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Abstract

An extremal element in a Lie algebra g is a non-zero element x ∈ g such that [x, [x, g]] ⊆ Fx,
and we denote by E(g) the set of extremal elements of g. If, however, [x, [x, g]] is 0-
dimensional, then x is called a sandwich element. The extremal geometry Γg = (E ,L) of
a Lie algebra g is the point-line geometry whose point set E is the set E(g) of extremal
elements of g and whose line set L is the set of 2-dimensional subspaces of g spanned by
two commuting and linearly independent extremal elements all of whose elements are again
extremal.

The finitary orthogonal Lie algebra fso(V, f) for some possibly infinite-dimensional
vector space V over a field F and some non-degenerate symmetric bilinear form f : V ×
V → F on V is a classical linear Lie algebra whose extremal geometry is isomorphic to
the orthogonal geometry ΓO(V, f), whose point set is the set of all 2-dimensional totally
f -isotropic subspaces of V and whose line set is the set of all subsets of the point set
whose elements are the 2-dimensional totally f -isotropic subspaces of V all of which are
contained in a fixed 3-dimensional totally f -isotropic subspace of V and containing a fixed
1-dimensional totally f -isotropic subspace of V . If V is finite-dimensional, the extremal
geometry of so(V, f) is isomorphic to a root shadow space of type BCn,2 or Dn+1,2 (n ≥ 3).

Preceded by an extensive exhibition of relevant theory and many examples, in this
thesis we first prove that the finitary orthogonal Lie algebra fso(V, f), for some possibly
infinite-dimensional vector space V over a field F, char(F) 6= 2, and some non-degenerate
symmetric bilinear form f : V × V → F on V such that f has Witt index at least three,
is uniquely determined by its extremal geometry, up to isomorphism. In particular, we
prove that fso(V, f) ∼= g for any possibly infinite-dimensional simple Lie algebra g without
sandwich elements generated by its set E(g) of extremal elements whose extremal geometry
Γg = (E ,L) is isomorphic to the orthogonal geometry ΓO(V, f).

If the singular rank of the extremal geometry Γg = (E ,L) of a Lie algebra g is finite,
it is isomorphic to a root shadow space of classical or exceptional type, although it is
possible for Γg to have infinite singular rank, for example if Γg is isomorphic to the Siegel
geometry ΓS with V infinite-dimensional. Therefore, in this thesis we next prove that the
singular rank of the extremal geometry Γg = (E ,L) of a simple Lie algebra g over a field
F, char(F) 6= 2, without sandwich elements generated by its set E(g) of extremal elements
is finite if Γg is not isomorphic to a root shadow space of classical type. Specifically, we
show that Γg is isomorphic to a root shadow space of type E6,2, E7,1, E8,8 or F4,1.
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Chapter 1

Introduction

The author of this thesis would like to express his sincerest gratitude to prof. dr. H.
Cuypers for his guidance and expertise during the realisation of this thesis.

1.1 Main results of this thesis

Initiated by Lie in the nineteenth century with the aim of using symmetry to classify spaces
in terms of their geometry, in particular the space of ordinary differential equations, Lie
theory is of a topological nature having manifolds and one-parameter subgroups as its ele-
mentary concepts and knowing many applications in mathematical physics. Central in Lie
theory is the correspondence between Lie groups and Lie algebras via the exponential map,
thereby establishing a connection between topology, group theory and abstract algebra.

A Lie algebra g is a vector space over a field F with a bilinear alternating operation
[·, ·] : g× g→ g called the Lie bracket satisfying the Jacobi identity

[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0

for all x, y, z ∈ g. Of particular importance for the study of Lie algebras is the classification
of all simple Lie algebras, initiated by Killing at the end of the nineteenth century. Over
the field of complex numbers C, this eventually led to the discovery of, on the one hand,
the classical Lie algebras attributed to the infinite families An (n ≥ 1), Bn (n ≥ 2), Cn
(n ≥ 3) and Dn (n ≥ 4), and, on the other hand, the exceptional Lie algebras of types E6,
E7, E8, F4 and G2. The classical Lie algebras correspond to the classical groups SLn+1(C),
SO2n+1(C), Sp2n(C) and SO2n(C), so they are accordingly denoted by sln+1(C), so2n+1(C),
sp2n(C) and so2nC), respectively. The next step would be a similar classification over fields
different from C; this goal was achieved over a half a century later by Chevalley and Dickson
for finite fields, giving rise to the modular Lie algebras. Many more results over fields of
characteristic zero have been obtained by Lie, Killing, Engel, Cartan and Weyl, see e.g.
[1].
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The aforementioned types of the classical and exceptional Lie algebras also appear in
geometry, specifically in the geometric representation of real reflection groups; they are
exactly the diagram types of all affine finite Coxeter groups as introduced and classified by
Coxeter [14] in the first half of the twentieth century. Moreover, these types are fundamental
in the theory of buildings, developed by Tits [8] in the second half of the twentieth century.
The combination of Coxeter groups and spherical buildings brings about root shadow spaces
and root filtration spaces, at the basis of which lies a point-line geometry Γ = (P,L), in
which P is a possibly infinite set of elements called points and L is a set of subsets of P each
of size at least two called lines. A root shadow space can be obtained from a shadow space
of the geometry of a building of Weyl type, whereas a root filtration space is identified by
a quintuple of disjoint symmetric relations on the Cartesian product of its point set that
satisfy certain properties. A characterisation of and a connection between root shadow
spaces and root filtration spaces has been made by Cohen and Ivanyos [19]. Their findings
play a fundamental role in the classification of Lie algebras generated by their extremal
elements.

An extremal element in a Lie algebra g over a field F is a non-zero element x ∈ g such
that

[x, [x, y]] ⊆ Fx
for all y ∈ g. If, however, [x, [x, g]] is 0-dimensional, then we call x a sandwich element
instead. Examples of extremal elements are long root elements of classical Lie algebras,
but also inner ideals of modules for Lie algebras as introduced for the first time by Faulkner
[21] in the late twentieth century. Extremal elements pave the way for the characterisation
of simple Lie algebras without sandwich elements that they generate. Key to this charac-
terisation is the extremal geometry Γg = (E ,L) of a Lie algebra g whose point set E is the
set of 1-dimensional subspaces Fx of extremal elements x ∈ g and whose line set L is the
set of 2-dimensional subspaces Fx + Fy with x, y ∈ g extremal and linearly independent
such that [x, y] = 0 and every non-zero element of Fx+Fy is extremal. In particular, since
Γg turns out to be a root filtration space, the natural question arises whether Γg uniquely
determines g, up to isomorphism. Finding the answer to this question is motivated by the
types of the classical and exceptional Lie algebras, on the one hand, coinciding with the
types of Coxeter groups and spherical buildings, on the other hand.

Recent interest and studies in the field of Lie algebra and geometry have resulted in an
almost complete answer to this question, with at its core the work of Cohen and Ivanyos
[5, 19], which, in turn, is based on the work of Kasikova and Shult [25]. Specifically, we
have the following theorem due to Cuypers and Fleischmann [13].

Theorem 1.1.1. Let g be a simple Lie algebra generated by its set of extremal elements.
If the extremal geometry of g is the root shadow space of a spherical building of rank at
least 3, then g is, up to isomorphism, uniquely determined by its extremal geometry.

The types of the spherical buildings that the above theorem pertains to are the excep-
tional types E6, E7, E8 and F4, but also the classical types BCn (n ≥ 3) and Dn (n ≥ 4).
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Buildings of type An (n ≥ 2) have been covered by Roberts [11] and Shpectorov et al. [9].
Note, however, that Theorem 1.1.1 only applies in case the building is spherical and if the
extremal geometry of g contains lines. This raises the question whether a similar result
can be obtained if the building is not spherical or if the extremal geometry of g does not
contain lines.

In [20], Cuypers and Fleischmann show that g is isomorphic to the finitary symplectic
Lie algebra fsp(V, f) for some possibly infinite-dimensional vector space V over a field F,
char(F) 6= 2, and some non-degenerate symplectic form f : V × V → F if the extremal
geometry of g does not contain lines. To remedy the absence of lines, it is possible to
use a particular second degree field extension K of F such that g⊗F K does contain lines.
Note that this is not possible if g ∼= fsp(V, f). In case the extremal geometry of g ⊗F K
is isomorphic to the root shadow space of a non-spherical building of type An (n ≥ 1),
it is shown by Cuypers and Oostendorp [23] that g ⊗F K is isomorphic to the projective
finitary special unitary Lie algebra pfsu(V, f) for some possibly infinite-dimensional vector
space V , dim(V ) ≥ 4, over K and some non-degenerate Hermitian form f : V ×V → F. In
addition, they show that g is isomorphic to the projective finitary special linear Lie algebra
pfsl(V ) for some possibly infinite-dimensional vector space V , dim(V ) ≥ 3, over F if the
extremal geometry of g is isomorphic to the root shadow space of a non-spherical building
of type An (n ≥ 1). Now all that remains to extend Theorem 1.1.1 is to consider the case
in which g is an infinite-dimensional Lie algebra whose extremal geometry is isomorphic to
the root shadow space of a non-spherical building of type BCn (n ≥ 3) or Dn (n ≥ 4).

Corresponding to types BCn (n ≥ 3) and Dn (n ≥ 4) is the orthogonal Lie algebra
so(V, f) for some finite-dimensional vector space V over a field F and some non-degenerate
symmetric bilinear form f : V × V → F. Denoting by V ∗ the dual space of V , the linear
maps

tv,ϕ : V → V
w 7→ ϕ(w)v

,

where v ∈ V and ϕ ∈ V ∗, also referred to as infinitesimal transvections, are extremal
elements of the finitary general linear Lie algebra fgl(V ). Upon defining fv ∈ V ∗ with
v ∈ V to be the linear map given by

fv : V → V
w 7→ f(v, w),

the infinitesimal Siegel transvections sv,w := tv,fw − tw,fv are extremal in the finitary
orthogonal Lie algebra fso(V, f) and span it linearly.

The extremal geometry Γfso(V,f) = (E ,L) of fso(V, f), with V now possibly infinite-
dimensional, is isomorphic to the orthogonal geometry ΓO(V, f). This orthogonal geometry
can be realised using f -isotropic vectors in V and totally f -isotropic subspaces of V , which
are vectors v ∈ V such that f(v, v) = 0 and subspaces W ⊆ V such that f(w,w′) = 0 for
all w,w′ ∈ W , respectively, with the dimension of a maximal totally f -isotropic subspace
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of V being called the Witt index of f . Its point set is the set of all 2-dimensional totally
f -isotropic subspaces of V and its line set is the set of all subsets of the point set whose
elements are the 2-dimensional totally f -isotropic subspaces V all of which are contained in
a fixed 3-dimensional totally f -isotropic subspace of V and containing a fixed 1-dimensional
totally f -isotropic subspace of V . If V is finite-dimensional, the orthogonal geometry ΓS
is a root shadow space of a building of type BCn or Dn+1 (n ≥ 3), the distinction between
both types originating from whether the quadratic form Q : V → F associated to f is
non-split, respectively split.

The root shadow space of a building of type BCn or Dn+1 (n ≥ 3) can in general
be obtained from a non-degenerate polar space of rank n, which is a point-line geometry
Γ = (P,L) satisfying the Buekenhout-Shult axiom [16]. Polar spaces of rank at least three,
including infinite rank, have been studied and classified by Tits [8], Veldkamp [12] and
Pasini et al. [22] in the twentieth century, and their classification plays an important role
in the characterisation of fso(V, f).

This characterisation is one of the main subjects of this thesis; with the help of a
thorough exposition of relevant background theory and examples, we will work towards
proving the following theorem as an extension of Theorem 1.1.1.

Theorem 1.1.2. Let g be a simple Lie algebra over a field F, char(F) 6= 2, without sandwich
elements generated by its set E(g) of extremal elements. If the extremal geometry Γg =
(E ,L) of g is isomorphic to the orthogonal geometry ΓO(V, f) of some vector space V over
F and some non-degenerate symmetric bilinear form f : V × V → F on V such that f
has Witt index at least three, then g is isomorphic to the finitary orthogonal Lie algebra
fso(V, f).

As mentioned before, Cohen and Ivanyos have established a fundamental connection
between and characterisation of root filtration spaces and root shadow spaces in [19], relying
largely on the findings from Kasikova and Shult [18]. Specifically, Cohen and Ivanyos have
proven the following theorem.

Theorem 1.1.3. Let (P,L) be a non-degenerate root filtration space. If the singular rank
of (P,L) is finite, then (P,L) is isomorphic to a root shadow space of type An,{1,n} (n ≥ 2),
BCn,2 (n ≥ 3), Dn,2 (n ≥ 4), E6,2, E7,1, E8,8, F4,1 or G2,1.

The labeling of the nodes in the Coxeter diagrams corresponding to these root shadow
spaces is as in [4]. A consequence of the above theorem is then that the nature of the
extremal geometry Γg of a Lie algebra g is completely determined if Γg, viewed as a root
filtration space, is non-degenerate having finite singular rank. However, it is entirely pos-
sible that Γg has infinite singular rank, for example if Γg is isomorphic with a root shadow
space of classical type.

This observation gives rise to the question whether Γg can only have infinite singular
rank if Γg is isomorphic to a root shadow space of classical type. The answer to this

6



question turns out to be affirmative, as characterised by the second theorem we will prove
in this thesis.

Theorem 1.1.4. Let g be a simple Lie algebra over a field F, char(F) 6= 2, without sandwich
elements generated by its set E(g) of extremal elements. If the extremal geometry Γg =
(E ,L) of g is not isomorphic to a root shadow space of classical type, then Γg has finite
singular rank.

In particular, Γg will have singular rank three, four, five or seven.

1.2 Structure of this thesis

In Chapter 2, we introduce Lie algebras as well as the most important concepts and theory
relevant for our study. The basic theory surrounding Lie algebras is covered in Section
2.1, and the classical linear Lie algebras and some of their properties will be examined in
Section 2.2.

In Chapter 3, we move on to extremal elements of Lie algebras in Section 3.1, in which
we will prove some identities involving extremal elements and introduce the extremal form
of a Lie algebra. In Section 3.2, we combine the theory developed in the previous sections
to characterise the classical linear Lie algebras by their extremal elements using tensor
spaces and infinitesimal transvections.

Chapter 4 is dedicated to point-line geometries and related theory in the area of ge-
ometry that we require for our proof of Theorem 1.1.2. We start with the basic theory
of point-line geometry, in particular polar spaces and projective spaces, in Section 4.1,
after which we will discuss geometries and chamber systems in Section 4.2 as a means of
introducing Coxeter systems and buildings. We treat root systems in Section 4.3, and in
combination with Section 4.1 and Section 4.2 we then define root shadow spaces and root
filtration spaces in Section 4.4, respectively Section 4.5. In the final two sections of Chap-
ter 4, Section 4.6 and Section 4.7, we will examine polar spaces and root filtration spaces
in more detail by discussing their classification and embeddability in projective spaces,
respectively.

In Chapter 5, we will combine the theory from Chapter 2 and Chapter 4 in Section 5.1
to introduce the extremal geometry of a Lie algebra and to derive some of the properties
of the extremal geometry of a Lie algebra.

Chapter 6 is devoted to our proof of Theorem 1.1.2. First, however, we will discuss
local systems of Lie algebras in Section 6.1, which we require to prove Theorem 1.1.2 in
case g is infinite-dimensional. In Section 6.2 and Section 6.3, our proof of Theorem 1.1.2
will be given. This is done in two parts; the first part, covered in Section 6.2, focuses on g
being finite-dimensional by detailing the structure of fso(V, f) and mostly serves as a basis
for the second part in Section 6.3, in which the case of g being infinite-dimensional will be
covered.
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Finally, in Chapter 7, we will prove Theorem 1.1.4. In Section 7.1, we introduce ab-
stract root subgroups and discuss several related point-line geometries. In particular, by
geometrically approaching the relevant theory of abstract root subgroups, which are group-
theoretical in nature, we are able to establish a connection between abstract root subgroups
and the extremal geometry of a Lie algebra. In Section 7.2, our proof of Theorem 1.1.4
will be given.
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Chapter 2

Lie algebras

In this chapter, we thoroughly explore the basic theory of Lie algebras. In addition, we
discuss non-degenerate reflexive sesquilinear forms and their classification as a means of
introducing the classical linear Lie algebras.

The theory discussed in Section 2.1 is derived from [1], whereas Section 2.2 is based on
[13, 15, 20, 23].

2.1 Basic theory of Lie algebras

The definition of a Lie algebra has already been given in the second paragraph of Section
1.1, but we formally present it here for the sake of completeness.

Definition 2.1.1 (Lie algebra & Lie subalgebra). Let F be a field. A Lie algebra is a
vector space g over F equipped with a bilinear alternating form [·, ·] : g × g → g such that
the Jacobi identity

[[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0

is satisfied for all x, y, z ∈ g. A subspace h of g is called a Lie subalgebra of g if [x, y] ∈ h
for all x, y ∈ h.

The bilinear alternating form [·, ·] : g×g→ g defining a Lie algebra g over F is called the
Lie bracket. Note that alternativity of the Lie bracket, together with bilinearity, implies
anti-symmetry; for all x, y ∈ g, we have

0 = [x+ y, x+ y] = [x, x] + [x, y] + [y, x] + [y, y] = [x, y] + [y, x] =⇒ [x, y] = −[y, x].

If moreover the characteristic of F is different from 2, then anti-symmetry also implies
alternativity, because [x, x] = −[x, x] =⇒ 2[x, x] = 0 =⇒ [x, x] = 0 for all x ∈ g.

An important Lie algebra is described in the following example.
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Example 2.1.2. Let n ≥ 0 be an integer and denote by Mn(R) the vector space of n× n
matrices with entries in R. We equip it with the form [·, ·] : Mn(R) ×Mn(R) → Mn(R)
given by [A,B] = AB −BA with A,B ∈Mn(R). Bilinearity follows from

[λA+µB,C] = (λA+µB)C−C(λA+µB) = λ(AC−CA)+µ(BC−CB) = λ[A,C]+µ[B,C]

and a similar computation for the second argument of [·, ·] with λ, µ ∈ R and A,B,C ∈
Mn(R). We have [A,A] = A2 −A2 = 0 for all A ∈Mn(R), and

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = [A,BC − CB] + [B,CA−AC] + [C,AB −BA]

= A(BC − CB)− (BC − CB)A+B(CA−AC)− (CA−AC)B + C(AB −BA)

− (AB −BA)C

= ABC −ACB −BCA+ CBA+BCA−BAC − CAB +ACB + CAB − CBA
−ABC +BAC

= (ABC −ABC) + (CBA− CBA) + (BCA−BCA) + (ACB −ACB)

+ (CAB − CAB) + (BAC −BAC)

= 0,

for all A,B,C ∈ Mn(R) shows that the bilinear alternating form [·, ·] turns Mn(R) into a
Lie algebra.

Let V be a vector space over a field F. An endomorphism of V is a linear transformation
from V to itself. The set of all endomorphisms of V is denoted by End(V ). Abstractly, we
can define the Lie algebra from the above example as follows.

Definition 2.1.3 (General linear Lie algebra). Let V be a possibly infinite-dimensional
vector space over a field F. The general linear Lie algebra of V , denoted by gl(V ), is
the vector space of linear transformations ϕ : V → V in End(V ) equipped with the bilinear
alternating form [·, ·] : gl(V ) × gl(V ) → gl(V ) given by [ϕ,ψ] = ϕψ − ψϕ with ϕ,ψ ∈
End(V ).

Depending on the emphasis we wish to put on the dimension n of the corresponding
vector space V and the underlying field F, we will also use the notation gln(F) for the
general linear Lie algebra. As a Lie subalgebra of gl(V ) we have the finitary general linear
Lie algebra, denoted by fgl(V ), consisting of all linear transformations ϕ ∈ gl(V ) such that
dim(ϕ(V )) <∞. Observe that fgl(V ) ( gl(V ) if and only if V is infinite-dimensional.

The Lie bracket of the general linear Lie algebra is called the commutator bracket.
Upon fixing a basis of V , dim(V ) <∞, we may represent the elements in End(V ) as n×n
matrices with entries in F. A basis of gl(V ) then clearly consists of the matrices Ei,j having
a one in position (i, j) and zeros elsewhere, so that gl(V ) is n2-dimensional. In particular,
given Ei,j , Ek,l ∈ gl(V ) distinct with 1 ≤ i, j, k, l ≤ n, we have

[Ei,j , Ek,l] = Ei,jEk,l − Ek,lEi,j = δj,kEi,l − δl,iEk,j ,
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in which δ is the Kronecker delta function.
An endomorphism in gl(V ) that plays an important role in the study of Lie algebras is

the following.

Definition 2.1.4 (Adjoint representation). Let g be a Lie algebra over a field F with Lie
bracket [·, ·], and let gl(g) be the general linear Lie algebra of g. The adjoint represen-
tation of g is the map

ad : g → gl(g)
x 7→ adx,

with x ∈ g, in which adx is the endomorphism of V given by adx(y) 7→ [x, y] for all y ∈ g.

Another important Lie algebra related to the general linear Lie algebra and the adjoint
representation is given in the lemma below.

Lemma 2.1.5. Let V be a vector space over a field F endowed with a bilinear form V ×
V → V given by (v, w) 7→ vw with v, w ∈ V . Then Der(V ) = {ϕ ∈ gl(V ) | ϕ(vw) =
ϕ(v)w+ vϕ(w)} is a Lie subalgebra of gl(V ). Moreover, if V is itself a Lie algebra g, then
adx ∈ Der(g) for all x ∈ g.

Proof. Following Definition 2.1.1, we show that [ϕ,ψ] ∈ Der(V ) for all ϕ,ψ ∈ Der(V ). To
this extent, let ϕ,ψ ∈ Der(V ), then

[ϕ,ψ](vw) = (ϕψ − ψϕ)(vw) = ϕ(ψ(vw))− ψ(ϕ(vw))

= ϕ(ψ(v)w + vψ(w))− ψ(ϕ(v)w + vϕ(w))

= ϕ(ψ(v)w) + ϕ(vψ(w))− ψ(ϕ(v)w)− ψ(vϕ(w))

= (ϕψ)(v)w + ψ(v)ϕ(w) + ϕ(v)ψ(w) + v(ϕψ)(w)

− (ψϕ)(v)w − ϕ(v)ψ(w)− ψ(v)ϕ(w)− v(ψϕ)(w)

= (ϕψ − ψϕ)(v)w + v(ϕψ − ψϕ)(w) = [ϕ,ψ](v)w + v[ϕ,ψ](w),

so it follows that [ϕ,ψ] ∈ Der(V ). Note that, in case V is a Lie algebra g, the bilinear form
is given by (x, y) 7→ [x, y] with x, y ∈ g so that Der(g) = {ϕ ∈ gl(V ) | ∀x, y ∈ g : ϕ([x, y]) =
[ϕ(x), y] + [x, ϕ(y)]}. Now let x ∈ g, then by using Definition 2.1.1 and Definition 2.1.4 we
find

adx([y, z]) = [x, [y, z]] = −[z, [x, y]]− [y, [z, x]] = [[x, y], z] + [y, [x, z]]

= [adx(y), z] + [y, adx(z)],

hence adx ∈ Der(g).

The Lie subalgebra Der(V ) of gl(V ) is also known as the derived algebra of V . The
adjoint representation is an example of a Lie algebra representation, which is a homomor-
phism from a Lie algebra g to its general linear Lie algebra gl(g). Homomorphisms between
Lie algebras, as well as other types of morphisms, are defined as follows.
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Definition 2.1.6 (Lie algebra morphisms). Let g and g′ be two Lie algebras over a field
F with respective Lie brackets [·, ·]g and [·, ·]g′. A homomorphism is a map ϕ : g → g′

such that ϕ([x, y]g) = [ϕ(x), ϕ(y)]g′ for all x, y ∈ g. If ker(ϕ) is trivial, then ϕ is called a
monomorphism, and if im(ϕ) = g′, then ϕ is called a epimorphism. If both ker(ϕ) is
trivial and im(ϕ) = g′, then ϕ is a isomorphism, in which case g and g′ are isomorphic
as Lie algebras, denoted by g ∼= g′.

A Lie algebra isomorphism from a Lie algebra g to itself is called a Lie algebra automor-
phism. These automorphisms form a group under ordinary function composition, denoted
by Aut(g). Within this group of automorphisms, we distinguish between different types of
automorphisms, as characterised by the following definition.

Definition 2.1.7 (Ad-nilpotent & Inner automorphism). Let g be a Lie algebra over a field
F and let ad : g → gl(g) be its adjoint representation. An element x ∈ g is ad-nilpotent
if (adx)k = 0 with k > 0 minimal. An inner automorphism of g is an automorphism of
g of the form

eadx(y) =
k−1∑
i=0

(adx)i(y)

i!

with y ∈ g and x ∈ g ad-nilpotent and k the smallest integer such that (adx)k = 0.

The group generated by the inner automorphisms of a Lie algebra g, denoted by Int(g),
forms a subgroup of Aut(g) under ordinary function composition. In particular, we have
the following result.

Corollary 2.1.8. Let g be a Lie algebra over a field F. Further let Aut(g) be group
of automorphisms of g, and let Int(g) be the group of inner automorphisms of g. Then
Int(g) E Aut(g).

Proof. Let eadx ∈ G with x ad-nilpotent such that k > 0 is the smallest integer satisfying
(adx)k = 0. We show that ϕeadxϕ−1 ∈ Int(g) for all ϕ ∈ Aut(g). To this extent, let
ϕ ∈ Aut(g) be arbitrary. For all y ∈ g and 1 ≤ i ≤ k − 1, we then obtain by using
Definition 2.1.6 that

(ϕ(adx)iϕ−1)(y) = ϕ([x, [x, . . . , [x, ϕ−1(y)] . . . ]])

= [ϕ(x), [ϕ(x), . . . , [ϕ(x), y] . . . ]] = (adϕ(x))
i(y)

so that ϕ(adx)iϕ−1 = (adϕ(x))
i. But then

(ϕeadxϕ−1)(y) =

ϕ k−1∑
i=0

(adx)i

i!
ϕ−1

 (y) =

k−1∑
i=0

(adϕ(x))
i(y)

i!
= eadϕ(x) ,

hence ϕeadxϕ−1 = eadϕ(x) ∈ Int(g).
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The quotient group Aut(g)/Int(g) is referred to as the group of outer automorphisms.
The importance of the adjoint representation is further emphasised by the following lemma.

Lemma 2.1.9. Let g be a Lie algebra over a field F. Then the adjoint representation of g
is a Lie algebra homomorphism between g and Der(g).

Proof. By Lemma 2.1.5, Der(g) is a Lie algebra and adx ∈ Der(g) for all x ∈ g, hence the
adjoint representation of g is indeed a morphism of Lie algebras. It remains to show that
ad[x,y](z) = [adx, ady](z) for all z ∈ g. Using Definition 2.1.1, we obtain

ad[x,y](z) = [[x, y], z] = −[z, [x, y]] = [y, [z, x]] + [x, [y, z]] = [x, [y, z]]− [y, [x, z]]

= adx(ady(z))− ady(adx(z)) = [adx, ady](z)

for all z ∈ g, so ad : g→ Der(g) is a Lie algebra homomorphism.

Recall from group theory the concepts of center, centraliser and normaliser. These
notions also exist in the theory of Lie algebras and are defined as follows.

Definition 2.1.10 (Centraliser, Center & Normaliser). Let g be a Lie algebra over a field
F. The centraliser of a subset h ⊆ g is the set Cg(h) = {x ∈ g | ∀y ∈ h : [x, y] = 0}. If
h = g, we obtain the set Z(g) = Cg(g), called the center of g. The normaliser of a Lie
subalgebra h ⊆ g is the set Ng(h) = {x ∈ g | ∀y ∈ h : [x, y] ∈ h}.

A Lie subalgebra h ⊆ g of a Lie algebra g is called self-normalising if h = Ng(h). In
the special case that g = Z(g), we obtain an abelian Lie algebra. Abelian Lie algebras can
be obtained from arbitrary Lie algebras, as demonstrated by the following example.

Example 2.1.11. Let g be a Lie algebra over a field F. Take x ∈ g to be an arbitrary
element and consider the space Fx = 〈x〉 spanned by x. Then Fx ⊆ g is clearly a Lie
subalgebra of g. Now let λx, µx ∈ Fx with λ, µ ∈ F distinct, then by bilinearity and
alternativity of the Lie bracket we have [λx, µx] = λµ[x, x] = 0, hence Fx is an abelian Lie
algebra.

The notions introduced in Definition 2.1.10 have the following properties, which makes
them useful for the study of Lie algebras.

Lemma 2.1.12. Let g be a Lie algebra over a field F. Then Cg(h) ⊆ g is a Lie subalgebra
of g for all subsets h ⊆ g, and Ng(h) ⊆ g is a Lie subalgebra of g for all Lie subalgebras
h ⊆ g.

Proof. In accordance with Definition 2.1.1, we show that [x, y] lies in the centraliser or
normaliser of some subset or Lie subalgebra h ⊆ g, respectively. First, let x, y ∈ Cg(h),
and let z ∈ h be arbtirary, then [[x, y], z] = −[z, [x, y]] = [y, [z, x]] + [x, [y, z]] by Definition
2.1.1. Since x, y ∈ Cg(h) and z ∈ h, we have [x, z] = [z, x] = 0 and [y, z] = [z, y] = 0, hence
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[y, [z, x]] + [x, [y, z]] = [y, 0] + [x, 0] = 0 so that [[x, y], z] = 0. It follows that [x, y] ∈ Cg(h),
so Cg(h) is a Lie subalgebra of g.

Now let x, y ∈ Ng(h) ⊆ g and let z ∈ h be arbitrary. By the above, we have [[x, y], z] =
[y, [z, x]] + [x, [y, z]]. Because x, y ∈ Ng(h) and z ∈ h, we have [x, z], [z, x], [y, z], [z, y] ∈ h,
but then also [y, [z, x]], [x, [y, z]] ∈ h. Consequently, [[x, y], z] ∈ h, which shows that [x, y] ∈
Ng(h) so that Ng(h) is a Lie subalgebra of g.

As a consequence of Lemma 2.1.12 in combination with Definition 2.1.10, the center
Z(g) of a Lie subalgebra g is a Lie subalgebra of g.

A final important class of subspaces of Lie algebras that we will discuss here is the class
of ideals. Their definition is the following, analogous to how ideals are defined in ring and
field theory.

Definition 2.1.13 (Ideal & Simplicity). Let g be a Lie algebra over a field F. An ideal
of g is a subspace i ⊆ g such that [x, i] ∈ i for all x ∈ g and i ∈ i. If g is non-abelian and
contains no non-trivial ideals, then g is said to be simple.

Recall that the finitary general linear Lie algebra fgl(V ) of the general linear Lie algebra
gl(V ) for some vector space V over a field F is a proper Lie subalgebra if and only if V is
infinite-dimensional. The following example shows that fgl(V ) is also an ideal of gl(V ).

Example 2.1.14. Let g be a Lie algebra over a field F. The center Z(g) of g is a non-trivial
ideal of g; indeed, for all x ∈ g and z ∈ Z(g) we have [z, x] = 0 by Definition 2.1.10, and
clearly 0 ∈ Z(g). If g is simple, then this forces Z(g) = 0, for otherwise Z(g) = g in which
case g would be abelian, contradicting Definition 2.1.13. The non-trivial subspace i = [g, g]
is also an ideal of g, which follows immediately from i being a subspace of g. The ideal i is
referred to as the derived algebra of g. If g is simple, we have i = g, for otherwise [g, g] = 0
in which case g would be abelian, again contradicting Definition 2.1.13.

Another example is the following. Given an infinite-dimensional vector space V over a
field F, the finitary general linear Lie algebra fgl(V ) ⊆ gl(V ) is a proper ideal. Indeed, for
all ϕ ∈ fgl(V ) and ψ ∈ gl(V ), we have

dim([ϕ,ψ](V )) = dim((ϕψ − ψϕ)(V )) ≤ dim(ϕ(ψ(V ))) + dim(ψ(ϕ(V ))) <∞

because ψ(V ) ⊆ V and dim(ϕ(V )) <∞, hence [ϕ,ψ] ∈ fgl(V ).

Let g be a Lie algebra over a field F. Recall from Lemma 2.1.5 that adx ∈ Der(g) for
all x ∈ g. The following lemma relates ideals to the adjoint representation.

Lemma 2.1.15. Let g be a Lie algebra over a field F and let ad : g → gl(g) be its
adjoint representation. Denote by adg the Lie subalgebra of Der(g) containing all elements
adx ∈ Der(g) with x ∈ g. Then adg is an ideal of Der(g).
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Proof. We prove that [ϕ, adx] ∈ adg for all ϕ ∈ Der(g) and x ∈ g. To this extent, let
ϕ ∈ Der(g) and x ∈ g be arbitrary, then for all y ∈ g we have

[ϕ, adx](y) = (ϕadx − adxϕ)(y) = ϕ([x, y])− [x, ϕ(y)] = [ϕ(x), y] = adϕ(x)(y)

so that [ϕ, adx] = adϕ(x) ∈ adg. We conclude that adg ⊆ Der(g) is an ideal.

The elements in the ideal adg of Der(g) from the above lemma are called the inner
derivations of Der(g). The Lie subalgebra of inner derivations of Der(g) is denoted by
Inn(g).

Clearly, if i, j ⊆ g are two distinct proper ideals of a Lie algebra g over a field F, then
so are i+ j and i∩ j, but also [i, j]. The quotient Lie algebra of g and a proper ideal i ⊆ g is
the Lie algebra g/i = {x+ i | x ∈ g} with Lie bracket [x+ i, y + i] = [x, y] + i. Induced by
the quotient algebra g/i is the canonical map π : g → g/i given by x 7→ x + i with x ∈ g.
It is a Lie algebra epimorphism; surjectivity follows from construction, and the identity
π([x, y]) = [x, y] + i = [x+ i, y+ i] = [π(x), π(y)] turns π into a Lie algebra homomorphism.
Exemplary quotient Lie algebras are pgl(V ) = gl(V )/Z(gl(V )) if V is a finite-dimensional
vector space over a field F, but also gl(V )/fgl(V ) in case V is infinite-dimensional.

If g′ is a second Lie algebra and ϕ : g → g′ is a Lie algebra homomorphism, then
ker(ϕ) ⊆ g is an ideal of g; indeed, for all x ∈ g and i ∈ ker(ϕ), we have ϕ([x, i]) =
[ϕ(x), ϕ(i)] = [ϕ(x), 0] = 0. Additionally, im(ϕ) ⊆ g′ is a Lie subalgebra of g′. The
homomorphism theorems from group theory extend naturally to Lie algebras.

Proposition 2.1.16. Let g and g′ be Lie algebras over a field F. Then

(i) for all Lie algebra homomorphisms ϕ : g → g′ we have g/ ker(ϕ) ∼= im(ϕ). In
particular, for any ideal i ⊆ g such that i ⊆ ker(ϕ), there exists a unique map
ψ : g/i→ g′ such that ϕ(x) = ψ(π(x)) for all x ∈ g,

(ii) for all ideals i, j ⊆ g such that i ⊂ j, the subspace j/i ⊆ g/i is an ideal and g/j ∼=
(g/i)/(j/i),

(iii) for all ideals i, j ⊆ g, we have (i + j)/j ∼= i/(i ∩ j).

Proof. For (i), let ϕ : g → g′ be a Lie algebra homomorphism and let i ⊆ g be an ideal
such that i ⊆ ker(ϕ). Then the map ψ : g/i → g′ given by x + i 7→ ϕ(x) with x ∈ g is
readily seen to be an isomorphism between g/i and im(ϕ). Additionally, it is a Lie algebra
homomorphism, since

ψ([x+ i, y + i]) = ψ([x, y] + i) = ϕ([x, y]) = [ϕ(x), ϕ(y)] = [ψ(x+ i), ψ(y + i)].

In particular, we have g/ ker(ϕ) ∼= im(ϕ) by taking i = ker(ϕ).
For (ii), let i, j ⊆ g be ideals such that i ⊂ j, then we have [x+ i, j + i] = [x, j] + i ∈ j/i

for all x ∈ g and j ∈ j. The map ϕ : g/i→ g/j given by x+ i 7→ x+ j with x ∈ g is surjective
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such that ker(ϕ) = j/i. By Proposition 2.1.16(i), we then have (g/i)/(j/i) = (g/i)/ ker(ϕ) ∼=
im(ϕ) = g/j.

For (iii), let i, j ⊆ g be ideals and let π : g → g/j be the canonical map from g to g/j
and consider π|i, i.e. its restriction to i. Then ker(π|i) = i∩ j and im(π|i) = (i+ j)/j, hence
by Proposition 2.1.16(i) we have i/(i ∩ j) = i/ ker(π|i) ∼= im(π|i) = (i + j)/j.

We continue our discussion of ideals of Lie algebras by introducing certain sequences
of ideals as follows.

Definition 2.1.17 (Derived series & Solvability). Let g be a Lie algebra over a field F.
The derived series of g is the sequence of ideals of g given recursively by g(0) = g and
g(i+1) = [g(i), g(i)] with i ≥ 0. If there exists an n ≥ 0 such that g(n) = 0, then g is said to
be solvable.

Example 2.1.18. Abelian Lie algebras are clearly solvable, whereas simple Lie algebras
are not. Now consider the Lie algebra from Example 2.1.2 restricted to only the strictly
upper-triangular matrices, which we will denote by n(n,R). Note that these matrices will
only have non-zero entries in positions (i, j), 1 ≤ i, j ≤ n, satisfying i < j. To see that
n(n,R) is solvable, it suffices to observe that the elements of (n(n,R))(k), k ≥ 0, only
contain non-zero entries in positions (i, j), 1 ≤ i, j ≤ n, such that j − i ≥ 2k. But then
certainly (n(n,R))(m) = 0 for m ≥ 0 such that 2m ≥ n, as then j − i ≥ 2m ≥ n for all
1 ≤ i, j,≤ n so that no element of (n(n,R))(m) contains non-zero entries.

Consider also the Lie subalgebra obtained from Example 2.1.2 obtained by only tak-
ing the upper-triangular matrices, which we will denote by t(n,R). By observing that
[t(n,R), t(n,R)] = n(n,R), it immediately follows that t(n,R) is solvable as well. In par-
ticular, we have (t(n,R))(m+1) = 0 with m as in the previous paragraph.

Some simple and useful properties of solvable Lie algebras are the following.

Proposition 2.1.19. Let g be a Lie algebra over a field F. Then

(i) all homomorphic images of g as well as all Lie subalgebras of g are solvable if g is
solvable,

(ii) g is solvable if i ⊆ g is a solvable ideal such that g/i is solvable,

(iii) i + j ⊆ g is a solvable ideal whenever i, j ⊆ g are solvable ideals.

Proof. For (i), we clearly have h(i) ⊆ g(i) for any Lie subalgebra h ⊆ g, showing that h
is solvable whenever g is. Now let g′ be the homomorphic image of g under some Lie
algebra epimorphism ϕ : g → g′. For any i ≥ 0, we have ϕ(g(i+1)) = ϕ([g(i), g(i)]) =
[ϕ(g(i)), ϕ(g(i))]. By induction, we then obtain ϕ(g(i)) = (g′)(i) for all i ≥ 0, hence g′ is
solvable whenever g is.
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For (ii), let i ⊆ g be a solvable ideal such that g/i is solvable and consider the canonical
map π : g → g/i. By Proposition 2.1.19(i), we have π(g(i)) = (g/i)(i) for all i ≥ 0.
Solvability of g/i then implies that there exists an n ≥ 0 such that π(g(n)) = 0, hence
g(n) ⊆ ker(π) = i. But i is solvable by assumption, which proves that g is solvable as well.

For (iii), let i, j ⊆ g be solvable ideals. Recall from our proof of Proposition 2.1.16(iii)
the canonical map π : g→ g/j as well as its restriction to i, denoted by π|i. By Proposition
2.1.19(i), we know that im(π|i) = (i + j)/j is solvable. But then j ⊆ i + j is an ideal such
that (i + j)/j is solvable, showing that i + j is solvable by Proposition 2.1.19(ii).

As a consequence of Proposition 2.1.19(iii), every Lie algebra g contains a unique
inclusion-wise maximal solvable ideal. This ideal is called the radical of g and denoted
by rad(g). If rad(g) = 0, then g is said to be semi-simple. Consequently, simple Lie
algebras are semi-simple and the quotient algebra g/rad(g) is semi-simple.

An important theorem on solvable Lie algebras is the following.

Theorem 2.1.20 (Lie’s theorem). Let g be a solvable Lie subalgebra of gl(V ) for some
finite-dimensional vector space V over a field F and let t(V,F) be the Lie subalgebra of
gl(V ) of all upper-triangular matrices. Then there exists a basis of V such that g ⊆ t(V,F).

Proof. See Section 4.1 of [1].

Closely related to the notion of solvability of a Lie algebra g in terms of the correspond-
ing sequence of ideals used to define it is the concept of nilpotency as given below.

Definition 2.1.21 (Descending central series & Nilpotency). The descending central
series of g is the sequence of ideals of g given recursively by g0 = g and gi+1 = [g, gi] with
i ≥ 0. If there exists an n ≥ 0 such that gn = 0, then g is said to be nilpotent.

Example 2.1.22. Abelian Lie algebras are clearly nilpotent, whereas simple Lie algebras
are not. Consider again the Lie algebra n(n,R) from the previous example. In this case,
we see that the elements (n(n,R))k, k ≥ 0, only contain non-zero entries in positions (i, j),
1 ≤ i, j ≤ n, satisfying j − i ≥ k + 1. It follows that (n(n,R))m = 0 for m ≥ 0 such that
m+ 1 ≥ n, as then j − i ≥ m+ 1 ≥ n for all 1 ≤ i, j ≤ n so that no element of (n(n,R))m

contains non-zero entries.
However, the Lie algebra t(n,R) from the previous example is not nilpotent. This fol-

lows from the observation that [t(n,R), n(n,R)] = n(n,R) so that (t(n,R))k = (t(n,R))1 =
n(n,R) for all k ≥ 1.

As before, we list some simple and useful properties of nilpotent Lie algebras.

Proposition 2.1.23. Let g be a Lie algebra over a field F. Then

(i) all homomorphic images of g as well as all Lie subalgebras of g are nilpotent if g is
nilpotent,
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(ii) g is nilpotent if g/Z(g) is nilpotent,

(iii) Z(g) 6= 0 if g is nilpotent and non-zero.

Proof. For (i), everything we have said in our proof of Proposition 2.1.19(i), but applied
to the descending central series instead of the derived series, holds true.

For (ii), suppose that g/Z(g) is nilpotent, i.e. (g/Z(g))n = 0 for some n ≥ 0. Con-
sequently, we have gn ⊆ Z(g) so that gn+1 = [g, gn] ⊆ [g, Z(g)] = 0, showing that g is
nilpotent.

For (iii), assume that g is nilpotent and non-zero. Let n ≥ 0 be minimal such that
gn = 0. In particular, we then have [g, gn−1] = gn = 0, hence gn−1 ⊆ Z(g). By minimality
of n, we clearly have gn−1 6= 0 so that Z(g) 6= 0.

Whereas ad-nilpotency is used for elements of a Lie algebra g regarding its adjoint
representation, nilpotency relates to the Lie algebra g itself. The two notions are related
through the following theorem.

Theorem 2.1.24 (Engel’s theorem). Let g be a Lie algebra over a field F. Then every
x ∈ g is ad-nilpotent if and only if g is nilpotent.

Proof. Since (adx)i(y) ∈ gi for all x, y ∈ g and i ≥ 0, nilpotency of g immediately implies
ad-nilpotency of every x ∈ g. For the converse, see Section 3.3 of [1].

We finish our discussion of solvable and nilpotent Lie algebras with the following corol-
lary, which relates both concepts to one another.

Corollary 2.1.25. Let g be a Lie algebra over a field F. Then g is solvable if and only if
[g, g] is nilpotent.

Proof. First, assume that [g, g] is nilpotent. Since g1 = [g, g], then clearly g0 = g is also
nilpotent. By further observing that g(i+1) = [g(i), g(i)] ⊆ [g, g(i)] for all i ≥ 0, it follows
that g(i) ⊆ gi for all i ≥ 0 by induction. But then nilpotency of g implies solvability of g.

Next, assume that g is solvable. Denote by adg the Lie subalgebra of gl(g) containing
the matrices of adx with x ∈ g. Then solvability of g implies solvability of adg, hence by
Theorem 2.1.20 we have adg ⊆ t(g,F). By recalling from our proof of Lemma 2.1.9 that
[adx, ady] = ad[x,y], we obtain

ad[g,g] = [adg, adg] ⊆ [t(g,F), t(g,F)] = n(g,F).

But we have seen in Example 2.1.22 that n(g,F) is nilpotent, hence by the above every
element in [g, g] is ad-nilpotent. Finally, by Theorem 2.1.24, we conclude that [g, g] itself
is nilpotent.
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For the final part of this section, we will focus more on semi-simplicity of Lie algebras.
Note, however, that the notion of semi-simplicity also applies to endomorphisms of vector
spaces. In particular, given a vector space V over a field F, we say that ϕ ∈ gl(V )
is semi-simple if ϕ is diagonalisable. Similarly, the notion of nilpotency also applies to
endomorphisms of vector spaces. We say that ϕ ∈ gl(V ) is nilpotent if ϕn = 0 for some
integer n ≥ 0. This leads to the following useful decomposition of endomorphisms due to
Jordan and Chevalley.

Definition 2.1.26 (Jordan-Chevalley decomposition). Let V be a vector space over a field
F. The Jordan-Chevalley decomposition of ϕ ∈ gl(V ) is the unique decomposition of
ϕ as the sum of a semi-simple endomorphism ϕs ∈ gl(V ) and a nilpotent endomorphism
ϕn ∈ gl(V ) such that [ϕs, ϕn] = 0 = [ϕn, ϕs].

Given an endomorphism ϕ ∈ gl(V ) and its unique Jordan-Chevalley decomposition
ϕ = ϕs +ϕn with commuting semi-simple ϕs ∈ gl(V ) and nilpotent ϕn ∈ gl(V ), we clearly
see that adϕs ∈ gl(gl(V )) is semi-simple and adϕn ∈ gl(gl(V )) is nilpotent. Moreover, we
have [adϕs , adϕn ] = ad[ϕs,ϕn] = 0 so that adϕ = adϕs +adϕn is the unique Jordan-Chevalley
decomposition of adϕ ∈ gl(gl(V )).

The Jordan-Chevalley decomposition is key to proving the following theorem due to
Cartan.

Theorem 2.1.27 (Cartan’s criterion). Let g be a Lie subalgebra of gl(V ) for some finite-
dimensional vector space V over a field F. Then g is solvable if xy is traceless for all
x ∈ [g, g] and y ∈ g.

Proof. See Section 4.3 of [1].

We return to semi-simple Lie algebras and introduce the following definition due to
Killing for the purpose of their study.

Definition 2.1.28 (Killing form). Let g be a Lie algebra over F. The Killing form of g
is the bilinear symmetric form κ : g× g→ F given by (x, y) 7→ tr(adxady) with x, y ∈ g, in
which tr : gl(g)→ F is the linear map that sends an endomorphism in gl(g) to the sum of
its diagonal entries.

The Killing form κ is also associative. To see this, first observe that

tr([x, y]z) = tr(xyz − yxz) = tr(xyz)− tr(y(xz)) = tr(xyz)− tr((xz)y)

= tr(xyz − xzy) = tr(x[y, z])

for all x, y, z ∈ gl(g). Consequently, for adx, ady, adz ∈ gl(g) with x, y, z ∈ g, we obtain

κ([x, y], z) = tr(ad[x,y]adz) = tr([adx, ady]adz) = tr(adx[ady, adz]) =

= tr(adxad[y,z]) = κ(x, [y, z]).
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The Killing form κ is said to be non-degenerate if its radical rad(κ) = {x ∈ g | ∀y ∈
g : κ(x, y) = 0} is trivial and degenerate otherwise. Associativity of κ then implies that
rad(κ) ⊆ g is an ideal; indeed, for all x ∈ g and r ∈ rad(κ), we have κ([r, x], y) =
κ(r, [x, y]) = 0 for all y ∈ g. This leads to the following important theorem relating the
Killing form to semi-simple Lie algebras.

Theorem 2.1.29. Let g be a Lie algebra over a field F and let κ : g×g→ F be the Killing
form of g. Then g is semi-simple if and only if κ is non-degenerate.

Proof. First, assume that g is semi-simple, or equivalently, rad(g) = 0. Clearly, we have
κ(x, y) = tr(adxady) = 0 for all x ∈ rad(κ) and y ∈ [rad(κ), rad(κ)] ⊆ g. Consequently, the
Lie subalgebra adrad(κ) ⊆ gl(g), which consists of all elements adx ∈ gl(g) with x ∈ rad(κ),
is solvable by Theorem 2.1.27, hence rad(κ) is solvable as well. But rad(κ) ⊆ g is an ideal,
therefore rad(κ) ⊆ rad(g) = 0, showing that κ is non-degenerate.

Next, assume that κ is non-degenerate, i.e. rad(κ) = 0, and let rad(g) be the maximal
solvable ideal of g. Then

[(rad(g))(n−1), (rad(g))(n−1)] = (rad(g))(n) = 0

for some n ≥ 0 minimal. In particular, i = rad(g)(n−1) ⊆ g is a non-zero abelian ideal
because of minimality of n. By further noting that

[i, [g, [i, [g, g]]]] ⊆ [i, [g, [i, g]]] ⊆ [i, [g, i]] ⊆ [i, i] = 0,

we deduce that (adiadx)2 = 0 for all i ∈ i and x ∈ g. Consequently, κ(i, x) = tr(adiadx) = 0
for all i ∈ i and x ∈ g, showing that i ⊆ rad(κ). But κ is non-degenerate, forcing i = 0.
This, in turn, contradicts that i is non-zero, so we conclude that g cannot contain any
solvable ideals. It follows that g is semi-simple.

We finish this section with an important characterisation of semi-simple Lie algebras
and their ideals.

Theorem 2.1.30. Let g be a semi-simple Lie algebra over a field F with char(F) = 0.
Then g = [g, g] and there exist simple ideals g1, . . . , gn of g, viewed as Lie subalgebras of
g, with n ≥ 1 finite such that g =

⊕n
k=1 gk. In particular, for every simple ideal i ⊆ g we

have i = gi for some 1 ≤ i ≤ n.
Moreover, all ideals and homomorphic images of g are semi-simple, and for every ideal

j ⊆ g there exists an index set J such that j =
∑

j∈J gj.

Proof. See Section 5.2 of [1].
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2.2 Classical linear Lie algebras

In the previous section, we have already discussed the general linear Lie algebra gl(V )
with V a finite-dimensional vector space over a field F. Its name can be explained by its
close relation to the general linear group, denoted by GL(V ), consisting of all invertible
endomorphisms of V . An important (normal) subgroup of GL(V ) is the special linear
group, denoted by SL(V ), containing all endomorphisms in GL(V ) with determinant 1.
This leads us to the second important linear Lie algebra.

Definition 2.2.1 (Special linear Lie algebra). Let V be a finite-dimensional vector space
over a field F and let gl(V ) be the general linear Lie algebra of V . The special linear Lie
algebra is the Lie subalgebra sl(V ) of gl(V ) consisting of the traceless endomorphisms in
gl(V ).

For the same reasons as listed for the general linear Lie algebra, we will also use the
notation sln(F) for the special linear Lie algebra. Note that the special linear Lie algebra
is an ideal of the general linear Lie algebra. If V is infinite-dimensional, we obtain the
finitary special linear Lie algebra consisting of all traceless linear transformations ϕ ∈ sl(V )
such that dim(ϕ(V )) < ∞, denoted by fsl(V ). In particular, fsl(V ) is an ideal of fgl(V ).
By psl(V ) we denote the quotient Lie algebra sl(V )/Z(sl(V )) with V finite-dimensional.
Observe that Z(sl(V )) = {0} if and only if char(F) - dim(sl(V )).

Example 2.2.2. Let V be a 2-dimensional vector space over a field F with char(F) 6= 2.
By definition, gl(V ) will be 4-dimensional with standard basis {E1,1, E1,2, E2,1, E2,2}, in
which Ei,j ∈ gl(V ), 1 ≤ i, j ≤ 2, is the matrix having a one in position (i, j) and zeros
elsewhere. It is easy to see that the traceless matrices in gl(V ) are of the form(

a b
c −a

)

so that sl(V ) = sl2(F) has standard basis {E1,1 − E2,2, E1,2, E2,1}. Consequently, sl2(F) is
3-dimensional. We write x = E1,2, y = E2,1 and h = E1,1−E2,2 and observe that [x, y] = h,
[h, x] = 2x and [h, y] = −2y. Conversely, any triple {x, y, h} satisfying [x, y] = h, [h, x] = 2x
and [h, y] = −2y is called an sl2-triple. Observe that [sl2(F), sl2(F)] = sl2(F) by the above
relations, so sl2(F) is a non-solvable Lie algebra.

We finish this example by showing that sl2(F) is simple. Clearly, sl2(F) is non-zero
and non-abelian. Now suppose that i ⊆ sl2(F) is a non-zero ideal and let ax+ by + ch ∈ i
with a, b, c ∈ F. Clearly, if one of x, y or h belongs to i, then all of x, y and h belong to
i, forcing i = sl2(F). But we have i 3 [x, [x, ax + by + ch]] = [x, bh − 2cx] = −2bx and
i 3 [y, [y, ax+by+ch]] = [y, a[y, x]+b[y, y]+c[y, h]] = [y,−ah+2cy] = −a[y, h]+2c[y, y] =
−2ay, hence x ∈ i and/or y ∈ i if b 6= 0 and/or a 6= 0, respectively, whereas h ∈ i if
a = b = 0. In any case, we have i = sl2(F), so we conclude that sl2(F) has no non-trivial
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ideals from which its simplicity follows. We emphasise that the assumption char(F) 6= 2 is
necessary for simplicity of sl2(F).

The standard basis {E11 − E22, E12, E21} for sl(V ) as in the example above can easily
be extended to the standard basis of sl(V ) in case V is an n-dimensional vector space
over a field F with n ≥ 2 an integer. This standard basis is constituted of the matrices in
{Eij ∈ gl(V ) | 1 ≤ i 6= j ≤ n}∪ {Eii−Ei+1,i+1 ∈ gl(V ) | 1 ≤ i ≤ n− 1}, of which there are
(n2 − n) + (n− 1) = n2 − 1 in total. Accordingly, sl(V ) will be (n2 − 1)-dimensional.

Recall from elementary field and ring theory that a division ring or skew field is a
non-zero and generally non-commutative ring K in which every non-zero element has a
multiplicative inverse. Its opposite is the division ring Kopp in which the order of mul-
tiplication in K is reversed. An anti-automorphism of a division ring K is a bijection
σ : K→ Kopp such that (λ+ µ)σ = λσ + µσ and (λµ)σ = µσλσ for all λ, µ ∈ K. Note that
we have written the images of λ and µ under σ as λσ and µσ instead of σ(λ) and σ(µ);
since multiplication in a division ring K is not necessarily commutative, a distinction has
to be made between multiplication from the left and from the right in any vector space V
over K. Here and in the remainder of this section, we will opt for multiplication from the
right.

Before we are able to discuss the classical linear Lie algebras, we require some theory
on reflexive sesquilinear forms. We start with the following definition.

Definition 2.2.3 (Sesquilinear form). Let σ : K → Kopp be an anti-automorphism of a
division ring K and let V be a possibly infinite-dimensional vector space over K. A form
f : V × V → K on V is called sesquilinear if f is biadditive and f(λv, µw) = λf(v, w)µσ

for all v, w ∈ V and λ, µ ∈ K.

Given a σ-sesquilinear form f : V ×V → K on V with V a possibly infinite-dimensional
vector space over a division ring K and σ : K → Kopp an anti-automorphism, two vectors
v, w ∈ V are said to be perpendicular if f(v, w) = 0, which we denote by v ⊥ w. The set
of vectors perpendicular to a subset W ⊆ V is W⊥ = {v ∈ V | ∀w ∈ W : f(w, v) = 0}.
In particular, if we have W = V , we obtain the set V ⊥ called the radical of f , denoted
by rad(f). The σ-sesquilinear form f is said to be non-degenerate if rad(f) = {0} and
degenerate otherwise.

Example 2.2.4. Let σ : K → Kopp be an anti-automorphism of a division ring K and
consider again the vector space Mn(K) of n× n matrices with entries over K where n ≥ 0
is an integer from Example 2.1.2. Given a matrix A ∈Mn(K) with entries aij , 1 ≤ i, j ≤ n,
we denote by Aσ ∈ Mn(K) the matrix with entries aσij , 1 ≤ i, j ≤ n. Let the form f :

V ×V → K be given by f(A,B) = tr(ABσ) with A,B ∈Mn(K), in which tr : Mn(K)→ K
is the linear map that sends a matrix A ∈Mn(K) with entries aij , 1 ≤ i, j ≤ n to

∑n
i=1 aii.

For all A,B ∈ Mn(K) with respective entries aij and bij , 1 ≤ i, j ≤ n, the matrix
(A+B)σ ∈Mn(K) has entries (aij+bij)

σ = aσij+b
σ
ij , 1 ≤ i, j ≤ n, hence (A+B)σ = Aσ+Bσ.
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Additionally, for every λ ∈ K, the matrix λA has entries λaij , 1 ≤ i, j ≤ n, so that the
matrix (λA)σ ∈Mn(K) has entries (λaij)

σ = aσijλ
σ, 1 ≤ i, j ≤ n, therefore (λA)σ = Aσλσ.

But then by linearity of tr, we have for all A,B,C,D ∈Mn(K) and λ, µ ∈ K that

f(A+B,C +D) = tr((A+B)(C +D)σ) = tr((A+B)(Cσ +Dσ))

= tr(ACσ) + tr(ADσ) + tr(BCσ) + tr(BDσ)

= f(A,C) + f(A,D) + f(B,C) + f(B,D),

f(λA, µB) = tr((λA)(µB)σ) = tr(λ(ABσ)µσ) = λtr(ABσ)µσ = λf(A,B)µσ,

showing that f is a sesquilinear form on Mn(K).

If a σ-sesquilinear form f additionally satisfies f(v, w) = 0 ⇐⇒ f(w, v) = 0 for
all v, w ∈ V , then the form is reflexive. If moreover there exists an ε ∈ K∗ such that
f(w, v) = εf(v, w)σ for all v, w ∈ V , then the form f is instead referred to as a (σ, ε)-
sesquilinear form. Such a pair (σ, ε) may be special, as described in the following definition.

Definition 2.2.5 (Admissible pair). Let σ : K → Kopp be an anti-automorphism of a
division ring K and let ε ∈ K∗. The pair (σ, ε) is said to be an admissible pair if
λσ

2
= ε−1λε for all λ ∈ K and εσ = ε−1.

Given an admissible pair (σ, ε), we note that ε ∈ Z(K) implies λσ
2

= ελε−1 = λ for all
λ ∈ K so that σ is an involution. Conversely, if σ2 = idK, then λ = ελε−1 ⇐⇒ λε = ελ for
all λ ∈ K, whence ε ∈ Z(K). The following proposition relates reflexive sesquilinear forms
to admissible pairs.

Proposition 2.2.6. Let σ : K → Kopp be an anti-automorphism of a division ring K
and let f : V × V → K be a non-degenerate σ-sesquilinear form on V with V a possibly
infinite-dimensional vector space over K. Then f is reflexive if and only if there exists an
ε ∈ K∗ such that f is a (σ, ε)-sesquilinear form with (σ, ε) an admissible pair.

Proof. The ‘only if’-part of the proposition is immediate, so assume that f is reflexive.
For fixed non-zero w ∈ V , consider the forms ϕw : V → K and ψw : V → K given by
ϕw(v) = f(v, w) and ψw(v) = f(w, v)σ

−1
, respectively, with v ∈ V . Since

ϕw(λu+ µv) = f(λu+ µv,w) = λf(u,w) + µf(v, w) = λϕw(u) + µϕw(v),

ψw(λu+ µv) = f(w, λu+ µv)σ
−1

= (f(w, u)λσ + f(w, v)µσ)σ
−1

=

= λf(w, u)σ
−1

+ µf(w, v)σ
−1

= λψw(u) + µψw(v),

for all u, v ∈ V and λ, µ ∈ K, the forms ϕw and ψw are linear, and they moreover satisfy
ker(ϕw) = ker(ψw) by reflexivity of f . Consequently, we may assume that the equations
f(v, w) = 0 and f(w, v)σ

−1
= 0 in v are equivalent up to scaling. In particular, there exists

an εw ∈ K∗ depending on w such that for all v ∈ V we have

f(w, v)σ
−1

= f(v, w)εσ
−1

w ⇐⇒ f(w, v) = (f(w, v)σ
−1

)σ = (f(v, w)εσ
−1

w )σ = εwf(v, w)σ.
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We show now that εw ∈ K∗ is independent of w. So, let w 6= w′ ∈ V be arbitrary, then for
all v ∈ V we have

0 = f(w + w′, v)− f(w, v)− f(w′, v) = εw+w′f(v, w + w′)σ − εwf(v, w)σ − εw′f(v, w′)σ

= (f(v, w + w′)εσ
−1

w+w′)
σ − (f(v, w)εσ

−1

w )σ − (f(v, w′)εσ
−1

w′ )σ

= f(v, εσ
−2

w+w′(w + w′)− εσ−2

w w − εσ−2

w′ w
′)σ =⇒ (εσ

−2

w+w′ − εσ
−2

w )w + (εσ
−2

w+w′ − εσ
−2

w′ )w′ = 0

by non-degeneracy of f . On the one hand, if w and w′ are linearly independent, then the
above implies εσ

−2

w+w′ − εσ
−2

w = εσ
−2

w+w′ − εσ
−2

w′ = 0 from which it follows that εw = εw′ . On
the other hand, if w and w′ are linearly dependent, there exists a w′′ ∈ V such that w′′ is
linearly independent with w and consequently with w′. Then again by the above, we have
εw = εw′′ and εw′ = εw′′ so that εw = εw′ . We conclude that ε := εw is independent of w,
therefore f is a (σ, ε)-sesquilinear form.

It remains to show that (σ, ε) is an admissible pair. To this extent, let λ ∈ K, then we
can find v, w ∈ V such that f(v, w) = λ. Consequently, we obtain

λ = f(v, w) = εf(w, v)σ = ε(εf(v, w)σ)σ = εf(v, w)σ
2
εσ = ελσ

2
εσ.

For λ = 1, we find 1 = εεσ so that εσ = ε−1. But then λ = ελσ
2
εσ = ελσ

2
ε−1 ⇐⇒ λσ

2
=

ε−1λε, showing that (σ, ε) is an admissible pair.

As a consequence, we may identify reflexive sesquilinear forms by (σ, ε)-sesquilinear
forms with (σ, ε) an admissible pair. In order to classify reflexive sesquilinear forms, we
make use of the notion of proportionality. Given two sesquilinear forms f and f ′, we say
that f ′ is proportional to f if there exists an α ∈ K∗ such that f ′(v, w) = αf(v, w) for all
v, w ∈ V . We may also call f ′ proportional to f by α if we wish to specify the factor of
proportionality α ∈ K∗. Observe that proportionality is an equivalence relation, so for the
classification of reflexive sesquilinear forms it suffices to do so up to proportionality.

On the one hand, if σ = idK, then ε = ε−1 so that ε = ±1. If ε = 1, we obtain a
symmetric form, whereas we obtain an anti-symmetric form if ε = −1. On the other hand,
if σ 6= idK and ε = ±1, we have ε ∈ Z(K), forcing σ to be an involution. In this case, we
obtain a Hermitian form for ε = 1 and an skew-Hermitian form for ε = −1. The remaining
cases are covered by the following lemma.

Lemma 2.2.7. Let f be a non-degenerate (σ, ε)-sesquilinear form with admissible pair
(σ, ε) on a possibly infinite dimensional vector space V over a division ring K. Then for
all α ∈ K∗ there exists an admissible pair (τ, η) satisfying λτ = (α−1λα)σ for all λ ∈ K
and η = αεα−σ such that the form αf is (τ, η)-sesquilinear. Moreover, if σ 6= idK, then f
is proportional to a skew-Hermitian form on V .

Proof. Let α ∈ K∗ be arbitrary, which we may clearly assume to satisfy α 6= 1. By
Proposition 2.2.6, the form f is reflexive. Clearly, the form αf will then also be reflexive.
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Again by Proposition 2.2.6, there exists an admissible pair (τ, η) such that the form f ′ := αf
is a (τ, η)-sesquilinear form. In particular, we have f ′(w, v) = ηf(v, w)τ for all v, w ∈ V ,
but then

ηf ′(v, w)τ = f ′(w, v) = αf(w, v) = α(εf(v, w)σ) = αε(α−1f ′(v, w))σ

= αεf ′(v, w)σα−σ = (αεα−σ)(ασf ′(v, w)σα−σ).

for all v, w ∈ V . Consequently, we have λτ = ασλσα−σ = (α−1λα)σ for all λ ∈ K and
η = αεα−σ. (Notice that the choice λτ = λσα−σ and η = αε results in τ being an
anti-automorphism of K if and only if α = 1, since (λµ)τ = (λµ)σα−σ = µσλσα−σ =
µσα−σλσα−σ = µτλτ ⇐⇒ α−σ = 1 ⇐⇒ α = 1 for all λ, µ ∈ K.) The pair (τ, η) is
indeed admissible; for all λ ∈ K, we have

λτ
2

= (α−1(α−1λα)σα)σ = ασ(α−1λα)σ
2
α−σ = ασ(ε−1(α−1λα)ε)α−σ

= (ασε−1α−1)λ(αεα−σ) = (αεα−σ)−1λ(αεα−σ) = η−1λη,

ητ = ασησα−σ = ασ(αεα−σ)σα−σ = ασα−σ
2
εσασα−σ = ασ(ε−1α−1ε)ε−1

= ασε−1α−1 = (αεα−σ)−1 = η−1.

This settles the first part of the lemma.
For the second part, we show that there exists an α ∈ K∗ such that the form f ′ = αf

is skew-Hermitian; the result then will follow from symmetry of proportionality. By the
above, it will suffice to find α ∈ K∗ such that η = −1. So, let σ 6= idK and assume first
that ε 6= 1. For α = 1− ε−1 ∈ K∗, we obtain

η = (1− ε−1)ε(1− ε−1)−σ = (ε− 1)((1 + ε−1)σ)−1 = −(1− ε)(1− ε)−1 = −1,

hence f ′ is a skew-Hermitian form on V . Next, let ε = 1 ∈ Z(K). Then σ2 = idK and
we may choose λ ∈ K∗ such that λσ 6= λ, which exists because σ 6= idK. By setting
α := λ− λσ ∈ K, we find

η = (λ− λσ)ε(λ− λσ)−σ = −(λσ − λ)(λσ − λσ2
)−1 = −(λσ − λ)(λσ − λ)−1 = −1

so that f ′ is again a skew-Hermitian form on V .

As a consequence of the above lemma, every non-degenerate anti-Hermitian form is
proportional to a non-degenerate Hermitian form. This leads to the following classification
of non-degenerate reflexive sesquilinear forms.

Theorem 2.2.8. Let f : V × V → K be a non-degenerate reflexive sesquilinear form on a
possible infinite-dimensional vector space V over a division ring K. Then f is proportional
to a symmetric bilinear form, an anti-symmetric bilinear form or a Hermitian form.
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Proof. By Proposition 2.2.6, f is a (σ, ε)-sesquilinear form with admissible pair (σ, ε).
As we have already seen, f is either symmetric or anti-symmetric if (σ, ε) = (idK, 1) or
(σ, ε) = (idK,−1), respectively. In particular, f will be bilinear because σ = idK. If
σ 6= idK, then f is proportional to a Hermitian form by Lemma 2.2.7, in which case
σ2 = idK.

A sesquilinear form f : V × V → K on a possibly infinite-dimensional vector space V
over a division ring K satisfying f(v, v) = 0 for all v ∈ V is called alternating. Analogous to
our discussion of alternativity and anti-symmetry of the Lie bracket at the start of Section
2.1, the form f is anti-symmetric if it is alternating, whereas the converse is true if and only
if char(K) 6= 2. In case f is both alternating and anti-symmetric, we call f a symplectic
form. Necessarily, we must then have char(K) 6= 2, which we will assume throughout the
rest of this section.

We have the following lemma connecting non-degenerate reflexive sesquilinear forms to
Lie algebras, which we require to define the classical linear Lie algebras.

Lemma 2.2.9. Let V be a possibly infinite-dimensional vector space over a field F and
let gl(V ) be the general linear Lie algebra of V . Then for every non-degenerate reflexive
sesquilinear form f : V × V → F on V , the subspace

h = {ϕ ∈ gl(V ) | ∀x, y ∈ V : f(ϕ(x), y) + f(x, ϕ(y)) = 0}

of gl(V ) is a Lie subalgebra of gl(V ).

Proof. Let ϕ,ψ ∈ h, i.e. f(ϕ(x), y) + f(x, ϕ(y)) = 0 and f(ψ(x), y) + f(x, ψ(y)) = 0. Then

0 = f(ϕ(x), ψ(y))− f(ϕ(x), ψ(y)) + f(ψ(x), ϕ(y))− f(ψ(x), ϕ(y))

= −f(ψ(ϕ(x)), y) + f(x, ϕ(ψ(y)))− f(x, ψ(ϕ(y))) + f(ϕ(ψ(x)), y)

= f((ϕψ)(x), y)− f((ψϕ)(x), y) + f(x, (ϕψ)(y))− f(x, (ψϕ)(y))

= f((ϕψ − ψϕ)(x), y) + f(x, (ϕψ − ψϕ)(y)) = f([ϕ,ψ](x), y) + f(x, [ϕ,ψ](y)),

hence [ϕ,ψ] ∈ h. We conclude that h is a Lie subalgebra of gl(V ) by Definition 2.1.1.

In combination with Theorem 2.2.8, Lemma 2.2.9 then brings us to the following defi-
nition.

Definition 2.2.10 (Classical linear Lie algebras). Let V be a possibly infinite-dimensional
vector space over a field F and let gl(V ) be the general linear Lie algebra of V . The Lie
subalgebra {ϕ ∈ gl(V ) | ∀x, y ∈ V : f(ϕ(x), y) + f(x, ϕ(y)) = 0} of gl(V ) from Lemma
2.2.9 induced by a non-degenerate reflexive sesquilinear form f : V ×V → F on V is called

(i) the symplectic Lie algebra if f is a symplectic bilinear form, denoted by sp(V, f),

(ii) the orthogonal Lie algebra if f is a symmetric bilinear form, denoted by so(V, f),
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(iii) the unitary Lie algebra if f is a Hermitian form, denoted by u(V, f).

We emphasise that the unitary Lie algebra u(V, f) is a Lie algebra over the subfield
Fσ = {λ ∈ F | λσ = λ} ⊆ F, in which σ : F → Fopp is the involutory anti-automorphism
corresponding to Hermitian form f : V × V → F.

We will also use the notations son(F, f), spn(F, f) and un(F, f) if V is n-dimensional
over F. If V is infinite-dimensional, we additionally have the finitary classical linear Lie
algebras fso(V, f), fsp(V, f) and fu(V, f), obtained by intersecting so(V, f), sp(V, f) and
u(V, f) with fgl(V, f). The quotient Lie algebras of so(V, f), sp(V, f) and u(V, f) by their
centers are denoted by pso(V, f), psp(V, f) and pu(V, f), respectively. Lastly, we have the
special unitary Lie algebra su(V, f), obtained by intersecting u(V, f) with the special linear
Lie algebra sl(V, f). We will later see that so(V, f), sp(V, f) ⊆ sl(V, f), i.e. the special
orthogonal Lie algebra and special symplectic Lie algebra coincide with the orthogonal Lie
algebra and symplectic Lie algebra, respectively.

We finish this section with determining the standard bases and dimensions of the clas-
sical linear Lie algebras sp(V, f), so(V, f) and u(V, f) as defined in Definition 2.2.10. To do
so, we introduce sesquilinear spaces, which are pairs (V, f) in which f is a sesquilinear form
on a vector space V . In particular, we will construct bases of these sesquilinear spaces as
a means of determining the Gram matrix of f , which is the matrix (f(vi, vj))i,j∈I in which
{vi}i∈I is a basis of V indexed by some index set I. We start with the following definition.

Definition 2.2.11 (Isotropy, Anisotropy & Hyperbolic pair). Let f : V × V → K be a
sesquilinear form on a possibly infinite-dimensional vector space V over a division ring K.
A vector v ∈ V is called f-isotropic if f(v, v) = 0 and f-anisotropic otherwise. A pair
{v, w} ⊆ V is called a hyperbolic pair if f(v, v) = f(w,w) = 0 and f(v, w) 6= 0.

The concept of isotropy extends naturally to subspaces of a vector space V ; given a
subspace W ⊆ V , then W is said to be totally f -isotropic if f(w,w′) = 0 for all w,w′ ∈W .
The dimension of a maximal totally f -isotropic subspace of V is an invariant, called the
Witt index of f . Further note that a hyperbolic pair necessarily spans a two-dimensional
subspace of V , which we will refer to as a hyperbolic space, and that for all hyperbolic pairs
{v, w} ⊆ V we may harmlessly assume f(v, w) = 1 by scaling either v or w.

Example 2.2.12. We specify the setting from Example 2.2.4 by letting M2(R) be the
vector space of 2×2 matrices with real entries. Furthermore, we let f : M2(R)×M2(R)→ R
be the bilinear symmetric from on M2(R) given by f(A,B) = tr(AB) with A,B ∈Mn(R).
Then for all A ∈M2(R) with entries aij , 1 ≤ i, j ≤ 2, we obtain

f(A,A) = tr

(a11 a12

a21 a22

)(
a11 a12

a21 a22

) = tr

( a2
11 + a12a21 a11a12 + a12a22

a11a21 + a21a22 a2
22 + a12a21

)
= a2

11 + a2
22 + 2a12a21 = (a11 + a22)2 − 2(a11a22 − a12a21) = (tr(A))2 − 2 det(A).

27



Consequently, a matrix A ∈ M2(K) is f -isotropic if and only if (tr(A))2 = 2 det(A). It
immediately follows that matrices with odd trace or negative determinant are f -anisotropic.

In terms of finding hyperbolic pairs in sesquilinear spaces (V, f), the following lemma
will prove useful for our investigation of these sesquilinear spaces.

Lemma 2.2.13. Let f : V × V → K be a sesquilinear form on a possibly infinite-
dimensional vector space V over a division ring K with char(K) 6= 2 such that V \ rad(f)
contains at least one isotropic vector. For every v ∈ V \ rad(f), there is a w ∈ V such that
f(w, v) = 1.

In particular, if f is a non-degenerate symplectic, symmetric or Hermitian form with
involutory anti-automorphism σ : K → Kopp, then there exist f -isotropic v, w ∈ V such
that {v, w} ⊆ V is a hyperbolic pair.

Proof. For the first assertion, let v ∈ V \ rad(f) so that there exists a w′ ∈ V such that
f(w′, v) 6= 0. For w := f(w′, v)−1w′ ∈ V , we then obtain f(w, v) = f(f(w′, v)−1w′, v) =
f(w′, v)−1f(w′, v) = 1.

For the second assertion, first assume that f is a symplectic form. Since then every
vector v ∈ V is f -isotropic, the result follows immediately from the first assertion. Next,
assume f is a Hermitian form and denote by Kσ = {λ ∈ K | λσ = λ} the subfield of K
consisting of the elements fixed by σ. Now let v ∈ V be f -isotropic and let w′ ∈ V be such
that f(w′, v) 6= 0, which exists because f is non-degenerate. In particular, we may assume
that f(w′, v) = 1 by the first assertion. Additionally, we have f(v, w′) = f(w′, v)σ =
1σ = 1 and −2−1f(w′, w′) ∈ Kσ because 1 ∈ Kσ and f(w′, w′) = f(w′, w′)σ. If w′ is
f -isotropic, the result follows immediately from the first assertion, so assume that w′ is f -
anisotropic. For w = −2−1f(w′, w′)v+w′, we obtain f(w, v) = f(−2−1f(w′, w′)v+w′, v) =
−2−1f(w′, w′)f(v, v) + f(w′, v) = 1 so that f(v, w) = f(w, v)σ = 1σ = 1 and

f(w,w) = f(−2−1f(w′, w′)v + w′,−2−1f(w′, w′)v + w′)

= f(−2−1f(w′, w′)v, w′) + f(w′,−2−1f(w′, w′)v) + f(w′, w′)

= −2−1f(w′, w′)f(v, w′)− f(w′, v)(2−1f(w′, w′))σ + f(w′, w′)

= −2−1f(w′, w′)− 2−1f(w′, w′) + f(w′, w′) = 0,

showing that the pair {v, w} ⊆ V is hyperbolic. Lastly, in case f is a symmetric form,
we have Kσ = K because now σ = idK, and everything we have said previously remains
true.

As a consequence of the first assertion of the above lemma, we have the decomposition
V = 〈v, w〉 ⊕ 〈v, w〉⊥ with v, w ∈ V not necessarily isotropic such that f(v, w) = 1.
Moreover, the restriction of a non-degenerate sesquilinear form f on V to the subspace
〈v, w〉⊥ = {u ∈ V | f(v, u) = f(w, u) = 0} will again be non-degenerate.
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We require one last definition pertaining to hyperbolic pairs in relation to bases of
vector spaces.

Definition 2.2.14 (Hyperbolic basis). Let f : V × V → K be a sesquilinear form on a
possibly infinite-dimensional vector space V over a division ring K. A hyperbolic basis
of V is a basis of V consisting of hyperbolic pairs {vi, wi}i∈I indexed by some index set I,
i.e.

f(vi, vj) = f(wi, wj) = 0 and f(vi, wj) = δi,j

for all i, j ∈ I with δ the Kronecker delta function.

We now proceed with our investigations of the sesquilinear spaces (V, f) with f a non-
degenerate reflexive sesquilinear form on a finite-dimensional vector space V over a field F.
Specifically, we will be working towards decomposing V into certain subspaces from which
we can easily deduce the Gram matrix of f .

first, consider a symplectic space (V, f). Alternativity of f then implies that every
vector v ∈ V is f -isotropic, hence every two linearly independent vectors v, w ∈ V with
f(v, w) 6= 0 constitute a hyperbolic pair {v, w} ⊆ V . In particular, we then have f(v, v) =
f(w,w) = 0 and f(w, v) = 1 = −f(v, w) by Lemma 2.2.13. The Gram matrix of f on the
subspace 〈v, w〉 ⊆ V will then be (

0 −1
1 0

)
with respect to the basis {v, w} of 〈v, w〉. By proceeding inductively on the subspace
〈v, w〉⊥ ⊆ V , we deduce that the Gram matrix of f will be block diagonal, its blocks being
the 2× 2 matrix given above. Necessarily, V must be even-dimensional, say dim(V ) = 2n
with n ≥ 1 an integer. Upon permuting the elements constituting the hyperbolic pairs
that form a hyperbolic basis of V , it follows that the Gram matrix of f has the form(

0 Im
−Im 0

)
with 2m = n. We then obtain the symplectic bilinear form

f(v, w) = v>

(
0 In
−In 0

)
w

with v, w ∈ V . We now wish to express the elements of sp(V, f) in terms of matrices instead
of linear transformations, as we did for gl(V ) and sl(V ). To this extent, denote by Aϕ the
matrix corresponding to an arbitrary linear transformation ϕ ∈ gl(V ), and similarly denote
by Af the matrix that defines the symplectic bilinear form above. Then

0 = f(ϕ(v), w) + f(v, ϕ(w)) = ϕ(v)>Afw + v>Afϕ(w)

= (Aϕv)>Afw + v>Af (Aϕw) = v>A>ϕAfw + v>AfAϕw

= v>(A>ϕAf +AfAϕ)w ⇐⇒ A>ϕAf +AfAϕ = 0.
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Consequently, we may equivalently write sp(V, f) = {ϕ ∈ gl(V ) | A>ϕAf + AfAϕ = 0} ⊆
gl(V ).

Corollary 2.2.15. Let V be an n-dimensional vector space over a field F with n ≥ 2 an
integer and let sp(V, f) be the symplectic Lie algebra on V over F for some non-degenerate
alternating bilinear form f : V × V → F on V . Then sp(V, f) has dimension

(
n+1

2

)
.

Proof. By the above, V must be even-dimensional, so n = 2m for some integer m ≥ 1.

Write sp2m(F, f) = {ϕ ∈ gl2m(F) | A>ϕ
(

0 Im
−Im 0

)
+
(

0 Im
−Im 0

)
Aϕ = 0}, in which Im is

the m ×m identity matrix and Aϕ is the matrix corresponding to linear transformation
ϕ ∈ gl2m(F). By letting Aϕ =

(
A B
C D

)
with A, B, C and D matrices of size m×m having

entries in F, we find

0 =

(
A B
C D

)>(
0 Im
−Im 0

)
+

(
0 Im
−Im 0

)(
A B
C D

)
=

(
C − C> A> +D
−(A+D>) B> −B

)
,

hence C = C>, B = B> and A = −D>. Now denote by Ei,j the matrix having a one in
position (i, j) and zeros elsewhere, then〈(

A 0
0 D

)〉
= 〈Ei,j − Em+j,m+i | 1 ≤ i, j ≤ m〉,〈(

0 B
0 0

)〉
= 〈Ei,m+i | 1 ≤ i ≤ m〉 ∪ 〈Ei,m+j + Ej,m+i | 1 ≤ i < j ≤ m〉,〈(

0 0
C 0

)〉
= 〈Em+i,i | 1 ≤ i ≤ m〉 ∪ 〈Em+i,j + Em+j,i | 1 ≤ i < j ≤ m〉,

and it is readily seen that these spans are mutually independent standard bases of
〈(

A 0
0 D

)〉
,〈(

0 B
0 0

)〉
and

〈(
0 0
C 0

)〉
, hence together they form the standard basis of sp2m(F, f) =〈(

A B
C D

)〉
. Consequently, sp(V, f) has dimension

(m2) +

m+

m∑
k=1

(m− k)

+

m+
m∑
k=1

(m− k)

 = m(2m+ 1) =

(
n+ 1

2

)
.

Notice that the conditionA = −D> for elements
(
A B
C D

)
∈ sp(V, f) results in tr

((
A B
C D

))
=

tr(A+D) = tr(D −D>) = 0 so that sp(V, f) ⊆ sl(V ).
Next, consider a symmetric space (V, f) and assume that the field F on which V is

defined is algebraically closed. By inductively extending a basis {v1, . . . , vn} ⊂ V to a
basis {v1, . . . , vi+1} ⊂ V with vi+1 ∈ 〈v1, . . . , vi〉⊥, we deduce that the Gram matrix of
f is diagonal. Moreover, by writing f(vi, vi) = λi ∈ F∗ for all 1 ≤ i ≤ dim(V ) and by
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letting µi ∈ F∗, 1 ≤ i ≤ dim(V ) be a square root of λi, which exists as F is assumed to be
algebraically closed, we find f(µ−1

i vi, µ
−1
i vi) = (µ2

i )
−1λi = λ−1

i λi = 1. But then the Gram
matrix of f is the identity, so we obtain the symmetric form

f(v, w) = v>w,

with v, w ∈ V . Computations similar to those in the symplectic case show that so(V, f) =
{ϕ ∈ gl(V ) | A>ϕ + Aϕ = 0} ⊆ gl(V ), in which Aϕ is the matrix corresponding to a linear
transformation ϕ ∈ gl(V ).

Corollary 2.2.16. Let V be an n-dimensional vector space over an algebraically closed
field F with n ≥ 1 an integer and let so(V, f) be the orthogonal Lie algebra on V over F
for some non-degenerate symmetric bilinear form f : V × V → F on V . Then so(V, f) has
dimension

(
n
2

)
.

Proof. Write son(F, f) = {ϕ ∈ gln(F) | A>ϕ + Aϕ = 0}, in which Aϕ is the matrix corre-

sponding to linear transformation ϕ ∈ gln(F). Then ϕ ∈ son(F, f) if and only if Aϕ = −A>ϕ ,
i.e. Aϕ is skew-symmetric. It is readily seen that Aϕ is spanned by the linearly independent
matrices Ei,j−Ej,i with 1 ≤ i < j ≤ n, in which Ei,j is the matrix having a one in position
(i, j) and zeros elsewhere. It follows that the dimension of so(V, f) equals

n∑
k=1

(n− k) =
n(n− 1)

2
=

(
n

2

)
.

As before, we see that the condition Aϕ = −A>ϕ for an element ϕ ∈ so(V, f) implies
that the elements of so(V, f) are traceless so that so(V, f) ⊆ sl(V ).

Lastly, consider a Hermitian space (V, f). As long as there exist f -isotropic vectors in
V , which come in pairs by Lemma 2.2.13, we obtain hyperbolic pairs {v, w} ⊆ V such that
f(v, w) = 1 = f(w, v) so that the Gram matrix of f restricted to 〈v, w〉 ⊆ V has the form(

0 1
1 0

)
with respect to the basis {v, w} of 〈v, w〉. As before, by proceeding inductively on the
subspace 〈v, w〉⊥ ⊆ V , the Gram matrix of f restricted to the 2m-dimensional subspace of
V , 2m ≤ n, spanned by its isotropic vector with respect to some hyperbolic basis is(

0 Im
Im 0

)
.

We are now left with a k-dimensional subspace U ⊆ V , k = n − 2m, containing only
anisotropic vectors in V . Since f(v, v) = f(v, v)σ for all v ∈ V , we see that 0 6= f(u, u) ∈
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Kσ = {λ ∈ K | λσ = λ} with u ∈ U anisotropic. The Gram matrix of f restricted to U
with respect to a basis {u1, . . . , uk}, which we may assume to be orthogonal by inductively
extending a basis {u1, . . . , ui} to a basis {u1, . . . , ui+1} with ui+1 ∈ 〈u1, . . . , ui〉⊥, will then
be diagonal with entries f(u1, u1), . . . , f(uk, uk). In summary, the Gram matrix of f on V
will have the form  0 Im 0

Im 0 0
0 0 Λk

 ,

with Λk the diagonal matrix with entries λi ∈ Kσ, 1 ≤ i ≤ k. In particular, we may assume
that Λk = λIk with λ ∈ Kσ after scaling appropriately. We then obtain the Hermitian form

f(v, w) = v>

 0 Im 0
Im 0 0
0 0 λIk

wσ

with involutory anti-automorphism σ : F→ Fopp. Now let Aϕ be the matrix corresponding
to a linear transformation ϕ ∈ gl(V ) and consider the vectors (Aϕw)σ and (wσ)>(Aσϕ)>

with w ∈ V . By denoting the entries of Aϕ by aij , 1 ≤ i, j ≤ n, and those of w by wi,
1 ≤ i ≤ n, we obtain

((Aϕw)σ)i =

 n∑
j=1

aijwj

σ

=
n∑
j=1

wσj a
σ
ij =

n∑
i=1

wσi a
σ
ji =

(
(wσ)>(Aσϕ)>

)
j
,

hence the entries of (Aϕw)σ and (wσ)>(Aσϕ)> coincide. However, since i runs over the rows

of (Aϕw)σ and j runs over the columns of (wσ)>(Aσϕ)>, we have (Aϕw)σ =
(

(wσ)>(Aσϕ)>
)>

as vectors. It follows that (Aϕw)σ = Aσϕw
σ. Then

0 = f(ϕ(v), w) + f(v, ϕ(w)) = ϕ(v)>Afw
σ + v>Afϕ(w)σ

= (Aϕv)>Afw
σ + v>Af (Aϕw)σ = v>A>ϕAfw

σ + v>AfA
σ
ϕw

σ

= v>(A>ϕAf +AfA
σ
ϕ)wσ ⇐⇒ A>ϕAf +AfA

σ
ϕ = 0.

so that u(V ) = {ϕ ∈ gl(V ) | A>ϕAf +AfA
σ
ϕ = 0} ⊆ gl(V ).

Corollary 2.2.17. Let V be an n-dimensional vector space over a field F with n ≥ 1 an
integer and let u(V, f) be the unitary Lie algebra of V for some non-degenerate Hermitian
form f : V × V → F. Then u(V, f) has dimension n2.

Proof. Let n = 2m+k and write un(F, f) = {ϕ ∈ gln(F) | A>ϕ
(

0 Im 0
Im 0 0
0 0 βIk

)
+

(
0 Im 0
Im 0 0
0 0 βIk

)
Aσϕ

= 0} with Aϕ the matrix corresponding to linear transformation ϕ ∈ gln(F). By letting
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ϕ =
(
A B C
D E F
X Y Z

)
, in which A, B, D and E are m×m matrices, C, F , X> and Y > are m× k

matrices and Z is a k × k matrix, all having entries in F, we obtain

0 =

A B C
D E F
X Y Z


> 0 Im 0

Im 0 0
0 0 βIk

+

 0 Im 0
Im 0 0
0 0 βIk


A B C
D E F
X Y Z


σ

=

 Dσ +D> A> + Eσ F σ + βX>

Aσ + E> Bσ +B> Cσ + βY >

F> + βXσ C> + βY σ β(Z> + Zσ)

 ,

therefore A> = −Eσ, Bσ = −B>, Dσ = −D>, F σ = −βX>, Cσ = −βY > and Z> = −Zσ.
By multiplying Aϕ with a scalar α ∈ F such that ασ = −α, we may assume that all signs
are positive. We will, however, keep the equation A> = −Eσ. Now we distinguish between
the entries of Aϕ fixed by σ and not fixed by σ. In the former case, we have the equations
A> = −E, B = B>, D = D>, F = βX>, C = βY > and Z> = Z, whereas in the latter
case we have the equations γA> = −γσE, γσB = γB>, γσD = γD>, γσF = βγX>,
γσC = βγY > and γZ> = γσZ, with γ ∈ F such that γσ 6= ±γ. Upon fixing such a γ ∈ F,
we then find〈(

A 0 0
0 E 0
0 0 0

)〉
= 〈Ei,j − Em+j,m+i | 1 ≤ i, j ≤ m〉 ∪ 〈γEi,j − γσEm+j,m+i | 1 ≤ i, j ≤ m〉,〈(

0 B 0
0 0 0
0 0 0

)〉
= 〈Ei,m+i | 1 ≤ i ≤ m〉 ∪ 〈Ei,m+j + Ej,m+i | 1 ≤ i < j ≤ m〉

∪ 〈γEi,m+j + γσEj,m+i | 1 ≤ i < j ≤ m〉,〈(
0 0 0
D 0 0
0 0 0

)〉
= 〈Em+i,i | 1 ≤ i ≤ m〉 ∪ 〈Em+i,j + Em+j,i | 1 ≤ i < j ≤ m〉,

∪ 〈γEm+i,j + γσEm+j,i | 1 ≤ i < j ≤ m〉,〈(
0 0 C
0 0 0
0 Y 0

)〉
= 〈E2m+i,m+j + βEj,2m+i | 1 ≤ i ≤ k, 1 ≤ j ≤ m〉,

∪ 〈γE2m+i,m+j + βγσEj,2m+i | 1 ≤ i ≤ k, 1 ≤ j ≤ m〉,〈(
0 0 0
0 0 F
X 0 0

)〉
= 〈E2m+i,j + βEm+j,2m+i | 1 ≤ i ≤ k, 1 ≤ j ≤ m〉,

∪ 〈γE2m+i,j + βγσEm+j,2m+i | 1 ≤ i ≤ k, 1 ≤ j ≤ m〉,〈(
0 0 0
0 0 0
0 0 Z

)〉
= 〈E2m+i,2m+i | 1 ≤ i ≤ k〉 ∪ 〈E2m+i,2m+j + E2m+j,2m+i | 1 ≤ i < j ≤ k〉,

∪ 〈γE2m+i,2m+j + γσE2m+j,2m+i | 1 ≤ i < j ≤ k〉

to be mutually independent standard bases that together form the standard basis of
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un(F, f). We then deduce that u(V, f) has dimension

(2m2) + 2

m+ 2
m∑
l=1

(m− l)

+ (4km) +

k + 2
k∑
l=1

(k − l)

 = (2m+ k)2 = n2.
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Chapter 3

Extremal elements of Lie algebras

This chapter serves as an introduction to extremal elements in Lie algebras. Specifically,
we will discuss the basic theory of extremal elements of Lie algebras as a means of charac-
terising the classical linear Lie algebras by their extremal elements.

The theory presented in Section 3.1 and Section 3.2 is based on [13, 15, 20, 23].

3.1 Basic theory of extremal elements

We formally define an extremal element of a Lie algebra for the sake of completeness even
though we have already done so in the fourth paragraph of Section 1.1.

Definition 3.1.1 (Extremal element). Let g be a Lie algebra over a field F. An element
0 6= x ∈ g is said to be extremal if there exists a map gx : g→ F such that

(adx)2(y) = [x, [x, y]] = 2gx(y)x

for all y ∈ g, and if the Premet identities

(ad[x,y])([x, z]) = [[x, y], [x, z]] = gx([y, z])x+ gx(z)[x, y]− gx(y)[x, z]

and
(adxadyadx)(z) = [x, [y, [x, z]]] = gx([y, z])x− gx(z)[x, y]− gx(y)[x, z]

hold for all y, z ∈ g.

Consequently, we have (adx)2(g) ⊆ Fx for extremal x ∈ g. The map gx : g → F
is called the extremal form of x, which we will discuss later in this chapter. By E(g)
we denote the set of all extremal elements of g. Note that it follows immediately that
extremal elements are ad-nilpotent of order at most 3; indeed, for extremal x ∈ g we
have (adx)3(g) = [x, (adx)2(g)] ⊆ [x,Fx] = F[x, x] = 0. Further note that the Premet
identities ensure that not all elements in g are extremal if char(F) = 2; without the Premet
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identities, an element 0 6= x ∈ g would be extremal if there exists a map gx : g → F such
that [x, [x, y]] = 2gx(y)x = 0 for all y ∈ g because char(F) = 2, so taking gx : g→ F to be
identically zero for all 0 6= x ∈ g would then show that all 0 6= x ∈ g are extremal.

Example 3.1.2. Recall from Example 2.2.2, in which we showed simplicity of sl2(F) if
char(F) 6= 2, that the triple {x, y, h} = {E1,2, E2,1, E1,1 − E2,2} satisfying [x, y] = h,
[h, x] = 2x and [h, y] = −2y is a basis of sl2(F), in which Ei,j ∈ gl2(F), 1 ≤ i, j ≤ 2, is the
matrix having a one in position (i, j) and zeros elsewhere. Now let ax + by + ch ∈ sl2(F)
with a, b, c ∈ F and consider first the element λh ∈ sl2(F) with λ ∈ F∗. Then

[λh, [λh, ax+ by + ch]] = λ2[h, 2ax− 2ay] = 4λ2ax+ 4λ2by,

hence no element in Fh will be extremal in sl2(F) by linear independence of x, y and h.
Now let z = λx+ µy ∈ sl2(F) with λ, µ ∈ F not both zero, then

[z, [z, ax+ by + ch]] = [λx+ µy, λ[x, ax+ by + ch]] + [λx+ µy, µ[y, ax+ by + ch]]

= [λx+ µy, λ(bh− 2cx)] + [λx+ µy, µ(−ah+ 2cy)]

= λ2[x, bh] + λµ[y, bh− 2cx] + λµ[x,−ah+ 2cy] + µ2[y,−ah]

= −2λ2bx+ 2λµby + 2λµch+ 2λµax+ 2λµch− 2µ2ay.

It follows that z is extremal if and only if 4λµch = 0 if and only if λ = 0 or µ = 0. If
λ = 0, then z = µy and [µy, [µy, ax + by + ch]] = −2µ2ay, hence every element in Fy is
extremal with extremal form gµy : g→ F given by gµy(ax+ by+ ch) = −µa. If µ = 0, then
z = λx and [λx, [λx, ax+ by+ ch]] = −2λ2bx so that every element in Fx is extremal with
extremal form gλx : g→ F given by gλx(ax+ by + ch) = −λb.

In the above example, we concluded that all elements in Fx and Fy are extremal in
sl2(F) without verifying the Premet identities. However, the Premet identities turn out to
be superfluous in case char(F) 6= 2, as characterised by the following proposition.

Proposition 3.1.3. Let g be a Lie algebra over a field F with char(F) 6= 2 and let x ∈ g.
Then x ∈ E(g) if there exists a map gx : g→ F such that [x, [x, y]] = 2gx(y)x for all y ∈ g.

Proof. We show that the Premet identities follow from the identity [x, [x, y]] = 2gx(y)x for
all y ∈ g. By applying the Jacobi identity from Definition 2.1.1 thrice, we obtain

[[x, y], [x, z]] = −[x, [z, [x, y]]]− [z, [[x, y], x]] = −[x, [z, [x, y]]] + [z, [x, [x, y]]]

= −[x,−[y, [z, x]]− [x, [y, z]]] + [z, 2gx(y)x]

= [x, [y, [z, x]]] + [x, [x, [y, z]]]− 2gx(y)[x, z]

= −[[z, x], [x, y]]− [y, [[z, x], x]] + 2gx([y, z])x− 2gx(y)[x, z]

= −[[x, y], [x, z]]− [y, [x, [x, z]]] + 2gx([y, z])x− 2gx(y)[x, z]

= −[[x, y], [x, z]] + 2gy(z)[x, y] + 2gx([y, z])x− 2gx(y)[x, z]
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for all y, z ∈ g, from which the first Premet identity follows by adding [[x, y], [x, z]] to both
sides and dividing by 2.

Again by using the Jacobi identity, we next obtain

[x, [y, [x, z]] = −[[x, z], [x, y]]− [y, [[x, z], x]] = [[x, y], [x, z]]− [[x, [x, z]], y]

= [[x, y], [x, z]]− 2gx(z)[x, y],

hence the second Premet identity follows from the first Premet identity.

Although any x ∈ E(g) satisfies [x, [x, g]] = 0 if char(F) = 2, if char(F) 6= 2 it could
still be the case that [x, [x, g]] = 0 with x ∈ g extremal. This gives rise to the following
definition.

Definition 3.1.4 (Sandwich element). Let g be a Lie algebra over a field F. An element
0 6= x ∈ g is called a sandwich element if

(adx)2(y) = [x, [x, y]] = 0 and (adxadyadx)(z) = [x, [y, [x, z]]] = 0

for all y, z ∈ g.

A sandwich element x ∈ g is clearly extremal, and we may choose the extremal form gx :

g → F of x to be identically zero. Furthermore, the additional condition [x, [y, [x, z]]] = 0
for all y, z ∈ g ensures that extremal elements are not necessarily sandwich if char(F) = 2.
This distinction shows the existence of non-sandwich extremal elements, which we call
pure extremal elements. In the remainder of this section, whenever we mention extremal
elements we mean pure extremal elements unless stated otherwise.

We continue our discussion of extremal elements by listing some additional properties.
In particular, we provide some relations between extremal elements of Lie algebras.

Corollary 3.1.5. Let g be a Lie algebra over a field F. If x, y ∈ E(g), then gx(y) = gy(x)
and gx([y, z]) + gy([x, z]) = 0 for all z ∈ g.

Proof. First assume that [x, y] = 0. Then it follows from the first Premet identity that

0 = [[x, y], [x, z]] = gx([y, z])x+ gx(z)[x, y]− gx(y)[x, z] = gx([y, z])x− gx(y)[x, z]

for all z ∈ g, hence either gx(y) = 0 and gx([y, z]) = 0 because x 6= 0, or gx(y) 6= 0 and
[x, z] = (gx(y))−1gx([y, z])x, in which case [x, [x, z]] = 0. Specifically, in the latter case we
have [x, g] ⊆ Fx and [x, [x, g]] = 0. But then [x, [g, [x, g]]] ⊆ F[x, [x, g]] = 0 implies that x
is a sandwich element by Definition 3.1.4 so that the extremal form gx is identically zero.
Regardless, we will have gx(y) = 0 and consequently gx([y, z]) = 0. By interchanging x and
y in the above, we also conclude that gy(x) = 0 and gy([x, z]) = 0. Thus, gx(y) = gy(x)
and gx([y, z]) + gy([x, z]) = 0 if [x, y] = 0.
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Next, assume that [x, y] 6= 0 and consider the expression gx([y, [y, z]])x− gy(z)[x, [x, y]]
with z ∈ g arbitrary. If char(F) = 2, then we obtain gx([y, [y, z]])x − gy(z)[x, [x, y]] =
gx(0)x− gy(z) · 0 = 0, and if char(F) 6= 2, then we have

2gx([y, [y, z]])x− 2gy(z)[x, [x, y]] = [x, [x, [y, [y, z]]]]− [x, [x, 2gy(z)y]]

= [x, [x, [y, [y, z]]]]− [x, [x, [y, [y, z]]]] = 0

so that gx([y, [y, z]])x − gy(z)[x, [x, y]] = 0. Next, we rewrite [x, [y, [x, [y, z]]]] by applying
both the second Premet identity for x ∈ E(g) to [y, z] ∈ g and adx to the second Premet
identity for y ∈ E(g) applied to z ∈ g. This yields

0 = [x, [y, [x, [y, z]]]]− [x, [y, [x, [y, z]]]] = (adxadyadx)([y, z])− adx([y, [x, [y, z]]])

= gx([y, [y, z]])x− gx([y, z])[x, y]− gx(y)[x, [y, z]]

− [x, gy([x, z])y − gy(z)[y, x]− gy(x)[y, z]]

= gx([y, [y, z]])x− gx([y, z])[x, y]− gx(y)[x, [y, z]]

− gy([x, z])[x, y]− gy(z)[x, [x, y]] + gy(x)[x, [y, z]]

= (gy(x)− gx(y))[x, [y, z]]− (gx([y, z]) + gy([x, z]))[x, y],

from which we deduce that gy(x) = gx(y) immediately implies gx([y, z]) + gy([x, z]) = 0. If
char(F) 6= 2, then

0 = [[x, y], [x, y]] = [x, [y, [y, x]]]− [[x, [x, y]], y] = 2(gy(x)− gx(y))[x, y]

by the Jacobi identity, hence gy(x) = gx(y). If char(F) = 2, we make use of the observation
that we may assume [x, [y, z]] and [x, y] to be linearly dependent; indeed, if [x, [y, z]] and
[x, y] are linearly independent, then (gy(x)−gx(y))[x, [y, z]]− (gx([y, z])+gy([x, z]))[x, y] =
0 implies gy(x) − gx(y) = 0 and gx([y, z]) + gy([x, z]) = 0. Since interchanging x and
y gives us the same identity, linear dependence of [x, [y, z]] and [x, y] is equivalent to
[x, [y, g]]+ [y, [x, g]] ⊆ F[x, y]. As [x, [x, g]] = [y, [y, g]] = 0, upon applying adx to both sides
we obtain

0 = F[x, [x, y]] ⊇ [x, [x, [y, g]]]] + [x, [y, [x, g]]] = [x, [y, [x, g]]],

hence the second Premet identity yields

0 = [x, [y, [x, g]] = gx([y, g])x− gx(g)[x, y]− gx(y)[x, g],

from which we deduce that [x, g] is contained in the subspace Fx+F[x, y] ⊆ g. In particular,
[Fx+F[x, y],Fx+F[x, y]] = F[x, [x, y]] = 0 so that Fx+F[x, y] is an abelian Lie subalgebra of
g, and as a consequence, so is [x, g]. Combining the first and second Premet identities now
gives 0 = [[x, g], [x, g]] = [x, [g, [x, g]]] + 2gx(g)[x, y] = [x, [g, [x, g]]], from which we conclude
that x is a sandwich element by Definition 3.1.4. Therefore, its extremal form is identically
zero and we have gx(y) = 0. Since all we have said remains true after interchanging x and
y, we also find gy(x) = 0, thus gy(x) = gx(y) and the corollary follows.
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Corollary 3.1.6. Let g be a Lie algebra over a field F. Then

(i) for all x, y ∈ E(g) and z ∈ g we have

[[x, y], [x, [y, z]]] = 2gx(y)gy(z)x+ gx([y, z])[x, y]− gx(y)[x, [y, z]],

(ii) for all x, y ∈ E(g) and z ∈ g we have

[[x, y], [[x, y], z]] = 2gx(y)gy(z)x− gx(y)[x, [y, z]] + 2gx(y)gx(z)y − gx(y)[y, [x, z]]

+ gx([y, z])[x, y]− gy([x, z])[x, y],

(iii) for all x, y, z ∈ E(g) we have

[[x, [y, z]], [y, [x, z]]] = −gx([y, z])gy(z)x− gx([y, z])gx(z)y − gx(y)gx([y, z])z

− 2gx(z)gy(z)[x, y] + 2gx(y)gy(z)[x, z]− 2gx(y)gx(z)[y, z].

Proof. For (i), we first observe that gx([y, [y, z])) = gx(2gy(z)y) = 2gx(y)gy(z) for all z ∈ g
since y ∈ E(g). Now apply the first Premet identity for x ∈ E(g) to [y, z] ∈ g to obtain

[[x, y], [x, [y, z]]] = gx([y, [y, z]])x+ gx([y, z])[x, y]− gx(y)[x, [y, z]]

= 2gx(y)gy(z)x+ gx([y, z])[x, y]− gx(y)[x, [y, z]].

For (ii), by the Jacobi identity we have

[[x, y], [[x, y], z]] = [[x, y], [y, [z, x]]] + [[x, y], [x, [y, z]]] = [[y, x], [y, [x, z]]] + [[x, y], [x, [y, z]]],

after which we may apply Corollary 3.1.6(i) to both expressions. In combination with
Corollary 3.1.5, this yields

[[x, y], [[x, y], z]] = 2gx(z)gy(x)y + gy([x, z])[y, x]− gy(x)[y, [x, z]]

+ 2gx(y)gy(z)x+ gx([y, z])[x, y]− gx(y)[x, [y, z]]

= 2gx(y)gy(z)x− gx(y)[x, [y, z]] + 2gx(y)gx(z)y − gx(y)[y, [x, z]]

+ gx([y, z])[x, y]− gy([x, z])[x, y].

For (iii), again by the Jacobi identity we have

[x, [y, z]], [y, [x, z]]] = [[x, z], [y, [x, [y, z]]]]− [y, [[x, z], [x, [y, z]]]].
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Using both Premet identities and Corollary 3.1.5, the first expression simplifies to

[[x, z], [y, [x, [y, z]]]] = [[x, z], gy([x, z])y − gy(z)[y, x]− gy(x)[y, z]]

= gy([x, z])[[x, z], y]− gy(z)[[x, z], [y, x]]− gy(x)[[x, z], [y, z]]

= gx([y, z])[y, [x, z]] + gy(z)[[x, z], [x, y]]− gy(x)[[z, x], [z, y]]

= gx([y, z])[y, [x, z]] + gy(z)(gx([z, y])x+ gx(y)[x, z]− gx(z)[x, y])

− gx(y)(gz([x, y])z + gz(y)[z, x]− gz(x)[z, y])

= gx([y, z])[y, [x, z]]− gx([y, z])gy(z)x+ gx(y)gy(z)[x, z]

− gx(z)gy(z)[x, y]− gx([y, z])gx(y)z + gx(y)gy(z)[x, z]

− gx(y)gx(z)[y, z]

and the second expression simplifies to

[y, [[x, z], [x, [y, z]]]] = [y, gx([z, [y, z]])x+ gx([y, z])[x, z]− gx(z)[x, [y, z]]

= gx([z, [z, y]])[x, y] + gx([y, z])[y, [x, z]]− gx(z)[y, [x, [y, z]]]

= gx(2gz(y)z)[x, y] + gx([y, z])[y, [x, z]]

− gx(z)(gy([x, z])y − gy(z)[y, x]− gy(x)[y, z])

= 2gx(z)gy(z)[x, y] + gx([y, z])[y, [x, z]]

+ gx([y, z])gx(z)y − gx(z)gy(z)[x, y] + gx(z)gy(x)[y, z].

Combining both expressions then results in

[x, [y, z]], [y, [x, z]]] = [[x, z], [y, [x, [y, z]]]]− [y, [[x, z], [x, [y, z]]]]

= gx([y, z])[y, [x, z]]− gx([y, z])gy(z)x+ gx(y)gy(z)[x, z]

− gx(z)gy(z)[x, y]− gx([y, z])gx(y)z + gx(y)gy(z)[x, z]

− gx(y)gx(z)[y, z]− 2gx(z)gy(z)[x, y]− gx([y, z])[y, [x, z]]

− gx([y, z])gx(z)y + gx(z)gy(z)[x, y]− gx(z)gy(x)[y, z]

= −gx([y, z])gy(z)x− gx([y, z])gx(z)y − gx([y, z])gx(y)z

− 2gx(z)gy(z)[x, y] + 2gx(y)gy(z)[x, z]− 2gx(y)gx(z)[y, z].

Recall from Definition 2.1.7 that the set of inner automorphisms Int(g) of a Lie algebra
g consists of all automorphisms of g of the form

eadx(y) =

k−1∑
i=0

(adx)i(y)

i!
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with y ∈ g and x ∈ g ad-nilpotent. Since any x ∈ E(g) is ad-nilpotent of order at most 3,
we obtain

eλ·adx(y) = y+λ[x, y]+
1

2
·λ[x, λ[x, y]] = y+λ[x, y]+λ2 · 1

2
[x, [x, y]] = y+λ[x, y]+λ2gx(y)x.

for all x ∈ E(g) and λ ∈ F. For ease of notation, we will write exp(x, λ) := eλ·adx , and it
is easy to see that exp(x, λ) = exp(λx, 1) by linearity of the Lie bracket in its first entry.

Proposition 3.1.7. Let g be a Lie algebra over a field F. Then exp(x, λ) is a Lie algebra
homomorphism from g to itself for all x ∈ E(g) and λ ∈ F. Moreover, we have exp(x, λ+
µ) = exp(x, λ)exp(x, µ) for all x ∈ E(g) and λ, µ ∈ F, and exp(x, λ)n = exp(x, nλ) for all
n ∈ N and λ ∈ F if char(F) 6= 2.

Proof. Let x ∈ E(g) and λ ∈ F be arbitrary, then using the Jacobi identity and the first
Premet identity we find for all y, z ∈ g that

[exp(x, λ)(y), exp(x, λ)(z)] = [y + λ[x, y] + λ2gx(y)x, z + λ[x, z] + λ2gx(z)x]

= [y, z] + λ([y, [x, z]] + [[x, y], z]) + λ4gx(y)gx(z)[x, x]

+ λ2([[x, y], [x, z]]− gx(z)[x, y] + gx(y)[x, z])

+ λ3(gx(y)[x, [x, z]]− gx(z)[x, [x, y]])

= [y, z] + λ[x, [y, z]] + λ2gx([y, z])x = exp(x, λ)([y, z]),

from which we conclude that exp(x, λ) is a Lie algebra homomorphism from g to itself.
To prove the second assertion of the lemma, first observe that exp(x, λ)(y) = y+λ[x, y]

for all x ∈ E(g), λ ∈ F and y ∈ g if char(F) = 2. It then follows for all y ∈ g that

(exp(x, λ) exp(x, µ))(y) = exp(x, λ)(y + µ[x, y]) = y + µ[x, y] + λ[x, y + µ[x, y]]

= y + (λ+ µ)[x, y] + λµ[x, [x, y]] = exp(x, λ+ µ)

for all x ∈ E(g) and λ, µ ∈ F so that exp(x, λ + µ) = exp(x, λ)exp(x, µ). On the other
hand, if char(F) 6= 2, then 0 = [x, [x, x]] = 2gx(x)x implies gx(x) = 0 for all x ∈ E(g), and
0 = 2gx(y)[x, x] = [x, 2gx(y)x] = [x, [x, [x, y]]] = 2gx([x, y])x implies gx([x, y]) = 0 for all
y ∈ g. We then find for all y ∈ g that

(exp(x, λ) exp(x, µ))(y) = exp(x, λ)(y + µ[x, y] + µ2gx(y)x)

= y + µ[x, y] + µ2gx(y)x+ λ[x, y + µ[x, y] + µ2gx(y)x]

λ2gx(y + µ[x, y] + µ2gx(y)x)x

= y + (λ+ µ)[x, y] + (λ2gx(y) + λµ[x, [x, y]] + µ2gx(y))x

+ λµ2gx(y)[x, x] + λ2µgx([x, y])x+ λ2µ2gx(x)gx(y)x

= y + (λ+ µ)[x, y] + (λ2 + 2λµ+ µ2)gx(y)x

= y + (λ+ µ)[x, y] + (λ+ µ)2gx(y)x = exp(x, λ+ µ)(y)
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for all x ∈ E(g) and λ, µ ∈ F, hence exp(x, λ+ µ) = exp(x, λ)exp(x, µ).
We prove that exp(x, λ)n = exp(x, nλ) for all n ∈ N and λ ∈ F by induction on n. For

n ≤ 1, there is nothing to prove, so assume that exp(x, λ)n = exp(x, nλ) for some n ≥ 1.
Then for all z ∈ g we obtain

exp(x, λ)n+1(z) = exp(x, λ)(exp(x, λ)n(z)) = exp(x, λ)(exp(x, nλ)(z))

= exp(x, λ)(z + nλ[x, z] + n2λ2gx(z)x) = z + nλ[x, z] + n2λ2gx(z)x

+ λ[x, z + nλ[x, z] + n2λ2gx(z)x] + λ2gx(z + nλ[x, z] + n2λ2gx(z)x)x

= z + nλ[x, z] + n2λ2gx(z)x+ λ[x, z] + nλ2[x, [x, z]] + λ2gx(z)x,

= z + (n+ 1)λ[x, z] + (n+ 1)2λ2gx(z)x = exp(x, (n+ 1)λ)(z)

where we have used gx(x) = 0 and 2gx([x, z]) = gx([x, z])+gx([x, z]) = 0 ⇐⇒ gx([x, z]) = 0
by Corollary 3.1.5 because char(F) 6= 2. By induction, it now follows that exp(x, λ)n =
exp(x, nλ) for all n ∈ N and λ ∈ F.

For any x ∈ E(g), denote by Exp(x) the set of all automorphisms exp(x, λ) with λ ∈ F.
Observe that Exp(x) = Exp(λx) for all λ ∈ F because exp(x, λ) = exp(λx, 1), as we have
seen previously.

Although we have stated without proof in Definition 2.1.7 that exp(x, 1) is an inner
automorphism of g for every ad-nilpotent x ∈ g, we will provide a proof of this claim in
the general case for exp(x, λ) with x ∈ E(g) and λ ∈ F.

Corollary 3.1.8. Let g be a Lie algebra over a field F. For any x ∈ E(g), the set Exp(x) =
{exp(x, λ) | λ ∈ F} forms a subgroup of Int(g) isomorphic to the additive group of F.

Proof. Let x ∈ E(g). It is clear that exp(x, 0)(y) = y for all y ∈ g so that exp(x, 0) will be
the identity element of Exp(x). Furthermore, we have exp(x, λ) exp(x, µ) = exp(x, λ+µ) ∈
Exp(x) by Proposition 3.1.7 so that Exp(x) is closed under function composition, and again
by Proposition 3.1.7 we have exp(x, λ) exp(x,−λ) = exp(x, 0) so that exp(x,−λ) ∈ Exp(x)
is the unique inverse of exp(x, λ) ∈ Exp(x) with λ ∈ F. We conclude that Exp(x)
forms a group under ordinary function composition. It also immediately follows that
exp(x, λ) ∈ Int(g) for all λ ∈ F; indeed, exp(x, λ) is a Lie algebra homomorphism from
g to itself by Proposition 3.1.7, and if exp(x, λ)(y) = exp(x, λ)(z) with y, z ∈ g, then
y = exp(x,−λ)(exp(x, λ)(y)) = exp(x,−λ)(exp(x, λ)(z)) = z so that exp(x, λ) is injective,
while for every y ∈ g we have exp(x, λ)(exp(x,−λ)(y)) = exp(x, 0)(y) = y so that exp(x, λ)
is surjective, showing that exp(x, λ) is bijective.

The isomorphism between Exp(x) and the additive group of F is provided by the map
ϕ : Exp(x) → F given by exp(x, λ) 7→ λ. Indeed, the map ϕ is readily seen to be both
injective and surjective, and for all λ, µ ∈ F we have

ϕ(exp(x, λ) exp(x, µ)) = ϕ(exp(x, λ+ µ)) = λ+ µ = ϕ(exp(x, λ)) + ϕ(exp(x, µ))

so that ϕ is a group homomorphism.
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We finish this section with a discussion of the extremal form gx : g→ F with x ∈ E(g).
Consider first the following lemma.

Lemma 3.1.9. Let g be a Lie algebra over a field F generated by its set E(g) of extremal
elements. Then g is spanned linearly by E(g).

Proof. Recall from Definition 2.1.21 the descending central series of g, given recursively by
g0 = g and gi+1 = [g, gi] with i ≥ 0. By induction on i, we will show that every z ∈ gi,
i ≥ 0, can be written as a linear combination of elements in g; this suffices as it will cover
all elements in g. For i = 0, we have g0 = 〈E(g)〉 so the claim is immediate. Now suppose
that every z ∈ gk can be written as a linear combination of extremal elements of g for some
k ≥ 1. For every z ∈ gk+1 = [g, gk], there exist x ∈ g and y ∈ gk such that z = [x, y].
Since we have gk 3 exp(x, 1)(y) = y + [x, y] + gx(y)x, we deduce that z = [x, y] is a linear
combination of extremal elements in g and gk, which are themselves linear combinations of
elements in E(g) by the induction hypothesis. Consequently, every z ∈ gk+1 can be written
as a linear combination of extremal elements. The claim then follows by induction, and so
does the lemma.

Under the conditions specified by the above lemma, it is possible to extend the extremal
form of an element in E(g) to a bilinear form on g which will moreover be symmetric. This
is characterised by the following proposition.

Proposition 3.1.10. Let g be a Lie algebra over a field F generated by its set E(g) of
extremal elements. Then there exists a unique bilinear symmetric form g : g× g→ F such
that g(x, y) = gx(y) for every y ∈ g and x ∈ E(g) with extremal form gx : g→ F.

In particular, the form g : g × g → F is associative in the sense that g(x, [y, z]) =
g([x, y], z) for all x, y, z ∈ E(g).

Proof. For all x ∈ E(g), y ∈ g and λ ∈ F∗ we have

[λx, [λx, y]] = λ2[x, [x, y]] = λ2 · 2gx(y)x = 2(λgx(y))(λx),

hence λx ∈ E(g) with extremal form gλx : g → F given by gλx(y) = λgx(y) with y ∈ g.
Given a basis {vi}i∈I of g indexed by some index set I with vi ∈ E(g), i ∈ I, we may
write any x ∈ E(g) as a linear combination of these basis elements by Lemma 3.1.9,
i.e. x =

∑
i∈I λivi with λi ∈ F∗, i ∈ I, whose extremal form gx : g → F we define to be

gx(y) =
∑

i∈I λigvi(y) =
∑

i∈I gλivi(y) by the above with y ∈ g. We show that this extremal
form is well-defined. To this extent, suppose that we can also write x =

∑
i∈I µivi with

µi ∈ F, i ∈ I, such that µi 6= λi for at least one i ∈ I. By using Corollary 3.1.5, we have
for all y ∈ E(g) that

∑
i∈I

gλivi(y) =
∑
i∈I

gy(λivi) = gy

∑
i∈I

λivi

 = gy

∑
i∈I

µivi

 =
∑
i∈I

gy(µivi) =
∑
i∈I

gµivi(y).
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Since g = 〈E(g)〉, the above is even true if y ∈ g, hence the forms
∑

i∈I gλivi and
∑

i∈I gµivi
are identical on g. It follows that gx is well-defined. Consequently, the form g : g× g→ F
given by g(x, y) = gx(y) with y ∈ g and x ∈ E(g) having extremal form gx : g → F as
given above is well-defined. Linearity of gx : g→ F implies linearity of g : g× g→ F in its
second coordinate, and for x =

∑
i∈I λivi ∈ E(g) and y =

∑
i∈I vi ∈ E(g) with λi, µi ∈ F,

i ∈ I, we find for all z ∈ g that

g(αx+ βy, z) = gαx+βy(z) =
∑
i∈I

(αλi + βµi)gvi(z) = α
∑
i∈I

λigvi(z) + β
∑
i∈I

µigvi(z)

= αgx(z) + βgy(z) = αg(x, z) + βg(y, z)

for all α, β ∈ F, showing that g : g × g → F is also linear in its first coordinate. Thus,
the form g : g× g→ F is bilinear. In particular, it is unique because g is linearly spanned
by E(g) as a consequence of Lemma 3.1.9. Symmetry of the form follows from Corollary
3.1.5; for all x, y ∈ E(g) we have g(x, y) = gx(y) = gy(x) = g(y, x), which also holds true
if x, y ∈ g by Lemma 3.1.9.

To show associativity of the unique bilinear symmetric form g : g × g → F defined
above, it suffices to do so for x, y, z ∈ E(g) by Lemma 3.1.9. It follows immediately from
Corollary 3.1.5 that

g(x, [y, z]) = gx([y, z]) = −gx([z, y]) = gz([x, y]) = g[x,y](z) = g([x, y], z)

for all x, y, z ∈ E(g), thus g : g× g→ F is associative.

Given that a Lie algebra g over a field F is generated by its set E(g) of extremal elements,
we call the unique bilinear symmetric form g : g × g → F as in the above proposition the
extremal form of g. Its radical is the set rad(g) = {x ∈ g | ∀y ∈ g : g(x, y) = gx(y) = 0}.
Notice that we have x ∈ rad(g) for all sandwich elements x ∈ g, since their extremal forms
are identically zero.

Recall from Definition 2.1.28 the Killing form of g, which we have seen is a bilinear
symmetric form on g satisfying κ(x, [y, z]) = κ([x, y], z) for all x, y, z ∈ g. As was the case
for the Killing form, associativity of the extremal form g of g implies that rad(g) ⊆ g is an
ideal. This property generalises to arbitrary bilinear symmetric and anti-symmetric forms
f : g× g→ F on g that satisfy f(x, [y, z]) = f([x, y], z) for all x, y, z ∈ g.

We finish this section with relating the radical of the extremal form g of g to the
structure of g, following Section 9 of [2]. First consider the following lemma.

Lemma 3.1.11. Let g be a Lie algebra over a field F with char(F) 6= 2 generated by its
set E(g) of extremal elements and let g : g × g → F be the extremal form of g. Then
rad(g) ⊆ rad(g).

Proof. Let i = rad(g) be the maximal solvable ideal of g and let x ∈ i be arbitrary, which
we may assume to be extremal since g = 〈E(g)〉. We show that g(x, y) = 0 for all y ∈ g.
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Again because g = 〈E(g)〉, it suffices to do this for all y ∈ E(g). We distinguish between
two cases.

Assume first that y 6∈ i. Then 2g(y, x)y = 2gy(x)y = [y, [y, x]] with [y, x] ∈ i because
x ∈ i, hence [y, [y, x]] ∈ i. But y 6∈ i and char(F) 6= 2, forcing g(y, x) = 0. By symmetry of
the extremal form g of g, then also g(x, y) = 0.

Next assume that y ∈ i and suppose towards a contradiction that g(x, y) 6= 0. Be-
cause x, y ∈ E(g), we have [[y, x], x] = [x, [x, y]] = 2gx(y)x and [[y, x], y] = −[y, [y, x]] =
−2gy(x)y, hence g(x, y) 6= 0 implies that the triple {x, y, [y, x]} is an sl2-triple spanning
a Lie subalgebra of i isomorphic to sl2(F). Since i is solvable by assumption, so will
〈x, y, [x, y]〉 be by Proposition 2.1.19. But we have seen in Example 2.2.2 that sl2(F) is
non-solvable because char(F) 6= 2, which contradicts solvability of 〈x, y, [x, y]〉. It follows
that g(x, y) = 0.

We conclude that g(x, y) = 0 for all y ∈ E(g), and so x ∈ rad(g). This concludes the
proof.

Observe that, even though the Killing form κ : g × g → F of g is also an associative
bilinear symmetric form on g, the inclusion of radicals is reversed, i.e. rad(κ) ⊆ rad(g),
which we have established in the first half of the proof of Theorem 2.1.29.

Proposition 3.1.12. Let g be a Lie algebra over a field F with char(F) 6= 2 generated by
its set E(g) of extremal elements and let g : g × g → F be the extremal form of g. Then
rad(g) = 0 if and only if g is a direct sum of simple ideals.

Proof. Assume first that g is a direct sum of simple ideals, i.e. g =
⊕n

k=1 gk where g1, . . . , gn
are simple ideals of g, viewed as Lie subalgebras of g, with n ≥ 1 finite. Since this sum is
direct, we have [gi, gj ] ⊆ gi ∩ gj = 0 for all 1 ≤ i 6= j ≤ n. Consequently, for all y ∈ g we
have [gi, [gj , y]] ⊆ [gi, gj ] = 0, 1 ≤ i 6= j ≤ n, and similarly [gj , [gi, y]] ⊆ [gj , gi] = 0. Then
for all x =

∑n
k=1 xk ∈ E(g) with xk ∈ gk, 1 ≤ k ≤ n, and all y ∈ g we find

n∑
k=1

2g(x, y)xk = 2g(x, y)x = [x, [x, y]] =

 n∑
k=1

xk,

 n∑
k=1

xk, y


 =

n∑
k=1

[xk, [xk, y]],

hence [xk, [xk, y]] = 2g(x, y)xk for all 1 ≤ k ≤ n. This shows that xk ∈ E(gk) for all
1 ≤ k ≤ n, and so E(gk) spans gk linearly since E(g) spans g linearly. In particular, the
extremal form of every gk, 1 ≤ k ≤ n, will be the restriction g|gk of g to gk. Now notice that
for all xi ∈ E(gi) and yj ∈ gj with 1 ≤ i 6= j ≤ n we have 2g(xi, yj)xi = [xi, [xi, yj ]] = 0
so that g(xi, yj) = 0, but since E(gi) spans gi linearly we even have g(xi, yj) = 0 for all
xi ∈ gi and yi ∈ gj . Supposing next that rad(g) 6= 0, we then have gk ⊆ rad(g|gk) for
some 1 ≤ k ≤ n because g(gi, gj) = 0 for all 1 ≤ i 6= j ≤ n by the above. However, this
implies that g(gk, gk) = g|gk = 0, hence (adgk)2(y) = [gk, [gk, y]] = 2g(gk, y) = 0 for all
y ∈ gk. It follows that every element in gk is ad-nilpotent, so gk will be nilpotent as well
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by Theorem 2.1.24, which contradicts simplicity of gk. We conclude that rad(g|gk) = 0 for
all 1 ≤ k ≤ n, and so rad(g) = 0 by the decomposition of g as a direct sum of simple ideals.

Now assume that rad(g) = 0. We proceed by induction on dim(g), the result being
immediate if dim(g) ≤ 1. Supposing that g can be decomposed into a direct sum of simple
ideals if dim(g) ≤ k for some integer k ≥ 1, let i be a minimal non-zero ideal of g. Note
that any ideal i′ of i will also be an ideal of g, forcing i′ = i by minimality of i, which
shows simplicity of i. By Lemma 3.1.11, we have rad(g) ⊆ rad(g) = 0 so that g contains no
solvable ideals. In particular, i cannot be abelian. Now consider the subspace i⊥ = {x ∈ g |
∀y ∈ i : g(x, y) = 0} ⊆ g, which will also be an ideal of g; indeed, by associativity of g we
have 0 = g(i, i⊥) ⊇ g([i, g], i⊥) = g(i, [i⊥, g]) if and only if [i⊥, g] ⊆ i⊥. If i and i⊥ intersect
non-trivially, then i ⊆ i ∩ i⊥ by minimality of i, forcing equality so that i ⊆ i⊥, but then
also i ⊆ [i, i] = [i, i⊥] by minimality of i and because i is non-abelian, again forcing equality.
Again by associativity of g, we obtain g(i, g) = g([i, i⊥], g) = g(i, [i⊥, g]) ⊆ g(i, i⊥) = 0,
implying that i ⊆ rad(g) = 0, a contradiction. It follows that i ∩ i⊥ = 0, hence g = i⊕ i⊥.
Finally, the inclusion rad(g|i⊥) ⊆ rad(g) = 0 allows us to apply the induction hypothesis
to i⊥. The proposition then follows.

An immediate consequence of the above proposition is the following.

Corollary 3.1.13. Let g be a Lie algebra over a field F with char(F) 6= 2 generated by
its set E(g) of extremal elements and let g : g × g → F be the extremal form of g. Then
rad(g) = rad(g) if and only if g/rad(g) is a direct sum of simple ideals.

Proof. Denote by gi the form on g/i induced by g, in which i is an ideal of g contained in
rad(g). Writing xi = x+ i ∈ g/i and yi = y + i ∈ g/i with x, y ∈ g, we get

gi(xi, yi) = gi(x+ i, y + i) = g(x, y) + g(x, i) + g(i, y) + g(i, i) = g(x, y)

because g(i, g) = 0. It follows that gi is well-defined because g is well-defined. By taking
i = rad(g), which satisfies rad(g) ⊆ rad(g) by Lemma 3.1.11, we obtain the form grad(g) on
g/rad(g) induced by g given by grad(g)(xrad(g), yrad(g)) = g(x, y) for all xrad(g) = x+rad(g) ∈
g/rad(g) and yrad(g) = y + rad(g) ∈ g/rad(g) with x, y ∈ g. But then

rad(grad(g)) = {xrad(g) ∈ g/rad(g) | ∀yrad(g) ∈ g/rad(g) : grad(g)(xrad(g), yrad(g)) = 0}
= {xrad(g) ∈ g/rad(g) | ∀yrad(g) ∈ g/rad(g) : g(x, y) = 0} = rad(g)/rad(g),

hence rad(grad(g)) = 0 if and only if rad(g)/rad(g) = 0 if and only if rad(g) = rad(g).
The corollary now follows by applying Proposition 3.1.12 to g/rad(g) with extremal form
grad(g).

3.2 Tensors and classical linear Lie algebras

Given a possibly infinite-dimensional vector space V over a field F, the dual space of V
is the space V ∗ consisting of all linear maps ϕ : V → F, possibly infinite-dimensional as
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well. In case V is finite-dimensional, the spaces V and (V ∗)∗ are naturally isomorphic
with isomorphism V → (V ∗)∗ given by v 7→ (ϕ 7→ ϕ(v)) with v ∈ V and ϕ ∈ V ∗. We
additionally have V ∼= V ∗, but here the isomorphism depends on the choice of basis of V ;
indeed, given a basis {vi}i∈I of V indexed by some index set I, the set {ϕj}j∈I such that
ϕj(vi) = δi,j is a basis of V ∗.

In this section, we will consider the tensor space V ⊗W ∗ containing all tensor products
of v ∈ V and ϕ ∈ W ∗ with W ∗ a subspace of V ∗, which coincides with V ∗ if V is finite-
dimensional but can be proper otherwise. It is possible to give the vector space V ⊗W ∗
the structure of a Lie algebra, as shown by the following proposition.

Proposition 3.2.1. Let V be a vector space over a field F and let W ∗ ⊆ V ∗ be a subspace
of the dual space V ∗ of V . Then equipping V ⊗W ∗ with the bilinear form [·, ·] : V ⊗W ∗×
V ⊗W ∗ → V ⊗W ∗ given by

[v ⊗ ϕ,w ⊗ ψ] = ϕ(w)(v ⊗ ψ)− ψ(v)(w ⊗ ϕ)

with v, w ∈ V and ϕ,ψ ∈W ∗ turns V ⊗W ∗ into a Lie algebra over F.

Proof. For all v ⊗ ϕ ∈ V ⊗W ∗ we have [v ⊗ ϕ, v ⊗ ϕ] = ϕ(v)(v ⊗ ϕ) − ϕ(v)(v ⊗ ϕ) = 0,
hence the form [·, ·] is alternating. Moreover, for all u⊗χ, v⊗ϕ,w⊗ψ ∈ V ⊗W ∗, we have

[u⊗ χ, [v ⊗ ϕ,w ⊗ ψ]] + [v ⊗ ϕ, [w ⊗ ψ, u⊗ χ]] + [w ⊗ ψ, [u⊗ χ, v ⊗ ϕ]]

= [u⊗ χ, ϕ(w)(v ⊗ ψ)− ψ(v)(w ⊗ ϕ)] + [v ⊗ ϕ,ψ(u)(w ⊗ χ)− χ(w)(u⊗ ψ)]+

[w ⊗ ψ, χ(v)(u⊗ ϕ)− ϕ(u)(v ⊗ χ)]

= χ(v)ϕ(w)(u⊗ ψ)− ϕ(w)ψ(u)(v ⊗ χ)− χ(w)ψ(v)(u⊗ ϕ) + ϕ(u)ψ(v)(w ⊗ χ)

+ ϕ(w)ψ(u)(v ⊗ χ)− χ(v)ψ(u)(w ⊗ ϕ)− χ(w)ϕ(u)(v ⊗ ψ) + χ(w)ψ(v)(u⊗ ϕ)

+ χ(v)ψ(u)(w ⊗ ϕ)− χ(v)ϕ(w)(u⊗ ψ)− ϕ(u)ψ(v)(w ⊗ χ) + χ(w)ϕ(u)(v ⊗ ψ)

= (χ(v)ϕ(w)(u⊗ ψ)− χ(v)ϕ(w)(u⊗ ψ)) + (ϕ(u)ψ(v)(w ⊗ χ)− ϕ(u)ψ(v)(w ⊗ χ))+

+ (ϕ(w)ψ(u)(v ⊗ χ)− ϕ(w)ψ(u)(v ⊗ χ)) + (χ(w)ψ(v)(u⊗ ϕ)− χ(w)ψ(v)(u⊗ ϕ))

+ (χ(v)ψ(u)(w ⊗ ϕ)− χ(v)ψ(u)(w ⊗ ϕ)) + (χ(w)ϕ(u)(v ⊗ ψ)− χ(w)ϕ(u)(v ⊗ ψ))

= 0

so that [·, ·] satisfies the Jacobi identity. By Definition 2.1.1, the proposition follows.

We denote by g(V ⊗W ∗) the vector space V ⊗W ∗ viewed as a Lie algebra with Lie
bracket [·, ·] as in the above proposition. Observe that not every element in V ⊗W ∗ is
of the form v ⊗ ϕ for some v ∈ V and ϕ ∈ V ∗; for example, the element [v ⊗ ψ,w ⊗ ψ]
is a linear combination of v ⊗ ψ and w ⊗ ϕ that cannot be written in this form for all
v ⊗ ϕ,w ⊗ ψ ∈ V ⊗W ∗. Tensors of the form v ⊗ ϕ for some v ∈ V and ϕ ∈W ∗ are called
pure tensors. If they additionally satisfy ϕ(v) = 0, then they are referred to as singular
pure tensors. This leads to the following proposition.
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Proposition 3.2.2. Let g(V ⊗W ∗) be the Lie algebra of V ⊗W ∗ as in Proposition 3.2.1
and let v⊗ϕ ∈ g(V ⊗W ∗). Then v⊗ϕ is extremal in g(V ⊗W ∗) if and only if v⊗ϕ is a
singular pure tensor.

Proof. First suppose that v ⊗ ϕ ∈ g(V ⊗ W ∗) is extremal. Then for all pure tensors
w ⊗ ψ ∈ g(V ⊗W ∗) we have

F(v ⊗ ϕ) ⊇ [v ⊗ ϕ, [v ⊗ ϕ,w ⊗ ψ]] = [v ⊗ ϕ,ϕ(w)(v ⊗ ψ)− ψ(v)(w ⊗ ϕ)]

= ϕ(w)[v ⊗ ϕ, v ⊗ ψ]− ψ(v)[v ⊗ ϕ,w ⊗ ϕ]

= ϕ(w)(ϕ(v)(v ⊗ ψ)− ψ(v)(v ⊗ ϕ))− ψ(v)(ϕ(w)(v ⊗ ϕ)− ϕ(v)(w ⊗ ϕ))

= −2ψ(v)ϕ(w)(v ⊗ ϕ) + ϕ(v)(ϕ(w)(v ⊗ ψ) + ψ(v)(w ⊗ ϕ)),

forcing ϕ(v) = 0 because the above is true for all pure tensors w ⊗ ψ ∈ g(V ⊗W ∗). It
follows that v ⊗ ϕ is a singular pure tensor.

Next, let v⊗ϕ ∈ g(V ⊗W ∗) be a singular pure tensor, i.e. ϕ(v) = 0. Since all elements
in g(V ⊗W ∗) are linear combinations of pure tensors, it suffices to check the conditions
listed in Definition 3.1.1 for pure tensors. By the above, we have for all pure tensors
w ⊗ ψ ∈ g(V ⊗W ∗) that

[v ⊗ ϕ, [v ⊗ ϕ,w ⊗ ψ]] = −2ψ(v)ϕ(w)(v ⊗ ϕ) + ϕ(v)(ϕ(w)(v ⊗ ψ) + ψ(v)(w ⊗ ϕ))

= −2ψ(v)ϕ(w)(v ⊗ ϕ).

We define gv⊗ϕ : g(V ⊗W ∗)→ F to be the linear map given by gv⊗ϕ(w⊗ψ) = −ψ(v)ϕ(w).
If char(F) 6= 2, then the proposition follows from Lemma 3.1.3, so assume that char(F) = 2.
For all pure tensors u⊗ χ ∈ g(V ⊗W ∗), we then deduce that

[[v ⊗ ϕ,w ⊗ ψ], [v ⊗ ϕ, u⊗ χ]]

= [ϕ(w)(v ⊗ ψ)− ψ(v)(w ⊗ ϕ), ϕ(u)(v ⊗ χ)− χ(v)(u⊗ ϕ)]

= ϕ(w)ϕ(u)[v ⊗ ψ, v ⊗ χ]− ϕ(w)χ(v)[v ⊗ ψ, u⊗ ϕ]− ψ(v)ϕ(u)[w ⊗ ϕ, v ⊗ χ]

+ ψ(v)χ(v)[w ⊗ ϕ, u⊗ ϕ]

= ϕ(w)ϕ(u)(ψ(v)(v ⊗ χ)− χ(v)(v ⊗ ψ))− ϕ(w)χ(v)(ψ(u)(v ⊗ ϕ)− ϕ(v)(u⊗ ψ))

− ψ(v)ϕ(u)(ϕ(v)(w ⊗ χ)− χ(w)(v ⊗ ϕ)) + ψ(v)χ(v)(ϕ(u)(w ⊗ ϕ)− ϕ(w)(u⊗ ϕ))

= (−ϕ(w)χ(v)ψ(u) + ψ(v)ϕ(u)χ(w))(v ⊗ ϕ)− ϕ(u)χ(v)(ϕ(w)(v ⊗ ψ)− ψ(v)(w ⊗ ϕ))

+ ϕ(w)ψ(v)(ϕ(u)(v ⊗ χ)− χ(v)(u⊗ ϕ))

= (ψ(u)gv⊗ϕ(w ⊗ χ)− χ(w)gv⊗ϕ(u⊗ ψ))(v ⊗ ψ)− ϕ(u)χ(v)[v ⊗ ϕ,w ⊗ ψ]

+ ϕ(w)ψ(v)[v ⊗ ϕ, u⊗ χ]

= gv⊗ϕ(ψ(u)(w ⊗ χ)− χ(w)(u⊗ ψ))(v ⊗ ϕ) + gv⊗ϕ(u⊗ χ)[v ⊗ ϕ,w ⊗ ψ]

− gv⊗ϕ(w ⊗ ψ)[v ⊗ ψ, u⊗ χ]

= gv⊗ϕ([w ⊗ ψ, u⊗ χ])(v ⊗ ϕ) + gv⊗ϕ(u⊗ χ)[v ⊗ ϕ,w ⊗ ψ]− gv⊗ϕ(w ⊗ ψ)[v ⊗ ψ, u⊗ χ],
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so the first Premet identity holds. Additionally, we have

[v ⊗ ϕ, [w ⊗ ψ, [v ⊗ ϕ, u⊗ χ]]]

= [v ⊗ ϕ, [w ⊗ ψ,ϕ(u)(v ⊗ χ)− χ(v)(u⊗ ϕ)]

= ϕ(u)[v ⊗ ϕ,ψ(v)(w ⊗ χ)− χ(w)(v ⊗ ψ)]− χ(v)[v ⊗ ϕ,ψ(u)(w ⊗ ϕ)− ϕ(w)(u⊗ ψ)]

= ϕ(u)ψ(v)[v ⊗ ϕ,w ⊗ χ]− ϕ(u)χ(w)[v ⊗ ϕ, v ⊗ ψ]− χ(v)ψ(u)[v ⊗ ϕ,w ⊗ ϕ]

+ χ(v)ϕ(w)[v ⊗ ϕ, u⊗ ψ]

= ϕ(u)ψ(v)(ϕ(w)(v ⊗ χ)− χ(v)(w ⊗ ϕ))− ϕ(u)χ(w)(ϕ(v)(v ⊗ ψ)− ψ(v)(v ⊗ ϕ))

− χ(v)ψ(u)(ϕ(w)(v ⊗ ϕ)− ϕ(v)(w ⊗ ϕ)) + χ(v)ϕ(w)(ϕ(u)(v ⊗ ψ)− ψ(v)(u⊗ ϕ))

= (−χ(v)ψ(u)ϕ(w) + ϕ(u)χ(w)ψ(v))(v ⊗ ϕ) + χ(v)ϕ(u)(ϕ(w)(v ⊗ ψ)− ψ(v)(w ⊗ ϕ))

+ ψ(v)ϕ(w)(ϕ(u)(v ⊗ χ)− χ(v)(u⊗ ϕ))

= (ψ(u)gv⊗ϕ(w ⊗ χ)− χ(w)gv⊗ϕ(u⊗ ψ))(v ⊗ ψ) + ϕ(u)χ(v)[v ⊗ ϕ,w ⊗ ψ]

+ ϕ(w)ψ(v)[v ⊗ ϕ, u⊗ χ]

= gv⊗ϕ(ψ(u)(w ⊗ χ)− χ(w)(u⊗ ψ))(v ⊗ ϕ)− gv⊗ϕ(u⊗ χ)[v ⊗ ϕ,w ⊗ ψ]

− gv⊗ϕ(w ⊗ ψ)[v ⊗ ψ, u⊗ χ]

= gv⊗ϕ([w ⊗ ψ, u⊗ χ])(v ⊗ ϕ)− gv⊗ϕ(u⊗ χ)[v ⊗ ϕ,w ⊗ ψ]− gv⊗ϕ(w ⊗ ψ)[v ⊗ ψ, u⊗ χ],

hence the second Premet identity holds as well. We conclude that all singular pure tensors
v ⊗ ϕ ∈ g(V ⊗W ∗) are extremal by Definition 3.1.1.

By E(V ⊗W ∗) we denote the set of extremal elements of g(V ⊗W ∗). We have seen in
our proof above that every v⊗ϕ ∈ E(V ⊗W ∗) has extremal form gv⊗ϕ(w⊗ψ) = −ψ(v)ϕ(w)
with w ⊗ ψ ∈ g(V ⊗W ∗).

Recall from the previous section the set Exp(x) = {exp(x, λ) | λ ∈ F} with exp(x, λ) =
eλ·adx , in which x is an extremal element of some Lie algebra. For g(V ⊗W ∗), we obtain
the following.

Corollary 3.2.3. Let g(V ⊗W ∗) be the Lie algebra of V ⊗W ∗ as in Proposition 3.2.1.
Then exp(v⊗ϕ, λ)(w⊗ψ) is a pure tensor for all v⊗ϕ ∈ E(V ⊗W ∗), w⊗ψ ∈ g(V ⊗W ∗)
and λ ∈ F.

In particular, exp(v ⊗ ϕ, λ)(w ⊗ ψ) is a singular pure tensor if and only if w ⊗ ψ ∈
E(V ⊗W ∗).

Proof. Let v ⊗ ϕ ∈ E(V ⊗W ∗). Then for all w ⊗ ψ ∈ g(V ⊗W ∗) and λ ∈ F we obtain

exp(v ⊗ ϕ, λ)(w ⊗ ψ) = w ⊗ ψ + λ[v ⊗ ϕ,w ⊗ ψ] + λ2gv⊗ϕ(w ⊗ ψ)(v ⊗ ϕ)

= w ⊗ ψ + λ(ϕ(w)(v ⊗ ψ)− ψ(v)(w ⊗ ϕ))− λ2ψ(v)ϕ(w)(v ⊗ ϕ)

= (w + λϕ(w)v)⊗ ψ − λψ(v)(w + λϕ(w)v)⊗ ϕ
= (w + λϕ(w)v)⊗ (ψ − λψ(v)ϕ),
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therefore exp(v ⊗ ϕ, λ)(w ⊗ ψ) is a pure tensor. In particular, we have

(ψ − λψ(v)ϕ)(w + λϕ(w)v) = ψ(w + λϕ(w)v)− λψ(v)ϕ(w + λϕ(w)v)

= ψ(w) + λψ(v)ϕ(w)− λψ(v)ϕ(w)− λ2ψ(v)ϕ(w)ϕ(v)

= ψ(w),

so exp(v ⊗ ϕ, λ)(w ⊗ ψ) is a singular pure tensor if and only if ψ(w) = 0 if and only if
w ⊗ ψ is a singular pure tensor if and only if w ⊗ ψ ∈ E(V ⊗W ∗) by Proposition 3.2.2.
The corollary now follows.

Singular pure tensors give rise to a certain type of linear transformations in gl(V ),
which are defined as follows.

Definition 3.2.4 (Infinitesimal transvection & Infinitesimal reflection). Let V be a vector
space on a field F and let V ∗ be the dual space of V . The linear map tv,ϕ : V → V with
v ∈ V and ϕ ∈ V ∗ given by tv,ϕ(w) = ϕ(w)v with w ∈ V is called an infinitesimal
transvection if ϕ(v) = 0. If ϕ(v) 6= 0, then tv,ϕ is called an infinitesimal reflection.

Given such an infinitesimal transvection or infinitesimal reflection tv,ϕ, we refer to 〈v〉
as its center and 〈ϕ〉 as its axis. Equivalently, the map tv,ϕ is called an infinitesimal
transvection if the tensor v ⊗ ϕ ∈ V ⊗W ∗ is a singular pure tensor, and an infinitesimal
reflection otherwise.

If v ⊗ ϕ ∈ g(V ⊗ V ∗), then tv,ϕ is an endomorphism in fgl(V ). This brings us to the
following proposition.

Proposition 3.2.5. Let g(V ⊗ V ∗) be the Lie algebra of V ⊗ V ∗ as in Proposition 3.2.1.
Then the linear map Φ : g(V ⊗V ∗)→ fgl(V ) given by v⊗ϕ 7→ tv,ϕ with v⊗ϕ ∈ g(V ⊗V ∗)
is a Lie algebra homomorphism.

In particular, Φ is an isomorphism between g(V ⊗ V ∗) and fgl(V ).

Proof. For all v ⊗ ϕ,w ⊗ ψ ∈ g(V ⊗ V ∗) and u ∈ V , we have

Φ([v ⊗ ϕ,w ⊗ ψ])(u) = Φ(ϕ(w)(v ⊗ ψ)− ψ(v)(w ⊗ ϕ))(u)

= ϕ(w)Φ(v ⊗ ψ)(u)− ψ(v)Φ(w ⊗ ϕ)(u)

= ϕ(w)tv,ψ(u)− ψ(v)tw,ϕ(u) = ϕ(w)ψ(u)v − ψ(v)ϕ(u)w

= ψ(u)tv,ϕ(w)− ϕ(u)tw,ψ(v) = tv,ϕ(ψ(u)w)− tw,ψ(ϕ(u)v)

= (tv,ϕtw,ψ)(u)− (tw,ψtv,ϕ)(u) = (tv,ϕtw,ψ − tw,ψtv,ϕ)(u)

= [tv,ϕ, tw,ψ](u) = [Φ(v ⊗ ϕ),Φ(w ⊗ ψ)](u),

so Φ is a Lie algebra homomorphism by Definition 2.1.6. To show that it is an isomorphism
between g(V ⊗ V ∗) and fgl(V ), we distinguish two cases.

Suppose first that V is finite-dimensional, say dim(V ) = n ≥ 1, then we have fgl(V ) =
gl(V ). A basis of g(V ⊗V ∗) is {vi⊗ϕj}1≤i,j≤n with {vi}1≤i≤n a basis of V and {ϕj}1≤j≤n
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a basis of V ∗ such that ϕj(vi) = δi,j for all 1 ≤ i, j ≤ n. But then for every w ∈ V we
obtain

tvi,ϕj (w) = ϕj(w)vi =

{
vi if w = vj ,

0 else

for all 1 ≤ i, j ≤ n, hence Φ(vi ⊗ ϕj) may be identified with the matrix Ei,j , 1 ≤ i, j ≤ n,
having a one in position (i, j) and zeros elsewhere. We conclude that Φ is a Lie algebra
isomorphism between g(V ⊗ V ∗) and gl(V ), as it maps a basis of g(V ⊗ V ∗) to a basis of
gl(V ).

Suppose next that V is infinite-dimensional. We show injectivity and surjectivity of
Φ. Since any element in g(V ⊗ V ∗) can be written as a finite linear combination of pure
tensors g(V ⊗ V ∗), we can always identify a finite-dimensional Lie subalgebra g(W ⊗
W ∗) ⊂ g(V ⊗ V ∗) containing it with W ⊂ V and W ∗ ⊂ V ∗ finite-dimensional subspaces.
Finite-dimensionality of g(W ⊗W ∗) then implies that the restriction Φ|g(W⊗W ∗) of Φ to
g(W ⊗W ∗) is a Lie algebra isomorphism between g(W ⊗W ∗) and fgl(W ) = gl(W ), hence
ker(Φ|g(W⊗W ∗)) = {0}. But then necessarily ker(Φ) = {0} since the above is true for
all finite-dimensional subspaces of V and V ∗. To show surjectivity of Φ, we prove that
fgl(V ) = im(Φ). First consider the inclusion im(Φ) ⊆ fgl(V ). Again because every element
in g(V ⊗ V ∗) can be written as a finite linear combination of pure tensors, it suffices to
focus only on pure tensors v ⊗ ϕ ∈ g(V ⊗ V ∗). Then dim(Φ(v ⊗ ϕ)(V )) = dim(tv,ϕ(V )) =
dim(ϕ(V )), but also ϕ ∈ V ∗ can be written as a finite linear combination of finitary linear
maps in V ∗ so that dim(ϕ(V )) < ∞, showing the inclusion im(Φ) ⊆ fgl(V ). Conversely,
the image of any element in fgl(V ) is finite-dimensional, hence it is contained in a finite-
dimensional Lie subalgebra fgl(W ) = gl(W ) ⊂ gl(V ) with W ⊂ V finite-dimensional. But
surjectivity of the restriction Φ|g(W⊗W ∗) of Φ to g(W ⊗W ∗) then implies that gl(W ) =
im(Φ|g(W⊗W ∗)) ⊆ im(Φ). Because the above is true for all finite-dimensional subspaces of
V and V ∗, this shows the inclusion fgl(V ) ⊆ im(Φ) and forces equality. We conclude that
Φ is a Lie algebra isomorphism between g(V ⊗ V ∗) and fgl(V ).

As a consequence of the above proposition and Proposition 3.2.2, every linear map
tv,ϕ ∈ fgl(V ) is extremal if and only if v ⊗ ϕ ∈ g(V ⊗ V ∗) is a singular pure tensor.
Specifically, for all infinitesimal transvections tv,ϕ ∈ fgl(V ) and u ∈ V , we have

[tv,ϕ, [tv,ϕ, tw,ψ]](u) = Φ([v ⊗ ϕ, [v ⊗ ϕ,w ⊗ ψ]])(u) = Φ(−2ψ(v)ϕ(w)(v ⊗ ϕ))(u)

= −2ψ(v)ϕ(w)Φ(v ⊗ ϕ)(u) = −2ψ(v)ϕ(w)tv,ϕ(u)

for all tw,ψ ∈ fgl(V ) so that tv,ϕ has extremal form gtv,ϕ(tw,ψ) = gv⊗ϕ(w⊗ψ) = −ψ(v)ϕ(w).
In addition, we have

exp(tv,ϕ, λ)(w) = w + λtv,ϕ(w) +
1

2
(λtv,ϕ)2(w) = (idV + λtv,ϕ)(w) +

λ2

2
tv,ϕ(tv,ϕ(w))

= (idV + λtv,ϕ)(w) +
λ2

2
ϕ(w)ϕ(v)v = (idV + λtv,ϕ)(w)
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for all w ∈ V and λ ∈ F, and we obtain a group Exp(tv,ϕ) = {idV +λtv,ϕ | λ ∈ F, ϕ(v) = 0}
called a transvection group consisting of elements referred to as transvections.

The singular pure tensors v ⊗ ϕ ∈ g(V ⊗ V ∗) generate a Lie subalgebra of g(V ⊗ V ∗),
which we will denote by g0(V ⊗ V ∗). As a corollary of Proposition 3.2.5, we then obtain
the following.

Corollary 3.2.6. Let g(V ⊗ V ∗) be the Lie algebra of V ⊗ V ∗ as in Proposition 3.2.1 and
let g0(V ⊗ V ∗) be the Lie subalgebra of g(V ⊗ V ∗) generated by its singular pure tensors.
Then g0(V ⊗ V ∗) ∼= fsl(V ).

Proof. Assume first that V is finite-dimensional, say dim(V ) = n ≥ 1. We show that
v ⊗ ϕ ∈ g(V ⊗ V ∗) is a singular pure tensor if and only if tv,ϕ ∈ gl(V ) is traceless. Let
{vi}1≤i≤n and {ϕj}1≤j≤n be bases of V and V ∗, respectively, satisfying ϕj(vi) = δi,j for all
1 ≤ i, j ≤ n. A basis of g(V ⊗V ∗) is then given by {vi⊗ϕj}1≤i,j≤n, and we have seen in the
proof of Proposition 3.2.5 that we may identify Φ(vi⊗ϕj) by the matrix Ei,j , 1 ≤ i, j ≤ n,
having a one in position (i, j) and zeros elsewhere. Now let v⊗ϕ ∈ g(V ⊗V ∗) be arbitrary
and write v =

∑n
i=1 λivi ∈ V with λi ∈ F, 1 ≤ i ≤ n, not all zero and ϕ =

∑n
j=1 µjϕj ∈ V ∗

with µj ∈ F, 1 ≤ j ≤ n, not all zero. On the one hand, we find

tv,ϕ = Φ(v ⊗ ϕ) = Φ


 n∑
i=1

λivi

⊗
 n∑
j=1

µjϕj


 = Φ

 n∑
i=1

n∑
j=1

λiµj(vi ⊗ ϕj)


=

n∑
i=1

n∑
j=1

λiµjΦ(vi ⊗ ϕj) =

n∑
i=1

n∑
j=1

λiµjEi,j ,

hence tv,ϕ has trace
∑n

i=1 λiµi. On the other hand, we have

ϕ(v) =

 n∑
j=1

µjϕj

 n∑
i=1

λivi

 =
n∑
i=1

n∑
j=1

λiµjϕj(vi) =
n∑
i=1

n∑
j=1

λiµjδi,j =
n∑
i=1

λiµi,

from which it immediately follows that v ⊗ ϕ is a singular pure tensor if and only if tv,ϕ
is traceless. Consequently, v ⊗ ϕ ∈ g0(V ⊗ V ∗) if and only if tv,ϕ ∈ sl(V ), and so the Lie
algebra isomorphism Φ : g(V ⊗ V ∗)→ gl(V ) given by v ⊗ ϕ 7→ tv,ϕ from Proposition 3.2.5
induces a Lie algebra isomorphism Φ0 : g0(V ⊗ V ∗)→ sl(V ) given by v ⊗ ϕ 7→ tv,ϕ, which
settles the finite-dimensional case.

The case of V being infinite-dimensional is proved by using similar arguments as in
the proof of Proposition 3.2.5 for V infinite-dimensional restricted to the Lie algebras
g0(V ⊗ V ∗) and fsl(V ).

Recall that a basis of sl(V ) with V finite-dimensional, say dim(V ) = n ≥ 1, is given
by the matrices Ei,j with 1 ≤ i 6= j ≤ n and Ei,i − Ei+1,i+1 with 1 ≤ i ≤ n − 1. For all
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1 ≤ i ≤ n− 1, we may identify Φ(vi ⊗ ϕi − vi+1 ⊗ ϕi+1) by the matrix Ei,i −Ei+1,i+1, but
vi ⊗ ϕi, ϕi+1 ⊗ ϕi+1 6∈ g0(V ⊗ V ∗), so we alternatively write

vi ⊗ ϕi − vi+1 ⊗ ϕi+1 = (vi + vi+1)⊗ (ϕi − ϕi+1) + vi ⊗ ϕi+1 − vi+1 ⊗ ϕi,

which is a linear combination of singular pure tensors. Thus, a basis of g0(V ⊗V ∗) is given
by vi ⊗ ϕj with 1 ≤ i 6= j ≤ n and (vi + vi+1)⊗ (ϕi − ϕi+1) with 1 ≤ i ≤ n− 1 satisfying
ϕj(vi) = δi,j for all 1 ≤ i, j ≤ n.

Modulo its center, the Lie algebra g0(V ⊗ V ∗) is simple because sl(V ) is simple up to
its center. However, in case V is infinite-dimensional, it is possible to obtain proper ideals
of g0(V ⊗ V ∗) because V ∗ contains proper subspaces. Consider the following definition.

Definition 3.2.7 (Annihilator). Let V be an infinite-dimensional vector space over a field
F and let W and W ∗ be subspaces of V and the dual space V ∗ of V , respectively. The
annihilator of W ∗ in W is the set AnnW (W ∗) = {w ∈W | ∀ϕ ∈W ∗ : ϕ(w) = 0}.

It is clear that AnnW (W ∗) ⊂ V is a finite-dimensional subspace of V for all subspaces
W ⊂ V and W ∗ ⊂ V ∗; indeed, for all v, w ∈ AnnW (W ∗) and λ, µ ∈ F, we obtain ϕ(λv +
µw) = λϕ(v) + µϕ(w) = 0 for all ϕ ∈W ∗. Observe further that finite-dimensionality of V
would imply W ∗ = V ∗ for all subspaces W ∗ ⊆ V ∗ so that AnnW (V ∗) = 0 for all subspaces
W ⊆ V . We now propose the following.

Proposition 3.2.8. Let V be an infinite-dimensional vector space over a field F with
char(F) 6= 2 and let g0(V ⊗ W ∗) be the Lie subalgebra of g(V ⊗ W ∗) generated by its
singular pure tensors with V ⊗W ∗ as in Proposition 3.2.1. Then AnnV (W ∗) = {0} if and
only if g0(V ⊗W ∗) is simple.

Proof. Suppose first that AnnV (W ∗) 6= {0}. Then U = AnnV (W ∗) is a proper subspace
of V . We claim that the subspace i = g0(U ⊗W ∗) is a proper ideal of g0(V ⊗W ∗). Since
every element in g0(V ⊗W ∗) can be written as a finite linear combination of pure tensors in
g0(V ⊗W ∗), it suffices to show [w⊗ψ, u⊗ϕ] ∈ i for all u⊗ϕ ∈ g0(U⊗W ∗) and pure tensors
w⊗ψ ∈ g0(V ⊗W ∗). We find [w⊗ψ, u⊗ϕ] = ψ(u)(w⊗ϕ)−ϕ(w)(u⊗ψ) = −ϕ(w)(u⊗ψ) ∈ i
because ψ(u) = 0 and ψ ∈ W ∗. Thus, i ⊆ g0(V ⊗W ∗) is an ideal that is clearly proper.
This shows that g0(V ⊗W ∗) is not simple.

Next, suppose that AnnV (W ∗) = {0} and assume that i ⊂ g0(V ⊗W ∗) is a proper
ideal. We show that g0(V ⊗W ∗) ⊆ i. Since g0(V ⊗W ∗) is generated by the singular pure
tensors of g(V ⊗W ∗), any element 0 6= x ∈ i can be written as a finite linear combination
of singular pure tensors, i.e. x =

∑
i∈I λi(vi ⊗ ϕi) for some finite index set I with λi ∈ F∗,

i ∈ I, and 0 6= vi ⊗ϕi ∈ g0(V ⊗W ∗), i ∈ I. By Proposition 3.2.2, all singular pure tensors
in g(V ⊗W ∗) are extremal, so for all 0 6= v ⊗ ϕ ∈ g0(V ⊗W ∗) we find

i 3 [v ⊗ ϕ, [v ⊗ ϕ, x]] =
∑
i∈I

λi[v ⊗ ϕ, [v ⊗ ϕ, vi ⊗ ϕi]] = 2(v ⊗ ϕ)
∑
i∈I

λigv⊗ϕ(vi ⊗ ϕi)

= −2(v ⊗ ϕ)
∑
i∈I

λiϕi(v)ϕ(vi).
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If ϕ(vi) = 0 for some i ∈ I, then vi ∈ AnnV (W ∗) = {0} because the above is true for all
0 6= v⊗ϕ ∈ g0(V ⊗W ∗), hence vi⊗ϕi = 0⊗ϕi = 0, a contradiction. This forces ϕi(v) = 0
for all i ∈ I because char(F) 6= 2 and λi 6= 0 for all i ∈ I. But then necessarily ϕ(v) = 0
for all ϕ ∈ W ∗ because the above is true for all 0 6= x ∈ i so that v ∈ AnnV (W ∗) = {0}.
Consequently, v⊗ϕ = 0⊗ϕ = 0, another contradiction. It follows that v⊗ϕ ∈ i, showing
the inclusion g0(V ⊗ W ∗) ⊆ i and forcing equality. We conclude that g0(V ⊗ W ∗) is
simple.

If char(F) 6= 2, more Lie subalgebras of g(V ⊗ V ∗), with V not necessarily infinite-
dimensional, can be obtained by considering sesquilinear spaces (V, f) as discussed in Sec-
tion 2.2. For a reflexive sesquilinear form f on V and a vector v ∈ V , we define fv : V → F
to be the map given by w 7→ f(v, w) with w ∈ V , and it is readily seen that fv ∈ V ∗ for
all v ∈ V .

First, consider a symplectic space (V, f). Since then f(v, v) = 0 for all v ∈ V , we deduce
that v ⊗ fv ∈ g0(V ⊗ V ∗). We will denote the Lie subalgebra of g0(V ⊗ V ∗) generated by
the tensors of the form v ⊗ fv by g0(V ⊗ V ∗)f , the generators of which we will refer to as
symplectic tensors. With Φ as in Proposition 3.2.5, we then find for all u,w ∈ V that

0 = f(v, u)f(v, w)− f(v, u)f(v, w) = f(v, u)f(v, w) + f(u, v)f(v, w)

= f(f(v, u)v, w) + f(u, f(v, w)v) = f(fv(u)v, w) + f(u, fv(w)v)

= f(tv,fv(u), w) + f(u, tv,fv(w)) = f(Φ(v ⊗ fv)(u), w) + f(u,Φ(v ⊗ fv)(w))

for all v ⊗ fv ∈ g0(V ⊗ V ∗)f so that Φ(g0(V ⊗ V ∗)f ) ⊆ fsp(V, f) by Lemma 2.2.9. The
elements in Φ(g0(V ⊗ V ∗)f ) are called symplectic infinitesimal transvections. In light of
Proposition 3.2.1 and Corollary 3.2.6, we propose the following.

Proposition 3.2.9. Let g(V ⊗ V ∗) be the Lie algebra of V ⊗ V ∗ as in Proposition 3.2.1
and let g0(V ⊗V ∗)f be the Lie subalgebra of g0(V ⊗V ∗) generated by its symplectic tensors.
Then g0(V ⊗ V ∗)f ∼= fsp(V, f).

Proof. If V is finite-dimensional, say dim(V ) = 2n ≥ 2, we proceed in a similar manner as
in the proofs of Proposition 3.2.5 and Corollary 3.2.6 by providing a basis of g0(V ⊗ V ∗)f
that is mapped to a basis of sp(V, f) under Φ as defined in Proposition 3.2.5. Let {vi}1≤i≤2n

be a hyperbolic basis of V constituted of the hyperbolic pairs {vi, vn+i} with 1 ≤ i ≤ n.
Non-degeneracy of f and linear independence of all vi, 1 ≤ i ≤ 2n, then imply linear
independence of all fvi , 1 ≤ i ≤ 2n; indeed, if

∑2n
i=1 λifvi(w) = 0 for all w ∈ V with λi ∈ F,

1 ≤ i ≤ 2n, then
∑2n

i=1 λvi = 0 by non-degeneracy of f so that λi = 0 for all 1 ≤ i ≤ 2n
by linear independence of all vi, 1 ≤ i ≤ 2n. Then for any v =

∑2n
i=1 λivi with λi ∈ F,

1 ≤ i ≤ 2n, not all zero, we have

v ⊗ fv =

 2n∑
i=1

λivi

⊗
 2n∑
j=1

λjfvj

 =

2n∑
i=1

λ2
i (vi ⊗ fvi) +

2n∑
i=1

2n∑
j=i+1

λiλj(vi ⊗ fvj + vj ⊗ fvi)
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so that {vi ⊗ fvi}1≤i≤2n ∪ {vi ⊗ fvj + vj ⊗ fvi}1≤i<j≤2n forms a basis of g0(V ⊗ V ∗)f by
linear independence of all vi and fvi , 1 ≤ i ≤ 2n. Now consider the images of these basis
elements under Φ. On the one hand, for all vi ⊗ fvi , 1 ≤ i ≤ 2n, we obtain for all w ∈ V
that

Φ(vi ⊗ fvi)(w) = f(vi, w)vi =


vi if 1 ≤ i ≤ n and w = vn+i,

−vi if n+ 1 ≤ i ≤ 2n and w = vi−n,

0 else,

hence we may identify Φ(vi ⊗ fvi) by the matrices Ei,n+i for 1 ≤ i ≤ n and −Ei,i−n for
n+ 1 ≤ i ≤ 2n. On the other hand, for all vi ⊗ fvj + vj ⊗ fvi , 1 ≤ i < j ≤ 2n, we find for
all w ∈ V that

Φ(vi ⊗ fvj + vj ⊗ fvi)(w) = f(vj , w)vi + f(vi, w)vj

=


vi + vj if 1 ≤ i < j ≤ n and w = vn+j + vn+i,

−vi − vj if n+ 1 ≤ i < j ≤ 2n and w = vj−n + vi−n,

vi − vj if 1 ≤ i ≤ n, n+ 1 ≤ j ≤ 2n and w = vj−n + vn+i,

0 else,

therefore we may identify Φ(vi⊗fvj+vj⊗fvi) with the matrices Ei,n+j+Ej,n+i if 1 ≤ i < j ≤
n, −Ei,j−n−Ej,i−n if n+ 1 ≤ i < j ≤ 2n, and Ei,j−n−Ej,n+i if 1 ≤ i ≤ n, n+ 1 ≤ j ≤ 2n.
Upon shifting some of the indices and scaling, it is readily seen that Φ maps the basis of
g0(V ⊗ V ∗)f as given above to the basis of sp(V, f) as given in Corollary 2.2.15. It follows
that the Lie algebra isomorphism Φ : g(V ⊗ V ∗) → gl(V ) given by v ⊗ ϕ 7→ tv,ϕ from
Proposition 3.2.5 induces a Lie algebra isomorphism Φf : g0(V ⊗V ∗)f → sp(V, f) given by
v ⊗ ϕ 7→ tv,ϕ, and so the finite-dimensional case follows.

For the infinite-dimensional case, we refer to the proof of Proposition 3.2.5, which can
be repeated word by word when restricted to the Lie algebras g0(V ⊗V ∗)f and fsp(V, f).

It is also possible to provide a basis of g0(V ⊗ V ∗)f consisting entirely of pure tensors.
This is done by observing that

vi ⊗ fvj + vj ⊗ fvi = (vi + vj)⊗ fvi+vj − vi ⊗ fvi − vj ⊗ fvj

so that {vi ⊗ fvi}1≤i≤2n ∪ {(vi + vj)⊗ fvi+vj}1≤i<j≤2n is also a basis of g0(V ⊗ V ∗)f .
Now let f be a non-degenerate Hermitian form on V with corresponding involutory

anti-automorphism σ and consider the Lie algebra g(V ⊗W ∗)f generated by the elements
v ⊗ fσv ∈ g(V ⊗ V ∗), in which v ∈ V and fσv : V → F is the linear map given by
fσv (w) = −f(v, w)σ with w ∈ V . We will call these generators unitary tensors. By
Lemma 2.2.7, we may take f to be skew-Hermitian; indeed, if f ′ is a skew-Hermitian form
proportional to f by α ∈ F, then the elements v ⊗ f ′vσ will generate the same Lie algebra
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g(V ⊗V ∗)f since v⊗f ′vσ = v⊗(αfv)
σ = (v⊗fσv )ασ = ασ(v⊗fσv ). With Φ as in Proposition

3.2.5, we then obtain for all u,w ∈ V that

0 = f(u, v)f(v, w)− f(u, v)f(v, w) = −f(v, u)σf(v, w)− f(u, f(v, w)σv)

= f(−f(v, u)σv, w) + f(u,−f(v, w)σv) = f(tv,fσv (u), w) + f(u, tv,fσv (w))

= f(Φ(v ⊗ fσv )(u), w) + f(u,Φ(v ⊗ fσv )(w))

for all v ⊗ fσv ∈ g(V ⊗ V ∗)f , hence Φ(g(V ⊗ V ∗)f ) ⊆ fu(V, f) by Lemma 2.2.9. An
element tv,fσv ∈ Φ(g(V ⊗V ∗)f ) with v isotropic is called a unitary infinitesimal transvection,
whereas we refer to it as a unitary infinitesimal reflection if v is anisotropic. By recalling
that fu(V ) is a Lie algebra over the subfield Fσ of F whose elements are fixed by σ, we
deduce that a unitary infinitesimal transvection tv,fσv ∈ Φ(g(V ⊗ V ∗)f ) is extremal if and
only if im(gv,fσv ) ⊆ Fσ, i.e. gtv,fσv (tw,fσw) = −fσw(v)fσv (w) = −f(v, w)f(w, v) ∈ Fσ for all
w ∈ V . As before, the Lie algebra g(V ⊗ V ∗)f generated by the elements v ⊗ fσv with
v ∈ V is isomorphic to a classical linear Lie algebra. This is characterised by the following
proposition.

Proposition 3.2.10. Let g(V ⊗ V ∗) be the Lie algebra of V ⊗ V ∗ as in Proposition 3.2.1
and let g(V ⊗ V ∗)f be the Lie subalgebra of g(V ⊗ V ∗) generated by its unitary tensors.
Then g(V ⊗ V ∗)f ∼= fu(V, f).

Proof. Assume first that V is finite-dimensional, say dim(V ) = n = 2m + k ≥ 1. Let
{vi}1≤i≤n be a basis of V such that {vi, vm+i} is a hyperbolic pair for all 1 ≤ i ≤ m,
f(v2m+i, v2m+i) = β with βσ = β for all 1 ≤ i ≤ k and f evaluates to zero for every other
pair of basis elements not constituting a hyperbolic pair. As in the proof of Proposition
3.2.9, all the fσvi , 1 ≤ i ≤ n, are linearly independent because non-degeneracy of f and
linear independence of all the vi, 1 ≤ i ≤ n. Then for any v =

∑n
i=1 λivi with λi ∈ F,

1 ≤ i ≤ n, not all zero, we have

v⊗fσv =

 n∑
i=1

λivi

⊗
 n∑
j=1

λσj f
σ
vj

 =
n∑
i=1

λiλ
σ
i (vi⊗fσvi)+

n∑
i=1

n∑
j=i+1

γi,j(vi⊗fσvj )+γ
σ
i,j(vj⊗fσvi),

in which γi,j = λiλ
σ
j for all 1 ≤ i < j ≤ n. Consequently, a basis of g(V ⊗ V ∗)f is given by

{vi ⊗ fσvi}1≤i≤n ∪ {vi ⊗ f
σ
vj + vj ⊗ fσvi}1≤i<j≤n ∪ {γ(vi ⊗ fσvj ) + γσ(vj ⊗ fσvi)}1≤i<j≤n

with γ ∈ F an element not fixed by σ. With Φ as in Proposition 3.2.5, we then find for all
w ∈ V that

Φ(vi ⊗ fσvi)(w) = −f(vi, w)σvi = f(w, vi)vi =


−vi if 1 ≤ i ≤ m and w = vm+i,

vi if m+ 1 ≤ i ≤ 2m and w = vi−m,

βvi if 2m+ 1 ≤ i ≤ n and w = vi,

0 else,
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hence we may identify Φ(vi ⊗ fσvi) by the matrix −Ei,m+i if 1 ≤ i ≤ m, Ei,i−m if m+ 1 ≤
i ≤ 2m and βEi,i if 2m+ 1 ≤ i ≤ n. Likewise, we have for all w ∈ V that

Φ(vi ⊗ fvj + vj ⊗ fvi)(w) = −f(vj , w)σvi − f(vi, w)σvj = f(w, vj)vi + f(w, vi)vj

=



−vi − vj if 1 ≤ i < j ≤ m and w = vm+j + vm+i,

vi + vj if m+ 1 ≤ i < j ≤ 2m and w = vj−m + vi=m,

vi − vj if 1 ≤ i ≤ m,m+ 1 ≤ j ≤ 2m and w = vj−m + vm+i,

βvi + vj if 1 ≤ i ≤ m, 2m+ 1 ≤ j ≤ n and w = vj + vm+i,

vi + βvj if m+ 1 ≤ i ≤ 2m, 2m+ 1 ≤ j ≤ n and w = vj + vi−n,

βvi + βvj if 2m+ 1 ≤ i < j ≤ n and w = vj + vi,

0 else,

therefore we may identify Φ(vi ⊗ fvj + vj ⊗ fvi) by the matrices −Ei,m+j − Ej,m+i if
1 ≤ i < j ≤ m, Ei,j−m + Ej,i−m if m+ 1 ≤ i < j ≤ 2m, Ei,j−m − Ej,m+i if 1 ≤ i ≤ m and
m + 1 ≤ j ≤ 2m, Ei,j−m + Ej,m+i if 1 ≤ i ≤ m and m + 1 ≤ j ≤ 2m, βEi,j + Ej,m+i if
1 ≤ i ≤ m and 2m+ 1 ≤ j ≤ n, Ei,j + βEj,i−n if m+ 1 ≤ i ≤ 2m and 2m+ 1 ≤ j ≤ n, and
βEi,j + βEj,i if 2m + 1 ≤ i < j ≤ n. For Φ(γ(vi ⊗ fvj ) + γσ(vj ⊗ fvi)), we obtain similar
expressions. Upon shifting some of the indices and scaling, it is readily seen that Φ maps
the basis of g(V ⊗ V ∗)f as given above to the basis of u(V ) as given in Corollary 2.2.17.
It follows that the Lie algebra isomorphism Φ : g(V ⊗ V ∗)→ gl(V ) given by v ⊗ ϕ 7→ tv,ϕ
from Proposition 3.2.5 induces a Lie algebra isomorphism Φf : g(V ⊗V ∗)f → u(V, f) given
by v ⊗ ϕ 7→ tv,ϕ, which settles the finite-dimensional case.

The infinite-dimensional case follows from arguments similar to those presented in
Proposition 3.2.5.

By writing

vi ⊗ fσvj + vj ⊗ fσvi = (vi + vj)⊗ fσvi+vj − vi ⊗ f
σ
vi − vj ⊗ f

σ
vj ,

γ(vi ⊗ fσvj ) + γσ(vj ⊗ fσvi) = (γvi + vj)⊗ fσγvi+vj − γγ
σ(vi ⊗ fσvi)− vj ⊗ f

σ
vj ,

a basis of g(V ⊗ V ∗)f consisting of pure tensors only is given by

{vi ⊗ fσvi}1≤i≤n ∪ {(vi + vj)⊗ fσvi+vj}1≤i<j≤n ∪ {(γvi + vj)⊗ fσγvi+vj}1≤i<j≤n.

Further note that it follows from the above proposition and Corollary 3.2.6 that the unitary
tensors v ⊗ fσv ∈ g(V ⊗ V ∗)f with v isotropic generate a Lie subalgebra g0(V ⊗ V ∗)f of
g(V ⊗V ∗)f isomorphic to fsu(V, f), provided that the isotropic vectors of V span V linearly.

Lastly, let (V, f) be a symmetric space and consider the Lie algebra g(V⊗V ∗)f generated
by the tensors of the form v ⊗ fw − w ⊗ fv with v, w ∈ V , which we will call symmetric
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tensors. With Φ as in Proposition 3.2.5, we deduce for all x, y ∈ V that

0 = f(w, x)f(v, y)− f(w, x)f(v, y) + f(x, v)f(w, y)− f(x, v)f(w, y)

= f(w, x)f(v, y)− f(v, x)f(w, y) + f(x, v)f(w, y)− f(x,w)f(v, y)

= f(f(w, x)v − f(v, x)w, y) + f(x, f(w, y)v − f(v, y)w)

= f(fw(x)v − fv(x)w, y) + f(x, fw(y)v − fv(y)w)

= f((tv,fw − tw,fv)(x), y) + f(x, (tv,fw − tw,fv)(y))

= f(Φ(v ⊗ fw − w ⊗ fv)(x), y) + f(x,Φ(v ⊗ fw − w ⊗ fv)(y))

for all v ⊗ fw − w ⊗ fv ∈ g(V ⊗ V ∗)f so that Φ(g(V ⊗ V ∗)f ) ⊆ fso(V, f) by Lemma 2.2.9.
In particular, we obtain the following.

Proposition 3.2.11. Let g(V ⊗ V ∗) be the Lie algebra of V ⊗ V ∗ as in Proposition 3.2.1
and let g(V ⊗ V ∗)f be the Lie subalgebra of g(V ⊗ V ∗) generated by its symmetric tensors.
Then g(V ⊗ V ∗)f ∼= fso(V, f).

Proof. Write dim(V ) = n ≥ 1 and let {vi}1≤i≤n be a basis of V such that f(vi, vi) = 1
for all 1 ≤ i ≤ n and f evaluates to zero for every other pair of basis elements. For all
v =

∑n
i=1 λivi and w =

∑n
j=1 µjvj with λi, µj ∈ F, 1 ≤ i, j ≤ n, not all zero, we have

v ⊗ fw − w ⊗ fv =

 n∑
i=1

λivi

⊗
 n∑
j=1

µjfvj

−
 n∑
j=1

µjvj

⊗
 n∑
i=1

λifvi


=

n∑
i=1

n∑
j=i+1

λiµj(vi ⊗ fvj − vj ⊗ fvi),

hence {vi⊗ fvj − vj ⊗ fvj}1≤i<j≤n is a basis of g(V ⊗ V ∗)f by linear independence of all vi
and fvi , 1 ≤ i ≤ n. With Φ as in Proposition 3.2.5, we then obtain for all u ∈ V that

Φ(vi ⊗ fvj − vj ⊗ fvi)(u) = f(vj , u)vi − f(vi, u)vj

=

{
vi − vj if 1 ≤ i < j ≤ n and u = vj + vi,

0 else,

so we may identify Φ(vi⊗fvj −vj⊗fvi) by the matrices Ei,j−Ej,i for all 1 ≤ i < j ≤ n. It
is readily seen that Φ maps the basis of g(V ⊗ V ∗)f as given above to the basis of so(V, f)
as given in Corollary 2.2.16. Thus, the Lie algebra isomorphism Φ : g(V ⊗ V ∗) → gl(V )
given by v ⊗ ϕ 7→ tv,ϕ from Proposition 3.2.5 induces a Lie algebra isomorphism Φf :

g(V ⊗ V ∗)f → so(V, f) given by v ⊗ ϕ 7→ tv,ϕ.
The infinite-dimensional case is settled similar to Proposition 3.2.5.

We finish this section with a discussion on the extremality of the generators of g(V ⊗
V ∗)f with (V, f) a symmetric space. First consider the following lemma.
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Lemma 3.2.12. Let g(V ⊗ V ∗) be the Lie algebra of V ⊗ V ∗ as in Proposition 3.2.1 and
let g(V ⊗ V ∗)f be the Lie subalgebra of g(V ⊗ V ∗) generated by its symmetric tensors.
Then v ⊗ fw −w⊗ fv ∈ g(V ⊗ V ∗)f is extremal if and only if v and w are f -isotropic and
orthogonal.

Proof. Let v ⊗ fw − w ⊗ fv ∈ g(V ⊗ V ∗)f be a symmetric tensor. A tedious calculation
shows that for all symmetric tensors x⊗ fy − y ⊗ fx ∈ g(V ⊗ V ∗)f we have

[v ⊗ fw − w ⊗ fv, [v ⊗ fw − w ⊗ fv, x⊗ fy − y ⊗ fx]]

= f(w, x)(f(w, v)(v ⊗ fy)− f(y, v)(v ⊗ fw))− f(y, v)(f(w, x)(v ⊗ fw)− f(w, v)(x⊗ fw))

− f(w, y)(f(w, v)(v ⊗ fx)− f(x, v)(v ⊗ fw)) + f(x, v)(f(w, y)(v ⊗ fw)− f(w, v)(y ⊗ fw))

− f(v, x)(f(w,w)(v ⊗ fy)− f(y, w)(w ⊗ fw)) + f(y, w)(f(w, x)(v ⊗ fv)− f(v, v)(x⊗ fw))

+ f(v, y)(f(w,w)(v ⊗ fx)− f(x, v)(w ⊗ fw))− f(x,w)(f(w, y)(v ⊗ fv)− f(v, v)(y ⊗ fw))

− f(w, x)(f(v, v)(w ⊗ fy)− f(y, w)(v ⊗ fv)) + f(y, v)(f(v, x)(w ⊗ fw)− f(w,w)(x⊗ fv))
+ f(w, y)(f(v, v)(w ⊗ fx)− f(x,w)(v ⊗ fv))− f(x, v)(f(v, y)(w ⊗ fw)− f(w,w)(y ⊗ fv))
+ f(v, x)(f(v, w)(w ⊗ fy)− f(y, w)(w ⊗ fv))− f(y, w)(f(v, x)(w ⊗ fv)− f(v, w)(x⊗ fv))
− f(v, y)(f(v, w)(w ⊗ fx)− f(x,w)(w ⊗ fv)) + f(x,w)(f(v, y)(w ⊗ fv)− f(v, w)(y ⊗ fv))

= 2(f(v, x)f(w, y)− f(v, y)f(w, x))(v ⊗ fw − w ⊗ fv)
+ (f(v, y)f(w,w)− f(v, w)f(w, y))(v ⊗ fx − x⊗ fv)
+ (f(v, w)f(w, x)− f(v, x)f(w,w))(v ⊗ fy − y ⊗ fv)
+ (f(v, v)f(w, y)− f(v, w)f(v, y))(w ⊗ fx − x⊗ fw)

+ (f(v, w)f(v, x)− f(v, v)f(w, x))(w ⊗ fy − y ⊗ fw),

hence v ⊗ fw − w ⊗ fv is extremal if and only if

[v ⊗ fw − w ⊗ fv, [v ⊗ fw − w ⊗ fv, x⊗ fy − y ⊗ fx]]

= 2(f(v, x)f(w, y)− f(v, y)f(w, x))(v ⊗ fw − w ⊗ fv)

by Proposition 3.1.3 because char(F) 6= 2. But the above is true for all x ⊗ fy − y ⊗ fx ∈
g(V ⊗ W ∗)f , so v ⊗ fw − w ⊗ fv is extremal if and only if f(v, v) = 0 = f(w,w) and
f(v, w) = 0 = f(w, v) if and only if v and w are f -isotropic and orthogonal.

It should be clear from the above lemma that the extremal form of an extremal sym-
metric tensor v ⊗ fw − w ⊗ fv ∈ g(V ⊗ V ∗)f is given by

gv⊗fw−w⊗fv(x⊗ fy − y ⊗ fx) = f(v, x)f(w, y)− f(v, y)f(w, x)

for all x⊗ fy − y⊗ fx ∈ g(V ⊗ V ∗)f . As a consequence of Proposition 3.2.11, the elements
Φ(v⊗fw−w⊗fv) = tv,fw− tw,fv ∈ fso(V, f) will also be extremal whenever v⊗fw−w⊗fv
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is extremal, having the same extremal form. Moreover, for all u ∈ V we have

(tv,fw − tw,fv)2(u) = (tv,fw − tw,fv)(f(w, u)v − f(v, u)w)

= f(w, u)(f(w, v)v − f(v, v)w)− f(v, u)(f(w,w))v − f(v, w)w)

= 0,

hence (eλ(tv,fw−tw,fv ))(u) = u + λ(tv,fw + tw,fv)(u) = (idV + λ(tv,fw − tw,fv))(u) so that
eλ(tv,fw−tw,fv ) = idV + λ(tv,fw − tw,fv). This gives rise to the following definition.

Definition 3.2.13 (Siegel transformation). Let V be a possibly infinite-dimensional vector
space over a field F equipped with a non-degenerate symmetric bilinear form f : V ×V → F.
The linear map Sv,w : V → V given by Sv,w(u) = u + f(w, u)v − f(v, u)w with u ∈ V is
called the Siegel transformation of v and w if v, w ∈ V are two f -isotropic vectors such
that f(v, w) = 0.

In other words, Siegel transformations are elements etv,fw−tw,fv with tv,fw − tw,fv ∈
fso(V, f) extremal. We can write tv,fw − tw,fv = Sv,w − idV , and the elements sv,w :=
tv,fw−tw,fv with v, w ∈ V are also referred to as infinitesimal Siegel transvections if v, w ∈ V
are both f -isotropic such that f(v, w) = 0. The group Exp(sv,w) = {idV + λsv,w | λ ∈ F}
with v, w ∈ V both f -isotropic such that f(v, w) = 0 is called the Siegel transvection group.
Note that infinitesimal Siegel transvections exist if and only if f has Witt index at least
two.

Infinitesimal Siegel transvections satisfy the following property.

Corollary 3.2.14. Let V be a possibly infinite-dimensional vector space over a field F and
let fso(V, f) be the finitary orthogonal Lie algebra on V for some non-degenerate symmetric
bilinear form f : V × V → F. Then any two infinitesimal Siegel transvections sv,w, sx,y ∈
fso(V, f) with v, w, x, y ∈ V , if existent, satisfy exp(sv,w, λ)sx,y = s(eλsv,w )(x),(eλsv,w )(y) for
all λ ∈ F.

Proof. Using Definition 3.2.13, it is readily seen that sv,w(λu) = λsv,w(u) for all u ∈ V
and sλv,w = λsv,w = sv,λw for all λ ∈ F, but also sv+v′,w = sv,w + sv′,w and sv,w+w′ =
sv,w + sv,w′ for all v′, w′ ∈ V such that f(v′, w) = 0 = f(v, w′), and the same is true upon
replacing v and w by x and y, respectively. Since sv,w ∈ fso(V, f), we have f(sv,w(x), u) =
−f(x, sv,w(u)) and f(sv,w(y), u) = −f(x, sv,w(u)) by Lemma 2.2.9. We then find for all
u ∈ V that

[sv,w, sx,y](u) = sv,w(sx,y(u))− sx,y(sv,w(u))

= sv,w(f(y, u)x− f(x, u)y)− (f(y, sv,w(u))x− f(x, sv,w(u))y)

= (f(y, u)sv,w(x)− f(sv,w(x), u)y) + (f(sv,w(y), u)x− f(x, u)sv,w(y))

= ssv,w(x),y(u) + sx,sv,w(y)(u) = (ssv,w(x),y + sx,sv,w(y))(u).
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Additionally, we have for all u ∈ V that

ssv,w(x),sv,w(y)(u) = f(sv,w(y), u)sv,w(x)− f(sv,w(x), u)sv,w(y)

= f(f(w, y)v − f(v, y)w, u)(f(w, x)v − f(v, x)w)

− f(f(w, x)v − f(v, x)w, u)(f(w, y)v − f(v, y)w)

= (f(w, y)f(v, u)− f(v, y)f(w, u)(f(w, x)v − f(v, x)w)

− (f(w, x)f(v, u)− f(v, x)f(w, u))(f(w, y)v − f(v, y)w)

= (f(v, x)f(w, u)f(w, y)v − f(w, y)f(v, u)f(v, x)w)

− (f(v, y)f(w, u)f(w, x)v − f(w, x)f(v, u)f(v, y)w)

= f(v, x)f(w, y)(f(w, u)v − f(v, u)w)

− f(v, y)f(w, x)(f(w, u)v − f(v, u)w)

= (f(v, x)f(w, y)− f(v, y)f(w, x))(f(w, u)v − f(v, u)w)

= gsv,w(sx,y)sv,w(u).

By recalling that eλsv,w = eλ(tv,fw−tw,fv ) = idV +λ(tv,fw − tw,fv) = idV +λsv,w for all λ ∈ F,
we finally deduce for all u ∈ V and λ ∈ F that

exp(sv,w, λ)(sx,y(u)) = sx,y(u) + λ[sv,w, sx,y](u) + λ2gsv,w(sx,y)sv,w(u)

= sx,y(u) + λ(ssv,w(x),y + sx,sv,w(y)) + λ2ssv,w(x),sv,w(y)

= sx,y(u) + sλsv,w(x),y(u) + sx,λsv,w(y)(u) + sλsv,w(x),λsv,w(y)(u)

= sx+λsv,w(x),y(u) + sx+λsv,w(y),λsv,w(y)(u)

= sx+λsv,w(x),y+λsv,w(y)(u) = s(eλsv,w )(x),(eλsv,w )(y)(u),

therefore exp(sv,w, λ)sx,y = s(eλsv,w )(x),(eλsv,w )(y) for all λ ∈ F, which proves the corollary.
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Chapter 4

Geometry

This chapter is dedicated to an in-depth discussion of point-line geometries, specifically
non-degenerate polar spaces and their classification. Additionally, we explore geometries
and chamber systems as a means of introducing two other important types of point-line
geometries, namely root shadow spaces and root filtration spaces, the latter of which we
will discuss in more detail regarding their embeddability in projective spaces.

We mainly follow the theory and notation as presented in [3, 5, 19] throughout this
chapter. Some examples given in Section 4.1, Section 4.3 and Section 4.6 are based on or
have been taken directly from previous unpublished work of the author [6, 7].

4.1 Basic theory of point-line geometries

We start this chapter with a short discussion of graphs and some related concepts as a
means of introducing point-line geometries later on in this section.

Definition 4.1.1 (Graph, Vertex, Edge & Adjacency). Let V be a possibly infinite set and
let E ⊆ 2V be a set of 2-subsets of V . The pair (V,E) is called a graph, and the elements
in V and E are called vertices and edges, respectively. Two vertices x, y ∈ V are said to
be adjacent if and only if {x, y} ∈ E.

We will use the symbol ∼ to indicate adjacency of two vertices in a graph, i.e. x ∼ y
if and only if {x, y} ∈ E. The degree of a vertex x ∈ V is the cardinality of the set
{y ∈ V | x ∼ y}, denoted by δ(x). A graph (V,E) together with a map w : E → R is called
a weighted graph in which every edge e ∈ E is given a weight w(e). If E ⊆ 2V contains
(un)ordered pairs, then the graph (V,E) is said to be (un)directed. Edges in directed
graphs are commonly referred to as arcs, in which case we write A instead of E for the set
of arcs in a directed graph. The vertices x ∈ V and y ∈ V of an arc (x, y) ∈ A are called its
tail and head, respectively. In directed graphs, we distinguish between the in-degree and
out-degree of a vertex x ∈ V , determined by the number δ−(x) or δ+(x) of arcs in A such
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that x is its head or tail, respectively. A loop is an edge in E from a vertex in V to itself,
and a multi-edge is an edge in E between two vertices in V that appears at least twice in
E. A unweighted and undirected graph without loops and multi-edges is called a simple
graph. Henceforth, any graphs mentioned will be simple unless stated otherwise.

Several special types of graphs are the following. A k-regular graph, with k ≥ 0 finite,
is a graph (V,E) such that δ(x) = k for all x ∈ V . If |V | = n and k = n − 1, we obtain
an (n − 1)-regular graph, also knows as a complete graph and satisfying |E| =

(|V |
2

)
. A

bipartite graph is a graph (V,E) such that V = V1 t V2 with x 6∼ y for all x, y ∈ Vi,
i = 1, 2. Bipartite graphs generalise to multipartite graphs, which are graphs (V,E) such
that V =

⊔
i∈I Vi with x 6∼ y for all x, y ∈ Vi, i ∈ I, where I is some finite index set. A

subgraph of graph (V,E) is a graph (V ′, E′) such that V ′ ⊆ V and E′ ⊆ E. In particular,
we call the subgraph (V ′, E′) a clique if it is a complete graph. If V ′ is a subset of V ,
then the subgraph induced by V ′ of a graph (V,E) is the graph (V ′, E ∩ (V ′ × V ′)). The
complement of a graph (V,E) is the graph (V, (V ×V )\E), in which loops and multi-edges
are usually excluded. The adjacency matrix of a graph (V,E) with V = {v1, . . . , vn}, n ≥ 1
finite, is the n× n matrix having a one in position (i, j), 1 ≤ i, j ≤ n, if vi ∼ vj and a zero
else.

Example 4.1.2. Figure 1 below shows the graph Γ = (V,E) with V = {1, 2, 3, 4, 5} and
E = {{1, 2}, {1, 4}, {2, 4}, {2, 5}, {3, 4}}.

1 2

3 4

5

1 2

3 4

5

Figure 1: An exemplary graph Γ (left) and its complement Γ (right).

It is simple and not complete, since |E| = 5 6= 10 =
(

5
2

)
=
(|V |

2

)
. The vertices 1, 2, 4 ∈ V are

pair-wise adjacent, whereas the vertices 1, 3, 5 ∈ V are pair-wise non-adjacent. We have
δ(2) = δ(4) = 3, δ(1) = 2 and δ(3) = δ(5) = 1, hence Γ is not regular. Its complement
is the graph Γ = (V,E) with E = {{1, 3}, {1, 5}, {2, 3}, {3, 5}, {4, 5}}, see also Figure 1
above. The adjacency matrices AΓ and AΓ of Γ and Γ, respectively, are given by the 5× 5
matrices

AΓ =


0 1 0 1 0
1 0 0 1 1
0 0 0 1 0
1 1 1 0 0
0 1 0 0 0

 and AΓ =


0 0 1 0 1
0 0 1 0 0
1 1 0 0 1
0 0 0 0 1
1 0 1 1 0

 ,

where the rows and columns of AΓ and AΓ are indexed by the vertices in V in ascending

63



order.

As in Definition 2.1.6, structure-preserving properties between graphs can be described
using graph morphisms.

Definition 4.1.3 (Graph morphisms). Let Γ = (V,E) and Γ′ = (V ′, E′) be two graphs. A
homomorphism is a map ϕ : V → V ′ such that {x, y} ∈ E implies {ϕ(x), ϕ(y)} ∈ E′
for all x, y ∈ V . If Γ is a subgraph of Γ′, then ϕ is called a monomorphism, and it is
called an epimorphism if for every edge {x′, y′} ∈ E′ there exists an edge x, y ∈ E such
that ϕ(x) = x′ and ϕ(y) = y′. If ϕ is bijective maps E bijectively to E′, then ϕ is called
an isomorphism, in which case Γ and Γ′ are isomorphic as graphs, denoted by Γ ∼= Γ′.

A graph isomorphism from a graph Γ = (V,E) to itself is called a automorphism, and
the set of all automorphisms of Γ forms a group under ordinary function composition,
denoted by Aut(Γ). In particular, Aut(Γ) is a subgroup of the symmetric group on V ,
consisting of all bijections V → V , which are referred to as permutations, and denoted by
Sym(V ).

Example 4.1.4. Consider the graphs Γ and Γ from Example 4.1.2, which can both be
seen in Figure 1. The map ϕ : V → V given by ϕ(1) = 1, ϕ(2) = 5, ϕ(3) = 2, ϕ(4) = 3
and ϕ(5) = 4 establishes a graph morphism from Γ to Γ because it maps E to E. In
particular, ϕ is a graph isomorphism between Γ and Γ, since E is mapped bijectively to
E. The map ψ : V → V given by ψ(1) = 1, ψ(2) = 4, ψ(3) = 5, ψ(4) = 2, ψ(5) = 3 is
a bijective graph morphism from Γ to itself, hence an automorphism of Γ, and we have
ψ ∈ Aut(Γ) ≤ Sym(V ). In particular, as ψ2 = idV , we deduce that ψ is a permutation on
V of order 2.

We may consider graphs as specific types of point-line geometries, which are defined as
follows. They lie at the core of this chapter as suggested by its title.

Definition 4.1.5 (Point-line geometry). Let P be a possibly infinite set and let L be a set
of subsets of P. If |`| ≥ 2 for every ` ∈ L, then Γ = (P,L) is said to be a point-line
geometry.

Given a point-line geometry Γ = (P,L), the sets P and L are oftentimes referred to as
the points, respectively lines of Γ. The point-line geometry Γ is called thick if |`| ≥ 3 for all
` ∈ L and thin otherwise. For any point p ∈ P and line ` ∈ L, we say that p is contained in
` or ` contains p if p ∈ `. Two distinct points p, p′ ∈ P are said to be collinear, denoted by
p ⊥ p′, if there exists a line ` ∈ L such that p, p′ ∈ `. Note that collinearity ⊥ is a symmetric
relation on P, and we will adopt the convention that p ⊥ p for all p ∈ P, even though p
is not necessarily on some line in L. The set of points collinear to a given point p ∈ P is
given by p⊥ = {p′ ∈ P | p ⊥ p′}. This concept generalises to subsets of points S ⊆ P; the
set of points collinear to every point in S is given by S⊥ = {p′ ∈ P | ∀p ∈ S : p ⊥ p′}. The
point-line geometry Γ is said to be a (partial) linear space if for all distinct points p, p′ ∈ P
there is (at most) one line ` ∈ L such that p, p′ ∈ `.
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Example 4.1.6. Figure 2 below shows a point-line geometry Γ = (P,L) with P =
{1, 2, 3, 4, 5, 6, 7} and L = {{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 6}, {2, 5, 7}, {3, 4, 7}, {3, 5, 6}},
also knows as the Fano plane.

4

5 6

7

1 3 2

Figure 2: The Fano plane.

Observe that Γ is a thick point-line geometry, since |`| = 3 for every ` ∈ L. We have(|P|
2

)
=
(

7
2

)
= 21 pairs of points, and 7 distinct lines in L each containing 3 such pairs,

hence every pair of points uniquely determines a line in L. Equivalently, every pair of
points is on a unique line in L, so Γ is a linear space.

A subset of points S ⊆ P of a point-line geometry Γ = (P,L) is called a subspace of Γ
if ` ⊆ S for every ` ∈ L such that |S ∩ `| ≥ 2. It is called singular if S ⊆ S⊥, i.e. every
point p ∈ S is collinear with all of S. The rank of a singular subspace S ⊆ P, denoted
by rank(S), is the largest integer n ≥ 0 such that ∅ ⊂ S0 ⊂ · · · ⊂ Sn ⊂ S is a chain of
non-trivial singular subspaces Si, 0 ≤ i ≤ n, of S with the convention that rank(S) = ∞
if no such integer n ≥ 0 exists. The observation that the intersection of a collection of
subspaces again yields a subspace gives rise to the notion of the subspace generated by a
subset S ⊆ P, which is the smallest subspace of Γ containing S, denoted by 〈S〉Γ or just
〈S〉 if Γ is clear from the context. The generating rank of Γ is the cardinality |S| of the
smallest subset S ⊆ P that generates P. A plane of Γ is a subspace 〈`, `′〉Γ with `, `′ ∈ L
distinct such that |` ∩ `′| ≥ 1. A hyperplane of Γ is a proper subspace S ⊂ P such that
S ∩ ` is either a single point or ` itself for all ` ∈ L.

Denoting by E the set of subsets of P whose elements are collinear points in a point-line
geometry Γ = (P,L), we obtain the graph (P, E) called the collinearity graph of Γ. Note
that for any singular subspace S ⊆ P of Γ the subgraph of the collinearity graph of Γ
induced by S is a complete graph. The incidence graph of Γ, on the other hand, is the
graph having P t L as its vertex set and in which adjacency is defined by containment.
Consequently, the incidence graph of Γ is an undirected bipartite graph with parts P and
L.
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Example 4.1.7. Consider again the point-line geometry Γ = (P,L) from Example 4.1.6.
The subsets {p} and ` with p ∈ P and ` ∈ L are subspaces of Γ. In particular, they are
both singular subspaces of Γ as {p} ⊂ p⊥ and ` ⊂ `⊥. Any point p ∈ P generates the
subspace 〈{p}〉Γ = {p}, whereas 〈{p, p′}〉Γ = ` for any other point p′ ∈ P with ` ∈ L
being the line that contains both p and p′. Adding a third point p′′ ∈ P not collinear with
both p and p′ yields 〈{p, p′, p′′}〉Γ = P, showing that Γ has generating rank 3. The only
hyperplanes of Γ are its lines, and Γ does not contain any proper planes.

Since p⊥ = P for all p ∈ P, the collinearity graph of Γ will be a complete graph on
|P| = 7 vertices and containing |E| =

(|P|
2

)
=
(

7
2

)
= 21 edges. On the other hand, as

every point p ∈ P is on exactly 3 lines and every line ` ∈ L contains exactly 3 points,
the incidence graph of Γ will be a 3-regular bipartite graph on |P t L| = 14 vertices also
containing |E| = 7 · 3 = 21 edges.

As a means of describing structure-preserving properties between point-line geometries
as we did for graphs, we introduce geometry morphisms.

Definition 4.1.8 (Point-line geometry morphisms). Let Γ = (P,L) and Γ′ = (P ′,L′) be
two point-line geometries. A homomorphism is a map ϕ : P → P ′ such that for all ` ∈ L
there exists an `′ ∈ L′ satisfying `′ = {ϕ(p) | p ∈ `}. If Γ is a subspace of Γ′, then ϕ is
called a monomorphism, and it is called an epimorphism if for every line `′ ∈ L there
exists a line ` ∈ L such that `′ = {ϕ(p) | p ∈ `}. If ϕ is bijective and maps L bijectively to
L′, then ϕ is called an isomorphism, in which case Γ and Γ′ are isomorphic as point-line
geometries, denoted by Γ ∼= Γ′.

A point-line geometry isomorphism from a point-line geometry Γ = (P,L) to itself is
called an automorphism, and the set of all automorphisms of Γ forms a group under ordinary
function composition, denoted by Aut(Γ). In particular, we have Aut(Γ) ≤ Sym(P).

Example 4.1.9. Let Γ = (P,L) be the point-line geometry obtained from Figure 2 by
removing point 7 and all lines containing point 7, i.e. P = {1, 2, 3, 4, 5, 6} and L =
{{1, 2, 3}, {1, 4, 5}, {2, 4, 6}, {3, 5, 6}}. Further let Γ′ = (P ′,L′) be the point-line geometry
obtained from Figure 2 as follows. We again remove point 7 so that P ′ = P, and take
L′ =

⋃
p∈P ′{q ∈ P ′ | p ∼ q}, where ∼ is adjacency in Figure 2 when viewed as a graph.

Then L′ = {{1, 3, 5}, {2, 3, 6}, {4, 5, 6}, {2, 3, 4, 5, 6}, {1, 3, 4, 5, 6}, {1, 2, 3, 5, 6}}. The map
φ : P ′ → P given by φ(1) = 1, φ(2) = 2, φ(3) = 3, φ(4) = 3, φ(5) = 2 and φ(6) = 1
establishes a homomorphism between Γ and Γ′ sending L′ to L. In particular, it is easily
verified that all of L′ is sent to {1, 2, 3} ∈ L. This map is not injective and does not map
P ′ and L′ bijectively to P, respectively L, hence it is not an isomorphism. In particular,
Γ 6∼= Γ′. The map ψ : P → P given by ψ(1) = 2, ψ(2) = 1, ψ(3) = 3, ψ(4) = 4, ψ(5) = 6 and
ψ(6) = 5 is a bijective homomorphism from Γ to itself, therefore ψ ∈ Aut(Γ) ≤ Sym(P).
Specifically, ψ is a permutation on P of order 2.

Given a point-line geometry Γ = (P,L) such that every point is contained in at least
two lines, denote by Lp the set of lines containing point p ∈ P, i.e. Lp = {` ∈ L | p ∈ `},
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and write P∗ =
⋃
p∈P Lp. The pair (L,P∗) is called the dual of Γ, denoted by Γ∗, and

is a point-line geometry by Definition 4.1.5 as |Lp| ≥ 2 for all p ∈ P by the above. The
following then holds.

Proposition 4.1.10. Let Γ = (P,L) be a point-line geometry such that every point is
contained in at least two lines. Then Γ ∼= (Γ∗)∗.

Proof. We have Γ∗ = (L,P∗) with P ∗ =
⋃
p∈P Lp, hence (Γ∗)∗ will be the point-line

geometry having point set P∗ and line set L∗ :=
⋃
`∈L{Lp ∈ P∗ | ` ∈ Lp}. We now claim

that the map ϕ : Γ → (Γ∗)∗ given by ϕ(p) = Lp establishes an isomorphism of point-line
geometries. It is clearly well-defined and surjective on (Γ∗)∗, hence bijective on the point
sets of Γ and (Γ∗)∗ as |P| = |P∗|. Furthermore, because p ∈ ` ⇐⇒ ` ∈ Lp for all p ∈ P
and ` ∈ L, we know that ϕ sends {p ∈ P | p ∈ `} to {Lp ∈ P∗ | ` ∈ Lp} for all ` ∈ L,
which ϕ does bijectively in particular as ϕ is bijective on P and P∗. But then ϕ maps L
bijectively to L∗, hence ϕ is an isomorphism of point-line geometries, and we conclude that
Γ ∼= (Γ∗)∗.

Point-line geometries that will be of particular interest to us in later sections are polar
spaces. They are defined as follows.

Definition 4.1.11 (Polar space). Let Γ = (P,L) be a point-line geometry. If p⊥ ∩ ` is
either a single point or ` itself for all p ∈ P and ` ∈ L, then Γ is called a polar space.

The radical of a polar space Γ = (P,L), denoted by rad(Γ), is the set P⊥. Note that
the inclusion P⊥ ⊆ (P⊥)⊥ shows that rad(Γ) is a singular subspace of Γ. A polar space Γ
is called non-degenerate if its radical is empty and degenerate otherwise. The rank of Γ,
denoted by rank(Γ), is the largest integer n ≥ 0 such that rad(Γ) = S0 ⊂ S1 ⊂ · · · ⊂ Sn
is a chain of singular subspaces Si of Γ, 0 ≤ i ≤ n, with the convention that rank(Γ) =∞
if no such integer n ≥ 0 exists. This concept generalises to partial linear spaces that are
not necessarily polar spaces; if Γ = (P,L) is a partial linear space, its singular rank is the
supremum of the ranks of its singular subspaces.

Given a subspace S ⊆ P of a polar space Γ = (P,L), we call ranknd(S) = rank(S) −
rank(rad(S)) with rad(S) = S ∩ S⊥ the non-degenerate rank of S. It coincides with the
rank of S if S is non-degenerate and it is zero if S is a singular subspace of Γ. Notice that
p ∈ rad(S) if and only if p ∈ S is a point such that p ∈ S⊥ ⇐⇒ S ⊆ p⊥. In other words,
S is degenerate if and only if there exists a point p ∈ S such that S ⊆ p⊥.

Example 4.1.12. The point-line geometry depicted in Example 4.1.6 is a polar space.
Clearly, p⊥ = P for every p ∈ P, hence P⊥ = P so that Γ is a degenerate polar space.

A generalised quadrangle, denoted by GQ, is a partial linear space (P,L) such that
for all p ∈ P and ` ∈ L we have |Lp| = t + 1 and |`| = s + 1 for some fixed integers
s, t ≥ 1, and with the property that for all ` ∈ L and p ∈ P with p 6∈ ` there exists a
unique line ` 6= `′ ∈ L and a unique point p 6= p′ ∈ P such that p ∈ `′ and ` ∩ `′ = {p′}. A
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generalised quadrangle GQ = (P,L) is a polar space; indeed, for every p ∈ P and ` ∈ L,
we have either p ∈ `, in which case p⊥ ∩ ` = `, or p 6∈ `, in which case there exists a
unique line ` 6= `′ ∈ L and a unique point p 6= p′ ∈ P such that p ∈ `′ and ` ∩ `′ = {p′},
implying that p⊥ ∩ ` = `∩ `′ = {p′}. Clearly, GQ is non-degenerate, since no point in P is
collinear with every point of GQ. For every p ∈ P and ` ∈ L, the subsets {p} and ` of P
are singular subspaces of GQ. In particular, if p ∈ ` then the chain of singular subspaces
rad(GQ) = ∅ ⊂ {p} ⊂ ` shows that GQ has rank 2. On the other hand, the line pencil
Sp = p⊥ of any point p ∈ P is a hyperplane of GQ, which follows immediately from GQ
being a polar space. It is easy to see that rad(Sp) =

⋂
`∈Sp ` = {p}, hence rank(Sp) = 1

and rank(rad(Sp)) = rank({p}) = 0 so that ranknd(Sp) = 1. The dual GQ∗ = (L,P∗) of
GQ will again be a generalised quadrangle.

We follow up with some properties of non-degenerate polar spaces in particular, exhib-
ited by the following lemma and proposition.

Lemma 4.1.13. Let Γ = (P,L) be a thick polar space. Then Γ is non-degenerate if and
only if p⊥ ⊆ q⊥ =⇒ p = q for all p, q ∈ P.

Proof. Suppose first that Γ is non-degenerate and let p, q ∈ P be distinct points such that
p⊥ ⊆ q⊥. By non-degeneracy of Γ there exists a point q′ ∈ P such that q′ 6⊥ q, which
moreover satisfies q′ 6⊥ p as otherwise q′ ∈ p⊥ ⊆ q⊥. Then q′ will be collinear with some
point r on some line `pq ∈ L containing p and q. Again by non-degeneracy of Γ, there
exists a point p′ ∈ P not collinear to r. It satisfies p′ 6⊥ p as otherwise p′ ∈ p⊥ ⊆ q⊥ so
that p′ ⊥ q, which would force p′ ⊥ r. In turn, p′ will be collinear to some point s ∈ P
on some line `q′r ∈ L containing q′ and r. If s = q′, then p will be collinear to some point
t ∈ P on some line `p′q′ ∈ L containing p′ and q′ different from p′ and q′, and this point
will be collinear to q because t ∈ p⊥ ⊆ q⊥, forcing t ⊥ r. But then r is collinear to both q′

and t, hence also with p′, a contradiction. Consequently, s 6= q′ and p will be collinear to
a point t ∈ L different from p′ but also from s as otherwise p ⊥ r would imply p ⊥ q′. As
before, this point t will be collinear with both p and q, hence also with r, but then r will
be collinear with both s and t, therefore also with p′, another contradiction. We conclude
that p = q.

Assume next that p⊥ ⊆ q⊥ =⇒ p = q for all p, q ∈ P and let r ∈ rad(Γ) = P⊥. Then
r⊥ = P, hence for all points s ∈ P different from r we have s⊥ ⊆ P = r⊥ =⇒ s = r,
a contradiction. This forces |P| = 1, contradicting that Γ is thick, so rad(Γ) = ∅ and we
conclude that Γ is non-degenerate.

Proposition 4.1.14. Let Γ = (P,L) be a non-degenerate thick polar space. Then

(i) for all non-collinear points p, q ∈ P the subset p⊥ ∩ q⊥ ⊆ P is a non-degenerate
subspace of Γ,

(ii) Γ is a partial linear space,

68



(iii) for all collinear points p, q ∈ P we have that (p⊥ ∩ q⊥)⊥ is the unique line containing
both p and q.

Proof. For (i), let p, q ∈ P such that p 6⊥ q and write S := p⊥ ∩ q⊥ ⊆ P. We first show
that S is a subspace of Γ, so let ` ∈ L be a line such that |S ∩ `| ≥ 2. Then both p and q
are collinear to two distinct points on `, hence they are both collinear to all points on `,
which shows that ` ⊆ p⊥ ∩ q⊥ = S. To show that S is non-degenerate, suppose towards
a contradiction that it is degenerate. Then rad(S) = S ∩ S⊥ 6= ∅, so there exists a point
r ∈ S such that every point in S is collinear with r, which is moreover different from p and
q as otherwise p ⊥ q. By non-degeneracy of Γ, there exists a point s ∈ P such that s ⊥ p
and s 6⊥ r; indeed, if s ⊥ r for all points s ∈ P such that s ⊥ p, then p⊥ ⊆ r⊥ =⇒ p = r
by Lemma 4.1.13, a contradiction. Now q is collinear with a point t ∈ P on some line
`ps ∈ L containing p and s different from p because p 6⊥ q, and it is also different from s as
otherwise s ∈ p⊥ ∩ q⊥ = S so that s ⊥ r, a contradiction. However, now t ∈ p⊥ ∩ q⊥ = S,
hence t ⊥ r, which forces s ⊥ r because p ⊥ r, another contradiction. We conclude that S
is non-degenerate.

For (ii), assume towards a contradiction that p, q ∈ P are two distinct points both
contained in two distinct lines `pq, `

′
pq ∈ L. Let p′ be a point on line `pq different from

p and q, then by non-degeneracy of Γ there exists a point r ∈ P such that r ⊥ p′ and
r 6⊥ p as otherwise p′⊥ ⊆ p⊥ =⇒ p′ = p by Lemma 4.1.13, a contradiction. Moreover,
this point must be collinear to some point q′ ∈ P on line `′pq different from p; we have
r 6⊥ p by construction, and if r ⊥ q then r ⊥ p′ would imply r ⊥ p, a contradiction. Now
write S := p⊥ ∩ r⊥ ⊆ P, which is a non-degenerate subspace of Γ by Proposition 4.1.14(i),
and let s ∈ p′⊥ ∩ S. Then s ⊥ p′ and s ⊥ p together imply s ⊥ q, hence s ⊥ q′ so that
p′⊥ ∩ S ⊆ q′⊥. Similarly, for any s ∈ q′⊥ ∩ S we have s ⊥ q′ and s ⊥ p so that s ⊥ q,
therefore s ⊥ p′ and so q′⊥ ∩ S ⊆ p′⊥. But then p′⊥ ∩ S ⊆ q′⊥ ∩ S ⊆ p′⊥ implies S ⊆ p′⊥,
showing that S is a degenerate subspace of Γ, a contradiction. We conclude that Γ is a
partial linear space.

For (iii), let p, q ∈ P be collinear and denote by `pq ∈ L a line containing p and q,
which is unique by Proposition 4.1.14(ii). First let r ∈ `pq. Since every point in p⊥ ∩ q⊥ is
collinear with every point on line `pq, in particular with r, we have r ∈ (p⊥ ∩ q⊥)⊥ so that
`pq ⊆ (p⊥ ∩ q⊥)⊥. Now let r ∈ (p⊥ ∩ q⊥)⊥ such that r 6∈ `pq, then r ⊥ s for all s ∈ p⊥ ∩ q⊥,
in particular for all s ∈ `pq. By non-degeneracy of Γ, there exists a point t ∈ P such that
t ⊥ r and t 6⊥ q as otherwise r⊥ ⊆ q⊥ =⇒ r = q by Lemma 4.1.13, contradicting r 6∈ `pq.
This results in t ⊥ x for some point x ∈ `pq. Since t 6⊥ r, the subset S := q⊥ ∩ t⊥ ⊆ P is a
non-degenerate subspace of Γ by Proposition 4.1.14(i). Now for all y ∈ S such that y ⊥ x,
we have y ⊥ p because y ⊥ q as implied by y ∈ S, hence y ∈ p⊥ ∩ q⊥ ⊆ r⊥, showing that
x⊥ ⊆ r⊥. But then by Lemma 4.1.13, applied to the non-degenerate thick polar space S,
we have r = x ∈ `pq, so (p⊥ ∩ q⊥)⊥ ⊆ `pq. We conclude that (p⊥ ∩ q⊥)⊥ is the unique line
containing both p and q.
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Let V be a possibly infinite-dimensional vector space over a division ring K. The
projective space on V , denoted by P(V ) or PG(n, q), n ≥ 1, if V is an (n+ 1)-dimensional
vector space over Fq, is the point-line geometry (P,L) whose points are the 1-dimensional
subspaces of V and whose lines are the subsets of points contained in some 2-dimensional
subspace of V , two of which are said to intersect if their intersection is non-trivial. The
points and lines of a projective space are oftentimes referred to as its projective points and
projective lines. Note that projective spaces are linear spaces.

Example 4.1.15. Let V = Fn+1
q be the (n + 1)-dimensional vector space over the finite

field Fq with q some prime power. In this example, we will count the number of points
and lines of the projective space P(V ) = PG(n, q), as well the number of points on a line
and the number of lines containing a point. Since V contains qn+1 − 1 non-zero vectors,
each of which span a 1-dimensional subspace of V containing q − 1 non-zero vectors, we

have a total of qn+1−1
q−1 points in PG(n, q). To construct a 2-dimensional 〈u, v〉 subspace of

V , we may choose u to be any vector non-zero in V , of which there are qn+1 − 1. Then v
is allowed to be any non-zero vector that is not a non-zero scalar multiple of u, hence we
have (qn+1 − 1) − (q − 1) = qn+1 − q possibilities for v. It remains to count the number
of pairs of non-zero vectors that span a given subspace 〈u, v〉. We may choose any non-
zero vector in 〈u, v〉 as the first vector of such a pair, of which there are q2 − 1. The
second vector should not be a non-zero scalar multiple of the first vector, giving a total of

(q2−1)−(q−1) = q2−q vectors. We conclude that PG(n, q) contains (qn+1−1)(qn+1−q)
(q2−1)(q2−q) lines.

Analogous to how we determined the number of points of PG(n, q), we deduce that every

line contains q2−1
q−1 = q+1 points. Finally, given a point 〈u〉 ∈ P, the orthogonal complement

〈u〉⊥ of 〈u〉 is n-dimensional, so we may choose from qn−1 non-zero vectors v ∈ V that make
〈u, v〉 a 2-dimensional subspace of V . This results in qn−1

q−1 such 2-dimensional subspaces,

hence every point lies on qn−1
q−1 lines.

A triangle in a point-line geometry Γ = (P,L) is a triple of pair-wise intersecting lines
in L in three distinct points in P, which are referred to as its corners. We have the following
lemma.

Lemma 4.1.16. Let V be a possibly infinite-dimensional vector space over a division ring
K and let P(V ) be the projective space on V . Then any line in P(V ) intersecting two lines
of a triangle in two points different from its corners also intersects its third line in a point
different from its corners.

Proof. Let u, v, w ∈ V such that the lines 〈u, v〉, 〈v, w〉 and 〈u,w〉 in P(V ) form a triangle
in P(V ) with corners 〈u〉, 〈v〉 and 〈w〉, and let x, y ∈ V such that the line 〈x, y〉 in P(V )
intersects 〈u, v〉 and 〈v, w〉 in points different from 〈u〉, 〈v〉 and 〈w〉. Then there exist scalars
λuv, µuv, λxy, µxy ∈ K with λuv and µuv non-zero such that 〈λuvu+µuvv〉 = 〈λxyx+µxyy〉,
and similarly there exist scalars λvw, µvw, λ

′
xy, µ

′
xy ∈ K with λvw and µvw non-zero such
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that 〈λvwv + µvww〉 = 〈λ′xyx+ µ′xyy〉. But then

〈(λvwλxy − λ′xyµuv)x+ (λvwµxy − µ′xyµuv)y〉 = 〈λvw(λxyx+ µxyy)− (λ′xyx+ µ′xyy)µuv〉
= 〈λvw(λuvu+ µuvv)− (λvwv + µvww)µuv〉
= 〈(λvwλuv)u+ (−µvwµuv)w〉,

which shows that 〈x, y〉 intersects 〈u,w〉 in a point different from 〈u〉 and 〈w〉 because λuv,
λvw, µuv and µvw are all non-zero.

This lemma generalises to the Veblen-Young axiom in point-line geometries that are
not necessarily projective spaces; in a point-line geometry Γ = (P,L), if a line in L meets
two of the three lines of a triangle in Γ each in a point different from its corners, then it
will also meet the third line of the triangle in a point different from its corners.

Since the characterisation of lines via 2-dimensional subspaces is only possible in pro-
jective spaces, this axiom will therefore not be satisfied for all point-line geometries. If it is
satisfied, however, together with several other conditions, we obtain a projective geometry,
defined as follows.

Definition 4.1.17 (Projective geometry). Let Γ = (P,L) be a point-line geometry. If Γ
is a thick linear space and satisfies the Veblen-Young axiom, then Γ is called a projective
geometry.

To distinguish between point-line geometries and projective geometries, we will denote
the latter by P instead of Γ. If any two lines in a projective geometry P = (P,L) intersect
and if it contains three distinct points all of which are not contained in a single line, then
P is called a projective plane.

Example 4.1.18. Consider the point-line geometry Γ = (P,L) from Example 4.1.6. It is
readily seen that Γ is a thick linear space. Moreover, it satisfies the Veblen-Young axiom;
indeed, for any three distinct lines {p, x, q}, {p, y, r}, {q, z, r} ∈ L that form a triangle with
corners p, q, r ∈ P, the subset {x, y, z} ⊆ P is a line in Γ that intersects {q, z, r} in z,
which is not a corner of the triangle. So, Γ is a projective geometry P. In particular, P
is a projective plane as any two distinct lines intersect and since Γ clearly contains three
distinct points not contained in the same line. Now let V = F3

2 and consider its projective

space P(V ) = PG(2, 2). We know from Example 4.1.15 that it contains 23−1
2−1 = 7 points,

each of them contained in 22−1
2−1 = 3 lines, and (23−1)(23−2)

(22−1)(22−2)
= 7 lines, each of them containing

2 + 1 = 3 points. It is easily verified that P ∼= PG(2, 2).

Given a projective plane Γ = (P,L), denote as before by Lp the set of lines containing
point p ∈ P. The order of Γ is the integer n ≥ 2 such that |`| = n + 1 for all ` ∈ L and
|Lp| = n+1 for all p ∈ P. For instance, the point-line geometry from Example 4.1.6, which
we have seen is a projective plane in the above example, has order 2 and is in fact the

71



smallest projective plane in terms of order. The following proposition shows that all thick
projective planes have an order, and that under some conditions they are the only type of
point-line geometries that do.

Proposition 4.1.19. Let Γ = (P,L) be a finite thick linear space and denote by Lp the
set of lines containing point p ∈ P. Then Γ is a projective plane if and only if there exists
an integer n ≥ 2 such that |`| = n+ 1 for all ` ∈ L and |Lp| = n+ 1 for all p ∈ P.

Proof. First suppose that Γ is a projective plane. Then Γ contains three points not on
the same line, so there exists a point p ∈ P and a line ` ∈ L not containing p. As every
line `p ∈ Lp intersects ` in a different point, then by finiteness and thickness of Γ there
exists an integer n ≥ 2 such that |`| = n+ 1 and |Lp| = n+ 1. In particular, for any point
p′ ∈ P \ {p} not on ` we have |Lp′ | = n + 1. Now let `p, `

′
p ∈ Lp, which exist because

|Lp| = n+ 1 ≥ 3, and let p′ ∈ P \ {p} be a point on `′p but not on ` nor on `p. Then by the
above we have |Lp′ | = n + 1, and because every line `p′ ∈ Lp′ intersects `p in a different
point we find |`p| = n + 1, which shows that every line in Lp also contains n + 1 points.
Consequently, every point on ` is contained in n+1 lines. But then every line in L contains
n+ 1 points and every point in P is contained in n+ 1 lines.

Next assume that there exists an integer n ≥ 2 such that |`| = n+ 1 for all ` ∈ L and
|Lp| = n + 1 for all p ∈ P. Clearly, Γ contains three points not on the same line. We
show that any two lines in L intersect. Suppose towards a contradiction that there exist
two distinct lines `, `′ ∈ L that do not intersect, and let p ∈ P be a point on ` but not on
`′. Then for every point p′ ∈ P on `′ there will be a unique line containing both p and p′

because Γ is a linear space. But p is contained in as many lines as there are points on `′,
hence there must be a point on `′ that is also contained in `, a contradiction. It follows
that any two lines in L intersect. But then the Veblen-Young axiom is immediate; any line
intersecting two lines of a triangle in two points different from its corners must intersect
the third line of the triangle, but it cannot do so in its corners because Γ is a linear space,
hence their point of intersection must be a point different from the corners of the triangle.
We conclude that Γ is a projective plane by Definition 4.1.17.

In light of our earlier discussion on non-degenerate thick polar spaces, we obtain the
following as a corollary to Lemma 4.1.13 and Proposition 4.1.14.

Corollary 4.1.20. Let Γ = (P,L) be a non-degenerate thick polar space and let S ⊆ P be
a singular subspace of Γ having line set LS . Then S is a projective geometry.

Proof. Thickness of S is inherited from Γ, and the fact that p ⊥ q for all p, q ∈ S, together
with Proposition 4.1.14(ii), shows that S is a linear space, so it remains to show that
S satisfies the Veblen-Young axiom according to Definition 4.1.17. To this extent, let
`pq, `qr, `pr ⊆ S be a triangle with corners p, q, r ∈ S and suppose that `xy ⊆ S is a line
that intersects `pr in a point x ∈ S and `qr in a point y ∈ S such that neither x nor y is a
corner of the triangle. Now let s ∈ P be a point such that s ⊥ p and s ⊥ q. Note that this
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point must satisfy s 6⊥ r; indeed, if s ⊥ r for all points s ∈ P such that s ⊥ p and s ⊥ q,
then p⊥ ∩ q⊥ ⊆ r⊥ =⇒ r ∈ (p⊥ ∩ q⊥)⊥ = `pq by Proposition 4.1.14(iii), a contradiction.
Consequently, we must have s 6⊥ x and s 6⊥ y, hence there exists a unique point z ∈ `xy
such that s ⊥ z. In particular, we have z ∈ S as x, y ∈ S. Additionally, we deduce that
r ⊥ z because r ⊥ x and r ⊥ y. But then p, q and z are contained in S ′ := r⊥ ∩ s⊥ ⊆ P,
which is a non-degenerate subspace of Γ by Proposition 4.1.14(i) since r 6⊥ s. Now for any
point t ∈ S ′ such that t ∈ p⊥ ∩ q⊥, we have t ⊥ x because t ⊥ p and t ⊥ r, but also
t ⊥ y because t ⊥ r and t ⊥ q, together implying that t ⊥ z so that z ∈ (p⊥ ∩ q⊥)⊥. But
then non-degeneracy of S implies that z ∈ (p⊥ ∩ q⊥)⊥ = `pq by Proposition 4.1.14(iii),
hence z ∈ `pq ∩ `xy. Since z is different from p, q and r, it follows that S satisfies the
Veblen-Young axiom. We conclude that S is a projective space.

A natural question that now arises is whether every projective geometry may be identi-
fied by a projective space on some vector space V over some division ring K. We finish this
section with a brief investigation of its answer, for which we require the following theorem.

Theorem 4.1.21 (Desargues’ theorem). Let V be a 3-dimensional vector space over a
division ring K and let P(V ) be the projective space on V . Then for all u, v, w ∈ V such
that the lines 〈u, v〉, 〈v, w〉, 〈u,w〉 form a triangle with corners 〈u〉, 〈v〉 and 〈w〉 and any
p ∈ V such that 〈p〉 is not on the triangle, the points 〈u, v〉 ∩ 〈y, z〉, 〈v, w〉 ∩ 〈x, z〉 and
〈u,w〉∩〈x, y〉 with x, y, z ∈ V such that 〈x〉 ⊂ 〈p, w〉, 〈y〉 ⊂ 〈p, u〉 and 〈z〉 ⊂ 〈p, v〉 arbitrary
are collinear.

Proof. We may assume without loss of generality that u = (1, 0, 0) ∈ V , v = (0, 1, 0) ∈ V
and w = (0, 0, 1) ∈ V . Then 〈u, v〉 = {(λ, µ, 0) ∈ V | λ, µ ∈ K}, 〈v, w〉 = {(0, λ, µ) ∈ V |
λ, µ ∈ K} and 〈u,w〉 = {(λ, 0, µ) ∈ V | λ, µ ∈ K}, which together form a triangle with
corners 〈u〉, 〈v〉 and 〈w〉. Again without loss of generality, we may take p = (1, 1, 1) ∈ V ,
whose span in V is readily seen not to be on the triangle. Consequently, we have x =
(1, 1, γ) ∈ V for some γ ∈ K, y = (α, 1, 1) for some α ∈ K and z = (1, β, 1) ∈ V for some
β ∈ K. It follows that

〈x, y〉 = {λ(1, 1, γ) + µ(α, 1, 1) ∈ V | λ, µ ∈ K} = {(λ+ µα, λ+ µ, λγ + µ) ∈ V | λ, µ ∈ K},
〈y, z〉 = {λ(α, 1, 1) + µ(1, β, 1) ∈ V | λ, µ ∈ K} = {(λα+ µ, λ+ µβ, λ+ µ) ∈ V | λ, µ ∈ K}
〈x, z〉 = {λ(1, 1, γ) + µ(1, β, 1) ∈ V | λ, µ ∈ K} = {(λ+ µ, λ+ µβ, λγ + µ) ∈ V | λ, µ ∈ K},

hence 〈x, y〉, 〈y, z〉 and 〈x, z〉 intersect 〈u,w〉, 〈u, v〉 and 〈v, w〉, respectively, if and only if
λ+ µ = 0. We obtain the intersection points

〈u,w〉 ∩ 〈x, y〉 = {λ(1, 1, γ)− λ(α, 1, 1) ∈ V | λ ∈ K} = {λ(1− α, 0, γ − 1) ∈ V | λ ∈ K},
〈u, v〉 ∩ 〈y, z〉 = {λ(α, 1, 1)− λ(1, β, 1) ∈ V | λ ∈ K} = {λ(α− 1, 1− β, 0) ∈ V | λ ∈ K}
〈v, w〉 ∩ 〈x, z〉 = {λ(1, 1, γ)− λ(1, β, 1) ∈ V | λ ∈ K} = {λ(0, 1− β, γ − 1) ∈ V | λ ∈ K},
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and it is readily seen that (0, 1 − α, γ − 1), (α − 1, 1 − β, 0) and (0, 1 − β, γ − 1) span a
2-dimensional subspace of V as (1− α, 0, γ − 1) + (α− 1, 1− β, 0) = (0, 1− β, γ − 1). We
conclude that 〈u, v〉 ∩ 〈y, z〉, 〈v, w〉 ∩ 〈x, z〉 and 〈u,w〉 ∩ 〈x, y〉 are collinear in P(V ).

〈p〉

〈u〉 〈v〉

〈w〉

〈y〉

〈z〉

〈x〉
〈v, w〉 ∩ 〈x, z〉

〈u,w〉 ∩ 〈x, y〉

〈u, v〉 ∩ 〈y, z〉

Figure 3: Desargues’ configuration.

Figure 3 above provides a pictorial description of the setting in Theorem 4.1.21. Such
a setting is also referred to as Desargues’ configuration.

A projective plane that satisfies Desargues’ theorem is called a Desarguesian plane. We
can now formulate one of the main results on projective spaces that answers our previously
posed question and incorporates the above theorem.

Theorem 4.1.22. Let P = (P,L) be a projective geometry containing three non-collinear
points. If P satisfies Desargues’ theorem, then P is isomorphic to the projective space P(V )
on some vector space V over a division ring K.

Proof. See Theorem 6.2.11 in [3].

4.2 Geometries and chamber systems

Recall from the previous section our discussion of graphs and point-line geometries. They
can be generalised to incidence structures, abstractly defined as triples (P,L, I) in which P
and L are sets and I ⊆ P × L is a binary relation on P and L that describes their mutual
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structure. Indeed, a graph Γ = (V,E) is an incidence structure (V, V,E). Closely related
to incidence structures are incidence systems, which are defined as follows.

Definition 4.2.1 (Incidence system). Let I be a type set whose element are called types
and let X be a set. Further let ∗ ⊆ X × X be a reflexive and symmetric relation on X
and let τ : X → I be a surjective map such that x ∗ y =⇒ τ(x) 6= τ(y) for all distinct
x, y ∈ X. Then Γ = (X, ∗, τ) is called an incidence system over I.

Given an incidence system Γ = (X, ∗, τ) over some type set I, we call ∗ the incidence
relation on X and τ : X → I the type map of Γ. As was the case for adjacency in graphs,
we will write x ∗ y to indicate incidence of x, y ∈ X. For every i ∈ I, the elements in
τ−1(i) ⊆ X are called the i-elements. The incidence graph of Γ is the graph with vertex
set X and adjacency defined by ∗, its reflexive property disregarded.

Example 4.2.2. Let I be a type set and let Γ = (V,E) be an undirected multipartite
graph such that V =

⊔
i∈I Vi and containing loops from every vertex to itself. Further

let τ : V → I be the map given by τ(Vi) = i. Then the triple (V,∼, τ) is an incidence
structure. Indeed, adjacency ∼ in Γ is a reflexive and symmetric relation, and for all
x ∈ Vi and y ∈ Vj , i, j ∈ I, we have x ∼ y only if i 6= j, from which it follows that
τ(x) = i 6= j = τ(y).

Conversely, if (V,∼, τ) is an incidence system, define Vi = τ−1(i) for all i ∈ I. By setting
V =

⋃
i∈I Vi, we obtain an undirected multipartite graph (V, ∗) containing loops from every

vertex to itself. Indeed, if x ∈ Vi ∩ Vj with i, j ∈ I, then we have τ−1(i) = x = τ−1(j)
so that i = j, showing that V =

⊔
i∈I Vi. Moreover, if x ∼ y with x ∈ Vi and y ∈ Vj ,

i, j ∈ I, then τ(x) = i 6= j = τ(y), hence no two distinct vertices in the same Vi, i ∈ I, are
adjacent.

The type set I over which an incidence system Γ = (X, ∗, τ) is defined is commonly
referred to as the type of Γ. Its cardinality |I| is the rank of Γ, denoted by rank(Γ). The
same notions are used for subsets Y ⊆ X; they are of type τ(Y ) and have rank |τ(Y )|,
denoted by rank(Y ). In addition, we have the notions of cotype and corank ; they are the
type, respectively rank of X \ Y . Whenever we write Y ∗, we mean the set {x ∈ X | ∀y ∈
Y : x ∗ y}. A definition that is of particular importance is the following.

Definition 4.2.3 (Flag & Chamber). Let Γ = (X, ∗, τ) be an incidence system over a type
set I. A subset F ⊆ X is called a flag of Γ if x ∗ y for all x, y ∈ F . If moreover τ(F ) = I,
i.e. F is of type I, then F is called a chamber.

It is clear that any flag of an incidence system Γ = (X, ∗, τ) over a type set I can have
at most one element of every type in I by definition of τ , and chambers of an incidence
system are subsets F ⊆ X of maximal rank since τ(F ) = I. We further note that F
is a flag of Γ if and only if the vertices in F form a clique in the incidence graph of Γ.
Consequently, Γ contains a chamber if and only if a maximum clique in the incidence graph
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of Γ has size |I|, and the number of chambers of Γ is the number of cliques in the incidence
graph of Γ of size |I|.

Flags of Γ that are not properly contained in any other flag of Γ are called maximal flags.
Clearly, chambers are maximal flags, but maximal flags need not be chambers. However, if
this is the case, then the incidence system Γ is called a geometry. Such a geometry Γ is firm
or thick if every flag of Γ that is not a chamber is contained in at least two, respectively
three chambers of Γ. Contrarily, it is thin if every flag of type I \ {i} for some i ∈ I is
contained in exactly two chambers of Γ.

Example 4.2.4. Denote by En the n-dimensional Euclidean affine space with n ≥ 2 finite
and let I = {0, . . . , n − 1} be a type set. Now consider a polytope in En, which is the
convex hull of a set of points in En, i.e. the smallest convex set in En that contains it.
Let X be the set of its i-faces, i ∈ I. Define ∗ ⊆ X ×X as x ∗ y if and only if x ⊆ y or
y ⊆ x for all x, y ∈ X, and define τ : X → I to be the map that sends an element in X to
the dimension of the face it represents in the polytope. Then Γ = (X, ∗, τ) is an incidence
system over I of rank n. In particular, Γ is a geometry over I, which follows from the
observation that any i-face of the polytope either contains an (i−1)-face, 2 ≤ i ≤ n−1, or
is contained in an (i+ 1)-face, 1 ≤ i ≤ n− 2. In other words, any flag of Γ can always be
extended to a flag of type I. The geometry Γ is not only firm, but also thin; if F ⊆ X is
a flag of type I \ {i} for some i ∈ I, then there are exactly two i-faces in X incident with
every element in F , both of which form a chamber together with F .

The residue of a flag F ⊆ X of an incidence system Γ = (X, ∗, τ) over a type set I is
the incidence system ΓF = (F ∗ \ F, ∗, τ) over I \ τ(F ) with F ∗ = {x ∈ X | ∀y ∈ F : x ∗ y}.
Residues have the following properties.

Lemma 4.2.5. Let Γ = (X, ∗, τ) be an incidence system over a type set I and let ΓF =
(F ∗ \ F, ∗, τ) be the residue of a flag F of Γ. Then

(i) F ′ is a flag of ΓF if and only if F ∪ F ′ is a flag of Γ,

(ii) (ΓF )F ′ = ΓF∪F ′ for all flags F ′ of ΓF ,

(iii) ΓF is a geometry over I \ τ(F ) if Γ is a geometry.

Proof. For (i), suppose first that F ′ is a flag of ΓF . Since F ′ ⊆ F ∗ \ F =⇒ F ∪ F ′ ⊆
F ∗ =⇒ F ′ ⊆ F ∗, we have x ∗ y for all x ∈ F ′ and y ∈ F . But we also have x ∗ y for all
x, y ∈ F and x, y ∈ F ′ because F and F ′ are flags, hence x∗y for all x, y ∈ F ∪F ′, showing
that F ∪ F ′ is a flag of Γ. Supposing next that F ∪ F ′ is a flag of Γ, we have x ∗ y for all
x, y ∈ F ′ so that F ′ will also be a flag of Γ, and x ∗ y for all x ∈ F ′ and y ∈ F so that
F ′ ⊆ F ∗. But then F ∪ F ′ ⊆ F ∗, hence F ′ ⊆ F ∗ \ F and so F ′ will be a flag of ΓF .

For (ii), we have the identities (F ∗ \ F ) ∩ (F ′∗ \ F ′) = (F ∗ ∩ F ′∗) \ (F ∪ F ′) = (F ∪
F ′)∗ \ (F ∪F ′) and (I \ τ(F )) \ τ(F ′) = I \ (τ(F )∪ τ(F ′)) = I \ τ(F ∪F ′). It follows that
(ΓF )F ′ = ΓF∪F ′ by definition of a residue.
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For (iii), let F ′ be a maximal flag of ΓF . By Lemma 4.2.5(i), F ∪F ′ will be a flag of Γ.
In particular, because (ΓF )F ′ = ΓF∪F ′ by Lemma 4.2.5(ii), it will be a maximal flag of Γ.
But Γ is a geometry over I, so F ∪F ′ will be a chamber and hence of type I. Consequently,
F ′ will be a flag of ΓF of type I \ τ(F ), showing that it is a chamber. We conclude that
ΓF is a geometry over I \ τ(F ).

For any incidence system Γ = (X, ∗, τ) over a type set I, let X ′ ⊆ X and I ′ ⊆ I,
and define ∗′ := ∗′

∣∣
X′×X′ and τ ′ := τ |X′ . The incidence system Γ′ = (X ′, ∗′, τ ′) over I ′ is

called an incidence subsystem of Γ, which turns into a subgeometry of Γ if Γ′ is a geometry.
If moreover I ′ is chosen such that I ′ = τ(X ′), then Γ′ is called the incidence subsystem
induced by I ′. Examples of incidence subsystems are residues of flags, whereas examples
of subgeometries of a polytope in En, n ≥ 4, from Example 4.2.4 are polygons in E2 and
polyhedra in E3.

A (simple) chain in an incidence system Γ = (X, ∗, τ) over a type set I is a sequence of
(distinct) elements x1, . . . , xn ∈ X, n ≥ 1 finite, such that for every 1 ≤ j ≤ n− 1 we have
xj ∗ xj+1, and we denote it by γ. If the type of every element in γ is contained in some
type subset J ⊆ I, we also refer to γ as a J -chain. Its length is the number of elements
it contains, and it is closed if x1 = xn. These concepts generalise to paths, their lengths
and circuits, respectively, in its incidence graph. In other words, a (simple) chain in an
incidence system Γ corresponds to a (simple) path in the incidence graph of C. For any two
elements x, y ∈ X, the distance between x and y is the length of a shortest chain starting
at x and ending at y or vice versa, denoted by d(x, y). The diameter of Γ is the longest
shortest chain in C, and Γ is said to be connected if its diameter is finite and non-zero. A
definition related to connectedness of incidence systems that will be of importance to us
later on is the following.

Definition 4.2.6 (Residual connectedness). Let Γ = (X, ∗, τ) be an incidence system over
a type set I. The incidence system Γ is said to be residually connected if the residue
ΓF = (F ∗ \ F, ∗, τ) of every flag F ⊆ X such that rank(ΓF ) ≥ 2 is connected.

By noting that the empty set is a flag of any incidence system Γ = (X, ∗, τ) over some
type set I, we deduce that residual connectedness of Γ and |I| ≥ 2 together imply that
Γ itself is connected. For example, polytopes in En, n ≥ 2 finite, are clearly residually
connected. A geometry Γ over a type set I will be called an I-geometry if Γ is firm
and residually connected. The following proposition exhibits some properties of residually
connected geometries.

Proposition 4.2.7. Let Γ = (X, ∗, τ) be a residually connected incidence system over a
type set I. Then

(i) there exists an {i, j}-chain between any two elements x, y ∈ X for any two distinct
types i, j ∈ I if I is finite,
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(ii) Γ is a geometry if every flag F of Γ such that rank(X \ F ) = 1 is not maximal,

(iii) the residue ΓF of every flag F of Γ is a residually connected geometry if Γ is a
geometry.

Proof. For (i), we proceed by induction on rank(Γ) = |I| <∞, the case rank(Γ) = 2 being
immediate by connectedness of Γ. Assuming that there is an {i, j}-chain between any two
elements x, y ∈ X for all i, j ∈ I if rank(Γ) ≤ r for some r ≥ 2, consider the case in which
rank(Γ) = r + 1 and let x, y ∈ Γ and i, j ∈ I be arbitrary. By connectedness of Γ, we can
always find a chain γ consisting of the elements x = x0, . . . , xn = y ∈ X with n ≥ 1 finite.
Now suppose that xk ∈ γ, 1 ≤ k ≤ n−1, is an element such that τ(xk) 6∈ {i, j}, which exists
as otherwise γ would be an {i, j}-chain. Since {xk} is a flag of Γ, we obtain the residue
Γ{xk} all of whose residues of rank at least two are connected by residual connectedness of
Γ. But then Γ{xk} is residually connected, hence the induction hypothesis applies to Γ{xk}.
In particular, we can find an {i, j}-chain between xk−1 and xk+1 inside Γ{xk}. Repeating
this process for every element in γ not having type i or j, the total number of which is
finite and decreases after every step, shows that γ is an {i, j}-chain.

For (ii), let F be a maximal flag of Γ and suppose that τ(F ) 6= I. In particular, we have
τ(F ) ⊂ I so that |I \ τ(F )| ≥ 1. Now for any maximal flag of Γ we have rank(X \ F ) =
|I \ τ(F )| 6= 1, hence |I \ τ(F )| ≥ 2. Consequently, we have rank(ΓF ) = |I \ τ(F )| ≥ 2, so
the residue ΓF will be connected. But then ΓF cannot be empty and so F ∗ \ F 6= ∅. In
turn, F ∪{x} will be a flag of Γ that strictly contains F for every x ∈ F ∗ \F , contradicting
maximality of F . We conclude that τ(F ) = I so that F is a chamber of Γ, showing that
Γ is a geometry.

For (iii), let ΓF be the residue of a flag F of Γ. Since Γ is a geometry, we know
that ΓF will be a geometry over I \ τ(F ) by Lemma 4.2.5(iii). Now for any flag F ′ of
ΓF , in particular for those having rank at least two, we have (ΓF )F ′ = ΓF∪F ′ by Lemma
4.2.5(ii), but ΓF∪F ′ is connected by residual connectedness of Γ, hence so will (ΓF )F ′ be.
We conclude that ΓF is residually connected.

Closely related to chambers of incidence systems, but not equivalent, are chamber
systems, which are defined as follows.

Definition 4.2.8 (Chamber system). Let I be a type set whose elements are called types
and let C be a set whose elements are referred to as chambers. Define {∼i| i ∈ I} to be a
set of equivalence relations ∼i on C indexed by i ∈ I. The pair (C, {∼i| i ∈ I}) is called a
chamber system over I.

Given a chamber system C = (C, {∼i| i ∈ I}) over a type set I, the graph of C is the
graph (C,∼), in which for all x, y ∈ C we have x ∼ y if and only if x ∼i y for some i ∈ I
The pairs (C,∼i) with i ∈ I also define graphs on C in which two vertices x, y ∈ C are
i-adjacent if and only if x ∼i y. In particular, (C,∼i) will be a disjoint union of cliques
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by definition of ∼i. The equivalence classes of ∼i are called i-panels. For any type subset
J ⊆ I, two chambers x, y ∈ C are said to be J -adjacent, denoted by x ∼J y, if there
exists a j ∈ J such that x ∼j y.

Analogous to incidence systems, the rank of a chamber system C is the cardinality |I|
of the type set I over which it is defined. The chamber system C is called firm, thick or
thin if every i-panel of C, i ∈ I, has size at least two, at least three or exactly two. A
chamber subsystem of C is a chamber system C′ = (C ′, {∼′i′ | i′ ∈ I ′}) with I ′ ⊆ I, C ′ ⊆ C
and ∼′i⊆∼i for all i ∈ I ′. It is called the chamber subsystem induced by I ′ if we have
∼′i= ∼i|C′×C′ for i ∈ I ′ and ∼′i= idC′×C′ otherwise.

Example 4.2.9. Consider again a polytope in En, n ≥ 2 finite, as in Example 4.2.4, whose
i-faces, 0 ≤ i ≤ n−1, we have seen can be used to construct an incidence system Γ over the
type set I = {0, . . . , n−1}. The chambers of Γ are the subsets of X consisting of mutually
incident i-faces with every i ∈ I appearing exactly once. Denote this set of chambers by
C, and define for every i ∈ I the binary relation ∼i⊆ C×C by x ∼i y if and only if x and y
contain the same i-face, which is clearly an equivalence relation. Then C = (C, {∼i| i ∈ I})
is a chamber system. Since every equivalence relation ∼i, i ∈ I, partitions C into subsets
all of whose elements share the same i-face, we deduce that C is thin if and only if n = 2,
whereas it will always be thick if n ≥ 3.

The equivalent of a (simple) chain γ in an incidence system Γ = (X, ∗, τ) over a type set
I is a (simple) gallery in a chamber system C = (C, {∼i| i ∈ I}) over I; it is a sequence of
(distinct) chambers x1, . . . , xn ∈ C, n ≥ 1 finite, such that for every 1 ≤ j ≤ n− 1 we have
xj ∼i xj+1 for some i ∈ I, and we also denote it by γ. Its length is the number of chambers
it contains, and it is closed if x1 = xn. These concepts generalise to paths, their lengths
and circuits in the graph of C. In other words, a gallery in a chamber system C corresponds
to a path in the graph of C. For any two chambers x, y ∈ C, the distance between x and y
is the length of a shortest gallery starting at x and ending at y or vice versa, denoted by
d(x, y). The diameter of C is the longest shortest gallery in C, and C is said to be connected
if its diameter is finite and non-zero. A maximally connected chamber subsystem of C
induced by some type subset J ⊆ I is called a cell. To emphasise its dependency on J , a
cell is also referred to as a J -cell. If J = I \ {i} for some i ∈ I, we refer to a J -cell as
an i-object of C, denoted by Zi. If for all type subsets J ⊆ I the intersection

⋂
j∈J Zj of

every collection {Zj | j ∈ J } of j-objects of C, one for each j ∈ J , such that any two of
them have a non-empty intersection is an (I \ J )-cell of C, then C is said to be residually
connected.

We provide a definition comparable to Definition 2.1.6, Definition 4.1.3 and Definition
4.1.8 as a means of relating chamber systems to one another.

Definition 4.2.10 (Chamber system morphisms). Let C = (C, {∼i| i ∈ I}) and C′ =
(C ′, {∼′i| i ∈ I}) be two chamber systems over a type set I. A weak homomorphism
between C and C′ is a map ϕ : C → C ′ such that for all x, y ∈ C and i ∈ I we have
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x ∼i y implies ϕ(x) ∼σ(i) ϕ(y) for some permutation σ : I → I. If moreover ϕ is bijective
and its inverse ϕ−1 is a weak homomorphism, then ϕ is called a correlation. If σ = idI ,
then ϕ is called a homomorphism, and if additionally ϕ is a correlation then ϕ is an
isomorphism, in which case C and C′ are isomorphic as chamber systems, denoted by
C ∼= C′.

Both the set of correlations and the set of isomorphisms from a chamber system
C = (C, {∼i| i ∈ I}) over a type set I to itself, referred to as auto-correlations and
automorphisms, respectively, form a group under ordinary function composition, denoted
by Cor(C), respectively Aut(C). They are related in the sense that Aut(C) E Cor(C).

Now recall from Example 4.2.9 that a chamber system C = (C, {∼i| i ∈ I}) over a type
set I can be obtained from a geometry Γ = (X, ∗, τ) over I. In general, this is done for an
arbitrary incidence system Γ = (X, ∗, τ) by letting C be its set of chambers and by defining
∼i⊆ C × C as x ∼i y with x, y ∈ C if and only if x and y contain the same j-element for
every j ∈ I \ {i}. Since the relations ∼i, i ∈ I, are clearly equivalence relations on C, we
indeed obtain a chamber system by Definition 4.2.8. To emphasise the dependency of its
construction on Γ, we denote the resulting chamber system by C(Γ), and it is firm, thick
or thin if Γ is firm, thick or thin, respectively. In light of our discussion on residues of flags
of incidence systems, we obtain the following result.

Corollary 4.2.11. Let Γ = (X, ∗, τ) be a geometry over a type set I and let C(Γ) be the
chamber system of Γ. Further let F be a flag of Γ and denote by C(Γ)F the chamber system
whose chambers are the chambers of Γ containing F and whose set of equivalence relations
is that of C(Γ) restricted to I \ τ(F ). Then C(ΓF ) ∼= C(Γ)F .

Proof. We claim that the map ϕ : C(ΓF ) → C(Γ)F given by ϕ(F ′) = F ∪ F ′ with F ′

a chamber in C(ΓF ) is an isomorphism of chamber systems. Note that ϕ indeed maps
chambers in C(ΓF ) to chambers in C(Γ)F by Lemma 4.2.5(i). It is clearly well-defined and
injective, and surjectivity follows from the observation that x is a chamber in C(Γ)F if and
only if x \ F is a chamber in C(ΓF ), again by Lemma 4.2.5(i), so that ϕ(x \ F ) = x for
all chambers x in C(Γ)F . Now letting F ′ and F ′′ be chambers in C(ΓF ) and supposing
that F ′ ∼i F ′′ for some i ∈ I \ τ(F ), the identity F ∼i F immediately shows that
ϕ(F ′) = (F ∪F ′) ∼i (F ∪F ′′) = ϕ(F ′′). In particular, by Definition 4.2.10, the map ϕ will
be an isomorphism of chamber systems, and we conclude that C(ΓF ) ∼= C(Γ)F .

Before we are able to define buildings, we require particular type sets over which cham-
ber systems are defined. We introduce these type sets by means of Coxeter groups, which
are defined as follows.

Definition 4.2.12 (Coxeter group). Let I be a type set and let M = (mi,j)i,j∈I be a
symmetric matrix with entries over N ∪ {∞} such that mi,i = 1 and mi,j ≥ 2 for all
distinct i, j ∈ I. The Coxeter group of type M is the group W (M) generated by the
elements of a set R = {ri | i ∈ I} satisfying (rirj)

mi,j = 1 for all i, j ∈ I.
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The type M of a Coxeter group W (M) is also known as the Coxeter matrix or Coxeter
type, not only applicable to Coxeter groups but also to incidence systems and chamber
systems. Together with the ambient set of generators R over which a Coxeter group is
defined, the pair (W (M), R) is called a Coxeter system of type M , its rank being the
cardinality |R| of R. The Coxeter graph of W (M) is the weighted graph with vertex set
R in which two vertices ri, rj ∈ R are connected by an edge of weight mi,j if and only if
mi,j > 2, and (W (M), R) is called an irreducible Coxeter system if and only if its Coxeter
graph is connected.

For any type subset J ⊆ I, the subgroup WJ (MJ ) of W (M) generated by the elements
of RJ = {rj | j ∈ J } satisfying (rirj)

mi,j for all i, j ∈ J with MJ being the submatrix
of M only containing the rows and column of M indexed by J is again a Coxeter group
whose Coxeter graph is the Coxeter graph of W (M) induced by RJ . We obtain a Coxeter
system (WJ (MJ ), RJ ) of type MJ .

Example 4.2.13. The dihedral group Dn, n ≥ 3 finite, is the group of order 2n consisting
of all rotations and reflections on a regular n-gon in E2 and generated by a reflection and
rotation. Now Let I = {1, 2} be a type set and let R = {r1, r2} be a set of two reflections
of a regular n-gon such that their product r1r2 yields a rotation of a regular n-gon of order
n. Since both r1 and r2 are reflections, we clearly have r2

1 = r2
2 = 1. Their composition

r1r2 has order n by construction so that (r1r2)n = 1, which additionally implies that
(r2r1)n = ((r1r2)−1)n = ((r1r2)n)−1 = 1−1 = 1. Then Dn is a Coxeter group of Coxeter
type M =

(
1 n
n 1

)
, its Coxeter graph being a single edge with weight n.

A diagram over a type set I is a map D that assigns to every unordered pair {i, j} ⊆ I a
class D(i, j) of rank two geometries over {i, j}. Such a diagram is called a Coxeter diagram
if there exists a Coxeter matrix M = (mi,j)i,j∈I such that every class D(i, j), i, j ∈ I,
is the class of generalised mi,j-gons. Coxeter diagrams can be viewed as weighted graphs
with vertex set I, in which two vertices i, j ∈ I are connected by an edge of weight mi,j if
and only if D(i, j) is the class of generalised mi,j-gons. Since clearly mi,j > 2 in Coxeter
diagrams, they correspond naturally to Coxeter graphs.

The above paragraph, in combination with the construction of chambers systems ob-
tained from geometries, now enables us to establish a connection between chamber systems
and Coxeter systems, as characterised by the following proposition.

Proposition 4.2.14. Let Γ be a geometry over a type set I and let M = (mi,j)i,j∈I be a
Coxeter matrix. If Γ is a thin geometry of Coxeter type M , then the group generated by the
set of permutations on the set of chambers of Γ sending a chamber to its unique i-adjacent
chamber for every i ∈ I is a Coxeter group.

Proof. Let C(Γ) be the chamber system of Γ. Since Γ is thin, so will C(Γ) be, meaning that
every i-panel of C(Γ) has size exactly two for every i ∈ I. By definition, every equivalence
class of ∼i, i ∈ I, will then have size two so that every chamber in C is i-adjacent to a
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unique chamber. Now let {σi | i ∈ I} be the set of permutations on C sending a chamber
x ∈ C to the unique chamber y ∈ C satisfying x ∼i y. Clearly, we have σ2

i = 1 for all i ∈ I,
since the unique chamber adjacent to the unique chamber adjacent to a chamber x ∈ C is
x itself, showing that (σiσi)

mi,i = σ2
i = 1 for all i ∈ I. In addition, for all i, j ∈ I, any

rank two subgeometry of Γ over {i, j} will be a generalised mi,j-gon because Γ has Coxeter
type M , which shows that σij = σiσj has order mi,j . Then (σiσj)

mi,j = 1 for all i, j ∈ I,
and so the group generated by {σi | i ∈ I} is a Coxeter group by Definition 4.2.12.

Our previous discussion of diagrams D and chamber systems C = (C, {∼i| i ∈ I})
obtained from geometries Γ = (X, ∗, τ) also gives rise to the following definition.

Definition 4.2.15 (Chamber system of type D). Let C = (C, {∼i| i ∈ I}) be a chamber
system over a type set I and let D be a diagram over I. If every {i, j}-cell is the chamber
system of a residually connected geometry Γ belonging to D(i, j) for every type subset
{i, j} ⊆ I, then C is said to be a chamber system of type D.

A similar notion exists for geometries; a geometry of type D is a geometry Γ = (X, ∗, τ)
over a type set I such that for all {i, j} ⊆ I the residue ΓF of a flag flag F of Γ of type
{i, j} is isomorphic to a geometry in D(i, j). A geometry Γ of type D with D a Coxeter
diagram is also called a geometry of Coxeter type M .

If C = (C, {∼i| i ∈ I}) is a chamber system over a type set I of type D with D a Coxeter
diagram, we say that C is a chamber system of type M . Note that a chamber system of type
M will be firm as any generalised mi,j-gon is firm. Related to a chamber system of type
M is a Coxeter chamber system of type I; given a Coxeter system (W (M), R) of type M ,
it is the chamber system (W (M), {∼i| i ∈ I}), in which x ∼i y with x, y ∈ W (M) if and
only if xri = y with ri ∈ R. The chambers x, y ∈ W (M) are then said to be ri-adjacent,
and we denote a Coxeter chamber system by C(M).

Example 4.2.16. Let n ≥ 2 be a finite integer and consider a regular n-simplex in En+1.
Since a regular n-simplex is a specific type of polytope in En, it is a residually connected
geometry Γ over the type set I = {0, . . . , n − 1}. It is well-known that the group of
symmetries of a regular n-simplex is isomorphic to the symmetric group on n+1 elements,
which we will denote by Symn+1. Therefore, we may identify the chambers of a regular
n-simplex by the permutations in Symn+1. Now let {σi | i ∈ I} be the set of transpositions
σi = (i+ 1 i+ 2) ∈ Symn+1, i ∈ I, which generate Symn+1. We then obtain the chamber
system C(Γ) = (Symn+1, {∼i| i ∈ I}), in which α ∼i β with α, β ∈ Symn+1 if and only
if ασi = β. Since all σi, i ∈ I, are transpositions, we clearly have σ2

i = 1 for all i ∈ I.
Furthermore, we have for all distinct i, j ∈ I that σiσj = (i + 1 i + 2)(j + 1 j + 2).
Assuming w.l.o.g. that i < j, we deduce that σiσj is a product of disjoint transpositions
having order 2 if i+1 6= j, whereas σiσi+1 = (i+1 i+2)(i+2 i+3) = (i+1 i+2 i+3)
having order 3, in which composition has been done from right to left. We conclude for
all distinct i, j ∈ I that (σiσj)

2 = (σjσi)
2 = 1 if i + 1 6= j and (σiσj)

3 = (σjσi)
3 = 1 if
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i+ 1 = j. This shows that C(Γ) is of Coxeter type M , with M being the symmetric matrix
having ones on its diagonals, threes on its off-diagonals and twos everywhere else.

The Coxeter type of the Coxeter group from Example 4.2.13 is In, whereas the chamber
system from Example 4.2.16 above is of type An. The Coxeter systems obtained from both
examples will be irreducible. The Coxeter diagrams and their types corresponding to
irreducible Coxeter systems can be seen in Table 1 below, its nodes labeled as in Bourbaki
[4].

Type Coxeter diagram Type Coxeter diagram

An
1 2 n− 1 n F4

1 2 3 4

BCn
1 2 n− 1 n G2

1 2

Dn
1 2 n− 2

n− 1

n H3

5

1 2 3

E6
1

2

3 4 5 6 H4

5

1 2 3 4

E7
1

2

3 4 5 6 7 In

n

1 2

E8
1

2

3 4 5 6 7 8

Table 1: An overview of irreducible Coxeter diagrams and their types.

In the above table, the subscript of every type indicates the number of vertices its
corresponding Coxeter diagram contains, except for In where it indicates the weight of its
single edge. Single edges without a specified weight are edges having weight 3, whereas
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double edges have weight 4 and triple edges have weight 6. Edges having weight greater
than 2 but not equal to 3, 4 or 6 have their weight displayed above them.

We return to our discussion of chamber systems C = (C, {∼i| i ∈ I}) of Coxeter type
M over a type set I. In particular, let (W (M), R) be a Coxeter system of type M and
denote by R∗ the free monoid of R, its elements being all sequences r1 · · · rn, n ≥ 0 finite,
of elements r1, . . . , rn ∈ R. Given a simple gallery γ in C consisting of a sequence of distinct
chambers x1, . . . , xn ∈ C, n ≥ 3 finite, the element r = r2 · · · rn ∈ R∗ is said to be the
type of γ if xi is ri-adjacent to xi−1 for every 2 ≤ i ≤ n. The type of a simple gallery γ is
called minimal if r2 · · · rn ∈ R∗ is a minimal expression of r, i.e. the number of elements in
any other expression of r ∈ R∗ contains at least as many elements as r2 · · · rn. This finally
enables us to define buildings.

Definition 4.2.17 (Building). Let I be a type set and let C = (C, {∼i| i ∈ I}) be a
chamber system of Coxeter type M = (mi,j)i,j∈I . Then C is called a building of type M
if every simple closed gallery of minimal type consists of a single chamber in C.

A building C of type M is called spherical if the Coxeter group W (M) of type M is
finite. A building C is called firm, thick or thin if its underlying chamber system is firm,
thick or thin, respectively. It is called irreducible if its Coxeter diagram is connected and
reducible otherwise. Its rank is the cardinality |I| of the type set I. An apartment of
a building C of type M is a chamber subsystem of C isomorphic to the Coxeter chamber
system C(M).

Example 4.2.18. Let I be a type set and let C = (W (M), {∼i| i ∈ I}) be a Coxeter
chamber system of type I with (W (M), R) a Coxeter system of type M . By definition, C
is thin, implying that every chamber in W (M) is i-adjacent to unique chamber in W (M).
Consequently, C cannot contain any simple closed galleries; any simple closed gallery γ
consisting of distinct chambers x1, . . . , xn ∈ W (M), n ≥ 1 finite, satisfies xn = x1 and is
clearly trivial if n ≤ 2, but also if n ≥ 3, the case n = 3 being settled by minimality of the
type of γ, whereas for n ≥ 4 we have x2 = xn−1, contradicting simplicity of γ. It follows
that any Coxeter chamber system is a thin building.

Recall from Example 4.2.16 the chamber system C(Γ) = (Symn+1, {∼i| i ∈ I}) over
type set I = {0, . . . , n−1} of type An obtained from the geometry Γ of a regular n-simplex
in En+1 with Symn+1 the symmetric group on n + 1 elements, in which two chambers
α, β ∈ Symn+1 are i-adjacent if and only if ασi = β with σi being the transposition
(i + 1 i + 2) ∈ Symn+1. We have established in Example 4.2.4 that polytopes are thin
geometries, hence the regular n-simplex will be a thin geometry. As a consequence, so
will C(Γ) be, and we deduce that C(Γ) is a thin building using the same arguments as
for Coxeter chamber systems in the previous paragraph. In particular, C(Γ) will be an
irreducible thin building of type An having rank n.

We finish this section with the following classification of buildings C of type M under
some conditions, which will prove to be useful to us in later chapters.
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Theorem 4.2.19. Let I be a type set and let M = (mi,j)i,j∈I be a Coxeter matrix. If C
is an irreducible spherical building of type M , then M occurs in Table 1.

Proof. Since C is irreducible and spherical, its underlying Coxeter group will be irreducible
and finite. The theorem then follows from Theorem 4.7.3 in [3].

4.3 Root systems

We continue our discussion of Coxeter systems and buildings in the setting of Theorem
4.2.19 from the previous section. On the one hand, we will use the geometric representation
of Coxeter systems to elaborate on their classification, which we referred to in our proof of
Theorem 4.2.19. On the other hand, we will introduce certain types of point-line geometries
with which we can identify buildings.

Let M = (mi,j)i,j∈I be a Coxeter matrix over a type set I and let W (M) be the Coxeter
group of Coxeter type M generated by the elements of a set R = {ri | i ∈ I}. A first step
towards a geometric representation of Coxeter systems is the following abstract definition.

Definition 4.3.1 (Root system). Let V be a finite-dimensional real vector space endowed
with a positive definite, symmetric bilinear form 〈·|·〉 : V × V → R. A subset Φ ⊂ V is
called a root system of V if

(i) 0V 6∈ Φ and V = span(Φ),

(ii) for all α ∈ Φ we have cα ∈ Φ if and only if c = ±1,

(iii) for all α ∈ Φ we have σα(Φ) = Φ, where σα : V → V is the reflection on the
hyperplane orthogonal to α given by

σα(β) = β − 2〈α|β〉
〈α|α〉

α

with β ∈ V .

The rank of a root system Φ ⊂ V is the dimension dim(V ) of the ambient vector space
V . A root system Φ ⊂ V is said to be irreducible if there do not exist Φ1,Φ2 ⊂ Φ such
that Φ = Φ1 ∪Φ2 and 〈α1|α2〉 = 0 for all α1 ∈ Φ1 and α2 ∈ Φ2. A base of a root system Φ
is a subset ∆ ⊆ Φ such that for all α ∈ Φ we have α =

∑
δ∈∆ λδδ with λδ ∈ R, δ ∈ ∆, not

all zero and all of them either positive or negative. Consequently, a base of Φ partitions Φ
into the subsets Φ± = {α ∈ Φ | α =

∑
δ∈∆ λδδ, λδ ∈ R±} satisfying ±Φ+ = ∓Φ−. A root

α ∈ Φ is called positive if α ∈ Φ+ and negative if α ∈ Φ−.

Example 4.3.2. Let V = R2 be a 2-dimensional vector space over R with standard
basis B = {α1, α2} = {(1, 0)>, (0, 1)>}. We endow V with the ordinary dot product
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〈·|·〉 : V × V → V given by 〈x|y〉 = x>y, which is positive definite, symmetric and bilinear.
Then

Φ = {α1, α2 − α1,−α1, α1 − α2, α2,−α2, α1 + α2,−α1 − α2}
= {(1, 0)>, (−1, 1)>, (−1, 0)>, (1,−1)>, (0, 1)>, (0,−1)>, (1, 1)>, (−1,−1)>} ⊂ V

is a root system of V of rank 2 with base ∆ = {α1, α2 − α1} = {(1, 0)>, (−1, 1)>} and
positive root set Φ+ = {α1, α2 − α1, α2, α1 + α2} = {(1, 0)>, (−1, 1)>, (0, 1)>, (1, 1)>}.
Condition Definition 4.3.1(ii) is immediate, and condition Definition 4.3.1(i) follows from
the observation that B ⊂ Φ. To see that condition Definition 4.3.1(iii) is met, we refer to
the geometric visualisation of Φ in Figure 4 below.

α1

α1 + α2
α2α2 − α1

−α1

−α1 − α2 −α2
α1 − α2

Figure 4: A geometric visualisation of exemplary root system Φ.

Any hyperplane orthogonal to a root α ∈ Φ contains two distinct roots different from α that
are fixed by σα. The remaining roots are all reflected onto each other so that σα(Φ) = Φ.
Then Φ indeed satisfies condition Definition 4.3.1(iii), hence it is indeed a root system of
V .

Now let B = {αi | i ∈ I} be a basis of V and define fM : V × V → R to be the bilinear
form given by fM (αi, αj) = −2 cos( π

mi,j
) with i, j ∈ I. If mi,j =∞, we set fM (αi, αj) = −2.

The form fM is clearly a symmetric form as mi,j = mj,i for all i, j ∈ I, and it is moreover
positive definite as fM (αi, αi) = −2 cos( π

mi,i
) = −2 cos(π) = 2 > 0 for all i ∈ I.

For any α ∈ V , define σα : V → V to be the reflection on α⊥ given by σα(β) =
β − fM (α, β)α with β ∈ V . We then have the following.

Lemma 4.3.3. Let I be a type set and let (W (M), R) be a Coxeter system of Coxeter
type M = (mi,j)i,j∈I . Further let V be a finite-dimensional real vector space having basis
{αi}i∈I equipped with the positive definite, symmetric bilinear form fM : V ×V → R given
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by fM (αi, αj) = −2 cos( π
mi,j

) with i, j ∈ I. Then the group 〈σαi | i ∈ I〉 generated by the

reflections σαi : V → V on α⊥i given by σαi(β) = β − fM (αi, β)αi is a Coxeter group of
Coxeter type M .

Proof. Denote by Σ the set {σαi | i ∈ I} of all reflections σαi on α⊥i with i ∈ I. We show
that σ2

αi = 1 for all i ∈ I, and (σαiσαj )
mi,j = 1 for all distinct i, j ∈ I. The first assertion

is immediate from the observation that

σαi(σαi(β)) = σαi(β)− fM (αi, σαi(β))αi = β − fM (αi, β)αi − fM (αi, β − fM (αi, β)αi)αi

= β − fM (αi, β)αi − fM (αi, β)αi + fM (αi, αi)fM (αi, β)αi

= β − 2fM (αi, β)αi + 2fM (αi, β)αi = β

for all β ∈ V , implying that σαi is an involution for all i ∈ I. For the second assertion, let
i, j ∈ I be distinct and consider the subspace 〈αi, αj〉 ⊆ V . We first show that the restric-
tion fM |〈αi,αj〉 of fM to 〈αi, αj〉 is positive definite, assuming mi,j 6= ∞. The eigenvalues
of the Gram matrix (

2 −2 cos( π
mi,j

)

−2 cos( π
mi,j

) 2

)
of fM |〈αi,αj〉 are the solutions to the equation (2−λ)2− 4 cos2( π

mi,j
) = 0, which are readily

seen to be λ = 2(1 ∓ | cos( π
mi,j

)|). As | cos( π
mi,j

)| = 1 if and only if mi,j = 1 or mi,j = ∞,

both of which cannot occur, we deduce that all eigenvalues are strictly positive so that
fM |〈αi,αj〉 is positive definite. In particular, it is an inner product on 〈αi, αj〉, and so the

angle between α⊥i and α⊥j is

cos−1

(∣∣∣∣∣ fM (αi, αj)√
fM (αi, αi)fM (αj , αj)

∣∣∣∣∣
)

= cos−1

(∣∣∣∣∣−2 cos( π
mi,j

)
√

2 · 2

∣∣∣∣∣
)

=
π

mi,j
,

hence σαiσαj is a rotation over an angle of 2π
mi,j

, showing that (σαiσαj )
mi,j = 1 in 〈αi, αj〉.

But σαi(β) = 0 = σαj (β) for all β ∈ 〈αi, αj〉⊥ because 〈αi|β〉 = 0 = 〈αj |β〉, so both σαi
and σαj fix 〈αi, αj〉⊥, hence so will their product. It follows that (σαiσαj )

mi,j = 1 in the
entirety of V . In case mi,j =∞, first observe that

σαi(αi + αj) = αi + αj − fM (αi, αi + αj)αi = αi + αj − 2αi + 2αi = αi + αj

and similarly σαj (αi +αj) = αi +αj . We now claim that (σαiσαj )
n = αi + 2n(αi +αj) for

all integers n ≥ 1. For n = 1, we obtain

σαi(σαj (αi)) = σαi(αi − fM (αj , αi)αj) = σαi(αi + 2αj)

= αi + 2αj − fM (αi, αi + 2αj)αi = αi + 2αj − 2αi + 4αi = αi + 2(αi + αj),
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hence by linearity of all reflections in Σ we deduce for all n ≥ 2 that

(σαiσαj )
n(αi) = (σαiσαj )

n−1(σαi(σαj (αi))) = (σαiσαj )
n−1(αi + 2(αi + αj))

= (σαiσαj )
n−1(αi) + (σαiσαj )

n−1(2(αi + αj)) = (σαiσαj )
n−1(αi) + 2(αi + αj).

But then (σαiσαj )
n = αi + 2n(αi +αj) by induction, as claimed. We conclude that σαiσαj

has infinite order, so we may write (σαiσαj )
mi,j = 1 as mi,j =∞. It follows that the group

generated by the reflections in Σ is a Coxeter group.

In the setting of the above lemma, an immediate consequence is that a connection
can be established between Coxeter systems and real reflections groups obtained from real
vector spaces. In particular, upon denoting by 〈Σ〉 = 〈σαi | i ∈ I〉 the group generated by
the set Σ = {σαi | i ∈ I}, the map sending ri ∈ R to σαi ∈ Σ extends to a surjective group
homomorphism ρ : W (M)→ 〈Σ〉 with ρ(ri) = σαi for ri ∈ R, i ∈ I. This homomorphism
is called the geometric representation of W (M). An even stronger result due to Tits is the
following.

Theorem 4.3.4 (Tits’ representation theorem). Let I be a type set and let (W (M), R) be
a Coxeter system of Coxeter type M = (mi,j)i,j∈I . Further let V be a finite-dimensional
real vector space with basis {αi}i∈I . Denoting by 〈Σ〉 the group generated by the set of
reflections Σ = {σαi | i ∈ I} with σαi, i ∈ I, as in Lemma 4.3.3, we have W (M) ∼= 〈Σ〉.

Proof. Lemma 4.3.3 guarantees the existence of a surjective group homomorphism ρ :

W (M) → 〈Σ〉 satisfying ϕ(ri) = σαi with ri ∈ R, i ∈ I. Injectivity of the geometric
representation of W (M) follows from Theorem 4.4.16 in [3].

The geometric representation of a Coxeter group gives rise to a root system Φ =⋃
w∈W (M){ρ(w)αi | i ∈ I} ⊂ V , called the root system of W (M). The geometric represen-

tation ρ(W (M)) of a Coxeter group W (M) is said to be crystallographic if the root system
Φ of W (M) contains a base ∆ ⊂ Φ such that we have for all α ∈ Φ that α =

∑
δ∈∆ λδδ with

λδ ∈ Z, δ ∈ ∆, not all zero and all of them either positive or negative. Because the geomet-
ric representation of W (M) is an isomorphism by Theorem 4.3.4, we may equivalently say
that W (M) is crystallographic. Crystallographic reflections groups are oftentimes referred
to as Weyl groups, and they have the following property.

Proposition 4.3.5. Let I be a type set and let (W (M), R) be a Coxeter system of Coxeter
type M = (mi,j)i,j∈I . If W (M) is crystallographic, then mi,j ∈ {2, 3, 4, 6}.

Proof. Let ri, rj ∈ R with i, j ∈ I distinct. Then ρ(ri) = σαi and ρ(rj) = σαj with σαi ,
i ∈ I, as in Lemma 4.3.3. Since the geometric representation of W (M) is crystallographic,
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the trace of ρ(rirj) = σαiσαj must be integral. On the one hand, we have

σαi(σαj (αi)) = σαi(αi − fM (αj , αi)αj) = σαi(αi + 2 cos(
π

mi,j
)αj)

= αi + 2 cos(
π

mi,j
)αj − fM (αi, αi + 2 cos(

π

mi,j
)αj)αi

= −αi + 2 cos(
π

mi,j
)αj + 4 cos2(

π

mi,j
)αi

= (4 cos2(
π

mi,j
)− 1)αi + 2 cos(

π

mi,j
)αj

and similarly σαi(σαj (αj)) = 2 cos( π
mi,j

)αi+(4 cos2( π
mi,j

)−1)αj , whereas σαi(σαj (αk)) = 1

for all k 6∈ {i, j} because both σαi and σαj fix 〈αi, αj〉⊥, which we have established in
our proof of Lemma 4.3.3. But then σαiσαj has trace 2(4 cos2( π

mi,j
) − 1) + (|I| − 2) =

|I| + 8 cos2( π
mi,j

) − 4 ∈ Z, forcing 8 cos2( π
mi,j

) ∈ Z. This is the case if and only if mi,j ∈
{2, 3, 4, 6}.

We can represent an irreducible root system Φ of a crystallographic Coxeter group
W (M) in a Coxeter graph, as we did for Coxeter groups, as follows. Upon fixing a base
∆ ⊂ Φ, which satisfies |∆| = dim(V ) as Φ has rank dim(V ), we construct a graph having
vertex set ∆, conventionally labeled using the numbers 1 up to |∆|, in which any two
vertices δ, δ′ ∈ ∆ have

4fM (δ, δ′)

fM (δ, δ)fM (δ′, δ′)
= fM (δ, δ′)2

edges between them. As we have fM (αi, αj)
2 = 4 cos2( π

mi,j
) ∈ {0, 1, 2, 3} for all i, j ∈ I

because mi,j ∈ {2, 3, 4, 6} by the above proposition, the Coxeter graph of W (M) will have
at most 3 edges between any two vertices. Notice the correspondence between the number
of edges and the numbers mi,j : no edge means mi,j = 2, one edge means mi,j = 3, two
edges mean mi,j = 4 and three edges mean mi,j = 6. This agrees with our definition
of Coxeter graphs as given in the previous section. So, we may identify irreducible root
systems of crystallographic Coxeter groups by their diagrams and corresponding types as
presented in Table 1, excluding those of type H3, H4 and In as they are correspond to
non-crystallographic Coxeter groups.

The number
√
fM (α, α) with α ∈ Φ is called the root length of α, denoted by |α|. In

the crystallographic geometric representation ρ(W (M)) of W (M) whose root system is
irreducible, at most two root lengths can occur, and a root having the largest (or smallest)
of the two lengths is called long (or short). If exactly one root length occurs, all roots are
said to be long by convention. This information can also be included in a Coxeter graph by
adding an arrow between two connected vertices pointing from the long root to the short
root. Such an extended Coxeter graph is called a Dynkin diagram.
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Example 4.3.6. Consider the root system Φ ⊂ R2 from Example 4.3.2, which we have
seen has base ∆ = {α1, α2 − α1}. Its Coxeter graph contains the two vertices represented
by the roots α1, α2 − α1 ∈ ∆, connected by a total of

4〈α1|α2 − α1〉
〈α1|α1〉〈α2 − α1|α2 − α1〉

=
4 · (−1)2

1 · 2
= 2

edges. We then deduce from Table 1 that Φ is a root system of type B2. Since |α2−α1| =√
2 > 1 = |α1|, there is an arrow pointing from vertex α2 − α1 to vertex α1 in the Dynkin

diagram of Φ.

Let I be a type set and let (W (M), R) be a Coxeter system of Coxeter type M =
(mi,j)i,j∈I . The Coxeter diagram of W (M) is said to be of Weyl type if it corresponds to
a crystallographic Coxeter group, its Weyl type being the type of the Coxeter diagram of
W (M). A root type is a pair (M,J ), in which M is a Weyl type and J ⊆ I is a type
subset, occurring in one of the columns of Table 2 below.

M An (n ≥ 1) BCn (n ≥ 2) Dn (n ≥ 4) E6 E7 E8 F4 G2

J {1, n} {1}, {2} {2} {2} {1} {8} {1}, {4} {1}, {2}

Table 2: An overview of all root types.

The nodes corresponding to the elements in a type subset J of a root type (M,J )
are referred to as root nodes. They are clearly visible in affine Coxeter diagrams as the
node(s) to which an extra zeroth node in such a diagram is connected, see Table 3 below.

Note the distinction between diagram types B̃n and C̃n, and the symmetry in the extended
diagrams of type F̃4 and G̃2 which allows us to also connect the zeroth node to its fourth,
respectively second node.
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Type Affine Coxeter diagram Type Affine Coxeter diagram

Ãn

0

1 2 n− 1 n Ẽ7
0 1

2

3 4 5 6 7

B̃n

0

1 2 n− 1 n Ẽ8
01

2

3 4 5 6 7 8

C̃n
0 1 2 n− 1 n F̃4

0 1 2 3 4

D̃n

0

1 2 n− 2

n− 1

n G̃2
0 1 2

Ẽ6

0

1

2

3 4 5 6

Table 3: An overview of irreducible affine Coxeter diagrams and their types.

4.4 Root shadow spaces

We are now almost in a position to introduce root shadow spaces. First, however, we briefly
revisit geometries for some additional required theory.

Let I be a type set and let Γ = (X, ∗, τ) be an I-geometry over I. Further let J ⊆ I
be a non-empty type subset of I. Given a flag F of Γ, the J -shadow of F is the set of
all flags F ′ of Γ type τ(F ′) = J such that x ∗ y for some x ∈ F and y ∈ F ′, denoted by
ShJ (F ). If F itself has type I \ {j} for some j ∈ J , then the J -shadow ShJ (F ) of F is
called a j-line. We have the following definition.

Definition 4.4.1 (Shadow space). Let J ⊆ I be a non-empty type subset of some type set
I and let Γ = (X, ∗, τ) be an I-geometry over I. Further let P = ShJ (∅) be the set of flags
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of type J and let L be the set of all j-lines, j ∈ J . The pair (P,L) is called the shadow
space of Γ on J , denoted by ShSpJ (Γ).

Given a type subset J ′ ⊆ J , the shadow space of Γ on J ′, denoted by ShSpJ (Γ,J ′),
is the shadow space obtained from ShSpJ (Γ) = (P,L) by removing from L all j-lines with
j ∈ J \ J ′.

Since the set of flags of Γ of type J incident with some flag of type I \ {j}, j ∈ J ,
is a subset of the set all flags of Γ of type J , we have ` ⊆ P for all ` ∈ L. Moreover, as
Γ is firm, every flag F of type I \ {j} for some j is contained in at least two chambers of
Γ, each of which will contain a flag of type J incident with F , implying that |`| ≥ 2 for
all ` ∈ L. An immediate consequence is then that a shadow space ShSpJ (Γ) = (P,L) is a
point-line geometry by Definition 4.1.5.

Example 4.4.2. Consider a polytope in En, n ≥ 2 finite, which we have seen is an I-
geometry Γ over type set I = {0, . . . , n−1} with rank(Γ) = n. Now let J = {0, n−1} ⊂ I
and let ShSpJ (Γ) = (P,L) be the shadow space of Γ on J . Its points in P are all flags
of Γ of type {0, n− 1}, i.e. all the incident point-hyperplane pairs (p,H) of Γ. Any 0-line
for some flag F of Γ of type {1, . . . , n− 1} will contain all incident point-hyperplane pairs
(p,H) such that H ∈ F , whereas any (n−1)-line for some flag F of Γ of type {0, . . . , n−2}
will contain all incident point-hyperplane pairs (p,H) such that p ∈ F . Consequently,
two incident points-hyperplane pairs (p,H) and (q,K) are contained in the same 0-line for
some flag F of type {1, . . . , n − 1} if and only if H = K, and they are contained in the
same (n− 1)-line for some flag F of type {0, . . . , n− 2} if and only if p = q. Note that the
point-line geometry ShSpJ (Γ) is a partial linear space because Γ is thin.

Recall from the previous section the construction of a chamber system C(Γ) obtained
from an incidence system Γ = (X, ∗, τ) over some type set I. In order to relate shadow
spaces of a geometry Γ = (X, ∗, τ) over some type set I to a building C = (C, {∼i| i ∈ I})
of Coxeter type M = (mi,j)i,j∈I , we will do the opposite and construct an incidence system
obtained from a chamber system.

So, let C = (C, {∼i| i ∈ I}) be a chamber system over a type set set I. We then let X
be the set of all pairs (x, i) with Zi an i-object of C, define ∗ ⊆ X ×X as (Zi, i) ∗ (Zj , j)
with (Zi, i), (Zj , j) ∈ X if and only if Zi ∩ Zj 6= ∅, and define τ : X → I to be the
map given by τ((Zi, i)) = i for (Zi, i) ∈ X. The relation ∗ on X is clearly reflexive and
symmetric, and two distinct i-objects Zi and Zj of C, i ∈ I, cannot intersect by definition,
forcing Zi ∩ Zj = ∅ so that no pairs (Zi, i) and (Zj , j) with x 6= y are incident in Γ.
Equivalently, any two incident (Zi, i), (Zj , j) ∈ X satisfy τ((Zi, i)) = i 6= j = τ((Zj , j)),
hence we indeed obtain an incidence system by Definition 4.2.1, which we will denote by
Γ(C) to emphasise the dependency of its construction on C. Incidence systems obtained
from chambers systems are related to buildings in the following way.

Proposition 4.4.3. Let I be a type set and let C = (C, {∼i| i ∈ I}) be a building of
Coxeter type M = (mi,j)i,j∈I . Then Γ(C) is an I-geometry of Coxeter type M over I.
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Proof. We prove that Γ(C) = (X, ∗, τ) is a firm and residually connected geometry of type
M in three steps.

First, we show that Γ(C) is a firm geometry. By observing that any flag F of Γ(C) is a
collection {(Zj , j) ∈ X | j ∈ τ(F )} of j-objects Zj of C, one for each j ∈ τ(F ) ⊆ I, such
that any two of them have a non-empty intersection, we deduce that Z =

⋂
j∈τ(F ) Zj is an

(I \ τ(F ))-cell by residual connectedness of C. In particular, Z will be non-empty, so if F
is not a chamber then it can be extended to a chamber of Γ(C) by adding to it elements
(Zi, i) ∈ X such that every i-object Zi, one for each i ∈ I \ τ(F ), contains some chamber
z ∈ Z. It follows that Γ is a geometry, which is moreover firm as C is a chamber system of
type M .

Secondly, we show that Γ(C) is residually connected. Let F = {(Zk, k) ∈ X | k ∈ τ(F )}
be a flag of Γ(C) such that its residue Γ(C)F has rank at least two and let (Zi, i), (Zj , j) ∈
F ∗\F for an i-object Zi and j-object Zj with i, j ∈ I\τ(F ). By residual connectedness of C,
we have that Z =

⋂
k∈τ(F) Zk is a (I\τ(F ))-cell of C, hence any gallery zi = z0, . . . , zn = zj ,

n ≥ 1 finite, with zi ∈ Zi ∩ Z 6= ∅ and zj ∈ Zj ∩ Z 6= ∅, is fully contained in Z. For every
0 ≤ m ≤ n − 1, we then have zm ∼km zm+1 for some km ∈ I \ τ(F ), so the sequence
(Zi, i), (Z0, k

′
0), . . . , (Zm−1, k

′
m−1), (Zj , j), in which for every 0 ≤ l ≤ m−1 we have that Zl

is a k′l-object for some k′l ∈ I \(τ(F )∪{km}), is an (I \τ(F ))-chain in Γ(C)F from (Zi, i) to
(Zj , j) as for every 0 ≤ l ≤ m−1 we have (Zl, k

′
l)∗(Zl+1, k

′
l) because zl, zl+1 ∈ Zl∩Zl+1∩Z.

But then Γ(C)F is connected so that Γ(C) is residually connected.
Lastly, we show that Γ(C) is a geometry of type M . Let F be a flag of Γ(C) of type

{i, j} ∈ I. Note that the residue Γ(C)F is residually connected by Proposition 4.2.7(iii)
as Γ(C) is a geometry. The chambers of Γ(C)F , which are collections {(Zk, k) ∈ X | k ∈
I \{i, j} of k-objects Zk of C, one for each k ∈ I \{i, j}, all have type I \{i, j}. Therefore,⋂
k∈I\{i,j} Zk is an {i, j}-cell of C for every chamber {(Zk, k) ∈ X | k ∈ I \ {i, j}} by

residual connectedness of C. But C is a chamber system of type M , hence every {i, j}-
cell is the chamber system C(Γ) of some residually connected geometry Γ belonging to a
generalised mi,j-gon. In turn, we can identify the collection of all {i, j}-cells by the chamber
system C(Γ(C)F ), which we may because of residual connectedness of Γ(C)F , implying that
Γ(C)F belongs to a generalised mi,j-gon. Since both a generalised mi,j-gon and Γ(C)F are
residually connected, the two are in fact isomorphic. We conclude that Γ(C) is a geometry
of type M .

A consequence of the above proposition that is of particular importance is that shadow
spaces are defined for any geometry Γ(C) over some type set I obtained from a building
C = (C, {∼i| i ∈ I}) of Coxeter type M = (mi,j)i,j∈I . This enables us to finally define root
shadow spaces.

Definition 4.4.4 (Root shadow space). Let I be a type set and let C = (C, {∼i| i ∈ I})
be a building of Coxeter type M = (mi,j)i,j∈I . The shadow space ShSpJ (Γ(C)) of Γ(C) on
some type subset J ⊆ I is called a root shadow space if (M,J ) is a root type.
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The type of a root shadow space ShSpJ (Γ(C)) is its root type (M,J ). For the sake of
brevity and clarity, we will include the type subset J as a subscript in the Coxeter type
M , e.g. An,{1,n}. If J is a singleton, we will write down only its element instead of J
entirely, e.g. E6,2.

Example 4.4.5. Let I = {1, . . . , n} be a type set and let C = (C, {∼i| i ∈ I}) be a
building of type An, n ≥ 1 finite. By Proposition 11.1.9(i) in [3], it can be realised as
the chamber system C(Γ) of an I-geometry Γ over I of type An whose elements are all
i-dimensional subspaces W ⊂ V , 1 ≤ i ≤ n, of an (n + 1)-dimensional vector space V
over some division ring K, each having type dim(W ) and in which incidence is defined by
inclusion. The shadow space ShSpJ (Γ(C(Γ))) of Γ(C(Γ)) will be a root shadow space if and
only if J = {1, n}, in which case ShSpJ (Γ(C(Γ))) will be as described in Example 4.4.2.
Any 1-line containing two distinct incidence point-hyperplane pairs (p,H) and (q,H) will
consist of all incident point-hyperplane pairs (r,H) such that r ∈ 〈p, q〉, and any n-line
containing two distinct point-hyperplane pairs (p,H) and (p,K) will consist of all incident
point-hyperplane pairs (p, L) such that H ∩K ⊆ L.

By Proposition 4.1.14(ii), non-degenerate thick polar spaces are partial linear spaces,
and by Lemma 11.4.6 in [3], root shadow spaces are partial linear spaces. A stronger
connection between root shadow spaces and non-degenerate polar spaces is established by
the following corollary.

Corollary 4.4.6. Let I = {1, . . . , n}, n ≥ 3 finite, be a type set and let C = (C, {∼i| i ∈ I})
be a building of type Bn. Then the root shadow space of Γ(C) of type BCn,1 is a non-
degenerate polar space of rank n, and the root shadow space of Γ(C) of type BCn,2 or
Dn+1,2 is the dual of a non-degenerate polar space of rank n.

Proof. By Proposition 11.1.9(ii) in [3], a building of type Bn, n ≥ 3 finite, can be realised
as the chamber system C(Γ) of an I-geometry Γ of type Bn over I whose elements are all
rank i − 1 singular subspaces S ⊂ P, 1 ≤ i ≤ n, of a non-degenerate polar space (P,L)
of rank n, each having type rank(S) + 1 and in which incidence is defined by inclusion.
Its 1-elements are the points in P and its 2-elements are the lines in L. The root shadow
space of Γ(C(Γ)) of type BCn,1 has point set P, and every 1-line Sh1(F ) for some flag F
of Γ(C(Γ)) of type I \ {1} consists of all points in P incident with the unique 2-element
contained in F , i.e. a line in L. It follows that we may identify BCn,1 by the non-degenerate
polar space (P,L). The root shadow space of Γ(C(Γ)) of type BCn,2 has point set L, and
every 2-line Sh2(F ) for some flag F of Γ(C(Γ)) of type I \ {2} consists of all lines in L
incident with the unique 3-element contained in F and the unique 1-element contained in
F , i.e. the line pencil on this 1-element. So, we may identify BCn,2 by the dual of the
non-degenerate polar space (P,L).

Similarly, by Proposition 11.1.10 in [3], a building of Dn+1, n ≥ 3, can be realised as
a residually connected chamber system C(Γ) with Γ as above. Although the underlying
I-geometry Γ differs from that of a building of type Bn, n ≥ 3, on the elements of type
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greater than n − 1, it coincides on the elements of type 1 ≤ i ≤ n − 1. Consequently, all
that we have said above for the root shadow space of type BCn,2 remains true if the root
shadow space is of type Dn+1,2.

4.5 Root filtration spaces

We further characterise root shadow spaces by introducing root filtration spaces. They will
play a vital role in the upcoming chapter, as they establish a connection with buildings
and root shadow spaces on the one hand and with Lie algebras and extremal elements on
the other hand.

We first introduce some notation that we will adopt in the sequel. For a binary sym-
metric relation R ⊆ S ×S on some set S, we denote by R(t), t ∈ S, the set of all elements
s ∈ S such that (s, t) ∈ R, i.e. R(t) = {s ∈ S | (s, t) ∈ R}. Furthermore, we de-
note by R(T ), T ⊆ S, the set of all elements s ∈ S such that (s, t) ∈ R for all t ∈ T ,
i.e. R(T ) =

⋂
t∈T R(t). If T = {t, t′} ⊆ S or T = {t, t′, t′′} ⊆ S, we will also write

R(T ) = R(t, t′) or R(T ) = R(t, t′, t′′), respectively. If {Ri}i∈I is a set of relations on S
indexed by some index set I ordered by ≤, we denote by R≤i the subset of relations Rj
with j ≤ i, i.e. R≤i =

⋃
j≤iRj .

Definition 4.5.1 (Root filtration space). Let Γ = (P,L) be a partial linear space. Then
Γ is called a root filtration space if there exists a set {Pi}−2≤i≤2 of disjoint symmetric
relations Pi ⊆ P × P partitioning P × P such that

(i) the relation P−2 is equality on P × P,

(ii) the relation P−1 is collinearity in Γ of distinct points in P,

(iii) there exists a map ϕ : P1 → P satisfying Pi(p) ∩ Pj(q) ⊆ P≤i+j(ϕ(p, q)) for all
(p, q) ∈ P1 and −2 ≤ i, j ≤ 2,

(iv) P≤0(p) ∩ P≤−1(q) = ∅ for all (p, q) ∈ P2,

(v) the sets P≤−1(p) and P≤0(p) are subspaces of Γ for all p ∈ P,

(vi) the set P≤1(p) is a hyperplane of Γ for all p ∈ P.

The set {Pi}−2≤i≤2 of disjoint symmetric relations Pi ⊆ P ×P partitioning P ×P of a
root filtration space Γ = (P,L) is called the filtration of Γ. If additionally P2(p) 6= ∅ for all
p ∈ P and the collinearity graph of Γ, i.e. the graph (P,P−1), is connected, then Γ is said
to be a non-degenerate root filtration space. Two points p, q ∈ P such that (p, q) ∈ Pi are
called hyperbolic if i = 2, special if i = 1, polar if i = 0, collinear if i = −1 and commuting
if i ≤ 0. In case p and q are collinear, we call them neighbours.
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Applying Definition 4.5.1(iii) to some element r ∈ Pi(p) ∩ Pj(q) with (p, q) ∈ P1 and
−2 ≤ i, j ≤ 2 is referred to as the filtration around r. Definition 4.5.1(iv) is oftentimes called
the triangle condition on p, q and r, in which r ∈ P is an element satisfying r ∈ P≤0(p)
and r 6∈ P≤−1(q) with (p, q) ∈ P2.

Example 4.5.2. As in Example 4.4.5, let I = {1, . . . , n} be a type set and let C =
(C, {∼i| i ∈ I}) be a building of type An, n ≥ 1 finite. We have seen that the inci-
dent point-hyperplane pairs (p,H) of Γ(C(Γ)) are the points of the root shadow space
ShSp{1,n}(Γ(C(Γ))) = (P,L), and two incident point-hyperplane pairs (p,H), (q,K) ∈ P
are collinear if and only if either p = q or H = K. Now let {Pi}−2≤i≤2 be a set of symmetric
relations Pi ⊆ P × P defined by

((p,H), (q,K)) ∈ P−2 ⇐⇒ p = q and H = K,

((p,H), (q,K)) ∈ P−1 ⇐⇒ p = q or H = K and (p,H) 6= (q,K),

((p,H), (q,K)) ∈ P0 ⇐⇒ p ∈ K and q ∈ H with p 6= q and H 6= K,

((p,H), (q,K)) ∈ P1 ⇐⇒ p ∈ K and q 6∈ H or q ∈ H and p 6∈ K,
((p,H), (q,K)) ∈ P2 ⇐⇒ p 6∈ K and q 6∈ H

with (p,H), (q,H) ∈ P. It is readily seen that these five relations are disjoint and partition
P × P. It can moreover be shown that these relations satisfy Definition 4.5.1(i)-(vi), that
P2((p,H)) 6= ∅ for all (p,H) ∈ P and that the graph (P,P−1) is connected, implying that
the root shadow space of Γ(C) of type An,{1,n} is a non-degenerate root filtration space.

Now let C = (C, {∼i| i ∈ I}) be a building of type Bn or Dn+1, n ≥ 3. We have seen
in Corollary 4.4.6 that the root shadow space of Γ(C) of type BCn,2 or Dn+1,2 is the dual
(L,P∗) of a non-degenerate polar space (P,L) of rank n. The set {Li}−2≤i≤2 of symmetric
relations Li ⊆ L× L defined by

(`, `′) ∈ L−2 ⇐⇒ ` = `′,

(`, `′) ∈ L−1 ⇐⇒ 〈`, `′〉 is a singular plane,

(`, `′) ∈ L0 ⇐⇒ 〈`, `′〉 is singular but not a plane or 〈`, `′〉 is a non-singular plane,

(`, `′) ∈ L1 ⇐⇒ 〈`, `′′〉 and 〈`′, `′′〉 are singular planes for a unique line `′′ ∈ L,
(`, `′) ∈ L2 ⇐⇒ (`, `′) 6∈ L≤1,

forms a disjoint set of relations that partition L×L. In particular, they turn (L,P∗) into
a root filtration space, which will moreover be non-degenerate.

It is possible to analyse root filtration spaces using elementary graph theory without
having to necessarily rely on Definition 4.5.1(i)-(vi). This is characterised by the following
proposition, for which we require several properties of the defining relations of a root
filtration space that we will not prove here. Instead, we refer to [5] for a thorough overview.
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Proposition 4.5.3. Let Γ = (P,L) be a non-degenerate root filtration space with filtration
{Pi}−2≤i≤2 and denote by (P,P−1) the collinearity graph of Γ. Then for all p, q ∈ P we
have

(i) (p, q) ∈ P−2 if and only if p = q,

(ii) (p, q) ∈ P−1 if and only if p and q are distinct collinear points in (P,P−1),

(iii) (p, q) ∈ P0 if and only if p and q have at least two common neighbours in (P,P−1),

(iv) (p, q) ∈ P1 if and only if p and q have a unique common neighbour in (P,P−1),

(v) (p, q) ∈ P2 if and only if p and q have no common neighbours in (P,P−1).

In particular, the distance between any two points in P−2, P−1, P0 ∪P1 or P2 in (P,P−1)
is 0, 1, 2 or 3, respectively.

Proof. Both (i) and (ii) immediately follow from Definition 4.5.1(i), respectively Definition
4.5.1(ii).

For (iii), let (p, q) ∈ P0. Because Γ is non-degenerate, Lemma 7 of [5] applies, hence
there exists a point r ∈ P−1(p, q), i.e. r is a common neighbour of p and q. In turn, there
exists a point r′ ∈ P−1(p, q) different from r such that (r, r′) 6∈ P−1 by Lemma 8 of [5]. It
follows that both r and r′ are common neighbours of p and q (P,P−1).

For (iv), let (p, q) ∈ P1. Then p ∈ P1(q), hence the filtration around p ∈ P−2(p)∩P1(q)
yields p ∈ P≤−1(ϕ(p, q)), in which ϕ : P1 → P is as in Definition 4.5.1(iii). Similarly, the
filtration around q ∈ P1(p) ∩ P−2(q) yields q ∈ P≤−1(ϕ(p, q)). Consequently, ϕ(p, q) ∈
P≤−1(p, q). Since (p, q) ∈ P1 we have p 6= q and therefore ϕ(p, q) 6∈ P−2(p, q) as otherwise
p = ϕ(p, q) = q. It follows that ϕ(p, q) ∈ P−1(p, q). If r ∈ P is a point different from ϕ(p, q)
such that r ∈ P−1(p, q), then again by Definition 4.5.1(iii) we have r ∈ P−1(p) ∩ P−1(q) ⊆
P≤−2(ϕ(p, q)) = P−2(ϕ(p, q)) = {ϕ(p, q)}, so r = ϕ(p, q), a contradiction. We conclude
that ϕ(p, q) is the unique neighbour of p and q in (P,P−1).

For (v), let (p, q) ∈ P2 and suppose that r ∈ P−1(p, q). Then by Definition 4.5.1(iv),
we have r ∈ P−1(p)∩P−1(q) ⊆ P≤0(p)∩P≤−1(q) = ∅, a contradiction. Thus, p and q have
no common neighbours in (P,P−1).

For the last assertion, it is clear that any two points in P−2 and P1 have distance 0 and
1 in (P,P−1) by Proposition 4.5.3(i) and Proposition 4.5.3(ii), respectively. Any two points
in P0 ∪ P1 have at least one common neighbour, hence distance 2 in (P,P−1). Finally,
let (p, q) ∈ P2 and let ` ∈ L be a line on p. By Definition 4.5.1(vi), the set P≤1(q) is a
hyperplane of Γ, hence |P≤1(q) ∩ `| = 1 or |P≤1(q) ∩ `| = |`|. If the latter of the two is
true, then (p, q) ∈ P−1, a contradiction. So, we have (q, r) ∈ P≤−1 for some point r ∈ `.
If (q, r) ∈ P−2 then q = r ∈ ` so that (p, q) ∈ P−1, a contradiction, and if (q, r) ∈ P−1

then r is a common neighbour of p and q in (P,P−1), contradicting (p, q) ∈ P2 because of
Proposition 4.5.3(v). We then must have (q, r) ∈ P0 ∪ P1 so that the distance between q
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and r is 2. But (p, r) ∈ P−1 because p, r ∈ `, hence the distance between p and r is 1. It
follows that the distance between p and q is 3 in (P,P−1).

We finish this section with some important connections between root shadow spaces
and root filtration spaces, as mentioned earlier. Both are due to Cohen and Ivanyos [19].

Theorem 4.5.4. Let C = (C, {∼i| i ∈ I}) be a building of Weyl type M = (mi,j)i,j∈I over
some type set I. Then the root shadow space of Γ(C) is a root filtration space.

In particular, it is non-degenerate except when the root shadow space of Γ(C) is of type
BCn,1.

Proof. See Corollary 11.6.6 of [3] or Theorem 36 of [19].

A partial converse to the above theorem is given by following theorem, which further
demonstrates the strength of the connection between root shadow spaces and root filtration
spaces.

Theorem 4.5.5. Let Γ = (P,L) be a non-degenerate thick root filtration space. If the
singular rank of Γ is finite, then Γ is isomorphic to a root shadow space of type An,{1,n}
(n ≥ 2), BCn,2 (n ≥ 3), Dn,2 (n ≥ 4), E6,2, E7,1, E8,8, F4,1 or G2,1.

Proof. See Theorem 11.7.11 of [3] or Theorem 1 of [19].

4.6 Classification of polar spaces

In the last paragraph of our proof of Proposition 4.4.3, we made use of the notion of
isomorphicity between two geometries over some type set I. In general, incidence systems
can be related to one another using the following definition, comparable to Definition 4.2.10
for chamber systems.

Definition 4.6.1 (Incidence system morphisms). Let Γ = (X, ∗, τ) and Γ′ = (X ′, ∗′, τ ′)
be two incidence systems over type sets I and I ′, respectively. A weak homomorphism
between Γ and Γ′ is a map ϕ : X → X ′ such that x ∗ y =⇒ ϕ(x) ∗′ ϕ(y) and τ(x) =
τ(y) ⇐⇒ τ ′(ϕ(x)) = τ ′(ϕ(y)) for all x, y ∈ X. If moreover ϕ is bijective and its
inverse ϕ−1 is a weak homomorphism, then ϕ is said to be a correlation. If I = I ′
and τ(x) = τ ′(ϕ(x)) for all x ∈ X, then ϕ is called a homomorphism. If ϕ is both a
correlation and a homomorphism, then it is an isomorphism, in which case Γ and Γ′ are
isomorphic as incidence systems, denoted by Γ ∼= Γ′.

An injective homomorphism ϕ : X → X ′ between two incidence systems Γ = (X, ∗, τ)
and Γ′ = (X ′, ∗′, τ ′) is called an embedding of Γ in Γ′. An auto-correlation is a correla-
tion from an incidence geometry Γ = (X, ∗, τ) to itself, whereas an automorphism is an
isomorphism from an incidence geometry to itself. The sets of all auto-correlations and
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automorphisms of Γ are denoted by Cor(Γ), respectively Aut(Γ), both of which form a
group under ordinary function composition. As for chamber systems, they are related in
the sense that Aut(Γ) E Cor(Γ).

Example 4.6.2. Since graphs are polytopes in E2 over type set I = {0, 1}, any graph
morphism will be an incidence system morphism. In particular, an incidence system mor-
phism ϕ : V → V ′ between two graphs Γ = (V,E) and Γ′ = (V ′, E′) is an embedding if and
only if Γ is a subgraph of Γ′. Note that any correlation between Γ and Γ′ will automatically
be an isomorphism because their type sets coincides and because vertices and edges in Γ
are mapped to vertices, respectively edges in Γ′ so that τ(v) = τ ′(ϕ(v)) for all v ∈ V .

Let V be a 3-dimensional vector space over F2. We know from Example 4.4.2 that
it gives rise to a geometry that realises a building of type A2, so we denote it by Γ(A2).
Further let Γ be the Fano plane, its vertices labeled as in Example 4.1.6. Define the map
ϕ : Γ(A2) → Γ by (x, y, z) 7→ 4x+ 2y + z with (x, y, z) ∈ V . It can easily be verified that
ϕ establishes a homomorphism between Γ(A2) and Γ. In particular, ϕ is an isomorphism
and confirms that the Fano plane is a projective space as established in Example 4.1.18.

Let ϕ : X → X be an auto-correlation of an incidence system Γ = (X, ∗, τ) with τ(X) =
X. Then ϕ induces a permutation ϕI : I → I by surjectivity of τ . In particular, we obtain
a group homomorphism ψ : Cor(Γ)→ Sym(I) given by ϕ 7→ ϕI with ker(ψ) = Aut(Γ). If
ϕI is an involution, then ϕ is called a duality. If moreover ϕ itself is an involution, then
it is called a polarity. Examples of dualities and polarities in polytopes in En, n ≥ 2, are
rotations and reflections, respectively. We have the following lemma.

Lemma 4.6.3. Let Γ = (X, ∗, τ) be the I-geometry over I = {1, . . . , n}, n ≥ 1, whose
elements of type i, i ∈ I, are the i-dimensional subspaces W of an (n + 1)-dimensional
vector space V over a division ring K equipped with a non-degenerate reflexive sesquilinear
form f : V × V → K and in which incidence is defined by inclusion. Then the map
π : Γ→ Γ given by π(W ) = W⊥ is a polarity of Γ.

Proof. Let W,W ′ ⊂ V be non-trivial subspaces. By writing W⊥ =
⋂
w∈W w⊥ and by

noting that non-degeneracy of f implies that v⊥ is a hyperplane for all v ∈ V , in particular
for all w ∈W , we deduce that dim(W⊥) = dim(V )− dim(W ). Then τ(W ) = τ(W ′) ⇐⇒
dim(W ) = dim(W ′) ⇐⇒ dim(V ) − dim(W ) = dim(V ) − dim(W ′) ⇐⇒ dim(W⊥) =
dim(W ′⊥) ⇐⇒ τ(π(W )) = τ(π(W ′)). Moreover, if W ∗W ′, which we may assume to
mean W ⊆ W ′, then for all x ∈ W ′⊥ we have f(w, x) = 0 for all w ∈ W ′, in particular
for all w ∈ W , hence f(w, x) = 0 for all w ∈ W so that x ∈ W⊥. It follows that
W ′⊥ ⊆ W⊥, therefore W ∗W ′ =⇒ W⊥ ∗W ′⊥ = π(W ) ∗ π(W ′). This shows that π is a
weak homomorphism from Γ to itself. Clearly, it is bijective and its inverse is also a weak
homomorphism, turning π into an auto-correlation from Γ to itself.

We then know that π : Γ → Γ induces the permutation πI : I → I given by
πI(dim(W )) = dim(W⊥). Since dim((W⊥)⊥) = dim(V )−dim(W⊥) = dim(V )−(dim(V )−
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dim(W )) = dim(W ), we have πI(πI(dim(W ))) = πI(dim(W⊥)) = dim((W⊥)⊥) = dim(W )
for all non-trivial subspaces W ⊂ V . It follows that πI is an involution. Furthermore, for
any x ∈W we have f(x,w) = 0 for all w ∈W⊥. But f is reflexive, hence also f(w, x) = 0
so that x ∈ (W⊥)⊥. Together with dim((W⊥)⊥) = dim(W ), this implies (W⊥)⊥ = W . In
turn, we obtain π(π(W )) = π(W⊥) = (W⊥)⊥ = W , so π is an involution. We conclude
that π : Γ→ Γ is a polarity of Γ.

Given a projective space P = (P,L), we denote by Γ(P) the I-geometry over I =
{1, . . . , n} whose elements of type i, i ∈ I, are the (i− 1)-dimensional subspaces of P and
in which incidence is defined by inclusion. If P contains three non-collinear points and
satisfies Desargues’ theorem, then P ∼= P(V ) for some vector space V over a division ring
K by Theorem 4.1.22, in which case Γ(P) is as described in the above lemma. Equipping
V with a non-degenerate reflexive sesquilinear form will then yield a polarity π : Γ → Γ.
In particular, π maps points of P(V ) to hyperplanes of P(V ), which are subspaces of P(V )
that intersect every line of P(V ) in one or all of its points. Any two points p, q ∈ P(V )
satisfy (p⊥)⊥ = p and (q⊥)⊥ = q so that p ∈ q⊥ =⇒ q = (q⊥)⊥ ∈ p⊥ and q ∈ p⊥ =⇒
p = (p⊥)⊥ ∈ q⊥, hence p ∈ π(q) ⇐⇒ p ∈ q⊥ ⇐⇒ q ∈ p⊥ ⇐⇒ q ∈ π(p). This leads to
the following definition.

Definition 4.6.4 (Quasi-polarity). Let P = (P,L) be a projective space and denote by H
its set of hyperplanes. A map π : P → H ∪ P is called a quasi-polarity if p ∈ π(q) ⇐⇒
q ∈ π(p) for all p, q ∈ P.

The kernel of a quasi-polarity π : P → H ∪ P is the set ker(π) = {p ∈ P | π(p) = P},
and π is said to be non-degenerate if ker(π) = 0. In particular, ker(π) ⊆ P is a subspace of
P if P contains at least three non-collinear points. To see this, let p, q ∈ ker(π) and consider
a point r on the line through p and q, which is unique because P is a projective space.
Then r ∈ π(s) for all s ∈ P as π(p) = P = π(q) implies that s ∈ π(p) and s ∈ π(q) for all
s ∈ P so that p, q ∈ π(s). But then s ∈ π(r) for all s ∈ P, showing that P ⊆ π(r) and
forcing equality, whence r ∈ ker(π). It follows that the line through p and q is contained
in ker(π), thus ker(π) is a subspace of P.

Example 4.6.5. Consider again the projective space P(V ) = (P,L) on a 3-dimensional
vector space V over F2. As we have seen in Example 4.1.18 and Example 4.1.9, it is
isomorphic to the Fano plane, so we may identify P(V ) by Figure 2, its set of hyperplanes
being L. Any plane duality δ : P(V )→ P(V )∗ on P(V ) sending a point p ∈ P to a line ` ∈ L
such that p ∈ ` ⇐⇒ δ(`) ∈ δ(p) with δ(`) = {δ(p) ∈ L | p ∈ `} induces a quasi-polarity
π : P(V )→ P(V ) on P(V ) sending a point p ∈ P to δ(p) ∈ L; indeed, as δ2 = idP , we have
p ∈ π(q) ⇐⇒ δ(δ(p)) = p ∈ δ(q) ⇐⇒ q = δ(δ(q)) ∈ δ(p) ⇐⇒ q ∈ π(p).

Let π : P → H ∪ P be a quasi-polarity on a projective space P(V ) = (P,L) for
some vector space V of dimension at least three over a division ring K with H the set
of hyperplanes of P(V ). Upon endowing V with a non-degenerate sesquilinear form f :
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V × V → K, we may assume that π(p) = p⊥ for all p ∈ P as non-degeneracy of f implies
that p⊥ ∈ H for all p ∈ P. But then we find for all p, q ∈ P that f(p, q) = 0 ⇐⇒ q ∈
p⊥ ⇐⇒ p ∈ q⊥ ⇐⇒ f(q, p) = 0, turning f into a reflexive form. Conversely, given a
non-degenerate reflexive sesquilinear form f : V × V → K, we define π : P → H ∪ P to
be the map given by π(p) = {q ∈ P | f(p, q) = 0} = p⊥, which is a hyperplane in H by
non-degeneracy of f . But then q ∈ p⊥ ⇐⇒ f(p, q) = 0 ⇐⇒ f(q, p) = 0 ⇐⇒ p ∈ q⊥,
which turns π into a quasi-polarity.

The above discussion shows that we may identify any quasi-polarity by a non-degenerate
reflexive sesquilinear form and vice versa. This brings us to the following corollary.

Corollary 4.6.6. Let P(V ) = (P,L) be a projective space for some vector space V of
dimension at least three over a division ring K and denote by H its set of hyperplanes.
Then any quasi-polarity π : P → H ∪ P is a quasi-polarity πf : P → H ∪ P induced by
either a symmetric bilinear, alternating bilinear or Hermitian form f : V × V → K.

Proof. By the above, any quasi-polarity π : P → H ∪ P of P(V ) gives rise to a non-
degenerate reflexive sesquilinear form f : V × V → K, and conversely, any non-degenerate
reflexive sesquilinear form f : V × V → K gives rise to a quasi-polarity π : P → H ∪ P of
P(V ). Therefore, any quasi-polarity π : P → H ∪ P is a quasi-polarity πf : P → H ∪ P
induced by some non-degenerate reflexive sesquilinear form f : V × V → K. But every
non-degenerate reflexive sesquilinear form f : V × V → K is proportional to a symmetric
bilinear form, an anti-symmetric form or a Hermitian form by Theorem 2.2.8. The corollary
then follows immediately.

We construct a point-line geometry from a projective space P(V ) = (P,L) for some
vector space V over a division ring K using a quasi-polarity π : P → H ∪ P with H
the set of hyperplanes of P(V ). It will be the point-line geometry Γπ having point set
Pπ = {p ∈ P | p ∈ π(p)}, its elements being referred to as absolute points, and line set
Lπ = {` ∈ L | ∀p ∈ ` : p ∈ π(p)}, its elements being referred to as absolute lines. We will
refer to Γπ as the absolute of π in P(V ).

By the above corollary, π : P → H ∪ P is a quasi-polarity πf : P → H ∪ P for some
non-degenerate reflexive sesquilinear form f : V × V → K. Moreover, any absolute point
p ∈ Pπ satisfies p ∈ πf (p) ⇐⇒ f(p, p) = 0 so that p is an f -isotropic vector in V , and
any absolute line ` ∈ Lπ satisfies ∀p ∈ ` : p ∈ π(p) ⇐⇒ ∀p ∈ ` : f(p, p) = 0, hence `
is a totally f -isotropic subspace of V . We obtain a point-line geometry Γf whose points
are the f -isotropic vectors of V and whose lines are the 2-dimensional totally f -isotropic
subspaces of V . In particular, we have Γπ = Γf . This leads to the following.

Lemma 4.6.7. Let P(V ) = (P,L) be the projective space of some vector space V of
dimension at least three over a division ring K having at least three non-collinear points
and let f : V × V → K be a non-degenerate reflexive sesquilinear form on V . Then the
point-line geometry Γf whose points are the f -isotropic vectors of V and whose lines are
the 2-dimensional totally f -isotropic subspaces of V is a polar space.
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Proof. By Corollary 4.6.6, f induces a polarity πf : P → H ∪ P with H the set of hyper-
planes of P(V ). So, we may equivalently show that the absolute Γπf = (Pπf ,Lπf ) of πf in
P(V ) is a polar space.

Let p ∈ Pπ and ` ∈ Lπ. Then p ∈ π(p), but also π(p) ∈ H by non-degeneracy of f .
Therefore, |π(p)∩ `| = 1 or |π(p)∩ `| = |`|. In the former case, p is collinear with a unique
point on `, whereas p is collinear with all points of ` in the latter case. It follows that Γπ,
hence also Γf , is a polar space.

By Theorem 2.2.8, we may assume the form f : V × V → K to be either symmetric
bilinear, alternating bilinear or Hermitian. Up to isomorphism, this limits the possibilities
for Γf ; it provides a first step towards classifying polar spaces. The following definition
introduces another type of form on V that is required for this classification. Recall the
definition of an admissible pair from Definition 2.2.5.

Definition 4.6.8 (Generalised pseudo-quadratic form). Let V be a vector space over a
division ring K and let Kσ,ε = {λ − ελσ | λ ∈ K} with (σ, ε) an admissible pair. A
map Q : V → K/G with G a proper additive subgroup of K containing Kσ,ε is called a
generalised pseudo-quadratic form if Q(λv) = λQ(v)λσ for all v ∈ V and λ ∈ K.

The additive subgroup G of K containing Kσ,ε satisfies λGλσ ⊆ G for all λ ∈ K and
is called a (σ, ε)-form parameter. If G = {0}, the form Q is called a quadratic form,
whereas it is called a pseudo-quadratic form if G = Kσ,ε. A generalised pseudo-quadratic
form Q : V → K/G induces a (σ, ε)-sesquilinear form fQ : V × V → K/G satisfying
Q(u+v) = Q(u)+Q(v)+(f(u, v)+G) for all u, v ∈ V , referred to as the sesquilinearisation
of Q. The radical of Q is the set rad(Q) = Q−1(G)∩rad(fQ), and Q is called non-degenerate
if rad(Q) = {0} and degenerate otherwise. A vector v ∈ V is said to be Q-singular if
Q(v) ∈ G, and a subspace W ⊆ V is said to be totally Q-singular if Q(w) ∈ G for all
w ∈ W . The dimension of a maximal totally Q-singular subspace of V is an invariant,
referred to as the Witt index of Q.

Example 4.6.9. Let Fq be the finite field with q a prime power such that char(Fq) = 2,
and let V = F2n

q , with n ≥ 1 an integer, be a 2n-dimensional vector space over Fq. Further
let (σ, ε) be an admissible pair and let Kσ,ε = {λ − ελσ | λ ∈ K}. Endow V with the
form Q : V → K/Kσ,ε given by Q(v) = v1v2 + · · ·+ v2n−1v2n with v = (v1, . . . , v2n)> ∈ V .
By noting that Q(λv) = λ2Q(v), we take σ = idFq so that Q will be a pseudo-quadratic
form. An easy calculation shows that Q(u + v) = Q(u) + Q(v) + u>Av for all u, v ∈ V ,
in which A is the block-diagonal matrix with blocks

(
0 1
1 0

)
so that fQ(u, v) = u>Av is the

sesquilinearisation of Q. It is a symmetric reflexive sesquilinear form since f(u, v) = f(v, u)
for all u, v ∈ V , forcing (σ, ε) = (idFq , 1) so that Kσ,ε = {0}. We have f(u, u) = 2Q(u) = 0
because char(Fq) = 2, hence every vector in V is fQ-isotropic. In addition, it is readily
seen that fQ is non-degenerate, so Q will be non-degenerate as well.
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A (pseudo-)quadratic form Q : V → K/G gives rise to a point-line geometry ΓQ =
(PQ,LQ) whose points are theQ-singular vectors in V and whose lines are the 2-dimensional
totally Q-singular subspaces of V . This point-line geometry is called the (pseudo-)quadric
of Q in V and has the following properties.

Proposition 4.6.10. Let V be a vector space of dimension at least three over some division
ring K and assume that the projective space P(V ) of V contains at least three non-collinear
points. Further let Q : V → K/G with G ⊇ Kσ,ε = {λ− ελσ | λ ∈ K} for some admissible
pair (σ, ε) be a non-trivial (pseudo-)quadratic form of V . Then the (pseudo-)quadric ΓQ =
(PQ,LQ) of Q in V is a polar space, and it coincides with the absolute ΓfQ = (PfQ ,LfQ)
of the sesquilinearisation fQ : V × V → K/G of Q if Kσ,ε = Kσ,ε = {λ ∈ K | λ+ ελσ = 0}.

In particular, ΓQ is non-degenerate if PQ spans P(V ) and if ΓfQ is non-degenerate.

Proof. As 0 ∈ Kσ,ε ⊆ G, it suffices to prove the proposition in case Q is pseudo-quadratic,
i.e. G = Kσ,ε. For the first assertion, we show that ΓQ is a subspace of ΓfQ ; since ΓfQ is a
polar space by Lemma 4.6.7, then ΓQ will be a polar space as well.

First, we show that PQ ⊆ PfQ . So, let p ∈ PQ, i.e. Q(p) ∈ Kσ,ε, then also Q(λp) =
λQ(p)λσ ∈ Kσ,ε. By observing that for all λ, µ ∈ K such that λ − ελσ, µ − εµσ ∈ Kσ,ε we
have (λ − ελσ) ± (µ − εµσ) = (λ ± µ) − ε(λ ± µ)σ ∈ Kσ,ε, we deduce that Kσ,ε is closed
under addition and subtraction. Therefore, λfQ(p, p)µσ = fQ(λp, µp) = Q(λp + µp) −
Q(λp) − Q(µp) + Kσ,ε ∈ Kσ,ε for all λ, µ ∈ K. But then fQ(p, p) 6= 0 forces Kσ,ε = K so
that K/Kσ,ε = {0}, contradicting that Q is non-trivial. It follows that fQ(p, p) = 0, hence
p ∈ PfQ and so PQ ⊆ PfQ .

Next, we show that LQ ⊆ LfQ , so let `pq ∈ LQ be a line on two collinear points
p, q ∈ PQ. To show that `pq ∈ LfQ , it suffices to show that f(p, q) = 0; indeed, if this is
the case then

fQ(λp+ µq, λp+ µq) = λfQ(p, p)λσ + λfQ(p, q)µσ + µfQ(q, p)λσ + µfQ(q, q)µσ = 0

for all λ, µ ∈ K, since p, q ∈ PQ ⊆ PfQ implies fQ(p, p) = 0 = fQ(q, q) and since reflexivity
of fQ by Proposition 2.2.6 implies fQ(p, q) = 0 = fQ(q, p). By definition, Q(λp+µq) ∈ Kσ,ε

for all λ, µ ∈ K, hence λfQ(p, q)µσ = fQ(λp, µq) = Q(λp+µq)−Q(λp)−Q(µq)+Kσ,ε ∈ Kσ,ε

for all λ, µ ∈ K. As before, we cannot have fQ(p, q) 6= 0 for otherwise Q would be trivial.
But then fQ(p, q) = 0 and so `pq ∈ LfQ by the above, whence LQ ⊆ LfQ . We conclude
that ΓQ ⊆ ΓfQ , thus ΓQ is a polar space.

For the second assertion, it will suffice to prove that PfQ ⊆ PQ, as then automatically
LfQ ⊆ LQ; indeed, if `pq ∈ LfQ , then fQ(λp + µq, λp + µq) = 0 for all λ, µ ∈ K implies
Q(λp+µq) ∈ Kσ,ε for all λ, µ ∈ K and thus `pq ∈ LQ. So, let p ∈ PfQ . Because fQ(p, p) = 0,
we have for all λ, µ ∈ K that

Kσ,ε 3 Q((λ+ µ)p)−Q(λp)−Q(µp) = (λ+ µ)Q(p)(λ+ µ)σ − λQ(p)λσ − µQ(p)µσ

= λQ(p)µσ + µQ(p)λσ,

103



hence

Kσ,ε 3 λQ(p)µσ + µQ(p)λσ − (µQ(p)λσ − ε(µQ(p)λσ)σ) = λQ(p)µσ + ελσ
2
Q(p)σµσ

= λQ(p)µσ + ε(ε−1λε)Q(p)σµσ = λ(Q(p) + εQ(p)σ)µσ

as Kσ,ε is closed under subtraction. But then Q(p) + εQ(p)σ = 0 for otherwise Kσ,ε = K so
that K/Kσ,ε = {0}, contradicting that Q is non-trivial. It follows that Q(p) ∈ Kσ,ε = Kσ,ε

and so p ∈ PQ.
For the third assertion, assume that PQ spans P(V ) and that ΓfQ is non-degenerate.

Now suppose towards a contradiction that r ∈ rad(ΓQ) = P⊥Q . Then for all p ∈ PQ there is
a line `pr ∈ LQ ⊆ LfQ on p and r, which implies fQ(p, r) = 0 by the above. But PQ spans
P(V ), hence PQ = PfQ so that fQ(p, r) = 0 for all p ∈ PfQ . But then r ∈ rad(fQ) = ∅, a
contradiction. It follows that rad(ΓQ) = ∅ so that ΓQ is non-degenerate.

Let Γ = (X, ∗, τ) be a thick residually connected geometry of type An, n ≥ 1, over type
set I = {1, . . . , n}. The Grassmannian of Γ of type i ∈ I is the shadow space ShSpi(Γ)
on i. Specifically, by Example 4.4.5, the shadow space ShSp1(Γ) is the projective space
P(V ) = (P,L) of some vector space V , dim(V ) = n, over a division ring K, whereas the
shadow space ShSp2(Γ) is the point-line geometry obtained as the dual of P(V ) whose
point set is L and whose lines are the line pencils Lp = {` ∈ L | p ∈ `} with p ∈ P, all of
whose members are contained in a plane of P(V ). Note that such a plane is required to be
singular in case P(V ) is a polar space. The shadow space ShSp2(Γ) is also referred to as
the Grassmannian of lines of Γ, denoted by An,2(K) if ShSp2(Γ) has finite singular rank
n ≥ 2.

The above discussion enables us to define classical polar spaces as a means of classifying
polar spaces.

Definition 4.6.11 (Classical polar space). Let Γ = (P,L) be a polar space. If Γ is
isomorphic to at least one of

(i) the Grassmannian of lines A3,2(K) of a thick projective space over some division ring
K of dimension three,

(ii) the absolute Γf of a Hermitian form f : V × V → K in a vector space V over some
division ring K,

(iii) the pseudo-quadric ΓQ of a pseudo-quadratic form Q : V → K/Kσ,ε with Kσ,ε =
{λ − ελσ | λ ∈ K} for some admissible pair (σ, ε) in a vector space V over some
division ring K,

then Γ is said to be a classical polar space.
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We have already seen an example of a classical polar space belonging to Definition
4.6.11(i); the root shadow space of type BCn,2 or Dn+1,2 of the geometry Γ(C) of a building
C = (C, {∼i| i ∈ I}) of type Bn or Dn+1, n ≥ 3, over type set I = {1, . . . , n} as introduced
in Example 4.5.2. Some more examples of classical polar spaces belonging to Definition
4.6.11(ii)-(iii) are given below.

Example 4.6.12. Let V be an (n+ 1)-dimensional vector space over Fq2 with q a prime
power and n ≥ 1 an integer. Define σ : Fq2 → Fq2 to be the map given by λσ = λq

with λ ∈ Fq2 , which is an automorphism of Fq2 called the Frobenius automorphism. The
form f : V × V → Fq2 given by f(u, v) = u>vσ is readily seen to be a non-degenerate
Hermitian form on V . The points of the absolute Γf of f in V will be the vectors v =

(v1, . . . , vn+1)> ∈ V satisfying f(v, v) = vq+1
1 + · · · + vq+1

n+1 = 0. We obtain the Hermitian
variety in P(V ) = PG(n, q2), denoted by H(n, q2).

Recall from Example 4.6.9 the pseudo-quadratic form Q : V → K given by Q(v) =
v1v2 + · · · + v2n−1v2n with v = (v1, . . . , v2n)> ∈ V on a 2n-dimensional vector space over
Fq with n ≥ 1. The points of the pseudo-quadric ΓQ of Q in V will be the vectors v ∈ V
satisfying Q(v) = 0. This yields the hyperbolic quadric in P(V ) = PG(2n − 1, q), denoted
by Q+(2n− 1, q).

The classification of polar spaces of finite rank is due to Tits [8], Buekenhout and Shult
[16] and Veldkamp [12], with extensions to polar spaces of infinite rank due to Buekenhout
[31], Johnson [30] and Pasini et al. [22]. We will, however, adapt the version presented in
[32] for the sake of notational consistency.

Theorem 4.6.13. Let Γ = (P,L) be a non-degenerate thick polar space of finite rank at
least three. Then Γ is either

(i) the pseudo-quadric ΓQ of a pseudo-quadratic form Q : V → K/Kσ,ε with Kσ,ε =
{λ − ελσ | λ ∈ K} for some admissible pair (σ, ε) in a vector space V over some
division ring K, or

(ii) the absolute Γf of a symplectic form f : V × V → K in a vector space V over a field
F having characteristic different from two, or

(iii) the Grassmannian of lines A3,2(K) of a thick projective space over some division ring
K of dimension three, or

(iv) the root shadow space of type EK7,1 of a building of type EK7 with EK7 the adjoint group
of the simple group of exceptional Lie type E7 corresponding to the Cayley algebra K
over some field F.

Proof. See Theorem 1 of [16].
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For a classification of the finite classical polar spaces, two of which we have already
discussed in Example 4.6.12, we refer to [10].

We finish this section with a classification of polar spaces obtained as the image ε(Γ)
of a polar space Γ = (P,L) admitting an embedding ε : Γ ↪→ P(V ) in the projective space
P(V ) of some vector space V over a division ring K. To do so, we formalise the concept of
embeddings.

Definition 4.6.14 (Projective embedding). Let Γ = (P,L) be a point-line geometry and
let P(V ) be a projective space for some vector space V over a division ring K. A projective
embedding of Γ in P(V ) is an injective map ε : Γ ↪→ P(V ) such that ε(P) =

⋃
p∈P ε(p)

spans P(V ) and ε(L) =
⋃
`∈L ε(`) with ε(`) = {ε(p) | p ∈ `} is a subset of the set of

projective lines of P(V ).

A point-line geometry Γ = (P,L) that admits an embedding ε : Γ ↪→ P(V ) in the
projective space P(V ) of some vector space V over a division ring K is said to be embeddable.
If ε′ : Γ ↪→ P(V ′) is another embedding of Γ in a vector space V ′ over K, we say that ε
and ε′ are (iso)morphic if there exists a surjective (iso)morphism ϕ : P(V ) � P(V ′) such
that ε′ = ϕ ◦ ε. We have ker(ϕ) ∩ ε(P) = ∅, and the intersection of ker(ϕ) with 〈p, q〉 will
be trivial for all distinct points p, q ∈ P. The embedding ε is also said to cover ε′, which
we will denote by ε → ε′. If ϕ is an isomorphism or if ε → ε′ → ε, the embeddings ε and
ε′ are isomorphic and we write ε ∼= ε′. An embedding ε : Γ ↪→ P(V ) of Γ in P(V ) is called
relatively universal if ε ∼= ε′ for any embedding ε′ : Γ ↪→ P(V ) of Γ in P(V ) such that
ε′ → ε. If moreover ε → ε′, then ε is said to be absolutely universal. The ε-image ε(S) of
a subspace S of Γ will be a subspace of P(V ), and conversely, the preimage ε−1(S) of a
subspace S of P(V ) under ε will be a subspace of Γ.

Example 4.6.15. Let Γ = (P,L) be the point-line geometry with P = {p1, . . . , p5} and
L = {`1, `2} = {{p1, p2, p3}, {p1, p4, p5}}, which is clearly connected. Further let P(V ) =
PG(2, 2) be projective space of a 3-dimensional vector space V over F2, which we have seen
is the Fano plane in Example 4.1.18, with point set {p′1, . . . , p′7} and line set {`′1, . . . , `′7}.
Under the harmless assumption that `′1 = {p′1, p′2, p′3} and `′2 = {p′1, p′4, p′5}, the map ε :

Γ ↪→ PG(2, 2) given by ε(pi) = p′i, 1 ≤ i ≤ 5, will be an embedding of Γ in PG(2, 2); indeed,
the map is clearly injective, the smallest subspace of PG(2, 2) containing ε(P) is the entire
point set of PG(2, 2), and ε(L) = {`′1, `′2} is a subset of the line set of PG(2, 2). Now let
ε′ : Γ ↪→ PG(2, 2) be an embedding of Γ in PG(2, 2) such that ε′ → ε. It then follows that
ε ∼= ε′ from the observation that the isomorphism ϕ : PG(2, 2)→ PG(2, 2) mapping ε′(L)
to ε(L) yields ε = ϕ ◦ ε′ so that ε is relatively universal in PG(2, 2). In particular, we have
ε′ = ϕ−1 ◦ ε, hence ε→ ε′, which shows that ε is absolutely universal in PG(2, 2). Clearly,
the only proper subspaces of Γ are its points {pi}, 1 ≤ i ≤ 5, and its lines `1 and `2. Their
images under ε yield the subspaces {p′i}, 1 ≤ i ≤ 5, `′1 and `′2 of PG(2, 2). The converse is
true by taking the images under ε−1.

106



The classification of polar spaces obtained as the image ε(Γ) of a polar space Γ = (P,L)
admitting an embedding ε : Γ ↪→ P(V ) in the projective space P(V ) of some vector space V
over a division ring K is due to Tits [8] and relates embedded polar spaces to sesquilinear
forms and pseudo-quadratic forms. We present this classification as the following theorem,
adopting the notation from Theorem 2.1 of [17].

Theorem 4.6.16. Let Γ = (P,L) be a polar space of rank n ≥ 2 admitting a relatively
universal embedding ε : Γ ↪→ P(V ) in the projective space P(V ) of some vector space V
over a division ring K. Then either ε(Γ) = ΓQ for a non-degenerate pseudo-quadratic form
Q : V → K/Kσ,ε on V with Kσ,ε = {λ − ελσ | λ ∈ K} for some admissible pair (σ, ε), or
char(K) 6= 2 and ε(Γ) = Γf for a non-degenerate alternating bilinear form f : V × V → K
on V .

In particular, ε will be absolutely universal except if n = 2, dim(V ) = 4 and either
ε(Γ) = Q+(3, q) or K is a quaternion division ring with Kσ,ε being 1-dimensional over
Z(K) and σ|Z(K) = idZ(K).

Proof. See Corollary 8.7 of [8].

4.7 Embeddings of root filtration spaces

We finish our discussion of polar spaces and instead continue with projective embeddings
of a non-degenerate root filtration space Γ = (P,L). We start with the following definition.

Definition 4.7.1 (Polarised embedding). Let ε : Γ ↪→ P(V ) be a projective embedding of
an embeddable non-degenerate root filtration space Γ = (P,L) in the projective space P(V )
of some vector space V over a division ring K. The embedding ε : Γ ↪→ P(V ) is said to be
polarised if ε(p⊥) = ε(P≤1(p)) is contained in a hyperplane of P(V ) for all p ∈ P.

Let ε : Γ ↪→ P(V ) be a polarised embedding of a non-degenerate root filtration space
Γ = (P,L) with filtration {Pi}−2≤i≤2 in the projective space P(V ) of some vector space
V over a division ring K. The radical of ε is the set rad(ε) =

⋂
p∈P〈ε(P≤1(p)〉, i.e. the

intersection of the spans of ε(P≤1(p)), p ∈ P, in P(V ).

Example 4.7.2. Consider again the point-line geometry Γ = (P,L) as described in Ex-
ample 4.6.15. Using Proposition 4.5.3, we deduce that Γ is a root filtration space with
filtration {Pi}−2≤i≤2 only if for all 1 ≤ i, j ≤ 5 we have (pi, pj) ∈ P−2 ⇐⇒ i = j,
(pi, pj) ∈ P−1 ⇐⇒ pi ⊥ pj , (pi, pj) ∈ P1 ⇐⇒ pi 6⊥ pj and P0 = P2 = ∅. We verify that
this set of relations on P × P turns Γ into a root filtration system.

Clearly, {Pi}−2≤i≤2 is set of disjoint relations partitioning P×P. Definition 4.5.1(i) and
Definition 4.5.1(ii) are immediate, and so is Definition 4.5.1(iv) because P2 = ∅. It is readily
seen that P≤1(pi) = P for all 1 ≤ i ≤ 5, from which Definition 4.5.1(vi) follows. In addition,
we have P≤−1(p1) = P, whereas P≤−1(p2) = `1 = P≤−1(p3) and P≤−1(p4) = `2 = P≤1(p5),
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from which Definition 4.5.1(v) follows because P0 = ∅. By recalling from our proof of
Proposition 4.5.3 that the map ϕ : P1 → P from Definition 4.5.1(iii) necessarily maps
(pi, pj) ∈ P1, 1 ≤ i, j ≤ 5, to their unique neighbour in the collinearity graph (P,P−1)
of Γ, we must have ϕ(pi, pj) = p1 for all 1 ≤ i, j ≤ 5. Since P≤−1(p1) = P, it remains
to check Definition 4.5.1(iii) in case i + j = −2, 1 ≤ i, j ≤ 5. For i = 0 and j = −2
or i = −2 and j = 0, there is nothing to show as P0 = ∅. For i = −1 = j, we have
P−1(pk) ∩ P−1(pl) = {p1} = P−2(p1) = P≤−2(ϕ(pk, pl)) for all (pk, pl) ∈ P1, 1 ≤ k, l ≤ 5,
as only p1 is collinear to both pk and pl. Thus, Definition 4.5.1(iii) holds and so Γ is a root
filtration space with filtration {Pi}−2≤i≤2.

We now claim that the projective embedding ε : Γ ↪→ PG(2, 2) given in Example
4.6.15 is not a polarised embedding; indeed, we have established that P≤1(pi) = P for all
1 ≤ i ≤ 5, hence ε(P≤1(pi)) = ε(P) for all 1 ≤ i ≤ 5, and since the span of ε(P) is PG(2, 2),
which is not a hyperplane, it follows that ε is not a polarised embedding.

We state and prove several properties of embeddable non-degenerate root filtration
spaces pertaining to polarised embeddings and their radicals.

Lemma 4.7.3. Let ε : Γ ↪→ P(V ) be a projective embedding of an embeddable non-
degenerate root filtration space Γ = (P,L) with filtration {Pi}−2≤i≤2 in the projective
space P(V ) of some vector space V over a division ring K. Further let ε′ : Γ ↪→ P(V ) be a
polarised embedding of Γ in P(V ) such that ε → ε′. Then ε is a polarised embedding and
rad(ε) contains the kernel of the projection of ε to ε′.

In particular, we have ε/rad(ε) ∼= ε′ if and only if rad(ε′) is trivial.

Proof. As ε → ε′, there exists a surjective map ϕ : P(V ) → P(V ) such that ε′ = ϕ ◦ ε.
Specifically, ϕ(ε(P≤1(p))) = ε′(P≤1(p)) is contained in a hyperplane of P(V ) for all p ∈ P
because ε′ is a polarised embedding. But ϕ maps hyperplanes of P(V ) to hyperplanes of
P(V ), hence ε(P≤1(p))) will also be contained in a hyperplane of P(V ) for all p ∈ P. It
follows that ε is a polarised embedding.

To show that ker(ϕ) ⊆ rad(ε) =
⋂
p∈P〈ε(P≤1(p))〉, suppose towards a contradiction that

this is not the case. Then there exists a point p ∈ P such that 〈ε(P≤1(p))〉 does not contain
ker(ϕ). But then necessarily P(V ) = ϕ(〈ε(P≤1(p))〉) = 〈ϕ(ε(P≤1(p)))〉 = 〈ε′(P≤1(p))〉,
contradicting that ε′ is polarised. Thus, rad(ε) contains ker(ϕ).

For the final assertion, suppose first that rad(ε′) is trivial. As ϕ is surjective, we
know that ε/ ker(ϕ) ∼= im(ϕ) = ε′ by the first isomorphism theorem. By the above, we
additionally have ker(ϕ) ⊆ rad(ε), so we need only show that rad(ε) ⊆ ker(ϕ). To this
extent, let r ∈ rad(ε), then

ϕ(r) ⊆ ϕ

⋂
p∈P
〈ε(P≤−1(p))〉

 =
⋂
p∈P
〈ϕ(ε(P≤1(p)))〉 =

⋂
p∈P
〈ε′(P≤1(p))〉 = rad(ε′),

hence ϕ(r) is trivial since rad(ε′) is trivial. Consequently, r ∈ ker(ϕ) and so rad(ε) ⊆
ker(ϕ). We conclude that ker(ϕ) = rad(ε) so that ε/rad(ε) ∼= ε′. Conversely, if ε′ ∼=
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ε/rad(ε), then by taking radicals on both sides we obtain rad(ε′) ∼= rad(ε/rad(ε)) =
rad(ε)/rad(ε) = ∅, hence rad(ε′) is trivial.

The last assertion in the above lemma generalises to the first assertion in the proposition
below, for which we require Γ to satisfy some additional conditions.

Proposition 4.7.4. Let Γ = (P,L) be an embeddable non-degenerate root filtration space
admitting an absolutely universal embedding ε : Γ ↪→ P(V ) in the projective space P(V ) of
some vector space V over a division ring K. If ε′ : Γ ↪→ P(V ) is a polarised embedding of
Γ in P(V ), then ε/rad(ε) ∼= ε′/rad(ε′).

In particular, we have ε′′ → ε′ for any polarised embedding ε′′ : Γ ↪→ P(V ) of Γ in P(V )
if rad(ε′) is trivial.

Proof. Since ε is absolutely universal, we have ε → ε′, hence there exists a surjective
map ϕ : P(V ) � P(V ) such that ε′ = ϕ ◦ ε. As in Lemma 4.7.3, we then have ε′ =
im(ε′) ∼= ε/ ker(ϕ) by the first isomorphism theorem. Taking radicals on both sides yields
rad(ε′) ∼= rad(ε/ ker(ϕ)) = rad(ε)/ ker(ϕ). Then by the third isomorphism theorem we
obtain ε′/rad(ε′) ∼= (ε/ ker(ϕ))/(rad(ε)/ ker(ϕ)) ∼= ε/rad(ε), as desired.

Next, let ε′′ be another polarised embedding and assume that rad(ε′) is trivial. As ε is an
absolutely universal embedding, we have ε→ ε′ and ε→ ε′′, therefore there exist surjective
maps ϕ′ : P(V ) � P(V ) and ϕ′′ : P(V ) � P(V ) such that ε′ = ϕ′ ◦ ε and ε′′ = ϕ′′ ◦ ε. By
Lemma 4.7.3, ε is a polarised embedding and rad(ε) contains both ker(ϕ′) and ker(ϕ′). In
particular, we have ε/ ker(ϕ′) ∼= ε′ ∼= ε/rad(ε) by the first isomorphism theorem and again
by Lemma 4.7.3 because rad(ε′) is trivial. But then ker(ϕ′) = rad(ε), hence ker(ϕ′′) ⊆
rad(ε) = ker(ϕ′). This implies that there exists a surjective map ϕ : P(V ) � P(V ) such
that ϕ′ = ϕ ◦ϕ′′. Consequently, we obtain ε′ = ϕ′ ◦ ε = (ϕ ◦ϕ′′) ◦ ε = ϕ ◦ (ϕ′′ ◦ ε) = ϕ ◦ ε′′,
which shows that ε′′ → ε′.

We finish this section with an important result on root shadow spaces regarding the
existence and uniqueness of certain embeddings.

Theorem 4.7.5. Let Γ = (P,L) be an embeddable root shadow space of type BCn,2 (n ≥ 3),
Dn,2 (n ≥ 4), E6,2, E7,1, E8,8 or F4,1. Then Γ admits an absolutely universal embedding
ε : Γ ↪→ P(V ) in the projective space P(V ) of some vector space V over a division ring K.

In particular, Γ admits, up to isomorphism, a unique polarised embedding ε′ : Γ ↪→ P(V )
in P(V ) such that rad(ε′) is trivial.

Proof. For the first assertion, see Theorem 2.8 of [13].
For the second assertion, assume that ε′′ : Γ ↪→ P(V ) is a second polarised embedding

of Γ in P(V ) such that rad(ε′′) is trivial. By Theorem 4.5.4, Γ is a non-degenerate root
filtration space as Γ is not of type BCn,1. Since Γ admits an absolutely universal embedding
by the first assertion, we may apply Proposition 4.7.4. Therefore, we have ε′′ → ε′ because
rad(ε′) is trivial, but we also have ε′ → ε′′ because rad(ε′′) is trivial. It follows that
ε′ → ε′′ → ε′ so that ε′ ∼= ε′′. We conclude that ε′ is unique up to isomorphism.
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Chapter 5

Lie algebras and geometry

In this chapter, we will combine the theory from the previous chapters to introduce the
extremal geometry of a Lie algebra, in particular describe some of its properties as well as
demonstrate its significance in terms of determining the Lie algebra it is defined on.

Throughout Section 5.1, we follow the theory and adopt the notation from [5, 13, 15, 23].

5.1 The extremal geometry of a Lie algebra

Let g be a Lie algebra over a field F generated by its set E(g) of extremal elements and define
Γg = (E ,L) to be the point-line geometry whose points are the spans Fx of an extremal
element x ∈ E(g) and whose lines are the linear combinations Fx+ Fy of two commuting
and linearly independent extremal elements x, y ∈ E(g) such that Fx + Fy ⊆ E(g) ∪ {0}.
Note that Γg is a partial linear space; indeed, supposing that z, z′ ∈ E(g) are distinct
extremal elements in g such that z, z′ ∈ `∩ `′ with ` = Fx+Fy ∈ L and `′ = Fx′+Fy′ ∈ L,
then Fz,Fz′ ⊂ Fx + Fy and Fz,Fz′ ⊂ Fx′ + Fy′ together imply that x′ and y′ are both
linearly dependent on x and y, forcing ` = `′. The following lemma describes a necessary
and sufficient condition for two extremal elements to span a line in L.

Lemma 5.1.1. Let g be a Lie algebra over a field F, char(F) 6= 2, generated by its set E(g)
of extremal elements. Then Fx+Fy ⊆ E(g)∪{0} with x, y ∈ E(g) commuting and linearly
independent if and only if [x, [y, z]] = gx(z)y + gy(z)x for all z ∈ g.

Proof. Let x, y ∈ E(g) such that Fx 6= Fy and [x, y] = 0, and suppose first that Fx+ Fy ⊆
E(g) ∪ {0}. It follows from the Jacobi identity that [y, [x, z]] = −[z, [y, x]] − [x, [z, y]] =
[x, [y, z]] for all z ∈ g, hence for all λ, µ ∈ F∗ and z ∈ g we have on the one hand that

2gλx+µy(z)(λx+ µy) = 2λ2gx(z)x+ 2λµ(gx(z)y + gy(z)x) + 2µ2gy(z)y,
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whereas on the other hand we have

2gλx+µy(z)(λx+ µy) = [λx+ µy, [λx+ µy, z]]

= λ2[x, [x, z]] + λµ([x, [y, z]] + [y, [x, z]]) + µ2[y, [y, z]]

= 2λ2gx(z)x+ 2λµ[x, [y, z]] + 2µ2gy(z)y.

But then [x, [y, z]] = gx(z)y + gy(z)x for all z ∈ g, as desired.
Assuming next that [x, [y, z]] = gx(z)y + gy(z)x for all z ∈ g, similar calculations show

that for all λ, µ ∈ F∗ we then have

[λx+ µy, [λx+ µy, z]] = λ2[x, [x, z]] + λµ([x, [y, z]] + [y, [x, z]]) + µ2[y, [y, z]]

= 2λ2gx(z)x+ 2λµ[x, [y, z]] + 2µ2gy(z)y

= 2λ2gx(z)x+ 2λµ(gx(z)y + gy(z)x) + 2µ2gy(z)y

= 2gλx(z)(λx) + 2gλx(z)(µy) + 2gµy(z)(λx) + 2gµy(z)(µy)

= 2gλx+µy(z)(λx+ µy)

by Proposition 3.1.10 so that λx + µy ⊆ E(g), from which it follows that Fx + Fy ⊆
E(g) ∪ {0}.

We now define {Ei}−2≤i≤2 to be the set of relations Ei ⊆ E(g)× E(g) given by

(x, y) ∈ E−2 ⇐⇒ Fx = Fy,
(x, y) ∈ E−1 ⇐⇒ Fx+ Fy ⊆ E(g) ∪ {0} with [x, y] = 0 and x, y linearly independent,

(x, y) ∈ E0 ⇐⇒ [x, y] = 0 and (x, y) 6∈ E≤−1,

(x, y) ∈ E1 ⇐⇒ [x, y] 6= 0 and gx(y) = 0,

(x, y) ∈ E2 ⇐⇒ gx(y) 6= 0.

In addition, we define {Ei}−2≤i≤2 to be the set of relations Ei ⊆ E × E given by (Fx,Fy) ∈
Ei ⇐⇒ (x, y) ∈ Ei. This gives rise to the following definition.

Definition 5.1.2 (Extremal geometry). Let g be a Lie algebra over a field F generated by
its set E(g of extremal elements. Then the point-line geometry Γg = (E ,L) together with
the set {Ei}−2≤i≤2 of relations Ei ⊆ E × E, both as described above, form the extremal
geometry of g.

In the sequel, we will sometimes omit the set of relations {Ei}−2≤i≤2 whenever we refer
to the extremal geometry of a Lie algebra g; instead, we will identify its extremal geometry
only by the point-line geometry Γg = (E ,L) and only emphasise its filtration {Ei}−2≤i≤2 if
we make explicit use of it.

Under certain conditions, the set of relations {Ei}−2≤i≤2 of the extremal geometry
Γg = (E ,L) of a Lie algebra g turn it into a root filtration space with filtration {Ei}−2≤i≤2.
This is characterised by the following proposition.
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Proposition 5.1.3. Let g be a Lie algebra over a field F without sandwich elements gen-
erated by its set E(g) of extremal elements. Then the extremal geometry Γg = (E ,L) is a
root filtration space with filtration {Ei}−2≤i≤2.

Proof. The relations {Ei}−2≤i≤2 are clearly disjoint, symmetric by Corollary 3.1.5 and
partition E(g) × E(g), hence the same is true for the relations {Ei}−2≤i≤2. Definition
4.5.1(i) and Definition 4.5.1(ii) are immediate from construction of Γg, {Ei}−2≤i≤2 and
{Ei}−2≤i≤2.

For Definition 4.5.1(iii), the map ϕ : E1 → E must send (x, y) ∈ E1 to their unique
neighbour in the collinearity graph (E , E−1) of Γg by Proposition 4.5.3. Therefore, we define
ϕ : E1 → E to be the map given by ϕ(Fx,Fy) = F[x, y]. Note that [x, y] = (x+ [x, y])−x =
(x − [y, x]) − x = exp(y,−1)x − x = (exp(y,−1) − 1)x ∈ E(g), so ϕ is well-defined. We
refer to Theorem 28(iii) of [5] for a proof that Definition 4.5.1(iii) holds.

For Definition 4.5.1(iv), let (Fx,Fy) ∈ E2 and suppose towards towards a contradiction
that E≤0(Fx) ∩ E≤−1(Fy) 6= ∅. Pick a point Fz ∈ E≤0(Fx) ∩ E≤−1(Fy) 6= ∅. Then [x, z] =
0 = [y, z] and gx(z) = 0 = gy(z). If Fz ∈ E−2(Fy), then clearly y = λz for some λ ∈ F∗.
Since Fz ∈ E≤0(Fx), it follows that gx(y) = gx(λz) = λgx(z) = 0, contradicting that
(Fx,Fy) ∈ E2. This forces Fz ∈ E−1(Fy). But then y + z ∈ E(g), hence [y + z, [y + z, x]] =
2gy+z(x)(y + z). Simplifying the left-hand side yields

[y + z, [y + z, x]] = [y + z, [y, x] + [z, x]] = [y + z, [y, x]] = [y, [y, x]] + [z, [y, x]] = [y, [y, x]],

as [z, [y, x]] = −[x, [z, y]] − [y, [x, z]] = 0 by the Jacobi identity. The right-hand side
simplifies to

2gy+z(x)(y + z) = 2(gy(x) + gz(x))(y + z) = 2gy(x)(y + z) = 2gy(x)y + 2gy(x)z,

because gz(x) = gx(z) = 0 by Corollary 3.1.5, so combined we find 2gy(x)y = 2gy(x)y +
2gy(x)z ⇐⇒ 2gy(x)z = 0. Then either gx(y) = 0, contradicting that (Fx,Fy) ∈ E2, or
z = 0, contradicting that z ∈ E(g). It follows that E≤0(Fx) ∩ E≤−1(Fy) = ∅.

For Definition 4.5.1(v), let Fz ∈ E . Further let ` = Fx+ Fy ∈ L and suppose first that
|E≤0(Fz) ∩ `| ≥ 2. We may assume w.l.o.g. that Fx,Fy ∈ E≤0(Fz) ∩ `. Then [x, z] = 0 =
[y, z], hence [`,Fz] = [Fx+Fy,Fz] = F[x, z] +F[y, z] = 0. If ` = Fx+Fy 6⊂ E≤−1(Fz), then
` ⊂ E0(Fz), so we have ` ⊆ E≤0(Fz) regardless, which shows that E≤0(Fz) is a subspace
of Γg. Next, suppose that |E≤−1(Fz) ∩ `| ≥ 2. As before, we may assume w.l.o.g. that
Fx,Fy ∈ E≤0(Fz)∩ `, and [`,Fz] = 0. If Fx,Fy ∈ E−2(Fz), then clearly Fx+Fy ⊂ E−2(Fz),
whereas Fx + Fy ⊂ E−1(Fz) if at least one of Fx and Fy is contained in E−1(Fz). This
shows that ` ⊂ E≤1(Fz), hence E≤−1(Fz) is also a subspace of Γg.

For Definition 4.5.1(vi), we note that Fz ∈ E≤1(Fx) if and only if Fz 6∈ E2(Fx) if and
only if gx(z) = 0 with Fx,Fz ∈ E . So, we have E≤1(Fx) = {Fy ∈ E | gx(y) = 0}. Since
g contains no sandwich elements, the extremal form g : g × g → F of g from Proposition
3.1.10 will be non-degenerate so that E≤1(Fx) is a hyperplane for all Fx ∈ E .
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A continuation of the above proposition is the following theorem due to Cohen and
Ivanyos [5], which describes how non-degenerate thick root filtration spaces can be obtained
from the extremal geometry of a Lie algebra and how they relate to its Lie subalgebras.

Theorem 5.1.4. Let g be a Lie algebra over a field F without sandwich elements generated
by its set E(g) of extremal elements and let Γg = (E ,L) be the extremal geometry of g with
filtration {Ei}−2≤i≤2. Further let Bi, with i ∈ I for some not necessarily finite index set I,
be the connected components of the graph (E , E2) and denote by gi the Lie subalgebra of g
generated by Bi. Then Bi is a non-degenerate thick root filtration space or a root filtration
space without lines for every i ∈ I. In particular, the Lie subalgebras gi, i ∈ I, are ideals
of g and g =

⊕
i∈I gi.

Proof. See Theorem 28(iii) of [5].

A consequence of particular interest is that for all i ∈ I the Lie subalgebras gi generated
by the connected components Bi of (E , E2) are simple; this follows from the observation
that g contains no sandwich elements if and only if the extremal form g : g × g → F of g
is non-degenerate if and only if g is a direct sum of simple ideals by Proposition 3.1.12, all
of which must necessarily coincide with the Lie subalgebras gi, i ∈ I.

We provide an example of an extremal geometry that is a root filtration space. In
particular, we will see that it demonstrates how a previously discussed root filtration space
can be obtained from a certain Lie algebra.

Example 5.1.5. Let V be an n-dimensional vector space, n ≥ 3, over a field F with
char(F) 6= 2 and let V ∗ be the dual space of V . Further let psl(V ) be the projective
special Lie algebra of V , which is simple and generated by the transvections tv,ϕ ∈ psl(V )
such that v ⊗ ϕ ∈ V ⊗ V ∗ is a singular pure tensors of V ⊗ V ∗ by Corollary 3.2.6. Note
that AnnV (V ∗) = 0, ensuring that psl(V ) does not contain sandwich elements. Then the
extremal geometry Γpsl(V ) of psl(V ) will be a non-degenerate thick root filtration space by
Theorem 5.1.4. In fact, it is isomorphic to the root shadow space of type A1,{1,n} with
filtration {Pi}−2≤i≤2 as described in Example 4.5.2. A similar result is proven in [23] if V
is infinite-dimensional.

Denote by P(g) the projective space of g, whose points and lines are its 1-dimensional
and 2-dimensional subspaces, respectively. Since g is generated by its set E(g) of extremal
elements, it will also be linearly spanned by E(g) by Lemma 3.1.9, hence the points and
lines of P(g) coincide with the points and lines of the extremal geometry Γg = (E ,L) of g.
This gives rise to the following definition.

Definition 5.1.6 (Extremal embedding). Let g be a Lie algebra over a field F without
sandwich elements generated by its set E(g) of extremal elements. Further let Γg = (E ,L)
be the extremal geometry of g and let P(g) be the projective space of g. The extremal
embedding of Γg in P(g) is the natural embedding ε : Γg ↪→ P(g) given by ε(Fx) = Fx with
Fx ∈ E.
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It should immediately be clear that ε is injective and that ε(E) spans P(g). Moreover,
lines Fx + Fy ∈ L with Fx,Fy ∈ E are clearly mapped to projective lines in P(g), so ε is
indeed an embedding by Definition 4.6.14. In particular, the extremal embedding of Γg in
P(g) is a polarised embedding and it is even unique up to isomorphism, as stated by the
following proposition.

Proposition 5.1.7. Let g be a Lie algebra over a field F without sandwich elements gener-
ated by its set E(g) of extremal elements and let ε : Γg ↪→ P(g) be the extremal embedding of
the extremal geometry Γg = (E ,L) of g in the projective space P(g) of g. If Γg is isomorphic
to a root shadow space of type BCn,2 (n ≥ 3), Dn,2 (n ≥ 4), E6,2, E7,1, E8,8 or F4,1, then
ε is unique up to isomorphism.

Proof. In light of Theorem 4.7.5, it suffices to show that ε : Γg ↪→ P(V ) is a polarised
embedding whose radical rad(ε) is trivial.

So, let Fx ∈ E . As ε maps hyperplanes of Γg to hyperplanes of P(g), it is enough to show
that E≤1(Fx) is contained in a hyperplane of Γg. But this is immediate from Definition
4.5.1(vi) as Γg is a root filtration space, so ε is indeed a polarised embedding. Since g
contains no sandwich elements, the radical rad(g) of the extremal form g : g× g→ F of g
is trivial, hence

rad(ε) =
⋂

Fx∈E
ε(E≤1(Fx)) =

⋂
Fx∈E
{Fy ∈ E | gx(y) = 0}

= {Fy ∈ E | ∀Fx ∈ E : g(x, y) = 0} = rad(g)

implies that rad(ε) will be trivial as well.

We set out to prove that the extremal geometry Γg = (E ,L) of a Lie algebra g over a
field F uniquely determines g if g contains no sandwich elements and is generated by its
extremal elements. First consider the following corollary of the above proposition.

Corollary 5.1.8. Let g and g′ be two Lie algebras over a field F without sandwich elements
generated by their sets E(g) and E(g′) of extremal elements, and let ε : Γg ↪→ P(g) and
ε′ : Γg′ ↪→ P(g′) be the extremal embeddings of their extremal geometries Γg = (E ,L) and
Γg′ = (E ′,L′) in their projective spaces P(g) and P(g′), respectively. If Γg

∼= Γg′, and both
Γg and Γg′ are isomorphic to a root shadow space of type BCn,2 (n ≥ 3), Dn,2 (n ≥ 4),
E6,2, E7,1, E8,8 or F4,1, then ε ∼= ε′.

Proof. Note that both rad(ε) and rad(ε′) are trivial because the extremal forms g : g×g→ F
and g′ : g′ × g′ → F of g and g′, respectively, are trivial, which we have established in our
proof of Proposition 5.1.7. By Theorem 4.7.5, both Γg and Γg′ admit an absolutely universal
embedding, hence we may apply Proposition 4.7.4. Specifically, as Γg

∼= Γg′ , we find ε′ → ε
and ε→ ε′ so that ε ∼= ε′, as desired.
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So far, we have shown that, up to isomorphism, the extremal embedding of Γg in P(g) is
unique by Proposition 5.1.7 and that it is moreover uniquely determined by Γg by the above
corollary. It therefore remains to show that the Lie algebra g itself is uniquely determined
by Γg, up to isomorphism. This is done by showing that the Lie bracket [·, ·] : g × g → F
of g is uniquely determined by Γg.

Proposition 5.1.9. Let V be a vector space over a field F. Further let [·, ·] : V ×V → F and
[·, ·]′ : V × V → F be two alternating bilinear forms on V that turn V into the Lie algebras
g and g′ such that neither contains sandwich elements and both are generated by their sets
E(g) and E(g′) of extremal elements, respectively. If the extremal geometry Γg = (E ,L) of
g is isomorphic to the extremal geometry Γg′ = (E ′,L′) of g′, then there exists a λ ∈ F∗
such that [x, y]′ = λ[x, y] for all x, y ∈ V .

Proof. See Theorem 5.3.9 of [15].

By combining all previous results, we are now in a position to prove that the extremal
geometry Γg of a Lie algebra g uniquely determines g up to isomorphism.

Theorem 5.1.10. Let g be a Lie algebra over a field F without sandwich elements generated
by its set E(g) of extremal elements. If the extremal geometry Γg = (E ,L) is isomorphic
to a root shadow space of type BCn,2 (n ≥ 3), Dn,2 (n ≥ 4), E6,2, E7,1, E8,8 or F4,1, then
Γg uniquely determines g up to isomorphism.

Proof. Suppose that g′ is another Lie algebra over F without sandwich elements generated
by its set E(g′) of extremal elements such that Γg

∼= Γg′ . Consequently, Γg′ will also be
isomorphic to a root shadow space of type BCn,2 (n ≥ 3), Dn,2 (n ≥ 4), E6,2, E7,1, E8,8

or F4,1, hence we may apply Corollary 5.1.8, from which we deduce that the extremal
embeddings ε : Γg ↪→ P(g) and ε′ : Γg′ ↪→ P(V ) of Γg and Γg′ in the projective spaces P(g)
and P(g′) of g and g′, respectively, are isomorphic. Since also both ε and ε′ themselves are,
up to isomorphism, unique by Proposition 5.1.7, we may view g′ as a Lie algebra having the
same underlying vector space as g. Then Proposition 5.1.9 applies, hence g is isomorphic
to g′. It follows that Γg uniquely determines g up to isomorphism.
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Chapter 6

Characterisation of the orthogonal
Lie algebras

We introduce local systems of Lie algebras and discuss some of their properties. This is
done in preparation for Section 6.2 and 6.3, in which we give our proof of Theorem 1.1.2
in the finite-dimensional case, respectively infinite-dimensional case.

Section 6.1 is based on the theory from [24].

6.1 Local systems of Lie algebras

In this section, we introduce another structure obtained from a Lie algebra g that we
require for our proof of Theorem 1.1.2. In particular, we will show that this structure also
determines g up to isomorphism.

Let I be a non-empty index set and define on I a reflexive and transitive binary relation
�, called a pre-order. If for all i, j ∈ I there exists a k ∈ I such that i � k and j � k,
then I is said to be a directed set. To emphasise its dependency on the pre-order �, we
will write (I,�) instead of just I. This gives rise to the following definition.

Definition 6.1.1 (Direct system). Let (I,�) be a directed partially ordered set and let
(A,Φ) be a system of algebraic objects A = {Ai}i∈I and homomorphisms Φ = {ϕi,j : Ai →
Aj}i�j. If ϕi,i = idAi for all i ∈ I and ϕi,k = ϕj,k◦ϕi,j for all i, j, k ∈ I such that i � j � k,
then (A,Φ) is called a direct system over (I,�).

Let A be a system of algebraic objects {Ai}i∈I over some directed partially ordered set
(I,�). The disjoint union of A is the set of ordered pairs (ai, i) ∈ Ai × {i} with ai ∈ Ai
and i ∈ I, denoted by

⊔
i∈I Ai. In particular, we have

⊔
i∈I Ai =

⋃
i∈I(Ai × {i}).

Of interest to us is the direct limit of a direct system (A,Φ) over a directed set (I,�).
In order to define it, we require the following lemma.
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Lemma 6.1.2. Let (A,Φ) be a direct system over a directed partially order set (I,�).
Define ∼ to be the relation on the disjoint union

⊔
i∈I Ai of all algebraic objects Ai, i ∈ I,

given by (ai, i) ∼ (aj , i) with (ai, i) ∈ Ai × {i}, i ∈ I, and (aj , j) ∈ Aj × {j}, j ∈ I, if and
only if there exists a k ∈ I such that i � k, j � k and ϕi,k(ai) = ϕj,k(aj). Then ∼ is an
equivalence relation.

Proof. Reflexivity of ∼ follows immediately from the observation that i � i because �
is reflexive, and symmetry of ∼ is clear from its definition. To show transitivity, let
(ai, i) ∈ Ai × {i}, (aj , j) ∈ Aj × {j} and (ak, k) ∈ Ak × {k} with i, j, k ∈ I such that
(ai, i) ∼ (aj , j) and (aj , j) ∼ (ak, k). Then there exists an l ∈ I such that i � l, j � l and
ϕi,l(ai) = ϕj,l(aj), and there exists an l′ ∈ I such that j � l′, k � l′ and ϕj,l′(aj) = ϕk,l′(ak).
Because (I,�) is a directed set, there exists an l′′ ∈ I such that l � l′′ and l′ � l′′.
Consequently, we have i � l � l′′ and k � l′ � l′′, but also j � l � l′′ and j � l′ � l′′, hence

ϕi,l′′(ai) = (ϕl,l′′ ◦ ϕi,l)(ai) = ϕl,l′′(ϕi,l(ai)) = ϕl,l′(ϕj,l(aj)) = (ϕl,l′′ ◦ ϕj,l)(aj)
= ϕj,l′′(aj) = (ϕl′,l′′ ◦ ϕj,l′)(aj) = ϕl′,l′′(ϕj,l′(aj)) = ϕl′,l′′(ϕk,l′(ak))

= (ϕl′,l′′ ◦ ϕk,l′)(ak) = ϕk,l′′(ak),

from which we conclude that (ai, i) ∼ (ak, k).

Let (A,Φ) be a direct system over (I,�) for some system of homomorphisms Φ = {ϕi,j :

Ai → Aj}i�j and let ∼ be the equivalence relation on
⊔
i∈I Ai as in the above lemma. The

direct limit of (A,Φ) is the algebraic object⊔
i∈I
Ai
/
∼,

which we will denote by lim−→Ai.

Example 6.1.3. The pair (N,≤), in which N is the set of all natural numbers and ≤ is the
ordinary order on N, is clearly a directed set. Let V be an n-dimensional vector space over a
field F with n ∈ N and consider the special linear Lie algebra sl(V ) = sln(F) on V . The map
ϕi,j : sli(F)→ slj(F) with i, j ∈ N such that i ≤ j given by ϕi,j(x) = diag(x, 0, . . . , 0) with
x ∈ sli(F) is readily seen to be a Lie algebra homomorphism; indeed, for all x, y ∈ sli(F),
we have

[ϕi,j(x), ϕi,j(y)] = [diag(x, 0, . . . , 0), diag(y, 0, . . . , 0)]

= diag(xy, 0, . . . , 0)− diag(yx, 0, . . . , 0) = ϕi,j([x, y]).

We claim that the system (sl,Φsl), with sl = {sln(F)}n∈N and Φsl = {ϕi,j : sli(F) →
slj(F)}i≤j is a direct system over (N,≤). We have ϕi,i(x) = diag(x) = x for all i ∈ N and
x ∈ sli(F) so that ϕi,i is the identity on sli(F), hence it remains to show that ϕi,k = ϕj,k◦ϕi,j
for all i, j, k ∈ N such that i ≤ j ≤ k. But this is immediate from the observation
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that k − i = (k − j) + (j − i) by simply counting the number of zeros appended to an
element x = diag(x) ∈ sli(F) by ϕi,k, ϕj,k and ϕi,j . Using Lemma 6.1.2, it can be verified
that the equivalence class [x]∼ of an element x ∈ sli(F) for some i ∈ N consists of the
elements diag(x, 0, . . . , 0) ∈ slj(F) with i ≤ j. Consequently, the choice of any element in⊔
n∈N sln(F)

/
∼ is independent of n ∈ N, therefore the direct limit of (sl,Φsl) equals

lim−→ sln(F) =
⊔
n∈N

sln(F)

/
∼ =

⋃
n∈N

(sln(F)× {n})
/
∼ =

⋃
n∈N

sln(F) := sl∞(F).

In a similar manner, the Lie algebras so∞(F) and sp∞(F) can be defined as the direct
limit of the direct systems (so,Φso) and (sp,Φsp) with so = {son(F)}n∈N, sp = {spn(F)}n∈N
and both Φso and Φsp consisting of the natural embeddings of soi(F) and spi(F) in soj(F)
and spj(F), respectively, with i, j ∈ N such that i ≤ j.

The above example shows how certain Lie algebras can be defined with the help of
direct systems. Conversely, given a possibly infinite-dimensional Lie algebra, it may be
possible to extract from it a system of finite-dimensional Lie subalgebras with which a
direct system can be constructed. Since a Lie algebra is said to be locally finite if all of its
finitely generated Lie subalgebras are finite-dimensional, such systems are instead referred
to as local systems. Their precise definition is stated below.

Definition 6.1.4 (Local system). Let g be a possibly infinite-dimensional Lie algebra and
let I be an index set. A system G = {gi}i∈I of finite-dimensional Lie subalgebras gi of g is
called a local system of g if g =

⋃
i∈I gi and for all i, j ∈ I there exists a k ∈ I such that

gi ⊆ gk and gj ⊆ gk.

An explicit connection between local systems of Lie algebras, directed sets and direct
systems can be made using Example 6.1.3; starting with an infinite dimensional vector
space V over a field F and letting sl∞(F) := sl(V ) be the special linear Lie algebra of V ,
the system G = {sln(F)}n∈N is readily seen to be a local system of sl∞(F). In general,
local systems, directed sets and direct systems are related in the following way.

Lemma 6.1.5. Let I be an index set and let G = {gi}i∈I be a local system of a possibly
infinite-dimensional Lie algebra g. Define � to be the binary relation on I given by i � j
with i, j ∈ I if and only if gi ⊆ gj and define Φ to be the collection of natural embeddings
ϕi,j : gi → gj of gi in gj with i, j ∈ I such that i � j. Then (I,�) is a directed set, (G,Φ)
is a direct system and g ∼= lim−→ gi.

Proof. Since set inclusion⊆ is a reflexive and transitive binary relation on G, it immediately
follows that � will be a pre-order on I. Moreover, as G is a local system of g, we have for
all i, j ∈ I that gi ⊆ gk ⇐⇒ i � k and gj ⊆ gk ⇐⇒ j � k for some k ∈ I, showing that
(I,�) is a directed set.

The natural embedding of a Lie subalgebra gi, i ∈ I, of g in itself is clearly the identity
on gi, hence ϕi,i = idgi . Given three Lie subalgebras gi, gj and gk of g with i, j, k ∈ I such
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that i � j � k, embedding gi in gj and then gj in gk is equivalent to embedding gi directly
in gk, implying that ϕi,k = ϕj,k ◦ ϕi,j . This shows that (G,Φ) is a direct system.

Let gi and gj be two Lie subalgebras of g with i, j ∈ I and suppose that xi ∼ xj for
two elements xi ∈ gi and xj ∈ gj with ∼ as in Lemma 6.1.2. Then there exists a k ∈ I
such that gi ⊆ gk and gj ⊆ gk. In particular, there will be an element xk ∈ gk which equals
xi when restricted to gi and xj when restricted to gj . Therefore, as in Example 6.1.3, the
choice of any element in

⊔
i∈I gi

/
∼ will be independent of i ∈ I so that

lim−→ gi =
⊔
i∈I

gi

/
∼ =

⋃
i∈I

(gi × {i})
/
∼ ∼=

⋃
i∈I

gi = g,

where the last equality follows from G being a local system of g.

Two Lie algebras g and g′ over a field F can be related to one another by means of
their local systems G = {gi}i∈I and G′ = {g′i}i∈I , respectively, over some directed set
(I,�). Specifically, if for all i ∈ I the Lie subalgebras gi and g′i of the local systems G
and G′, respectively, are isomorphic, it can be shown that the g and g′ themselves are also
isomorphic under certain conditions. This is characterised by the following theorem.

Theorem 6.1.6. Let g and g′ be two Lie algebras over a field F and let G = {gi}i∈I and
G′ = {g′i}i∈I be local systems of g and g′, respectively, over some directed set (I,�). If
Ψ = {ψi : gi → g′i}i∈I is a collection of isomorphisms such that ψi = ψj

∣∣
gi

for all i, j ∈ I
such that i � j, then g ∼= g′.

Proof. First note that
⊔
i∈I gi =

⋃
i∈I(gi × {i}) ∼=

⋃
i∈I(g

′
i × {i}) =

⊔
i∈I g

′
i because gi ∼= g′i

under ψi ∈ Ψ for all i ∈ I. Now let (G,Φ) and (G′,Φ′) be the direct systems of g and g′,
respectively, over (I,�) as in Lemma 6.1.5 and consider an element x ∈ g with ∼ as in
Lemma 6.1.2. As G is a local system of g, we have g =

⋃
i∈I gi, so x = xi ∈ gi for some

i ∈ I. The elements in the equivalence class [x]∼ = [xi]∼ will be precisely the elements
xj ∈ gj ,j ∈ I, with i � j such that xj restricted to gj equals xi. But ψi = ψj

∣∣
gi

whenever

i, j ∈ I such that i � j by assumption, so the elements in [ψi(xi)]∼′ with ∼′ as in Lemma
6.1.2 will satisfy the same property as the elements in [xi]∼. This shows that the relations
∼ and ∼′ on

⊔
i∈I gi and

⊔
i∈I g

′
i, respectively, are equivalent. Finally, as g ∼= lim−→ gi and

g′ ∼= lim−→ g′i by Lemma 6.1.5, we obtain

g ∼= lim−→ gi =
⊔
i∈I

gi

/
∼ ∼=

⊔
i∈I

g′i

/
∼′ = lim−→ g′i

∼= g′,

proving that g ∼= g′.

Similar to Theorem 5.1.10, we are now able to show that a local system G = (gi)i∈I of
a Lie algebra g over some directed set (I,�) determines g uniquely up to isomorphism.
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Corollary 6.1.7. Let g be a Lie algebra over a field F and let G = {gi}i∈I be a local system
of g over some directed set (I,�). Then G uniquely determines g up to isomorphism.

Proof. Suppose that g′ is a second Lie algebra over F admitting a local system G′ = {g′i}i∈I
over (I,�) isomorphic to G. Then there exist isomorphisms ψi : gi → g′i for all i ∈ I. Now
let i, j ∈ I such that i � j and let xi ∈ gi be arbitrary. By Lemma 6.1.5, we have gi ⊆ gj so
that xi ∈ gj . In turn, there exists an element xj ∈ gj that equals xi when restricted to gi,
hence ψj(xj) ∈ g′j will equal ψi(xi) ∈ g′i when restricted to g′i. Upon restricting ψj to gi,

which then necessarily also restricts xj to gi, we deduce that ψi(xi) = ψj(xj) = ψj
∣∣
gi

(xi).

But xi ∈ gi was chosen arbitrarily, hence ψi = ψj
∣∣
gi

. Now Theorem 6.1.6 applies, from

which it follows that g is isomorphic to g′. We conclude that G uniquely determines g up
to isomorphism.

6.2 Finite-dimensional case

Let g be a finite-dimensional simple Lie algebra over a field F, char(F) 6= 2, without
sandwich elements and generated by its set E(g) of extremal elements whose extremal
geometry Γg = (E ,L) is isomorphic to a root shadow space of type Bn,2 or Dn+1,2, 3 ≤ n ≤
∞. Further let fso(V, f) be the finitary orthogonal Lie algebra for some finite-dimensional
vector space V over F and some non-degenerate symmetric bilinear form f : V × V → F
on V . This section is devoted to proving our first main theorem, Theorem 1.1.2, in the
finite-dimensional case. To do so, the following lemmas are necessary.

Lemma 6.2.1. Let fso(V, f) be the orthogonal Lie algebra for some finite-dimensional
vector space V over a field F, char(F) 6= 2, and some non-degenerate symmetric bilinear
form f : V × V → F on V such that f has Witt index at least two. Then fso(V, f)
is generated by its set E(fso(V, f)) of extremal elements and does not contain sandwich
elements.

Proof. Let f : V ×V → F be the non-degenerate symmetric bilinear form on V that defines
fso(V, f) according to Definition 2.2.10. Recall from Section 3.2 the Lie algebra g(V ⊗V ∗)f
generated by the symmetric tensors v ⊗ fw − w ⊗ fv ∈ V ⊗ V ∗, in which V ∗ is the dual
space of V . By Proposition 3.2.9, we have g(V ⊗ V ∗)f ∼= fso(V, f), showing that fso(V, f)
is generated by the infinitesimal transvections tv,fw − tw,fv ∈ fso(V, f), which exist since f
has Witt index at least two. For all v, w ∈ V , such an infinitesimal transvection tv,fw−tw,fv
is extremal in fso(V, f) if and only if v⊗ fw −w⊗ fv is extremal in g(V ⊗V ∗)f if and only
if v and w are f -isotropic and orthogonal by Lemma 3.2.12 if and only if tv,fw − tw,fv is
an infinitesimal Siegel transvection sv,w ∈ fso(V, f) by Definition 3.2.13. We conclude that
the infinitesimal Siegel transvections of fso(V, f) not only generate fso(V, f), but are also
the only extremal elements of fso(V, f). Then fso(V, f) is generated by its set of extremal
elements E(fso(V, f)).
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It remains to show that fso(V, f) contains no sandwich elements. As only the infinites-
imal Siegel transvections are extremal in fso(V, f) by the above, it suffices to show that
no infinitesimal Siegel transvection sv,w ∈ fso(V, f) is a sandwich element. So, suppose
towards a contradiction that 0 6= sv,w ∈ fso(V, f) is a sandwich element. Then we must
have

gsv,w(sx,y) = f(v, x)f(w, y)− f(v, y)f(w, x) = f(f(w, y)v − f(v, y)w, x) = 0

for all sx,y ∈ fso(V, f). In particular, this is true for all x ∈ V so that f(w, y)v−f(v, y)w = 0
by non-degeneracy of f . But then sv,w(y) = f(w, y)v − f(v, y)w = 0 holds for all y ∈ V ,
hence sv,w = 0, a contradiction. It follows that fso(V, f) does not contain any sandwich
elements.

Lemma 6.2.2. The finitary orthogonal Lie algebra fso(V, f) for some vector space V ,
dim(V ) 6= 2 and dim(V ) 6= 4, over a field F, char(F) 6= 2, and some non-degenerate
symmetric bilinear form f : V ×V → F such that f has Witt index at least two is a simple
Lie algebra.

Proof. First suppose that V is finite-dimensional, say dim(V ) = n ≥ 1 with n 6= 2 and
n 6= 4, and denote by AF the algebraic closure of F. It is well-known that son(AF, f) is
simple up to its center if and only if n 6= 2 or n 6= 4; in the former case, so2(AF, f) is
abelian as dim(so2(AF, f)) =

(
2
2

)
= 1 by Corollary 2.2.16, hence so2(AF, f) is not simple by

Definition 2.1.13, whereas in the latter case we have so4(AF, f) ∼= so3(AF, f) × so3(AF, f)
so that so3(AF, f) ∼= so3(AF, f)×{0} is a non-trivial ideal of so4(AF, f), turning so4(AF, f)
into a non-simple Lie algebra. But n 6= 2 and n 6= 4 by assumption, so son(AF, f) is simple
if and only if Z(son(AF, f)) = {0}.

By Corollary 2.2.16, son(AF, f) will have standard basis

{Ei,j − Ej,i}1≤i<≤n,

in which Ei,j is the n× n matrix having a one in position (i, j) and zeros elsewhere. Now
let ϕ ∈ Z(son(AF, f)) and denote by Aϕ = (ai,j)1≤i,j≤n its corresponding matrix. Ordinary
matrix multiplication shows that for all 1 ≤ i < j ≤ n we have

[Aϕ, Ei,j − Ej,i] = 0 ⇐⇒ Aϕ(Ei,j − Ej,i) = (Ei,j − Ej,i)Aϕ

⇐⇒
n∑
k=1

(ak,iEk,j − ak,jEk,i) =
n∑
k=1

(aj,kEi,k − ai,kEj,k),

which yields ai,i = aj,j and ai,j + aj,i = 0 for all 1 ≤ i < j ≤ n, but also ai,k = aj,k = 0 =
ak,i = ak,j for all k 6= i, j. Altogether, we deduce that ai,i = aj,j for all 1 ≤ i, j ≤ n and
ai,j = 0 for all i 6= j so that Aϕ = λIn for some λ ∈ F∗, in which In is the n × n identity
matrix. But then ϕ = λ · idV 6∈ so(AF, f), so we conclude that Z(so(AF, f)) is trivial. It
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follows that so(AF, f) is simple. But any ideal of son(F, f) = so(V, f) is also an ideal of
son(AF, f), so so(V, f) will be simple as well.

Next, suppose that V is infinite-dimensional and let i ⊂ fso(V, f) be a proper ideal.
By Lemma 6.2.1, fso(V, f) is generated by its infinitesimal Siegel transvections sv,w ∈
E(fso(V, f)), which exist since f has Witt index at least two, so any 0 6= x ∈ i can
be written as x =

∑
i∈I λisxi,yi for some finite index set I with λi ∈ F∗, i ∈ I, and

0 6= sxi,yi ∈ E(fso(V, f)), i ∈ I. Then for all 0 6= sv,w ∈ E(fso(V, f)) we have

i 3 [sv,w, [sv,w, x]] =
∑
i∈I

λi[sv,w, [sv,w, sxi,yi ]] = 2sv,w
∑
i∈I

λigsv,w(sxi,yi),

but λi 6= 0 for all i ∈ I and gsv,w(sxi,yi) 6= 0 for all sv,w ∈ E(fso(V, f)) as fso(V, f) contains
no sandwich elements by Lemma 6.2.1. This forces sv,w ∈ i, hence E(fso(V, f)) ⊆ i and so
fso(V, f) = 〈E(fso(V, f))〉 ⊆ i, from which equality follows.

Our goal will now be to show that the extremal geometry Γso(V,f) = (E ,L) of so(V, f)
is isomorphic to a root shadow space BCn,2 or Dn+1,2, n ≥ 3; in this case, we may invoke
Theorem 5.1.10, from which it will follow that g ∼= so(V, f), as desired.

In Corollary 4.4.6, we have seen how a root shadow space of type BCn,2 or Dn+1,2,
n ≥ 3, can be constructed using the chamber system C(Γ) of an I-geometry Γ of type
Bn or Dn+1 over type set I = {1, . . . , n}. However, this construction is a general one, so
we wish to provide a construction that better suits the purposes of this section. To this
extent, let V be a vector space having finite dimension at least six over a division ring K
with char(F) 6= 2. We endow V with a non-degenerate quadratic form Q : V → K whose
Witt index is at least three. Now consider the sesquilinearisation fQ : V × V → K of Q,
which is uniquely determined by Q as fQ(u, v) = Q(u+ v)−Q(u)−Q(v) for all v, w ∈ V .
Following Corollary 4.4.6, ΓfQ = (P,L) will then be a root shadow space of type BCn,1.
From it arises a root shadow space of type BCn,2 or Dn+1,2; its point set is L, i.e. all
2-dimensional totally fQ-isotropic subspaces of V , and its line set is the set of all subsets of
L whose elements are the 2-dimensional totally fQ-isotropic subspaces of V all of which are
contained in some 3-dimensional totally fQ-isotropic subspace of V and containing some
1-dimensional totally fQ-isotropic subspace of V .

To relate the root shadow space of type BCn,2 or Dn+1,2 as obtained from ΓfQ above
to the extremal geometry of so(V, f), we require the following lemmas.

Lemma 6.2.3. Let V be a vector space over a division ring K, char(K) 6= 2, endowed with
a non-degenerate sesquilinear form f : V × V → K. If v, w ∈ V are linearly independent,
then there exists a u ∈ V such that f(v, u) = 0 and f(w, u) 6= 0.

Proof. Suppose towards a contradiction that f(v, u) 6= 0 or f(w, u) = 0 for all u ∈ V .
On the one hand, for all u ∈ V such that f(w, u) 6= 0, of which at least one exists by
non-degeneracy of f , we must have f(v, u) 6= 0, hence f(v − f(v, u)f(w, u)−1w, u) =
f(v, u) − f(v, u)f(w, u)−1f(w, u) = 0. On the other hand, for all u′ ∈ V such that
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f(v, u′) = 0 we must have f(w, u′) = 0 so that f(v − f(v, u)f(w, u)−1w, u′) = f(v, u′) −
f(v, u)f(w, u)−1f(w, u′) = 0. But then v − f(v, u)f(w, u)−1w ∈ rad(f) = {0}, contradict-
ing linear independence of v and w.

Lemma 6.2.4. Let so(V, f) be the orthogonal Lie algebra for some finite-dimensional vector
space V over a field F, char(F) 6= 2 and symmetric bilinear form f : V ×V → F such that f
has Witt index at least two. Further let sv,w, sv′,w′ ∈ E(so(V, f)) be two linearly independent
and commuting infinitesimal Siegel transvections. Then Fsv,w+Fsv′,w′ ⊆ E(so(V, f))∪{0}
if and only if either v = v′ or w = w′.

Proof. Suppose first that either v = v′ or w = w′. By properties of infinitesimal Siegel
transvections as discussed in our proof of Corollary 3.2.14, we then have either Fsv,w +
Fsv,w′ = sv,Fw + sv,Fw′ = sv,Fw+Fw′ or Fsv,w + Fsv′,w = sFv,w + sFv′,w = sFv+Fv′,w, both of
which are clearly infinitesimal Siegel transvections and hence extremal by Lemma 3.2.12.

Next, suppose that Fsv,w +Fsv′,w′ is extremal in so(V, f). We know from Lemma 5.1.1
that Fsv,w + Fsv′,w′ ⊆ E(so(V, f)) ∪ {0} if and only if [sv,w, [sv′,w′ , z]] = gsv,w(z)sv′,w′ +
gsv′,w′ (z)sv,w for all z ∈ so(V, f). Specifically, we may even assume that z is an infinitesimal
Siegel transvection sx,y ∈ E(so(V, f)) as so(V, f) is generated by E(so(V, f)) by Lemma
6.2.1, hence linearly spanned by E(so(V, f)) by Lemma 3.1.9. On the one hand, we have
for all u ∈ V that

[sv,w, [sv′,w′ , sx,y]](u) = [sv,w, sv′,w′sx,y − sx,ysv′,w′ ](u)

= sv,w(sv′,w′sx,y − sx,ysv′,w′)(u)− (sv′,w′sx,y − sx,ysv′,w′)(sv,w(u))

= sv,w(sv′,w′(sx,y(u)))− sv,w(sx,y(sv′,w′(u)))− sv′,w′(sx,y(sv,w(u))) + sx,y(sv′,w′(sv,w(u))),

and tedious calculations show that

sv,w(sv′,w′(sx,y(u))) = (f(y, u)f(w′, x)− f(x, u)f(w′, y))sv,w(v′)

− (f(y, u)f(v′, x)− f(x, u)f(v′, y))sv,w(w′),

sv,w(sx,y(sv′,w′(u))) = (f(w′, u)f(y, v′)− f(v′, u)f(y, w′))sv,w(x)

− (f(w′, u)f(x, v′)− f(v′, u)f(x,w′))sv,w(y),

sv′,w′(sx,y(sv,w(u))) = (f(w, u)f(y, v)− f(v, u)f(y, w))sv′,w′(x)

− (f(w, u)f(x, v)− f(v, u)f(x,w))sv′,w′(y),

sx,y(sv′,w′(sv,w(u))) = ((f(w, u)f(w′, v)− f(v, u)f(w′, w))sx,y(v
′)

− (f(w, u)f(v′, v)− f(v, u)f(v′, w′)sx,y(w
′),

hence [sv,w, [sv′,w′ , sx,y]](u) is a linear combination of v, w, v′, w′, x and y. On the other
hand, we have for all u ∈ V that

gsv,w(sx,y)sv′,w′(u) + gsv′,w′ (sx,y)sv,w(u) = (f(v, x)f(w, y)− f(v, y)f(w, x))sv′,w′(u)

+ (f(v′, x)f(w′, y)− f(v′, y)f(w′, x)sv,w(u),
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which is a linear combination of v, w, v′ and w′. Then necessarily sx,y(sv′,w′(sv,w(u))) must
vanish as this is the only term in [sv,w, [sv′,w′ , sx,y]](u) that is a linear combination of x and
y. This yields

0 = ((f(w, u)f(w′, v)− f(v, u)f(w′, w))sx,y(v
′)− (f(w, u)f(v′, v)− f(v, u)f(v′, w′)sx,y(w

′)

= (f(w, u)f(w′, v)f(y, v′)− f(w, u)f(v′, v)f(y, w′))x

− (f(v, u)f(w′, w)f(x, v′)− f(v, u)f(v, w′)f(x,w′))y

for all x, y, u ∈ V . We have f(w, u) 6= 0 for some u ∈ V as otherwise w = 0 by non-
degeneracy of f , a contradiction. Similarly, we have f(v, u) 6= 0 for some u ∈ V , f(x,w′) 6=
0 for some x ∈ V and f(y, w′) 6= 0 for some y ∈ V . But then f(v′, v) = f(v′, w) =
0 = f(v, w′) = f(w,w′). In turn, the term sv,w(sv′,w′(sx,y(u))) will also vanish, and we
moreover obtain the infinitesimal Siegel transvections sv,v′ , sv,w′ , sv′,w and sw,w′ . Another
tedious calculation now shows that

[sv,w, [sv′,w′ , sx,y]](u) = −sv,w(sx,y(sv′,w′(u)))− sv′,w′(sx,y(sv,w(u)))

= (f(w′, u)f(x, v′)− f(v′, u)f(x,w′))sv,w(y)− (f(w′, u)f(y, v′)− f(v′, u)f(y, w′))sv,w(x)

+ (f(w, u)f(x, v)− f(v, u)f(x,w))sv′,w′(y)− (f(w, u)f(y, v)− f(v, u)f(y, w))sv′,w′(x)

= f(w′, u)f(x, v′)f(w, y)v − f(w′, u)f(x, v′)f(v, y)w − f(v′, u)f(x,w′)f(w, y)v

+ f(v′, u)f(x,w′)f(v, y)w − f(w′, u)f(y, v′)f(w, x)v + f(w′, u)f(y, v′)f(v, x)w

+ f(v′, u)f(y, w′)f(w, x)v − f(v′, u)f(y, w′)f(v, x)w + f(w, u)f(x, v)f(w′, y)v′

− f(w, u)f(x, v)f(v′, y)w′ − f(v, u)f(x,w)f(w′, y)v′ + f(v, u)f(x,w)f(v′, y)w′

− f(w, u)f(y, v)f(w′, x)v′ + f(w, u)f(y, v)f(v′, x)w′ + f(v, u)f(y, w)f(w′, x)v′

− f(v, u)f(y, w)f(v′, x)w′

= (f(y, w′)f(w, x)− f(x,w′)f(y, w))sv,v′(u) + (f(x, v′)f(w, y)− f(x,w)f(v′, y))sv,w′(u)

+ (f(x, v)f(w′, y)− f(y, v)f(w′, x))sv′,w(u) + (f(y, v′)f(v, x)− f(x, v′)f(v, y))sw,w′(u)

= (f(v, x)f(w, y)− f(v, y)f(w, x))sv′,w′(u) + (f(v′, x)f(w′, y)− f(v′, y)f(w′, x)sv,w(u)

= gsv,w(sx,y)sv′,w′(u) + gsv′,w′ (sx,y)sv,w(u),

forcing

(f(y, w′)f(w, x)− f(x,w′)f(y, w))sv,v′(u) = 0 = (f(y, v′)f(v, x)− f(x, v′)f(v, y))sw,w′(u)

for all x, y, u ∈ V , or equivalently gsw,w′ (sx,y)sv,v′(u) = 0 = gsv,v′ (sx,y)sw,w′(u). If sv,v′ = 0,
then necessarily v = v′ and consequently gsv,v′ (sx,y) = 0. If gsw,w′ (sx,y) = 0, then we must
have sw,w′ = 0 because so(V, f) contains no sandwich elements by Lemma 6.2.1, from which
it follows that w = w′ so that also sw,w′ = 0. We conclude that either v = v′ or w = w′

but not both as otherwise sv,w = sv′,w′ , contradicting their linear independence.
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We are now in a position to establish the desired connection between the extremal
geometry Γso(V,f) = (E ,L) of so(V, f) and a root shadow space of type BCn,2 or Dn+1,2,
n ≥ 3.

Proposition 6.2.5. Let so(V, f) be the orthogonal Lie algebra for some vector space V over
a field F, char(F) 6= 2, and some non-degenerate symmetric bilinear form f : V × V → F
such that f has Witt index at least three. Then the extremal geometry Γso(V,f) = (E ,L) of
so(V, f) is isomorphic to a root shadow space of type BCn,2 or Dn+1,2, n ≥ 3.

Proof. By Lemma 6.2.1, so(V, f) is generated by the infinitesimal Siegel transvections
sv,w ∈ V , all of which are extremal and constitute the set of extremal elements of so(V, f)
E(so(V, f)). The points in E of Γso(V,f) = (E ,L) will then be the spans Fsv,w of infinitesimal
Siegel transvections sv,w ∈ V , and two infinitesimal Siegel transvections sv,w, sx,y ∈ V
define a line in L if and only if sv,w and sx,y are commuting and linearly independent
infinitesimal Siegel transvections such that Fsv,w+Fsx,y is extremal. Letting f : V ×V → F
be the non-degenerate symmetric bilinear form on V that defines so(V, f) as in Definition
2.2.10, the above construction shows that Γ∗f = (Lf ,P∗) is a root shadow space of type
BCn,2 or Dn+1,2 that arises from the absolute Γf = (P,Lf ). Note that n ≥ 3 since f is
assumed to have Witt index at least three. We will prove that the map ϕ : Γso(V,f) → Γ∗f
given by ϕ(sv,w) = 〈v, w〉 with sv,w ∈ E(so(V, f)) establishes an isomorphism between
Γso(V,f) and Γ∗f .

First, we show that ϕ is bijective on E and Lf . Clearly, if 〈v, w〉 ⊂ V is a totally f -
isotropic subspace, then f(λv+µw, λv+µw) = λ2f(v, v) + 2λµf(v, w) +µ2f(w,w) = 0 for
all λ, µ ∈ F, from which it follows that v and w are f -isotropic and orthogonal so that sv,w
is an infinitesimal Siegel transvection by Definition 3.2.13, necessarily extremal by Lemma
6.2.1. Now let sv,w ∈ E(so(V, f)) and consider the vectors sv,w(u) = f(w, u)v − f(v, u)w
with u ∈ V arbitrary. Then sv,w = 〈v, w〉 if and only if for all λ, µ ∈ F there exists a
u ∈ V such that sv,w(u) = λv + µw. So, let λ, µ ∈ F be arbitrary. By Lemma 6.2.3, there
exists a u ∈ V such that f(v, u) = 0 and f(w, u) 6= 0. Similarly, by interchanging v and
w, there exists a u′ ∈ V such that f(w, u′) = 0 and f(v, u′) 6= 0. Upon scaling, we may
assume that f(w, u) = λ if λ 6= 0 and f(v, u′) = −µ if µ 6= 0. But then sv,w(u + u′) =
f(w, u+u′)v−f(v, u+u′)w = f(w, u)v−f(v, u′)w = λv+µw if λ 6= 0 and µ 6= 0, whereas
sv,w(u) = f(w, u)v − f(v, u)w = λv if λ 6= 0 and µ = 0, sv,w(u′) = f(w, u′)v − f(v, u′)w =
µw if λ = 0 and µ 6= 0, and sv,w(0) = 0 if λ = 0 = µ. Regardless, we have ϕ(E) ⊆ Lf ,
forcing equality.

It remains to prove that L is mapped bijectively to P∗ by ϕ. On the one hand,
any line in P∗ consists of all 2-dimensional totally f -isotropic subspaces of V contained
in some 3-dimensional totally f -isotropic subspace 〈u, v, w〉 ⊂ V , which exists because
f has Witt index at least three, and containing w.l.o.g. the 1-dimensional totally f -
isotropic subspace 〈u〉 ⊂ V . These 2-dimensional totally f -isotropic subspaces will then
be 〈Fv + Fw, u〉 ⊂ V . But this yields the infinitesimal Siegel transvection sFv+Fw,u =
sFv,u + sFw,u = Fsv,u + Fsw,u by the previous paragraph and by properties of infinitesimal
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Siegel transvections that we have established in our proof of Corollary 3.2.14. This shows
that P∗ ⊆ ϕ(L). On the other hand, if sv,w, sv′,w′ ∈ E(so(V, f)) are commuting and
linearly independent, then Fsv,w + Fsv,w′ ⊆ E(so(V, f)) ∪ {0} if and only if either v = v′

or w = w′ by Lemma 6.2.4. Assuming w.l.o.g. that we are in the latter case, we obtain
Fsv,w + Fsv′,w = sFv,w + sFv′,w = sFv+Fv′,w, which corresponds to the 2-dimensional totally
f -isotropic subspace 〈Fv+Fv′, w〉 ⊂ V by the previous paragraph. As all such subspaces are
contained in the 3-dimensional totally f -isotropic subspace 〈v, v′, w〉 ⊂ V and contain the
1-dimensional totally f -isotropic subspace 〈w〉 ⊂ V , we deduce that ϕ(L) ⊆ P∗. Then ϕ is
an isomorphism between Γso(V,f) and Γ∗f by Definition 4.1.8, so the proposition follows.

We gather our findings in the following theorem, which settles the first part of our proof
of Theorem 1.1.2.

Theorem 6.2.6. Let g be a simple Lie algebra over a field F, char(F) 6= 2, without sandwich
elements generated by its set E(g) of extremal elements. If the extremal geometry Γg =
(E ,L) of g is isomorphic to a root shadow space of type BCn,2 or Dn+1,2, n ≥ 3, then g
is isomorphic to the orthogonal Lie algebra so(V, f) for some vector space V over F and
some non-degenerate symmetric bilinear form f : V × V → F such that f has Witt index
at least three.

Proof. By Lemma 6.2.1 and Lemma 6.2.2, so(V, f) is a simple Lie algebra without sandwich
elements generated by its set of extremal elements E(so(V, f)). By Proposition 6.2.5, we
may choose a vector space V over F such that Γso(V,f) is a root shadow space of type BCn,2
or Dn+1,2. But then Theorem 5.1.10 applies, thus g ∼= so(V, f).

6.3 Infinite-dimensional case

We proceed with the second part of our proof of Theorem 1.1.2. So, let fso(V, f) be the
finitary orthogonal Lie algebra for some infinite-dimensional vector space V over a field F,
char(F) 6= 2, and some non-degenerate symmetric bilinear form f : V ×V → F such that f
has Witt index at least three. Further let g be an infinite-dimensional simple Lie algebra
over F without sandwich elements generated by its set E(g) of extremal elements whose
extremal geometry Γg = (E ,L) is isomorphic to the geometry whose point set is the set
of all 2-dimensional totally f -isotropic subspaces of V and whose line set is the set of all
subsets of the point set whose elements are the 2-dimensional totally f -isotropic subspaces
of V all of which are contained in a fixed 3-dimensional totally f -isotropic subspace of V
and containing a fixed 1-dimensional totally f -isotropic subspace of V . We will call this
geometry the orthogonal geometry, denoted by ΓO(V, f). This time, our goal will be to
construct local systems for both fso(V, f) and g as a means of showing their isomorphicity.

First, we need a directed set that we can use to construct local systems for fso(V, f)
and g. Consider first the following lemma.
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Lemma 6.3.1. Let V be a vector space over a division ring K, char(K) 6= 2, containing
isotropic vectors and equipped with a non-degenerate reflexive (σ, ε)-sesquilinear form f :

V × V → K for some admissible pair (σ, ε). Then V is spanned by its f -isotropic vectors
if and only if f(v, v) ∈ Kσ,−ε = {λ+ ελσ | λ ∈ K} for all v ∈ V .

Proof. Suppose first that V is spanned by its f -isotropic vectors. Then any v ∈ V can be
written as a finite linear combination

∑
i∈I λivi ∈ V of f -isotropic vectors vi ∈ V , i ∈ I,

with λi ∈ K∗, i ∈ I, for some finite index set I. Consequently,

f(v, v) =
∑
i,j∈I

f(λivi, λjvj) =
∑
i,j∈I
i 6=j

f(λivi, λjvj) =
∑
i,j∈I
i<j

f(λivi, λjvj) + εf(λivi, λjvj)
σ

=

(∑
i,j∈I
i<j

f(λivi, λjvj)

)
+ ε

(∑
i,j∈I
i<j

f(λvi, λvj)

)σ
∈ Kσ,−ε,

showing that f(v, v) ∈ Kσ,−ε for all v ∈ V .
Next, suppose that f(v, v) ∈ Kσ,−ε for all v ∈ V . Clearly, the span of the isotropic

vectors of V is contained in V . Now let v ∈ V be f -isotropic, which exists by assumption,
and let w ∈ W such that f(v, w) 6= 0, which exists by non-degeneracy of f and forces
linear independence of v and w. As f(w,w) ∈ Kσ,−ε, there exists a λ ∈ K such that
f(w,w) = λ+ ελσ, hence for all µ ∈ K we obtain

f(w + µv,w + µv) = f(w,w) + f(w, v)µσ + µf(v, w)

= λ+ ελσ + µf(v, w) + εf(v, w)σµσ

= (λ+ µf(v, w)) + ε(λ+ µf(v, w))σ.

Taking µ = −λf(v, w)−1 then yields f(w+ µv,w+ µv) = 0, so 〈v, w〉 ⊆ V always contains
an f -isotropic vector, which shows that every 2-dimensional subspace of V containing v is
generated by its isotropic vectors. But then the span of the isotropic vectors of V contains
V , forcing equality.

Let (V, f) be a symmetric space with V an infinite-dimensional vector space over a
field F, char(F) 6= 2, and f : V × V → F a non-degenerate symmetric bilinear form on
V such that f has Witt index at least three. Denote by V the set of finite-dimensional
subspace W ⊂ V such that f |W is non-degenerate having Witt index at least three. Clearly,
inclusion ⊆ defines both a pre-order and a partial order on V. The following lemma shows
that (V,⊆) is a directed set.

Lemma 6.3.2. Let V be an infinite-dimensional vector space over a field F, char(F) 6= 2,
equipped with a non-degenerate symmetric bilinear form f : V × V → F and let V be as
defined above. Then for any two finite-dimensional subspaces U,U ′ ∈ V there exists a
subspace in V containing both U and U ′.
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Proof. Let U+U ′ = {u+u′ ∈ V | u ∈ U, u′ ∈ U ′} be the smallest subspace of V containing
both U and U ′. Note that U + U ′ is finite-dimensional; indeed, there are only finitely
many vectors u+ u′ ∈ V with u ∈ U and u′ ∈ U ′ as both U and U ′ are finite-dimensional
by assumption. Setting X := U + U ′, we show how to extend X to a finite-dimensional
subspace X ′ ⊂ V such that rad(f |X′) = {0}.

If rad(f |X) = {0}, then we are done as clearly U ⊆ X and U ′ ⊆ X. So, assume
that rad(f |X) 6= {0} and let 0 6= r ∈ rad(f |X). We first show that there exists an
0 6= x ∈ V \ X such that f(x, x) = 0 and f(r, x) 6= 0. Suppose towards the contrary
that f(r, x) = 0 for all x ∈ V \ X such that f(x, x) = 0. Up to proportionality by
Theorem 2.2.8, the form f is the sesquilinearisation fQ : V × V → F of a quadratic form
Q : V → F, which will be non-degenerate as f is non-degenerate. In particular, fQ uniquely
determines Q and we have Q(v + w) = Q(v) + Q(w) + f(v, w) for all v, w ∈ V so that
f(v, v) = Q(2v) − 2Q(v) = 2Q(v)2σ − 2Q(v) = 2Q(v) for all v ∈ V because f is (idF, 1)-
sesquilinear. Further note that FidF,−1 = {λ − (−1)λidF | λ ∈ F} = {2λ | λ ∈ F}. As
Q(v) ∈ F for all v ∈ V , we deduce that f(v, v) = 2Q(v) ∈ FidF,−1. Then Lemma 6.3.1
applies, so V = span{v ∈ V | f(v, v) = 0}. But then every x′ ∈ V \X can be written as a
linear combination

∑
i∈I λixi of f -isotropic vectors xi ∈ V \X, i ∈ I, with λi ∈ F∗, i ∈ I,

for some finite index set I. It follows that f(r, x′) =
∑

i∈I λif(r, xi) = 0 for all x′ ∈ V \X,
but we also have f(r, y) = 0 for all y ∈ X since r ∈ rad(f |X). Combined, this implies that
r ∈ rad(f) = {0}, a contradiction. Note that an x ∈ V \X such that f(x, x) = 0 always
exists; if not, then all f -isotropic vectors of V are contained in X, but the fact that V is
spanned by its f -isotropic vectors then forces X to be V , which is absurd. We conclude
that there exists an x ∈ V \ X such that f(x, x) = 0 and f(r, x) 6= 0. Now consider the
subspace X ′ := X + 〈x〉, which is clearly finite-dimensional.

We show that dim(rad(f |X′)) < dim(rad(f |X)). As r ∈ rad(f |X)\rad(f |X′), it suffices
to show that no vector in X ′ \X is in rad(f |X′). So, dim(rad(f |X′)) < dim(rad(f |X)) if
and only if y + λx 6∈ rad(f |X′) for all y ∈ X ′ \ X and λ ∈ F. Supposing for the sake of
contradiction that this is not the case, then there exist y ∈ X ′ \ X and λ ∈ F such that
f(y+λx, y′+µx) = 0 for all y′ ∈ X and µ ∈ F. Note that rad(f |X′) ⊆ rad(f |X) implies not
only that y 6= 0 as otherwise x ∈ rad(f |X), contradicting f(x, r) 6= 0, but also that λ 6= 0
as otherwise y ∈ rad(f |X) ⊆ X, contradicting y 6∈ X. We find 0 = f(y + λx, y′ + µx) =
f(y, x) + µf(x, x) = f(y, x) by taking y′ = 0 and µ 6= 0. For y′ = r ∈ rad(f |X) ⊆ X, we
get 0 = f(y + λx, r) = f(y, r) + λf(x, r) = λf(x, r), but then λ 6= 0 implies f(x, r) = 0, a
contradiction. Thus, the dimension of rad(f |X′) is strictly smaller than the dimension of
rad(f |X).

Since rad(f |X) is finite-dimensional, we can repeat the process described in the previous
two paragraphs until we obtain a subspace W ⊂ V such that U,U ′ ⊆ W and rad(f |W ) =
{0}, i.e. f |W is non-degenerate. As both f |U and f |U ′ have Witt index at least three,
then f |W will also have Witt index at least three because U,U ′ ⊆ W . This shows that
W ∈ V such that U,U ′ ⊆W , as claimed.
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Let (V,⊆) be the previously defined set of subspaces of V , which is readily seen to be
directed by the above lemma. We will construct two systems of Lie subalgebras of fso(V, f),
respectively g, over (V,⊆) and show that they are local systems by Definition 6.1.4.

Let W ∈ V. On the one hand, define so(W, f) = 〈sv,w ∈ fso(V, f) | v, w ∈ W 〉 to
be the Lie subalgebra of fso(V, f) generated by the infinitesimal Siegel transvections in
W . On the other hand, denoting by Γg(W ) = (E(W ),L(W )) the subspace of the extremal
geometry Γg = (E ,L) of g whose point set E(W ) is the set of all 2-dimensional totally
f |W -isotropic subspaces of W and whose line set L(W ) is the set of all subsets of E(W )
contained in some 3-dimensional f |W -isotropic subspace of W and containing some 1-
dimensional totally f |W -isotropic subspace of W , define g(W ) = 〈x | x ∈ E(W )〉 to be the
Lie subalgebra of g generated by the extremal points of Γg(W ).

Proposition 6.3.3. The systems O = {so(W, f)}W∈V and G = {g(W )}W∈V with so(W, f)
and g(W ), W ∈ V, as defined above are local systems of fso(V, f) and g, respectively, over
the previously defined directed set (V,⊆).

Proof. First consider the system O = {so(W, f)}W∈V of finite-dimensional Lie subalge-
bras of fso(V, f). Let U,U ′ ∈ V with corresponding Lie subalgebras so(U, f), so(U ′, f) ⊂
fso(V, f). By Proposition 6.3.2, there exists a W ∈ V such that U,U ′ ⊆ W , so both
so(U, f) and so(U ′, f) are contained in so(W, f). It remains to show that fso(V, f) =⋃
W∈V so(W, f). Because fso(V, f) is generated by its infinitesimal Siegel transvections by

Lemma 6.2.1, it is linearly spanned by them as a result of Lemma 3.1.9. So, every ele-
ment in g is a finite linear combination of infinitesimal Siegel transvections, each of them
contained in so(W, f) for some W ∈ V, which shows that fso(V, f) ⊆

⋃
W∈V so(W, f) and

forces equality. This proves O = {so(W, f)}W∈V to be a local system of fso(V, f) over
(V,⊆).

Next, consider the system G = {g(W )}W∈V of finite-dimensional Lie subalgebras of g
and let U,U ′ ∈ V with corresponding Lie subalgebras g(U), g(U ′) ⊂ g. Now Proposition
6.3.2 applies again, so we can find a W ∈ V such that U,U ′ ⊆ W . Consequently, we have
E(U), E(U ′) ⊆ E(W ), but then the spans of E(U) and E(U ′) will both be contained in
the span of E(W ), hence g(U), g(U ′) ⊆ g(W ). The equality g =

⋃
W∈V g(W ) follows from

arguments similar to those given in the previous paragraph; every element in g is a finite
linear combination of extremal elements, each of them corresponding to an extremal point
in E(W ) for some W ∈ V, hence g ⊆

⋃
W∈V g(W ) and equality follows. This shows that

G = {g(W )}W∈V is a local system of g over (V,⊆).

We set out to prove that O and G are isomorphic as local systems with the aim of
applying Theorem 6.1.6. This is done in the following theorem, which settles the infinite-
dimensional case.

Theorem 6.3.4. Let g be an infinite-dimensional simple Lie algebra over a field F, char(F) 6=
2, without sandwich elements generated by its set E(g) of extremal elements. If the extremal

129



geometry Γg = (E ,L) of g is isomorphic to the orthogonal geometry ΓO(V, f) of some vector
space V over F and some non-degenerate symmetric bilinear form f : V × V → F on V
such that f has Witt index at least three, then g is isomorphic to the finitary orthogonal
Lie algebra fso(V, f).

Proof. Let O = {so(W, f)}W∈V and G = {g(W )}W∈V be the previously defined systems
of finite-dimensional Lie subalgebras of fso(V, f) and g, respectively, over the directed
set (V,⊆) obtained from Lemma 6.3.2, which we have seen are both local systems by
Proposition 6.3.3.

We first show that so(W, f) ∼= g(W ) for all W ∈ V. So, let W ∈ V be arbitrary
and consider the Lie subalgebras so(W, f) and g(W ) of fso(V, f), respectively g. As their
extremal geometry Γso(W,f) and Γg(W ) are subspaces of the extremal geometries Γfso(V,f)

and Γg of fso(V, f) and g, respectively, we find Γso(W,f) and Γg(W ) to be isomorphic to a root
shadow space of type BCm,2 or Dm+1,2, respectively BCm′,2 or Dm′+1,2, with m ≥ 3 and
m′ ≥ 3 since f |W has Witt index at least three. Because W is finite-dimensional, both m
and m′ must be finite, therefore the polar spaces underlying Γso(W,f) and Γg(W ) arise from
two quadratic forms Q : W×W → F and Q′ : W×W → F on W . Their sesquilinearisations
fQ : W × W → F and f ′Q : W × W → F, which are uniquely determined by Q and
Q′, respectively, will both be symmetric, i.e. (idF, 1)-sesquilinear, hence proportional by
Theorem 2.2.8 so that ΓfQ

∼= Γf ′Q . In addition, we have FidF,1 = {λ − λ | λ ∈ F} = {0} =

{λ ∈ F | 2λ = 0} = FidF,1 since char(F) 6= 2, so ΓQ = ΓfQ and ΓQ′ = Γf ′Q by Proposition

4.6.10. But then ΓQ = ΓfQ
∼= Γf ′Q = ΓQ′ , forcing m = m′ so that Γso(W,f)

∼= Γg(W ), hence

g(W ) ∼= so(W, f) by Theorem 6.2.6 as f has Witt index at least three. In particular, we can
find an isomorphism ϕW : g(W )→ so(W, f) that induces the identity on Γso(W,f)

∼= Γg(W ).
Denote by {ϕW : so(W, f) → g(W )}W∈V the collections of isomorphisms as described

above. In light of Proposition 6.1.6, it remains show that ϕU = ϕW |U for all U,W ∈ V
such that U ⊆ W . Consider the map ϕ := ϕU (ϕW |U )−1. Note that, as U ⊆ W , the map
(ϕW |U )−1 sends elements in so(W, f) contained in so(U, f) to elements in g(W ) contained
in g(U), whereas ϕU maps elements in g(U) to so(U, f). As both ϕU and (ϕW |U )−1 are Lie
algebra isomorphisms, we find ϕ to be an automorphism of so(U, f). Moreover, since both
ϕU and ϕW induce the identity on Γso(W,f) and Γso(U,f), respectively, so will ϕ on Γso(U,f),
implying that ϕ fixes E(so(U, f)). In turn, ϕ will fix every line in Γso(U,f) up to scalar
multiplication, say by some λ ∈ F∗. Writing Γso(U,f) = (E ,L), which is a root filtration
space with filtration {Ei}−2≤i≤2 by Proposition 5.1.3, the graph (E , E2) is connected by
Theorem 5.1.4 since so(U, f) is simple, therefore the collinearity graph (E , E−1) of Γso(U,f)

is also connected by Lemma 5(ii) of [5] as L 6= ∅. But then ϕ is a scalar multiplication by
λ on the entirety of so(U, f). Consequently, for x, y ∈ so(U, f) such that [x, y] 6= 0, which
exist as otherwise so(U, f) would be abelian, specifically not simple, we obtain

λ[x, y] = ϕ([x, y]) = [ϕ(x), ϕ(y)] = [λx, λy] = λ2[x, y],

therefore λ = 1, forcing ϕ to be the identity on so(U, f). It follows that ϕU = ϕW |U .

130



Now Theorem 6.1.6 applies, so we have O ∼= G. In particular, the Lie algebras fso(V, f)
and g are isomorphic.

By combining Theorem 6.2.6 with Theorem 6.3.4, both the finite-dimensional and
infinite-dimensional case of Theorem 1.1.2 have been proven. Theorem 1.1.2 then im-
mediately follows.
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Chapter 7

Finiteness of the singular rank of
the extremal geometry

In Section 7.1, we introduce abstract root subgroups to define point-line geometries related
to the extremal geometry of a Lie algebra whose classification we will use to prove Theorem
1.1.4 in Section 7.2.

Section 7.1 and Section 7.2 are based mainly on the theory from [5, 26], with the latter
section using [8, 27] for classification purposes.

7.1 The root group geometry of abstract root subgroups

This section serves as an introduction to abstract root subgroups. In particular, we will
establish a connection between abstract root subgroups and the extremal geometry of a
Lie algebra in preparation for our proof of Theorem 1.1.4. First, however, we briefly turn
our attention to some group-theoretical concepts that we require to define abstract root
subgroups.

Let G be a group and denote by G# the set of all elements of G different from its
identity element 1. The conjugate of an element g ∈ G by an element h ∈ H is the element
gh = h−1gh, and the conjugate subgroup of a subgroup H ≤ G by an element g ∈ G
is the subgroup Hg = {hg | h ∈ H}. The commutator of two elements g, h ∈ G is the
element [g, h] = g−1h−1gh, and the commutator subgroup of two subgroups H,K ≤ G is
the subgroup [H,K] = {[h, k] | h ∈ H, k ∈ K}. Further recall from Definition 2.1.21 the
concept of nilpotency of Lie algebra g; its group-theoretical equivalent makes use of the
lower central series of a group G, recursively defined as G0 = G and Gi = [G,Gi] with
i ≥ 0. In particular, we have Gi+1 E Gi for all i ≥ 0, and G is said to be nilpotent if
Gn = 1 for some n ≥ 0. The nilpotency class of a nilpotent group G is the smallest integer
n ≥ 0 such that Gn = 1. Examples of nilpotent groups are abelian groups, but also finite
p-groups for some prime number p.
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Definition 7.1.1 (Rank one group). Let X be a group generated by two nilpotent subgroups
A,B ≤ X. If for all a ∈ A# there exists some b ∈ B# such that Ab = Ba and vice versa,
then X = 〈A,B〉 is called a rank one group.

Let X = 〈A,B〉 be a rank one group for some nilpotent subgroups A,B ≤ X. The
conjugate subgroups Ab and Ba of A by b ∈ B#, respectively B by a ∈ A#, are called the
unipotent subgroups of X. If both A and B are abelian groups, then X is said to be a rank
one group with abelian unipotent subgroups, abbreviated AUS. If for all a ∈ A# and b ∈ B#

such that Ab = Ba, as in the above definition, we additionally have ab = b−a = (b−1)a,
then X is called a special rank one group.

Example 7.1.2. Let K be a division ring and denote by Kσ = {λ ∈ K | λσ = λ} the
subfield of K consisting of the elements fixed by some anti-automorphism σ : K → Kopp.
We claim that the group X = 〈A,B〉 ≤ GL2(Kσ) with A = {

(
1 0
λ 1

)
| λ ∈ Kσ} and

B = {
(

1 λ
0 1

)
| λ ∈ Kσ} is a special rank one group with AUS.

Write aλ =
(

1 0
λ 1

)
∈ A and similarly bλ =

(
1 λ
0 1

)
∈ B. It is clear that for all λ, µ ∈ Kσ

we have λ+ µ ∈ Kσ, hence aλaµ = aλ+µ = aµaλ and bλbµ = bλ+µ = bµbλ shows that both
A and B are abelian. As a0 and b0 are the identity elements of A and B, respectively, we
deduce by the above that a−1

λ = a−λ and b−1
λ = b−λ for all λ ∈ Kσ. Then for all aλ ∈ A# we

have Baλ = {baλγ | bγ ∈ B} = {aλbγa−λ | bγ ∈ B} = {
(

1−γλ γ
−λγλ 1+λγ

)
| γ ∈ Kσ}, and similarly

for all bµ ∈ B# we have Abµ = {abµγ | aγ ∈ A} = {bµaγb−µ | aγ ∈ A} = {
(

1+µγ −µγµ
γ 1−γµ

)
| γ ∈

Kσ}. Hence, we have for all aλ ∈ A# that

Abλ−1 = {
(

1+λ−1γ −λ−1γλ−1

γ 1−γλ−1

)
| γ ∈ Kσ} = {

(
1+λ−1(−λγλ) −λ−1(−λγλ)λ

−λγλ 1−(−λγλ)λ−1

)
| −λγλ ∈ Kσ}

= {
(

1−γλ γ
−λγλ 1+λγ

)
| −λγλ ∈ Kσ} = Baλ ,

where the last equality follows from the observation that −λγλ ∈ Kσ if and only if γ ∈ Kσ.
This shows that X = 〈A,B〉 is a rank one group. It is moreover a special rank one group,
as for all aλ ∈ A# and bλ−1 ∈ B# we have

a
bλ−1

λ = bλ−1aλb−λ−1 =

(
1 + λ−1λ −λ−1λλ−1

λ 1− λλ−1

)
=

(
2 −λ−1

λ 0

)

=

(
1− (−λ−1)λ −λ−1

−λ(−λ−1)λ 1 + λ(−λ−1)

)
= aλb−λ−1a−λ = (b−1

λ−1)aλ = b−aλ
λ−1 .

Rank one groups play an essential role in sets of abstract root subgroups, which are
defined as follows.
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Definition 7.1.3 (Abstract root subgroups). Let G = 〈Σ〉 be a group generated by a set
Σ of abelian non-identity subgroups of G. If Σg ⊆ Σ for all g ∈ G and for all A,B ∈ Σ we
either have

(i) [A,B] = 1, or

(ii) X = 〈A,B〉 is a rank one group, or

(iii) Z(〈A,B〉) ≥ [A,B] = [a,B] = [A, b] ∈ Σ for all a ∈ A# and b ∈ B#,

then Σ is called a set of abstract root subgroups of G.

Let Σ be a set of abstract root subgroups of a group G = 〈Σ〉. If Σ is a conjugacy class
in G, we instead refer to Σ as a class of abstract root subgroups of G. If for all A,B ∈ Σ
such that X = 〈A,B〉 is a rank one group we have X ∼= (P)SL2(F) for some commutative
field F with A,B ≤ SL2(F) unipotent subgroups, then Σ is called a set (or class) of F-root
subgroups of G. If Definition 7.1.3(iii) never occurs, then Σ is said to be a set (or class) of
abstract transvection groups of G, or a degenerate set (or class) of abstract root subgroups
of G. Contrarily, if Definition 7.1.3(i)-(iii) all occur, then Σ is non-degenerate.

Example 7.1.4. Similar to the previous example, let F be a field and consider the sub-
groups A = {

(
1 0
λ 1

)
| λ ∈ F} and B = {

(
1 λ
0 1

)
| λ ∈ F} of GL2(F). Then X = 〈A,B〉

is a rank one group by Example 7.1.2. Writing Σ = {A,B}, then Σ is a set of abstract
transvection subgroups of the rank one group X = 〈A,B〉. We claim that Σ is also a set of
F-root subgroups of X. As in Example 7.1.2, write aλ =

(
1 0
λ 1

)
∈ A and bλ =

(
1 λ
0 1

)
∈ B.

First note that det(aλ) = 1 for all aλ ∈ A and similarly det(bλ) = 1 for all bλ ∈ B, hence

both A and B are subgroups of SL2(F). Moreover, as (aλ−I2)2 =
(

0 0
λ 0

)2
= 0 for all aλ ∈ A

and (bλ − I2)3 =
(

0 λ
0 0

)3
= 0 for all bλ ∈ B, we deduce that both A and B are unipotent

subgroups of SL2(F). Since the matrices
(

1 0
λ 1

)
, λ ∈ F, and

(
1 λ′
0 1

)
, λ′ ∈ F, are known to

generate SL2(F), we find X ∼= SL2(F) so that Σ is indeed a set of F-root subgroups of X.
More generally, let V be some finite-dimensional vector space over F with dim(V ) =

n ≥ 3 and let V ∗ be the dual space of V . Recall from Section 3.2 the transvection
group Exp(tv,ϕ) = {idV + λtv,ϕ | λ ∈ F, ϕ(v) = 0}, which is a subgroup of GLn(F) in
its action on gln(F), obtained from the infinitesimal transvections tv,ϕ : V → V given
by w 7→ ϕ(w)v with v ∈ V and ϕ ∈ V ∗ such that ϕ(v) = 0. Now consider the set
Σ = {Exp(tv,ϕ) | v ∈ V, ϕ ∈ V ∗, ϕ(v) = 0} ⊆ SLn(F). Letting Exp(tv,ϕ) ∈ Σ be arbitrary,
then Exp(tv,ϕ) is isomorphic to the additive group of F by Corollary 3.1.8, hence abelian,
and Exp(tv,ϕ)ψ ∈ Σ for all ψ ∈ SLn(F) by Corollary 2.1.8. Moreover, Exp(tv,ϕ) is unipotent
as t2v,ϕ(w) = tv,ϕ(ϕ(w)v) = ϕ(ϕ(w)v)v = ϕ(v)ϕ(w)v = 0 for all w ∈ V . If additionally
Exp(tw,ψ) ∈ Σ, then Exp(tv,ϕ) and Exp(tw,ψ) are as in Definition 7.1.3(i) if and only if
ψ(v) = 0 = ϕ(w), Definition 7.1.3(ii) if and only if ψ(v) 6= 0 and ϕ(w) 6= 0, and Definition
7.1.3(iii) if and only if either ψ(v) = 0 and ϕ(w) 6= 0 or ψ(v) 6= 0 and ϕ(w) = 0. Specifically,
〈Exp(tv,ϕ),Exp(tw,ψ)〉 ∼= SL2(F) if ψ(v) 6= 0 and ϕ(w) 6= 0, so Σ is a non-degenerate set of
F-root subgroups of SLn(F) = 〈Σ〉. See Example II(1.3) of [26] for more details.

134



As in II§1 of [26], we will fix the following notation throughout the remainder of this
section. For a set Σ of abstract root subgroups of a group G = 〈Σ〉 with Λ ⊆ Σ and U ≤ G,
write

NΛ(U) := {A ∈ Λ | A ≤ N(U)},
CΛ(U) := {A ∈ Λ | A ≤ C(U)},

ΣA := CΣ(A) \ {A},
ΛA := {B ∈ ΣA | Σ ∩AB is a partition of AB},
ΨA := {B ∈ Σ | [A,B] ∈ Σ},
ΩA := {B ∈ Σ | 〈A,B〉 is a rank one group}.

With this notation, it is easy to see that for all A 6= B ∈ Σ we have B ∈ ΣA if and only if
A,B are as in Definition 7.1.3(i), B ∈ ΩA if and only if A,B are as in Definition 7.1.3(ii),
and B ∈ ΨA if and only if A and B are as in Definition 7.1.3(iii). Consequently, we deduce
that

Σ = {A} t ΣA tΨA t ΩA

for all A ∈ Σ.
To relate the extremal elements of a Lie algebra to abstract root subgroups, we first

need to establish a connection between abstract root subgroups and point-line geometries.
To this end, consider the following definition.

Definition 7.1.5 (Root group geometry). Let Σ be a non-degenerate class of abstract root
subgroups of a group G = 〈Σ〉. The root group geometry of Σ is the point-line geometry
ΓΣ = (Σ,LΣ) having point set Σ and line set LΣ = {AB ∩ Σ | A ∈ Σ, B ∈ ΛA}.

We are now in a position to establish a connection between abstract root subgroups and
Lie algebras. Let g be a simple Lie algebra over a field F, char(F) 6= 2, without sandwich
elements generated by its set E(g) of extremal elements. Recall from Definition 2.1.7 the
group Int(g) of inner automorphisms of g generated by the automorphisms of the form
eadx with x ∈ g ad-nilpotent. In particular, we have Int(g) E Aut(g) by Corollary 2.1.8.
Since g = 〈E(g)〉, g is linearly spanned by E(g) as a consequence of Lemma 3.1.9, hence
G := 〈exp(x, λ) | x ∈ E(g), λ ∈ F〉 ≤ Int(g), in which exp(x, λ)(y) = y + λ[x, y] + λ2gx(y)x
with y ∈ g as introduced in Section 3.1.

Define Σ(g) := {Exp(x) | x ∈ E(g)} with Exp(x) = {exp(x, λ) | x ∈ E(g), λ ∈ F}. By
Corollary 3.1.8, we have Exp(x) ≤ G for all x ∈ E(g). Specifically, Exp(x) is abelian since
it is isomorphic to the additive group of F, again by Corollary 3.1.8. We now propose the
following.

Proposition 7.1.6. Let g be a simple Lie algebra over a field F, char(F) 6= 2, without
sandwich elements generated by its set E(g) of extremal elements. Then Σ(g) = {Exp(x) |
x ∈ E(g)} is a class of abstract root subgroups of G = 〈Exp(x) | x ∈ E(g)〉 = 〈Σ(g)〉.

In particular, Σ(g) is a class of F-root subgroups of G.
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Proof. By the above, Σ(g) consists of abelian non-identity subgroups of G = 〈Σ(g)〉. In
addition, as G ≤ Int(g) E Aut(g) by Corollary 2.1.8, we have Exp(x)ϕ = Exp(ϕ(x)) for
all x ∈ E(g) and ϕ ∈ G. Since any automorphism of g must preserve extremality, we find
ϕ(x) ∈ E(g), hence Exp(x)ϕ ∈ Σ(g) so that Σ(g)ϕ ⊆ Σ(g) for all ϕ ∈ G. Now letting
Exp(x),Exp(y) ∈ Σ(g) be arbitrary, we check the conditions listed in Definition 7.1.5.

Suppose first that Fx = Fy. Then Exp(x) = Exp(y), hence [Exp(x),Exp(y)] =
[Exp(x),Exp(x)] = 1 because Exp(x) ≤ G is abelian. We are in case Definition 7.1.5(i).

Secondly, assume that x, y are linearly independent such that [x, y] = 0 and Fx+Fy ⊆
E(g)∪{0}. Then also gx(y) = 0 and [x, [y, z]] = gx(z)y+gy(z)x for all z ∈ E(g) by Lemma
5.1.1. It follows that for all z ∈ g and λ, µ ∈ F we have

exp(x, λ) exp(y, µ)(z) = exp(x, λ)(z + µ[y, z] + µ2gy(z)y)

= z + µ[y, z] + µ2gy(z) + λ[x, z + µ[y, z] + µ2gy(z)y]

+ λ2gx(z + µ[y, z] + µ2gy(z)y)x

= z + [λx+ µy, z] + λ2gx(z)x+ µ2gy(z)y + λµ[x, [y, z]]

+ λ2µgx([y, z]) + λµ2gy(z)[x, y] + λ2µ2gx(y)gy(z)x

= z + [λx+ µy, z] + λ2gx(z)x+ µ2gy(z)y + λµ(gx(y)z + gy(z)x)

= z + [λx+ µy, z] + gλx+µy(z)(λx+ µy)

= exp(λx+ µy, 1)(z),

where gx([y, z]) = g[x,y](z) = g0(z) = 0 by associativity of the extremal form by Propo-
sition 3.1.10. Then exp(x, λ) exp(y, µ) = exp(λx + µy, 1) = exp(y, µ) exp(x, λ), hence
every element in Exp(x) commutes with every element in Exp(y) and vice versa so that
[Exp(x),Exp(y)] = 1, again bringing us to case Definition 7.1.5(i).

Thirdly, suppose that x, y are linearly dependent such that [x, y] = 0 but Fx + Fy 6⊆
E(g)∪{0}. As before, we then also have gx(y) = 0, therefore exp(x, λ)(y) = y for all λ ∈ F.
It follows that

[exp(x, λ), exp(y, µ)] = exp(x,−λ) exp(y,−µ) exp(x, λ) exp(y, µ)

= exp(exp(x,−λ)y,−µ) exp(y, µ) = exp(y,−µ) exp(y, µ) = 1,

by Corollary 2.1.8. Consequently, [Exp(x),Exp(y)] = 1, so we are in case Definition 7.1.5(i)
yet again.

Next, assume that x, y are linearly independent such that [x, y] 6= 0 but gx(y) = 0.
Then exp(x, λ)(y) = y + λ[x, y] for all λ ∈ F. Further note that [x, y] ∈ E(g); indeed, we
have

[[x, y], [[x, y], z]] = 2gx(y)gy(z)x− gx(y)[x, [y, z]] + 2gx(y)gx(z)y − gx(y)[y, [x, z]]

+ gx([y, z])[x, y]− gy([x, z])[x, y]

= (gx([y, z])− gy([x, z]))[x, y] = (gx([y, z]) + gx([y, z]))[x, y]

= 2gx([y, z])[x, y] = 2g[x,y](z)[x, y]
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by Corollary 3.1.6(ii), Corollary 3.1.5 and associativity of the extremal form by Proposition
3.1.10. Moreover, by the second Premet identity we have for all z ∈ g that

[[x, y], [x, z]] = gx([y, z])x+ gx(z)[x, y]− gx(y)[x, z] = g[x,y](z)x+ gx(z)[x, y],

which shows that Fx + F[x, y] ∈ E(g) ∪ {0} by Lemma 5.1.1. Furthermore, we then have
exp(x, λ) exp([x, y], µ) = exp(λx+ µ[x, y], 1) by the third paragraph, therefore

[exp(x, λ), exp(y, µ)] = exp(x,−λ) exp(y,−µ) exp(x, λ) exp(y, µ)

= exp(x,−λ) exp(exp(y,−µ)x, λ) = exp(x,−λ) exp(x+ µ[x, y], λ)

= exp(x,−λ) exp(x, λ) exp(µ[x, y], λ) = exp([x, y], λµ),

from which it follows that [Exp(x),Exp(y)] = Exp([x, y]) ∈ Σ(g). By noting that [x, [x, y]] =
2gx(y) = 0 and [y, [x, y]] = −2gy(x)y = 0, we deduce that Exp([x, y]) ≤ Z(〈Exp(x),Exp(y)〉).
In addition, the identities exp(x, λ) = exp(λx, 1) and exp(y, µ) = exp(µy, 1) for all λ, µ ∈ F∗
show that [Exp(x),Exp(y)] = [exp(x, λ),Exp(y)] = [Exp(x), exp(y, µ)] for all λ, µ ∈ F∗, so
we are in case Definition 7.1.5(iii).

Finally, suppose that x, y are linearly independent such that [x, y] 6= 0 and gx(y) 6= 0.
For all λ ∈ F∗ we then have −λ−1gx(y)−1 ∈ F∗, so we find

exp(y,−λ−1gx(y)−1)(x) = x− λ−1gx(y)−1[y, x] + λ−2gx(y)−2gy(x)y

= x+ λ−1gx(y)−1[x, y] + λ−2gx(y)−1y

= λ−2gx(y)−1(y + λ[x, y] + λ2gx(y)x)

= λ−2gx(y)−1 exp(x, λ)(y)

where gx(y) = gy(x) by Corollary 3.1.5. It then follows that from Corollary 2.1.8 that

Exp(y)exp(x,λ) = Exp(exp(x, λ)(y)) = Exp(λ−2gx(y)−1 exp(x, λ)(y))

= Exp(exp(y,−λ−1gx(y)−1)(x)) = Exp(x)exp(y,−λ−1gx(y)−1),

which shows, upon interchanging x and y by symmetry, that X = 〈Exp(x),Exp(y)〉 is
a rank one group. We are in case Definition 7.1.5(ii). This shows that Σ(g) is a set of
abstract root subgroups of G = 〈Σg〉. Since G ≤ Int(g) E Aut(g) by Corollary 2.1.8, we
find that Σ(g) is a conjugacy class in G, so Σ(g) is a class of abstract root subgroups of G.

For the final assertion, note that, as in our proof of Lemma 3.1.11, the triple {x, y, [x, y]}
is easily seen to be an sl2-triple if X = 〈Exp(x),Exp(y)〉 with x, y ∈ E(g) linearly inde-
pendent such that [x, y] 6= 0 and gx(y) 6= 0 is a rank one group. Moreover, Exp(x) is a
unipotent subgroup of G as for all z ∈ g and λ ∈ F we have

(exp(x, λ)− 1)3(z) = (exp(x, λ)− 1)2(λ[x, z] + λ2gx(z)x)

= (exp(x, λ)− 1)(λ[x, λ[x, z] + λ2gx(z)x] + λ2gx(λ[x, z] + λ2gx(z)x)x)

= (exp(x, λ)− 1)(λ2[x, [x, z]]) = λ[x, λ2gx(z)x] + λ2gx(λ2gx(z)x)x = 0,
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where gx([x, z]) = g[x,x](z) = 0 because the extremal form is associative by Proposition
3.1.10. Interchanging x and y shows that Exp(y) is also a unipotent subgroup of G. It
now remains to show that Exp(x),Exp(y) ≤ SL2(F) in their action on sl2(F), because then
X ∼= SL2(F) since {x, y, [x, y]} is an sl2-triple. Equivalently, this amounts to showing that
det(exp(x, λ)) = 1 for all λ ∈ F. Using the basis {x, y, [x, y]} of sl2(F), we deduce that
exp(x, λ)(x) = x, exp(x, λ)(y) = y + λ[x, y] + λ2gx(y)x and exp(x, λ)([x, y]) = [x, y] +
λ[x, [x, y]] + λ2gx([x, y])x = [x, y] + 2λgx(y)x, hence exp(x, λ) has determinant

det(exp(x, λ)) =

∣∣∣∣∣∣∣
1 0 0

λ2gx(y) 1 λ
2λgx(y) 0 1

∣∣∣∣∣∣∣ =

∣∣∣∣∣1 λ
0 1

∣∣∣∣∣ = 1.

It follows that Exp(x) ≤ SL2(F), and similarly for Exp(y). We conclude that X ∼= SL2(F),
thus Σ(g) is a set of F-root subgroups of G = 〈Σ(g)〉.

In the remainder of this chapter, we assume that Σ(g) is a non-degenerate class of
F-root subgroups of G, i.e. Definition 7.1.3(i)-(iii) all occur. In addition, we will identify
the projective points 〈x〉 = Fx with x ∈ E(g) of the extremal geometry Γg = (E ,L)
of g by the extremal elements x ∈ E(g) themselves. This identification is harmless as
Exp(x) = Exp(λx) for all λ ∈ F∗.

Our proof of the above proposition also demonstrates a clear connection between the
root group geometry of the non-degenerate class Σ(g) of abstract root subgroups of G =
〈Σ(g)〉 and the filtration {Ei}−2≤i≤2 of the extremal geometry Γg = (E ,L) of g; for all
x, y ∈ E(g), we have (x, y) ∈ E≤0 if and only if Exp(x),Exp(y) are as in Definition 7.1.5(i),
(x, y) ∈ E1 if and only if Exp(x),Exp(y) are as in Definition 7.1.5(iii), and (x, y) ∈ E2 if and
only if Exp(x),Exp(y) are as in Definition 7.1.5(ii). In particular, we obtain the following.

Corollary 7.1.7. Let g be a simple Lie algebra over a field F, char(F) 6= 2, without
sandwich elements generated by its set E(g) of extremal elements. Further let Σ(g) be the
non-degenerate class of F-root subgroups of G = 〈Σ(g)〉 and let Γg = (E ,L) be the extremal
geometry of g with filtration {Ei}−2≤i≤2. Upon identifying every Exp(x) ∈ Σ(g) by its
defining extremal elements x ∈ E(g) through the map ϕ : Σ(g)→ E(g) given by Exp(x) 7→
x, then for all Exp(x) ∈ Σ(g) we have ϕ(ΣExp(x)) = E−1(x) ∪ E0(x), ϕ(ΛExp(x)) = E−1(x),
ϕ(ΨExp(x)) = E1(x) and ϕ(ΩExp(x)) = E2(x)).

Proof. Let Exp(x) ∈ Σ(g) be arbitrary. We have CΣ(g)(Exp(x)) = {Exp(y) ∈ Σ(g) |
Exp(y) ≤ C(Exp(x))} = Exp(y) ∈ Σ(g) | [Exp(x),Exp(y)] = 1} = {y ∈ E(g) | [x, y] = 0}
by Proposition 7.1.6. Consequently, ϕ(CΣ(g)(Exp(x))) = {y ∈ E(g) | y ∈ E≤0(x)} =
E≤0(x), hence ϕ(ΣExp(x)) = ϕ(CΣ(g)(Exp(x))\{Exp(x)}) = E≤0(x)\E2(x) = E−1(x)tE0(x).

Now consider the set ΛExp(x) consisting of all Exp(y) ∈ ΣExp(x) such that Σ(g) ∩
Exp(x)Exp(y) is a partition of Exp(x)Exp(y). Then ϕ(ΛExp(x)) is a subset of E−1(x)tE0(x)
by the previous paragraph. On the one hand, if y ∈ E0(x) then Fx+Fy 6⊆ E(g)∪{0}, hence
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Σ∩Exp(x)Exp(y) = {Exp(x),Exp(y)}, which is not a partition of Exp(x)Exp(y), showing
that E0(x) 6⊆ ϕ(ΛExp(x)). On the other hand, if y ∈ E−1(x) then Fx + Fy ⊆ E(g) ∪ {0}
so that Σ ∩ Exp(x)Exp(y) = {Exp(λx + µy) | λ, µ ∈ F}, which does form a partition of
Exp(x)Exp(y). We conclude that ϕ(ΛExp(x)) = E−1(x).

It should be clear that ϕ(ΨExp(x)) = ϕ({Exp(y) ∈ Σ(g) | [Exp(x),Exp(y)] ∈ Σ(g)}) =
E1(x), for [Exp(x),Exp(y)] = Exp([x, y]) ∈ Σ(g) if and only if x, y are linearly independent
such that [x, y] 6= 0 and gx(y) 6= 0 by Proposition 7.1.6 if and only if y ∈ E1(x). Similarly,
we have ϕ(ΩExp(x)) = ϕ({Exp(y) ∈ Σ(g) | 〈Exp(x),Exp(y)〉 is a rank one group}) = E2(x),
since 〈Exp(x),Exp(y)〉 is a rank one group if and only if x, y are linearly independent such
that [x, y] 6= 0 and gx(y) 6= 0 by Proposition 7.1.6 if and only if y ∈ E2(x).

Note that our findings agree with the fact that Σ = {A} tΣA tΨA tΩA for any set of
abstract root subgroups Σ of a groupG = 〈Σ〉 and all A ∈ Σ; indeed, using {x} = E−2(x) for
any x ∈ E(g), by the above corollary we have E(g) = E−2(x)tE−1(x)tE0(x)tE1(x)tE2(x)
for all x ∈ E(g).

The above corollary has an even stronger implication; it shows that there is a one-to-
one correspondence between the root group geometry ΓΣ(g) = (Σ(g),LΣ(g)) of the non-
degenerate class Σ(g) of abstract root subgroups of G = 〈Σ(g)〉 and the extremal geometry
Γg = (E ,L) of g. This correspondence is characterised by the following theorem.

Theorem 7.1.8. Let g be a simple Lie algebra over a field F, char(F) 6= 2, without sandwich
elements generated by its set E(g) of extremal elements. Further let ΓΣ(g) = (Σ(g),LΣ(g))
be the root group geometry of the non-degenerate class Σ(g) of F-root subgroups of G =
〈Σ(g)〉 and let Γg = (E ,L) be the extremal geometry of g with filtration {Ei}−2≤i≤2. Then
Γg
∼= ΓΣ(g).

Proof. We claim that the map ϕ : Σ(g)→ E(g) given by Exp(x) 7→ x from Corollary 7.1.7
is an isomorphism between ΓΣ(g) and Γg, i.e. we will show that ϕ is bijective on Σ(g) and
E(g), and maps LΣ(g) bijectively to L.

The fact that ϕ is bijective on Σ(g) and E(g) follows immediately from the observation
that every x ∈ E(g) corresponds uniquely to Exp(x) ∈ Σ(g) and vice versa. So, it remains
to show that ϕ(LΣ(g)) = L.

First let ` ∈ L. Then ` = Fx + Fy for some linearly independent x, y ∈ E(g) such
that [x, y] = 0 and Fx+ Fy ⊆ E(g) ∪ {0}. Specifically, we have x ∈ E(g) and y ∈ E−1(x),
hence by Corollary 7.1.7 we equivalently have Exp(x) ∈ Σ(g) and Exp(y) ∈ ΛExp(x). But
then ` = ϕ({Exp(λx + µy) | λ, µ ∈ F}) = ϕ(Exp(x)Exp(y) ∩ Σ(g)) ∈ ϕ(LΣ(g)), showing
that L ⊆ ϕ(LΣ(g)). Conversely, if ` ∈ ϕ(LΣ(g)) then ` = ϕ(Exp(x)Exp(y) ∩ Σ(g)) for some
Exp(x) ∈ Σ(g) and Exp(y) ∈ ΛExp(x). Again by Corollary 7.1.7 we then equivalently have
` = ϕ({Exp(λx+ µy) | λ, µ ∈ F}) with x ∈ E(g) and y ∈ E−1(x), hence ` = Fx+ Fy with
x, y ∈ E(g) linearly independent such that [x, y] = 0 and Fx+ Fy ⊆ E(g) ∪ {0}. It follows
that ϕ(LΣ(g)) ⊆ L, forcing equality. We conclude that ϕ is an isomorphism between Γg

and ΓΣ(g).
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In light of the above theorem and Corollary 7.1.7, in the remainder of this chapter
we will identify all Exp(x) ∈ Σ(g) by their defining extremal elements x ∈ E(g) without
explicitly mentioning the isomorphism ϕ : Σ(g)→ E(g) given by Exp(x) 7→ x.

Now let Σ be a set of abstract transvection groups of some group G = 〈Σ〉. Following
Notation II(3.13) of [26], we say that Σ satisfies condition (H) if for all rank one groups
X = 〈A,B〉 with A ∈ Σ such that ord(a) ≤ 3 for all a ∈ A# and B ∈ ΩA there exist full
unipotent subgroups A0 ≤ A and B0 ≤ B such that X0 = 〈A0, B0〉 ∼= (P)SL2(F) for some
commutative field F, |F| ≥ 4. Condition (H) enables us to define a point-line geometry on
Σ different from the root group geometry of Σ, which we will later see has an important
property useful for our purposes. This additional point-line geometry is defined as follows.

Definition 7.1.9 (Abstract transvection geometry). Let Σ be a set of abstract transvec-
tion groups of a group G = 〈Σ〉 that satisfies condition (H). The abstract transvection
geometry of Σ is the point-line geometry ΓΣ = (PΣ,LΣ), in which PΣ = {A | A ∈ Σ} with
A := Z(〈CΣ(A)〉)∩Σ and LΣ = {`A,B | A,B ∈ Σ} with `A,B := {C | C ∈ Σ such that C ⊆
Z(〈CΣ(A) ∩ CΣ(B)〉) ∩ Σ}.

Under certain conditions, we are able to identify the points, hence also the lines, of the
abstract transvection geometry ΓΣ = (PΣ,LΣ) of a set Σ of abstract transvection groups
of a group G = 〈Σ〉 that satisfies condition (H) by the elements in Σ. This is characterised
by the following lemma.

Lemma 7.1.10. Let Σ be a set of abstract root subgroups of a group G = 〈Σ〉 such that
Z(G) = 1. Define rad(G) := 〈NA | A ∈ Σ〉, in which NA := N〈A〉(B) with B ∈ ΩA

arbitrary. Then rad(G) = 1 if and only if A = {A} for all A ∈ Σ.

Proof. First note that Z(G) = 1 implies that N〈A〉(B) is independent of the choice of
B ∈ ΩA by Lemma II(4.11) of [26], showing that NA is well-defined.

Suppose first that A = {A} for all A ∈ Σ. Then NA = N〈A〉(B) = NA(B) = {C ∈
A | C ≤ N(B)} with B ∈ ΩA arbitrary, hence either NA = A or NA = 1. If the former is
true, then A ≤ N(B). Specifically, we have Ba = B for all a ∈ A. But B ∈ ΩA implies
that 〈A,B〉 is a rank one group, so for every a ∈ A# there exists a b ∈ B# such that
Ab = Ba = B, implying that A = Bb−1

= B, a contradiction. It follows that NA = 1 for
all A ∈ Σ so that rad(G) = 〈NA | A ∈ Σ〉 = 1.

To prove the converse, we show that 〈A〉 = ANA = {anA | a ∈ A,nA ∈ NA}; as
1 = rad(G) = 〈NA | A ∈ Σ〉 forces NA = 1 for all A ∈ Σ, then we obtain 〈A〉 = A so
that A = {A}, as desired. The inclusion ANA ⊆ 〈A〉 is clear from the observation that
A ∈ A ⊆ 〈A〉 and NA ⊆ 〈A〉, so it remains to show that 〈A〉 ⊆ ANA. To do so, it suffices
to show DNA = ANA for some A 6= D ∈ A. Since D ∈ A, we have ΩA = ΩD by Lemma
II(2.22)(3) of [26], hence B ∈ ΩD. Consequently, 〈A,B〉 and 〈D,B〉 are both rank one
groups, so for all a ∈ A# there exists a b ∈ B# such that Ab = Ba, and for all b ∈ B#

there exists a d ∈ D# such that Db = Bd. But then Ba = Ab = Bd as A,D ∈ A so that
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Bad−1
= B, hence ad−1 ∈ 〈A〉 is an element such that ad−1 ∈ N(B), i.e. ad−1 ∈ NA. It

follows that dNA = aNa, and since for all a ∈ A# we can find such a d ∈ D# and vice
versa, we find DNA = ANA. We conclude that 〈A〉 = ANA.

By combining Proposition 7.1.6 with Corollary 7.1.7 and Lemma 7.1.10, we obtain the
following result.

Corollary 7.1.11. Let g be a simple Lie algebra over a field F, char(F) 6= 2, without
sandwich elements generated by its set E(g) of extremal elements and let Σ(g) be the non-
degenerate class of F-root subgroups of G = 〈Σ(g)〉. Then Exp(x) = {Exp(x)} for all
Exp(x) ∈ Σ(g).

Proof. First observe that the center of G is trivial, i.e. Z(G) = 1; indeed, if Exp(x) ∈ Σ(g)
satisfies [Exp(x),Exp(y)] = 1 for all Exp(y) ∈ Σ(g), then [x, y] = 0 for all y ∈ E(g) by
Proposition 7.1.6. In particular, as g = 〈E(g)〉 is linearly spanned by E(g) by Lemma
3.1.9, we have [x, y] = 0 for all y ∈ g so that x ∈ Z(g), contradicting that g is simple.

Now letting Exp(y) ∈ ΩExp(x) be arbitrary, we have N(Exp(y)) = C(Exp(y)) because
Exp(λy) = Exp(y) for all λ ∈ F∗, therefore N〈Exp(x)〉(Exp(y)) = {Exp(z) ∈ 〈Exp(x)〉 |
Exp(z) ≤ N(Exp(y))} = {Exp(z) ∈ 〈Exp(x)〉 | Exp(z) ≤ C(Exp(y))} = {Exp(z) ∈
〈Exp(x)〉 | [Exp(z),Exp(y)] = 1}. If now Exp(z) ∈ 〈Exp(x)〉, then ΩExp(x) = ΩExp(z) by
Lemma II(2.22)(3) of [26] implies that Exp(y) ∈ ΩExp(z). But then y ∈ E2(z) by Corollary
7.1.7, specifically [y, z] 6= 0. In turn, [Exp(z),Exp(y)] 6= 1 by Proposition 7.1.6, so then
certainly [Exp(z),Exp(y)] 6= 1 as Exp(y) ∈ Exp(y). It follows that NExp(x) = 1 for all
Exp(x) ∈ Σ(g), thus rad(G) = 〈NExp(x) | Exp(x) ∈ Σ(g)〉 = 1. Now Lemma 7.1.10 applies,
so we conclude that Exp(x) = {Exp(x)}.

We finish our discussion of abstract root subgroups with an important theorem per-
taining to the characterisation of the abstract transvection geometry ΓΣ = (PΣ,LΣ) of a
set Σ of abstract transvection groups of some group G = 〈Σ〉 that satisfies condition (H).
This theorem is also due to Cuypers and Meulewaeter in the context of the inner ideal
geometry of a Lie algebra [29].

Theorem 7.1.12. Let Σ be a set of abstract transvection subgroups of a group G = 〈Σ〉
satisfying condition (H). Then the abstract transvection geometry ΓΣ = (PΣ,LΣ) of Σ is
a thick non-degenerate polar space whose rank is at least two but not necessarily finite.

Proof. See Theorem III(1.4) of [26] or Theorem 6.11(b) of [29].

7.2 The singular rank of the extremal geometry of non-
classical type

Let Γ = (P,L) be a point-line geometry. A pair of point {p, q} ⊆ P is called a symplectic
pair if d(p, q) = 2 and |p⊥ ∩ q⊥| ≥ 2. A subspace S ⊆ P is called convex if any point
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on a shortest path between any two points in S is contained in S, and 2-convex if this is
true for any two points in S at distance two. If p⊥ ∩ ` is either empty, a single point or `
itself for all p ∈ P and ` ∈ L, then Γ is called a gamma space. Note that gamma spaces
are generalisations of polar spaces, for in polar spaces we only have that p⊥ ∩ ` is either a
single point or ` itself for all p ∈ P and ` ∈ L. A symplecton is a 2-convex subspace of a
gamma space Γ generated by a symplectic pair, i.e. the smallest 2-convex subspace of Γ
containing a symplectic pair {p, q} ⊆ P.

Of particular interest to us is the following lemma regarding the existence and charac-
terisation of symplecta in root filtration spaces.

Lemma 7.2.1. Let Γ = (P,L) be a root filtration space with filtration {Pi}−2≤i≤2. Then
Γ is a gamma space whose symplecta, if existent, are of the form P≤0(P≤0(p, q)) with
(p, q) ∈ P0.

Proof. Note that it follows immediately from Definition 4.5.1(v) that Γ is a gamma space;
indeed, since P≤1(p) = p⊥ is a subspace of Γ for all p ∈ P, we have ` ⊆ P≤−1(p) = p⊥

for all ` ∈ L such that |P≤−1(p) ∩ `| = |p⊥ ∩ `| ≥ 2, which shows that p is collinear to all
points on `. Further note that {p, q} ⊆ P is a symplectic pair if and only if (p, q) ∈ P0 by
Proposition 4.5.3.

Now let S ⊆ P be a symplecton of Γ. Then S is a 2-convex subspace generated
by some symplectic pair {p, q} ⊆ P. Consequently, P≤0(p, q) is the smallest subspace
containing {p, q} by Definition 4.5.1(v) and because (p, q) ∈ P0 by the above. Now every
pair {p′, q′} ⊆ P of common neighbours of p and q in (P,P−1) is contained in P≤0 since
p, q ∈ P−1(p′, q′), hence if (p′, q′) ∈ P0 then for any point r ∈ P−1(p′, q′) different from p
and q we have (p, r) ∈ P≤0 because p′, q′ ∈ P−1(p, r) and similarly (q, r) ∈ P≤0 because
p′, q′ ∈ P−1(q, r). But then by 2-convexity of S we have S = P≤0(P≤0(p, q)).

We now introduce two specific types of point-line geometries that we require for our
proof of Theorem 1.1.4. The first type is parapolar spaces, following the definition of
[18, 19].

Definition 7.2.2 (Parapolar space). Let Γ = (P,L) be a point-line geometry and let S be
a collection of proper symplecta of Γ. If

(i) Γ is a thick partial linear gamma space whose collinearity graph is connected,

(ii) all symplecta in S are non-degenerate polar spaces of rank at least two,

(iii) for all symplectic pairs {p, q} ⊆ P there exists a unique symplecton in S containing
{p, q},

(iv) for all ` ∈ L there exists a symplecton in S containing `,

then Γ is called a parapolar space.
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A point-line geometry Γ = (P,L) that satisfies Definition 7.2.2(i)-(iii) but not Definition
7.2.2(iv) is called a weakly parapolar space. Contrarily, Γ is said to be strongly parapolar
if Γ is a parapolar space in which no two points have a unique common neighbour in its
collinearity graph. If Γ is a parapolar space with a collection S of symplecta, we say that
Γ has polar rank (at least) k if all symplecta of Γ in S have rank (at least) k. n case
Γ = (P,L) is both a parapolar space with a collection S of symplecta and a root filtration
space with filtration {Pi}−2≤i≤2, then Γ will be strongly parapolar if and only if P1 = ∅.

Example 7.2.3. Let Γ = (P,L) be a linear space. Then p⊥ ∩ ` = ` for all p ∈ P and
` ∈ L since any two points in P are collinear, hence clearly Γ satisfies Definition 7.2.2(i).
Moreover, because Γ contains no symplectic pairs, the collection S of symplecta will be
empty, in which both Definition 7.2.2(ii) and Definition 7.2.2(iii) are a vacuous truths. As
Definition 7.2.2(iv) clearly does not hold, Γ will be a weakly parapolar space.

Let I = {1, 2} be a type set and let C = (C, {∼| i ∈ I}) be a building of type G2. From
it, we obtain a root shadow space of type G2,1, which will be a generalised hexagon by
Table 1 as there are three edges between the nodes in the Coxeter diagram corresponding
to a Coxeter system of type G2. A root shadow space of type G2,1 has singular rank one, as
all of its lines are maximal singular subspaces. Since generalised hexagons are also weakly
parapolar spaces with an empty set of symplecta, a root shadow space of type G2,1 will
therefore be a weakly parapolar space.

Our definition of the second type of point-line geometries follows the one given in [8]
and is based on the terminology used by Freudenthal [28].

Definition 7.2.4 (Metasymplectic space). Let Γ = (P,L) be a point-line geometry and let
S be a collection of proper symplecta of Γ. If

(i) the collinearity graph of Γ is connected,

(ii) all symplecta in S are non-degenerate polar spaces of rank three,

(iii) the intersection of any two distinct symplecta in S is either empty, a point in P, a
line in L or a plane of Γ,

(iv) for all p ∈ P the point-line geometry, whose point set is the set of symplecta in S
containing p and whose line set is the set of subsets of the point set consisting of
all symplecta in S containing a fixed plane that contains p, is a non-degenerate polar
space of rank three,

then Γ is called a metasymplectic space.

A metasymplectic space Γ = (P,L) is said to be thick if all of its symplecta, when
viewed as polar spaces, are thick. Note that Definition 7.2.4(i) is superfluous if Γ is a non-
degenerate root filtration space, as then the collinearity graph (P,P−1) of Γ is connected
by non-degeneracy of Γ.
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We will now turn our attention to proving Theorem 1.1.4. So, let g be a simple Lie
algebra over a field F, char(F) 6= 2, without sandwich elements generated by its set E(g) of
extremal elements whose extremal geometry Γg = (E ,L) with filtration {Ei}−2≤i≤2 is not
isomorphic to a root shadow space of classical type. First consider the following proposition,
using the notation in III§9 of [26].

Proposition 7.2.5. Let g be a simple Lie algebra over a field F, char(F) 6= 2, without
sandwich elements generated by its set E(g) of extremal elements whose extremal geometry
Γg = (E ,L) of g with filtration {Ei}−2≤i≤2 is not isomorphic to a root shadow space of
classical type. Then for all x ∈ E(g) the subspace E≤0(x) of Γg is maximal and the graph
(E , E2) induced by ∆′0 := E≤0(x, y) is connected for all y ∈ E2(x).

Proof. First note that E≤0(x) and ∆′0 = E≤0(x, y) are both subspaces of Γg by Definition
4.5.2(iv) since Γg is a root filtration space by Proposition 5.1.3. In addition, by non-
degeneracy of Γg as a result of Theorem 5.1.4 because g is simple, we have E2(x) 6= ∅ for
all x ∈ E(g), so ∆′0 6= ∅. Now let Σ(g) be the non-degenerate class of F-root subgroups
of G as defined in the previous section. For Exp(x) ∈ Σ(g), set CExp(x) := 〈ΣExp(x)〉 and
define MExp(x) := rad(CExp(x))〈Exp(x)〉, following the notation in III§1 of [26].

First suppose towards a contradiction that E≤0(x) is not maximal in Γg for some x ∈
E(g). Then by Corollary 7.1.7, this equivalently means that CExp(x) is not maximal in
Σ(g). On the one hand, if N(Exp(x)) is not maximal in G, then Γg is isomorphic to a
root shadow space of type An,{1,n} (n ≥ 2) by Theorem III(9.3)(2) of [26], a contradiction.
On the other hand, if N(Exp(x)) is maximal in G, then either ΣExp(x) ⊆ MExp(x) or
ΣExp(x) ⊆MExp(x). But Exp(x) 6∈ ΣExp(x) whereas MExp(x) = Exp(x) by Corollary 7.1.11,
so the former case cannot occur. In the latter case, we find Γg to be isomorphic to a
root shadow space of type BC3,2 by Theorem III(9.5)(B) of [26], another contradiction. It
follows that E≤0(x) must be maximal in Γg for all x ∈ E(g).

Next, assume that the graph (E , E2) of ∆′0 = E≤0(x, y) with y ∈ E2(x) is not connected
for some x ∈ E(g). By maximality of CExp(x) in Σ(g) by the previous paragraph, then
Theorem III(9.5)(A) of [26] applies, from which it follows that Γg is isomorphic to a root
shadow space of type BCn,2 (n ≥ 4) or Dn,2 (n ≥ 4), a contradiction. We conclude that
the graph (E , E2) of ∆′0 with y ∈ E2(x) is connected for all x ∈ E(g). The proposition
follows.

In the remainder of this chapter, we will assume that for all x ∈ E(g) the subspace
E≤0(x) of Γg is maximal and that the graph (E , E2) induced by ∆′0 = E≤0(x, y) is connected
for all y ∈ E2(x). Note that, as ∆′0 is a subspace of Γg, it follows from Proposition 7.1.6 and
Corollary 7.1.7 that ∆0 := {Exp(z) ∈ Σ(g) | z ∈ ∆′0} is a set of abstract root subgroups of
〈∆0〉. So, it remains to distinguish between ∆0 being a set of abstract transvection groups
or non-degenerate.

Assume first that ∆0 is a set of abstract transvection groups of 〈∆0〉. We will show
that, in this case, the extremal geometry Γg = (E ,L) of g is a thick metasymplectic space.
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To do so, we require the following proposition.

Proposition 7.2.6. Let g be a simple Lie algebra over a field F, char(F) 6= 2, without
sandwich elements generated by its set E(g) of extremal elements and let Σ(g) be the class
of abstract root subgroups of G = 〈Σ(g)〉. If ∆0 is a set of abstract transvection groups
of 〈∆0〉, then the abstract transvection geometry Γ∆0

= (P∆0
,L∆0

) of ∆0 is a thick non-
degenerate polar space of not necessarily finite rank at least two.

Proof. Since Σ(g) is a class of F-root subgroups of G = 〈Σ(g)〉 by Proposition 7.1.6, we have
〈Exp(x),Exp(y)〉 ∼= SL2(F) for all Exp(x) ∈ Σ(g) and Exp(y) ∈ ΩExp(x). Consequently, ∆0

satisfies condition (H) if and only if |F| ≥ 4. In particular, condition (H) is a vacuous truth
if |F| ≥ 4, as exp(x, λ)n = exp(x, nλ) for all n ∈ N and λ ∈ F by Proposition 3.1.7 implies
that ord(exp(x, λ)) ≥ 4 for at least one λ ∈ F∗.

Because ∆0 is a set of abstract transvection groups of 〈∆0〉 that satisfies condition (H),
the abstract transvection geometry Γ∆0

= (P∆0
,L∆0

) of ∆0 is well-defined by Definition
7.1.9. Specifically, we may identity the points in P∆0

by the elements of ∆0 and the lines
in L∆0

by the subsets of ∆0 all of whose elements commute pair-wise as a consequence of
Corollary 7.1.11. But now Theorem 7.1.12 applies, so Γ∆0

is a thick non-degenerate polar
space of rank at least two but not necessarily finite.

If |F| ≤ 3, the proposition follows Lemma III(7.7)(2) and Lemma III(7.8) of [26].

Now define ∆z := ∆0∩ΛExp(z) with Exp(z) ∈ Λ∗Exp(x)
:= ΛExp(x)∩ΨExp(y). By Corollary

7.1.7, we then equivalently have that ϕ(∆z) = {z′ ∈ ∆′0 | z′ ∈ E−1(z)} ⊆ ∆′0, in which
z ∈ E−1(x) ∩ E1(y). Note that E2(x) 6= ∅ as E−1 6= ∅ implies that by simplicity of g the
extremal geometry Γg of g will be a non-degenerate root filtration space by Theorem 5.1.4.

For the sake of simplicity, write ∆′z := ϕ(∆z). We state some useful properties of
subsets of ∆0 of the form ∆z with Exp(z) ∈ ΛExp(x) ∩ΨExp(y).

Lemma 7.2.7. Let g be a simple Lie algebra over a field F, char(F) 6= 2, without sandwich
elements generated by its set E(g) of extremal elements and let Γ∆0

= (P∆0
,L∆0

) be the
abstract transvection geometry of ∆0 with x ∈ E(g) and y ∈ E2(x). Then the subset
∆z ⊆ ∆0 with Exp(z) ∈ ΛExp(x) ∩ΨExp(y) is

(i) a maximal singular subspace of Γ∆0
,

(ii) a projective plane of Γ∆0
.

Proof. For (i), first note that 〈∆z〉∩∆0 = ∆z by Lemma III(7.2)(2) of [26] implies that ∆z

is a subspace of ∆0; indeed, the smallest subspace 〈∆z〉 of ∆0 containing ∆z is ∆z inside
∆0.

We show next that ∆z is a singular subspace of ∆0. Denoting collinearity in Γ∆0
by ⊥0,

then by Definition 7.1.9 and Corollary 7.1.11 we have Exp(p) ⊥0 Exp(q) ⇐⇒ [p, q] = 0
for all p, q ∈ ∆′0, for we may identify the points in P∆0

by the elements in ∆0. So, ∆z is
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singular if and only if [p, q] = 0 for all p, q ∈ ∆′z. Supposing now towards a contradiction
that [p, q] 6= 0 for some p, q ∈ ∆′z, then we have (p, q) ∈ E1 t E2. By degeneracy of ∆0, the
former case cannot occur, hence (p, q) ∈ E2. But then p and q have no common neighbours
in the collinearity graph (E , E−1) of the extremal geometry Γg = (E ,L) of g by Corollary
4.5.3, which is absurd as {p, q} ⊆ E−1(z) ⇐⇒ z ∈ E−1(p, q), i.e. z is a common neighbour
of p and q. We conclude that (p, q) 6∈ E1 t E2, therefore (p, q) ∈ E≤0 ⇐⇒ [p, q] = 0 ⇐⇒
Exp(p) ⊥0 Exp(q).

It remains to show that ∆z is maximal. Assuming for the sake of contradiction that
S is a subspace of ∆0 that properly contains ∆z, let Exp(p) ∈ S \∆z be arbitrary. Then
by Corollary 7.1.7 and by connectedness of (E , E−1), which is a result of non-degeneracy
of Γg by Theorem 5.1.4 since g is simple, there exists a z′ ∈ ∆′z such that p ∈ E−1(z′).
Now Lemma III(7.2)(3) of [26] applies, hence [p, z′] = 0. But then [p,∆′z] = 0 by Lemma
III(7.1)(3) of [26], and consequently p ∈ ∆′z by Lemma III(7.2)(1) of [26], which we may
invoke by connectivity of the graph (E , E2) induced by ∆′0. But then we have reached a
contradiction, so it follows that ∆z is maximal, which settles (i).

For (ii), first note that ∆z is a projective geometry by Corollary 4.1.20 as Γ∆0
is a thick

non-degenerate polar space by Proposition 7.2.6 and ∆z is a singular subspace of Γ∆0
by

Lemma 7.2.7(i). So, to show that ∆z is a projective plane of Γ∆0
, it remains to show that

∆z contains three non-collinear points and that any two lines in ∆z intersect.
The former property is settled by Lemma III(7.6)(2) of [26]; indeed, it is shown there

that ∆z = Exp(p)⊥0 ∩ `⊥0 for any line ` ⊆ ∆z and point Exp(p) ∈ ∆z not on `. For
the latter property, we again use Corollary 7.1.7 and let `, `′ ⊆ ∆′z be two distinct lines.
Then by Lemma III(7.6)(1) of [26], there exist distinct p, q ∈ E−1(x, z) ∩ E1(y) such that
` = ∆′z ∩ ∆′p and `′ = ∆′z ∩ ∆′q. Since x and z are common neighbours of both p and
q in (E , E−1), we cannot have (p, q) ∈ E1 t E2 by Proposition 4.5.3, hence (p, q) ∈ E≤0.
Now Lemma III(7.3) of [26] applies, which shows that |∆′p ∩ ∆′q| ≥ 1. Clearly, we have
(p, q) 6∈ E−2, and if (p, q) ∈ E−1 then by maximality of ∆′z ∩∆′p as a consequence of Lemma
7.2.7(i) we find that q lies on the line through z and p so that ` = ∆′z ∩∆′p = ∆′z ∩∆′q = `′,
a contradiction. So, we must have (p, q) ∈ E0, hence |∆′p ∩ ∆′q| ≤ 1 by Lemma III(7.4)
of [26], forcing |∆′p ∩ ∆′q| = 1, i.e. ∆′p ∩ ∆′q contains a single point, say r ∈ ∆′0. Now
[r, `] = 0 = [r, `′], so for any point s ∈ `′ \ ` ⊆ ∆′z \ `, which exists by distinctness of ` and
`′, we then have [r, `] = 0 = [r, s], implying that r ∈ ∆′z, again by Lemma III(7.6)(2) of
[26]. It follows that {r} = ∆′p ∩∆′q = (∆′z ∩∆′p) ∩ (∆′z ∩∆′q) = ` ∩ `′. This shows that ∆z

is a projective plane of ∆0, as desired.

It now follows immediately from Proposition 7.2.6 and Lemma 7.2.7 that rank(Γ∆0
) = 3;

indeed, as rank(Γ∆0
) ≥ 2 by Proposition 7.2.6 and ∆z is a projective plane of Γ∆0

by
Lemma 7.2.7(ii), we have rank(Γ∆0

) ≥ 3, but ∆z being a maximal singular subspace of
Γ∆0

by Lemma 7.2.7(i) then forces rank(Γ∆0
) = 3.

The above result is a first step towards establishing that Γg is a thick metasymplectic
space. Our next step will be to construct a set S of symplecta of Γg. As in Notation III(7.9)
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of [26], for Exp(u) ∈ Σ(g) and Exp(v) ∈ ΣExp(u) \ ΛExp(u) define S(Exp(u),Exp(v)) =
Exp(u)〈ΛExp(u) ∩ ΛExp(v)〉Exp(v) ∩ Σ(g) to be the symplecton of the root group geometry
ΓΣ(g) = (Σ(g),LΣ(g)) of g spanned by Exp(u) and Exp(v). By Corollary 7.1.7 and Lemma
7.2.1, we then equivalently obtain the symplecton S(u, v) = E≤0(E≤0(u, v)) of the extremal
geometry Γg = (E ,L) of g with (u, v) ∈ E0 since Γg is a root filtration space by Proposition
5.1.3. The following lemma shows that a symplecton is independent of the choice of a
symplectic pair contained in it, thereby making them well-defined.

Lemma 7.2.8. Let g be a simple Lie algebra over a field F, char(F) 6= 2, without sandwich
elements generated by its set E(g) of extremal elements. Then for all (u, v) ∈ E0 the
symplecton S(u, v) = E≤0(E≤0(u, v)) of the extremal geometry Γg = (E ,L) is the unique
symplecton on u and v.

Proof. To show uniqueness of S(u, v), we prove that S(u′, v′) = S(u, v) for all u′, v′ ∈
S(u, v) such that (u′, v′) ∈ E0. Since u′, v′ ∈ S(u, v) ⇐⇒ u, v ∈ S(u′, v′), it suffices to only
show the inclusion S(u′, v′) ⊆ S(u, v) by symmetry.

If u′, v′ 6∈ E−1(u, v), then the lemma follows from Lemma III(7.10)(1) of [26]. So, we may
assume that u′ and v′ are collinear to both u and v. Now let p ∈ S(u′, v′) = E≤0(E≤0(u′, v′)).
Since u, v ∈ E−1(u′, v′), we then have p ∈ E≤0(u, v). If p ∈ E≤−1(u, v), then p lies on a
shortest path from u to v in the collinearity graph (E , E−1) since (u, v) ∈ E0, hence is
contained in S(u, v) by 2-convexity, so we may assume w.l.o.g. that p ∈ E0(u) ∩ E≤0(v).
But then

p ∈ E0(E−2(u)) ∩ E≤0(E−2(v)) ⊆ E≤0(E≤0(u)) ∩ E≤0(E≤0(v)) = E≤0(E≤0(u, v)) = S(u, v),

showing the inclusion S(u′, v′) ⊆ S(u, v).

Denote by S the collection of symplecta S(u, v) = E≤0(E≤0(u, v)) of Γg = (E ,L) with
(u, v) ∈ E0. We follow up with some important properties of the symplecta in S.

Corollary 7.2.9. Let g be a simple Lie algebra over a field F, char(F) 6= 2, without
sandwich elements generated by its set E(g) of extremal elements and let S be the collection
of symplecta of the extremal geometry Γg = (E ,L) of g as defined above. If ∆0 is a set of
abstract transvection groups of 〈∆0〉, then

(i) every symplecton in S is a non-degenerate thick polar space of rank three all of whose
plane are projective planes over F,

(ii) the intersection of any two distinct symplecta in S is either empty, a point in E, a
line in L or a plane of Γg.

Proof. For (i), see Lemma III(7.10)(2) of [26].
For (ii), let S(u, v), S(u′, v′) ∈ S be two distinct symplecta. Now assume towards

a contradiction that S(u, v) ∩ S(u′, v′) is not empty, nor a point in E , nor a line in L
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nor a plane in Γg. As all planes of the symplecta in S are projective planes over F by
Corollary 7.2.9(i), which are moreover maximal singular by Lemma 7.2.7(i)-(ii) because
∆0 is a set of abstract transvection groups of 〈∆0〉 by assumption, there exist distinct
points p, q ∈ S(u, v)∩ S(u′, v′) such that (p, q) ∈ E0. But then S(u, v) = S(p, q) = S(u′, v′)
by Lemma 7.2.8, a contradiction. This proves (ii).

We are now in a position to prove that Γg is a thick metasymplectic space.

Theorem 7.2.10. Let g be a simple Lie algebra over a field F, char(F) 6= 2, without
sandwich elements generated by its set E(g) of extremal elements. If ∆0 is a set of abstract
transvection groups of 〈∆0〉, then the extremal geometry Γg = (E ,L) together with the
previously defined collection S of symplecta of Γg is a thick metasymplectic space.

Proof. We check the conditions listed in Definition 7.2.4. By non-degeneracy of Γg, Defi-
nition 7.2.4(i) is obvious. Definition 7.2.4(ii)-(iii) are Corollary 7.2.9(i)-(ii), so it remains
to show that Definition 7.2.4(iv) holds.

For arbitrary Exp(x) ∈ Σ(g), denote by ΓExp(x) = (PExp(x),LExp(x)) the point-line
geometry whose points in PExp(x) are the symplecta of the form S(Exp(x),Exp(t)) with
Exp(t) ∈ (ΣExp(x) \ ΛExp(x)) ∩ ∆0 and whose lines in Lx are the sets of symplecta of the
form S(Exp(x),Exp(t)) all of which contain a fixed plane of Γg containing Exp(x). We
claim that ΓExp(x)

∼= Γ∆0
. In particular, we will show that the map ϕ : Γx → Γ∆0

given by
S(Exp(x),Exp(t)) 7→ Exp(t) is an isomorphism. By Corollary 7.1.7, we may equivalently
show that the map S(x, t) 7→ t with x ∈ E(g) and t ∈ E0 ∩∆′0 is an isomorphism.

It follows readily from uniqueness of S(x, t) by Lemma 7.2.8 that ϕ maps S(x, ·) bijec-
tively to ∆′0, so it remains to show that ϕ is bijective on LExp(x) and L∆0

. On the one hand,
any line ` ∈ LExp(x), which corresponds uniquely to a set of symplecta in S of the form
S(x, `′) = {S(x, x′) ∈ S | x′ ∈ `′} for some line `′ ⊆ E0(x) ∩ ∆′0, contains the fixed plane
on `′ and x 6∈ `′, hence corresponds uniquely to the line `′ ⊆ ∆′0 so that ` ∈ L∆0

. On the
other hand, any line ` ∈ L∆0 , which corresponds uniquely to a line `′ ⊆ ∆′0, gives rise to
the fixed plane on `′ containing x 6∈ `′, hence corresponds uniquely to the set of symplecta
S(x, `′) = {S(x, x′) ∈ S | x′ ∈ `′} so that ` ∈ LExp(x). This shows that ΓExp(x)

∼= Γ∆0
, as

claimed. Specifically, ΓExp(x) will be a thick non-degenerate polar space of rank three by
Proposition 7.2.6 since ∆0 is a set of abstract transvection groups of 〈∆0〉 by assumption,
thus Definition 7.2.4(iv) holds.

We conclude that Γg together with the collection S of symplecta of Γg is a metasym-
plectic space, which will moreover be thick as all symplecta in S are thick by Corollary
7.2.9(i).

Next, assume that ∆0 is a non-degenerate set of abstract root subgroups of 〈∆0〉. In this
case, our goal will be to show that the extremal geometry Γg = (E ,L) of g is a parapolar
space satisfying two additional conditions.

The first of these additional conditions is that p⊥ ∩ q⊥ must be a non-degenerate polar
space of rank at least three for all symplectic pairs {p, q} ∈ E , and the second additional
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condition is that the subset p⊥∩`⊥ ⊆ E must either be a single point or a maximal singular
subspace of p⊥ ∩ q⊥ for all symplectic pairs {p, q} ⊆ E and lines ` ∈ L such that q ∈ ` and
p⊥ ∩ ` = ∅. These conditions are the content of the following proposition.

Proposition 7.2.11. Let g be a simple Lie algebra over a field F, char(F) 6= 2, without
sandwich elements generated by its set E(g) of extremal elements and let S be the collection
of symplecta S(u, v) = E≤0(E≤0(u, v)) with (u, v) ∈ E0 of the extremal geometry Γg = (E ,L).
If ∆0 is a non-degenerate set of abstract root subgroups of 〈∆0〉, then

(i) every symplecton in S is a non-degenerate thick polar space of rank at least four,

(ii) for all symplectic pairs {p, q} ⊆ E the subset p⊥ ∩ q⊥ ⊆ E is a non-degenerate thick
polar space of rank at least three,

(iii) for all symplectic pairs {p, q} ⊆ E and lines ` ∈ L such that q ∈ ` and p⊥ ∩ ` = ∅ the
subset p⊥ ∩ `⊥ is either a single point or a maximal singular subspace of p⊥ ∩ q⊥.

Proof. For (i), note first that every symplecton in S is a non-degenerate thick polar space
by Corollary 7.2.9(i). However, since ∆0 is a non-degenerate set of abstract root subgroups
of 〈∆0〉, Lemma 7.2.7(i)-(ii) do not apply, hence every symplecton in S has rank at least
three. It is shown in Lemma III(8.8) of [26] that no symplecton in S can have rank exactly
three, from which (i) follows.

For (ii), let {p, q} ∈ E be a symplectic pair. Then p and q are non-collinear points
in (E , E−1) at distance two having at least two common neighbours, hence (p, q) ∈ E0. In
particular, p and q then span the symplecton S(p, q) in S. But S(p, q) is a non-degenerate
thick polar space of rank at least four by Proposition 7.2.11(i). As clearly p⊥ ∩ q⊥ =
E−2(E≤−1(p, q)) ⊆ E≤0(E≤0(p, q)) = S(p, q), Proposition 4.1.14 then shows that p⊥ ∩ q⊥ is
a non-degenerate polar space, which will have rank at least three because S(p, q) has rank
at least four and properly contains p⊥ ∩ q⊥.

For (iii), let {p, q} ∈ E be a symplectic pair and let ` ∈ L be a line on q containing no
points collinear with p. Then ∅ 6= p⊥ ∩ `⊥ ⊆ p⊥ ∩ q⊥ ⊆ S(p, q). Because ` is spanned by
any two points on `, we may fix some q 6= r ∈ ` so that ` = Fq + Fr. Since r 6∈ E≤−1(p) as
p⊥∩ ` = ∅, then r ∈ E0(p)tE1(p)tE2(p). If r ∈ E2(p), then p⊥∩ `⊥ ⊆ p⊥∩ r⊥ = ∅ because
p and r have no common neighbours in (E , E−1) by Proposition 4.5.3, a contradiction. If
r ∈ E1(p), then [p, r] ∈ E(g) is the unique common neighbour of p and r in (E , E−1) by
Proposition 4.5.3, hence we find p⊥ ∩ `⊥ to be the single point [p, r]. Finally, if r ∈ E0(p),
then we find p⊥ ∩ `⊥ to be a maximal subspace of p⊥ ∩ q⊥. In particular, p⊥ ∩ `⊥ will be
a maximal singular subspace of p⊥ ∩ q⊥; indeed, supposing for the sake of contradiction
that u, v ∈ p⊥ ∩ `⊥ are two distinct non-collinear points, then S(p, q) = S(u, v) by Lemma
7.2.8 so that ` ⊆ S(u, v) = S(p, q), forcing p to be collinear to one or all points on ` since
S(p, q) is a polar space by Proposition 7.2.11(i), a contradiction.
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Now all that remains is to prove that Γg is a parapolar space. To do so, consider first
the following lemma.

Lemma 7.2.12. Let g be a simple Lie algebra over a field F, char(F) 6= 2, without sandwich
elements generated by its set E(g) of extremal elements and let Γg = (E ,L) be the extremal
geometry of g. Then

(i) Γg is a thick partial linear gamma space whose collinearity graph is connected and
has diameter three,

(ii) the graph induced on p⊥∩ q⊥ is not complete for all collinear p, q ∈ E such that p ⊥ q
if ∆0 is a non-degenerate set of abstract root subgroups of 〈∆0〉.

Proof. For (i), we only need to show that Γg is a gamma space; indeed, Γg is thick and a
partial linear space by construction, the collinearity graph (E , E−1) is connected by non-
degeneracy of Γg, and (E , E−1) has diameter three by Proposition 4.5.3 since the distance
between any two points is at most three. To show that Γg is a gamma space, we prove
that z⊥ ∩ ` is ` itself for all z ∈ E and ` ∈ L such that |z⊥ ∩ `| ≥ 2. W.l.o.g. assume that
|z⊥ ∩ `| = 2, say z⊥ ∩ ` = {u, v}. Since then ` = Fu + Fv, any point r ∈ ` is of the form
r = λu+ µv for some λ, µ ∈ F∗. By Lemma 5.1.1, we have [z, [u, t]] = gz(t)u+ gu(t)z and
[z, [v, t]] = gv(t)z + gz(t)v for all t ∈ g, hence

[z, [r, t]] = [z, [λu+ µv, t]] = λ[z, u, t]] + µ[z, [v, t]] = λ(gz(t)u+ gu(t)z) + µ(gz(t)v + gv(t)z)

= gz(t)(λu) + gλu(t)z + gz(t)(µv) + gµv(t)z = gz(t)(λu+ µv) + gλu+µv(t)z

= gz(t)r + gr(t)z,

for all t ∈ g, so r ⊥ z by Lemma 5.1.1. It follows that z⊥ ∩ ` is ` itself, thus Γg is a gamma
space.

For (ii), let p, q ∈ E such that p ⊥ q. Because Theorem III(2.19) of [26] applies by
maximality of E≤0(p), there exists an r ∈ E0(p) such that q is a common neighbour of p
and r in the collinearity graph (E , E−1) of Γg. Since {p, r} ⊆ E is a symplectic pair, the
subset p⊥ ∩ r⊥ ⊆ E is a non-degenerate polar space by Proposition 7.2.11(ii), hence the
graph induced by p⊥∩r⊥ is not complete. Consequently, the graph induced by p⊥∩q⊥∩r⊥
is not complete, but then neither is the graph induced by p⊥ ∩ q⊥.

Upon combining Proposition 7.2.11 with Lemma 7.2.12, we are now able to prove that
Γg is a parapolar space.

Theorem 7.2.13. Let g be a simple Lie algebra over a field F, char(F) 6= 2, without
sandwich elements generated by its set E(g) of extremal elements. If ∆0 is a non-degenerate
set of abstract root subgroups of 〈∆0〉, then the extremal geometry Γg = (E ,L) together with
the previously defined collection S of symplecta of Γg is a parapolar space.
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Proof. We check the conditions listed in Definition 7.2.2. Definition 7.2.2(i) is Lemma
7.2.12(i), and Definition 7.2.2(ii) is Proposition 7.2.11(i). Definition 7.2.2(iii) is also im-
mediate, as every symplectic pair {p, q} ⊆ E defines the unique symplecton S(p, q) =
E≤0(E≤0(p, q)) in S containing {p, q} by Lemma 7.2.8. So, it remains to show that Defini-
tion 7.2.2(iv) holds.

To this extent, let ` ∈ L and fix two distinct collinear points u, v ∈ `. Then Lemma
7.2.12(ii) applies, so the graph induced by u⊥ ∩ v⊥ is not complete. In particular, there
exist distinct non-collinear points u′, v′ ∈ u⊥ ∩ v⊥ which moreover satisfy (u′, v′) ∈ E0 by
Proposition 4.5.3 because u, v ∈ E−1(u′, v′). But then S(u′, v′) is a symplecton in S such
that u⊥ ∩ v⊥ ⊆ E−2(E−1(u′, v′)) ⊆ E≤0(E≤0(u′, v′)) = S(u′, v′). As clearly ` ⊆ u⊥ ∩ v⊥, we
find ` to be contained in the symplecton S(u′, v′), which shows that Definition 7.2.2(iv)
holds. It follows that Γg is a parapolar space.

We gather our findings of this section and their implications to finally prove Theorem
1.1.4, for which we will make use of the classification of thick metasymplectic spaces by
Tits [8] and parapolar spaces by Cohen and Cooperstein [27].

Theorem 7.2.14. Let g be a simple Lie algebra over a field F, char(F) 6= 2, without
sandwich elements generated by its set E(g) of extremal elements. If the extremal geometry
Γg = (E ,L) of g is not isomorphic to a root shadow space of classical type, then Γg has
finite singular rank.

In particular, Γg will have singular rank three, four, five or seven.

Proof. By Proposition 7.2.5, for all x ∈ E(g) the subspace E≤0(x) of Γg is maximal and
the graph (E , E2) induced by ∆0 = E≤0(x, y) is connected for all y ∈ E2(x). Since ∆0 is a
set of abstract root subgroups of 〈∆0〉, it is either a set of abstract transvections groups or
non-degenerate.

On the one hand, if ∆0 is a set of abstract transvection groups of 〈∆0〉, then Γg is a
thick metasymplectic space by Theorem 7.2.10. But then Γg is isomorphic to a root shadow
space of type F4,1 by Theorem 10.13 of [8]. In particular, Γg will have singular rank three
since all symplecta in Γg have rank three by Corollary 7.2.9(i).

On the other hand, if ∆0 is a non-degenerate set of abstract root subgroups of 〈∆0〉, then
Γg is a parapolar space by Theorem 7.2.13. By Corollary III(8.10) of [26], Γg has singular
rank at most ten, hence Γg satisfies the hypothesis of Theorem 2 of [27] by Proposition
7.2.11(ii)-(iii). But Γg is not isomorphic to a root shadow space of type BCn,1 (n ≥ 3),
which is a non-degenerate polar space of rank n by Corollary 4.4.6, so Theorem 2(i) of [27]
cannot occur. It then follows from Theorem 2(ii)-(iv) of [27] that Γg is isomorphic to a
root shadow space of type E6,2, E7,1 or E8,8. Specifically, Γg will have singular rank four,
five or seven.
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