Since here distinctions should
be made on very specific actions, which is the case in many other applications. The methods used
by Amer et al. outperform state of the art algorithms on activity detection.

In addition to the work of Amer et al., Wang et al. propose a spatial sum-product network,
which focuses on action recognition [44]. Here the actions are multiple spatial configurations of
body parts. This research is done for still images. The spatial SPN is able to model relationships
between parts of sub-images. The method proposed by Wang et al. shows to be effective.

Nath et al. propose Tractable Fault Localization Models (TFLMs) which use the newly pro-
posed sum-product networks [25]. This application of SPNs is able to infer locations of bugs in
software programs. The models are trained on a corpus of previously seen buggy programs. In
addition TFLMs are also able to learn from other sources, for example the output of other fault-
localization systems as features of the probabilistic model. TFLMs take advantage of the tractable
sum-product networks to make sure that the fault location probabilities are inferred efficiently.

Sguerra et al show an application of SPNs in Micro Aerial Vehicles (MAVs) [38]. Since MAVs
are not able to carry heavy sensors such as Lidar or RGD-B, a strategy where image classification
is used to guide the MAV is explored. Due to the fast an tractable inference of SPNs, an image
classification task is performed while in flight. This image classification can then be used to nav-
igate the MAV. Even though the learning of the SPNs can take longer than other methods, the
speed of answering the query out weights this completely.

16 Advances in Understanding and Initializing Einsum Networks

CHAPTER 2. LITERATURE REVIEW

2.6 Context to this Research

In the current research different learning approaches, including generative and discriminative ap-
proaches, have been proposed. However, how both approaches perform on generative and discrim-
inative tasks is not yet examined. This will be done in this work. Firstly the influence of the
parameters of the RAT-SPN structure will be tested, since the RAT-SPN structure will be used
in comparing the different learning approaches.

The initial parameters of probabilistic circuits are mostly taken from random distributions.
The current research does not propose methods to improve the initial state of the networks, before
learning them. Therefore several initialization methods will be proposed and tested in this work.
In addition, online improvement of probabilistic circuits is also a new topic, since it has not been
touched upon in the current research for probabilistic circuits. The Online Adaptation section will
focus on this topic, with the goal to extend the current research.

Advances in Understanding and Initializing Einsum Networks 17

Chapter 3

Network Analysis

In this chapter multiple analysis will be executed. First the RAT-SPN structure, implemented
in the Einsum Network library will be investigated. Then multiple different setups for Einsum
Networks will be tested.

3.1 Motivation

When using a machine learning model, most of the time the task for the model is already known.
This task can for example be a classification job. When this is the case, the most optimal learn-
ing approach to reach the best possible performance for this classification job should be used.
Sometimes it can also be possible to construct a network for multiple tasks. This means that the
network should perform well on multiple tasks.

Tasks can be split up in generative tasks and into discriminative tasks. Also the learning ap-
proaches can be split into generative learning approaches and discriminative learning approaches.
In this chapter the main focus will be on discovering an optimal setup for performing both a
generative and a discriminative task. In the process of finding this out, some research questions
that should be answered are the following: Is it possible to improve the performance of a gen-
erative task by a discriminative learning approach? Is it possible to improve the performance of
a discriminative task by a generative learning approach? What is the most optimal setup and
learning approach when performing both a generative and a discriminative task?

Firstly the RAT-SPN structure will be examined, since the tests for finding the most optimal
setup and learning approach will be conducted in the Einsum Network library by using the RAT-
SPN structure. Examining the RAT-SPN structure will make sure that the conclusions drawn
from comparing the different learning approaches will not be influenced by the structure. This
makes the research conducted in this chapter much more robust. Here the research questions that
arise are the following: How is the performance of the generative task influenced by the parameters
of the RAT-SPN structure? How is the performance of the discriminative task influenced by the
parameters of the RAT-SPN structure?

3.2 RAT-SPN Structure

The RAT-SPN structure, as explained earlier in chapter 1, is implemented in the Einsum Network
library. The depth and the number of repetitions are parameters that have to be provided in order
to use the RAT-SPN structure in the Einsum Network library. In this section, the main interest
is to find out how both parameters influence different tasks. Tasks that a network should be able
to execute can be either generative, for example modeling a distribution, or discriminative, for
example performing a classification task. Sometimes it is even desired that a network is able to

Advances in Understanding and Initializing Einsum Networks 19

CHAPTER 3. NETWORK ANALYSIS

perform both a generative and a discriminative task. Therefore in this section both tasks will be
executed and the influence of the parameters of the RAT-SPN structure on these tasks will be
examined.

3.2.1 Setup

The setup that has been chosen to examine the different parameters is a setup that is able to
perform both a generative task and a discriminative one. A so-called class discriminative (CD)
Einsum Network is used. This means that for every class in the input data a separate sub-Einsum
Network is constructed. All these sub-networks are then mixed together by a sum node. These
sub-Einsum Networks for every class adhere to the RAT-SPN structure. Each of the sub-Einsum
Networks are trained using Stochastic Gradient Descent with the objective to minimize the negat-
ive log-likelihood. As for the initialization of the network, random values are used. These values
are sampled from a uniform distribution between zero and one.

For these experiments very large, including very deep and wide networks are trained. This
means that a high amount of GPU memory is required. Because of this reason only the MNIST
and Fashion MNIST datasets are tested. The SVHN dataset, which will be used in later experi-
ments, did simply not fit into the GPU memory.

Some general settings which are required for Einsum Networks include the following. All the
leaf distributions are Binomials. Since every node in a Einsum Network is vectorized, a so-called
K parameter has to be specified. Here the vector length is set to 10. The batch size is set to 100
and every network is trained for 10 epochs.

3.2.2 Experiments

The goal of identifying the influence of both the depth of the network and the width of the network
can be reached by testing both the generative task and the discriminative task when only adapting
either the depth or the width.

Variable Width
To test the influence of the width of a network, a setup will be constructed such that the depth
will stay the same and only the number of repetitions will be increased. For each sub-Einsum
Network in the class discriminative structure the depth will be set to 3. The number of repetitions
will range from 2 to 64. This means that the width of the network will greatly increase, this also
increases the number of parameters of the network.

The results from this experiment are shown in figure 3.1. As can be observed both the log-
likelihood and the classification accuracy do not improve when increasing the network size by
adding more width to the model. This would suggest that increasing the width of the network
does not have any influence of the performance.

Variable Depth
Since the number of repetitions did not influence the performance of both the generative and
the discriminative task, the depth of the network will be tested now. Generally the depth of a
network makes it possible to learn more complicated distributions, it is expected that the depth
will increase the log-likelihood. For each sub-Einsum Network in the class discriminative structure
the depth will be tested in a range from 1 to 5. The number of repetitions will stay the same for
every network size, this will be set to 20.

20 Advances in Understanding and Initializing Einsum Networks

CHAPTER 3. NETWORK ANALYSIS

Figure 3.1: Results of a RAT-SPN structure with variable width

The results from this experiment are shown in figure 3.2. As can be observed the log-likelihood
grows with the increase in depth. This is exactly as expected, as the depth of the network increases
the capability of the network to model more complicated distributions. However when inspecting
the results of the classification task, for larger networks, and thus larger depths, the classification
accuracy makes a huge drop which is of course not desired.

Figure 3.2: Results of a RAT-SPN structure with variable depth

The Optimal Combination between Depth and Width
Only increasing the depth of the network did greatly increase the ability to improve the log-
likelihood. However a for larger network sizes a decline in classification performance is observed.
This was not the case when only increasing the number of repetitions. Because of this a combin-
ation of increasing both the depth and the number of repetitions will be tested. The depth of the
networks will range from 1 to 4 and the number of repetitions will range from 2 to 32.

The results from this experiment are shown in figure 3.3. As can be observed the drop in clas-
sification performance is not so clear anymore for the MNIST dataset. For the Fashion MNIST
dataset there exists still quite a drop in performance. This means that increasing the number of
repetitions made the classification accuracy more stable. It also means that for the larger network
sizes even more repetitions are needed to keep the results completely stable. Due to GPU memory
limitations, it was not possible to fully verify this hypothesis. And hence this could be tested more
thoroughly in some future work. However since the drop in performance for the MNIST dataset
is almost gone when increasing the number of repetitions, it is almost certain that adding more

Advances in Understanding and Initializing Einsum Networks 21

CHAPTER 3. NETWORK ANALYSIS

width to the network will stabilize the classification accuracy.

3.2.3 Discussion

To summarize this section, an optimal setup when using the RAT-SPN structure is a combina-
tion of both a deep and a wide network. The research questions that were stated earlier can be
answered by the following two statements. The depth of the network provides the ability for the
network to improve the generative task. The width of the network provides the ability for the
network keep the classification performance stable.

Figure 3.3: Results of a RAT-SPN structure with both increasing depth and width

3.3 Training Approaches

In this section, different setups for Einsum Networks are compared. The experiments conducted
will be focusing on comparing different learning approaches, different network structures, different
network sizes and different tasks. From all these options eight different experiments have been
set up. The main goal is to compare generative and discriminative learning methods and gen-
erative and discriminative tasks to each other. Some research questions that these experiments
should answer are: How do the different Einsum Networks perform when conducting a generative
or discriminative task? Is it possible to improve generative tasks with discriminative learning
approaches? Is it possible to improve discriminative tasks with generative learning approaches?

3.3.1 Setup

Initialization
Initialization is the main interest in this work. However the focus of this section is on comparing
generative and discriminative learning approaches. Therefore a simple initialization will be used.
This means that the parameters of the Einsum Networks are a initialized randomly. The random
samples are taken from a uniform distribution between zero and one.

Learning Approaches
Training the Einsum networks will be done by a generative and a discriminative learning ap-
proach. For both the generative approach and the discriminative approach, the same optimizer is
used. Namely Stochastic Gradient Descent (SGD). This makes the experiments comparable since
only the objective function is different in the generative and the discriminative learning approach.
SGD also requires a learning rate which is set to 0.2. The objective function that is optimized for

22 Advances in Understanding and Initializing Einsum Networks

CHAPTER 3. NETWORK ANALYSIS

the generative learning approach is the log-likelihood. Since SGD minimizes the loss, a negative
log-likelihood (nLL) loss is optimized. For the discriminative task the objective function that
has been chosen is Cross Entropy (CE) loss. This choice has been made since CE is a very well
performing objective function for a classification task. In both approaches the learning rate will
not be experimented with in these experiments. Therefore the learning rate is set to a generally
well performing rate.

Network Structures and Sizes
An Einsum Network, just like a neural network, can be constructed in different ways. Different
structures could be performing better on different tasks. This is the reason why the choice has
been made to suggest two different network structures. The first structure is a RAT-SPN as intro-
duced in Peharz et al. [32]. The RAT-SPN structure has been chosen due to its easy scalability of
network size. This makes it possible to compare different sizes of networks in a structured man-
ner. This structure will be referred to as a standard Einsum Network. The second structure is
the so-called class discriminative (CD) Einsum Network, as already explained earlier. This means
that for every class in the input data a separate sub-Einsum Network is constructed. All these
sub-networks are then mixed together by a sum node. These sub-Einsum Networks for every class
also adhere to the RAT-SPN structure.

When the same size is used for the standard Einsum Network as for every sub-Einsum Network
in the class discriminative structure, the logical remark can be made that the different structures
are very different in size. To make sure that the experiments are balanced, it is desired that
networks of the same size are compared. Hence this is why the sub-networks are scaled down
in size, based on the amount of classes in the input data. To give an example, when there are
four classes in the input data, there exist four sub-Einsum Networks in the class discriminative
structure, which are all four times as small as the standard Einsum Network. This means that,
when the sub-networks are mixed together the sizes of both structures compare to each other. By
constructing a class discriminative network the width of the network will be much larger than of
the standard Einsum network. Therefore it is most logical to make both the class discriminative
structure and the standard Einsum Network the same size by tweaking number of repetitions in
the RAT-SPN structure for every sub-Einsum Network in the class discriminative structure, since
the number of repetitions influences the width of the network. Hence when comparing the two
structures not only the number of parameters is comparable but also the width and the depth of
the networks are comparable.

In addition to just a single network size, it is still interesting to see how different sizes of net-
works perform. Because of this, every experiment will be tested with five different network sizes,
ranging from very small to relatively large. This is realized by tweaking the depth and the number
of repetitions of the RAT-SPN structure. The depth ranges from 1, in smallest case to 5, in the
largest case for both the standard Einsum Network and the class discriminative Einsum Network.
The number of repetitions ranges from 2 to 10 for each of the sub-Einsum networks in the class
discriminative structure. In the standard Einsum Network the number of repetitions ranges from
20 to 100.

Tasks
The networks will be performing both a generative and a discriminative task. For the generative
task, the log-likelihood will be measured. This is a measure which expresses how well the network
models the input distribution. A classification task is performed as the discriminative task. The
accuracy of the classification task is measured. It is interesting to see how both tasks perform
when changing other factors in the network.

Datasets
In order to get more robust results, all the experiments will be tested on three different datasets.
These datasets are MNIST, Fashion MNIST and the Street View House Numbers (SVHN) data-

Advances in Understanding and Initializing Einsum Networks 23

CHAPTER 3. NETWORK ANALYSIS

set. Both the MNIST and Fashion MNIST are black and white pictures of size 28 by 28 pixels.
The SVHN dataset contains colored images of 32 by 32 pixels. This means that the datasets
slightly differ from each other in terms of size and dimensions. Testing the experiments on differ-
ent datasets creates the opportunity to make a wider and more robust analysis of the experiments.

General Settings
Finally the experiments require some more parameters which will not be experimented with here.
Hence in all experiments these will be set to the same value. Namely the leaf distributions of
all the networks are chosen to be Binomial Distributions. The K, specifying the vector length in
Einsum Networks, is set to 10 in all experiments. The batch size for training and evaluation is
set to 100. This speeds up the training and evaluation by a lot, additionally it also stabilizes the
learning of the networks. Every network is trained for 10 epochs, which seems to be enough for
convergence.

3.3.2 Experiments

From the above described learning approaches and structures, four different setups have been con-
structed. Every setup will be tested on five different network sizes and on all the datasets. Every
setup will be tested on both the generative task and the discriminative task, which results in a
total of eight experiments. In order to get a clear view what is tested, table 3.1 shows an overview
of the different experiments. Every experiment is explained shortly down below.

nLL on EiNet nLL on CD EiNet CE on EiNet CE on CD EiNet

log-likelihood Experiment 1 Experiment 3 Experiment 5 Experiment 7

Classification Experiment 2 Experiment 4 Experiment 6 Experiment 8

Table 3.1: Overview of the experiments conducted in this section

Experiment 1
A standard Einsum Network is trained by optimizing the log-likelihood by Stochastic Gradient
Descent. The log-likelihood is measured.

This is the first experiment the goal is to optimize the log-likelihood and hence model the
input data as well as possible. Here a generative learning method is combined with testing a
generative task. This network should be good at generative tasks like completing a sample image
or generating new images.

Experiment 2
A standard Einsum Network is trained by optimizing the log-likelihood by Stochastic Gradient
Descent. A classification task is executed.

In this experiment the Einsum Network is also trained by the generative approach, namely by
optimizing the negative log-likelihood loss. In the learning phase this network is optimizing the
log-likelihood. However after learning the network, a classification task will be conducted, which
is a discriminative task. Therefore it will be interesting to see the results of this experiment since
this gives insight into whether or not it is possible to train a network generatively when conducting
a discriminative task.

Experiment 3
A class discriminative Einsum Network is trained by optimizing the log-likelihood of each sub
network independently. The log-likelihood of the full network is measured.

In experiment 3 a class discriminative Einsum Network is constructed. The generative learning
approach is executed by optimizing the log-likelihood of each sub-network for a particular class
by means of Stochastic Gradient Descent. Every sub-network is trained by the samples in the

24 Advances in Understanding and Initializing Einsum Networks

CHAPTER 3. NETWORK ANALYSIS

training data that correspond to the same class of the sub-network. Then the log-likelihood of the
complete network is measured.

Experiment 4
A class discriminative Einsum Network is trained by optimizing the log-likelihood of each sub
network independently. A classification task is executed.

In this experiment the same structure is used as in experiment 3. Also the learning approach
is the same. However instead of measuring the log-likelihood, a classification task will be conduc-
ted. When comparing this experiment to experiment 2, it is very interesting to see the change in
performance due to the structure of this network.

Experiment 5
A standard Einsum Network is trained by executing a SGD algorithm with a Cross Entropy
objective function. The log-likelihood is measured.

This is the first experiment in which the discriminative learning approach will be tested. This
is realized by executing a standard Stochastic Gradient Descent algorithm with the objective to
minimize the Cross Entropy loss. The log-likelihood is measured. It is interesting to see how the
discriminative learning approach affects the generative task which is performed in this experiment.

Experiment 6
A standard Einsum Network is trained by executing a SGD algorithm with a Cross Entropy
objective function. A classification task is executed.

In experiment 6, the discriminative learning approach from the last experiment will be com-
bined with a discriminative classification task.

Experiment 7
A class discriminative Einsum Network is trained by executing a SGD algorithm with a Cross
Entropy objective function. The log-likelihood is measured.

Experiment 7 will be measuring the log-likelihood of a class discriminative Einsum Network.
The structure is the same as earlier described in experiment 3. In this experiment this structure is
combined with a discriminative learning approach, namely a standard Stochastic Gradient Descent
algorithm with the objective to minimize Cross Entropy loss. As opposed to experiment 3 the
full class discriminative network is trained using all the training samples. In this experiment, the
class discriminative structure is combined with a discriminative learning approach. A generative
task is executed, namely measuring the log-likelihood. It is interesting to see how the generative
task is affected by the discriminative learning approach in this experiment.

Experiment 8
A class discriminative Einsum Network is trained by executing a SGD algorithm with a Cross
Entropy objective function. A classification task is executed.

Finally in experiment 8, a class discriminative Einsum Network is trained by applying SGD
with the objective to minimize the Cross Entropy loss. Here a classification task is executed.
This experiment will be testing the synergy between the discriminative learning approach and the
discriminative task.

3.3.3 Impressions

Generative task
The results of the experiments will show the differences in the effectiveness of the learning ap-
proaches in combination with the structure. When analyzing the results of the generative task,
namely measuring the log-likelihood, it is expected that the generative learning approach out-
performs the discriminative learning approach, when the structure of the networks is the same.

Advances in Understanding and Initializing Einsum Networks 25

CHAPTER 3. NETWORK ANALYSIS

Therefore it is expected that experiment 1 outperforms experiment 5 and experiment 3 outper-
forms experiment 7.

Then the comparison between the structure from the standard Einsum Network and a class
discriminative Einsum Network has to be made. Here it is expected that for the generative task
both structures are able to perform very equally. Since both structures have the same amount of
parameters and since both structures are equally deep and wide models, the networks should be
able to model the input distribution very similarly. Therefore it is expected that experiment 3
and experiment 1 perform very similar and also experiment 7 and experiment 5 should perform
very similarly.

Putting it all together, experiment 1 and experiment 3 should perform very similar. Also ex-
periment 5 and 7 should perform very similar. Experiment 1 and experiment 3 are expected to
outperform experiment 5 and experiment 7.

Discriminative Task
For the discriminative task the results are expected to differ. Namely the class discriminative
structure should make it much easier for the Einsum Networks to classify a sample. Also, the dis-
criminative learning approach is expected to outperform the generative learning approach, when
the network structure is the same. Hence experiment 6 should outperform experiment 2 and ex-
periment 8 should outperform experiment 4.

Since the class discriminative structure should make the classification task so much easier, it
is expected that experiment 4 outperforms experiment 2 and experiment 8 should perform better
than experiment 6. In addition it is anticipated that the change in structure has a larger impact
than the change in learning method for the discriminative task. This means that experiment 4 is
expected to perform better than experiment 6.

This will result in the following order. Experiment 8 should be the best performing on the
discriminative task, followed by experiment 4. Then experiment 6 comes in at the third best
performing experiment. Which leaves experiment 2 to be worst performing for the discriminative
task.

3.3.4 Observations

Generative Task
The results of the generative task are very robust, since all datasets show very similar trends
in their results for every experiment. In addition to that, all experiments show a positive trend
between the log-likelihood and the network size. This means that the differences in performance
that occur are a result of the change in the structure of the network and the different learning
approaches.

The first hypothesis that was made stated that the generative learning method should outper-
form the discriminative learning method. This hypothesis is completely accepted when analyzing
the results. Experiment 1 and 3 largely outperform experiment 5 and 7, due to the difference in
learning approach.

The second hypothesis stated that the class discriminative structure should not have a large
impact on the generative task. When inspecting experiments 1 and 3 in figure 3.4, it can be
observed that the class discriminative structure does slightly outperform the standard structure.
However in experiments 5 and 7 the class discriminative structure does not show a difference. This
is very much in line with the expectations, namely that the class discriminative structure does not
have a large impact on the generative task.

26 Advances in Understanding and Initializing Einsum Networks

CHAPTER 3. NETWORK ANALYSIS

To make sure that the generative task is performed best, it is desired to have a generative
learning method. The structure of the network does have less of an influence. This means that
the setup of either experiment 1 or experiment 3 is optimal for the generative task.

Discriminative Task
The classification task was greatly impacted by the structure. The standard Einsum Network
was not able to learn how to perform the classification task when the network was trained by the
generative learning approach. The discriminative learning approach did improve the results for
the discriminative task already. However when the class discriminative structure is applied, the
networks were able to perform the classification task even better.

When comparing the different learning approaches, it was expected that the discriminative
learning approach would outperform the generative learning approach. This hypothesis is correct
for the standard Einsum network. However when using the class discriminative structure the res-
ults of both training methods perform quite similar. For larger network sizes it can be observed
that experiment 8 performs slightly better than experiment 4, this shows the synergy between the
discriminative learning method and the discriminative task. However the results of experiment 4
are much more stable and generally better performing. The second hypothesis, that states that
the class discriminative structure outperforms the standard structure is completely accepted since
experiment 4 outperforms experiment 2 and experiment 8 outperforms experiment 6. With that
the last hypothesis, stating that the network structure has more impact on the results than the
learning approach, is also accepted.

This means that for the discriminative task, a class discriminative structure is desired. The
learning approach is of less importance for the discriminative task.

3.3.5 Discussion

The experiments described in this section make for a very good analysis of the different learning
approaches for different tasks. General trends that are discovered are: The classification accuracy
is improved a lot by the class discriminative structure. The class discriminative structure does not
harm the ability to improve the log-likelihood .

When constructing a model which should perform both a generative task as well as a discrim-
inative task, the most optimal setup would be a class discriminative structure, combined with
generative learning for each of the sub-Einsum Networks in the class discriminative structure.
This is the setup that was used in experiments 3 and 4. This setup will therefore be used during
further experiments in this work.

Advances in Understanding and Initializing Einsum Networks 27

CHAPTER 3. NETWORK ANALYSIS

Figure 3.4: Results of experiments 1 to 8

28 Advances in Understanding and Initializing Einsum Networks

Chapter 4

Initialization

This chapter explains three different initialization algorithms, namely Leaf initialization, Cluster
initialization and Einsum Cluster initialization. The main idea of the algorithms is to provide the
Einsum Network with a suitable initialization for further training and an improved starting point.

4.1 Motivation

Now that it is known how the RAT-SPN structure influences the ability to improve both the gener-
ative and the discriminative task and which possible setup to use for performing both a generative
and a discriminative task, it is time to move on to the next topic.

Initialization seems like a very small part of training a neural network. However the initial
values of a network can make the difference between convergence and no convergence at all. In
neural networks, initialization is a very well researched topic, however, in probabilistic circuits
there has not yet been done any direct research to the topic of initialization at all. In the current
state of the art, all the probabilistic circuits are initialized with random weights. These random
weights seem to converge, but it is not yet known how much performance improvement can be
reached with a new and improved initialization method. Also the initialization of a network
can possibly speed up the training process. This chapter aims at proposing several initialization
algorithms to improve the performance of Einsum Networks. These initialization algorithms will
be tested thoroughly.

4.2 Algorithms

Leaf Initialization
The first initialization method proposed is a more basic one. The Leaf initialization namely con-
sists of only initializing the leaf distributions of the Einsum Network. This means that the internal
weights are initialized by random noise as is standard in Einsum Networks.

The leaf nodes consist of Binomial distribution vectors which each have to be initialized with
a success probability. To improve the initialization of these leaf distributions, the training data is
used to determine how these distributions should be initialized. This is realized in the following
way. Each pixel in the input data is defined by a value between 0 and 255. For each pixel the
average value of all the input samples is computed, then this average is normalized to get a value
between 0 and 1.

By using this method, a probability, for each pixel in the input images, can be calculated. This
probability is then used to initialize the success probability of the Binomial distribution vector

Advances in Understanding and Initializing Einsum Networks 29

CHAPTER 4. INITIALIZATION

which corresponds that particular pixel.

Cluster Initialization
The second initialization method proposed is the Cluster initialization algorithm. An Einsum
Network is built by combining multiple layers consisting of nodes into a full network. To improve
the starting point for such a network, a clustering algorithm will be tested. The main idea behind
this clustering algorithm is to use the samples of the training data to determine weights for an
Einsum Network. This is realized by executing a hierarchical clustering method on the training
data.

The algorithm can be explained best when applying it to a normal SPN. A SPN consists of
sum nodes, product nodes and leaf nodes. The start of the algorithm will put all data samples in
the top node of the network, then the network will be traversed from top to bottom.

A sum node will take the samples that it is given. This consists of the union of all the samples
that are passed to this sum node from its parents. When the sum node is a root node it is simply
given all the samples. The sum node then performs a KMeans clustering algorithm which clusters
the data samples in as many clusters as the sum node has children. The weights for the sum node
are determined by the number of data samples in a cluster. Then the data samples in a cluster
are passed to the correct child, namely corresponding to the cluster the samples are assigned to.

A product node will take the union of all the samples that are passed to this product node
from its parents. Then the product node will distribute all the samples to all of its children. Here
no clustering is executed, since there are no weights that have to be initialized in a product node.

A leaf node does also not perform clustering, however it should be initialized. This is done by
taking the union from all the samples that are passed to this leaf node from its parents. Then it
will take the average value of these samples to initialize the leaf node in the same way as explained
in the Leaf initialization algorithm.

Summarizing, the training samples are assigned to the root node of a SPN, when reaching a
sum node the samples are divided over its children, when reaching a product node all the samples
are distributed to all its children and a leaf node uses the assigned samples. In this way the
samples are divided over the network in a structured way and the initial values are based on this
division of samples. This should improve the networks ability to learn.

Since this is how the algorithm would work in a SPN the step to a Einsum Network has to be
made. An Einsum Network is a vectorized version of a SPN. This means that a node in a Einsum
Network has a full vector of values instead of one. However the algorithm can still be implemented
in the same way. The initial values determined by the algorithm as described above can simply
be duplicated for every value in the vector. This is a rather simple approach to use the algorithm
in Einsum Networks. A more Einsum Network tailored approached is described as the Einsum
Cluster initialization algorithm in the next section. Algorithm 4 shows the pseudo code for the
Cluster initialization.

30 Advances in Understanding and Initializing Einsum Networks

CHAPTER 4. INITIALIZATION

Algorithm 4 Cluster initialization

1: Assign all training samples to root node
2:

3: for node in EinsumNetwork.nodes do
4: if node == sum node then
5: KMeans(#node.children, node.samples)
6: node.weights = #samples in each cluster
7: for child in node.children do
8: for sample in node.samples do
9: if sample is in same cluster as child then

10: child.samples = child.samples + sample
11: end if
12: end for
13: end for
14: end if
15:

16: if node == product node then
17: for sample in node.samples do
18: for child in node.children do
19: child.samples = child.samples + sample
20: end for
21: end for
22: end if
23:

24: if node == leaf node then
25: node.weights = average(node.samples)
26: end if
27: end for

Einsum Cluster Initialization
The Einsum Cluster Algorithm is a more advanced version of the Cluster initialization algorithm
described above. It makes use of the vectorized nodes in an Einsum Network. In order to determ-
ine the weights, the Einsum Network is traversed top down, in layer-wise fashion. An Einsum
Network consists of Einsum Mixing layers, Einsum layers and a Leaf layer. Each layer functions
differently and therefore has its own implementation of the Einsum Cluster initialization algorithm.

The Einsum Mixing Layer consists of M sum nodes, each having a maximum number of chil-
dren D. Every sum node is vectorized by a vector of length K. This means that the weight tensor
of a Einsum Mixing Layer has a dimension of D×M×K. For every sum node in the Einsum Mix-
ing Layer, the algorithm executes a KMeans clustering of D clusters, for every K. This means that
in total M×K clusterings are executed to determine the complete weight tensor of size D×M×K.

These clustering algorithms are executed based on the samples that are saved in the layer.
Namely every sum node in the Einsum Mixing Layer has, for every k ∈ K, a list of sample indices
of the training data. These samples are used in the clustering algorithm for that particular node
and k and are clustered into D clusters. From such a clustering the weights are determined by
counting the number of samples in each cluster. Then the samples are propagated to the successor
of the sum node in the next layer.

The Einsum Layer consists of L sum nodes, each having one product node as a child. These
product nodes again have exactly two children. All these nodes are vectorized by vectors of length
K. Here every combination of children and parent have its own weight. Which means that an
Einsum Layer has a weight tensor of the dimension L×K ×K ×K. For every sum node in the

Advances in Understanding and Initializing Einsum Networks 31

CHAPTER 4. INITIALIZATION

Einsum Layer, the algorithm executes a clustering K times, each clustering consists of K × K
clusters. This means that in total L×K clusterings are executed to determine the complete weight
tensor of size L×K ×K ×K.

Again these clustering algorithms are executed based on the samples that are saved in the
layer. Namely, for every sum node in the Einsum Layer has, for every k ∈ K, a list of sample
indices of the training data is saved. These training samples are clustered into K × K clusters.
The weights are again determined by counting the number of samples in a cluster. Again for every
sum node the correct samples are propagated to the successors of the sum node.

The Factorized Leaf Layer does not perform clustering. The weight matrix of the Factorized
Leaf layer has the dimensionality D ×K × R. Here D is the number of Random Variables, K is
again the length of the vectors and R is the number of the so-called replica as described in Peharz
et al.[29]. The replica index provides a connection between the nodes in the Factorized Leaf Layer
and the weight matrix. Hence from the samples that are assigned to a particular node, an average
value can be calculated for the correct spot in the weight matrix. This results in the initialization
of the complete Einsum Network. Algorithm 5 shows the pseudo code for the Einsum Cluster
initialization

Algorithm 5 Einsum Cluster initialization

1: Assign all training samples to every spot in the root node vector
2:

3: for layer in EinsumNetwork.layers do
4: if layer == EinsumMixingLayer or layer == EinsumLayer then
5: for node in layer.nodes do
6: for v in node.vector do
7: KMeans(#v.children, v.samples)
8: v.weights = #samples in each cluster
9: for child in v.children do

10: for sample in v.samples do
11: if sample is in same cluster as child then
12: child.samples = child.samples + sample
13: end if
14: end for
15: end for
16: end for
17: end for
18: end if
19:

20: if layer == FactorizedLeafLayer then
21: for node in layer.nodes do
22: for v in node.vector do
23: v.weights = average(v.samples)
24: end for
25: end for
26: end if
27: end for

4.3 Experiments

The goal of an initialization algorithm is to improve the starting point of a network. In this
section the Leaf initialization, Cluster initialization and Einsum Cluster initialization algorithms
will be tested in various ways. The setup that has been chosen is the same as in experiment 3

32 Advances in Understanding and Initializing Einsum Networks

CHAPTER 4. INITIALIZATION

and experiment 4 in described in section 3.3. This means that a class discriminative structure
is trained by a standard SGD algorithm which optimizes the log-likelihood of each sub-Einsum
Network in the class discriminative structure. The initialization algorithms are tested on all three
datasets, namely the MNIST, Fashion MNIST and SVHN dataset. The general settings that are
used are also the same, namely the K, specifying the vector length, is set to 10 and the batch size
is set to 100.

In addition to this the KMeans algorithm from the SKLearn library also requires two para-
meters. These are the maximum iterations that the KMeans algorithm can run and the number of
different random starts of the KMeans algorithm. These settings are set to 100 and 3 respectively.

Absolute Improvement
The first experiment that will be executed is testing the absolute improvement of the state of the
network after only the initialization. All three algorithms, namely the Leaf initialization, Cluster
initialization and Einsum Cluster initialization will be compared to a completely random initial-
ization. This will be done by testing the log-likelihood and classification accuracy directly after
initialization. Here it is expected that all three algorithms will outperform the random initializ-
ation. Since the Einsum Cluster initialization will execute the most amount of clusterings and
has therefore the most amount of variation in weights, it is expected that the Einsum Cluster
initialization will perform best.

Figure 4.1 shows the results of these experiments. Every initialization algorithm is shown by
a different color. As can be seen, the results of the Einsum Cluster initialization algorithm and
Leaf initialization algorithm are very comparable. They both outperform a random initialization
in almost all cases. The Cluster initialization algorithm does show the best performance in both
experiments for all the datasets. This is a surprising result since this algorithm is more general
version of the Einsum Cluster initialization.

Performance During Training
To further investigate the impact of the initialization algorithms, a test will be executed where the
performance is measured after every epoch. The goal of this experiment is to find out whether or
not the initializations impact the results when training the network. It is expected that the Leaf
initialization, Cluster initialization and Einsum Cluster initialization will perform better in earlier
epochs.

Figure 4.2 shows the results of the different initialization algorithms after every epoch. When
testing the log-likelihood it can be observed that only directly after the initialization there is a
significant difference between the algorithms. This means that the initialization does not influence
the ability of the network to improve the generative task. When inspecting the results of the
classification task there are some differences between the initialization algorithms. This is mainly
present in the SVHN dataset, which is actually the most complicated one. The Cluster initializa-
tion algorithm performs best in this case.

Advances in Understanding and Initializing Einsum Networks 33

CHAPTER 4. INITIALIZATION

Figure 4.1: Results of testing different initialization algorithms directly after initialization

34 Advances in Understanding and Initializing Einsum Networks

CHAPTER 4. INITIALIZATION

Figure 4.2: Results of different initialization methods after every epoch

Advances in Understanding and Initializing Einsum Networks 35

CHAPTER 4. INITIALIZATION

4.4 Discussion

The initialization algorithms proposed in this section do improve the initial state of the Einsum
Network. After training there is no difference anymore between the random initialization and the
proposed initialization algorithms. This means that the initialization algorithms proposed in this
chapter can be used in scenarios where the initial state of the Einsum Network is good enough to
perform a certain task. In addition, this also includes scenarios where there is a lack of resources
to properly train an Einsum Network.

36 Advances in Understanding and Initializing Einsum Networks

Chapter 5

Online Adaptation

This chapter introduces Online Adaptation, which aims to improve a network at a very low cost.
Online Adaptation means updating the network with new samples without completely reconstruct-
ing the network again. More precisely this means updating the weights and distributions of the
Einsum Network in an online fashion.

5.1 Motivation

In the previous chapter, the main takeaway was that the initialization algorithms did only im-
prove the state of the Einsum Network right after the initialization. When training the network
the proposed initialization algorithms did not show improved results over random initialization.
Because of this, the novel idea came up to use the initialization to improve the networks after
training. This resulted in Online Adaptation algorithms, which improve the state of the network
when new samples flow in. This has never been done in the context of probabilistic circuits. The
Online Adaptation does not completely retrain the Einsum Networks, but use the initialization to
slightly improve the weights and leaf distributions of the networks.

The Online Adaptation could be very useful in scenarios where initially only very few samples
are available. Then when new samples present itself, they can immediately be used to improve the
state of the network, without having the high cost of completely retraining the network. This also
means that a certain network, which is trained on more general samples, is able to adapt to a very
specific scenario. This can be best explained by an example. Right now smart lawn mowers and
smart vacuum cleaners are used more and more. When they are trained on very general samples
to perform its job it does not yet know the environment in which it will operate. When it is
already set in use, the new environment does provide new samples to the network. It is also the
case that both the lawn mower and the vacuum cleaner do not have the hardware to fully retrain
a network. This is where Online Adaptation can be very useful, since it is able to improve and
tailor the network to the new environment in which the smart devices operate. This can be done
at a very low cost.

5.2 Algorithms

Both the Cluster initialization and the Einsum Cluster initialization use the training samples to
generate clusters and then divide the samples over the network to construct a good initialization.
When a new sample arrives after the initialization this sample can still be considered. This can
be done in the following way.

Online Adaptation for Cluster Initialization
A new sample flows in and is assigned to the root node of the Einsum Network. This sample is

Advances in Understanding and Initializing Einsum Networks 37

CHAPTER 5. ONLINE ADAPTATION

considered and propagated downwards in the network.

In a sum node, previously, when initializing the network, a clustering is performed. For this
sum node the cluster centers are saved and the new sample can be assigned to one of the clusters
by a distance calculation. Then the weights of this sum node are updated by using the new amount
of samples in a cluster. Afterwards the sample is propagated downward to the child node which
corresponds to the cluster to which the sample is assigned to.

In a product node, no clustering was executed during the initialization. Similar to the ini-
tialization algorithm, the Online Adaptation algorithm also passes the new sample to all of the
children of this product node.

In a leaf node, during initialization an average value was calculated based on the samples that
were assigned to that particular leaf node. This average value can be updated with the new sample
and this updated average is used in the leaf node.

Summarizing, the already initialized network is adapted by feeding it a new sample. This gives
rise to applications where no training is or can be used. It is expected that after adding a substan-
tial amount of samples the network is not configured optimally and would need a complete new
initialization, since the clusters would not represent the data well enough anymore. Algorithm 6
shows how this is implemented. This algorithm can be executed multiple times after the initializ-
ation.

Algorithm 6 Online Adaptation for Cluster initialization

1: Assign online samples to root node
2:

3: for node in EinsumNetwork.nodes do
4: if node == sum node then
5: Assign node.online samples to appropriate cluster
6: node.weights = #samples in each cluster
7: for child in node.children do
8: for sample in node.online samples do
9: if sample is in same cluster as child then

10: child.online samples = child.online samples + sample
11: end if
12: end for
13: end for
14: end if
15:

16: if node == product node then
17: for sample in node.online samples do
18: for child in node.children do
19: child.online samples = child.online samples + sample
20: end for
21: end for
22: end if
23:

24: if node == leaf node then
25: node.weights = update average(node.weights, node.online samples)
26: end if
27: end for

38 Advances in Understanding and Initializing Einsum Networks

CHAPTER 5. ONLINE ADAPTATION

Online Adaptation for Einsum Cluster Initialization
The Einsum Cluster initialization algorithm did take more advantage of the structure of Einsum
Networks to cluster the samples of the training data into valid weights for the network. This is
done by enabling different values for every spot in the vector of length K. Online Adaptation for
the Einsum Cluster initialization algorithm follows the same principles as before. Namely saving
the cluster centers, assigning new samples to the clusters that are already present and updating
weights accordingly.

The new samples, which are assigned to a sum node, are assigned to the clusters, that were
previously calculated during initialization, by a distance calculation. Afterwards the samples are
propagated downwards to the correct children of the sum node, corresponding to the cluster to
which the sample is assigned. In the Einsum Cluster initialization algorithm, different clusterings
have been performed for every sport in the vector of length k. In the Online Adaptation algorithm
this is also taken into account, such that when a sample is assigned to i.e. the first sport in the
vector, then when propagating the sample downwards, it is only considered for the first spot of
the child vectors. By doing this the algorithm takes full advantage of the vectorized format of the
Einsum Networks.

During Einsum Cluster initialization, a clustering is also executed in a product node. When
running the Online Adaptation algorithm, the same principle is used as in a sum node. Namely
cluster centers are saved during initialization and with a distance calculation the samples are as-
signed to clusters. Here again the vectorized form of Einsum Networks is considered as explained
before. After the weights are updated to the new number of samples in a cluster, the samples are
propagated to the correct children corresponding to the cluster, to which the sample is assigned to.

In a leaf node, no clustering is executed but an average value is calculated during initialization.
This average value is different for every place in the vector of length K. Hence, every average
value is updated with the new sample assigned to that particular node and to the particular spot
in the vector.

This is implemented in the Einsum Networks in the following way, depicted by Algorithm 7.
Again this algorithm can be executed multiple times after the initialization.

Advances in Understanding and Initializing Einsum Networks 39

CHAPTER 5. ONLINE ADAPTATION

Algorithm 7 Online Adaptation for Einsum Cluster initialization

1: Assign all online samples to every spot in the root node vector
2:

3: for layer in EinsumNetwork.layers do
4: if layer == EinsumMixingLayer or layer == EinsumLayer then
5: for node in layer.nodes do
6: for v in node.vector do
7: Assign node.online samples to appropriate cluster
8: v.weights = #samples in each cluster
9: for child in v.children do

10: for sample in v.samples do
11: if sample is in same cluster as child then
12: child.online samples = child.online samples + sample
13: end if
14: end for
15: end for
16: end for
17: end for
18: end if
19:

20: if layer == FactorizedLeafLayer then
21: for node in layer.nodes do
22: for v in node.vector do
23: v.weights = update average(v.weights, v.online samples)
24: end for
25: end for
26: end if
27: end for

5.3 Experiments

Testing the Online Adaptation algorithm can be done in various ways. Namely it is interesting to
see how performance is adapting when adding samples over time. This can be done by one sample
at a time but this can also be done by adding multiple samples at a time, in a batched manner.
In addition to that it will be interesting to see how the algorithm will perform when adding only
a small amount of samples, but also when adding a large amount of samples. Perhaps there ex-
ists a clear point where performance degrades such that a new initialization has to be executed.
This gives rise to comparing a complete fresh initialization on a certain amount of samples to an
initialization combined with online adapted samples.

The setup for the tests of the Online Adaptation will be as follows. A fixed amount of data
samples will be used for the initialization of the network. This can be a large amount or a smaller
amount. The network will be initialized and trained with these samples. This is the starting
point of the graph that will be shown. Then another part of the data will be used for Online Ad-
aptation. After each batch of Online Adaptation the performance of the network will be tested.
To get good insight into the influence of the Online Adaptation, the performance without adapt-
ation will also be tested when adding samples. This will be shown in the graphs with a black color.

Again for the Einsum Network the same setup is used as in experiment 3 and 4 of section
3.3. This means that a class discriminative structure is used. Each of the sub-Einsum Networks
of the class discriminative structure is trained using SGD with the objective to optimize the log-
likelihood. All the experiments in this chapter are executed on the MNIST dataset and sometimes

40 Advances in Understanding and Initializing Einsum Networks

CHAPTER 5. ONLINE ADAPTATION

also the Fashion MNIST is test, this is mentioned when this is the case. The standard para-
meters for the Einsum Network are also the same as in the previous chapters, namely the K is
set to 10, the batch size is set to 100, the number of different random starts of the clustering al-
gorithm is set to 3 and the maximum number of iterations of the clustering algorithm is set to 100.

Online Adaptation for Cluster Initialization with 45k Samples Initialization and 5k
Samples Online Adaptation
In this section the results of running the Online Adaptation for Cluster initialization will be
presented. 45k samples are used to initialize and train the network and 5k samples are used for
the Online Adaptation. The network is adapted by adding 100 samples each time.

Figure 5.1 shows the results of this first test. The two images show how the performance ad-
apts when running the Online Adaptation algorithm. It can be observed that, due to the Online
Adaptation, the network performance makes a huge drop for both the log-likelihood as well as the
classification accuracy. This means that the first batch of the Online Adaptation makes the Ein-
sum Network worse. After this first drop, the performance is increasing slightly due to the Online
Adaptation. However the performance never reaches the black reference line, which shows the
performance of not doing anything after training the network. This means that it is never worth
it to do the Online Adaptation for this setup. Here only the results for the MNIST dataset are
shown. The Fashion MNIST dataset provides exactly the same results as are shown here. A logical
next step in testing will be the Online Adaptation for the Einsum Cluster initialization. Since the
Einsum Cluster initialization takes more advantage of the structure of the Einsum Networks it is
expected that the Online Adaptation for the Einsum Cluster initialization is able to perform better.

Figure 5.1: Results of Online Adaptation for Cluster initialization, 45k samples initialization, 5k
samples Online Adaptation

Online Adaptation for Einsum Cluster Initialization with 45k Samples Initialization
and 5k Samples Online Adaptation
Since the Online Adaptation for Cluster initialization did show a drop in performance due to the
Online Adaptation, the question arises whether or not the Online Adaptation for Einsum Cluster
initialization also show this drop in performance. This is tested using 45k samples for the initial-
ization of the network and for 5k samples for the Online Adaptation.

Figure 5.2 shows the result of this testing setup. Here only the results for the MNIST dataset
are shown, since the results of the Fashion MNIST dataset are very similar. As can be observed
the drop in performance does not exist here, which is a positive sign. However after adaptation
the performance slowly goes down by a little bit after every iteration. This again means that the
Online Adaptation never outperforms the reference of not doing anything after training.

Advances in Understanding and Initializing Einsum Networks 41

CHAPTER 5. ONLINE ADAPTATION

When looking very closely, experiment 3 shows very small positive results when adapting with
only 500 samples. It could be that the number of samples added by the Online Adaptation should
be much smaller. Therefore a next logical step in testing the Online Adaption will consist of a
setup by using a smaller amount of samples for the Online Adaptation.

Figure 5.2: Results of Online Adaptation for Einsum Cluster initialization, 45k samples initializ-
ation, 5k samples Online Adaptation

Online Adaptation for Einsum Cluster Initialization with 45k Samples Initialization
and 1k Samples Online Adaptation
In the previous setup, a very small positive result when only adapting the network with a small
amount of samples is observed. Therefore a closer look to this scenario is taken in this setup.
Namely the same 45k samples is used for initialization as well as training the network. Then 1000
samples are used to adapt the network.

Figure 5.3 shows the results of this experiment. The results of testing the log-likelihood go
up for the first 600 samples of Online Adaptation. Here the Online Adaptation outperforms the
reference line of doing nothing after training the network. This is a positive result and shows that
even after training the meaning of the clustering, performed during initialization, does still hold
up. When inspecting the classification accuracy, the Online Adaptation performs very similar
to the reference line. This means that for a classification task the Online Adaptation does not
improve the results. When adding more than 600 samples, the performance of the log-likelihood
goes slowly down. This means that the network would need a fresh initialization combined with
a fresh training phase.

Online Adaptation for Einsum Cluster Initialization with 1k Samples Initialization
and 1k Samples Online Adaptation
Since initialization and training with a large amount of samples shows very minimal results, this
setup has quite the opposite, namely it is initialized and trained with a very small amount of
samples. The setup is initialized and trained with only 1k samples. Then the Online Adaptation
is executed for another 1k samples. By only using 1k samples for initialization and training, it is
expected that that the training did not reach its full potential. This should make room for the
Online Adaptation to improve the results.

Figure 5.4 shows the result of this testing setup. As can be observed, the blue lines showing
the performance of the Online Adaptation, lie above the black reference lines. This means that the
Online Adaptation is doing a better job than doing nothing after training. This means that the
hypothesis made did fully hold up, namely the Online Adaptation is able to improve the results

42 Advances in Understanding and Initializing Einsum Networks

CHAPTER 5. ONLINE ADAPTATION

Figure 5.3: Results of Online Adaptation for Einsum Cluster initialization, 45k samples initializ-
ation, 1k samples Online Adaptation

for both the log-likelihood and the classification accuracy. However these results are only in a very
specific scenario, where only a very small amount of samples is used for training and initialization.

To further explore this specific scenario, it is interesting to know how large the initialization
and training set can be, such that the algorithm still shows positive results. This will be tested in
further experiments

Figure 5.4: Results of Online Adaptation for Einsum Cluster initialization, 1k samples initializa-
tion, 1k samples Online Adaptation

Online Adaptation for Einsum Cluster Initialization with 2k Samples Initialization
and 1k Samples Online Adaptation
After seeing some positive results in the previous testing setup, it will be tested when these pos-
itive results stop. Because of this, a setup has been created using 2k samples for initialization
and training. The network is adapted using 1k samples. This means that the training is able
to improve the network by a larger margin and hence it is harder for the Online Adaptation to
improve on these results.

Figure 5.5 shows the result of this testing setup. The results of this setup immediately show
negative results of the Online Adaptation. The Online Adaptation never outperforms the ref-
erence of doing nothing shown by the black line, for the generative task, namely improving the
log-likelihood. The classification accuracy improves slightly when adapting the network. These

Advances in Understanding and Initializing Einsum Networks 43

CHAPTER 5. ONLINE ADAPTATION

results show that only for very small initialization and training sets the Online Adaptation actually
makes sense. When using 2k samples to initialize and train the network, the network is already
too good for the Online Adaptation to show results.

Figure 5.5: Results of Online Adaptation for Einsum Cluster initialization, 2k samples initializa-
tion, 1k samples Online Adaptation

5.4 Minimal Results

The experiments of the Online Adaptation algorithms show very minimal results. The cases where
the Online Adaptation shows positive results have a very small set of samples which the network
is trained with. The initializations itself did improve the results by a lot. On the contrary the
Online Adaptation that adheres to this initialization does not show such good results, therefore it
is interesting to find out why this is the case. This is analyzed in this section.

Clustering
A large part of both the Cluster initialization and the Einsum Cluster initialization algorithms is
the clustering algorithm. The clustering algorithm that is used is KMeans algorithm from sklearn
library. When the clustering is not stable, it is logical that the results for the Online Adaptation
are not positive. Therefore the clustering algorithm will be analyzed more closely. To get a good
clustering the algorithm requires parameters which define the number of starts and the maximum
number of iterations the algorithm can make when it does not converge. In all earlier experiments
these are set to 3 random starts and a maximum of 100 iterations.

A bad clustering of the samples would cause the algorithm to not perform. Of course the more
starts and iterations the clustering algorithm can make, the more stable the results are. This would
also take a lot more time to perform the initialization algorithms. Therefore, testing how much
difference it makes when using more random starts and more iterations in the KMeans algorithm
will give insight to set these parameters to appropriate values, to perform a good clustering of the
samples.

To test how much of a difference these parameters make in the clustering of the data samples,
the number of samples that are assigned to a different cluster are counted. Since the Einsum
Cluster Algorithm performs multiple clusterings of samples in a hierarchical manner. Only the
clustering in the root node is analysed here. To make sure the algorithm makes more than enough
starts, this setting is changed from 3 to 3000 starts. The maximum number of iterations the
algorithm can make is changed from 100 to 10000. When clustering the full training set of 50000
samples with these new settings, only 36 samples are assigned to a different cluster. This is only

44 Advances in Understanding and Initializing Einsum Networks

CHAPTER 5. ONLINE ADAPTATION

a very minor part of the full set and will therefore not have a large impact in the performance of
the initialization and Online Adaptation algorithms.

When clustering only 1000 of the 50000 training samples, the number of differently assigned
samples is a much larger part of the complete set, namely 54 out of 1000. This still is only 5.4%
of the training set, but this could possibly lead to differences in performance of the initialization
and the Online Adaptation algorithms. However, since the Online Adaptation algorithm did not
show results when using larger training sets and the algorithm did show results when using small
training sets like 1000 samples, the clustering cannot be the main cause for this.

Stable Networks
In the Online Adaptation algorithms proposed in this section, the assumption is made that the
Einsum Networks are stable models that adhere to a certain clustering. However when initial-
izing an Einsum Network with either the Cluster initialization algorithm or the Einsum Cluster
initialization algorithm, the training phase could completely change the weights and the distribu-
tions such that the clustering does not have any meaning anymore. To test this, the amount of
change, due to the training phase, in the parameters of the Einsum Network will be measured.
The amount of change is measured per layer in the Einsum Network. For this test the smallest
possible RAT-SPN structure is used, which consists of only three layers, including the leaf layer
containing the distributions. The amount of change will probably increase in the deeper layers of
the network since these layers depend on previous layers, this should be taken into account when
analyzing the results.

The first setup that is tested is initialized using the full training set by the Einsum Cluster
initialization algorithm. After the initialization the weights are saved and then the training is
executed. The normalized weights of the root layer of the Einsum Network have been changed
92% on average due to the training phase. The second layer shows even more change, namely
174% on average. The leaf layer shows on average a 43% change in the distributions. This shows
that the weights are completely altered and hence the meaning from the clustering is completely
lost and therefore these results are in line with the results of the Online Adaptation, namely the
Online Adaptation does not show positive results.

The second setup is initialized and trained using only 1k training samples since this setup
did show some positive results for the Online Adaptation. Here the weights of the root layer are
changed by 82% on average, the second layer is changed by 145% and the leaf distributions have
been changed by 55%. Here the first two layers are a bit more stable than in the previous setup
and the leaf layer did change a slightly more. However the amount of change is still very large,
which means that the meaning of the clustering, performed in the initialization algorithms, is lost.
This makes it very hard for the Online Adaptation algorithms to improve the networks.

5.5 LearnSPN

The LearnSPN algorithm described earlier in chapter 1 of this work makes use of clustering to
learn the structure and parameters of a sum-product network. Therefore it would be interesting
to see how the Online Adaptation algorithm performs when using the LearnSPN structure. The
main argument for this could be that after learning a sum-product network , using the LearnSPN
algorithm, the meaning of the clustering, which is used during this learning, will still have more
meaning.

The SPFlow library implemented the LearnSPN algorithm and therefore the SPFlow library
will be used to test the Online Adaptation algorithm. Since SPFlow uses regular sum-product
networks instead of Einsum Networks the Online Adaptation algorithm will be much easier to

Advances in Understanding and Initializing Einsum Networks 45

CHAPTER 5. ONLINE ADAPTATION

implement compared to the Einsum Network variant. SPFlow also uses Gaussian distributions
as their random variables in the leaf nodes. The Online Adaptation algorithm will be used as
described in the beginning of this chapter.

The Online Adaptation for the LearnSPN structure will be tested on three different datasets,
namely the spoken arabic digit dataset, the tamilnadu electricity dataset and the skin segmenta-
tion dataset [4][17][3].

Online Adaptation on Spoken Arabic Digit Dataset
The setup that is used for this experiment includes the spoken arabic digit dataset. From this
dataset three different setups are tested. The differences between the setups are the number of
training samples which are used to construct and train the network using the LearnSPN algorithm.
The three values that are used are 1k samples, 30k samples and 120k samples. As observed in
earlier experiments on Online Adaptation, the setup with the least amount of samples did perform
best, due to the lack of training ability on the small amount of samples. For all three setups the
Online Adaptation is tested using 1k samples. This means that 1k samples are used to adapt the
network after that it is learned using the LearnSPN algorithm. The task that is executed is a
classification task. The spoken arabic digit dataset contains ten classes, which are sampled in a
balanced way. This means that the training samples contain a similar amount of samples from
every class. This is also the case for the Online Adaptation set of samples.

Figure 5.6 shows the results of this experiment. The setup that is constructed and trained
using 1k samples shows very similar results for the Online Adaptation as for no adaptation. The
Online Adaptation is depicted by the blue line. These results are similar to earlier experiments.
However when the networks are constructed and training using more samples, the performance
of the Online Adaptation lies below the reference line of doing nothing after construction and
training. This means that Online Adaptation only makes the network worse. This is also exactly
the same as the results of the Online Adaptation in the Einsum Networks.

Online Adaptation on Tamilnadu Electictricity Dataset
The second dataset that is used to test the Online Adaptation is the Tamilnadu Electricity dataset.
This dataset contains 20 classes, and the number of samples in the dataset are divided unbalanced
over these classes. However this problem is solved by taking the same amount of samples from
every class to test the Online Adaptation. Every sample in this dataset contains only four fea-
tures, which is less compared to the Spoken Arabic Digit dataset, which contained 15 features per
sample. Since this dataset contained a lower amount of samples, there are only two different setups
tested. The first one is constructed and trained using 1k samples, the second one is constructed
and trained using 10k samples. The decision has been made to test 2k samples for the Online
Adaptation, which can also be observed in the results.

Figure 5.7 shows the results of these two tests. This dataset does not show similar perform-
ance between the Online Adaptation and the no adaptation for the setup which is constructed
and trained using only 1k samples. Here a massive drop in performance is present for both the
construction with 1k and 10k samples. The 1k samples setup shows an even larger drop in per-
formance than the 10k samples setup. This again means that the Online Adaptation does not
show positive results for the Tamilnadu Electricity dataset.

Online Adaptation on Skin Segmentation Dataset
The last dataset which is tested is the Skin Segmentation dataset. This dataset only contains
two classes. This means that is an much easier dataset. However this can also mean that the
clustering which is performed in the LearnSPN algorithm has a much harder time to make distinc-
tions between samples. The Skin Segmentation dataset contains four features per sample. The
two setups that are tested include again a structure which is constructed and trained using 1k
samples, the second setup is constructed and trained using 30k samples. Again the samples for

46 Advances in Understanding and Initializing Einsum Networks

CHAPTER 5. ONLINE ADAPTATION

Figure 5.6: Results of Online Adaptation for the LearnSPN structure on the Spoken Arabic Digit
dataset

Figure 5.7: Results of Online Adaptation for the LearnSPN structure on the Tamilnadu Electricity
dataset

both the training and the Online Adaptation set are sampled in a balanced way, hence for both
classes an equal amount of samples. Also for this dataset a classification task is executed to test
the Online Adaptation. The number of samples used for the Online Adaptation is 200 for this
dataset. This is a smaller amount of samples than earlier.

Figure 5.8 shows the results for the Online Adapation on the Skin Segmentation dataset. The
figure show very similar results as the Online Adaptation on the Spoken Arabic Digit dataset.

Advances in Understanding and Initializing Einsum Networks 47

CHAPTER 5. ONLINE ADAPTATION

Namely the setup which is constructed and trained using 1k samples shows similar results for
the Online Adapation as for the reference of no adaptation. The setup which is constructed and
trained using using 30k samples shows again negative results for the Online Adaptation, since the
blue line lies below the black reference line. This means that for all three datasets tested on the
LearnSPN structure, the Online Adaptation never shows positive results, it is always best to not
change the model after construction and training.

Figure 5.8: Results of Online Adaptation for the LearnSPN structure on the Skin Segmentation
dataset

5.6 Discussion

The novel idea of using the initialization to later on improve the state of the network, after which
the network is trained already, is presented in this chapter. The results show that only in very
specific scenarios the Online Adaptation actually improves the networks. These scenarios include
training setups in which very few samples are used for the actual training phase of the network.

It was also found out that the meaning of the initialization, on which the Online Adaptation
algorithms are based, is completely lost after training. This would suggest that the ideas proposed
in this chapter can be used later on, if there exists a better initialization which preserves its
meaning after training.

48 Advances in Understanding and Initializing Einsum Networks

Chapter 6

Conclusion and Future Work

This chapter sums up all the conclusions that can be derived from the previous chapters. This
is divided in three major sections which are all chapters of this work, namely Network Analysis,
Initialization and Online Adaptation. In addition, some extensions to this work are provided in a
separate section.

6.1 Network Analysis

In this work several setups for Einsum Networks are tested, with the goal to find out which setup
performs well on a discriminative task and which performs well on a generative task. Also the
combination of performing both a generative and a discriminative task is a major interest of the
chapter Network Analysis. Therefore, these setups are tested on both generative and discriminat-
ive tasks. Here an optimal setup can be derived from the test results.

When optimizing an Einsum Network for both a generative and a discriminative task, a class
discriminative Einsum Network should be used. Hence a network that mixes multiple sub-Einsum
Networks, one for every class in the input data. Each of the sub-Einsum Networks in the class
discriminative Einsum Network should be trained generatively to perform optimally on both a
generative and a discriminative tasks. This conclusion can be made since Experiment 3 and 4 of
section 3.3 are the overall best performing setups.

When optimizing an Einsum Network for only a discriminative task, the conclusion can be
made that the synergy between a class discriminative Einsum Network structure and a discrimin-
ative learning approach provides the best performance. This can be observed in Experiment 8 of
section 3.3. In addition, section 3.2, where the RAT-SPN structure is analyzed, showed that it is
important to keep the width of the network high enough compared to the depth. Namely when
the width of the network is too low, the discriminative task loses performance.

When optimizing an Einsum Network for a generative task only, the most optimal setup is
a standard Einsum Network. This standard Einsum Network should be trained generatively. In
section 3.2, the finding was made that the performance of the generative task is highly dependant
on the depth of the network. Therefore when optimizing for a generative task, it is important to
create a deep network.

Advances in Understanding and Initializing Einsum Networks 49

CHAPTER 6. CONCLUSION AND FUTURE WORK

6.2 Initialization

Initialization is not yet been researched in the context of probabilistic circuits and is proven to be
highly important in training deep models. Initialization could lead to faster training and better
overall performance of the models. Therefore the algorithms proposed chapter 4 aim at improving
the Einsum Networks.

The three different initialization algorithms that are proposed are Leaf initialization, Cluster
initialization and Einsum Cluster initialization. All these approaches are compared to a random
initialization. All three approaches consistently outperform the random initialization after only
initializing the Einsum Network. Here the Cluster initialization shows the best performance of
the three. However the costs of Leaf initialization are much lower than the Cluster initialization
algorithm, which can be considered when using one of the algorithms.

After training the Einsum Networks, there is no clear performance difference between the ran-
dom initialization and one of the proposed algorithms. The only dataset that shows a difference
is the more complicated SVHN dataset when performing a classification task. Here the Cluster
initialization slightly outperforms the other methods.

In situations where there is very little time and resources available to train a complete network,
these initialization can be used to perform a certain task, without even training the network. This
can be desirable in certain use cases.

6.3 Online Adaptation

The novel idea of using the initialization methods proposed in chapter 4 to improve the network
after training is presented in chapter 5. The Online Adaptation algorithm, aims at improving the
Einsum Networks after it is already trained. This would be useful in scenarios where there are no
resources or no time to completely retrain the Einsum Network.

When new training samples present itself, the Online Adaptation should be able to improve
networks in an online fashion. The Online Adaptation algorithm is based on the Cluster or Einsum
Cluster initialization which are presented in chapter 4. Re-using the clustering, performed in the
initialization algorithms, to later on improve the networks, after training, is a novel idea, which is
implemented in the Online Adaptation algorithm.

However the results of the Online Adaptation did not show remarkable results, they mostly
made the networks worse. Only in a few cases, where the networks were initially trained with very
few samples, the Online Adaptation algorithm shows positive results. To verify the algorithm,
it is also tested on the LearnSPN structure, which makes use of clustering while building the
sum-product networks. Also here the Online Adaptation did not show positive results. Section
5.4 shows that the meaning of the clustering, performed in the initialization algorithms, is lost
after training, which results in the Online Adaptation algorithm not performing as expected.

6.4 Possible Extensions

Using initialization algorithms to not only improve the state of the networks right after the initial-
ization, but also increase performance after training still remains to be interesting topic to perform
further research in. In addition improving probabilistic circuits in an online fashion is still a very
new topic. Little research has been conducted in this field. Therefore further research into this
topic would be a very logical next step.

50 Advances in Understanding and Initializing Einsum Networks

CHAPTER 6. CONCLUSION AND FUTURE WORK

In this work, the following statement has been made. After training a probabilistic circuit
the meaning of the clustering, performed during initialization, is completely lost. This results in
a negative performance of the Online Adaptation algorithm. When a clustering could be made
after which the network is already trained, which fits the parameters and leaf distributions of the
probabilistic circuit, it would mean that the clustering still has all its meaning. When using this
clustering for the Online Adaptation algorithm, the networks should improve. It would be very
interesting to see the results of this particular experiment.

In addition, it will be very interesting to see how the probabilistic circuits, including Einsum
Networks, evolve in the next couple of years.

Advances in Understanding and Initializing Einsum Networks 51

Bibliography

[1] Tameem Adel, David Balduzzi, and Ali Ghodsi. Learning the structure of sum-product
networks via an SVD-based algorithm. In UAI, pages 32–41, 2015. 12

[2] Mohamed R Amer and Sinisa Todorovic. Sum product networks for activity recognition.
IEEE transactions on pattern analysis and machine intelligence, 38(4):800–813, 2015. 16

[3] Rajen Bhatt and Abhinav Dhall. Skin Segmentation dataset. 2015. ht-
tps://www.openml.org/d/1502. 46

[4] Data Collected by the Laboratory of Automatic and Algeria Signals, University of Badji-
Mokhtar Annaba. Spoken Arabic Digit dataset. 2008. https://www.openml.org/d/1503s.
46

[5] Wei-Chen Cheng, Stanley Kok, Hoai Vu Pham, Hai Leong Chieu, and Kian Ming A Chai.
Language modeling with sum-product networks. In Fifteenth Annual Conference of the In-
ternational Speech Communication Association, 2014. 16

[6] Diarmaid Conaty, Jesús Mart́ınez Del Rincon, and Cassio P De Campos. Cascading sum-
product networks using robustness. In International Conference on Probabilistic Graphical
Models, pages 73–84. PMLR, 2018. 15

[7] Olivier Delalleau and Yoshua Bengio. Shallow vs. deep sum-product networks. In J. Shawe-
Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Q. Weinberger, editors, Advances in Neural
Information Processing Systems, volume 24. Curran Associates, Inc., 2011. 11

[8] Aaron Dennis and Dan Ventura. Learning the architecture of sum-product networks using
clustering on variables. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems, volume 25. Curran Associates,
Inc., 2012. 12

[9] Aaron Dennis and Dan Ventura. Greedy structure search for sum-product networks. In
Twenty-Fourth International Joint Conference on Artificial Intelligence, 2015. 13

[10] Aaron Dennis and Dan Ventura. Autoencoder-enhanced sum-product networks. In 2017
16th IEEE International Conference on Machine Learning and Applications (ICMLA), pages
1041–1044. IEEE, 2017. 15

[11] Aaron Dennis and Dan Ventura. Online structure-search for sum-product networks. In 2017
16th IEEE International Conference on Machine Learning and Applications (ICMLA), pages
155–160. IEEE, 2017. 13

[12] Mattia Desana and Christoph Schnörr. Learning arbitrary sum-product network leaves with
expectation-maximization. arXiv preprint arXiv:1604.07243, 2016. 15

[13] Robert Gens and Pedro Domingos. Discriminative learning of sum-product networks. In
F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in Neural
Information Processing Systems, volume 25. Curran Associates, Inc., 2012. 14

Advances in Understanding and Initializing Einsum Networks 53

BIBLIOGRAPHY

[14] Robert Gens and Domingos Pedro. Learning the structure of sum-product networks. In
International conference on machine learning, pages 873–880, 2013. 8

[15] Robert Gens and Domingos Pedro. Learning the structure of sum-product networks. In Sanjoy
Dasgupta and David McAllester, editors, Proceedings of the 30th International Conference on
Machine Learning, volume 28 of Proceedings of Machine Learning Research, pages 873–880,
Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR. 12

[16] Priyank Jaini, Amur Ghose, and Pascal Poupart. Prometheus: Directly learning acyclic direc-
ted graph structures for sum-product networks. In International Conference on Probabilistic
Graphical Models, pages 181–192. PMLR, 2018. 13

[17] k Kalyani. Tamilnadu Electricity Board Hourly Readings dataset. 2013. ht-
tps://www.openml.org/d/40985. 46

[18] Ching-Yun Ko, Cong Chen, Yuke Zhang, Kim Batselier, and Ngai Wong. Deep compression
of sum-product networks on tensor networks. arXiv preprint arXiv:1811.03963, 2018. 15

[19] Viktoriya Krakovna and Moshe Looks. A minimalistic approach to sum-product network
learning for real applications. arXiv preprint arXiv:1602.04259, 2016. 13

[20] Sang-Woo Lee, Min-Oh Heo, and Byoung-Tak Zhang. Online incremental structure learning
of sum–product networks. In International Conference on Neural Information Processing,
pages 220–227. Springer, 2013. 12

[21] James Martens and Venkatesh Medabalimi. On the expressive efficiency of sum product
networks. arXiv preprint arXiv:1411.7717, 2014. 11

[22] Denis D Mauá, Fabio G Cozman, Diarmaid Conaty, and Cassio P Campos. Credal sum-
product networks. In Proceedings of the Tenth International Symposium on Imprecise Prob-
ability: Theories and Applications, pages 205–216. PMLR, 2017. 15

[23] Mazen Melibari, Pascal Poupart, Prashant Doshi, and George Trimponias. Dynamic sum
product networks for tractable inference on sequence data. In Conference on Probabilistic
Graphical Models, pages 345–355. PMLR, 2016. 13

[24] Alejandro Molina, Antonio Vergari, Nicola Di Mauro, Sriraam Natarajan, Floriana Esposito,
and Kristian Kersting. Mixed sum-product networks: A deep architecture for hybrid domains.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018. 15

[25] Aniruddh Nath and Pedro Domingos. Learning tractable probabilistic models for fault loc-
alization. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 30, 2016.
16

[26] Robert Peharz, Bernhard C Geiger, and Franz Pernkopf. Greedy part-wise learning of sum-
product networks. In Joint European Conference on Machine Learning and Knowledge Dis-
covery in Databases, pages 612–627. Springer, 2013. 12

[27] Robert Peharz, Robert Gens, and Pedro Domingos. Learning selective sum-product networks.
In LTPM workshop, 2014. 14

[28] Robert Peharz, Robert Gens, Franz Pernkopf, and Pedro Domingos. On the latent variable
interpretation in sum-product networks. IEEE transactions on pattern analysis and machine
intelligence, 39(10):2030–2044, 2016. 6, 14

[29] Robert Peharz, Steven Lang, Antonio Vergari, Karl Stelzner, Alejandro Molina, Martin
Trapp, Guy Van den Broeck, Kristian Kersting, and Zoubin Ghahramani. Einsum Networks:
Fast and scalable learning of tractable probabilistic circuits. arXiv preprint arXiv:2004.06231,
2020. 1, 2, 8, 16, 32

54 Advances in Understanding and Initializing Einsum Networks

BIBLIOGRAPHY

[30] Robert Peharz, Sebastian Tschiatschek, Franz Pernkopf, and Pedro Domingos. On theoretical
properties of sum-product networks. In Artificial Intelligence and Statistics, pages 744–752,
2015. 11

[31] Robert Peharz, Antonio Vergari, YooJung Choi, and Guy Van den Broeck.
Probabilistic circuits: Representations, inference, learning and theory. 2020.
https://www.youtube.com/watch?v=2RAG5-L9R70&ab channel=UCLA-StarAI. 2

[32] Robert Peharz, Antonio Vergari, Karl Stelzner, Alejandro Molina, Martin Trapp, Kristian
Kersting, and Zoubin Ghahramani. Probabilistic deep learning using random sum-product
networks. arXiv preprint arXiv:1806.01910, 2018. 7, 13, 23

[33] Hoifung Poon and Pedro Domingos. Sum-product networks: A new deep architecture. In
2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops),
pages 689–690. IEEE, 2011. 11

[34] Tahrima Rahman and Vibhav Gogate. Merging strategies for sum-product networks: From
trees to graphs. In UAI, 2016. 13

[35] Abdullah Rashwan, Pascal Poupart, and Chen Zhitang. Discriminative training of sum-
product networks by extended baum-welch. In International Conference on Probabilistic
Graphical Models, pages 356–367. PMLR, 2018. 15

[36] Abdullah Rashwan, Han Zhao, and Pascal Poupart. Online and distributed Bayesian Mo-
ment Matching for parameter learning in sum-product networks. In Arthur Gretton and
Christian C. Robert, editors, Proceedings of the 19th International Conference on Artificial
Intelligence and Statistics, volume 51 of Proceedings of Machine Learning Research, pages
1469–1477, Cadiz, Spain, 09–11 May 2016. PMLR. 14

[37] Amirmohammad Rooshenas and Daniel Lowd. Learning sum-product networks with direct
and indirect variable interactions. In Proceedings of the 31st International Conference on
International Conference on Machine Learning - Volume 32, ICML’14, page I–710–I–718.
JMLR.org, 2014. 12

[38] Bruno Massoni Sguerra and Fabio G Cozman. Image classification using sum-product net-
works for autonomous flight of micro aerial vehicles. In 2016 5th Brazilian Conference on
Intelligent Systems (BRACIS), pages 139–144. IEEE, 2016. 16

[39] Or Sharir and Amnon Shashua. Sum-product-quotient networks. In International Conference
on Artificial Intelligence and Statistics, pages 529–537. PMLR, 2018. 15

[40] Martin Trapp, Tamas Madl, Robert Peharz, Franz Pernkopf, and Robert Trappl. Safe semi-
supervised learning of sum-product networks. arXiv preprint arXiv:1710.03444, 2017. 15

[41] Martin Trapp, Robert Peharz, Hong Ge, Franz Pernkopf, and Zoubin Ghahramani. Bayesian
learning of sum-product networks. arXiv preprint arXiv:1905.10884, 2019. 14

[42] Jos van de Wolfshaar and Andrzej Pronobis. Deep generalized convolutional sum-product
networks for probabilistic image representations. arXiv preprint arXiv:1902.06155, 2019. 16

[43] Antonio Vergari, Nicola Di Mauro, and Floriana Esposito. Simplifying, regularizing and
strengthening sum-product network structure learning. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, pages 343–358. Springer, 2015. 13

[44] Jinghua Wang and Gang Wang. Hierarchical spatial sum–product networks for action re-
cognition in still images. IEEE Transactions on Circuits and Systems for Video Technology,
28(1):90–100, 2016. 16

Advances in Understanding and Initializing Einsum Networks 55

BIBLIOGRAPHY

[45] Lodewyk FA Wessels, Etienne Barnard, et al. Avoiding false local minima by proper initial-
ization of connections. IEEE transactions on neural networks, 3(6):899–905, 1992. 2

[46] Jim YF Yam and Tommy WS Chow. A weight initialization method for improving training
speed in feedforward neural network. Neurocomputing, 30(1-4):219–232, 2000. 2

[47] Han Zhao, Tameem Adel, Geoff Gordon, and Brandon Amos. Collapsed variational inference
for sum-product networks. In International Conference on Machine Learning, pages 1310–
1318. PMLR, 2016. 14

[48] Han Zhao, Mazen Melibari, and Pascal Poupart. On the relationship between sum-product
networks and Bayesian networks. In International Conference on Machine Learning, pages
116–124. PMLR, 2015. 12

56 Advances in Understanding and Initializing Einsum Networks

	Contents
	List of Figures
	Problem Statement and Research Context
	Introduction
	Problem Statement
	Probabilistic Circuits
	Parameter Learning
	Structure Learning
	Einsum Networks

	Literature Review
	General Theory
	Structure Learning
	Parameter Learning
	Extensions
	Applications
	Context to this Research

	Network Analysis
	Motivation
	RAT-SPN Structure
	Setup
	Experiments
	Discussion

	Training Approaches
	Setup
	Experiments
	Impressions
	Observations
	Discussion

	Initialization
	Motivation
	Algorithms
	Experiments
	Discussion

	Online Adaptation
	Motivation
	Algorithms
	Experiments
	Minimal Results
	LearnSPN
	Discussion

	Conclusion and Future Work
	Network Analysis
	Initialization
	Online Adaptation
	Possible Extensions

	Bibliography

