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Glossary

Throughout this thesis, we use the following acronyms:
a.s. almost surely
i.i.d. independent and identically distributed
LDP large deviation principle
ODE ordinary differential equation
SDE stochastic differential equation

For mathematical notations, we use the following definitions:
∅ the empty set
1 the indicator function

a ∧ b the minimum of a and b
a ∨ b the maximum of a and b

R the real line
R+ the set of non-negative numbers, i.e. R+ = [0,∞)
Rd the d-dimensional Euclidean space

Rd×m the space of real d×m-matrices
|x| the Euclidean norm of a vector x

B(x0, R) the open ball with radius R around x0, i.e. B(x0, R) = {x : |x−x0| < R}
〈x, y〉 the inner product (scalar product) of the vectors x and y
E [X] the expected value of X
P (A) the probability of the event A

C(X,Y) the family of continuous functions from X to Y

Lp([a, b],Rd) the family of functions h : [a, b]→ Rd such that
∫ b
a
|h(t)| dt <∞

Lp([a, b],Rd) the family of Rd-valued random processes {f(t)}a≤t≤b such that∫ b
a
|f(t)|p dt <∞ a.s.

Mp([a, b],Rd) the family of Rd-valued random processes {f(t)}a≤t≤b such that
E
[∫ b

a
|f(t)|p dt

]
<∞

Instead of writing {f(t)}a≤t≤b we may also write {f(t)} or simply f when it is clear from
the context on which intervals the process is defined. Definitions not explained here will be
explained when they first appear.
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1. Introduction

Imagine a boat with people on board moving around and a captain trying to keep the boat
balanced. Suppose that the movement of the people can be described by their current position
on the boat with the addition of some noise, as their behaviour can not be fully determined.
The captain, trying to keep the boat in balance, will tell all people, regardless of their own
position, to move in a certain direction based on which direction the boat is currently leaning.
He, however, only notices that the boat is leaning in a certain direction with some delay. If
we wish to describe this model mathematically, we could use stochastic delay equations. Let us
explain how to model this scenario. For simplicity we will assume that the boat stretches out
indefinitely in all directions, such that we do not have to take into account boundary conditions.
Let N denote the amount of people on the boat. Let f : R2 → R2 be a function describing
in which direction a person moves based on their current position, and let g : R2 → R2 be a
function describing how a person moves based on the instructions of the captain, which bases
his instructions on the center of mass of all the people on the boat with a delay δ > 0. Let X i(t)
denote the position of the i’th person at time t. The following stochastic differential equation
(SDE) now describes the movement of the people on the ship:

dX i(t) = f(X i(t))dt+ g

(
1

N

N∑
j=1

Xj(t− δ)

)
dt+ εdBi(t), i = 1, . . . , N. (1.1)

Here Bi, i = 1, . . . , N denote independent Brownian motions, modeling the uncertainty of
the movement of the people, and ε > 0 is a parameter scaling this uncertainty. In order to
complete this model we still need to give the appropriate initial conditions, but we will do this
in Section 1.1. An interesting question to ask is what happens when the amount of people on
the boat becomes large. The law of large numbers suggest that the empirical mean converges
towards the expected value of the random variables. We therefore also consider the delayed
McKean-Vlasov equation

dX(t) = f(X(t))dt+ g (E [X(t− δ)]) dt+ εdB(t). (1.2)

These special types of SDEs, where the evolution of the process depends not only on the state
of the process but also on its law, were first studied by McKean (1966).
An interesting question is whether the ship will eventually stabilise, or if the delay will

cause the ship to keep shifting from one side to the other over and over again. We briefly
study this question for the deterministic equation (ε = 0) in Section 6.2.2. We find that the
limiting behaviour highly depends on the choices for f and g and parameters of the model.
During our research for this thesis we also considered many different other scenarios for both
the deterministic equation and the SDEs. Our results however were not clear, and we were
unsure what effects should be attributed to the model and which were nothing but artifacts of
our approximation method. We therefore decided to not include these result in this thesis, and
leave this question open for further research.
The model can also be given a more general interpretation. Consider N agents, whose current

state can be described as a vector in Rd, d ≥ 1. Suppose that the evolution of these agents
can be described as a function of their current position combined with a noise term. Suppose
further that there exists a controlling agent which influences the evolution of all the agents
based on their center of mass with a delay δ. We again arrive at Equation 1.1.
Let us give an example. Consider a finite-horizon problem. Let X i ∈ R denote the amount

of money a company receives from the government at time T > 0, where a positive number
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indicates that the company will receive money, while a negative number indicates that the com-
pany has to pay money to the government. In this case the controlling agent is the government
itself, which tries to keep its expenses balanced, i.e. they strive to keep the mean payout 0.
The function g in this case could for example be g(x) = −x, which pushes the mean towards
0. The function f would describe the intentions of the companies, which do not wish to pay
money.
Besides its applications, the model is also interesting to study from a mathematical point

of view. While the study of both stochastic delay equations and McKean-Vlasov equations is
rich, the study of the combinations of the two seems much slimmer. In particular, we could
not find any work that studies these kind of equations under the same assumptions as we will
be making in this thesis.

1.1. Main model
We now describe the model in more detail. Let d ≥ 1 denote the dimension of both the
Brownian motion and the processes themselves. In a more general case it is also possible
to let the Brownian motion be of a different dimension than the processes, but we will not
consider that case in this thesis. Let N ≥ 1 denote the amount of particles. We now have
that f : Rd → Rd and g : Rd → Rd to match the dimensions of the process. Let δ > 0 denote
the delay, let ε > 0 denote the intensity of the noise and let T > 0 denote the time horizon
on which we consider the problem. We consider the interacting particle process governed by
Equation (1.1) on the interval [0, T ] with initial conditions

X i(0) = xi0,

X i(s) = ξis, s ∈ [−δ, 0), i = 1, . . . , N.

In general xi0 and ξis, s ∈ [−δ, 0) are random variables taking values in Rd. We also consider the
McKean-Vlasov process, which consists of the Equation (1.2) on the interval [0, T ] and initial
condition

X(0) = x0,

E [X(s)] = ξs, s ∈ [−δ, 0).

Here we again have that x0 is a random variable taking values in Rd. This time, however, we
have that ξ : [−δ, 0)→ Rd is a deterministic function. This is because the interacting with the
past only happens through the mean, so it is sufficient to only specify the mean of the process
on this interval.

1.2. Main results
We just presented the McKean-Vlasov process as the limiting process of the interacting particle
process when the amount of particles N is send to infinity. While intuitively this seems like
a natural limit, it is not directly clear in what sense this limit should hold, if it does. In
Chapter 4 we investigate this relation further. We find that under certain assumptions the
McKean-Vlasov process can indeed be seen as the limiting process of the interacting particle
process. If we couple the Brownian motions and the initial conditions, i.e. B1 = B, x1

0 = x0 and
E [ξ1

s ] = ξs, s ∈ [−δ, 0), we find that the expected distance between the trajectories of X1 and X
in the supremum norm converges to 0 when N goes to infinity. We also obtain an upper-bound
on the rate of convergence. In particular, we show, in Theorem 4.3, a result of the form

sup
N
NE

[
sup

0≤t≤T
|X1,N −X|2

]
<∞.
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In fact, the above result can be generalised even further. Assume that the initial conditions are
independent. By considering n independent copies of the McKean-Vlasov process and coupling
them to the first n particles of the interacting particle process as described above, we can show
that the result holds for each of the n particles. Since each copy of the McKean-Vlasov process
is independent of the other copies, we also obtain that the first n particles of the interacting
particle system become asymptotically independent. This result is what is called the propagation
of chaos property of the system. The chaos (independence) of the initial condition propagates
forward to all the marginals in the limit of the amount of particles N going to infinity.
We also consider a different limit. Instead of sending N to infinity, we keep N fixed and

consider the limit ε → 0, the so called small noise regime. If we directly set ε = 0 in Equa-
tion (1.1) and Equation (1.2), we obtain two ordinary differential equations (ODEs). The ODE
associated to the McKean-Vlasov process is given by

dϕ(t)

dt
= f(ϕ(t)) + g(ϕ(t− δ)), t ∈ [0, T ], (1.3)

ϕ(s) = x(s), s ∈ [−δ, 0],

for some (deterministic) function x(s). For the interacting particle system we consider two
cases. If we assume that the initial conditions are the same for all particles ϕi, we then have

1

N

N∑
j=1

ϕj(t) = ϕ1(t)

by symmetry of the equations and the fact that the evolution of the equations is now determ-
inistic. Therefore we find that Equation (1.3) is also the ODE associated to the interacting
particle model. In the case that the initial conditions are different we have to use a different
approach. This is described in Section 5.3.2.
We are now interested whether or not the stochastic processes converge towards the solutions

of these ODEs when ε → 0. In the case that they do, we are also interested how far they
deviate from the deterministic trajectory when ε is small. In particular, we wish to obtain a
large deviation principle (LDP). LDPs describe the probability of rare events on an exponential
scale. They do so by describing a rate function I. In Chapter 5 we first present various known
theorems regarding LDPs for solutions of SDEs. We then show how these theorems can be
applied to the processes we consider in this thesis. For the McKean-Vlasov equation we obtain
a LDP with a rate function I given by

Ix(φ) =
1

2

∫ T

0

|φ̇(t)− f(φ(t))− g(ϕ(t− δ))|2 dt

for φ− x ∈ H1([0, T ],Rd) and Ix(φ) = +∞ else. Here ϕ is the solution to the associated ODE.
See Theorem 5.12 for details. We also obtain a similar result for the interacting particle process
by considering it as one vectorized equation. See Theorem 5.13 for details on this result.
Furthermore, we use simulations to numerically verify these results and analyse a particular

scenario for the associated ODE in Chapter 6. We will be doing this with the Euler-Maruyama
approximation. In this method, similar to the Euler (forward) method for ODEs, the time
interval [0, T ] is partitioned into equally sized intervals, each with width h. The approximations
of the processes are then computed iteratively over the end points of these intervals. If we then
interpolate these approximations appropriately, we can show that this method is consistent.
That is, we show that in the limit of h→ 0 the expected distance between the approximation
and the process itself in the supremum norm goes to 0. The exact statement is formulated in
Theorem 6.2.
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Knowing that the approximation method is consistent, we use simulation to see how certain
theoretical results behave in practice. In Section 6.2.1 we verify the results we obtained in
Chapter 4 regarding the propagation of chaos property. We find that in the scenario we consider
the result indeed holds, and we conjecture that the rate of convergence might be faster than
linear. The small noise regime is studied in Section 6.2.2. In particular, we investigate how
the McKean-Vlasov processes convergences to the solution of the associated ODE. The results
suggest a linear decay, which would be an improvement of the results obtained in Chapter 5.
Lastly, we show the effect the delay term can introduce in Section 6.2.3. We show that, for
certain choices for the function g, the associated ODE has periodic solutions, while the solution
convergences to a constant when we remove the delay.
However, before we can show any of the above, we first have to show that these statements

are meaningful, by showing that there exist solutions to Equation 1.1 and Equation 1.2. In
Chapter 3 we show that under certain assumptions there exist indeed unique solutions to these
equations. We assume that g is globally Lipschitz and that f is locally Lipschitz and satisfies
a one-sided Lipschitz assumption. In particular, we do not assume that f satisfies some sub-
linear growth condition. This allows us to consider functions of higher orders, given that they
still satisfy the one-sided Lipschitz assumption. See Theorem 3.1 and Theorem 3.3 for details
for the interacting particle process and the McKean-Vlasov process respectively. We also give
assumptions under which we can show that for all p > 0, the p’th moment of the process in the
supremum norm exists. For the McKean-Vlasov process we do not need to make any further
assumptions to show this, see Theorem 3.4. For the interacting particle system we make the
additional assumption that g is bounded, see Theorem 3.2. These moment bounds also play an
important role in the proofs of the theorems of the later chapters.
In order to make the thesis self-contained, we start with a discussion of the general theory

of SDEs in Chapter 2. We will first heuristically derive the meaning behind the stochastic Itô
integral. We then formalise these ideas and derive various properties of the Itô integral. In
particular, we make great use of the fact that the Itô integral is a martingale. Next we define
what we call a solution of a SDE, and present various theorems regarding the existence and
uniqueness of solutions in the standard case.
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2. Stochastic calculus

Before we are able to analyse our model, we first need to discuss some preliminary theory about
SDEs. In particular, we have to define what we mean exactly with a SDE and find ways to do
computations with them. We will be doing this in a couple of steps. Throughout this chapter
we will follow Chapter 1 and 2 of Mao (2007). The theorems presented here are taken from
these chapters unless specified otherwise.
We first explain the idea behind SDEs from a modeling perspective and derive a heuristic

definition for a stochastic integral based on what properties we desire it to have. We then find
a way to precisely define the stochastic integral. Based on this definition we are able to derive
a series of equalities involving the stochastic integral. Furthermore, we find that under mild
assumptions on the integrand, the stochastic integral becomes a martingale. Next we present
various theorems about martingales, which will be useful in the context of SDEs.
Finally we will define what we call a SDE and in particular define what it means for a process

to be a solution. We present conditions under which these solutions exists and we also present
Itô’s lemma, the stochastic equivalent of the chain rule of calculus. This lemma plays a central
role in stochastic calculus and is used in a lot of proofs of theorems about SDEs.

2.1. Stochastic integral
Consider the following ODE, describing the evolution of a process {X(t)}0≤t≤T taking values
in Rd over a time interval [0, T ]

dX(t)

dt
= b(X(t), t), t ∈ [0, T ],

X(0) = x0,

with b(x, t) : Rd × [0, T ] → Rd and x0 ∈ Rd. Equivalently, we can write this problem in an
integral form, namely

X(t) = x0 +

∫ t

0

b(X(t), t) dt, t ∈ [0, T ].

Now suppose that the evolution of the process {X(t)} is not deterministic, but rather subject
to some outside noise. We would wish to model this process with an equation of the form

dX(t)

dt
= b(X(t), t) + σ(X(t), t) · noise, t ∈ [0, T ],

X(0) = x0,

or equivalently

X(t) = x0 +

∫ t

0

b(X(t), t) dt+

∫ t

0

σ(X(t), t) · noise dt, t ∈ [0, T ], (2.1)

with σ(x, t) : Rd × [0, T ]→ Rd×m, where m is the dimension of the noise vector. Typically we
use m = d such that σ is a square matrix, but this is not required.
We would wish that this noise process possessed certain properties. Namely we would want

that:

1. The noise process is unbiased, meaning that its mean is 0;
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2. The noise at time t is independent of the noise at time s for t 6= s;

3. The variance of the noise is constant over time.

Let us now consider a process that captures only the accumulation of the noise in a one-
dimensional setup. Suppose that d = m = 1 and that {X(t)} satisfies the equation

X(t) =

∫ t

0

noise dt, t ∈ [0, T ].

If we now furthermore assume that the marginal distributions of {X(t)} are normal, then
{X(t)} becomes a Brownian motion. A Brownian motion is defined as follows.

Definition 2.1 (Brownian motion; 1.4.1 in Mao (2007)). Let (Ω,F ,P) be a probability space
with filtration {Ft}t≥0. A (standard) one-dimensional Brownian motion is a real-valued con-
tinuous {Ft}-adapted process {B(t)}t≥0 with the following properties:

1. B(0) = 0 a.s.;

2. for 0 ≤ s < t < ∞, the increment B(t) − B(s) is normally distributed with mean zero
and variance t− s;

3. for 0 ≤ s < t <∞, the increment B(t)−B(s) is independent of Fs.

Remark. Instead of working with a given filtration, we can also consider a Brownian motion
on the natural filtration {FBt }t≥0, the filtration generated by the Brownian motion. In this case,
property 3 now requires that the process has independent increments.

We also define a higher dimensional Brownian motion as follows.

Definition 2.2 (1.4.3 in Mao (2007)). A d-dimensional process {B(t) = (B1(t), . . . , Bd(t))}t
is called a d-dimensional process if every {Bi(t)}t is a one-dimensional Brownian motion, and
{B1(t)}, . . . , {Bd(t)} are independent.

Based on this we would like to define the noise process as the derivative of a Brownian
motion B(t), such that noise dt = dB(t). We, however, have that a Brownian motion is
nowhere differentiable almost surely. Therefore we would need a new definition for the integral

I(t) =

∫ t

0

f(t) dB(t). (2.2)

In order to define this integral, a similar approach is used as in the definition of the normal
Riemann integral. That is, we first define the integral for a set of simple functions and then
define the general integral as a limit of integrals along these simple functions. We wish to define
the integral (2.2) for all f ∈M2([a, b];Rd). This space is defined as follows.

Definition 2.3 (1.5.1 in Mao (2007)). Let 0 ≤ a < b <∞, d ≥ 1. Denote byMp([a, b],Rd) the
space of all Rd-valued measurable {Ft}-adapted processes f = {f(t)}a≤t≤b such that

‖f‖pa,b = E
[∫ b

a

|f(t)|p dt

]
<∞.

We say that f and g are equivalent if ‖f − g‖pa,b = 0.

We also define the following space of processes which belong to Lp a.s.
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Definition 2.4. Let 0 ≤ a < b <∞, d ≥ 1. Denote by Lp([a, b],Rd) the space of all Rd-valued
measurable {Ft}-adapted processes f = {f(t)}t such that∫ b

a

|f(t)|p dt <∞ a.s.

As said, before defining the integral on the entirety ofM2([a, b],Rd), we first define it on a
smaller family of processes instead, namely the family of simple processes. These are defined
as follows.

Definition 2.5 (1.5.2 in Mao (2007)). A Rd-valued process g = ‖g(t)‖a≤t≤b is called a simple
(or step) process if there exists a partition a = t0 < t1 < · · · < tk = b of [a, b] and bounded
random variables ξi, 0 ≤ i ≤ k − 1 such that ξi is Fti measurable and

g(t) = ξ01{t ∈ [t0, t1]}+
k−1∑
i=1

ξi1{t ∈ (ti, ti+1]} a.s. (2.3)

Denote byM0([a, b];Rd) the family of all such processes.

We can now define the stochastic integral for simple processes.

Definition 2.6 (Itô’s integral; 1.5.3 in Mao (2007)). For a simple process g ∈ M0([a, b];Rd)
with the form of (2.3) define∫ b

a

g(t) dB(t) =
k−1∑
i=0

ξi(B(ti+1)−B(ti))

and call it the Itô integral of g with respect to the Brownian motion {B(t)}.
Notice that in this definition we essentially evaluate the process g on the left-end point of

each interval. While for the normal Riemann integral it does not matter on which end-point
we evaluate the integral, it does matter for the stochastic integral. When we use the left-end
point we obtain the Itô integral as mentioned above. We will be using this integral throughout
the thesis. When we instead use the mean of the left- and the right-end point we obtain the
Stratonovich integral, which possesses different properties, which we will not discuss further
here. We would also like to remark that the Itô integral is not monotonic. That is, if f ≥ g,
we do not have that

∫ b
a
f(t) dB(t) ≥

∫ b
a
g(t) dB(t). This is due to the fact that the terms

B(ti+1 −B(ti)), i = 0, . . . , k − 1 can also be negative.
To extend this definition to the entirety of M2([a, b];Rd), we present the following approx-

imation lemma.

Lemma 2.7 (1.5.6 in Mao (2007)). For any f ∈M2([a, b];Rd), there exists a sequence {gn} of
simple processes such that

lim
n→∞

E
[∫ b

a

|f(t)− gn(t)|2
]

dt = 0.

We are now ready to define the integral (2.2) for all f ∈M2([a, b];Rd) as follows.

Definition 2.8 (Itô’s integral continued; 1.5.7 in Mao (2007)). Let f ∈M2([a, b];Rd). The Itô
integral of f with respect to {B(t)} is defined by∫ b

a

f(t) dB(t) = lim
n→∞

∫ b

a

gn(t) dB(t), (2.4)

where (gn)n is a sequence of simple processes such that

lim
n→∞

E
[∫ b

a

|f(t)− gn(t)|2 dt

]
= 0.
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Using the previous lemma we find that such a sequence of simple processes always exists.
Furthermore, it can also easily be shown that the limit in the right hand side of (2.4) exists
and is independent of the particular sequence {gn}. Therefore we have that the Itô integral is
well defined for all processes f ∈M2([a, b];Rd).
Next we state some important properties of the Itô integral.

Theorem 2.9 (1.5.8 and 1.5.9 in Mao (2007)). Let f, g ∈ M2([a, b];Rd), and let α, β be two
real numbers. Then

1.
∫ b
a
f(t) dB(t) is Fb-measurable;

2. E
[∫ b

a
f(t) dB(t) | Fa

]
= 0;

3. E
[∣∣∣∫ ba f(t) dB(t)

∣∣∣2] = E
[∫ b

a
|f(t)|2 dt

]
(Itô’s isometry);

4.
∫ b
a
αf(t) + βg(t) dB(t) = α

∫ b
a
f(t) dB(t) + β

∫ b
a
g(t) dB(t).

These statements are proven by first showing them for simple processes based on definition 2.6
and then showing that they can be extended to all processes inM2([0, T ],Rd). Based on this
theorem, and in particular point two we get the impression that the stochastic integral is a
martingale, as the increments have expectation 0. The following theorem shows that this is
indeed the case.

Theorem 2.10 (1.5.14 in Mao (2007)). Let T > 0. Let f ∈M2([0, T ];Rd). Define

I(t) =

∫ t

0

f(s) dB(s), 0 ≤ t ≤ T,

with I(0) = 0. We call I(t) the indefinite Itô integral of f. We now have that I = {I(t)}0≤t≤T
is a square integrable continuous martingale with quadratic variation given by

〈I, I〉t =

∫ t

0

|f(s)|2 ds, 0 ≤ t ≤ T.

Here the quadratic variation is defined as the unique process starting at 0 such that I2 − 〈I, I〉
is a martingale. Since I is continuous we also have the equivalent definition

〈I, I〉t = [I]t = lim
‖P‖→0

n∑
k=1

(I(tk)− I(tk−1))2,

where P ranges over the partitions of the interval [0, t].

Remark. If we use f = 1, we obtain that I(t) = B(t) based on Definition 2.6. From this we
can conclude that the quadratic variation [B]t = t. In particular we have that

lim
‖P‖→0

n∑
k=1

(B(tk)−B(tk−1))2 = t = lim
‖P‖→0

n∑
k=1

(tk − tk−1),

which suggests that, heuristically speaking, dB(t)2 = dt.

Remark. It is also possible to extend the definition of the Itô integral even further to the space
L2([a, b],Rd). In this case the integral I is no longer a martingale but only a local martingale.
This allows us to use the Itô integral before we verify that the integrand belongs toM2([a, b],Rd).
We can than later check that this is indeed the case, such that the integral still becomes a
martingale.

10
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2.2. Martingale inequalities
Knowing that the stochastic integral is a martingale, we now present some theorems about
martingale processes that will be useful later.
We first present Doob’s inequality. This inequality relates the moments of the supremum

over a time interval [a, b] of a martingale process to the moments of that martingale at time
b. As we wish to bound the supremum norm of certain processes, or the differences between
them, this seems like a useful inequality.

Theorem 2.11 (Doob’s inequality; 1.3.8 in Mao (2007)). Let {M(t)} be an Rd-valued martin-
gale. Let [a, b] be a bounded interval of R+. Let p > 1 and suppose that for all t, M(t) ∈ Lp,
i.e. E [|M(t)|p] <∞. Then

E
[

sup
a≤t≤b

|Mt|p
]
≤
(

p

p− 1

)p
E [|M(b)|p] . (2.5)

The downside of Doob’s inequality is that we still need to manage the moments of martingale
at time b. In the case that the martingale is a stochastic integral, that means we want to
compute

E

[∣∣∣∣∫ b

a

f(s) dB(s)

∣∣∣∣p
]
.

In general, it is not directly clear how to do this. Point 3 of Theorem 2.9 however shows that
for p = 2 there is a relation between the second moment of the stochastic integral and the L2

norm of the integrand. Let f ∈ M2([0, T ],Rd×m) and set I(t) =
∫ t

0
f(s) dB(s). Using Doob’s

inequality and Itô’s isometry we have

E
[

sup
0≤t≤T

|I(t)|p
]
≤ 4E

[∫ T

0

|f(s)|2 ds

]
.

It turns out that this inequality can be generalised for all p ≥ 2, as the following theorem shows.

Theorem 2.12 (1.7.2 in Mao (2007)). Let p ≥ 2. Let {B(t)} be a m-dimensional Brownian
motion and let g ∈M2([0, T ],Rd×m) such that

E
[∫ T

0

|g(s)|p ds

]
<∞.

Then

E
[

sup
0≤t≤T

∣∣∣∣∫ t

0

g(s) dB(s)

∣∣∣∣p] ≤ ( p3

2(p− 1)

) p
2

T
p−2
2 E

[∫ T

0

|g(s)|p ds

]
.

This inequality turns out to be really useful, as it not only gets rid of the supremum, but
also changes the stochastic integral into a normal integral and shifts the power p inside the
integral. We will be using this theorem in the proofs of various theorems, such as the existence
to solutions of stochastic differential equations. We would also like to compare it to the following
lemma, which also allows us to move the power p inside the integral, but this time for normal
integrals.

Lemma 2.13. Let p, q > 1 such that 1
p

+ 1
q

= 1. Let f ∈Mp([0, T ],Rd), then

E
[

sup
0≤t≤T

∣∣∣∣∫ t

0

f(s) ds

∣∣∣∣p] ≤ T p−1E
[∫ T

0

|f(s)|p ds

]
.

11
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Proof. Firstly, we have

sup
0≤t≤T

∣∣∣∣∫ t

0

f(s) ds

∣∣∣∣p ≤ (∫ T

0

|f(s)| ds
)p

.

Using Hölders theorem we have(∫ T

0

|f(s)| ds
)p
≤
(∫ T

0

1q ds

) p
q
∫ T

0

|f(s)|p ds

= T
p
q

∫ T

0

|f(s)|p ds.

Using that 1
p

+ 1
q

= 1 we can deduce that p
q

= p − 1. Combining these properties and taking
expectation on both sides completes the proof. �

The only downside to Theorem 2.12 is that the statement is only valid for p ≥ 2. In certain
cases we also would like to be able to control for example the first moment. For this we present
the following theorem, that will help us out in those scenarios.

Theorem 2.14 (Burkholder-Davis-Gundy Inequality). Let {X(t)} be a martingale with X(0) =
0 and quadratic variation {A(t)}. Then for every p > 0, there exist a universal positive constant
cp, Cp (depending only on p), such that

cpE
[
|A(t)|

p
2

]
≤ E

[
sup

0≤s≤t
|X(s)|p

]
≤ CpE

[
|A(t)|

p
2

]
.

In particular, in the case that {X(t)} is giving by

X(t) =

∫ t

0

f(s) dB(s), t ∈ [0, T ],

f ∈M2([0, T ],Rd), we have

cpE

[∣∣∣∣∫ t

0

|f(s)|2 ds

∣∣∣∣
p
2

]
≤ E

[
sup

0≤s≤t
|
∫ t

0

f(s) dB(s)|p
]
≤ CpE

[∣∣∣∣∫ t

0

|f(s)|2 ds

∣∣∣∣P
]
.

2.3. Stochastic differential equations (SDEs)
Now that we have defined the stochastic integral, we can return to our original problem. Equa-
tion (2.1) can now be written as

X(t) = x0 +

∫ t

0

b(X(t), t) dt+

∫ t

0

σ(X(t), t) dB(t), t ∈ [0, T ]. (2.6)

We now wish to seek solutions {X(t)} that satisfy {σ(X(t), t)} ∈ M2([0, T ];Rd) such that the
stochastic integral is well-defined. Before we are able to continue, we first need an important
result to more properly deal with the stochastic integral. Similar to the normal Riemann
integrals, the definition as is is not particularly helpful when evaluating the integral. Itô’s
lemma (also known as Itô’s formula) will help us with this. We first define what am Itô process
is

12
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Definition 2.15 (1.6.3 in Mao (2007)). A d-dimensional Itô process is an Rd-valued continuous
adapted process {X(t)} = {(X1(t), . . . , Xd(t))

T} on t ≥ 0 of the form

X(t) = X(0) +

∫ t

0

f(s) ds+

∫ t

0

g(s) dB(s),

where f = (f1, . . . , fd)
T ∈ L1(R+;Rd),g = (gij)d×m ∈ L2(R+;Rd×m), and B(t) is a m-

dimensional Brownian motion. We say that {X(t)} has stochastic differential dX(t) given
by

dX(t) = f(t)dt+ g(t)dB(t).

Notice that if we where to found solutions to (2.6), that this process would be an Itô process
with f(t) = b(X(t), t) and g(t) = σ(X(t), t), given that they are integrable and square integrable
respectively.
We now have the follow theorem.

Theorem 2.16 (Itô’s lemma; 1.6.4 in Mao (2007)). Let {X(t)} be a d-dimensional Itô process
on t ≥ 0 with stochastic differential

dX(t) = f(t)dt+ g(t)dB(t),

with f ∈ L1(R+;Rd) and g ∈ L2(R+;Rd×m). Let V ∈ C2,1(Rd × R+;R). Then {V (X(t), t)} is
again an Itô process with stochastic differential given by

dV (X(t), t) =

[
∂V (X(t), t)

∂t
+ (∇xV (X(t), t))Tf(t) +

1

2
trace

(
g(t)THx(V (X(t), t))g(t)

)]
dt

+ (∇xV (X(t), t))Tg(t)dB(t),

where ∇x denotes the gradient with respect to the x variable and Hx the Hessian with respect
to the x variable.

Notice how this result is very similar to the usual chain rule in calculus. The only difference
is that in this case the second derivative still plays a roll. We will show why this is the case by
giving a heuristic idea of the proof for the case d = 1. We will consider a Taylor expansion of
V (x, t). We obtain that

dV (x, t) =
∂V (x, t)

∂t
dt+

∂V (x, t)

∂x
dx+

1

2

∂2V (x, t)

∂x2
dx2 + · · · .

Setting x = X(t) and using the expression for dX(t) we get

dV (X(t), t) =
∂V (X(t), t)

∂t
dt+

∂V (X(t), t)

∂x
(f(t)dt+ g(t)dB(t))

+
1

2

∂2V (X(t), t)

∂x2

(
f(t)2dt2 + 2f(t)g(t)dtdB(t) + g(t)2dB(t)2

)
+ · · · .

The quadratic variation of the Brownian motion now suggests that dB(t)2 = dt, while the
terms dt2, dtdB(t) and all higher order terms tend to 0 faster than dt. Therefore we obtain,
heuristically,

dV (X(t), t) =
∂V (X(t), t)

∂t
dt+

∂V (X(t), t)

∂x
(f(t)dt+ g(t)dB(t)) +

1

2

∂2V (X(t), t)

∂x2
g(t)2dt

=

(
∂V (X(t), t)

∂t
+
∂V (X(t), t)

∂x
f(t) +

1

2

∂2V (X(t), t)

∂x2
g(t)2

)
dt

+
∂V (X(t), t)

∂x
g(t)dB(t).

We now have all the tools we need to find solutions to Equation (2.6). First, we define what
we mean with a solution.
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Definition 2.17 (2.2.1 in Mao (2007)). Let (Ω,F ,P) be a probability space with filtration
{F(t)}t. Let {B(t)} be a m-dimensional Brownian motion on this probability space. An Rd-
valued stochastic process {X(t)} is called a solution of Equation (2.6) if it has the following
properties:

1. {X(t)} is continuous and Ft-adapted;

2. {f(X(t), t)} ∈ L1([0, T ];Rd) and {g(X(t), t)} ∈ L2([0, T ],Rd×m);

3. Equation (2.6) holds for every t ∈ [0, T ] with probability 1.

In this definition that we will use from now on, the Brownian motion {B(t)} is assumed to
be part of the equation, rather than the solution, and we say that Equation (2.6) has a strong
solution if it has a solution for all Brownian motions. There exists also the notion of weak
solutions for (2.6) in which the Brownian motion and the probability space itself are instead
a part of the solution, but we will not discuss this here further. We now have the following
important theorem regarding the existence of strong solutions for Equation (2.6).

Theorem 2.18 (2.3.1 in Mao (2007)). Consider the SDE (2.6). Assume that E [|x0|2] < ∞.
Assume that the function b(x, t) and σ(x, t) are Lipschitz in space, i.e. there exists a K > 0
such that for all x, y ∈ Rd, t ∈ [0, T ] we have

|b(x, t)− b(y, t)|2 ∨ |σ(x, t)− σ(y, t)|2 ≤ K|x− y|2.

Furthermore, assume a linear growth condition, i.e. there exists K̃ > 0 such that for all
x ∈ Rd, t ∈ [0, T ] we have

|b(x, t)|2 ∨ |σ(x, t)|2 ≤ K̃(1 + |x|2).

Under these assumptions we have that there exists a unique solution {X(t)} of (2.6) belonging
toM2([0, T ],Rd).

Proof. We start the proof by showing the boundedness of the solution. In particular, suppose
that {X(t)} is a solution of (2.6), we will show that

E
[

sup
0≤s≤T

|X(s)|2
]
≤ (1 + 3E

[
|x0|2

]
) exp (3KT (T + 4)) .

Firstly, for every integer n ≥ 1, define the stopping time τn = T ∧ inf{t ∈ [0, T ] : |X(t)| ≥ n}.
Define Xn(t) = X(t ∧ τn) for t ∈ [0, T ]. Then Xn(t) satisfies the equation

Xn(t) = x0 +

∫ t

0

b(Xn(s), s)1{s ∈ [0, τn]} ds+

∫ t

0

σ(Xn(s), s)1{s ∈ [0, τn]} dB(s).

Using the binomial inequality gives

|Xn(t)|2 ≤ 3|x0|2 +

∣∣∣∣∫ t

0

b(Xn(s), s)1{s ∈ [0, τn]} ds

∣∣∣∣2 +

∣∣∣∣∫ t

0

σ(Xn(s), s)1{s ∈ [0, τn]} dB(s)

∣∣∣∣2 .
Applying Hölders inequality (Lemma 2.13), the Doob-like inequality (Theorem 2.12) and the
growth assumption gives

E
[

sup
0≤s≤t

|Xn(s)|2
]
≤ 3E

[
|x0|2

]
+ 3K̃T

∫ t

0

(1 + E
[
|Xn(s)|2

]
) ds+ 12K̃

∫ t

0

(1 + E
[
|Xn(s)|2

]
) ds.

14



Stochastic calculus Bart van Schooten

We therefore have

1 + E
[

sup
0≤s≤t

|Xn(s)|2
]
≤ 1 + 3E

[
|x0|2

]
+ 3K̃(T + 4)

∫ t

0

(1 + E
[
|Xn(s)|2

]
) ds.

Applying Gronwall’s inequality gives

1 + E
[

sup
0≤s≤T

|Xn(s)|2
]
≤ (1 + 3E

[
|x0|2

]
) exp (3KT (T + 4)) .

Using the definition of Xn(t), we have that

n2P(τn < T ) ≤ E
[

sup
0≤s≤T

|Xn(s)|2
]
.

Since we just showed that the right hand side is bounded independent of n, we clearly have
P(τn < T ) → 0 as n → ∞. Therefore we have that Xn → X almost surely. Applying Fatou’s
lemma now proves the required bound.
Next we prove uniqueness. Suppose that {X(t)} and {Y (t)} are two solutions of (2.6). We

obtain that

X(t)− Y (t) =

∫ t

0

b(X(s), s)− b(Y (s), s) ds+

∫ t

0

σ(X(s), s)− σ(Y (s), s) dB(s),

|X(t)− Y (t)|2 ≤ 2

∣∣∣∣∫ t

0

b(X(s), s)− b(Y (s), s) ds

∣∣∣∣2 + 2

∣∣∣∣∫ t

0

σ(X(s), s)− σ(Y (s), s) dB(s)

∣∣∣∣2 .
Taking supremum and expectation, and then using Hölders inequality (Lemma 2.13) and the
Doob-like inequality (Theorem 2.12) we obtain

E
[

sup
0≤r≤t

|X(t)− Y (t)|2
]
≤ 2tE

[∫ t

0

|b(X(s), s)− b(Y (s), s)|2 ds

]
+ 8E

[∫ t

0

|σ(X(s), s)− σ(Y (s), s)|2 ds

]
.

Using the Lipschitz assumption we get

E
[

sup
0≤r≤t

|X(t)− Y (t)|2
]
≤ K(2T + 8)

∫ t

0

E
[

sup
0≤r≤s

|X(s)− Y (s)|2
]

ds.

Finally, applying Grönwall’s inequality gives

E
[

sup
0≤r≤t

|X(t)− Y (t)|2
]

= 0.

Therefore we conclude that {X(t)} and {Y (t)} are indistinguishable, proving the uniqueness.
Lastly, we present the proof for the existence of solutions. For this we make use of Picard

iterations. Namely, let X0(t) = x0 for all t ∈ [0, T ] and for every integer m ≥ 0 define

Xm+1(t) = x0 +

∫ t

0

b(Xm(s), s) ds+

∫ t

0

σ(Xm(s), s) dB(s).

We will show that this is a contraction. In particular, we prove using induction that

E
[

sup
0≤r≤t

|Xm+1(r)−Xm(r)|2
]
≤ (Rt)m+1

(m+ 1)!
,
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with R = max{2K̃(T + 8)(1 + E [|x0|2]), 2(T + 4)K}. For m = 0 we compute, using Hölders
inequality,

sup
0≤r≤t

|X1(r)− x0|2 ≤ 2t

∫ t

0

|b(x0, s)|2 ds+ sup
0≤r≤t

2

∣∣∣∣∫ r

0

σ(x0, s) ds

∣∣∣∣2 .
Taking expectation, using the Doob-like inequality and the linear growth assumption gives

E
[

sup
0≤r≤t

|X1(r)− x0|2
]
≤ 2K̃(T + 8)

∫ t

0

E
[
1 + |x0|2

]
ds

≤ 2K̃(T + 8)t(1 + E
[
|x0|2

]
) ≤ Rt.

Now suppose that the result holds for m− 1. Now for m we have

sup
0≤r≤t

|Xm+1(r)−Xm(r)|2 ≤ 2 sup
0≤r≤t

∣∣∣∣∫ r

0

b(Xm(s), s)− b(Xm−1(s)) ds

∣∣∣∣2
+ 2 sup

0≤r≤t

∣∣∣∣∫ r

0

σ(Xm(s), s)− σ(Xm−1(s)) dB(s)

∣∣∣∣2 .
Taking expectation, applying Hölder and the Doob-like inequality and applying the Lipschitz
assumption we get

E
[

sup
0≤r≤t

|Xm+1(r)−Xm(r)|2
]
≤ 2(T + 4)K

∫ t

0

E
[

sup
0≤r≤t

|Xm(r)−Xm−1(r)|2
]

ds

≤ R

∫ t

0

(Rs)m

m!
ds

≤ (Rt)m+1

(m+ 1)!
,

which proves the result. Applying Markov’s inequality now gives

P
(

sup
0≤t≤T

|Xm+1(t)−Xm(t)| > 1

2m

)
≤ 22mE

[
sup

0≤t≤T
|Xm+1(t)−Xm(t)|2

]
≤ 22m (RT )m+1

(m+ 1)!
.

Since this is summable over m, the Borel-Cantelli lemma gives us that

P
(

sup
0≤t≤T

|Xm+1(r)−Xm(r)|2 > 1

2m
for infinitely many indices m

)
= 0.

Therefore, for almost every ω ∈ Ω we have for sufficiently large m that

sup
0≤t≤T

|Xm+1(r)−Xm(r)|2 ≤ 1

2m
,

such that for fixed ω the series

x0 +
m−1∑
i=0

(Xk+1(t)−Xk(t)) = Xm(t)
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converges uniformly on [0, T ]. Now define X(t) = limm→∞X
m(t), t ∈ [0, T ]. We now show that

{X(t)} is a solution to (2.6). Recall that the {Xm(t)} are given by

Xm+1(t) = x0 +

∫ t

0

b(Xm(s), s) ds+

∫ t

0

σ(Xm(s), s) dB(s).

We clearly have that the left hand side converges to X(t) uniformly. By the Lipschitz as-
sumption we have that b(Xm(s), s)→ b(X(s), s) and σ(Xm(s), s)→ σ(X(s), s) uniformly, and
therefore also the integrals ∫ t

0

b(Xm(s), s) ds→
∫ t

0

b(X(s), s) ds a.s.

and ∫ t

0

|σ(Xm(s), s)− σ(X(s), s)|2 ds→ 0 a.s.

Therefore, using Proposition 7.3 of Baldi (2017), which relates the convergence in probability
in L2 of the integrand to convergence of the Itô integral in probability,∫ t

0

σ(Xm(s), s) dB(s)
P→
∫ t

0

σ(Xm(s), s) dB(s).

Taking the limit along a sub-sequence turns this convergence in probability into almost sure
convergence. Since the other terms already converge a.s., by uniqueness of limits this does not
cause any problems. Therefore we have proven that {X(t)} is a solution to (2.6), proving the
theorem. �

The assumption as stated in Theorem 2.18 can easily be weakened to allow for more general
drift functions b and diffusion functions σ. In particular, we will show that a local Lipschitz
assumption suffices to prove existence and uniqueness up to a time τR, the stopping time when
the process first leaves the ball or radius R centered around 0. In order to then prove general
existence and uniqueness on a time interval [0, T ], one only needs a sufficient growth condition
to show that limR→∞ τR ∧T = T a.s. In this case the solution of the SDE will be defined based
on these stopped processes. The reason that this approach works is because of the following
theorem.

Theorem 2.19 (9.3 in Baldi (2017)). Let bi, σi, i = 1, 2, be measurable functions on Rd× [0, T ].
Let Xi, i = 1, 2, be solutions of the SDE

dXi(t) = bi(Xi(t), t)dt+ σi(Xi(t), t)dB(t).

Xi(0) = x0.

Let D ⊂ Rd be an open set such that, on D × [0, T ], b1 = b2, σ1 = σ2 and, for every x, y ∈
D, 0 ≤ t ≤ T ,

|bi(x, t)− bi(y, t)| ≤ L|x− y|, |σi(x, t)− σi(y, t)| ≤ L|x− y|.

Then, if τi denotes the exit time of Xi from D,

τ1 ∧ T = τ2 ∧ T a.s. and P (X1(t) = X2(t) for every 0 ≤ t ≤ τ1 ∧ T ) = 1.

Using the above result we can now state the following theorem, based on Theorem 2.3.4 in
Mao (2007) and Theorem 9.4 in Baldi (2017).
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Theorem 2.20. Consider the SDE

dX(t) = b(X(t), t)dt+ σ(X(t), t)dB(t),

X(0) = x0.

Assume that E [|x0|2] < ∞ and that the function b and σ are locally Lipschitz, i.e. for each
R > 0 there exists an constant LR > 0 such that for all x, y with |x| ∧ |y| < R and t ∈ [0, T ] we
have

|b(x, t)− b(y, t)| ∧ |σ(x, t)− σ(y, t)| ≤ LR|x− y|.

Lastly, assume that sup0≤t≤T |b(0, t)|∧|σ(0, t)| <∞. Then there exists a unique solution {X(t)}
on the interval [0, τ∞], with τ∞ = limR→∞ τR ∧ T . Here τR denotes the exit times from the ball
with radius R centered around 0.

Proof. Let R > 0 we consider the SDE

dXR(t) = bR(XR(t), t)dt+ σR(XR(t), t)dB(t),

XR(0) = x0,

where bR is such that bR = b on B(0, R) × [0, T ] and globally Lipschitz, and similarly for σR.
By the assumption that sup0≤t≤T |b(0, t)| ∧ |σ(0, t)| < ∞ we have that bR and σR also satisfy
the linear growth condition of Theorem 2.18. Therefore we can apply Theorem 2.18 to obtain
a unique solution XR(t). We now define the solution {X(t)} of the original process as

X(t) = XR(t), t ≤ τR.

Because of Theorem 2.19 this solution is well-defined. Indeed let 0 < R1 < R2. Then we have
that bR1 = b = bR2 and σR1 = σ = σR2 on B(0, R1)× [0, T ]. Therefore XR1 = XR2 on t < τR1 ,
and τR2 ≥ τR1 a.s. We now have constructed a solution on the interval [0, τ∞], as required,
proving the theorem. �

Remark. The equations we have considered so far feature functions b and σ which on itself are
deterministic. It is however also possible to make the functions itself depend on ω. It turns out
that the above theory is still valid as long as the functions b and σ are adapted and of course still
satisfy the other required assumptions. Details can be found in Gikhman and Skorohod (1972).
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3. Existence, uniqueness and moment bounds

In this chapter we will investigate under which conditions the equations presented in Chapter 1
have strong solutions. In Chapter 2 we have seen sufficient conditions for the existence and
uniqueness of basic SDEs.
In this chapter we will relax these assumptions further and show that these milder solutions

are sufficient to prove the existence and uniqueness for the class of SDEs with delay we are
considering. Furthermore, we show that all the moments of the processes exist, both for the
marginals and the supremum norm.
Knowing that the equations possess unique solutions, we can study the solutions and their

properties further in the next chapters. In these later chapters the moment bounds also play
an important role, as they are used to derive other properties of the solutions.
The chapter is structured as follows; we start by presenting all our results, first for the inter-

acting particle process in Section 3.1 and then for the McKean-Vlasov process in Section 3.2.
The proofs for all the results are presented afterwards in Section 3.3.

3.1. Interacting particle process
Let N ≥ 1 and T, δ > 0. As stated we will first consider the following model, describing an
interacting particle system, where the interaction happens through the mean with a delay δ.

dX i(t) = f(X i(t))dt+ g

(
1

N

N∑
j=1

Xj(t− δ)

)
dt+ εdBi(t), i ∈ 1, . . . , N, t ∈ [0, T ], (3.1)

X i(0) = xi0, (3.2)
X i(s) = ξis, s ∈ [−δ, 0), (3.3)

with f, g ∈ C(Rd,Rd) and Bi independent d-dimensional Brownian motions. We assume that
xi0 and ξis, s ∈ [−δ, 0) are i.i.d. and F0-measurable. For the functions f and g we have the
following set of assumptions.

Assumption 1. We say that the functions f and g satisfy Assumption 1 if the following holds.

1. The function f is locally Lipschitz, i.e. for each R > 0 there exists a constant LR > 0
such that for all x, y ∈ Rd with |x| ∧ |y| < R we have that

|f(x)− f(y)| ≤ LR|x− y|.

2. The function f satisfies a one-sided global Lipschitz condition, i.e. there exists a constant
C > 0 such that for all x, y ∈ Rd we have

〈x− y, f(x)− f(y)〉 < C|x− y|2.

3. The function g is globally Lipschitz, i.e. there exists a constant L > 0 such that for all
x, y ∈ Rd we have

|g(x)− g(y)| ≤ L|x− y|.

Remark. Although the above assumptions are sufficient for our result, we make some further
minor assumptions to make the proofs simpler. In particular we will assume that f(0) = g(0) =
0. This implies that we have the following two inequalities for all x ∈ Rd:

〈x, f(x)〉 ≤ C|x|2,
|g(x)| ≤ L|x|.
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3.1.1. Existence and uniqueness
For the existence and uniqueness of solutions to Equation (3.1) we have the following theorem.

Theorem 3.1. Suppose that Assumption 1 holds. Suppose that E [|xi0|2] < ∞ and also that
sup−δ≤t<0 E [|ξit|2] < ∞. Then there exists a unique set of solutions {X i(t)}, i = 1, . . . , N to
Equation (3.1). Furthermore, we have that {X i(t)} ∈ M2([0, T ],Rd) for all i = 1, . . . , N .

3.1.2. Moment bounds
In Theorem 3.1 we have seen that the solutions {X i(t)} belong toM2([0, T ],Rd). In this section
we will extend this results. We have the following theorem.

Theorem 3.2. Let f and g be functions that satisfy Assumption 1. Furthermore, assume that
g is bounded, i.e. there exists a constant M > 0 such that |g(x)| ≤ M for all x ∈ Rd. Let
p > 1. Assume that for all 1 ≤ i ≤ N we have E [|xi0|p] <∞. Let {X i(t)}, i = 1, . . . , N be the
corresponding solutions of Equation (3.1). We have

E
[

sup
0≤t≤T

|X i(t)|p
]
<∞. (3.4)

3.2. McKean–Vlasov process
We now instead consider the McKean-Vlasov process, where the dependence on the mean also
happens with a delay δ.

dX(t) = f(X(t))dt+ g(E [X(t− δ)])dt+ εdB(t), t ∈ [0, T ], (3.5)
X(0) = x0, (3.6)

E [X(s)] = ξs, s ∈ [−δ, s). (3.7)

We again have that f, g ∈ C(Rd,Rd) and that B is an d-dimensional Brownian motion. We
assume that x0 is F0-measurable.

3.2.1. Existence and uniqueness
For the existence and uniqueness of solutions to Equation (3.5) we have the following theorem.

Theorem 3.3. Suppose that Assumption 1 holds. Suppose that E [|x0|2] < ∞ and also that
sup−δ≤t<0 |ξt|2 < ∞. Then there exists a unique solution {X(t)} to Equation (3.5). Further-
more, we have that {X(t)} ∈ M2([0, T ],Rd).

3.2.2. Moment bounds
Similar to what we did for the interacting particle process, we now also extend the result that
the solution to the McKean-Vlasov process belongs to M2([0, T ],Rd). In particular, we have
the following theorem.

Theorem 3.4. Let {X(t)} be the solution of (3.5), where Assumption 1 holds. Let p > 1.
Assume that E [|x0|p] <∞. We have

E
[

sup
0≤t≤T

|X(t)|p
]
<∞. (3.8)
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3.3. Proofs
We will now present the proof for the above mentioned theorems. We will start with The-
orem 3.1. We will prove the theorem in steps. We will first show that, under the assumptions
we have, a unique solution exists on the interval [0, δ]. Then we will show that this solution also
satisfies the assumptions we had regarding the initial conditions on the interval [−δ, 0]. This
allows us to repeat our arguments to ind a solution on the interval [δ, 2δ]. Since δ > 0 is fixed,
we can iterate this argument until we find a solution on the whole interval [0, T ], proving the
theorem.

Proof (Theorem 3.1). Consider the process X(t) = (X1(t), X2(t), . . . , XN(t))T . Then X(t)
satisfies the SDE

dX(t) = F (X(t))dt+G(X(t− δ))dt+ εdB(t)

with

F (X(t)) =


f(X1(t))
f(X2(t))

...
f(XN(t))

 , G(X(t− δ)) =


g
(

1
N

∑N
j=1X

j(t− δ)
)

g
(

1
N

∑N
j=1X

j(t− δ)
)

...
g
(

1
N

∑N
j=1X

j(t− δ)
)

 , B(t) =


B1(t)
B2(t)

...
BN(t)

 .

Since the interaction happens with a delay δ, on the interval [0, δ] we have that G(X(t− δ)) =
H(t) for some functions H ∈ C([0, δ],RdN). Since the function f is locally Lipschitz, we also
have that the function F is locally Lipschitz, and therefore also the function F + H. We also
have that B is a dN -dimensional Brownian motion, as each of the Brownian motions Bi are
independent. Since we assumed that the initial conditions are F0-measurable we have that the
function F +H is also adapted.
Therefore, by Theorem 2.20, we have a unique solution {X(t)} up to time T∞, where T∞ =

limR→∞ TR. Here TR is the first time the process X leaves the ball B(0, R) (in dimension dN).
We now only need to show that T∞ ∧ δ = δ a.s. We will be showing this component-wise. In
particular, let τ iR be the first time the process X i leaves the ball B(0, R) (in dimension d). We
will show for each i that τ i∞ ∧ δ = δ a.s., with τ i∞ = limR→∞ τ

i
R. Since the amount of particles

N is fixed, this clearly implies that T∞ ∧ δ = δ a.s. as well. To show that τ i∞ ∧ δ = δ, let
1 ≤ i ≤ N and let R > 0. Consider the system of SDEs

dX i
R(t) = fR(X i

R(t))dt+ g

(
1

N

N∑
j=1

Xj
R(t− δ)

)
dt+ εdBi(t), i ∈ 1, . . . , N, t ∈ [0, δ],

X i
R(0) = xi0,

X i
R(s) = ξis, s ∈ [−δ, s),

where fR is such that fR = f on B(0, R), is globally Lipschitz and satisfies condition 1 and 2
of Assumption 1. Note that the function g is already globally Lipschitz, so we do not need to
make a local approximation. By Theorem 2.19 we have that the exit times of B(0, R) coincide
for X i and X i

R. Using Itô’s formula we compute

|X i
R(t)|2 = |xi0|2 +

∫ t

0

2〈X i
R(s), fR(X i

R(s))〉+ 2〈X i
R(s), g

(
1

N

N∑
j=1

Xj
R(s− δ)

)
〉 ds

+

∫ t

0

dε2 ds+

∫ t

0

2εX i
R(s) dB(s).
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Applying the one-sided Lipschitz to the first inner-product, and Cauchy-Schwarz, the global
Lipschitz assumption and Young’s inequality to the second inner-product gives

≤ |xi0|2 +

∫ t

0

2C|X i
R(s)|2 + L|X i

R(s)|2 + L| 1
N

N∑
j=1

Xj
R(s− δ)|2 + dε2 ds

+

∫ t

0

2εX i
R(s) dB(s).

Taking the supremum over time and expectation yields

E
[

sup
0≤u≤t

|X i
R(u)|2

]
≤ E

[
|xi0|2

]
+

∫ t

0

(2C + L)E
[

sup
0≤u≤s

|X i
R(u)|2

]
+ L

1

N

n∑
j=1

E
[
|Xj

R(s− δ)|2
]

ds

+ tdε2 + E
[

sup
0≤u≤t

∫ u

0

2εX i
R(s) dB(s)

]
.

Using the Burkholder-Davis-Gundy inequality gives

≤ E
[
|xi0|2

]
+

∫ t

0

(2C + L)E
[

sup
0≤u≤s

|X i
R(u)|2

]
+ L

1

N

n∑
j=1

E
[
|Xj

R(s− δ)|2
]

ds

+ tdε2 + E
[
|
∫ t

0

4ε2|X i
R(s)|2 ds|

1
2

]
.

Using symmetry of the equations such that all Xj are equally distributed and the fact that√
x ≤ 1

2
(1 + x) for all x ∈ R+ gives

≤ E
[
|xi0|2

]
+ T (L sup

−δ≤u≤0
E
[
|X i(u)|2

]
+ dε2) +

1

2

+

∫ t

0

(2C + L+ 2ε2)E
[

sup
0≤u≤s

|X i
R(u)|2

]
ds.

Using Grönwall’s lemma now yields

E
[

sup
0≤t≤δ

|X i
R(t)|2

]
≤
(
E
[
|xi0|2

]
+ T (L sup

−δ≤u≤0
E
[
|X i(u)|2

]
+ dε2) +

1

2

)
e(2C+L+2ε2)T .

We have that

P
(
τ iR < δ

)
R2 ≤ E

[
sup

0≤t≤δ
|X i

R(t)|2
]
.

Since we just showed that the right hand side is bounded independent of R, sending R to
infinity gives P (τ iR < δ) → 0. This means that τ iR → δ a.s., proving existence on the whole
interval [0, δ]. Furthermore, using Fatou’s lemma the above bound also holds for the process
X i itself. Therefore we have that

sup
0≤t≤δ

E
[
|X i(t)|2

]
≤ E

[
sup

0≤t≤δ
|X i(t)|2

]
<∞,

meaning that the solution on the interval [0, δ] can serve as an initial condition for a solution
on the interval [δ, 2δ]. Repeating this argument shows existence and uniqueness on the whole
interval [0, T ], proving the theorem. �
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We continue with the proof of Theorem 3.2. In the proof of Theorem 3.1 we have already
seen that the result holds for p = 2, even when g is not bounded. We will now present the case
when p > 2. The proof is inspired by the proof of Theorem 2.3.3 of Reiß (2007).

Proof (Theorem 3.2). Let 1 ≤ N and p > 2. We wish to show that E
[
sup0≤t≤T |X i(t)|p

]
<∞.

We will be doing this by showing that there exists a K such that e−K(t∧τR)(1 + |X i(t ∧ τR)|p)
is a supermartingale. Here τR is the first time the process X i leaves the ball B(0, R). We can
then use this result to obtain an upper-bound on P (τR ≤ T ). With this bound we can derive
the required result. To be precise, let

K = pC +
p

2

(
1 +M2 + (p− 2 + d)ε2

)
.

By Itô’s lemma we have

e−Kt(1 + |X i(t)|p)− (1 + |X i(0)|p)

= −K
∫ t

0

e−Ks(1 + |X i(s)|p) ds+

∫ t

0

e−Ksp|X i(s)|p−2X i(s)T dX i(s)

+
1

2

∫ t

0

e−Ksp(p− 2 + d)ε2|X i(s)|p−2 ds.

Working out the term dX i(s) gives

= local martingale +

∫ t

0

e−Ks
(
−K(1 + |X i(s)|p) + p|X i(s)|p−2〈X i(s), f(X i(s))〉

)
ds

+

∫ t

0

e−Ks

(
p|X i(s)|p−2〈X i(s), g

(
1

N

N∑
j=1

Xj(s− δ)

)
〉+

p

2
(p− 2 + d)ε2|X i(s)|p−2

)
ds.

Applying the one sided Lipschitz assumption of f to the first inner-product and Cauchy-
Schwarz, the boundedness assumption of g and Young’s inequality to the second inner product
yields

≤ local martingale +

∫ t

0

e−Ks
(
−K(1 + |X i|p) + pC|X i(s)|p +

p

2
|X i(s)|p

)
ds

+

∫ t

0

e−Ks
(p

2
M2 +

p

2
(p− 2 + d)ε2|X i(s)|p−2

)
ds.

Using the fact that |x|p−2 ≤ 1 + |x|p for all x ∈ Rd and grouping everything together gives

≤ local martingale +

∫ t

0

e−Ks
(
−K + pC +

p

2
+
p

2
M2 +

p

2
(p− 2 + d)ε2

) (
1 + |X i(s)|p

)
ds.

Due to our choice ofK we find that {e−K(t∧τR)(1+|X i(t∧τR)|p)} is a supermartingale. Therefore
we have that

E
[
1 + |X i(0)|p

]
≥ E

[
e−K(t∧τR)(1 + |X i(t ∧ τR)|p)

]
In particular, this implies that

E
[
1 + |X i(0)|p

]
eKt

1

1 +Rp
≥ P (τR ≤ t) .
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We now only need to show that this result implies that the moments of the process X i in the
supremum norm are finite. To do this, let q < p. We obtain

E
[

sup
0≤t≤T

|X(s)|q
]

=

∫ ∞
0

P
(

sup
0≤t≤T

|X(s)|q ≥ R

)
dR

=

∫ ∞
0

P
(
τ q√R ≤ T

)
dR.

Using the previous result

≤ E
[
1 + |X i(0)|p

]
eKT

(
1 +

∫ ∞
1

1

Rp/q
dR

)
= E

[
1 + |X i(0)|p

]
eKT

(
1 +

q

p− q

)
<∞,

proving the theorem. �

We now aim to prove Theorem 3.3 and Theorem 3.4, regarding the existence and uniqueness
of solutions to the Mckean-Vlasov equation, as well as its moments in the supremum norm.
We start out with the proof of Theorem 3.3. The idea is similar to the proof showing that the
interacting particle system has unique solutions. We again first show that local existence holds,
and then also verify that these solutions in fact exist on the entire interval [0, T ]. Just as in the
proof of Theorem 3.1, we will be doing this step-wise, by first showing that a unique solution
exists on the interval [0, δ], and then showing that this solution satisfies the assumptions we
placed on the initial conditions, such that we can iterate this approach to obtain solutions on
the intervals [δ, 2δ], [2δ, 3δ] until we have a solution on the entire interval [0, T ]. To be precise,
the proof is as follows.

Proof (Theorem 3.3). Consider the SDE (3.5) on the interval [0, δ]. Setting b(x, t) = f(x) +
g(ξt−δ), due to Assumption 1, we have that Theorem 2.20 applies, such that we have a solution
on the interval [0, τ∞], where τ∞ = limR→∞ τR, with τR the exit time of the ball B(0, R), R > 0.
We now wish to show that limR→∞ τR ∧ δ = δ a.s. Consider the SDE

dXR(t) = fR(XR(t))dt+ g (ξt−δ) dt+ εdB(t), t ∈ [0, δ],

XR(0) = x0,

XR(s) = ξs, s ∈ [−δ, s),

where fR is such that fR = f on B(0, R), is globally Lipschitz and satisfies condition 1 and 2
of Assumption 1. Note that the function g is already globally Lipschitz, so we do not need to
make a local approximation. By Theorem 2.19 we have that the exit times of the ball B(0, R)
coincide for the processes X and XR.
Using Itô’s formula we compute

|XR(t)|2 = |x0|2 +

∫ t

0

2〈XR(s), fR(XR(s))〉+ 2〈XR(s), g (ξs−δ))〉+ dε2 ds

+

∫ t

0

2εXR(s) dB(s).

Applying the one-sided Lipschitz to the first inner-product, and Cauchy-Schwarz, the global
Lipschitz assumption and Young’s inequality to the second inner-product gives

≤ |x0|2 +

∫ t

0

2C|XR(s)|2 + L|XR(s)|2 + L|ξs−δ|2 + dε2 ds

+

∫ t

0

2εXR(s) dB(s).
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Taking the supremum over time and expectation yields

E
[

sup
0≤u≤t

|XR(u)|2
]
≤ E

[
|x0|2

]
+

∫ t

0

(2C + L)E
[

sup
0≤u≤s

|XR(u)|2
]

+ L|ξs−δ|2 ds

+ tdε2 + E
[

sup
0≤u≤t

∫ u

0

2εXR(s) dB(s)

]
.

Using the Burkholder-Davis-Gundy inequality

≤ E
[
|x0|2

]
+

∫ t

0

(2C + L)E
[

sup
0≤u≤s

|XR(u)|2
]

+ L|ξs−δ|2 ds

+ tdε2 + E
[
|
∫ t

0

4ε2|XR(s)|2 ds|
1
2

]
.

Using the fact that
√
x ≤ 1

2
(1 + x) for all x ∈ R+ gives

≤ E
[
|x0|2

]
+ T (L sup

−δ≤u≤0
|ξu|+ dε2) +

1

2

+

∫ t

0

(2C + L+ 2ε2)E
[

sup
0≤u≤s

|XR(u)|2
]

ds.

Using Grönwall’s lemma now yields

E
[

sup
0≤t≤δ

|XR(t)|2
]
≤
(
E
[
|x0|2

]
+ T (L sup

−δ≤u≤0
|ξu|+ dε2) +

1

2

)
e(2C+L+2ε2)T .

We have that

P (τR < δ)R2 ≤ E
[

sup
0≤t≤δ

|XR(t)|2
]
.

We now continue in the same way as we did in the proof of Theorem 3.1. In particular, we
argue as follows. Since we just showed that the right hand side is bounded independent of R,
sending R to infinity gives P (τR < δ)→ 0. This means that τR → δ a.s., proving existence on
the whole interval [0, δ]. Furthermore, using Fatou’s lemma the above bound also holds for the
process X itself. Therefore we have that

sup
0≤t≤δ

E
[
|X(t)|2

]
≤ E

[
sup

0≤t≤δ
|X(t)|2

]
<∞,

meaning that the solution on the interval [0, δ] can serve as an initial condition for a solution
on the interval [δ, 2δ]. Repeating this argument shows existence and uniqueness on the whole
interval [0, T ], proving the theorem. �

Lastly, we present the proof of Theorem 3.4. We already have proven the result in the case
that p ≤ 2. For the proof of the case p ≥ 2 we use a similar approach as we did for the proof
of Theorem 3.2. That is, we show that there exists a K such that −Kt(1 + |XR(t)|p) is a super-
martingale. This will give us an upper-bound on the probability that τR < T , in a way that will
allow us to show that the moments of X in the supremum norm are finite. This time, however,
we do not need the assumption that g is bounded. This is because we have a deterministic
upper-bound on the expectation of X at time t, t ∈ [0, T ], while for the interacting case we
did not have a deterministic upper-bound for the empirical mean of the particles. The precise
proof is as follows.
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Proof (Theorem 3.4). Let p ≥ 2. Let

K = pC +
p

2
L+

p

2
(p− 2 + d)ε2

+
p

2
L

(
sup
−δ≤r≤0

E
[
|X(r)|2

]
+

(
E
[
|X(0)|2

]
+ TL sup

−δ≤r≤0
E
[
|X(r)|2

]
+ Tε2 +

1

2

)
e(2C+L)T

)
.

Using Itô’s lemma we compute

e−Kt(1 + |X(t)|p)− (1 + |X(0)|p)

= −K
∫ t

0

e−Ks(1 + |X(s)|p) ds+

∫ t

0

e−Ksp|X(s)|p−2X(s)T dX(s)

+
1

2

∫ t

0

e−Ksp(p− 2 + d)ε2|X(s)|p−2 ds.

Expending the term dX(s) yields

= local martingale +

∫ t

0

e−Ks
(
−K(1 + |X(s)|p) + p|X(s)|p−2〈X(s), f(X(s))〉

)
ds

+

∫ t

0

e−Ks
(
p|X(s)|p−2〈X(s), g(E [X(s− δ)])〉+

p

2
(p− 2 + d)ε2|X(s)|p−2

)
ds.

Applying the one-sided Lipschitz assumption on f to the first inner-product and Cauchy-
Schwarz, the global Lipschitz assumption on g and Young’s inequality gives us

≤ local martingale +

∫ t

0

e−Ks
(
−K(1 + |X|p) + pC|X(s)|p +

p

2
L|X(s)|2

)
ds

+

∫ t

0

e−Ks
(p

2
LE
[
|X(s− δ)|2

]
+
p

2
(p− 2 + d)ε2|X(s)|p−2

)
ds.

Using the fact that |x|p−2 ≤ 1 + |x|p for all x ∈ Rd and reordering all the terms yields

≤ local martingale

+

∫ t

0

e−Ks
(
−K + pC +

p

2
L+

p

2
LE
[
|X(s− δ)|2

]
+
p

2
(p− 2 + d)ε2

)
(1 + |X(s)|p) ds.

By our choice of K, and the bound on the second moment we found earlier, we find that
{e−K(t∧τR)(1 + |X(t ∧ τR)|p)}0≤t≤T is a supermartingale. Therefore we have that

E [1 + |X(0)|p] ≥ E
[
e−K(t∧τR)(1 + |X(t ∧ τR)|p)

]
.

In particular we have that

E [1 + |X(0)|p] eKt 1

1 +Rp
≥ P(τR ≤ t). (3.9)

Lastly, we show how this result implies that the moments of X in the supremum norm are
finite. Let q < p. We obtain

E
[

sup
0≤s≤T

|X(s)|q
]

=

∫ ∞
0

P( sup
0≤s≤T

|X(s)|q ≥ R) dR

=

∫ ∞
0

P(τ q√R ≤ T ) dR.
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Using the previous result gives

≤ E [1 + |X(0)|p] eKT
(

1 +

∫ ∞
1

1

Rp/q
dR

)
= E [1 + |X(0)|p] eKT

(
1 +

q

p− q

)
<∞,

proving the theorem. �

Remark. Instead of assuming that g is Lipschitz, we can also assume that g is bounded by
some constant M > 0, i.e. for all x ∈ Rd we have that |g(x)| < M . In this case we can improve
the value of K to

K = pC +
p

2
+
p

2
(p− 2 + d)ε2 +

p

2
M2.

The proof for this is similar to the proof of Theorem 3.2, as the assumption of g being bounded
was also made there.
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4. Propagation of chaos

So far we have been discussing two processes. The first process describes an interacting particle
system, where evolution of the N particles depends on the mean position of all the particles with
a delay δ > 0. The other processes is a delayed McKean-Vlasov process, where this stochastic
empirical mean term is replaced by the (deterministic) expectation of the process itself. By
the law of large numbers we know that the empirical mean converges towards the true mean.
Therefore it is natural to assume that there is some relation between the two models, and that
the McKean-Vlasov process can be seen as the limiting process when the amount of particles
N goes to infinity in some manner. In this chapter we will describe precisely in what way this
limit holds.
We will find out that, if we create n copies of the McKean-Vlasov process and couple them to

the first n particles of the interacting particle process by the means of using the same Brownian
motion and initial condition, under certain assumptions, we can show that the distance in
supremum norm between the interacting particle process and the McKean-Vlasov process con-
verges to 0 when sending N to infinity, while keeping n fixed. Furthermore, we also obtain
an upper bound on the rate of convergence. This result implies that the interacting particle
system possesses the so called propagation of chaos property. This means that the marginals
of the first n particles of the interacting particle process at a time t will converge to the mar-
ginals of the n McKean-Vlasov processes, which are all independent of each other given that
the initial distributions of these processes are independent. Therefore we have that the chaos
(independence) of the initial condition propagates forward to all the marginals in the limit of
the amount of particles N going to infinity.

4.1. An easier example
Before we analyse the main model as presented in Section 1.1, we first consider a simpler model
to get an idea of the concept. Here we follow Chapter 1 of Sznitman (1991). In particular, we
consider, for N > 0 , the system of SDEs

dX i,N(t) =
1

N

N∑
j=1

b(X i,N(t), Xj,N(t))dt+ dBi(t), i = 1, . . . , N, (4.1)

X i(0) = xi0, i = 1, . . . , N. (4.2)

Notice that there are three major differences between this model and our model. Firstly, the
drift function b is not separated into two functions, depending on X i,N and Xj,N respectively,
but as one function, allowing for more direct interaction. Secondly, in this model there is no
delay in the interaction. Lastly, in this model we consider the average of the interactions, rather
than an interaction withthe average. We will see that this also results in a different limiting
model. In particular, consider the McKean-Vlasov equation

dX̄ i(t) = xi0 +

∫ t

0

∫
b(X̄ i(s), y)us(dy) ds+Bi(t), i = 1, . . . , N, (4.3)

us(dy) = law(X̄ i(s)), (4.4)

where the initial conditions xi0 and the Brownian motions Bi are the same as those for the
interacting particle system. As stated, we now indeed have a different limiting model, as the
expectation over the law of X̄ i(s) is now outside the function b rather than inside. The reason
that we call this the limiting model is because of the following theorem we have.
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Theorem 4.1 (Theorem 1.4 of Sznitman (1991)). Suppose that b is bounded and Lipschitz in
both arguments. Suppose that the initial conditions xi0, i = 1, . . . , N are i.i.d. Then for any
i ≥ 1, T > 0 we have

sup
N≥i

√
NE

[
sup

0≤t≤T
|X i,N(t)− X̄ i(t)|

]
<∞. (4.5)

We omit the proof here, as it is similar to the proof of Theorem 4.3, which we will present
later in this chapter.
This theorem tells us that when N grows large, the expected distance in the supremum

norm between the trajectories of the interacting particle model and the trajectories of the
(independent) McKean-Vlasov process becomes small.
We now wish to show the propagation of chaos property. We first remark that by Proposi-

tion 2.2 of Sznitman (1991) we only have to consider two particles instead of n particles, and
show that the propagation of chaos result holds for this pair. This pairwise independence im-
plies non-trivially that the propagation of chaos also holds for a set of n particles, with n ≥ 2
fixed.
Using Theorem 4.1, we can easily show that X i,N → X̄ i in probability. Indeed, let θ > 0. By

Markov’s inequality and Theorem 4.1 we have that there exists a constant M > 0 such that

P
(

sup
0≤t≤T

|X i,N(t)− X̄ i(t)| > θ

)
≤ 1

θ
E
[

sup
0≤t≤T

|X i,N(t)− X̄ i(t)|
]
≤ M

θ

1√
N
. (4.6)

SendingN →∞ we see that we indeed have convergence in probability in the space C([0, T ],Rd)
equipped with the supremum norm.
We now define what we mean when we say that two sequences of random variables are

asymptotically independent.

Definition 4.2. Let (Xn, Yn)n be a sequence of pairs of random variables, converging in distri-
bution to the pair (X, Y ). We call the sequence (Xn, Yn) asymptotically independent if the pair
(X, Y ) is independent.

To show that we have propagation of chaos, which is equivalent to saying that for i 6= j
we have that the pair (X i,N , Xj,N)N is asymptotically independent, we want to show that
the pair (X i,N , Xj,N)N converges in distribution to the pair (X̄ i, X̄j) when N → ∞, which is
independent by construction. We will show that this convergence even holds in probability.
Indeed, let θ > 0, we have

P
(
‖(X i,N , Y i,N)− (X̄ i, X̄j)‖ > θ

)
≤ P

(
sup

0≤t≤T
|X i,N(t)− X̄ i(t)|+ sup

0≤t≤T
|Xj,N(t)− X̄j(t)| > θ

)
≤ P

(
sup

0≤t≤T
|X i,N(t)− X̄ i(t)| > θ

2
∪ sup

0≤t≤T
|Xj,N(t)− X̄j(t)| > θ

2

)
≤ P

(
sup

0≤t≤T
|X i,N(t)− X̄ i(t)| > θ

2

)
+ P

(
sup

0≤t≤T
|Xj,N(t)− X̄j(t)| > θ

2

)
,

where the norm in the first line denotes the supremum norm on the product space C([0, T ],Rd)2.
The terms in the last line go to 0 by Equation (4.6). Thus we have that (X i,N , Xj,N)N converges
in probability to the pair (X̄ i, X̄j) when N → ∞. Since convergence in probability implies
convergence in distribution, we have that the pair (X i,N , Xj,N)N is asymptotically independent,
as the pair (X̄ i, X̄j) is independent.
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4.2. Interaction with a delay
We now wish to apply similar arguments as above to the model we introduced in Section 1.1.
Namely, we consider the following model. For N ≥ 2 and δ > 0, consider the interacting
particle process

dX i,N(t) = f(X i,N(t))dt+ g

(
1

N

N∑
j=1

Xj,N(t− δ)

)
dt+ εdBi(t), i = 1, . . . , N,

X i,N(0) = xi0,

X i,N(s) = ξ(s), s ∈ [−δ, 0),

with Bi independent standard Brownian motions. Also consider the processes

dX̄ i(t) = f(X̄ i(t))dt+ g
(
E
[
X̄ i(t− δ)

])
dt+ εdBi(t), i = 1, . . . , N,

X̄ i(0) = xi0,

X i(s) = ξ(s), s ∈ [−δ, 0),

where the initial conditions and the Brownian motions are the same as for the interacting
particle system. As stated before, the model differs from the previously discussed model in
several ways. Firstly the structure of the interaction is different. Instead of considering one
function depending on both the current particle and the particle with which it interacts, we now
have two functions, f and g, which consider the drift of the particle itself and its interaction
with the other particles separately.
Secondly, the interaction now happens as a function of the mean, rather than the mean of a

function. This is also reflected in the McKean-Vlasov equation, where the expectation is inside
the function g, rather than outside.
Lastly, the interaction now occurs with a delay δ. Although this changes the model signific-

antly, we will see that the results concerning the propagation of chaos do not change because
of this. The reason for this is that we have a bound on the second moment of the process
uniformly in time. To be precise, we present the following theorem, which can be seen as the
equivalent of Theorem 4.1.

Theorem 4.3. Assume that Assumption 1 holds. Assume that the initial conditions ξ(s), s ∈
[−δ, 0) and xi0, i = 1, . . . , N are i.i.d. We then have

sup
N≥i

NE
[

sup
0≤t≤T

|X i,N(t)− X̄ i(t)|2
]
<∞.

If we compare Theorem 4.3 to Theorem 4.1 we can note some differences. Firstly, the result
is slightly stronger, as this time we consider the second moment rather than the first moment.
Since E [X]2 ≤ E [X2], we can obtain results for the first moment based on the second moment,
but not the other way around.
Also the required assumptions for Theorem 4.3 are milder than those for Theorem 4.1. The

latter has a global Lipschitz assumption on both arguments. Furthermore, it assumes that the
function b is bounded. In this theorem the assumptions are weakened to require only a global
Lipschitz property for the function g, and only a local Lipschitz with a growth condition for
the function f . Also neither of these functions are assumed to be bounded.
Before we present the proof of the theorem, we first present a small algebraic lemma, which

we will use in the proof.
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Lemma 4.4.

a
1

N

n∑
j=1

bj ≤
1

2
a2 +

1

2N

N∑
j=1

b2
j .

Proof.

a
1

N

N∑
j=1

bj =
N∑
j=1

a√
N

bj√
N

≤
N∑
j=1

a2

2N
+

b2
j

2N
=

1

2
a2 +

1

2N

N∑
j=1

b2
j .

�

We now present the proof of theorem. We will show that the squared distance between X i

and X̄ i can be related to the variance of the empirical mean of the processes X̄ i, i = 1, . . . , N .
Since these processes are independent, we have that this variance decays linearly in N , which
will allow us to prove the result.

Proof. Using Itô’s formula we compute

d|X i(t)− X̄ i(t)|2 = 2
〈
X i(t)− X̄ i(t), f(X i(t))− f(X̄ i(t))

〉
dt

+ 2

〈
X i(t)− X̄ i(t), g

(
1

N

N∑
j=1

Xj(t− δ)

)
− g

(
E
[
X̄ i(t− δ)

])〉
dt.

Or equivalently

|X i(t)− X̄ i(t)|2 =

∫ t

0

2
〈
X i(s)− X̄ i(s), f(X i(s))− f(X̄ i(s))

〉
ds

+

∫ t

0

〈
X i(s)− X̄ i(s), g

(
1

N

N∑
i=j

Xj(s− δ)

)
− g

(
E
[
X̄ i(s− δ)

])〉
ds

Applying the one-sided Lipschitz assumption of f to the first inner-product, and Cauchy-
Schwarz and the global Lipschitz assumption of g to the second inner-product we obtain

≤
∫ t

0

2C|X i(s)− X̄ i(s)|2 ds

+

∫ t

0

|X i(s)− X̄ i(s)|L

∣∣∣∣∣ 1

N

N∑
j=1

Xj(s− δ)− E
[
X̄ i(s− δ)

]∣∣∣∣∣ ds

≤
∫ t

0

2C|X i(s)− X̄ i(s)|2 ds

+

∫ t

0

L|X i(s)− X̄ i(s)|

∣∣∣∣∣ 1

N

N∑
j=1

Xj(s− δ)− X̄j(s− δ)

∣∣∣∣∣ ds

+

∫ t

0

L|X i(s)− X̄ i(s)|

∣∣∣∣∣ 1

N

N∑
j=1

X̄j(s− δ)− E
[
X̄j(s− δ)

]∣∣∣∣∣ ds.
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Using Lemma 4.4

≤ (2C + L2)

∫ t

0

|X i(s)− X̄ i(s)|2 ds

+

∫ t

0

1

2N

N∑
j=1

|Xj(s− δ)− X̄j(s− δ)|2 ds

+
1

2

∫ t

0

∣∣∣∣∣ 1

N

N∑
j=1

X̄j(s− δ)− E
[
X̄j(s− δ)

]∣∣∣∣∣
2

ds.

Next we take the supremum over time and expectation. Noting that Xj − X̄j is identically
distributed for each j by symmetry, we obtain

E
[

sup
0≤r≤t

|X i(r)− X̄ i(r)|2
]
≤ (2C + L2 +

1

2
)

∫ t

0

E
[

sup
0≤r≤s

|X i(r)− X̄ i(r)|2
]

ds

+
1

2

∫ t

0

E

∣∣∣∣∣ 1

N

N∑
j=1

X̄j(s− δ)− E
[
X̄j(s− δ)

]∣∣∣∣∣
2
 ds.

Applying Grönwall’s inequality yields

E
[

sup
0≤r≤T

|X i(r)− X̄ i(r)|2
]
≤ 1

2
e(2C+L2+ 1

2
)T

∫ T

0

E

∣∣∣∣∣ 1

N

N∑
j=1

X̄j(s− δ)− E
[
X̄j(s− δ)

]∣∣∣∣∣
2
 ds.

Notice that we have

E

∣∣∣∣∣ 1

N

N∑
j=1

X̄j(s− δ)− E
[
X̄j(s− δ)

]∣∣∣∣∣
2


=
1

N2
E

[
d∑
l=1

N∑
j,k=1

(
X̄j
l (s− δ)− E

[
X̄j
l (s− δ)

]) (
X̄k
l (s− δ)− E

[
X̄k
l (s− δ)

])]
,

where X̄j
l (s − δ) denotes the l’th component of X̄j at time s − δ. Using independence of the

X̄j’s we obtain

=
1

N2
E

[
d∑
l=1

N∑
j=1

(
X̄j
l (s− δ)− E

[
X̄j
l (s− δ)

])2

]

=
1

N2
E

[
N∑
j=1

∣∣X̄j(s− δ)− E
[
X̄j(s− δ)

]∣∣2] .
By symmetry of the distributions of X̄j we have

=
1

N
E
[∣∣X̄1(s− δ)− E

[
X̄1(s− δ)

]∣∣2]
≤ M

N
,

for some constant M > 0. See Chapter 3 for details on this. Therefore we obtain that

E
[

sup
0≤t≤T

|X i(t)− X̄ i(t)|2
]
≤ 1

2
e(2C+L2+ 1

2
)T

∫ T

0

M

N
ds

=
1

2
Te(2C+L2+ 1

2
)TM

N
=
M̃

N
,

proving the theorem. �
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Now that we have proven Theorem 4.3, we can apply a similar analysis as we did in Sec-
tion 4.1. We again have that X i,N → X̄ i in probability in the space C([0, T ],Rd) equipped with
the supremum norm. Therefore we also have for any i 6= j that the pair (X i,N , Xj,N)→ (X̄ i, X̄j)
in probability as N → ∞. From this we can conclude that the pair is asymptotically inde-
pendent and that thus the propagation of chaos property also holds for this model, under the
assumptions as stated in Theorem 4.3.
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5. Small noise regime

In the previous chapter we discussed what happens to our model when we send the amount
of particles N to infinity. In particular, we found that for a fixed amount of n particles, the
trajectories of interacting particles converged to those of the McKean-Vlasov equation.
In this chapter we will be looking at a different limit. We will now investigate what happens

to the model when the noise parameter ε is send to 0. We are especially interested in whether
or not a LDP applies to our model. LDPs concern at which rate probabilities of rare events
occur on an exponential scale when the noise parameter ε is send to 0. Let us make this more
precise. We first define what we call a rate function.

Definition 5.1. A rate function is a lower semi-continuous function I : X → [0,∞], i.e. for
all α ∈ [0,∞), the level sets

ΨI(α) = {x ∈ X : I(x) ≤ α}

are closed. I is called a good rate function if all level sets are compact.

With this definition in hand we can now define what we precisely mean with a LDP.

Definition 5.2. Let I be a rate function. A family of probability measures {µε}ε>0 satisfies a
large deviation principle with rate function I if for all Γ ∈ B we have

− inf
x∈Γo

I(x) ≤ lim inf
ε→0

ε lnµε(Γ) ≤ lim sup
ε→0

lnµε(Γ) ≤ − inf
x∈Γ

I(x).

Here Γo denotes the open interior and Γ the closure of the set Γ.

Remark. We often say that a family of random variables {Xε}ε>0 satisfies a LDP. In this case
we mean that the family of laws of the random variables satisfies a LDP.

As said, in this chapter we investigate if solutions to SDEs satsify a LDP. We will start with
Schilder’s theorem, describing a LDP for Brownian motions. Using the so called contraction
principle, we are then able to show the Freidlin-Wentzell theorem, describing a LDP for SDEs
with a Lipschitz drift function and additive noise.
Next we look at a general result by Chiarini and Fischer (2014), describing a LDP for a class

of stochastic delay equations, which may not only depend on the current state and the state at
a fixed delay δ, but rather on the entire trajectory up until that point.
Finally, we investigate which assumptions we need to make such that we can apply the result

of Chiarini and Fischer (2014) to our model.
We will find that under a local Lipschitz assumption with a linear growth condition we are

able to show a LDP for both the interacting model as well as for the McKean-Vlasov equation.
Without the linear growth condition we are still able to show pathwise convergence of the
solution to the corresponding ODE, but we are unable to proof that a LDP holds in that case.
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5.1. Freidlin–Wentzell theorem
Throughout this section we will refer to various theorems obtained from Herrmann et al. (2014).
We will refer to them for the proofs of the theorems when we do not provide the proofs ourselves.
We start by presenting Schilder’s theorem, describing a LDP for the Brownian motion re-scaled
by the square root of the noise parameter ε. Firstly, we notice that for t ∈ [0, T ] we have that√
εB(t) is normally distributed with mean 0 and variance εt. We thus expect that the marginals

converge to 0 when ε → 0. The reflection principle of the Brownian motion then implies that
this also holds on a trajectory level. A typical trajectory therefore stays close t0 0 trajectory
when ε is small. Schilder’s theorem now tells us how fast the probability that non-typical
trajectories occur, decays when ε→ 0. To be precise, the theorem states the following.

Theorem 5.3 (Schilder’s theorem; Theorem 2.28 in Herrmann et al. (2014)). Let B be a d-
dimensional Brownian motion. For ε > 0, let Bε =

√
εB. Then on the space C([0, T ],Rd)

equipped with the supremum norm, the family {Bε}ε satisfies a LDP with good rate function

I(φ) =

{
1
2

∫ T
0
|φ̇(t)|2 dt, if φ ∈ H1([0, T ],Rd),

+∞, else.

Here H1([0, T ],Rd) denotes the Cameron-Martin space of absolutely continuous functions, which
is defined as

H1([0, T ],Rd) =
{
f : [0, 1]→ Rd, f(0) = 0, f is absolutely continuous with |ḟ | ∈ L2([0, 1],R)

}
=

{∫ t

0

ḟ(s) ds, |ḟ | ∈ L2([0, 1],R)

}
.

We will not discuss the proof of this theorem here. It can be found in Section 2.3.3 of
Herrmann et al. (2014). We now wish to extend this theorem for Brownian motions to solutions
of equations of the following type.

dXε(t) = b(Xε(t))dt+
√
εB(t), t ∈ [0, T ]. (5.1)

To do this, we make use of the so called contraction principle. This important theorem in the
study of LDPs allows us to derive a LDP for a certain family of random variables based on
an existing LDP, given that there exists a continuous mapping from the latter to the former.
Precisely, the contraction principle states the following.

Theorem 5.4 (Contraction principle; Theorem 2.17 in Herrmann et al. (2014)). Let X and Y
be topological spaces, and f : X→ Y a continuous mapping. Let I : X→ [0,∞] be a good rate
function. The following holds.

1. For y ∈ Y let

I ′(y) = inf{I(x) : x ∈ X, y = f(x)}

with the convention that inf{∅} = +∞. Then I ′ is a good rate function on Y;

2. Suppose that {µε}ε>0 satisfies a LDP with (good) rate function I, and νε = µε ◦ f−1,
ε > 0. Then the family {νε}ε>0 satisfies a LDP with (good) rate function I ′.

We now wish to use this contraction principle to show a LDP for the family of solutions
{Xε}ε>0 which satisfy Equation (5.1). For this we would like to use the space X as C([0, T ],Rd)
equipped with the supremum norm, where the laws of the family {

√
εB}ε>0 play the role of the

family {µε}ε>0. For Y we wish to use the same space as for X, but let {νε}ε>0 play the role
of the laws of the family of solutions {Xε}ε>0. For this we would need a continuous function
f which maps a Brownian motion to a solution of Equation (5.1). This function indeed exists
and gives rise to the Freidlin-Wentzell theorem.
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Theorem 5.5 (Freidlin-Wentzell theorem; Theorem 2.31 in Herrmann et al. (2014)). Let Xε

be the solution to the SDE

dXε(t) = b(Xε(t))dt+
√
εdB(t), t ∈ [0, T ],

Xε(0) = x,

where B denotes a standard Rd-valued Brownian motion. Assume that function b : Rd → Rd is
Lipschitz with Lipschitz constant L. Then {X(t)}ε>0 satisfies a LDP with good rate function

I(φ) =

{
1
2

∫ T
0
|φ̇(t)− b(φ(t))|2 dt, if φ− x ∈ H1([0, T ],Rd),

+∞, else.

Proof. As said before, we wish to show that the mapping

F : C([0, 1],Rd)→ C([0, 1],Rd),

which maps a function g to a function f which satisfies

f(t) = x+

∫ t

0

b(f(s)) ds+ g(t), t ∈ [0, T ], (5.2)

is well-defined and continuous. We start with the well-definedness. We will show that there
exists a unique solution of (5.2) for all x ∈ Rd, g ∈ C([0, T ],Rd) with T such that LT < 1. We
can then in steps construct a solution of length T for any T > 0. To show this existence, define
the mapping

Γ : C([0, T ],Rd)→ C([0, T ],Rd),

f(·) 7→ x+

∫ ·
0

b(f(s)) ds+ g(·).

We will show that this mapping is a contraction. Let f1, f2 ∈ C([0, T ],Rd). We have

sup
0≤t≤T

|Γ(f1)(t)− Γ(f2)(t)| =
∫ T

0

|b(f1(s))− b(f2(s))| ds.

Using the Lipschitz assumption

≤
∫ T

0

L|f1(s)− f2(s)| ds

≤
∫ T

0

L‖f1 − f2‖ ds

= LT‖f1 − f2‖.

Since we assumed that LT < 1 we indeed have a contraction. By the Banach fixed point theorem
we find a unique solution f . Next we show that F is continuous. Let g1, g2 ∈ C([0, T ],Rd) and
set fi = F (gi), i = 1, 2. We have

|f1(t)− f2(t)| ≤
∫ t

0

|b(f1(s))− b(f2(s))| ds+ |g1(t)− g2(t)|.

Using the Lipschitz assumption and taking the supremum over time yields

sup
0≤r≤t

|f1(r)− f2(r)| ≤
∫ t

0

L sup
0≤r≤s

|f1(r)− f2(r)| ds+ ‖g1 − g2‖.
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Applying Grönwall now gives

‖f1 − f2‖ ≤ eBT‖g1 − g2‖.

Thus F is continuous, and in fact even Lipschitz continuous. Combining Theorem 5.3 and
Theorem 5.4 gives that the family {Xε}ε>0 satisfies a LDP with (good) rate function

Ĩ(f) = inf
g∈H1 :F (g)=f

1

2

∫ T

0

|ġ(s)| ds.

We now wish to show that Ĩ = I. We first notice that F is a one-to-one mapping. Furthermore,
for g ∈ H1 we have that f − x ∈ H1 and ḟ = b(f) + ġ. Therefore we have that Ĩ = I, which
completes the proof. �

It turns out that the result above can be generalised, obtaining similar results for larger
classes of SDEs under weaker assumptions. In particular we would like to present the following
result from Baldi and Caramellino (2011). Let B be a m-dimensional Brownian motion. For
ε > 0, consider the SDE

Y ε(t) = bε(Y
ε(t))dt+ εσε(Y

ε(t))dB(t), Y ε(0) = x, (5.3)

with bε : Rd → Rd, σε : Rd → Rd×m and x ∈ Rd. We now make the following assumption.

Assumption 2. There exist functions b : Rd → Rd and σ : Rd → Rd×m such that

1. for every h ∈ H1([0, T ],Rm) and x ∈ Rd the ODE

ġ(t) = b(g(t)) + σ(g(t))ḣ(t), g(0) = x (5.4)

has a unique solution on [0, T ].

2. Let Sx(h) denote the solution of Equation (5.4). For any a > 0, the restriction of SX to
the compact set Ka = {‖h‖1 ≤ a} is continuous with respect to the uniform norm: for
any (hn)n ⊂ Ka such that ‖hn − h‖ → 0 with h ∈ Ka then ‖Sx(hn) − Sx(h)‖ → 0. Here
‖ · ‖ denotes the uniform norm and ‖h‖1 is, for h ∈ H1, defined as

‖h‖1 =

(∫ T

0

|ḣ(s)|2 ds

) 1
2

.

3. For every R > 0, % > 0, a > 0, c > 0 there exist ε0 > 0, α > 0 such that, if ε < ε0,

P (‖Y ε − g‖ > %, ‖εB − h‖ ≤ α) ≤ e−
R
ε2

uniformly for ‖h‖1 ≤ a and |x| ≤ c, where g = Sx(h).

We now present the following theorem.

Theorem 5.6 (Theorem 2.4 in Baldi and Caramellino (2011)). Suppose that bε, σε are locally
Lipschitz and the SDE (5.3) has a strong solution for every ε > 0. Then, if Assumption 2
holds, the family {Y ε}ε>0 satisfies a LDP with inverse speed ε2 and (good) rate function

Ix(g) = inf
h∈H1:Sx(h)=g

1

2

∫ T

0

|ḣ(s)|2 ds.
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The assumptions of this theorem allows for a broad general class of SDEs. In particular, it
can be shown that, when the functions b and σ are locally Lipschitz, when they satisfy a sub-
linear growth condition and when bε → b and σε → σ uniformly on compact sets, Assumption 2
is satisfied, and therefore Theorem 5.6 holds. From this we can conclude that the Freidlin-
Wentzell theorem is indeed a special case of this theorem, with bε = b, σε = σ = 1 and stricter
assumptions.
We will leave the discussion of regular SDEs here. In the next section we will focus on a

result describing a LDP for a class of SDEs that not only depend on their current position at
time t, but on their entire trajectory on the interval [0, t].

5.2. Large deviation principle for delay equations
Since the model we are considering, in particular the interacting particle system, not only
depends on the current state but also at the state of the system in the past with a delay δ > 0,
we are interested in results on LDPs for classes of SDEs that allow such dependence. In this
section we will present the results of Chiarini and Fischer (2014). They provide criteria under
which a family of solutions {Xε}ε>0 of a SDE, depending not only on the current state of the
system and its state in the past with a fixed delay, but possibly on its entire trajectory up to
that point, satisfies a LDP. To be precise, we consider the following SDE

dXε(t) = bε(t,X
ε)dt+

√
εσε(t,X

ε)dB(t), (5.5)

and its controlled counterpart with control-parameter ν,

dXε,ν(t) = bε(t,X
ε,ν)dt+ σε(t,X

ε,ν)ν(t)dt+
√
εσε(t,X

ε,ν)dB(t), (5.6)

with Xε(0) = Xε,ν(0) = x and ν ∈ M2([0, T ],Rm). Here b and bε are functions mapping
[0, T ]×C([0, T ],Rd) to Rd, and σ and σε functions mapping [0, T ]×C([0, T ],Rd) to Rd×m, with
m the dimension of the Brownian motion B(t).
Also, for f ∈ L2([0, T ],Rm), consider the deterministic equation

φ(t) = x+

∫ t

0

b(s, φ) ds+

∫ t

0

σ(s, φ)f(s) ds. (5.7)

We are now ready to present the following set of assumptions, which will imply a LDP for
the family {Xε}ε>0 satisfying (5.5).

Assumption 3. H1 The coefficient b and σ are predictable. Moreover, b(t, ·) and σ(t, ·) are
uniformly continuous on compact subsets of C([0, T ],Rd), uniformly in t ∈ [0, T ], and
t 7→ σ(t, φ) is in L2([0, T ],Rd×m) for any φ ∈ C([0, T ],Rd).

H2 The coefficients bε and σε are predictable maps such that bε → b and σε → σ as ε → 0
uniformly on [0, T ]× C([0, T ],Rd).

H3 For all sufficiently small ε > 0, pathwise uniqueness and existence in the strong sense hold
for (5.5).

H4 For any f ∈ L2([0, T ],Rm), (5.7) has a unique solution so that the map

Γx : L2([0, T ],Rm)→ C([0, T ],Rd)

which takes f ∈ L2([0, T ],Rm) to the solution of (5.7) is well defined.
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H5 For all N ∈ N, the map Γx is continuous when restricted to

SN :=

{
f ∈ L2([0, T ],Rm) :

∫ T

0

|f(s)|2 ds ≤ N

}
endowed with the weak topology of L2([0, T ],Rm).

H6 If {εn}n ⊂ (0, 1] is such that εn → 0 as n → ∞ and {νn}n ⊂ M2([0, T ],Rm) is such that,
for some constant N > 0,

sup
n∈N

∫ T

0

|νn(s, ω)|2 ds ≤ N for θ-almost all ω,

then {Xεn,νn}n is tight as a family of C([0, T ],Rd)-valued random variables and

sup
n∈N

∫ T

0

E
[
|σ(s,Xεn,νn)|2

]
ds <∞.

As stated, under these assumptions we have that the family {Xε}ε>0 satisfies a LDP. To be
precise, we have the following theorem.

Theorem 5.7. Assume that Assumption 3 holds. Then the family {Xε}ε>0 of solutions to the
SDE (5.5) with initial condition Xε(0) = x satisfies a LDP with good rate function

Ix(φ) = inf
{f∈L2([0,T ],Rm):Γx(f)=φ}

1

2

∫ T

0

|f(t)|2 dt,

with the convention that inf{∅} = +∞.

Although the result is powerful and allows for a broad class of SDEs, the assumptions are
also not easy to work with. We will also present a second set of assumptions which will imply
Assumption 3. While these assumptions are stricter than the ones given above, they are also
easier to check. These assumptions are as follows.

Assumption 4. A1 The functions b and σ satisfy a sub-linear growth condition. Specifically,
there exists M > 0 such that for all t ∈ [0, T ] and all φ ∈ C([0, T ],Rd)

|b(t, φ)| ∧ |σ(t, φ)| ≤M

(
1 + sup

0≤s≤t
|φ(s)|

)
.

A2 The functions b and σ are locally Lipschitz. Specifically, for any R > 0, there exists LR > 0
such that, for all t ∈ [0, T ] and all φ, φ̃ ∈ C([0, T ],Rd) with sup0≤s≤t|φ(s)| ∧ |φ̃(s)| ≤ R

|b(t, φ)− b(t, φ̃)| ∧ |σ(t, φ)− σ(t, φ̃)| ≤ LR sup
0≤s≤t

|φ(s)− ˜φ(s)|.

A3 The functions bε and σε enjoy property A1 with the same constant M as well as property
A2.

A4 The coefficients bε and σε converge as ε→ 0 to b and σ respectively, uniformly on bounded
subsets of [0, T ]× C([0, T ],Rd).

The proof that Assumption 4 implies Assumption 3 is structured as follows. Assumption
H1 is implied by A2 and A1. Assumption H3 is implied by A3. H4 and H5 can be proven by
assuming A2 and A1. Assumption H6 can be proven with A1 and the Kolmogorov tightness
criterion. Lastly, A4 is a weaker version of H2, but in combination with A3 it can be shown
that the assumptions suffice such that Theorem 5.7 is also true when Assumption 4 holds. The
details can be found in Chiarini and Fischer (2014).
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Remark. If b(t, φ) = b̃(t, φ(t)), σ(t, φ) = σ̃(t, φ(t)), i.e. the functions only depend on the
current state and not on their past trajectory, and σ̃ is a square matrix such that σ̃(t, x)σ̃(t, x)T

is uniformly positive definite, then the rate function can be expressed as

Ix(φ) =
1

2

∫ T

0

(
φ̇(s)− b̃(s, φ(s))

)T (
σ̃(t, x)σ̃(t, x)T

)−1
(
φ̇(s)− b̃(s, φ(s))

)
ds

whenever φ− x ∈ H1([0, T ],Rd) and Ix(φ) = +∞ otherwise.

With this powerful theorem in hands, we now wish to see if we can apply it, or one of
the previous mentioned theorems, to our model. In the next section we investigate which
assumptions we need to make on our model to show that a LDP holds for the solutions of the
SDEs we have been studying so far.

5.3. Application to our model
Now that we have studied various theorems about LDPs for solutions of SDEs, we wish to see
when and how they can be applied to the two equations we have been studying so far. We
will consider the two equations separately. We start with the Mckean-Vlasov equation. Let
T, δ, ε > 0, consider the SDE

dXε(t) = f(Xε(t))dt+ g(E [Xε(t− δ)])dt+ εdB(t), (5.8)
Xε(0) = x,

E [Xε(s)] = x(s), s ∈ [−δ, 0).

Assume that Assumption 1 holds, such that we know that solutions exist for all ε > 0. Now
define hε(t) = g(E [Xε(t− δ)]), which is a deterministic function from [0, T ] to Rd. Now also
define bε(t,Xε(t)) = f(Xε(t)) + hε(t). We can now rewrite our equation to

dXε(t) = bε(t,X
ε(t))dt+ εdB(t),

Xε(0) = x.

This is an equation of the form of (5.5). We therefore have that this equation satisfies a LDP
when Assumption 4 is met. Since we have that σ = σε = 1, they clearly satisfy a sub-linear
growth condition and are locally Lipschitz. Furthermore, we trivially have that σε → σ as
ε→ 0. All that is left to show is that the same holds for our functions b and bε. First we need
to define our function b. We define b(x, t) = f(x) + g(ϕ(t− δ)), where ϕ satisfies the ODE

ϕ(t) = x+

∫ t

0

f(ϕ(s)) + g(ϕ(s− δ)) ds, t ∈ [0, T ], (5.9)

ϕ(0) = x, ϕ(t) = x(t), t ∈ [−δ, 0).

By Theorem 3.4, with ε = 0, we have that ϕ is uniformly bounded on [−δ, T ]. Since we already
assumed g to be Lipschitz, we also have that g(ϕ(· − δ)) is uniformly bounded. If we now
assume that f satisfies a sub-linear growth condition we find that b also satisfies a sub-linear
growth condition. Equivalently, since we have that E [Xε(· − δ)] is again uniformly bounded
by Theorem 3.4, we also find that bε satisfies a sub-linear growth condition if f satisfies such
condition. If we assume that 0 < ε ≤ M for some M > 0, we can also make the constant in
the growth condition independent of ε by taking the supremum over all ε ∈ [0,M ], which is a
finite number.
The local Lipschitz assumption also holds. Since we have, by Assumption 1, that f is locally

Lipschitz, we also have that b and bε are locally Lipschitz with the same constant as f .
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For the final condition we need to show that bε → b uniformly on bounded subsets of [0, T ]×
C([0, T ],Rd). This is equivalent to showing that g(E [Xε(· − δ)]) → g(ϕ) uniformly on [0, T ].
By the Lipschitz assumption of g this is implied if E [Xε(· − δ)]→ ϕ uniformly on [0, T ]. The
results of Chapter 3, in particular Theorem 3.4 is not sufficient to show this result. We will
now derive a series of results that will allow us to show that the expectation of the solution of
(5.8) indeed converges uniformly to the solution of (5.9).

5.3.1. Central moments
Consider the SDE (5.8). Assume that Assumption 1 holds. Furthermore, assume that f is
globally Lipschitz. We obtain the following result.

Lemma 5.8. There exists a constant C2 such that for all t ∈ [0, T ] we have

E
[

sup
0≤u≤t

|Xε(u)− E [Xε(u)] |2
]
≤ e(1+L2)t(tdε2 + C2

√
tε).

In particular, when ε→ 0 we have that the second central moment also goes to 0.

Proof. We proof this lemma by doing a straight forward computation, using our assumptions
and Grönwall’s lemma to prove the inequality. In particular, using Itô’s formula we have

|Xε(t)− E [Xε(t)] |2 =

∫ t

0

2〈Xε(s)− E [Xε(s)] , f(Xε(s)) + E [f(Xε(s))]〉 ds

+ tdε2 +

∫ t

0

2ε〈Xε(s), dB(s)〉.

Applying Cauchy-Schwarz and Young’s inequality to the first inner product yields

|Xε(t)− E [Xε(t)] |2 =

∫ t

0

|Xε(s)− E [Xε(s)] |2 + |f(Xε(s))− E [f(Xε(s))] |2 ds

+ tdε2 +

∫ t

0

2ε〈Xε(s), dB(s)〉.

Taking supremum over time and expectation gives us

E
[

sup
0≤u≤t

|Xε(u)− E [Xε(u)] |2
]
≤
∫ t

0

E
[
|Xε(s)− E [Xε(s)] |2

]
ds

+

∫ t

0

E
[
|f(Xε(s))− E [f(Xε(s))] |2

]
ds

+ tdε2 + E
[

sup
0≤u≤t

∫ u

0

2ε〈Xε(s), dB(s)〉
]
.

Using the fact that E [|Y − E [Y ] |2] ≤ E [|]Y − a|2 for any a, with Y = f(Xε(s)) and a =
f(E [Xε(s)]) we get

E
[

sup
0≤u≤t

|Xε(u)− E [Xε(u)] |2
]
≤
∫ t

0

E
[
|Xε(s)− E [Xε(s)] |2

]
ds

+

∫ t

0

E [|f(Xε(s))− f(E [Xε(s)])] |2 ds

+ tdε2 + E
[

sup
0≤u≤t

∫ u

0

2ε〈Xε(s), dB(s)〉
]
.
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Using the Lipschitz property and the The Burkholder-Davis-Gundy inequality yields

≤
∫ t

0

E
[
|Xε(s)− E [Xε(s)] |2

]
ds

+ L2E
[
|(Xε(s)− E [(Xε(s)] |2

]
ds

+ tdε2 + C1E

[(∫ t

0

ε2|Xε(s)|2 ds

) 1
2

]
.

Using Jensen’s inequality and the fact that the second moment of Xε is bounded we can bound
the last term by C2

√
tε for some C2 > 0 independent of ε when ε ∈ [0,M ]. Finally, applying

Grönwall’s lemma yields

E
[

sup
0≤u≤t

|Xε(u)− E [Xε(u)] |2
]
≤ e(1+L2)t(tdε2 + C2

√
tε),

which proves the lemma. �

We now also define a new process Y ε, which will help us show that the mean of Xε converges
towards ϕ, the solution of the corresponding ODE. We define Y ε as the solution of the SDE

dY ε(t) = f(Y ε(t))dt+ g(Y ε(t− δ)) + εdB(t),

Y ε(0) = x,

Y ε(s) = x(s), s ∈ [−δ, 0),

where the Brownian motion B is the same as for the process Xε. Notice that the equation
for Y ε coincides with the interacting particle system with N = 1. Therefore we have that
Theorem 3.1 and Theorem 3.2 also apply to the process Y ε. In particular, strong solutions
exist and those solutions have finite moments. We now have the following lemma.

Lemma 5.9. For all t ∈ [0, T ] we have

E
[

sup
0≤u≤t

|Xε(u)− Y ε(u)|2
]
≤ e(1+2C+2L+L2)T (

1

2
t2dε2 +

2

3
C2t

3
2 ε),

where C2 is the same constant as in Lemma 5.8.

Proof. The proof is similar to that of Lemma 5.8. Again, using Ito’s formula we compute

|Xε(t)− Y ε(t)|2 =

∫ t

0

2〈Xε(s)− Y ε(s), f(Xε(s))− f(Y ε(s))〉 ds

+

∫ t

0

2〈Xε(s)− Y ε(s), g(E [Xε(s− δ)]− g(Y ε(s− δ))) ds.

For the first inner-product we use the one-sided Lipschitz assumption. For the second inner-
product we apply Cauchy-Schwarz, the global Lipschitz assumption on g and Young’s inequality.
Together this yields

≤
∫ t

0

2C|Xε(s)− Y ε(s)|2 + L|Xε(s)− Y ε(s)|2 ds

+

∫ t

0

L|E [Xε(s− δ)]− Y ε(s− δ)|2 ds.
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Adding and subtracting the term Xε(s− δ) and using the triangle inequality gives us

≤
∫ t

0

(2C + L)|Xε(s)− Y ε(s)|2 + L|E [Xε(s− δ)]−Xε(s− δ)|2 ds

+

∫ t

0

L|Xε(s− δ)− Y ε(s− δ)|2 ds.

Taking supremum over time and expectation yields

E
[

sup
0≤u≤t

|Xε(u)− Y ε(u)|2
]
≤
∫ t

0

(2C + 2L)E
[

sup
0≤u≤s

|Xε(u)− Y ε(u)|2
]

+

∫ t

0

LE
[
|Xε(s− δ)− E [Xε(s− δ)] |2

]
ds.

Using Grönwall’s lemma we get

E
[

sup
0≤u≤t

|Xε(u)− Y ε(u)|2
]
≤ e(2C+2L)t

∫ t

0

LE
[
|Xε(s− δ)− E [Xε(s− δ)] |2

]
ds.

Finally, using Lemma 5.8

≤ e(2C+2L)t

∫ t

0

e(1+L2)T (sdε2 + C2

√
sε) ds

= e(1+2C+2L+L2)T (
1

2
t2dε2 +

2

3
C2t

3
2 ε),

which proves the lemma. �

Now instead of assuming that f is globally Lipschitz, assume that Assumption 1 holds and
that f can be approximated by functions fR, R > 0 such that f = fR on B(0, R), fR satisfies
Assumption 1 and fR is globally Lipschitz with Lipschitz coefficient LR such that there exists
L > 0 such that LR ≤ LR for all R > 0. We have the following lemma regarding the second
moment.

Lemma 5.10. There exist C1, C2 > 0 such that for all t ∈ [0, T ]

E
[

sup
0≤u≤t

|Xε(u)− E [Xε(u)] |2
]
≤ 6C1

√
2L2T

ln 1
ε

+ 3eT (tdε
3
2 + C2

√
tε).

Here the constant C2 is the same as in Lemma 5.8 and the constant C1 can be chosen inde-
pendent of ε when ε ∈ [0,M ] for some M > 0. In particular, the second central moment of Xε

in the supremum norm tends to 0 when ε→ 0.

Proof. The proof works by approximating the solution Xε with other processes which do satisfy
the assumptions of Lemma 1. In particular, in accordance with our assumptions, let fR be such
that it is globally Lipschitz with Lipschitz constant LR, that it coincides with f on B(0, R) and
that it satisfies Assumption 1. Let L > 0 such that LR ≤ LR for all R > 0. Let Xε

R satisfy the
SDE

dXε
R(t) = f(Xε

R(t))dt+ g(E [Xε
R(t− δ)])dt+ εdB(t),

Xε
R(0) = x,

Xε
R(s) = x(s), s ∈ [−δ, 0),

43



Small noise regime Bart van Schooten

where B denotes the same Brownian motion as that of the process Xε. We have that

E
[

sup
0≤u≤t

|Xε(u)− E [Xε(u)] |2
]
≤ 3E

[
sup

0≤u≤t
|Xε(u)−Xε

R(u)|2
]

+ 3E
[

sup
0≤u≤t

|Xε
R(u)− E [Xε

R(u)] |2
]

+ 3E
[

sup
0≤u≤t

|E [Xε
R(u)]− E [Xε(u)] |2

]
.

For the last term we notice that

E
[

sup
0≤u≤t

|E [Xε
R(u)]− E [Xε(u)] |2

]
= sup

0≤u≤t
|E [Xε

R(u)−Xε(u)]|2

≤ E
[

sup
0≤u≤t

|Xε
R(u)−Xε(u)|2

]
.

For the second term Lemma 5.8 applies such that it is bounded by

e(1+L2
R)t(tdε2 + C2

√
tε),

where C2 can be chosen independent of R. We now wish to control the first term (which, as
shown above, also serves as a bound for the third term). Using Theorem 2.19 we have that

E
[

sup
0≤u≤t

|Xε(u)−Xε
R(u)|2

]
= E

[
sup

0≤u≤t
|Xε(u)−Xε

R(u)|21{ sup
0≤u≤t

Xε(u) > R}
]
.

Using Hölder’s theorem with p = q = 2 we get

≤
(
E
[

sup
0≤u≤t

|Xε(u)−Xε
R(u)|4

]) 1
2

(P (τR < t))
1
2 ,

where τR denotes the exit time of the ball B(0, R) of the process Xε. Using that |a − b|4 ≤
8|a|4 + 8|b|4 for all a, b ∈ Rd we obtain

≤
(
E
[

sup
0≤u≤t

8|Xε(u)|4
]

+ E
[

sup
0≤u≤t

8|Xε
R(u)|4

]) 1
2

(P (τR < t))
1
2 .

Using Theorem 3.4 we have that there exists a constant C̃1, independent ofR and ε for ε ∈ [0,M ]
for some M > 0 which bounds the first term. For the second term we invoke Equation (3.9)
with p = 2. Together this yields

E
[

sup
0≤u≤t

|Xε(u)−Xε
R(u)|2

]
≤ C̃1

√
(1 + |x|2)eKT

1

R
= C1

1

R
.

Combining the three terms together, and using the assumption that LR ≤ LR, we obtain

E
[

sup
0≤u≤t

|Xε(u)− E [Xε(u)] |2
]
≤ 6C1

1

R
+ 3e(1+L2R2)T (tdε2 + C2

√
tε).

Taking R =
√

1
2L2T

ln 1
ε
, we get

≤ 6C1

√
2L2T

ln 1
ε

+ 3eT (tdε
3
2 + C2

√
tε),

which proves the theorem. �
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Remark. For the lemma above we made the assumption that LR ≤ LR for some L > 0.
Instead, we could also assume that there exist L, α > 0 such that LR ≤ LRα. Under this
assumption we can derive a similar result, where we also have that the second central moment
tends to 0 when ε→ 0. The only difference is that we have to change the rate at which we send
R→∞ when we send ε→ 0. In particular, taking

R =

(
1

2L2T
ln

1

ε

) 1
2α

would suffice to show the result.

Before we continue we would like to remark that under Assumption 1, without the global
Lipschitz assumption on f we still have that

E
[

sup
0≤u≤t

|Xε(u)− Y ε(u)|2
]
→ 0,

as ε → 0. Indeed, closer inspection of the proof of Lemma 5.9 only requires the global
Lipschitz assumption to invoke Lemma 5.8. Now that we can replace that result by the result
of Lemma 5.10, we get a similar result which still tends to 0 when ε→ 0.

5.3.2. Large deviation principles (LDPs)
Now that we have analysed how the second central moment of Xε behaves in terms of ε, we
can return to our problem where we try to find whether or not a LDP holds. As explained
at the beginning of this section, under the assumption that Assumption 1 holds and that f
satisfies a sub-linear growth condition, we only needed to show that E [Xε(t)]→ ϕ(t) uniformly
on [0, T ]. Assume that, for the Lipschitz coefficient LR of Assumption 1, it holds that there
exists a α > 0, such that LR ≤ LRα for all R > 0. We now have the following lemma.

Lemma 5.11. Under the assumptions mentioned above, we have

sup
0≤t≤T

|E [Xε(t)]− ϕ(t)|2 → 0,

as ε→ 0. Here ϕ is defined as the solution of (5.9).

Proof. To proof this limit we make use of the lemmas presented in the previous subsection. In
particular, we use that

sup
0≤t≤T

|E [Xε(t)]− ϕ(t)|2 ≤ 3E
[

sup
0≤t≤T

|E [Xε(t)]−Xε(t)|2
]

+ 3E
[

sup
0≤t≤T

|Xε(t)− Y ε(t)|2
]

+ 3E
[

sup
0≤t≤T

|Y ε(t)− ϕ(t)|2
]
. (5.10)

In Lemma 5.10 and Lemma 5.9 we have seen that the first and second term tend to 0 when
ε→ 0. For the last term we carry out the following computation. By Itô’s formula we have

|Y ε(t)− ϕ(t)|2 =

∫ t

0

2〈Y ε(s)− ϕ(s), f(Y ε(s))− f(ϕ(s))〉 ds

+

∫ t

0

2〈Y ε(s)− ϕ(s), g(Y ε(s− δ))− g(ϕ(s− δ))〉 ds+ tdε2

+

∫ t

0

ε〈Y ε(s), dB(s)〉.
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Applying the one-sided Lipschitz assumption to the first inner-product and Cauchy-Schwarz,
the global Lipschitz assumption and Young’s inequality to the second inner-product yields

≤
∫ t

0

2C|Y ε(s)− ϕ(s)|2 + L|Y ε(s)− ϕ(s)|2 ds

+

∫ t

0

L|Y ε(s− δ)− ϕ(s− δ)|2 ds+ tdε2 +

∫ t

0

2ε〈Y ε(s), dB(s)〉.

Taking supremum over time and expectation gives

E
[

sup
0≤u≤t

|Y ε(u)− ϕ(u)|2
]
≤
∫ t

0

(2C + 2L)E
[

sup
0≤u≤s

|Y ε(u)− ϕ(u)|
]

ds

+ tdε2 + E
[

sup
0≤u≤t

∫ u

0

2ε〈Y ε(s), dB(s)〉
]
.

Using Burkholder-Davis-Gundy Inequality gives

≤
∫ t

0

(2C + 2L)E
[

sup
0≤u≤s

|Y ε(u)− ϕ(u)|
]

ds

+ tdε2 + C2E

[(∫ t

0

4ε2|Y ε(s)|2 ds

) 1
2

]
.

We now apply Grönwall’s inequality, which gives us

E
[

sup
0≤t≤T

|Y ε − ϕ(t)|2
]
≤ e(2C+2L)T

(
Tdε2 + εC2E

[(∫ t

0

|Y εs|2 ds

) 1
2

])
.

Since the second moment of Y ε is uniformly bounded in ε for ε bounded, we have that the right
hand side converges to 0 when ε→ 0. Therefore we have that all terms in the right hand side
of (5.10) tend to 0 when ε→ 0, proving the lemma. �

The above lemma directly gives rise to the following theorem, describing a LDP for the family
{Xε}ε>0 using Theorem 5.7.

Theorem 5.12. Consider the SDE (5.8). Assume that Assumption 1 holds and that f satisfies
a sub-linear growth condition. Furthermore assume that for the Lipschitz coefficient LR of
Assumption 1 there exists an α > 0 such that LR ≤ LRα for all R > 0. Then the family
{Xε}ε>0 satisfies a LDP with inverse speed ε2 and (good) rate function

Ix(φ) =
1

2

∫ T

0

|φ̇(t)− f(φ(t))− g(ϕ(t− δ))|2 dt

for φ− x ∈ H1([0, T ],Rd) and Ix(φ) = +∞ else. Here ϕ is the solution of (5.9).

The proof follows by combining the arguments given above. The rate function can be found
by realising that the map Γ, defined in Assumption 3, is invertible, which allows for an explicit
expression of the rate function. We will end our discussion of the McKean-Vlasov equation for
now. It is possible that under milder assumptions a similar theorem can be shown, by showing
that those assumptions imply Assumption 3 directly.
We will now discuss the interacting-particle system. Let N ≥ 1, T, δ > 0 fixed. Consider the

system of SDEs

dX i,ε(t) = f(X i,ε(t))dt+ g

(
1

N

N∑
j=1

Xj,ε(t− δ)

)
dt+ εdBi(t),

X i,ε(0) = xi,

X i,ε(s) = xi(s), s ∈ [−δ, 0), i = 1, . . . , N.
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Here Bi are independent Brownian motions. Equivalently, we can consider the vectorized
equation

dXε(t) = F (Xε(t))dt+G(Xε(t− δ))dt+ εdB(t), (5.11)

with

F (Xε(t)) =


f(X1,ε(t))
f(X2,ε(t))

...
f(XN,ε(t))

 , G(Xε(t− δ)) =


g
(

1
N

∑N
j=1 X

j,ε(t− δ)
)

g
(

1
N

∑N
j=1 X

j,ε(t− δ)
)

...
g
(

1
N

∑N
j=1 X

j,ε(t− δ)
)

 , B(t) =


B1(t)
B2(t)

...
BN(t)


and equivalently for the initial conditions. Now Equation (5.11) is already in the form of (5.5)
with

bε(X
ε, t) = b(Xε, t) = F (Xε(t)) +G(Xε(t− δ))

and σε = σ = 1. Checking the assumptions of Assumption 4 we find that point A4 trivially
holds. Furthermore, point A3 holds if A2 and A1 hold, as the functions bε and σε do not
depend on ε. Since we have that F and G are locally Lipschitz and satisfy a sub-linear growth
condition if and only if their components do, we obtain the following theorem.
Theorem 5.13. Consider the SDE (5.11). Assume that the functions f and g are locally
Lipschitz and satisfy a sub-linear growth condition. Then the family {Xε}ε>0 satisfies a LDP
with inverse speed ε2 and (good) rate function

Ix(φ) =
1

2

∫ T

0

|φ̇(t)− F (φ(t))−G(φ(t− δ))|2 dt

for φ− x ∈ H1([0, T ],RdN) and Ix(φ) = +∞ else.
Remark. In the above, both in Theorem 5.12 and in Theorem 5.13, when t ∈ [0, δ), we need
an interpretation of the term g(φ(t− δ)) for functions φ : [0, T ]→ Rd. One option is to extend
the domain of the function φ to [−δ, T ] and define φ(t) = x(t) for t ∈ [−δ, 0), where x(·) is the
initial condition of the SDE in question. Another option is to redefine the function g, i.e.

g(φ(t− δ)) = g(φ(t− δ), t) =

{
g(x(t− δ)), t ∈ [0, δ),

g(φ(t− δ)), t ∈ [δ, T ].

Although the rate functions for the McKean-Vlasov process and the interacting particle
process are different, we would like to note that they have the same expected asymptotic beha-
viour. The expected behaviour of the interacting particle process minimizes its rate function.
The function φ that minimizes the rate function satisfies

φ̇− F (φ(t))−G(φ(t− δ)) = 0.

If we assume that the initial conditions are identical for all particles, we have

1

N

N∑
j=1

φj(t) = φi(t)

by symmetry of the equations. This means that we can decouple the equations and solve them
component-wise. We thus have that the component φi satisfies the ODE

dφi(t)

dt
= f(φi(t)) + g(φ(t− δ)).

This is precisely the same ODE as ϕ solves. In Lemma 5.11 we have already seen that this is
the expected limiting trajectory of the McKean-Vlasov equation. We therefore find that the
two equations indeed have the same expected asymptotic behaviour.
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6. Numerical approximations and simulations

In the previous two chapters we investigated the limiting behaviour of the systems we are
considering under different limits. In Chapter 4 we investigated what happens when we send
the amount of particles N in the interacting particle system to infinity. We found that the
trajectory of a fixed particle converges to the trajectory of the McKean-Vlasov equation, when
they are coupled with the same Brownian motion. Furthermore, for two particles i 6= j, we
found that they become asymptotically independent.
In Chapter 5 we considered the limit of ε → 0. We found that under certain assumptions

we can show that the second central moment of the solution of the McKean-Vlasov equation
converges to 0 when ε becomes small. Furthermore, we showed that for both systems a LDP
holds.
In this chapter we wish to verify these results using numerical approximations to the solutions,

as well as using these approximations to study the non-limiting behaviour of the system for
specific choices of the functions f and g. For these numerical approximations we will use the
Euler-Maruyama scheme, which discretizes the time interval [0, T ] into steps of width h > 0.
In Section 6.1 we will explain this method further, and show that this approximation is

consistent. That is, we show that in the limit h→ 0, the approximation converges towards the
true solution on a trajectory limit. This implies that for small h the numerical approximations
serve as good approximations to the solutions of the original problem.
In Section 6.2 we present various scenarios which we will investigate by doing simulations.

These simulations are a simple implementation of the numerical approximations we discus in
Section 6.1.

6.1. Euler-Maruyama approximation
The Euler-Maruyama approximation method is a way to approximate solutions of SDEs. The
method is similar to that of the Euler (forward) method for ODEs. The method works as
follows. Consider the SDE

dX(t) = b(X(t), t)dt+ σ(X(t), t)dB(t), t ∈ [0, T ],

X(0) = x0.

Now set n > 0 and h = T
n
. Define the timesteps ti = hi, i = 0, . . . , n. The Euler-Maruyama

approximation computes the approximations X̂ of X at the time steps ti as follows. First set
X̂(0) = x0. Now recursively define

X̂(ti) = X̂(ti−1) + b(X̂(ti−1), ti−1)h+ σ(X̂(ti−1), ti−1) (B(ti)−B(ti−1)) , i = 1, . . . , n.

The idea behind this method is that for small h, on the interval [ti−1, ti], the functions b(X(t), t)
do not vary too much, such that they can be approximated by just evaluating them at the left
end-point of the interval.
We now wish to show that this approximation indeed works for our model. In order to do

this, we first present a couple of different SDEs. We then present how all these equations can
be related to each other. We start with the interacting particle model. Let N ≥ 1 and δ, T > 0
and assume that T

δ
is rational. Consider the SDE
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dX i(t) = f(X i(t))dt+ g

(
1

N

N∑
j=1

Xj(t− δ)

)
dt+ εdBi(t),

X i(0) = xi0,

X i(s) = ξis, s ∈ [−δ, 0).

Also consider the SDE

dX̄ i(t) = f(X̄ i(t))dt+ g
(
E
[
X̄ i(t− δ)

])
dt+ εdBi(t),

X̄ i(0) = xi0,

E
[
X̄ i(s)

]
= ξis, s ∈ [−δ, 0).

We also consider the local approximations of both SDEs. For R > 0, let fR be such that
fR = f on B(0, R), that fR satisfies Assumption 1 and that it is globally Lipschitz with Lipschitz
coefficient LR. Consider the equations

dX i
R(t) = fR(X i

R(t))dt+ g

(
1

N

N∑
j=1

Xj
R(t− δ)

)
dt+ εdBi(t),

X i
R(0) = xi0,

X i
R(s) = ξis, s ∈ [−δ, 0),

and

dX̄ i
R(t) = fR(X̄ i

R(t))dt+ g
(
E
[
X̄ i
R(t− δ)

])
dt+ εdBi(t),

X̄ i
R(0) = xi0,

X̄ i
R(s) = ξis, s ∈ [−δ, 0).

Lastly, we consider the Euler-Maruyama approximation for the globally Lipschitz interacting
particle model. To do this, let n ≥ 1, h = T

n
such that h = δ

m
. Let tk = kh, k = −m, . . . , n.

Consider the approximations.

X̂ i
R(tk) = X̂ i

R(tk−1) + fR(X̂ i
R(tk−1))h+ g

(
1

N

N∑
j=1

X̂j
R(tk−1−m)

)
h

+ ε
(
Bi(tk)−Bi(tk−1)

)
, k = 1, . . . , n,

X̂ i
R(0) = xi0,

X̂ i
R(tk) = ξitk , k = −m, . . . ,−1.

We now also consider an interpolation between these points to make the process continuous.
We do this as follows. For t ∈ [tk−1, tk], let

X̂ i
R(t) = X̂ i

R(tk−1) + fR(X̂ i
Rtk−1)(t− tk−1) + g

(
1

N

N∑
j=1

X̂j
R(tk−1−m)

)
+ ε(Bi(t)−Bi(tk−1)).

We thus use a linear interpolation for the functions f and g, but we use the true trajectory for
the Brownian motion. We could also use a linear interpolation for the Brownian motion term,
and for small h the difference will be small with high probability, but doing so makes the proof
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of showing that the approximation is consistent a lot harder. Also set X̂ i
R(s) = ξs, s ∈ [−δ, 0).

If we define jn(s) = tn for tn ≤ s ≤ tn+1 then X̂ i
R satisfies the SDE

X̂ i
R(t) = xi0 +

∫ t

0

fR(X̂ i
R(jn(s))) + g

(
1

N

N∑
j=1

X̂j
R(jn(s− δ))

)
ds+

∫ t

0

ε dBi(s),

with the appropriate initial conditions.

X i X i
R X̂ i

R

X̄ i X̄ i
R

1

2

3

4

Figure 6.1.: The relation between the different processes.

Let us make clear how all these processes are related. See Figure 6.1. We start with Rela-
tion 1. Theorem 4.3 tells us that, when Assumption 1 holds and the initial conditions are i.i.d.,
there exists a constant M1, independent of N , such that

E
[

sup
0≤t≤T

|X i(t)− X̄ i(t)|2
]
≤ M1

N
.

Next we consider Relation 2. Again assume that Assumption 1 holds. By Theorem 2.19 we
have

E
[

sup
0≤t≤T

|X̄ i(t)− X̄ i
R(t)|2

]
≤ E

[
sup

0≤t≤T
|X̄ i(t)− X̄ i

R(t)|21{τR < T}
]
,

where τR is the first time the process X̄ i leaves the ball B(0, R), which coincides with the exit
time of X̄ i

R of the same ball by Theorem 2.19. By Hölder’s theorem with p = q = 2 we have

≤
(
E
[

sup
0≤t≤T

|X̄ i(t)− X̄ i
R(t)|4

]) 1
2

(P (τR < T ))
1
2 .

Using the fact that |a− b|4 ≤ 8|a|4 + 8|b|4 for all a, b ∈ Rd we obtain

≤
(
E
[

sup
0≤t≤T

8|X̄ i(t)|4
]

+ E
[

sup
0≤t≤T

8|X̄ i
R(t)|4

]) 1
2

(P (τR < T ))
1
2 .

Using Theorem 3.4, stating that the moments of X̄ i and X̄ i
R are finite, and Equation 3.9, with

p = 2, we have that there exists a constant M2 independent of R such that

E
[

sup
0≤t≤T

|X̄ i(t)− X̄ i
R(t)|2

]
≤ M2

R
.
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The case of Relation 3 is similar to that of Relation 1. Again assume that Assumption 1 holds
and that the initial conditions are i.i.d., we have by using Theorem 4.3 that there exists a
constant M3, independent of N and R, such that

E
[

sup
0≤t≤T

|X̄ i
R(t)−X i

R(t)|2
]
≤ M3

N
.

We now only need to investigate Relation 4. We wish to obtain an upper-bound in the form of

E
[

sup
0≤t≤T

|X i
R(t)− X̂ i

R(t)|2
]
≤M4r(h),

for some function r which satisfies limh→0 r(h) = 0. Before we are able to present such a result
we first present a lemma describing that in a small time frame, the process X i

R does not deviate
from its initial condition too much. In particular, we have the following result.

Lemma 6.1. Under the assumptions mentioned above, there exists a constant C̃ > 0, depending
on R, such that for all t ∈ [0, T ] and for all i = 1, . . . , N we have

E
[

sup
0≤u≤t

|X i
R(u)− xi0|2

]
≤ C̃t.

Remark. Instead of looking at how big the deviation from the initial condition is, we can also
look at how much a solution at a later time deviates from an earlier time. In particular, let
0 ≤ s < t ≤ T , we have

E
[

sup
s≤u≤t

|X i
R(u)−X i

R(s)|2
]
≤ C̃(t− s).

This can easily be seen by considering a new SDE, started at time s with initial condition X i
R(s),

and applying the lemma to that process.

Proof. We have that

sup
0≤u≤t

|X i
R(u)− xi0|2 ≤ 2 sup

0≤u≤t

∣∣∣∣∣
∫ u

0

fR(X i
R(s)) + g

(
1

N

N∑
j=1

Xj
R(s− δ)

)
ds

∣∣∣∣∣
2

+ 2 sup
0≤u≤t

∣∣∣∣∫ u

0

ε dB(s)

∣∣∣∣2 .
Taking expectation, using Theorem 2.13 and Theorem 2.12 yields

E
[

sup
0≤u≤t

|X i
R(u)− xi0|2

]
≤ 2t

∫ t

0

E

2|fR(X i
R(s))|2 + 2

∣∣∣∣∣g
(

1

N

N∑
j=1

Xj
R(s− δ)

)∣∣∣∣∣
2


+ 8

∫ t

0

ε2 ds.

Using the global Lipschitz assumption of fR and g, together with the assumption that fR(0) =
g(0) = 0 to simplify the notation, we obtain

≤ 2t

∫ t

0

2L2
RE
[
|X i

R(s)|2
]

+ 2
L2

N

N∑
j=1

E
[
|Xj

R(s− δ)|2
]

ds+ 8ε2t.
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Using the fact that the second moments of X i
R are bounded uniformly in time, there exists a

constant C1 > 0 such that

≤ 2t

∫ t

0

C1 ds+ 8ε2t

= C1t
2 + 8ε2t

≤ (C1T + 8ε2)t = C̃t,

proving the theorem. �

We are now ready to present the following theorem.

Theorem 6.2. Assume that X i
R and X̂ i

R satisfy the assumptions stated above. Furthermore,
assume that for all s, t ∈ [−δ, 0], s < t we have that

E
[

sup
s≤u≤t

|ξiu − ξis|2
]
≤ C̃(t− s).

There exists a constant M4, depending on R, such that

E
[

sup
0≤t≤T

|X̂ i
R(t)−X i

R(t)|2
]
≤M4h.

Proof. Using Itô’s formula we compute

|X̂ i
R(t)−X i

R(t)|2 =

∫ t

0

2〈X̂ i
R(s)−X i

R(s), fR(X̂ i
R(jn(s)))− fR(X i

R(s))〉 ds

+

∫ t

0

2

〈
X̂ i
R(s)−X i

R(s) ,

g

(
1

N

N∑
j=1

X̂ i
R(jn(s− δ))

)
− g

(
1

N

N∑
j=1

X i
R(s− δ)

)〉
ds.

Applying Cauchy-Schwarz, the global Lipschitz assumption for both fR and g and Young’s
inequality we obtain

≤
∫ t

0

2LR|X̂ i
R(s)−X i

R(s)|2 + LR|X̂ i
R(jn(s))−X i

R(s)|2 ds

+

∫ t

0

LR
N

N∑
j=1

|X̂j
R(jn(s− δ))−Xj

R(s)|2 ds.

Taking supremum over time and expectation, and using the symmetry of the equations to
deduce that Xj

R and X̂j
R are equally distributed for all j, gives us

E
[

sup
0≤u≤t

|X̂ i
R(u)−X i

R(u)|2
]
≤
∫ t

0

2LRE
[
|X̂ i

R(s)−X i
R(s)|2

]
ds

+

∫ t

0

LRE
[
|X̂ i

R(jn(s))−X i
R(s)|2

]
ds

+

∫ t

0

LRE
[
|X̂ i

R(jn(s− δ))−X i
R(s− δ)|2

]
ds.
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Adding and subtracting the terms X i
R(jn(s)) and X i

R(jn(s)) yields

≤
∫ t

0

6LRE
[

sup
0≤u≤s

|X̂ i
R(u)−X i

R(u)|2
]

ds

+

∫ t

0

2LRE
[
|X i

R(jn(s))−X i
R(s)|2

]
ds

+

∫ t

0

2LRE
[
|X i

R(jn(s− δ))−X i
R(s− δ)|2

]
ds.

Applying Grönwall’s inequality yields

E
[

sup
0≤t≤T

|X̂ i
R(t)−X i

R(t)|2
]
≤ e6LRT

∫ T

0

2LRE
[
|X i

R(jn(s))−X i
R(s)|2

]
ds

+ e6LRT

∫ T

0

2LRE
[
|X i

R(jn(s− δ))−X i
R(s− δ)|2

]
ds.

We now analyse the first integral. We have by the definition of jn that∫ T

0

E
[
|X i

R(jn(s))−X i
R(s)|2

]
ds =

n−1∑
k=0

∫ tk+1

tk

E
[
|X i

R(tk)−X i
R(s)|

]
ds.

Using Lemma 6.1 we obtain

≤
n−1∑
k=0

∫ tk+1

tk

C̃(s− tk) ds

=
n−1∑
k=0

C̃

2
h2

= n
C̃

2
h2 =

C̃h

2
.

By similar arguments we can show that the same holds for the second integral. We therefore
have

E
[

sup
0≤t≤T

|X̂ i
R(t)−X i

R(t)|2
]
≤ e6LRT2C̃h = M4h,

proving the theorem. �

We now have shown how the numerical approximations are consistent, in the sense that for
each N ≥ 1, R > 0 we have that in the limit h > 0 the approximation X̂ i

R converges to the
process X i

R on a trajectory level. Furthermore, by choosing R and N large enough, we can
make the expected distance between the trajectories of the processes X i

R, X̄ i
R, X̄ i and X i as

small as we desire. We thus have that for sufficiently large R and N and sufficiently small h, the
approximation X̂ i

R serves as a good approximation for all of these processes. In the following
section we will use this result to analyse certain scenarios using the numerical approximation
described above.

6.2. Simulations
Now that we have shown that the numerical approximation is consistent, we can use it to
analyse our model in certain scenarios. Throughout this section we will look at specific choices
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for the functions f and g and the other parameters, and using simulations we will investigate
how the model behaves. Throughout these simulations we will be using d = 1, as this will help
us to better visualise the result of our simulations. In order to simulate the Brownian motions,
we make use of the fact that for 0 ≤ s < t, B(t)−B(s) is normally distributed with mean 0 and
variance t− s. Our simulations are written in R (R Core Team (2020)). For the visualisation of
our results we make use of the ggplot2 package (Wickham (2016)) combined with the scales
package (Wickham and Seidel (2020)). The code used for all of the simulations can be found
in Appendix A.

6.2.1. Propagation of chaos
In Chapter 4 we discussed the relation between the interacting particle equation and the
McKean-Vlasov equation. In particular, in Theorem 4.3 we found that, when the two pro-
cesses are coupled, the mean squared distance in the supremum norm converges to 0 when the
amount of particles N gets large. We also obtained an upper-bound on this rate of convergence,
namely that this decay happens linearly in N . We now wish to analyse numerically how tight
this bound is. The expected distance between the two particles of course heavily depends on
the choices that we make for the functions f and g, and the parameters such as ε, δ and T . If
we, for example, consider the case that g = c for some c ∈ Rd, then the two equations become
the same, such that the distance between the two will be 0 for all values of N ≥ 1. On the
other hand, if the Lipschitz constant of g is large, small differences between the empirical mean
of the interacting process and the expectation of the McKean-Vlasov process might still lead
to different trajectories, resulting in a larger distance.
In order to test out how this expected squared distance between the trajectories behaves as

a function of N , we made the following choices regarding the model. For the functions f and
g we will be using

f(x) = −x3 + x, g(x) = x.

It is easy to verify that these functions satisfy Assumption 1 with for example C = L = 1 and
LR = 3R2 + 1. The values of the other parameters can be found in Table 6.1.

Parameter ε δ T h
Value 1 1 10 0.01

Table 6.1.: Values of the parameters.

We will be using a deterministic initial condition. In particular, we will use X i(s) = 0, s ∈
[−δ, 0], i = 1, . . . , N .
If we wish to compare the distance between the trajectory of the interacting particle equa-

tion and that of the McKean-Vlasov equation we need to simulate both of the equations. In
Section 6.1 we, however, only described a method to simulate the interacting particle equa-
tion. Simulation of the McKean-Vlasov equation is difficult, as we have no access to the true
expected value of the process. Instead, we will run a simulation of a copy of the interacting
particle process Y i,N2 for a high value of N2, and use this as an estimate for the mean of the
McKean-Vlasov process. Theorem 4.3 shows that this method works. The main structure of
our simulation is present below (see Algorithm 1). For the amount of particles for the process
Y i,N2 we will be using N2 = 10.000. The amount of particles N will be varied, ranging from 1
to 10.000. For each value of N we will repeat the simulation 100 times, to get a good estimate
of the mean squared distance. The results of the simulation are presented in Figure 6.2 and
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Figure 6.3.

Algorithm 1: Main structure of the simulation
1 Initialize Y i(tk), k = −m, . . . , 0
2 Initialize X̄ i(tk), k = −m, . . . , 0
3 Initialize X i(tk), k = −m, . . . , 0
4 for k = 1, . . . , n do
5 Compute Y i(tk)
6 Save mean MY (tk)
7 Compute X̄ i(tk) using MY

8 Compute X i(tk) using MX and same noise as X̄ i(tk)
9 Save mean MX

10 Save difference |X1(tk)− X̄1(tk)|2
11 end
12 Return maxk=1,...,n |X1(tk)− X̄1(tk)|

Figure 6.2.: Mean squared distance for different values of N , plotted on a log-log scale.

Figure 6.3.: Distribution of squared distances for different values of N .

In Figure 6.2 we plotted the mean squared distance between the trajectories of X1 and X̄1

in the supremum norm on a log-log plot. In the case that this distance decreases linearly in
N , we expect to see a straight line. This is however not the case. It appears that the slope
becomes more steep the larger N becomes until N is of the same order as N2, suggesting an
exponential decay rather than a linear one. It can, however, not be justified that this is the
case based on this single simulation.
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In Figure 6.3 we plotted the distribution of the obtained differences for the different values
of N . Notice that the y-axis is on a log-scale. The size of these distributions is normalised
such that each one has the same maximum width. Since the sample-size for all values of N is
the same, a smaller total area indicated that the distances obtained for that value of N were
more concentrated. Based on this graph we can clearly see the decay in distance happening as
N increases, not only in the mean but also in the distribution itself. For example, we can also
see that the minimum and maximum distance we obtained for each value of N decreases as N
increases.

6.2.2. The small noise regime
In Chapter 5 we investigated what happens to the model when ε becomes small. We found
that under certain assumptions a LDP holds for both the McKean-Vlasov process as well as the
interacting particle process. An important step to show that this result holds is Lemma 5.11,
which states that when ε → 0, we have that the expectation of the McKean-Vlasov process
converges to the solution of the associated deterministic equation. We now wish to investigate
numerically whether or not a slightly stronger result holds, namely, we investigate the quantity

E
[

sup
0≤t≤T

|X̄ε(t)− ϕ(t)|2
]
,

with X̄ the solution to the McKean-Vlasov equation and ϕ the solution to the deterministic
equation. We will consider the following scenario. Let f and g be defined as

f(x) = −x3 + x, g(x) = −x.

It is easy to verify that f and g satisfy Assumption 1 with C = L = 1 and LR = 3R2 + 1.
Therefore we also have that LR ≤ LRα, with L = 4 and α = 2 for R ≥ 1. The values of the
other parameters can be found in Table 6.2.

Parameter δ T h
Value 1 10 0.01

Table 6.2.: Values of the parameters.

The value of ε will vary ranging from 1 to 0.001. We will be using a deterministic initial
condition, namely, we set X̄(s) = ϕ(s) = 1, s ∈ [−δ, 0].
For the simulation of the McKean-Vlasov process we use a similar approach as we did in

Section 6.2.1. We simulate an interacting particle process with N = 10.000 and use the mean
of this process as an approximation for the mean of the McKean-Vlasov process. This gives
our simulation the following structure (see Algorithm 2). For each value of ε, we will repeat
the simulation a 100 times to get a good idea of the mean behaviour.
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Algorithm 2: Main structure of the simulation
1 Initialize Y i(tk), k = −m, . . . , 0
2 Initialize X̄(tk), k = −m, . . . , 0
3 Initialize ϕ(tk), k = −m, . . . , 0
4 for k = 1, . . . , n do
5 Compute Y i(tk)
6 Save mean MY (tk)
7 Compute X̄(tk) using MY

8 Compute ϕ(tk) Save difference |X̄(tk)− ϕ(tk)|2
9 end

10 Return maxk=1,...,n |X1(tk)− X̄1(tk)|
We first present the trajectory of the solution ϕ of the deterministic equation in Figure 6.4.

The result suggests that the solution of the ODE is that of a (damped) oscillator. We now
present the results of our simulations in Figure 6.5 and Figure 6.6.

Figure 6.4.: Trajectory of ϕ, the solution to the ODE.

Figure 6.5.: Mean squared distance between the McKean-Vlasov process X̄ and ϕ, the solution
to the associated ODE for different values of ε, plotted on a log-log scale.
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Figure 6.6.: Distribution of the squared distance for various values of ε.

In Figure 6.5 the mean distance between the processes X̄ and ϕ is plotted for various values
of ε on a log-log scale. The created line seems linear, indicating that the distance converges to
0 as a power of ε when ε → 0. This of course does not suffice as a proof, but we conjecture
that under certain assumptions a result as above can be proven.
The distributions of the distances obtained for the various values of ε are shown in Figure 6.6.

The distributions are normalised such that the maximum width is equal for each value of ε.
The y-axis is a log-scale. The convergence that we saw for the mean can also be seen in the
distributions. For example, the maximum and minimum distances that we obtained per ε
decrease as ε becomes smaller.

6.2.3. The impact of delay
In this section we will show that having an interaction with delay fundamentally changes the
model. We will be showing this for the ODE

dϕ(t)

dt
= f(ϕ(t)) + g(ϕ(t− δ)), t ∈ [0, T ],

ϕ(s) = x0, s ∈ [−δ, 0].

For a > 0, define the function ha : R→ R as

ha(x) =


−1, x < −a,
x
a
, −a ≤ x ≤ a,

1, a < x.

Put into words, ha is the sign function but smoothed in the interval [−a, a] in order to make sure
that it satisfies a Lipschitz assumption. We now consider two scenarios; in the first scenario
we set f = ha and g = 0, such that the system only depends on the current state without
influences from the past. We test two values of a, namely a = 0.5 and a = 1. The values of the
other parameters can be found in Table 6.3.

Parameter δ T x0

Value 1 25 0.1

Table 6.3.: Values of the parameters.

The resulting trajectory for ϕ can be seen in Figure 6.7 and Figure 6.8 for a = 0.5 and a = 1
respectively. We clearly have that ϕ(t) → 0 as t → ∞. As long as 0 ≤ x0 ≤ a, we can even
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find an explicit expression for ϕ. It can be shown easily that in this case ϕ is given by

ϕ(t) = x0e
− t
a , t ≥ 0.

Figure 6.7.: Trajectory of ϕ with f = h0.5 and g = 0.

Figure 6.8.: Trajectory of ϕ with f = h1 and g = 0.

Let us now switch the role of the functions f and g. That is, we now set f = 0 and g = ha.
We keep the other parameters the same, and test the same values of a. The results can be seen
in Figure 6.9 and 6.10 for a = 0.5 and a = 1 respectively. We now see that the two different
values of a lead to different limiting behaviours. For a = 0.5, the system converges towards a
periodic function, with - in this case - an amplitude larger than the initial condition. On the
other hand, for a = 1, the system converges towards 0. In contrary to the scenario without
delay, this convergence is no longer monotonic. The critical value a∗, the value for which the
system becomes periodic when a < a∗ and converges towards 0 when a > a∗ seems to be around
0.64. The exact value is however hard to determine, and likely also depends on the parameters
used, such as δ and x0.
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Figure 6.9.: Trajectory of ϕ with f = 0 and g = h0.5.

Figure 6.10.: Trajectory of ϕ with f = 0 and g = h1.

During our research for this thesis we have investigated many more scenarios, as mentioned
in the introduction. In particular, we tried to find criteria for when the mean of either the
interacting particle process or the McKean-Vlasov process becomes a periodic function in time.
We are however unable to formulate a clear answer to this question. We are also not certain
which parts of the results we obtained are due to the models themselves and which parts are
mere artifacts of our numeric approach used. Therefore, we decided to not include these results
in this thesis.
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7. Conclusion

7.1. Summary
Throughout this thesis we investigated a SDE describing an interacting particle process where
the interaction happens with a delay through the empirical mean, and a delayed McKean-
Vlasov SDE. We formulated assumptions under which these SDEs posses unique solutions. In
particular, we showed that for the drift function f a one-sided Lipschitz assumption combined
with a local Lipschitz function suffices. This assumption is more general than the sub-linear
growth assumption often made. We also showed that all the moments of both processes in
the supremum norm are finite, under the additional assumptions that g is bounded for the
interacting particle process.
Under the same assumptions as we made for the existence, and the assumption that the

initial values for the interacting particle process are i.i.d., we show that the propagation of
chaos property holds. That is, the trajectories of the interacting particle model converge to
those of the McKean-Vlasov equation under a suitable coupling when the amount of particles
N is send to infinity. This also implies that the trajectories of two particles i 6= j become
asymptotically independent in the same limit.
In Chapter 5 we provided assumptions for both models under which a LDP hold. We also

derive an explicit expression for the rate functions for both models. Although these rate func-
tions are different for both models, we show that the expected asymptotic behaviour is the
same for both models in the limit ε→ 0.
Lastly, we show that the Euler-Maruyama approximation scheme is consistent for the inter-

acting particle process when we assume that the function f is globally Lipschitz. That is, in the
limit of sending the step size h used in the approximation to 0, the approximation converges
towards the true process in the supremum norm. We use this result to study a series of scenarios
using simulations. We investigate how some theoretical bounds obtained in this thesis compare
to real scenarios. We also briefly discuss how the delay term can lead to a periodic function,
while the model would converge to a constant without the delay.

7.2. Discussion
In this thesis we investigated multiple aspects of the equations we have been studying. By
focusing more on a specific aspect it is likely to obtain more general results than we have
obtained. There are a variety of methods to generalise our results. Firstly, we only considered
the case with additive noise. By multiplying the Brownian motion with a function σ, depending
on the process, possibly even with a delay, a more general noise term can be introduced. We
suspect that under certain assumptions on this function σ, similar results as we have described
in this thesis could be obtained. Secondly, the functions f and g in our model do not explicitly
depend on time. Results for standard SDEs, as described in Chapter 2, suggest that introducing
this explicit dependence does not require many extra assumptions. We thus expect that our
results can still be shown for functions explicitly depending on time without making too many
extra assumptions. Finally, it might be possible to relax the assumptions we made in this
thesis. In particular, the global Lipschitz assumption on the function g is rather strict, and we
suspect that this assumption can be weakened for most of the results we have presented in this
thesis.
Another interesting take for further research would be to focus more on the non-limiting

behaviour of the model. During our research we investigated many different scenarios, but
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we were unable to formulate clear conclusions. Particular interesting questions are in which
scenario the system becomes periodic, i.e. the mean of the process is a periodic function in
time and in which scenarios the mean converges towards one fixed point. In the case that the
mean is a periodic function over time, questions such as how the period and the amplitude
depend on the parameters used could be of interest. In the case that the mean converges to a
fixed point, the rate of convergence could be investigated. In particular, whether this rate is
exponential or not.
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A. Code used for simulations

1 # Package required to create the plots
2 library(ggplot2)
3 library("scales")
4 reverselog_trans <− function(base = exp(1)) {
5 trans <− function(x) −log(x, base)
6 inv <− function(x) base^(−x)
7 trans_new(paste0("reverselog−", format(base)), trans, inv,
8 log_breaks(base = base),
9 domain = c(1e−100, Inf))
10 }
11
12 # Main simulation
13 Simulation <− function(x0,epsilon,Tmax,delta,stepcount,N,NMcKean){
14 # Initialize all the data
15 h <− delta/stepcount
16 tVec <− seq(−delta,Tmax,h)
17 indepVec <− rep(x0,NMcKean)
18 xVec <− rep(x0,N)
19 x2Vec <− rep(x0,N)
20 McKeanVec <− rep(0,length(tVec))
21 McKeanVec[1:(stepcount+1)] <− x0
22 MeanVec <− McKeanVec
23 MeanindepVec <− McKeanVec
24 MeanMcKeanVec <− McKeanVec
25 DeterVec <− McKeanVec
26 Diff2 <− rep(0,length(tVec))
27 Diff2[1:(stepcount+1)] <− 0
28 pb <− winProgressBar(title = "progress bar", min = 1,
29 max = length(MeanVec), width = 300)
30 # Compute all the timesteps
31 for(i in (stepcount+2):length(MeanVec)){
32 indepVec <− indepVec + h∗f(indepVec) + h∗g(MeanindepVec[i−stepcount−1]) + sqrt(

epsilon∗h)∗rnorm(NMcKean,0,1)
33 MeanindepVec[i] <− mean(indepVec)
34 noise <− rnorm(N,0,1)
35 McKeanVec[i] <− McKeanVec[i−1] + h∗f(McKeanVec[i−1]) + h∗g(MeanindepVec[i−

stepcount−1]) + sqrt(epsilon∗h)∗noise[1]
36 x2Vec <− x2Vec + h∗f(x2Vec) + h∗g(DeterVec[i−stepcount−1]) + sqrt(epsilon∗h)∗noise
37 MeanMcKeanVec[i] <− mean(x2Vec)
38 xVec <− xVec + h∗f(xVec) + h∗g(MeanVec[i−stepcount−1]) + sqrt(epsilon∗h)∗noise
39 MeanVec[i] <− mean(xVec)
40 Diff2[i] <− (McKeanVec[i]−xVec[1])^2
41 DeterVec[i] <− DeterVec[i−1] + h∗f(DeterVec[i−1]) + h∗g(DeterVec[i−stepcount−1])
42 setWinProgressBar(pb,i,title = paste(round(i/length(MeanVec)∗100,1),"% done"))
43 }
44 # Close the progress bar and return the results
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45 close(pb)
46 return(list(tVec,MeanVec,McKeanVec,Diff2,DeterVec,MeanMcKeanVec))
47 }
48
49 ## Propagation of chaos
50 # Define the functions f and g
51 f <− function(x){
52 −x^3+x
53 }
54
55 g <− function(x){
56 x
57 }
58 # Specify the parameter used
59 x0 <− 0
60 epsilon <− 1
61 delta <− 1
62 Tmax <− 10∗delta
63 stepcount <− 100
64 NVec <− c(1,2,5,10,20,50,100,200,500,1000,2000,5000,10000)
65 NMcKean <− 10000
66 runs <− 100
67
68 # Perform the simulation
69 MaxMatrix <− matrix(nrow = runs,ncol = length(NVec))
70 for(j in 1:length(NVec)){
71 for(i in 1:runs){
72 result <− Simulation(x0,epsilon,Tmax,delta,stepcount,NVec[j],NMcKean)
73 MaxMatrix[i,j] <− max(result[[4]])
74 }
75 print(paste(runs,"runs done for N =",NVec[j]))
76 }
77
78 # Convert the data
79 Ncol <− rep(NVec,each=runs)
80 DiffCol <− c()
81 for(i in 1:length(NVec)){
82 DiffCol <− c(DiffCol,MaxMatrix[,i])
83 }
84 MeanCol <− rep(colMeans(MaxMatrix),each=runs)
85 MyData <− data.frame(Ncol,DiffCol,MeanCol)
86
87 # Plot the data
88 ggplot(MyData, aes(Ncol,MeanCol)) + geom_line() +
89 scale_x_log10() + scale_y_log10() +
90 theme_light() + labs(x="N",y="Squared absolute difference")
91
92 ggplot(MyData,aes(as.factor(Ncol),DiffCol)) + geom_violin(scale="width") + theme_light()

+
93 labs(x="N",y="Squared absolute difference") + scale_y_log10()



94
95 ## Small noise regime
96 # Define the functions f and g
97 f <− function(x){
98 −x^3 + x
99 }
100
101 g <− function(x){
102 −x
103 }
104
105 # Specify the parameters
106 x0 <− 1
107 delta <− 1
108 Tmax <− 10∗delta
109 stepcount <− 100
110 NMcKean <− 10000
111 N <− 10000
112 epsilonVec <− c(1,0.5,0.2,0.1,0.05,0.02,0.01,0.005,0.002,0.001)
113 runs <− 100
114
115 # Perform the simulation
116 DistMatrix <− matrix(nrow = runs,ncol = length(epsilonVec))
117 for(j in 1:length(epsilonVec)){
118 for(i in 1:runs){
119 result <− Simulation(x0,epsilonVec[j],Tmax,delta,stepcount,1,NMcKean)
120 DistMatrix[i,j] <− max((result[[3]]−result[[5]])^2)
121 }
122 print(paste(runs,"runs done for epsilon =",NVec[j]))
123 }
124
125 # Convert the data
126 epsiloncol <− rep(epsilonVec,each=runs)
127 DiffCol <− c()
128 for(i in 1:length(epsilonVec)){
129 DiffCol <− c(DiffCol,DistMatrix[,i])
130 }
131 MeanCol <− rep(colMeans(DistMatrix),each=runs)
132 MyData <− data.frame(epsiloncol,DiffCol,MeanCol)
133
134 # Plot the data
135 ggplot(MyData, aes(epsiloncol,MeanCol)) + geom_line() + scale_x_continuous(trans=

reverselog_trans(10)) +
136 scale_y_log10() + theme_light() + labs(x="epsilon",y="Squared absolute difference")
137
138 ggplot(MyData,aes(factor(epsiloncol,levels=epsilonVec),DiffCol)) + geom_violin(scale="

width") +
139 scale_y_log10() + theme_light() + labs(x="epsilon",y="Squared absolute difference")
140
141 ## The impact of delay



142 # Define the functions f and g
143 f <− function(x){
144 0
145 }
146
147 g <− function(x){
148 −( sign(x)∗(x< −a) + x/a∗(x>=−a)∗(x<=a) + sign(x)∗(x>a) )
149 }
150
151 # Specify the parameters
152 a <− 1
153 x0 <− 0.1
154 delta <− 1
155 Tmax <− 25∗delta
156 stepcount <− 100
157 NMcKean <− 1
158 N <− 1
159 epsilon <− 0
160
161 # Perform the simulation
162 result <− Simulation(x0,epsilon,Tmax,delta,stepcount,N,N)
163
164 # Convert the data
165 MyData <− data.frame(time=result[[1]],McKean=result[[3]],Deter=result[[5]],Mean=result

[[6]],Interacting=result[[2]])
166
167 # Plot the data
168 ggplot(MyData, aes(time,Deter)) + geom_line() + theme_light() + labs(x="t",y="

Trajectory of the determinisic equation")
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