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Abstract

Animal activities provides rich information for human beings to study their behaviours, their en-
vironments and possibly, recognise their abnormal pathological behaviour. Utilizing unsupervised
representation learning as a feature extraction method for animal activity recognition avoids the
feature engineering which relies on domain experts and the need of large amount of labeled data.
Obtaining labeled data is tedious, costly and labor-intensive while obtaining raw unlabeled data
is much easier.

In this thesis, we investigate how unsupervised representation learning using variational auto-
encoder (VAE) cope with lack of labeled data in animal activity recognition. Furthermore, we check
into the effect of three types of VAE models, two types of classifiers, different amount of labeled
training data. We also inquire into the transferability of our model, the visualization on how our
model learns, the performance improvement by unfreezing the neural network, the robustness of
the model, the performance improvement of our VAE model and the time consumption of network
training. We evaluate the performance by F1 score and compare our baseline with the state-of-art.

We demonstrate: our model performs better than the state-of-art with more robustness; Soft-
max classifier performs better than Support Vector Machine classifier; the latent space visualiza-
tion let us be able to check how good the VAE learns; With the amount of labeled training data
increasing, the performance increases before reaching top; our model has good transferability for
another animal; by unfreezing the neural network layer, the performance can be improved while
the training time is increased; the performance of the same neural network architecture with more
trainable parameters has more fluctuation than that with less trainable parameters; unsupervised
representation learning helps increase the performance especially with low amount of labeled train-
ing data; LSTM-VAE training costs the longest time while CNN-VAE costs the shortest and SVM
takes more training time than Softmax.
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Chapter 1

Introduction

Monitoring animal activities provides rich information, about them ranging from their daily
routines, well-being and interaction with their environment [5, 6]. It is crucial for human beings
to monitor animal activities to study their behaviours, their environments and possibly, recognise
their abnormal pathological behaviour. As a result, Animal Activity Recognition (AAR) has re-
ceived great attention as a relatively new research area [2]. Thanks to the development of small,
light-weight and low-power sensors, it is possible to monitor animal activities by attaching sensors
to them without disturbing their daily lives. These sensors are able to collect a variety of data
such as image, temperature, humidity, location, motion and so on [7, 8].

Human beings can track animal activities using inertial motion sensors such as accelerometers,
gyroscopes and magnetometers [3, 9, 10]. Typically, there are four steps to do the animal activity
recognition: data collection, data preprocessing, feature learning or extraction, and activity recog-
nition [11].To recognize the animal activity, the collected data needs to be mapped into the actual
activity space performed by the animals. This is done through a classification task. As for the
classification, feature extraction is vital. Feature is defined as an individual measurable property
or characteristic of a phenomenon [12]. The features may be defined manually through feature
engineering in the classical machine learning era, where the features are selected by experts using
domain knowledge. The work of feature engineering is vast, and the quality of feature selection will
directly affect the quality of data representation. It would be desirable to select leading features
with stability and interpretability from a set of distinct features for a comprehensive data descrip-
tion [13]. Therefore, the feature selection will impact the performance of downstream tasks such
as classification. However, in the deep learning era, the features can be extracted automatically,
the process also called representation learning. The hidden data representation can be learned
automatically by AI models, which does not depend on the domain experts experience. At the
same time, it needs extensive training data set because instead of manually feature extraction, the
model needs to learn data representation and more training data would help the model in better
representation learning. Learning representations of the data makes it easier to extract useful
information while building classifiers or other predictors [14].

The classification performance (accuracy or F1 score) mainly depends on two factors; one is the
quality of features extracted or learned, and the other is the type and complexity of the classifier.
Various statistics on the time and frequency domains could be used in terms of the handcrafted
extracted features, and the Naive Bayes, Support Vector Machine, K-Nearest neighbours, Decision
Trees, etc. could be used for activity recognition [3, 9]. However, a significant disadvantage of
the handcrafted feature is the labour required from the domain experts, and it cannot capture
the complex features. This drawback can be overcome by employing unsupervised representation
learning techniques such as the Variational Autoencoder (VAE), which can automatically learn
complex features [15]. Both pre-defined and learned features need labelled data to link the features
to the actual situation represented by data. However, obtaining the labelled data is tedious
and expensive, it costs time, labour, and even sometimes, cannot be done due to the harsh or
impractical environmental conditions, for example, monitoring the wild animals or birds. At
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CHAPTER 1. INTRODUCTION

the same time, it is much easier to obtain raw unlabelled data. In this context, unsupervised
representation learning would help increase classification accuracy as plenty of unlabeled data
could be used for it. As a result, how to cope with the lack of labeled data in the context of
Animal Activity Recognition becomes a problem.

In some scenarios, in which tasks or subjects are similar, transfer learning may be used to save
the training resource usage and improve generalization in another setting. Transfer learning is an
optimization that allows rapid progress or improved performance when modeling a second related
task [14]. As a result, it can be expected that the model trained with dataset of particular set of
subjects should be transferable to other similar subjects performing similar tasks.

There are only a few recent papers that focused on the topic of representation learning in
terms of AAR using time series inertial measurement unit (IMU) data [2, 10, 16]. The effect of
VAE using time series data has been researched in multiple contexts, such as Human Activity
Recognition (HAR) and Anomaly Detection (AD), and it has obtained competitive performance
(F1 score) compared to other methods [17, 18]. However, to the best of our knowledge, it has not
been researched for AAR so far. Furthermore, it has been shown that different classifiers would
result in different performance [19], and the effectiveness of transfer learning has been investigated
in HAR but not in AAR [20, 21]. It is therefore still interesting to investigate the transferability
of the unsupervised representation learning for different animals.

1.1 Research Questions

The main research question to be addressed in this thesis is:

To what extent can unsupervised representation learning using variational auto-encoder (VAE)
cope with lack of labeled data in AAR?

To answer the main research question, we formulate the following sub-research questions:
e RQ-1: To what extent VAE improves the performance (F1 score) of AAR?

e RQ-2: What are the impacts of different classifiers (Support Vector Machine (SVM), Soft-
max) on the performance?

e RQ-3: What is the impact of the amount of labeled data on the performance?

e RQ-4: How transferable is the unsupervised representation learning (VAE) for another an-
imal?

1.2 Contributions

We summarized the main contribution of this thesis as follows:

e We proposed and implemented three types of unsupervised representation learning VAE
models to cope with lack of labeled data in animal activity recognition and compared the
results with the state-of-art, LSTM-VAE model is the best performed model and it outper-
forms the state-of-art, meanwhile, it is more robust compared with the state-of-art.

e We implemented the latent space visualization using t-SNE to check how good the unsuper-
vised representation learning has learned and the quality of clustering in the visualization is
consistent with the performance of downstream classification performance.

e We discovered how transferable is the unsupervised representation learning using VAE for
another animal and our model trained with horse movement data has good performance on
goat movement data.

2 Unsupervised Representation Learning for Animal Activity Recognition



CHAPTER 1. INTRODUCTION

e We looked into how unsupervised representation learning improves the performance com-
pared with the supervised learning from scratch with lack of labeled data and it was found
that the performance of supervised learning from scratch is less than that of unsupervised
representation learning and with the amount of labeled data increasing, the performance
difference becomes less and less.

e We measured the training time of our neural network and we found that LSTM-VAE takes
the most amount of time while CNN-VAE takes the least amount of time; By unfreezing the
neural network (the parameters of the whole neural network can be updated), the training
time of LSTM classification neural network increases dramatically while for CNN classifica-
tion neural network, the training time slightly increases; SVM classifier takes more training
time than Softmax classifier.

1.3 Thesis Outline

The rest of thesis is structured as follows: Chapter 2 provides background information and related
work about the topic of unsupervised representation learning. Chapter 3 presents the general
structure of animal activity recognition pipeline, the baseline of this thesis, the comparison with the
basis of this work and our methodology and building blocks in details. Chapter 4 presents details
of the experiment setup. Chapter 5 presents the evaluation metrics, the experiment procedures,
results, discussion and the experiment environment. Chapter 6 is the last chapter of this thesis
which concludes this thesis and provides possible future work based on this thesis.

Unsupervised Representation Learning for Animal Activity Recognition 3



Chapter 2

Background and Related Work

This chapter provides background information and related work about the topic of unsupervised
representation learning. The variational autoencoder, transfer learning are addressed in detail,
and the related work regarding this topic is discussed as well.

2.1 Unsupervised Representation Learning

Representation learning aims at obtaining a valuable representation of data. Learning represent-
ations of the data makes it easier to extract useful information when building classifiers or other
predictors [14]. Tt is a domain in machine learning. It can learn representations automatically,
which avoids the labour of handcrafted feature extraction. Supervised learning learns a hierarchy
of representations in hidden layers, and it learns from low-level representations to high-level rep-
resentations towards the supervised goal [22]. However, it needs a large amount of labeled data.
It is also possible to learn the representations in an unsupervised manner where it needs a large
amount of unlabeled data that is much easier to obtain.

Bengio et al. [23] gave an overview of the background, motivations, applications and techniques
of representation learning. Multiple unsupervised representation learning may be used while the
focus in this thesis is on Variational Autoencoders (VAE). It is a relatively new technique that was
introduced in 2013 [15]. Furthermore, it links the representation learning to a generative model,
and it provides methods to create sound data output from scratch, for instance, after training
VAE, we could input different feature vectors to its decoder and it can create sound data output
no matter whether it has been seen during the training. VAE tends to encode the data input into
the latent representation space, close to a given prior distribution. Therefore, VAE forces the data
to be representative of this distribution. The followings are general concepts of autoencoder, VAE
and the type of layers used in this thesis.

2.1.1 Autoencoders

For decades, autoencoders have appeared for dimensionality reduction and representation learning
[14, 24, 25]. Tt is an unsupervised neural network that is trained to reconstruct its input. The
structure of an autoencoder is illustrated in Figure 2.1. It consists of an encoder and a decoder,
where the encoder and decoder itself are neural networks. X is input data, and X’ the output,
which is also called reconstructed input. The encoder takes the input X and transforms it into
code z, which is the latent space, also called as representations. The code z is the features extracted
from input data X. The decoder then inputs the generated code z and attempts to reconstruct
the original input X. In other words, it attempts to make the output X’ identical to the input X.
Therefore, training such an autoencoder is based on the difference between the input X and the
output X’ The goal of training an autoencoder is to learn valuable representations z of the input
X, which can be used in the downstream task such as classification or prediction.

4 Unsupervised Representation Learning for Animal Activity Recognition
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Input X

Code z

Reconstruction X'

Figure 2.1: The structure of an autoencoder

However, the standard autoencoders have some limitations [15]; for instance, they can only
reconstruct those data on which they are trained; in other words, they compress the data while
producing the code and try to replicate the output to the input. Another limitation is that the
latent space vectors are not continuous, which means new data cannot be generated from the
latent space vector. Meanwhile, VAE tends to be more robust [26]. In terms of these limitations,
variational autoencoder works better than standard autoencoders.

2.1.2 Variational Autoencoders (VAEs)

In terms of structure, VAE is similar to the standard autoencoder, where VAE also consists of an
encoder and a decoder. However, the significant difference is that the latent vector is continuous,
making VAE a generative model. In the following, the details of the standard VAE are addressed
[15].

The structure of a VAE is illustrated in Figure 2.2. The problem of the standard VAE is
that let us assume we have a dataset X = {2V}, which consists of N independent identically
distributed samples from some continuous or discrete variable x and the data are generated by a
random process including an unobserved continuous random variable z, which is the latent variable.
During this process, a value z(¥) is generated from a prior distribution pg- (z), and a value z®
is generated from a conditional distribution pg«(x|z). It is assumed that this prior pg«(z), and
likelihood pg+(x|z) come from parametric families of distributions py(z) and pg(z|z), respectively,
and their probability density functions are differentiable almost everywhere with regard to both 6
and z. However, the true parameters #* and the values of the latent variables z(¥) are unknown to
us. We are interested in the marginal likelihood pg(z) = [ pg(2)pe(x|z)dz and the true posterior
density pg(z|x) = pg(x|2)pe(2)/pe(2) to describe the original data distribution and its relation to
the latent variables. The integral and posterior are intractable. Thus, we would be interested in
an efficient approximation for these distributions. A recognition model ¢4(z|x) approximation to
the intractable true posterior pg(z|x) can be introduced. Then, a method to learn the recognition
model parameters ¢ jointly with the generative model parameters 6 is introduced.

The marginal likelihood consists of a sum over the marginal likelihoods of individual datapoints,
which is,

N
logpo (), ..., 2N)) = "log py (=) (2.1)
=1

Unsupervised Representation Learning for Animal Activity Recognition 5
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Input X

l

Encoder

Mean Std. dev

M

\_%

Sampled latent vector z

l

Decoder

!

X'

Q

Reconstruction

Figure 2.2: The structure of a VAE

Each of the terms can be written as
log po(2™) = Dicr,(gs(22D)||po (2]2))) + L(6, ¢; 27 (2.2)

The first term is the KullbackLeibler (KL) divergence [27] of the approximate posterior from the
true posterior, and the second term is the variational lower bound. The KL divergence can be
regarded as a measure of "surprise”, which illustrates the extent where the model must update its
parameters to fit the new observations. The second term is called the variational lower bound on
the marginal likelihood of data point (¥, which can be rewritten as

L(0,¢;2) = —Drer(q6(2[2D)|pa(2)) + Eq, (2000 [log po (21 |2)] (2.3)

The objective is to maximize the variational lower bound by optimizing the parameters ¢ and 6 of
the neural network. The goal is to maximize the Eg_ .|, [log pe (z(®|2)] term which means that
the decoder is getting better at reconstruction. This means that the reconstruction loss which
is Lr need to be minimized. The reconstruction loss L is the log of the Gaussian distribution
which can be regarded as Mean Square Error (MSE) loss [28] and then we need to maximize
—Dx1.(g4(2|2)||pe(2)) which can be rewritten as

J
i 1
— Drcr(gs(2129)|Ipo(2)) = 3 D (1 +log(oy)* = (1y)* = (0)°) (2.4)
j=1
where o is the standard deviation and p; is the mean. For maximizing — Dk, we need to make
o; close to 1 and p; close to 1. This loss is called Lk, and o and p are sampled from the encoder’s
output. So, the final VAE loss that needs to be optimized is:

Lvag =Lr+ LKL (2.5)

In order to train the network by means of backpropagation with gradient descent, the model should
be differentiable with regard to its learned parameters which means the model should be determ-
inistic such that only the inputs are stochastic. However, if z is sampled based on a probability
distribution with parameters inside the model, this is not the case. A simple parametrisation trick
can be used to solve this problem where we define auxiliary random variables ¢ ~ N(0,1) as input;
then, we can sample the latent variable z by using the following formula:

z=u+edo (2.6)

6 Unsupervised Representation Learning for Animal Activity Recognition
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2.1.3 Layer of Encoder and Decoder

The layers of the encoders and decoders can be any type of neural network. For example, Recurrent
Neural Network (RNN), which is to handle the sequential data, Long Short-Term Memory (LSTM),
which is an optimization algorithm based on RNN; and Convolutional Neural Network (CNN),
which is to handle high dimensional data such as images [29, 30].

Recurrent Neural Network (RNN)

RNN is used to handle sequential data such as the audio content in the voice [31], the text content
in an article [32], the accelerometer reading during an activity [33], etc. RNN should be able
to know what happened in the last step; as a result, RNN needs memory. Figure 2.3 shows the
structure of RNN; the green box indicates the sequential inputs from x_1 to x.n, the red box
indicates the cell, and the blue box indicates the output. So, the inputs for each step consists of
the input from the current sequential data and the hidden state from the last step. As a result,
the previous inputs have an impact on the output.

h_1 h_2 h_3 h_n

A —» A —» A —— o owoE —@ A

x 1 x 2 x 3 = s x_n

Figure 2.3: The structure of RNN

A cell of RNN illustrated by "A” in Figure 2.3 can be found in Figure 2.4. In Figure 2.4,
”tanh” indicates the hyperbolic tangent activation function and ”tanh” can be calculated as:
sinh(z) e?* -1

tanh(z) = cosh(z) =i (2.7)

The RNN cell ”A” takes the output from the last cell and the current sequential input as the
cell inputs. After a simple structure such as a single "tanh” layer, it generates the output, and
meanwhile, the output also goes to the next cell.

However, there are obvious disadvantages using RNN. Due to the characteristics of RNN, the
later input has more impact on the output, and the earlier input has less impact on the output.
So, it has a short-term memory problem which means it cannot handle long input sequence. This
would further cause gradient vanishing problems. To solve it, the Long Short-Term Memory
(LSTM) networks have been developed.

Long Short-Term Memory (LSTM)

LSTM network has tackled the problem of RNN where LSTM can handle long input sequence and
the gradient vanishing problems. The overall structure is the same as RNN, which can be found in
Figure 2.3. However, the cell structure of LSTM is different from that of RNN. The cell structure
of LSTM can be found in Figure 2.5.

Unsupervised Representation Learning for Animal Activity Recognition 7
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h_t-1 > yas » tanh >

x_t

Figure 2.4: A cell of RNN

As can be seen in Figure 2.5, the number of components is more than that of the RNN cell.
7¢” indicates the sigmoid function which can be calculated as:

o(z) = —

Tlter
There are four shadowed parts which are noted by ”C”, "I”, 7O” and "F” where ”C” indicates
the cell state, ”I” indicates the input gate, "O” indicates the output gate, and "F” indicates the
forget get. The followings are some explanations about these shadowed parts:

(2.8)

h_t
F
C_t-1 > () (+) ) s it
T tanh
0 |0 tan || @ R
h_t-1 > J ) J > ht
3
X t

Figure 2.5: A cell of LSTM

e 7C”: the cell state behaves like a conveyor belt. It goes through the entire chain with some
minor linear interactions in order to make the information flowing along with it unchanged.

e "17: the input gate decides which information is added to the cell state. It consists of two
parts which are a ”sigmoid” function and a ”tanh” function. ”sigmoid” function decides
whether to pass the information, and the ”"tanh” function decides what information to pass.
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e "0O”: similar to the input gate, the output gate decides which information is output from
the cell. It also consists of two parts which are the ”sigmoid” function and ”tanh” function.
7sigmoid” function decides whether to output the information, and the ”tanh” function
decides what information to output.

e "F”: the forget gate decides which information can be passed from the cell state output of
the last cell

With those shadowed parts, LSTM is able to handle the long sequence and the gradient vanishing
problems from RNN.

Convolutional Neural Network (CNN)

CNN is able to handle high dimensional data such as images. Furthermore, it can also handle
the data with local correlation such as speech [34], natural language processing (NLP) [35] and
activity recognition [36]. A typical CNN consists of three parts which are convolution layer, pooling
(subsampling) layer and fully-connected layer. The convolution layer is for feature extraction; the
pooling layer is for dimension reduction and over-fitting avoidance; the fully-connected layer is for
classification. Normally, instead of the 3-layer mentioned above, CNN would have multiple layers
to gain higher performance. For example, the architecture of LeNet-5 [1] can be found in Figure
2.6, which consists of seven layers.

C3:f. maps 16@10x10
INPUT C1: featura maps 54 1. maps 16@5x5
32x32 @ S2:f. maps
BE@14x14

|
Fullcmrlectian ‘ Gaussian connections

Subsampling Comvolutions  Subsampling Full connection

Convolutions

Figure 2.6: Architecture of LeNet-5 taken from [1]

2.1.4 Optimization

The loss functions of VAE and classification neural network training can be found in Section 2.1.2
and 2.2 individually. Machine learning optimization is the process of tuning hyperparameters in
order to minimize the loss functions by using one of the optimizers. It is vital to minimize the loss
function as it describes the discrepancy between the true value of the estimated parameter and
what the model has predicted. There are various optimizers [37] that we can use for training our
neural network such as Batch Gradient Descent, Stochastic Gradient Descent, Adagrad, RMSprop,
Adam. Recommended by [37], we chose Adam as the optimizer training our neural networks as
Adam is the best performed optimizer.

Adam [38], short for Adaptive Moment Estimation, is a method that computes adaptive learn-
ing rates for each parameter. In addition to storing an exponentially decaying average of past
squard gradients v;, Adam also keeps an exponentially decaying average of past gradient m;:

my = frmg—1 + (1 - 51)9:&

2.9
ve = Bovy—1 + (1 — Ba) g7 (29)

my and vy are the estimates of the first moment (the mean) and the second moment (the uncentered
variance) of the gradients respectively. As m; and v; are initialized as the zero vector, the authors
of [38] observe that they are biased towards zero, especially during the initial time steps and when
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the decay rates (81 and (33) are small. g; indicates the gradient. They counteract these biases by
computing the bias-corrected first and second moment estimates:

o my
my =
1— 4
R v (2.10)
Vp = ——~
T1-5

this is called bias correction which is a correction for the large initial moving average deviation,
5o, when t becomes larger and larger both 1 — 8¢ and 1 — 8% are converged to 1. The last thing is
to update the parameters using Adam update rule:

n. .
Ory1 =0, — ——m 2.11
t+1 t o+ e t ( )
f indicates the parameters, 7 is the learning rate we set and € is a small value to avoid ”divide by

zero error” while updating the variables. The learning rate of Adam optimizer is \/Uﬁ +6 which is
t

adaptive, so, the learning rate of each parameter and each training epoch becomes varying. The
proposed default values suggested by [38] is 0.9 for 81, 0.999 for S5 and 1078 for e. They show
that Adam works empirically well in practice and compared with other adaptive learning method
algorithms, Adam performs better.

The hyper-parameters such as batch size, learning rate, number of epochs should depend on
the experiments. As for the batch size, authors of [39] suggests that a batch size of 32 is a good
starting point while we can also try with 64, 128, and 256 which are generally good choice. As for
the learning rate and the number of epochs choices, by observing the loss curve during training (for
example, if the loss fluctuates a lot, then we should decrease the learning rate; if the loss decreases
too slow, then, we may consider increasing the learning rate; if the trend of loss decreasing of the
last epoch training is still high, then, we may consider increasing the number of epochs), a descent
choice can be made. In terms of hidden size, authors of [40] suggests to start with the hidden size
equal to half of the sum of the number of input neurons and the number of output neurons and
[41] indicates that we should avoid using too large latent space dimension. As a result, for batch
size, hidden size and latent space dimension tuning, we may use trial and error strategy [42] to
choose a descent hyper-parameter. For example, we try different values of one hyper-parameter
while we fix the value of all other hyper-parameters, by comparing the performance, we can choose
a descent one.

2.2 Classifiers

The task of unsupervised representation learning such as VAE is to learn the representations and
after that, the down stream task is classification where a classifier is used to do the classification
job with labeled data. There are many different types of classifiers. The frequently used classifiers
are Softmax and Support Vector Machine (SVM) [43].

2.2.1 Softmax

The Softmax classifier takes the input no matter they are positive, negative or zero and output
the value between 0 and 1 which can be interpreted as probability of that class. The Softmax

formula is in the following:
e
Si = ——— (2.12)
' Zf:l e*s

where S; is the output, the probability that it belongs to the class i; All the z; values are the
elements of the input vector to the Softmax classifier; e* is the standard exponential function
applied to each element of the input vector where it gives a positive value above 0 and if the
input is negative, it gives small value while it gives large value when input is large; Z]K:l €* is
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the normalization term which ensures that all the output values are summed to 1 and each of the
output value is in the range (0,1); K is the number of classes. In Neural Network, the softmax
classifier can be implemented by using Cross-Entropy Loss Function [44] which is defined as:

Lcg = — Z t;log (p:) (2.13)

i=1

where ¢; is the truth label, p; is the Softmax probability for the i* class and n is the number of
classes. Each predicted class probability is compared to the actual class desired output 0 or 1 and
a loss is calculated that penalizes the probability based on how far it is from the actual expected
value. The penalty is logarithmic in nature yielding a large score for large differences close to 1
and small score for small differences close to 0. Given the above loss functions, it can be trained
using the gradient descent optimization.

2.2.2 Support Vector Machine (SVM)

Support Vector Machine (SVM) is a classification model which is defined as a linear classifier with
the largest margin in the feature space. The training strategy of SVM is to maximize the margin.
In Neural Network, the SVM can be implemented by using hinge loss function [415]:

L(y) = max(0,1 — gy) (2.14)

where ¢ is the prediction and y is the truth label. The loss measures the error due to misclassific-
ation and the error is 0 if the data point is classified correctly. Minimizing the hinge loss function
is equivalent to finding the max-margin. By using the gradient descent optimization, the SVM
can be trained with the hinge loss function.

2.3 Transfer Learning

Amount, type, and quality of data play an essential role in the performance of machine learning. A
common assumption that the machine learning methods work well is that the training and testing
data come from the same feature space and distribution [46]. When the training data and testing
data are from different distribution (for example, from different animal species such as horse and
goat for AAR), the performance may decrease. One of the solutions to handle it is to re-train
the whole model from scratch, however, it is expensive and it can have a good result when the
amount of provided labeled training data is high. When the amount of labelled training data is
low, it would be a good idea to use transfer learning as transfer learning can be a good starting
point to make the model produce a good performance, because it encompasses prior knowledge
on similar cases. Transfer learning is formally defined as follows [46]: Given a source domain D,
and a learning task Ty, a target domain D7 and a target learning task T, transfer learning aims
to help improve the learning of the target prediction function in Dy using the knowledge in Dg
and Ts where Tg # T and Dg # Dr.
Some methods are suggested by Karpathy et al [47] to do the transfer learning for CNN:

1 Use CNN as a feature extractor:

A pre-trained CNN on large datasets is taken and all layers except the last layer are frozen,
then, we train it where only the parameters of the last layer can be updated.

2 Fine-tune the CNN:

A pre-trained CNN model is taken and we train it on the new dataset where all layers
parameters can be updated by backpropagation

Although the methods suggested above [17] are for CNN, it also works for other neural network.
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2.4 Related Work

Over the past decade, the interest in activity recognition employing Machine Learning (ML) tech-
niques has been increasing. In terms of activity recognition, there are human activity recognition
(HAR) and animal activity recognition (AAR). They are similar because the same type of sensors
could be used, such as cameras, accelerometers, gyroscopes and microphones, which can be placed
on the subject’s body or the environments they live in or both of them. Furthermore, they can
share the same activity recognition pipeline for time-series sensor data which involves sliding win-
dow segmentation, feature extraction and activity classification [48]. However, there are differences
between them, such as the type of activities, the sensor location and the movement patterns. HAR
has been more widely studied than AAR in the research fields; however, they have overlap, and
the research in HAR could inspire the research in AAR. [2]

The traditional approach to activity recognition is to adopt hand-craft features such as stat-
istical features [49, 50] and basis transform features [51] and couple them with classifiers such as
Support Vector Machine (SVM) [52], decision trees [53] and graphical model [54]. However, it
relies on domain expert knowledge to design laborious features and cannot learn complex features.
Then, with more and more popularity in deep learning in various research areas such as natural
language processing, speech recognition and computer vision [14]. It inspires the interest in adopt-
ing deep learning techniques in HAR, such as using the Convolutional Neural Networks (CNNs)
[55, 56] or using a recurrent-based neural network (RNN) [16, 33, 57] to extract the high-level fea-
tures. However, the feature is learned from supervised learning and by considering the difficulty of
annotating a large amount of data, it motivates the need for unsupervised representation learning.

2.4.1 Human Activity Recognition (HAR)

Gu et al. [11] proposed a deep learning method consisting of stacked denoising autoencoders for
locomotion activity recognition where it collected four sensor readings: accelerometer, gyroscope,
magnetometer and barometer together with their timestamps, then, the learned features were fed
into a Softmax classifier. It turned out that a combination of sensor data had better recognition
performance than using only acceleration data, more neurons resulted in better performance but
higher computational cost and fine-tuning increased the performance. Similarly, Wang et al. [58]
adopted the same representation learning method using multiple binary sensor data in two formats
which are binary representation and numerical representation, the feature extraction and classifier
training were integrated into a unified framework to obtain a jointly optimized activity recognizer.
They addressed the challenge of building a robust activity recognition model as the inherent nature
of human activities is characterized by a high degree of complexity and uncertainty. Almaslukh
et al. [59] adopted a stacked autoencoder with a softmax classifier on the top while input hand-
crafted features instead of data. It had better performance than directly inputting data. Their
proposed methods provided a low cost option for smartphone-based HAR, meanwhile, the results
of their model outperformed the state-of-art studies on the same dataset. Similarly, Alireza et
al. [60] considered HAR as a set prediction problem which is able to recognize multiple activities
in a time segment. It was the first time that a novel formulation of human activity recognition
problem from body worn sensor data streams where the predictions for sensory time segments
were expressed as activity sets and it avoided the potential loss of information from conventional
ground-truth approximations. Joao et al. [18] used recurrent variational autoencoder (VAE) to
learn representations for unsupervised Anomaly Detection(AD) with several classifiers and latent
space-based detection using clustering and the Wasserstein distance where the fully unsupervised
methods were addressed. Bai et al. [17] used VAE where the encoder and decoder are bidirectional
Long Short-Term Memory (Bi-LSTM). A large wrist-band dataset of real-world activities without
labelling were used to train the model. Their model enabled the movement embedding utilising
the raw input from wearable sensor data, meanwhile, the effectiveness of their model was validated
on both public datasets and their own collected datasets.
The taxonomy of HAR discussed above can be found in Figure 2.7
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Human Activity Recognition
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Figure 2.7: The taxonomy of HAR

2.4.2 Animal Activity Recognition (AAR)

Kamminga et al. [3] collected a large amount of horse movement data from eighteen individual
horses where the sensors were attached to a collar around the neck of the horse with the orientation
not fixed. The sensors contained a 3-axis accelerometer, gyroscope and magnetometer. The
labeled data was then fed into a Naive Bayes (NB) classifier. Similarly, Kamminga et al. [9]
collected a large number of goat movement data from five individual goats where the sensors
were attached to a collar around the neck of the goats with orientation not fixed. The sensors
contained a 3-axial accelerometer and a 3-axial gyroscope. The collected data was fed into multiple
ML classifiers such as SVM, K-Nearest neighbours (K-NN), Neural Networks (NN), Decision
Tree, NB and Linear Discriminant Analysis (LDA). It turned out that the goat activities can be
accurately classified by using only the accelerometer data. Kamminga et al. [2] compared three
unsupervised representation learning techniques (Convolutional Deep Belief Network (CDBN),
Principle Component Analysis (PCA) and Sparse Autoencoder (SAE)) with three conventional
feature extraction methods (spectral, temporal and combined) on two animal datasets (horses
and goats), meanwhile investigating the effect of data size, depth of feature architecture. Then a
multi-class SVM was used to classify the activities with the derived features. It turned out that
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unsupervised representation learning techniques can approach and outperform the performance of
engineered features for AAR and CDBN benefits the most from an increasing amount of unlabeled
data especially in the more diverse and imbalanced dataset. By concatenating the 1st and 2nd
layer, the representations often resulted in better classification performance. Furthermore, deep
representations provided more robustness to imbalance in smaller labeled datasets. Enkeleda et
al. [10] employed deep CNN for activity recognition of livestock animals such as horses and
goats which outperforms the baseline [3]. They designated the advantages of late sensor fusion
and showed that an increase on the number of filters on each layer did not necessarily lead to
a greater classification accuracy and this was the first time that ConvNets were employed for
animal activity recognition. Yingqi et al. [16] developed a recurrent neural network (RNN)
with a long short-term memory (LSTM) model to monitor and classify cattle behaviour patterns
using inertial measurement units (IMU), meanwhile, a convoluation neural network (CNN) was
implemented for comparison. They also investigated the effect of multiple window size (64 (3.2s),
128 (6.4s), and 256 (12.8s)). It was found that the LSTM-RNN model classification performance
was superior to the CNN model and the best performance was achieved with a window size of
64 (3.2s), Furthermore, a few physically similar behaviours were easily misclassified. Casella et
al. [61] recognised horse gaits such as walking, trotting and canter using accelerometer embedded
in smartwatches. Several ML techniques were used such as SVM, K-NN, NN and Discrimination
Trees. The smartwatch was fitted in two horses’ saddles and riders’ wrists. All the four sensors on
two horses and two riders had similar and high performance in all the cases (all the four sensors
on two horses and two riders). An easy-to-use app for a commercial smartwatch was developed
to perform data collection from the accelerometer sensor. A high classification accuracy was
obtained for both data collected from the saddle and the riders’ wrist. Ritaben et al. [62] applied
several unsupervised clustering to study the natural structure of the sensor data and the outcome
was then fed into supervised machine learning to classify cattle behaviour patterns using 3-axis
accelerometer and magnetometer to investigate their physical behaviours. It turned out that the
Tree learner model using the bagging ensemble classification reached the highest classification
accuracy.

{ Animal Activity Recognition ]
| I
Hand-crafted f Supervised f Unsupervised
Features L Learning L Learning
A convolutional deep
— - - belief network/principle
Statistic features with A deep convolutional .
. - > > component analysis/sparse
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Figure 2.8: The taxonomy of AAR
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The taxonomy of AAR discussed above can be found in Figure 2.8

2.4.3 Transfer Learning

Transfer learning has been applied successfully in many fields such as computer vision, NLP, HAR
and so on [21]. For instance, Gopalan et al. [63] applied transfer learning to transfer models
between different image data sets. They provided a comprehensive overview of domain adaptation
solutions for visual recognition problems with three adaptation scenarios, namely unsupervised ad-
aptation; semi-supervised adaptation; multi-domain heterogeneous adaptation. These techniques
have shown improved performance on a variety of applications such as object recognition, face
recognition, activity analysis. Francisco et al. [64] explored deep transfer learning with HAR,
they considered transfer between users, application domains, sensor modalities and sensor loca-
tions. The trade-offs of transferring various convolutional laters along model size, learning speed,
recognition performance and training data were characterized. A descent training time reduction
without additional complexity was obtained. Kurz et al. [65] demonstrated the transfer of recog-
nition capabilities from a fused multi-sensor ensemble to an untrained sensing device within the
system in a real-world setup. Akbari et al. [66] addressed the limitation that machine learning
algorithms trained on particular sensors need to be retrained upon any changes in configuration
of the system, for example, adding a new sensor. They aimed to seamlessly train the machine
learning algorithms for the new sensors to identify activities and observations which are detect-
able by the pre-existing sensors. Their proposed framework outperformed the state-of-art domain
adaptation algorithm and gained one tenth improvement when training new sensors with limited
unlabeled training data compared to training the model from scratch for the new sensor. However,
to the best of our knowledge, transfer learning on AAR has not been addressed yet.
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Chapter 3

Unsupervised Animal Activity
Recognition using VAE

In the previous chapters, the motivations, relevant background information and the related work
were discussed. In this chapter, firstly, we present the general structure of animal activity recog-
nition pipeline and then we present and explain our baseline and the difference compared with the
state-of-art [2] which is the basis of this work. Finally, we address our methodology and building
blocks in details.

3.1 Unsupervised Animal Activity Recognition
Figure 3.1 shows a high-level overview of standard unsupervised animal activity recognition

pipeline. It contains four main components which are data preprocessing, unsupervised represent-
ation learning, classification and optimization.

Data Preprocessing

' |

Unsupervised Representation Learning Optimization

: |

| '

Classification Optimization

1 |

Figure 3.1: Standard pipeline of unsupervised animal recognition

e Data Preprocessing: This is to process the data so that the data can be used in the down-
stream task. In general, it consists of data cleaning, integration, reduction, transformation
and so on [67]. In this thesis, we performed segmenting the data points, dividing dataset
into unlabelled dataset and labeled dataset, adjusting data format, etc.
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e Unsupervised Representation Learning: A large amount of unlabeled data is used for unsu-
pervised representation learning. (Various unsupervised learning techniques could be used
such as PCA, CDBN, autoencoder, VAE, GAN, etc. [2, 24, 68])

e (lassification: The labeled training dataset is used to train a classifier and the labeled
testing dataset is used for performance evaluation. (Various classifiers could be used such as
Softmax, SVM, decision tree, KNN, Naive Bayes, etc. [2, 3, 62])

e Optimization: During the unsupervised representation learning model and classification
model training, the hyper-parameters such as learning rate, batch size, amount of train-
ing epochs, etc. need to be tuned to minimize the loss functions, in order to make the model
perform better [37].

3.2 The Inspiration for This Work

The baseline of this work was inspired by the work of Kamminga et al. [2]. The pipeline compar-
ison between our work and their work can be found in Figure 3.2. On the left, it is the pipeline
of our work baseline and on the right, it is the pipeline of their work. For both of them, horse
[3] and goat [4] are utilized to evaluate the classificaiton performance (F1 score). The red color
indicates the difference between our baseline and their work. The same methods of data prepro-
cessing and classification were used while in our work, we further investigated the performance
of another classifier (Softmax). The difference between our work and their work is the unsuper-
vised representation learning methods. In their work, they used convolutional deep belief network,
principle component analysis and sparse autoencoder while in our work, we used three different
types of VAE as the unsupervised representation learning methods. As described in Seciton 2.1.1,
VAE is a powerful generative probabilistic unsupervised representation learning model which has
avoided many limitations of standard autoencoder and it tends to be more robust. As a result,
the baseline of our work investigates how the unsupervised representation learning using VAE
performs compared with the state-of-art [2]. The results of our work using different unsupervised
representation learning methods (with SVM classifier) are to be compared with the results of [2].

Our work Pipeline of [2]

Data Preprocessing Data Preprocessing

| l

Unsupervised Representation Learning

——

Unsupervised Representation Learning

(RNN/LSTM/CNN-VAE) ST (CDBN/PCA/SAE) Optimization
t | ]
\ 1 I 1

éé?ﬁﬁff,%"\?,{,‘n Otz e Classification (SVM) Optimization
t | t |

Figure 3.2: Comparison of our pipeline and pipeline of [2]

3.3 The Detailed Approach

Figure 3.3 shows a detailed overview of our approach, highlighting data flow and exact techniques
used for each of main pipeline components. Each component will be explained in more details in
the following sections.
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Figure 3.3: Detailed overview of unsupervised animal activity recognition pipeline of this thesis

3.3.1 Data Preprocessing

The datasets used are the horse dataset [3] and the goat dataset [4]. A more detailed description
about these two datasets and how data was preprocessed are provided in Section 4.1. As the animal
activities last for a time segment which contains multiple time instances (for example, multiple
sensor readings comprise an animal activity), it is essential to take a segment (windowing) of
multiple time instances. Besides, the datasets should be divided into unlabeled datasets and
labeled datasets where unlabelled datasets are used for unsupervised representation learning and
labelled datasets are used for latent space visualization and classifier training and testing.

For both datasets, the magnitude of 3D vector (I2-norm) of the accelerometer data was used as
it is theoretically orientation-independent [69] and it reduces the input dimensionality by a factor
of three. The formula of obtaining the 3D vector can be found as below:

V() = \Jas(t)? + ay(1)2 + a-(1)?

where V(t) is the 3D vector (I?-norm), a,, a, and a, are the three axis of the accelerometer data.
As for the more detailed specifications about the dataset, windowing and data division, they can
be found in Section 4.1

3.3.2 Unsupervised Representation Learning

As described in the Section 2.1.2, VAE, as a generative model, is a good candidate for the un-
supervised representation learning model. The VAE layers can be any type of neural network.
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Considering the type of the input data which is time-series data, we consider the VAE with RNN
layer, LSTM layer and CNN layer. In the rest of this thesis, ”’RNN-VAE” refers to the VAE with
RNN layer as its encoder and decoder; "LSTM-VAE” refers to the VAE with LSTM layer as its
encoder and decoder; ”CNN-VAE” refers to the VAE with CNN layer as its encoder and decoder.

RNN-VAE

In an RNN-VAE, the encoder consists of one or more RNN layer, followed by one or more linear
layers which connect the input layer to the u and o layers. The decoder consists of one or more
linear layers which connect the sampled latent vectors (z) to the RNN layer and then followed by
one or more linear layers connecting to the output layer. RNN-VAE is symmetric which means
that the dimensions of the hidden layers of the decoder is the same as those of the encoder while
the order is reversed.

x_1' x 2 x3|  trrerc x_n'
o I RNN cell } Lt } RNN cell I hZ, } RNN cell ‘ ------ RNN cell ‘
a_1 a2 a3  tvtrrc Ll
1]
h_1 n2 n_n z
RNN cell RNN cell RNNcell | = = » »x = » RNN cell
W I T I a
x_1 x_2 X3 | mmmmomn x_n

Figure 3.4: The structure of RNN-VAE

Figure 3.4 represents the RNN-VAE architecture, the RNN cells were used as the encoder and
decoder. The (1 x n) input data (x-1,x2,x.3, ..., xn) to the VAE encoder is the time window
of n data points. The (1 x n) data (a_l,a-2,a_3, ..., a_n) is the input data to the VAE decoder.
The decoder inputs are initialized to zero and they are updated using backpropagation. h_i is the
output of the last RNN cell (the (i — 1)!* RNN cell) of the encoder and h_i’ is the output of the
last RNN cell (the (i — 1) RNN cell) of the decoder. j and ¢ are mean and standard deviation
respectively. h_n is mapped to the mean (1) and standard deviation(o) by using a linear layer. z
is the sampled latent vector and it is passed through a linear layer to obtain the initial states for
h_0’ which is the hidden state input of the first RNN cell of the decoder. The output of the RNN
cell is mapped to the final reconstruction of the input by a linear layer. (x.1’x 2’ x.3’, ..., xn’)
is the final reconstruction of the input vector. More details and specifications about RNN-VAE
architecture are provided in Chapter 4, Section 4.2.1

LSTM-VAE

In an LSTM-VAE, similarly to the RNN-VAE, the encoder consists of one or more LSTM layers,
followed by one or more linear layers which connect the input layer to the p and o layers. The
decoder consists of one or more linear layers which connect the sampled latent vectors (z) to

Unsupervised Representation Learning for Animal Activity Recognition 19



CHAPTER 3. UNSUPERVISED ANIMAL ACTIVITY RECOGNITION USING VAE

the LSTM layer and then followed by one or more linear layers connecting to the output layer.
LSTM-VAE is also symmetric.
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Figure 3.5: The structure of LSTM-VAE

Our architecture of LSTM-VAE can be found in Figure 3.5, it is similar to RNN in Figure 3.4
while LSTM-VAE has c_i which is the cell state output of the last LSTM cell(the (i — 1)** LSTM
cell) of the encoder and c_i’ is the cell state output of the last LSTM cell (the (i — 1)** LSTM cell)
of the decoder. Figure 2.5 in Section 2.1.3 shows the details inside the LSTM cell. More details
and specifications about LSTM-VAE architecture are provided in Chapter 4, Section 4.2.1

CNN-VAE

CNN decoder

=
} N —
Q

1

CNN encoder

Figure 3.6: The structure of CNN-VAE
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In a CNN-VAE, the encoder consists of one or more convolutional layers, followed by one or more
linear layers which connect the input layer to the p and o layers. The decoder consists of one
or more linear layers which connect the sampled latent vectors (z) to the CNN layer and then
followed by one or more linear layers connecting to the output layer. CNN-VAE is also symmetric.

The architecture of CNN-VAE can be found in Figure 3.6, the notations shown in the Figure
3.6 is the same as those described above in the RNN-VAE Section. The output of the CNN
encoder is mapped to the mean (u) and standard deviation(o) by using a linear layer. z is passed
through a linear layer to obtain the input to the CNN decoder and the output of the CNN decoder
is passed through a linear layer to obtain the reconstructed data input (x_-1’,x.2’x.3’, ..., xn’).
More details and specifications about CNN-VAE architecture are provided in Chapter 4, Section
4.2.1

3.3.3 Latent Space Visualization

After the VAE was trained, all of the horse labeled data were fed into the encoder and the latent
vectors were output, then t-Distributed Stochastic Neighbor Embedding (t-SNE) was implemented
to reduce the dimensions of the latent space and visualize the distribution of the embedded vectors
so that we can check how good the VAE has learned by visualizing how separable the tasks are.

t-SNE is a non-linear dimensionality reduction algorithm which is used for exploring the high-
dimensional data. It maps the high-dimensional data to low dimensions such as 2 dimensions
which is suitable for human being’s visualization. The latent space vector tends to be in high
dimension, with the help of t-SNE, we could decrease its dimensions and visualize it.

Generally, there are two popular dimensionality reduction algorithms. These two are Principal
Component Analysis (PCA) and t-SNE [70]. PCA is a linear algorithm which will not be able
to show the complex polynomial relationship between different features while t-SNE is based on
probability distributions with random walk on neighbourhood to look for the structure within the
data. Furthermore, linear algorithm concentrates on placing dissimilar data points far apart in
a lower dimension representation, however, the similar data points should be represented close
together to represent high dimension data points on low dimension, non-linear manifold. As a
result, we decided to use t-SNE as dimensionality reduction algorithm for latent space visualization.

3.3.4 Classification

For the classification, we freezed the encoder of the trained VAE and a linear layer (classifier)
was implemented on top of it, whose structure can be seen in the Figure 3.7. We used such
a shallow classifier architecture as we do not want the classification performance rely too much
on the classifier, on the contrast, the classification performance should rely on the unsupervised
representation learning (for example, a complex classifier may results in better performance but
it is not the contribution of the unsupervised representaiton learning). For more straightforward
expression, the freezed trained VAE encoder here refers to the VAE encoder with Mean layer ()
and Std.dev layer (o) in Figure 2.2 which means that the output is the latent vector of input in
the latent space. So, basically, we do the classification on the latent space. When it is RNN-VAE,
then, the ”Trained VAE encoder” is ”RNN encoder”. When it is LSTM-VAE, then, the ” Trained
VAE encoder” is "LSTM encoder”. When it is CNN-VAE, then, the ”Trained VAE encoder” is
”CNN encoder”.

Two widely-used classifiers are Softmax and Support Vector Machine (SVM). They can be
implemented in the gradient descent manner where we can use backpropagation to update the
parameters. They share the same structure as shown in Figure 3.7 but different loss functions.
Softmax uses Cross-entropy loss function and SVM uses hinge-loss functions [45]. A more detailed
description about these two classifiers is provided in Section 2.2 The number of output of the
”Classifier” in Figure 3.7 is the number of output classes.
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Classifier

T

Latent vector

T

Trained VAE encoder

I |

x 1 x_2 x 3 = e x_n

Figure 3.7: The structure of classifier

”Frozen Encoder” and ”Not Frozen Encoder”

In this thesis, we also investigate the performance of ”Frozen Encoder” and ”Not Frozen Encoder”,
as can be seen in Figure 3.7, "Frozen Encoder” implies that the parameters of ”Trained VAE
encoder” in the red block are frozen and ”Not Frozen Encoder” indicates that the parameters
of " Trained VAE encoder” in the red block are not frozen where its parameters can be updated
during the training.

Pure Classification

Classifier

Figure 3.8: The structure of pure classifier

To inspect whether the data can be easily classified, we investigated the performance of feeding
the input data directly into the classifier where the structure can be seen in Figure 3.8. As the
input data is directly fed into the shallow architecture classifier, so, a term ”pure classification”
was used here.

3.3.5 Optimization

As indicated in Section 2.1.4, machine learning optimization is the process of adjusting hyperpara-
meters so that the loss functions can be minimized by using one of the optimizers. Suggested by
[37], we chose to use Adam [38] as the optimizer training our neural networks because Adam per-
forms better than other optimizers [37]. Adam optimizer is addressed in details in Section 2.1.4.
A learning rate that is too small results in painfully slow convergence, however, while a learning
rate is too large, it can hinder convergence and lead to the loss function to fluctuate around the
minimum or even to diverge. As a result, it is essential to choose a descent learning rate. The
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strategy we used to choose a descent learning rate is by observing the loss curve, for example, if
the loss decrease is too slow, then, we may increase the learning rate; if the loss decreases too fast
or the loss fluctuates a lot or even diverges, we may decrease the learning rate. In terms of the
amount of training epochs, the same strategy was used, for example, if the trend of loss decrease
of the last epoch is still high, we may consider increasing the amount of epochs. Furthermore,
based on [39, 40, 41], we used trial and error strategy [42] to choose a descent batch size, hidden
size and the latent space dimensions.

3.3.6 Transfer Learning

To see how the model is transferable for another animal species, the encoder of trained horse
VAE model is extracted and a classification layer is applied on the top of the extracted encoder.
The structure is the same as 3.7 and then, we investigated performance on goat labeled data
with ”Frozen Encoder” and "Not Frozen Encoder” (if it is with ”Not Frozen Encoder”, then
the parameters of the whole network can be updated and if it is ”Frozen Encoder”, only the
parameters of the last layer(the classification layer) can be updated). Besides, we also investigated
how representative the data of one individual horse to six horses.

3.3.7 Model Training Time

As different models have different computation complexities, it might be the case that the model
has better performance while it takes more time to train. As a result, in this thesis, the timing of
VAE training and classification training are measured so that it can give us an indication of the
computation complexities of these models.
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Chapter 4

Experiment Setup

In the previous chapter, the system overview and working methodology structures are discussed,
in this chapter, we discuss the details of the experiment setup.

4.1 Datasets and Preprocessing

In this thesis, we used two datasets which are the horse dataset [3] and the goat dataset [4]. These
two datasets are both open-access, and they comprise a considerable amount of data.

4.1.1 Horse Dataset

We use a publicly available horse movement dataset, collected by Kamminga et al. [3]. The
data was collected over 7 days, and the complete horse dataset consists of 18 individual horse
subjects. The 3-axial accelerometer and gyroscope sensors were sampled at 100 Hz and the 3-axis
magnetometer was sampled at 12Hz. One single sensor node was attached to the neck of the horses
using a collar fabricated from a hook and loop fastener. In this thesis, in order to make the results
comparable with the state-of-art [2], we utilized only the data of 3-axis accelerometer and we used
the same data preprocessing methodology where we exploited 6 individual horse subjects (which
are ”Galoway”, "Happy”, ”Patron”, ”Zafir”, ”Driekus” and ”"Bacardi”’) and 5 major activities
(which are ”Standing”, ”Walking”, ” Trotting”, ” Galloping” and ”Grazing” ). The magnitude of
3D vector (I>-norm) of the accelerometer data is taken. Then, the time-series data were segmented
with a window size of 2 seconds and 50% overlap. As a result, the input is a low dimensional (1
x 1) vector where n is the window size (in this case, n is 200 as the accelerometers are sampled
with a sampling rate of 100HZ for horse datasets). The activity distribution of horse movement
data is illustrated in Table 4.1.

Activity\Subject | 1(Galoway) | 2(Happy) | 3(Patron) | 4(Zafir) | 5(Driekus) | 6(Bacardi)
Galloping 1043 696 714 835 323 328
Trotting 6423 7038 3402 3559 2673 1981
Walking 11055 9642 5538 5239 4294 1677
Grazing 4331 5063 1951 1091 2496 1116
Standing 1750 1186 1244 347 341 245

Total 24602 23625 12849 11071 10127 5347

Table 4.1: Activity distribution of horse dataset [3]

4.1.2 Goat Dataset

We also use a publicly available goat movement dataset, collected by Kamminga et al. [4]. The
data was collected over 5 days and the complete goat dataset consists of 5 individual goat subjects.
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A collar with six sensor nodes was attached to the goat’s neck with the 3-axial accelerometer,
gyroscope, and magnetometer sensors sampled at 100 Hz. In this thesis, in order to make the
results comparable with the state-of-art [2], we utilized the data from six sensors attached around
the goats’ neck and we only utilized the data of 3-axis accelerometer sensors. We exploited 5
individual goats subjects and 5 major activities (which are ”Standing”, ”Walking”, ” Trotting”,
”Galloping” and ” Grazing” ). Identical to the preprocessing of the horse dataset, the magnitude of
3D vector (I>-norm) of the accelerometer data is taken. Then, the time-series data were segmented
with a window size of 2 seconds and 50% overlap. As a result, the input is a low dimensional (1

x 1) vector where n is the window size (in this case, n is 200). The activity distribution of goat
movement data is illustrated in Table 4.2.

Activity\Subject | 1 2 3 4 5
Galloping 88 497 56 40 115
Trotting 100 526 120 154 145
Walking 4526 4737 2381 3339 1015
Grazing 12973 | 3811 | 8129 | 6781 | 152
Standing 9879 10597 | 7275 3415 3199
Total 27566 | 20168 | 17961 | 13729 | 4626

Table 4.2: Activity distribution of goat dataset [4]

4.1.3 Varying Amount of Data

As the main research question is to investigate to what extent can unsupervised representation
learning using VAE cope with the lack of labeled data in AAR, we use different amount of labeled
data for model training. Figure 4.1 illustrates how the data was divided. To make the result
comparable with the state-of-art [2], the same amount of labeled data division was used. Seen
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|
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(horse)

Training VAE

|
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(horse)

1
80% training dataset
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76% | (100%
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Latent space visualization

|
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|

Labeled dataset
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0.01%
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data data
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Testing classifier and transfer leaming testing

Training VAE

Figure 4.1: The different amount of data

from the Figure 4.1, the left part shows the horse dataset and the right part illustrates the goat
dataset. In terms of the horse dataset, the unlabeled data was used to train the VAE, 100%
labeled data was used for latent space visualization so that it gives us an indication of how good
the VAE learned the representation. The labeled dataset was divided into training set (80%) and
testing set (20%), the training set was used to train the classifier and the testing set was used
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to evaluate the performance (F1 score). As for the 80% training set, it was further divided into
70.01% data”, 70.06% data”, 70.3% data”, 1% data”, 719% data”, ”76% data”, 7100% data” to
investigate the performance with different amount of labeled data. Similar to the horse dataset,
the goat unlabeled dataset was used to train the VAE and the goat labeled data was divided into
training set (80%) and testing set(20%), the training set was used to train the classifier, besides,
it was also used for transfer learning training. The testing set was used to test the performance
of the classifier as well as testing the performance of transfer learning. The 80% training set was
further divided into ”70.01% data”, ”70.07% data”, 70.3% data”, 71% data”, ”18% data”, ”?74%
data”, 7100% data”. In terms of data division, stratified random sampling was utilized to handle
the imbalance of the dataset.

4.2 Unsupervised Representation Learning

The neural network training and architectures of unsupervised representation learning (VAE) are
presented in this section. We used trial and error strategy [12] to choose a descent batch size,
hidden size and latent space dimensions. By considering the suggestions of [39, 40, 41] which can
be found in Section 2.1.4, we chose the batch size from {32, 64, 128, 256}, hidden size from {90,
110, 130} and latent space dimensions from {10, 20, 30}. The learning rate and the number of
epochs were adjusted by experience and experiment. For instance, by observing the loss curve, a
decent learning rate and the number of epochs can be determined.

4.2.1 VAE

For all VAE architectures, we set the batch size to 32, the hidden size to 90, the latent space
dimension to 20, the learning rate for Adam optimizer to 0.0005 and the sum of KL-divergence
loss and reconstruction loss (Mean Square Error) was set as the loss functions in VAE.

RNN-VAE

The architecture of RNN-VAE can be found in Figure 4.2. The "Encoder” consists of one RNN

Layer (type:depth-idx) Kernel Shape Output Shape Param #
VAE - - -
—Encoder: 1-1 - [32, 20] -

| L—RNN: 2-1 — [200, 32, 90] 8, 370
| L —Linear: 2-2 190, 20] [32, 20] 1,820
| L —Linear: 2-3 290, 20] [32, 20] 1,820
—Decoder: 1-2 — [200, 32, 1] —

| L —TLinear: 2-4 £20, 90] [32, 90] 1,890
| L—RNN: 2-5 - [200, 32, 90] 8, 370
| L —linear: 2-6 290, 1] [200, 32, 1] 91

Total params: 22, 361
Trainable params: 22, 361
Non—trainable params: 0
Total mult-adds (M): 107.33

Figure 4.2: The architecture of RNN-VAE

layer and two linear layers, the output of the RNN layer (the hidden state of the last cell) is
mapped to p and ¢ (which can be found in Figure 3.4 in Section 3.3.2) by the two linear layer
respectively. Then, the latent vector is calculated by Equation 2.6 in Section 2.1.2. The calculated
latent vector is then fed into the ”Decoder” where first, it is mapped back to the vector of hidden
size and this vector is the hidden state input of the decoder RNN (which is h_0" in Figure 3.4 in
Section 3.3.2). The last linear layer maps the output of RNN to the final reconstruction.
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LSTM-VAE

As can be seen in Figure 4.3, architecture of LSTM-VAE is similar to RNN-VAE. The only
difference is that in "Encoder” and ”Decoder”, the LSTM layer is used instead of RNN layer. By
comparing LSTM-VAE and RNN-VAE, it can be found that number of total parameters to be
updated during training of LSTM-VAE is approximately 3.25 times higher than that of RNN-VAE
and the total number of calculation operations (indicated by ” Total mult-adds (M)” in Figure 4.3)
of LSTM-VAE is around 3.99 times higher than that of RNN-VAE.

aver (tvpe:depth-idx) ernel Shape utput Shape aram =

L K 18 0 8| P

VAE - - -

—Encoder: 1-1 - 132, 20] -

| L—1STM: 2-1 — [200, 32, 90] 33, 480
inear: 2-2 [90, 20] [32, 20] 1,82

| L4 2-2 90, 20 32, 20 820
inear: 2- 90, 20] 32, 20] 1,82

| 1 2-3 90, 20 32, 20 820

ecoder: 1-2 - (2 R 1] -

- i 2 200, 32
inear: 2- [20, 90] [32, 90] 1,

| L—1i 2-4 20, 90 32, 90 890

| L—13TM: 2-5 - [200, 32, 90] 33, 480
inear: 2- [90, 1] [200, 32, 1] 1

| i 2-6 90 200, 32 9

Total params: 72,3581
Trainable params: 72, 381
Non—trainable params: 0
Total mult-adds (M): 428.74

Figure 4.3: The architecture of LSTM-VAE

CNN-VAE

Figure 4.4 illustrates architecture of the CNN-VAE. For each convolution layer, a Rectified Linear
Unit (ReLU) layer is followed to increase the non-linearity and then followed by a Max Pooling
layer which reduces the parameters and the amount of computation so that the training can be
faster. The kernel size of 1x9 was chosen for all of the convolution layers. ”Encoder” has two
convolution layers where for the first convolution layer, the input channel is 1 and output channel
is 32 and for the second convolution layer, the input channel is 32 and the output channel is 64.
After that, a linear layer is map the output to the vector of hidden size and then, the output
is mapped to p and o as can be seen in Figure 3.6 in Section 2.2. Then, the latent vector is
calculated by Equation 2.6 in Section 2.1.2. The ”Decoder” is sort of symmetric to the ”Encoder”
where the calculated latent vector is fed into the ”Decoder” and it is mapped back to the vector
of hidden size. After two ”symmetric” convolution layers, a linear layer maps the output to the
final reconstruction.
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Laver (tvpe:depth—idx) Eernel Shape Output Shape Param =
VAE — —
F—FEncoder: 1-1 - (32, 20] -

| —Sequential: 2-1 — 32, 32, 1, 96

| | L —Conv2d: 3-1 (1, 32, 1, 9] (32, 32, 1, 192] 320

| | L—RelU: 3-2 — 32, 32, 1, 192] -

| | —MaxPool2d: 3-3 — (32, 32, 1, 96] —

| L —Sequential: 2-2 — (32, 64, 1, 44] —

| | L—Conv2d: 3-4 32, 64, 1, 9] 32, 64, 1, 88] 18, 406
| | —RelU: 3-3 — (32, 64, 1, 88] —

| | L —MaxPool2d: 3-6 — (32, 64, 1, 44] -

| L —Sequential: 2-3 - 32, 90] -

| | “—Linear: 3-7 (2816, 90] 32, 90] 253, 530
| | L—RelU: 3-8 — 232, 90] -

| L —Linear: 2-4 90, 20] (32, 20] , 820

| L —Linear: 2-5 90, 20] 32, 20] 1,820
[—Decoder: 1-2 - 1, 200] -

| L —Sequential: 2-6 - (32, 32, 1, 18] -

| | L —Linear: 3-9 20, 90] 732, 90] 1,890
| | —Linear: 3-10 90, 2816 32, 2816] 256, 256
| | L—RelU: 3-11 - (32, 2816] -

| | L —UnFlatten: 3-12 - (32, 64, 1, 44] -

| | —Conv2d: 3-13 64, 32, 1, 9] 32, 32, 1, 36] 18, 464
| | L—RelU: 3-14 - (32, 32, 1, 36] -

| | L —\axPool2d: 3-15 — 32, 32, 1, 18] —

| —Sequential: 2-7 — (32, 1, 1, 3] —

| | L—Conv2d: 3-16 (32, 1, 1, 9] (32, 1, 1, 10] 289

| | L—RelU: 3-17 - (32, 1, 1, 10] -

| | —MaxPool2d: 3-18 — (32, 1, 1, 3] —

| L—Sequential: 2-8 - C1, 200] -

| | L—Linear: 3-19 (160, 200] 1, 200] 32, 200
| | —ReLU: 3-20 — 1, 200

Total params: 583, 085
Trainable params: 383, 083
Non—trainable params: 0
Total mult-adds (M): 91.94

Figure 4.4: The architecture of CNN-VAE

4.3 Classification

As can be seen in Figure 3.7 in Section 3.3.4, the encoder of VAE is extracted and meanwhile,
a linear classification layer was attached on the top of the encoder. We also did some extra
experiments to investigate the characteristics of the model:

e We investigated the performance difference between that of frozen encoder and not-frozen
encoder.

e We fed the input data directly to the single classification layer to inspect whether the data
can be easily classified.

e We used the VAE encoder architecture with parameters random initialized to do the super-
vised learning from scratch to see how unsupervised representation learning improves the
performance especially when the amount of labeled data is low.

In terms of the classification neural networks training, we set the batch size to 32 which is the
same as VAE training. We found that the learning rate and the number of epochs of VAE training
are not suitable for classification neural networks training, as a result, we adjusted these two
hyper-parameters based on the experience and experiment. The number of epochs was chosen to
50, the learning rate of that with frozen encoder was set to 0.1, that of not-frozen encoder and
supervised learning from scratch were set to 0.001 and that of pure classification was set to 0.0005.
Adam optimizer was used for all of the neural network training. The loss function differs from
different classifiers used where Softmax uses Cross-entropy loss and SVM uses hinge-loss.
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4.3.1 VAE Encoder with Classification Layer

As described above, the "Encoder” from VAE was extracted and a linear layer was attached on
the top of the "Encoder”. The input size of the classification layer is always 20 as the latent
space vector dimension is 20 and the output size of the classification layer is always 5 because
there are 5 activity classes to be recognised. With-Frozen-Encoder, With-Not-Frozen-Encoder
and supervised learning from scratch (with VAE encoder parameters random initialized) share
the same architecture and the same number of total parameters while the number of trainable
parameters are different. With-Frozen-Encoder has less number of trainable parameters than
the other two because the encoder is frozen where the parameters of encoder cannot be updated.
With-Not-Frozen-Encoder and supervised learning from scratch have the same amount of trainable
parameters which is the number of total parameters. As for all of the encoders of VAE, the last
two layers are always the same which are two linear layers take the input size of 90 (hidden size)
and output vector size of 20 (latent space vector size). These two layers map the output from last
stage to u and o and the latent space vector is calculated by Formula 2.6. Then, the classification
is on the latent space vector.

RNN-Encoder + Classifier:

Figure 4.5 shows the architecture of RNN-Encoder with classifier where the encoder of RNN-VAE
is extracted and a linear classification layer is implemented on the top of the encoder. As can be

Layer (type:depth—idx) Kernel Shape Output Shape Param #
VAE - - -
—Encoder: 1-1 - 732, 20] -

| L—RNN: 2-1 - [200, 32, 90] 8, 370
| L —Linear: 2-2 [90, 20] 232, 20] 1,820
| L —Linear: 2-3 [90, 20] 232, 20] 1, 820
—Classifier: 1-2 - (32, 5] -

| I —Linear: 2-4 [20, 3] (32, 3] 103

Figure 4.5: The architecture of RNN-Encoder + Classifier

seen in Figure 4.0, it indicates the number of RNN-Encoder + classifier parameters of different
setup. It can be found that the number of trainable parameters With-Frozen-Encoder is much
less than the other two because as for With-Frozen-Encoder, only the parameters of the last layer
(the linear classification layer) are trainable and from Figure 4.5, the number of parameters is 105
which is consistent to the number of ”Trainable params” indicated in the Figure 4.6.

With-Frozen-Encoder/ )
. . With-Not-Frozen-Encoder
Supervised Learning from scratch

Total params: 12,113 Total params: 12,113
Trainable params: 12,115 Trainable params: 103
Non—trainable params: 0 Non—trainable params: 12, 010
Total mult—adds (M): 53.69 Total mult—adds (M): 33.69

Figure 4.6: The number of trainable parameters difference among With-Frozen-Encoder, With-
Not-Frozen-Encoder and supervised learning from scratch of RNN-Encoder + classifier

LSTM-Encoder + Classifier:

Figure 4.7 shows the architecture of LSTM-Encoder with classifier where the encoder of LSTM-
VAE is extracted and a linear classification layer is implemented on the top of the encoder. As
shown in Figure 4.8, it indicates the number of parameters of LSTM-Encoder + classifier. The
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Laver (type:depth-idx) Kernel Shape Output Shape Param #
VAE - - -
F—FEncoder: 1-1 - [32, 20] -

| —1sTM: 2-1 - [200, 32, 90] (33, 480)
| L —Linear: 2-2 90, 20] [32, 20] (1, 820)
| L —Linear: 2-3 290, 20] [32, 20] (1,820)
F—Classifier: 1-2 [32, 5] -

| L —linear: 24 .20, 3] [32, 3] 105

Figure 4.7: The architecture of LSTM-Encoder + Classifier

number of trainable parameters of With-Frozen-Encoder is the same as that of RNN-Encoder +
classifier as the architectures of the linear classification layer are the same which both take input
size of 20 and output size of 5.

With-Frozen-Encoder/

With-Not-Frozen-Encoder

Supervised Learning from scratch

37,22

Total params:

Trainable params: 37, 225
Non—trainable params: 0
Total mult-adds (M): 214.39

3

Total params: 37,225

Trainable params: 105
Non-trainable params: 37,120
Total mult-adds (M): 214.39

Figure 4.8: The number of trainable parameters difference among With-Frozen-Encoder, With-
Not-Frozen-Encoder and supervised learning from scratch of LSTM encoder + classifier

CNN-Encoder + Classifier:

Figure 4.9 shows the architecture of CNN-Encoder with classifier where the encoder of CNN-VAE
is extracted and a linear classification layer is implemented on the top of the encoder. As shown
in Figure 4.10, it indicates the number of parameters. The number of trainable parameters of
With-Frozen-Encoder is the same as that of the other two as they share the same architectures of

classification layer.

Laver (type:depth—idx) Kernel Shape Output Shape Param 2

VAE — - —

F—FEncoder: 1-1 - 132, 20] -

| L—Sequential: 2-1 - [32, 32, 1, 96] -

| | —Convad: 3-1 1, 32, 1, 9] [32, 32, 1, 192] (320)

| | L—RelU: 3-2 - [32, 32, 1, 192] -

| | —MaxPool2d: 3-3 - [32, 32, 1, 96 -

| L—Sequential: 2-2 - [32, 64, 1, 44] -

I I L —Convad: 3-4 (32, 64, 1, 9 732, 64, 1, 881 (18, 496)

| | L—RelU: 3-5 - [32, 64, 1, 88] -

| | —MaxPool2d: 3-6 - [32, 64, 1, 44] -

| L—Sequential: 2-3 - [32, 90] -

| I L Linear: 3-7 72816, 901 732, 90] (253, 530)

| | L—ReLU: 3-8 - [32, 90] -

| L —linear: 2-4 190, 20] [32, 20] (1, 820)

I L inear: 2-5 790, 201 132, 201 (1,820)

FClassifier: 1-2 - [32, 5] -

| L —linear: 2-6 20, 3] [32, 3] 105
Figure 4.9: The architecture of CNN-Encoder 4 Classifier
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With-Frozen-Encoder/ .
. ] With-Not-Frozen-Encoder
Supervised Learning from scratch

Total params: 276, 091 Total params: 276, 091
Trainable params: 276, 091 Trainable params: 103
Non—trainable params: 0 Non—trainable params: 273, 986
Total mult—adds (M): 62.28 Total mult—adds (M): 62.28

Figure 4.10: The number of trainable parameters difference among With-Frozen-Encoder, With-
Not-Frozen-Encoder and supervised learning from scratch of CNN encoder + classifier

Pure Classification

To investigate whether the animal movement data can be easily classified, the data was directly fed
into the linear classification layer. The difference among the linear classification layers described
above is the input size. The input size is the number of input data point which is 200 instead of
the hidden size 90 used above where the architecture can be found in Figure 4.11. The network is
simple which contains only one linear layer.

Layver (type:depth-idx) Kernel Shape Output Shape Param =
Classifier — — —
F—Linear: 1-1 1200, 5] (32, 3] 1, 003

Total params: 1,003
Trainable params: 1,003
Non—trainable params: 0
Total mult-adds (M): 0.03

Figure 4.11: The architecture of pure classifier
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Chapter 5

Performance Evaluation

In this chapter, we present the evaluation metrics used in this thesis, the experiment proced-
ures, their results, the results discussion and the experiment environments when conducting these
experiments

5.1 Evaluation Metrics

5.1.1 Cross Validation

Cross-Validation is a technique to evaluate the predictive model performance by partitioning
the original dataset into training set and testing set. As described above in Section 4.1, when
partitioning the original labeled dataset to training set and testing set and further partitioning
the training set to different amount of labeled data training set, the stratified random sampling was
applied which means for each experiment of classification training and evaluating, the training set
and testing set were random sampled and this increased the reliability of the model. Furthermore,
to make the results more reliable, for each experiment, we repeatedly ran it for 10 times and took
the mean value and the standard deviation.

5.1.2 F1 Score

We used F1 score as the evaluation of our model where the formula is:

Precision * Recall
F1=2 5.1
% Precision + Recall (5.1)

Precision shows how precise the model is out of the predicted positive and it is a good measure
when the costs of False Positive is high, for example, detecting the email spam. The precision can

be calculated by:

Precisi True Positive (5.2)
recision = .
True Positive + False Positive

Recall determines the ratio of True Positive out of the Actual Positive and it is a good measure
when there is a high cost related to False Negative, for instance, in fraud detection or sick patient
detection. The Recall equation is:

True Positive
Recall = 5.3
eea True Positive + False Negative (5:3)

5.2 Experiment Environments

The experiments were implemented in PyTorch and the experiment environments can be found in
Table 5.1.
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Processer AMD Ryzen 5 2600X Six-Core Processor 3.60GHz
RAM 16.0GB

0S Windows 10 Pro 64-bit 20H2 19042.1110
GPU NVIDIA GeForce GTX 1660

CUDA version 11.4.56

Conda version 4.10.1

Python version 3.8.8

Jupyter client version | 6.1.12

PyTorch version 1.8.1

Matplotlib version 3.3.4

Numpy version 1.20.1

Scikit-learn version 0.24.1

Table 5.1: Experiment environments

5.3 Performance Evaluation of Unsupervised Representa-
tion Learning

There are several sets of experiments where the results can help us answer a series of questions.

5.3.1 Baseline

The baseline experiments are shown in Figure 5.1, the difference between top part and bottom part
is that top part used all six horses data and bottom part used all five goats data. In terms of top
part, RNN-VAE/LSTM-VAE/CNN-VAE was trained with six horses unlabeled data. After VAE
training, the VAE encoder was taken and a linear classifier was attached on the top of the encoder.
The extracted VAE encoder was frozen while training, which means the parameters of the encoder
cannot be updated, only the parameters of the last classification layer can be updated and this
reduced the amount of computation dramatically. The VAE encoder + classifier was trained with
different amount of six horses labeled training dataset and the performance was evaluated with
the six horses labeled testing dataset. The detailed data partitioning can be found in Section 4.1.
The bottom part is similar to the top part while the data used was five goats data instead of six
horses data. The results of baseline were to be compared with the state-of-art [2].

/with aiferent amount of 6-horse
labeled training data

VAE Training VAE Encoder (Frozen) + Classifier
(RNN-VAE, LSTM-VAE, CNN-VAE) (Softmax/SVM) Training

( with 6-horse uniabeled data ) (‘with 6-horse Iabeied testing data )
_— Evaluate F1 score

¢ With different amount of 5-goat \*:
labeled training data

VAE Training VAE Encoder (Frozen) + Classifier
(RNN-VAE, LSTM-VAE, CNN-VAE) (Softmax/SVM) Training

( with 5-goat uniabeled data ( witn 5-goat labeled testing data )

—_—> Evaluate F1 score

Figure 5.1: The baseline experiment
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Horse Baseline

As can be seen in Figure 5.2, it shows the results of classification of horse baseline. The different
colors indicate the different type of VAE model. Deeper color implies that the Softmax was used
and lighter color indicates that SVM was used. In the notations, NN type + classifier” indicates
the type of VAE and classifier. For example, ” LSTM+Softmax” indicates LSTM-VAE was trained
and then, the classification NN consists of the trained LSTM-VAE encoder and a linear Softmax
classification layer where the architecture can be found in Figure 4.7. The F1 score is the evaluation
of the classification NN on the test dataset and the performance shown in the graph is the mean
value of ten experiments with an error bar which is the standard deviation.

6-horse VAE 6-horse classifier (Encoder Frozen)

- = - =
&
0.8 T i P M i
0.7 I
0.6 I B LSTM+Softmax
_ I . _ _ 1 I _ LSTM+5VM
1 B RNN+Softmax
0.4 RNN+SVM
0.3 B CNN+Softmax
CNN+SVM
0.2
0.1
0
6 76% 100%

0.01% 0.06% 0.30% 1% 19%

F1 score
o
n

Amount of labeled data

Figure 5.2: The results of horse baseline

It can be found that the LSTM-VAE learned best and the next is CNN-VAE. RNN-VAE had
a bad performance because RNN-VAE suffered from short-term memory problem which means it
cannot handle long input sequence and it would further cause the gradient vanishing problems.
In our case, the input was 200 data samples which illustrates that only the representations of the
last few data samples of the 2s window were learned and this resulted in the bad performance of
RNN-VAE.

The performances of different classifiers were close, where generally, the Softmax performed
slightly higher than that of SVM because SVM used hinge loss function where the margin was set
to 1 so that the minimal loss was 1 and Softmax used cross entropy loss where the loss can be
less than 1. Because the encoder was frozen, only the parameters of the classification layer can be
updated which makes the difference tiny.

In terms of the best performed model "LSTM+Softmax”, with the least amount of training
data (0.01%), the F1 score reaches around 0.57. For LSTM-VAE and CNN-VAE, with the amount
of labeled training data increasing, the performance increases while when it reaches 1% and higher,
the performance reaches the top where for LSTM-VAE, it is approximately 0.93 and for CNN-
VAE, it is around 0.84. The error bar is shrinking with the increasing amount of labeled data
until the performance reaches the top (higher than 1%) for "LSTM” and ” CNN” models.

Latent Space Visualization

Figure 5.3 shows the six-horse latent space visualization of LSTM-VAE. 100% horse labeled data
was used for labeling the data points on the graph. The visualization let us be able to check how
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good the VAE has learned by visualizing how separable the tasks are.

Six-Horse LSTM-VAE t-SNE

= Walking
009 L Fotting : h
Grazing i .
Standing i i
50 4 *

=100 4

T T
=100 =50 o 50 100

Figure 5.3: The latent space visualization of six-horse movement data

It can be found that the model has learned useful representations where we can clearly see the
clustering of different activity classes in the graph. Seen from left to right, the type of activity
becomes more active and there are overlapping activity distribution such as ”Standing-Grazing”,
”Grazing-Walking” | etc. The reason could be that the two activities have a similar extent of activ-
ity level, so, sometimes, it gets confused. The activity labeling order is ”Walking”, ” Trotting”,
”Grazing”, ”Standing” and ” Galloping”, so, the activity labeled later covers the activities labeled
earlier, for example, ” Galloping” will never be covered by other activities while ” Walking” can be
covered by any other activities.

Comparison with the State-of-art [2]

Figure 5.4 shows the comparison of horse baseline with the state-of-art, on the left, it is our
results which is the same as in Figure 5.2 and on the right, it is the result of the state-of-art. The
difference is the unsupervised representation learning method used and the state-of-art also used
the handcrafted feature engineering method. The state-of-art uses SVM as classifier and there was
no fine-tuning (the encoder is frozen), so as for our result, we used the result of "LSTM+SVM”
as LSTM-VAE model is the best performed model and we compare the results using the same
classifier. As the state-of-art did not provide the exact result number, we compared them in this
way. The two brown auxiliary lines were the indications of F1 score 0 and 1. The red auxiliary
lines were the indications of how our "LSTM+SVM” results compared with the state-of-art.

6-horse VAE 6-horse classifier (Encoder Frozen)

Varying the size of the labeled Horse dataset

0s
os
L
;
o I isTMesoftmax |
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L (11 attisamax e
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P [l —
02 [Estaty
01
[}
oo o0s% 030% M 19 - 100% 0 0 0 7 x N ”
Amount of labeled data D, %, > s, % 2 % > Q’%
o o 1 % 3
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Figure 5.4: The horse baseline comparison with the state-of-art [2]

It can be found that for 0.01% and 0.06% amount of data, our model outperforms all unsu-
pervised representation learning methods but underperforms the handcrafted feature engineering
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methods of the state-of-art. As for 0.3% and 0.1% amount of data, our model beats both unsuper-
vised representation learning and handcrafted feature engineering and for 19% and higher, they
have nearly the same performance. Furthermore, the error bar of our model tends to be much less
than that of the state-of-art which means our model is more robust than the state-of-art. From
Formula 2.6 in Section 2.1.2, the latent vector z is sampled based on a probability distribution and
this increases the robustness of the model, as a result, especially with a large amount of labeled
data, the results of our model tend to have a more robust result.

Therefore, although the performance of a large amount of labeled data (19% and higher) of
our model is nearly the same as the state-of-art, the performance of a low amount of labeled data
(1% and less) outperforms the unsupervised representation learning methods of the state-of-art
and our model increases the robustness dramatically.

Goat Baseline

The results of classification of goat baseline can be found in Figure 5.5, the colour indications are
the same as that of horse baseline, where red, green and blue indicates LSTM-VAE, RNN-VAE and
CNN-VAE separately and the deeper color illustrates the Softmax classifier while the lighter color
illustrates the SVM classifier. Similar to the horse baseline, it can be found that LSTM-VAE has
learned best and the next is CNN-VAE while for goat baseline, the performance difference between
LSTM-VAE and CNN-VAE is smaller than that of horse baseline. The same as horse baseline,
the RNN-VAE failed to learn useful representations due to the long sequence input problem. In
terms of the same type of VAE model, the performances of two classifiers are close to each other
while Softmax performs a little bit better than that of SVM.

5-goat VAE 5-goat classifier (Encoder Frozen)

F3 = =] =
= B = =
= =
0.7 I =
0.6 B LSTM+Softmax
[ I LSTM+5VM
- B RNN+Softmax
- I ] I I I [ RNN+SVM
" B CNN+Softmax
CNN+SVM
0 I

0.01% 0.07% 0.30% 1% 18% 74% 100%

F1 score
o o o o
N w 'S wn

o
=

Amount of labeled data

Figure 5.5: The results of goat baseline

If we look at the best performed model " LSTM+Softmax”, with the least amount of training
data (0.01%), the F1 score reaches around 0.54. For LSTM-VAE and CNN-VAE, with the amount
of labeled training data increasing, the performance increases while when it reaches 1% and higher,
the performance reaches the top where for LSTM-VAE, it is approximately 0.83 and for CNN-VAE,
it is around 0.77. Meanwhile, the error bar is shrinking with the increasing amount of labeled
data until the performance reaches the top (higher than 1%) for ”LSTM” and ”CNN” models.

It can be found that the performance of goat baseline is worse than that of horse baseline for
both LSTM-VAE and CNN-VAE. There are multiple reasons that may result in it such as the
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data quality [71], noise [72], imbalance dataset [73], etc.
Latent Space Visualization
Figure 5.6 shows the five-goat latent space visualization of LSTM-VAE. 100% goat labeled data

was used for labeling the data points on the graph. The visualization let us be able to check how
good the VAE has learned by visualizing how separable the tasks are.

Five-Goat LSTM-VAE t-SNE

wg | * Welking
= Totting
75 Grazing
= Standing
50 4

Galloping 4 '

100 50 0 50 100
Figure 5.6: The latent space visualization of five-goat movement data

The clustering of different activities in the graph shows that the model has learned useful
representations. Similar to the horse latent space visualization shown in Figure 5.3, seen from left
bottom to right top, the type of activity becomes more active and there are overlapping activity
classes such as ”Standing-Grazing”, ” Grazing-Walking”, etc. The reason could be that the two
activities have a similar extent of activity level, so, sometimes, it gets confused. It can be found
in the goat latent space visualization in Figure 5.6, the tiny amount of ”Trotting” samples (red
points) is because on the one hand, the amount of activity ” Trotting” takes up a small proportion
in the activity distribution, which can be found in Table 4.2 and on the other hand, " Trotting”
samples are secondly labeled, so, in principle, it can be covered by ”Grazing”, ”Standing” and
”Galloping”, as a result, by observing the graph, we can found that some ” Trotting” samples are
covered by ”Grazing” samples (yellow points) and ”Galloping” samples (blue points).

Comparison with the State-of-art [2]

Similar to horse baseline above, we compare the results of our goat baseline with the state-of-
art. Figure 5.7 shows the comparison of goat baseline with the state-of-art, on the left, it is
our results and on the right, it is the result of the state-of-art. The difference is the unsuper-
vised representation learning method used while the state-of-art also used the handcrafted feature
engineering method. The state-of-art uses SVM as classifier and there was no fine-tuning (the
encoder is frozen), so as for our result, we used the result of ”LSTM+SVM” as LSTM-VAE model
is the best performed model and we compare the results using the same classifier. The same as
the comparison of horse above, we compare them by drawing two brown auxiliary lines which
are the indications of F1 score 0 and 1. The red auxiliary lines are the indications of how our
"LSTM+SVM?” results compared with the state-of-art.

It can be found that for the amount of data below 1%, our model beats both unsupervised
representation learning and handcrafted feature engineering of state-of-art. As for 1% and higher
amount of data, they have nearly the same performance. Furthermore, the error bar of our model is
much less than that of the state-of-art which means our model is more robust than the state-of-art.

Therefore, although the performance of a large amount of labeled data (1% and higher) of our
model is nearly the same as the state-of-art, the performance of a low amount of labeled data
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Figure 5.7: The goat baseline comparison with the state-of-art [2]

(1% and less) outperforms both unsupervised representation learning and handcrafted feature
engineering methods of the state-of-art and our method increases the robustness dramatically.

Conclusions From Results of Baseline Experiments and Comparison with the state-
of-art

From both horse and goat baseline results, it can be concluded that VAE model is a good candidate
for the unsupervised representation learning. However, the results of RNN-VAE is poor because
RNN-VAE suffers from short-term memory problem, where it cannot handle long input sequence
and it would further cause the gradient vanishing problems. The best performed VAE model is
"LSTM-VAE” model and the following is ”CNN-VAE” model. The performance of Softmax clas-
sifier is close to that of SVM classifier while Softmax performs slightly better than that of SVM in
baseline. The best performed model is ”LSTM+Softmax” and the followings are "LSTM+SVM”,
”CNN—+Softmax”, ?CNN+SVM”. With the amount of labeled data increasing, the performance
increases and the error bar shrinks. After the performance reaches top, increasing the amount of
labeled training data will not increase the performance as the performance becomes stable. By
comparing the results of our model with the state-of-art, our model outperforms the state-of-art
with low amount of labeled training data and performs nearly the same when the amount of
labeled training data is high. Furthermore, our model tends to be much more robust than the
state-of-art.

5.3.2 Pure Classification

To investigate whether the animal movement data can be easily classified, the data was directly
fed into a single linear classification layer. The network is simple which contains only one linear
layer. Figure 5.8 shows the experiment illustration of pure classification to inspect whether the
data can be distinguished easily where it only consists of a single linear classification layer.

Horse Pure Classification

As can be seen in Figure 5.9, it is the results of horse pure classification. It can be found that
the horse movement data cannot be classified easily. As a result, the last layer of our classific-
ation neural network does not dominate the good performance of our horse baseline. So, the
unsupervised representation learning (VAE) dominates the good performance of our model.

Goat Pure Classification

As can be seen in Figure 5.10, it is the results of goat pure classification. Similar to the horse
pure classification, the goat movement data cannot be easily distinguished. As a result, the last
layer of our classification neural network does not dominate the good performance of our goat
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Figure 5.8: The experiment of pure classifier
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Figure 5.9: The results of horse pure classification

baseline. So, the unsupervised representation learning (VAE) dominates the good performance of
our model.

Conclusions From Pure Classification

From both horse and goat pure classification results, it can be concluded that the animal data
cannot be easily distinguished so that the good results of our baseline model are dominated by
the unsupervised representation learning using VAE instead of the classifier.

5.3.3 Baseline VS Baseline with Encoder Not Frozen VS Supervised
Learning from Scratch

We have seen that our baseline for both horse and goat movement data has gained good results
and outperforms the state-of-art. Meanwhile, there are something interesting for us to further
investigate such as the effect of unfreezing the encoder; how it performs if we conduct the supervised
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Figure 5.10: The results of goat pure classification

learning from scratch (only do the supervised learning with labeled data). In the following, we
address these.

Baseline with Encoder Not Frozen

In the previous section 5.3.1, we investigated the performance of the baseline where the encoder
is frozen, one way to increase the performance is to unfreeze the encoder where the parameters of
encoder can be updated during the training. As a result, the difference between this section and
the baseline is that during the classification neueral network training, the parameters of encoder
can be updated. Figure 5.11 illustrates the experiment. The VAE model is not retained meaning
that the extracted VAE encoder is the same as that of the baseline in section 5.3.1.
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Figure 5.11: The baseline with encoder not frozen experiment
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Supervised Learning from Scratch

We have seen that our baseline in Section 5.3.1 has good performance when the amount of labeled
data is low. If we regard our classification neural network such as " LSTM+Softmax” as a super-
vised learning method and train it with labeled data from scratch. If the performance is close
to the results of our baseline, then, there is no point to conduct the unsupervised representation
learning. Instead, we can directly conduct the supervised learning by using the labeled data. As
a result, it is interesting to investigate how the supervised learning from scratch performs.

Figure 5.12 implies the experiment illustration of supervised learning from scratch, it is aimed
at discovering the performance improvement of unsupervised representation learning. The NN
consists of random initialized VAE encoder and a linear classification layer. The architecture of
VAE encoder is the same while the parameters have been random initialized. As a result, we
consider it as the supervised learning from scratch.

{ With different amount of 6-horse |
labeled training data

VAE Encoder (random initialized) +
Classifier (Softmax/SVM) Training

( with 6-norse Iabeled testing data )

—_— Evaluate F1 score

(Wit different amount of 5-goat
labeled training data

VAE Encoder (random initialized)
+ Classifler (Softmax/SVM) Training

( with 5-goat labeled testing data )

—_— Evaluate F1 score

Figure 5.12: The experiment of supervised learning from scratch

Results

In the following, we illustrate our results of the LSTM-VAE model on horse and goat movement
data. For the results shown in Figure 5.13 and 5.14, we mainly used two colours to indicate the
different classifiers used, where "red” indicates the Softmax classifier and ”blue” indicates the
SVM classifier. The gradations of color indicate the different experiments, where the dark colour
shows the results of baseline (noted by ”Encoder Frozen”), the middle colour indicates the results
of baseline with Encoder Not Frozen (noted by ”Encoder Not Frozen”) and the light colour illus-
trates the supervised learning from scratch (noted by ”Learning from Scratch”).

Horse

Figure 5.13 illustrates the results on horse movement data. By comparing dark red and middle
red or comparing dark blue and middle blue, it can be found that generally, by unfreezing the
encoder, the performance tends to be increased. For high amount of labeled data (1% and higher),
the performance increase by unfreezing the encoder is stable at approximately 3% for Softmax and
around 4% for SVM while for low amount of labeled data (less than 1%), the performance increase
varies. By observing the error bar of ”Encoder Frozen” and the other two (”Encoder Not Frozen”
and ”Learning from Scratch”), so, by comparing the dark red with middle and light red or com-
paring the dark blue with middle and light blue, it can be found that generally, the error bar is less
if we freeze the encoder because by freezing the encoder, less amount of parameters are updated
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Figure 5.13: The results on horse movement data

during the training. By comparing the light red and the other two (dark red and middle red) or
comparing the light blue and the other two (dark blue and middle blue), it can be found that for
low amount of labeled training data (less than 19%), the supervised learning from scratch performs
worse than unsupervised representation learning, however, with the amount of labeled training
data increasing, the performance difference becomes less. And finally, with adequate amount of
labeled training data (19% and higher), the performance of ”Encoder Not Frozen” (middle red or
middle blue) becomes close to the performance of supervised learning from scratch (light red or
light blue). Furthermore, by comparing dark red and dark blue, middle red and middle blue or
light red and light blue, it can be observed that generally the performance of Softmax classifier is
slightly higher than that of SVM classifier.

Goat

Figure 5.14 shows the results on goat movement data. Similar to the results on horse movement
data, we could draw the following conclusions:

e By unfreezing the encoder, the performance increases

o Generally, the error bar of ”Encoder Not Frozen” and ” Learning from Scratch” is larger than
that of ”Encoder Frozen” due to more trainable parameters

e For low amount of labeled training data (less than 19%), the performance of supervised
learning from scratch is worse than that of unsupervised representation learning

e With the amount of labeled training data increasing but less 19%, the performance difference
among the supervised learning from scratch and the other two becomes less

e The performance of supervised learning from scratch is close to the performance of ” Encoder
Not Frozen” with high amount of labeled training data (19% and higher)

o Generally, the Softmax classifier performs better than SVM classifier
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Figure 5.14: The results on goat movement data

5.4 Performance Evaluation of Transferability

To investigate how transferable our model is, we looked into how representative the individual
horse data are for six horses and how our horse model is transferable for goat data.

5.4.1 How Representative Individual Horse Data are for Six Horses

As the experiment illustration shown in Figure 5.15, to see how representative one individual horse
data to six horses data. We used individual horse unlabeled data to train the VAE model, from
the performance evaluation of baseline, the best performed LSTM-VAE model is chosen. After
training of VAE, the VAE encoder is taken and a linear classification layer is applied on the top
of the encoder, frozen encoder is used here so the parameters of VAE encoder cannot be updated.
We used small amount of six horses labeled training data(0.01% and 0.06%) for the classification
neural network training and the six horses labeled testing data is used to evaluate the performance.

— —

S Mau amount °f® / \
With individual horse unlabeled data (

labeled training data (0.01% and | | With 6-horse labeled testing data |

T o

VAE Training :
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Figure 5.15: The experiment of how representative individual horse data to six horses data

Results:

The results can be found in Figure 5.16. The left graph shows the classification NN trained with
0.01% horse labeled training data and the right graph shows the classification NN trained with
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0.01% horse training labeled data 0.06% horse training labeled data
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Figure 5.16: LSTM-VAE trained with individual horse and validated with six horses data

0.06% horse labeled training data. The x-axis indicates the individual horse, so from ”horse-1”
to "horse-6” where the index is corresponding to the index shown in Table 4.1 in Section 4.1. It
can be found that the results differ among each other especially with the least amount of training
data (0.01%) and some of them perform even better than 6-horse LSTM-VAE shown in Figure
5.2. We looked into the LSTM-VAE final loss after training to see whether we can obtain some
information. The LSTM-VAE end loss after training can be found in Figure 5.17.
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Figure 5.17: LSTM-VAE end loss after training

It was found that after training, LSTM-VAE trained with horse-4 and horse-6 data has high
end loss while the performances of horse-4 and horse-6 are not the worst. We then realized that
the VAE loss indicates how close the reconstructions are compared with the input. So, we cannot
make relations between the VAE loss and the classification performance, for instance, a simple
input into VAE and VAE can easily reconstruct it, in this case, the VAE loss is low while it does
not mean that it has learned good representations; Or a complex meaningful input into VAE and
it is hard for VAE to make perfect reconstruction, now, the VAE loss is high, but it does not
mean that the VAE does not learn good representations. During the VAE training, the VAE can
still learn good representations from the complex input while the VAE loss is high. If we inspect
Figure 5.16, from both 0.01% and 0.06% training data, it can be found that horse-4 model is better
than horse-2 model. Another way to corroborate it is to observe the latent space visualization of
horse-2 model and horse-4 model as the latent space visualization is a direct illustration of how
good the VAE learns representations. The latent space visualization of horse-2 model and horse-4
model can be seen in Figure 5.18 and 5.19 respectively.
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Figure 5.18: The horse-2 model t-SNE Figure 5.19: The horse-4 model t-SNE

It can be observed that horse-4 model has better clustering than horse-2 model, for instance,
horse-2 model has more blue points(” Galloping”) mixed into the red cluster (" Trotting”) and more
green points (”Standing”) mixed into the yellow cluster (”Grazing”). As a result, by observing
the latent space visualization, it gives us the intuition that model-4 is better than model-2 and
indeed, Figure 5.16 illustrates horse-4 model has better performance than horse-2 model. The
reason causing it should be the horse data related, for instance, the different data distribution of
each horse, the different characteristics of the sensors used, the different horse movement pattern
etc. But what caused it leaves open in this thesis.

5.4.2 Transferability of Horse VAE Model for Goat Data

As shown in Figure 5.20, it is aimed at investigating how transferable our best performed LSTM-
VAE model trained with horse data for another animal goat. The LSTM-VAE model trained with
six horses data from baseline was taken. Then, the classification NN was trained with different
amount of five goats labeled training data. Both ”Encoder Frozen” and ”Encoder Not Frozen”
were implemented so that we can compare the results. The performance was evaluated with five
goats labeled testing data.

I/With different amount of 5—goat\l

\ labeled training data /

] -

Figure 5.20: The experiment of transferability of horse VAE model for goat data

VAE Encoder (Frozen/Not-Frozen) +

‘ LSTM-VAE Training Softmax Classifier Training

Evaluate F1 score ‘

Results:

The results of the transferability experiments can be found in Figure 5.21. Similar to the previous
result illustration, we used red color to indicate our baseline, so, the VAE model was trained
on goat movement data and tested on goat movement data. Dark red indicates the situation of
”Encoder Frozen” and light red indicates the condition of ”Encoder Not Frozen”. We used blue
color to indicate the performance of the transferability, so, the VAE model was trained on horse
movement data and tested on goat movement data. Dark blue shows the case of ”Encoder Frozen”
and light blue illustrates the condition of "Encoder Not Frozen”.
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Figure 5.21: The results of transferability experiment

By comparing the dark red with dark blue or comparing light red with light blue, it can be
found that ”Horse-VAE on Goat” performs slightly worse than ” Goat-VAE on Goat”, so, the model
trained on horse movement data and tested on goat movement data performs slightly worse than
the model trained on goat movement data and tested on goat movement data. The performance
difference for the case of ”Encoder Frozen” is approximately 4% and for the case of ” Encoder Not
Frizen” is around 3%. The performance difference is not huge, therefore, we can conclude our
model has good transferability for another animal goat.

5.5 Model Training Time

Figure 5.22 illustrates the experiments of measuring the neural network training time. We meas-
ured the time consumption of training VAE with 100% six horse unlabeled data and the time
consumption of training classification neural network with 100% six horse labeled training data
for both cases of "Encoder Frozen” and ”Encoder Not Frozen”.

L
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E\ With 6-horse unlabeled data J] i\ With 100% labeled training data }]I
N

|

Measure Time of Classification NN
Training (Encoder Forzen/ Not-FRozen )

|

Measure Time of VAE Training —_—>

Figure 5.22: The experiment of measuring training time

5.5.1 Time Consumption of VAE Training

Figure 5.23 illustrates the time consumption of VAE training. It can be found that although
LSTM-VAE is the best performed model, it takes the most amount of time for training. CNN-
VAE costs the least amount of time for training. One reason why CNN-VAE performs worse than
LSTM-VAE might be that we did not use deep CNN architecture (only two CNN layers are used
in CNN-VAE encoder and decoder). It might be the case that the performance can be increased
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by using deeper CNN architecture [74] or using different kernel size [75]. In that case, the time
consumption of training CNN-VAE might increase with deeper CNN architecture, however, we
might still expect that time consumption of training CNN-VAE is less than that of LSTM-VAE

as the time consumption of training LSTM-VAE is approximately four times more than that of
LSTM-VAE in our case.

Time consumption of VAE training
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Figure 5.23: The time consumption of VAE training

5.5.2 Time Consumption of Classification Neural Network Training

Figure 5.24 illustrates the time consumption of classification neural network training. In the
bracket, we used "F” indicates the situation of ”Encoder Frozen” and ”NF” indicates the case of
”Encoder Not Frozen”.
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Figure 5.24: The time consumption of classificaiton neural network training

It can be found that with all other settings the same, LSTM takes the most amount of time
for training while CNN costs the least amount of time for training. For LSTM networks, by
unfreezing the encoder, the time consumption increases dramatically while for CNN networks, the

time consumption slightly increases. Furthermore, SVM classifier training takes more time than
Softmax classifier training.
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Conclusions

This thesis addressed the problem of how to cope with lack of labeled data in the context of animal
activity recognition. We investigated to what extent can unsupervised representation learning us-
ing variational auto-encoder cope with lack of labeled data in animal activity recognition. The
effectiveness of three types of VAE (RNN-VAE, LSTM-VAE and CNN-VAE) was studied. We also
looked into the impacts of different classifiers (Support Vector Machine and Softmax). Besides,
we discovered how different amount of labeled training impacts the classification performance and
how transferable our unsupervised representation learning methods for another animal. In addi-
tion, we investigated the performance improvement by enabling the fine-tuning (unfreezing the
encoder) and discovered whether the animal movement data is naturally distinguished and how
our unsupervised representation learning helps increase the performance compared with directly
supervised learning from scratch. In terms of the model transferability, we inspected how repres-
entative individual horse data are for six horse and how transerable the model for another animal.
Finally, we measured the time consumption of model training to discover the resource usage for
training.

Hereby, based on the experiment evaluation in Chapter
that were proposed in Chapter 1 as follows:

5, we answer the research questions

e RQ-1: To what extent VAE improves the performance (F1 score) of AAR?

The best performed model is LSTM-VAE model and it outperforms the unsupervised repres-
entation learning methods of the state-of-art [2] with lack of labeled data and our methods
tend to be more robust than that of state-of-art [2].

e RQ-2: What are the impacts of different classifiers (Support Vector Machine (SVM), Soft-
max) on the performance?
Generally speaking, the unsupervised representation learning with Softmax classifier has
better performance than that with Support Vector Machine classifier.

e RQ-3: What is the impact of the amount of labeled data on the performance?
With the amount of labeled training data increasing, the performance increases and the error
bar shrinks. When it reaches the top, the performance stays stable.

e RQ-4: How transferable is the unsupervised representation learning (VAE) for another an-
imal?
Our model has good transferability for another animal. Specifically, the model trained with
horse movement data has good performance on goat movement data.

Besides, from the experiment evaluation in Chapter 5, more conclusions can be drawn:

e LSTM-VAE model has the best performance and the following is the CNN-VAE model.

48 Unsupervised Representation Learning for Animal Activity Recognition



CHAPTER 6. CONCLUSIONS

e RNN-VAE mode has bad performance as it suffers from short-term memory problem so that
it cannot handle long input sequence.

e The animal movement data cannot be easily distinguished so that the good performance
of our model is dominated by the unsupervised representation learning method using VAE
instead of the classifier.

e The performance can be improved by unfreezing the encoder.

e For the same neural network architecture, if the neural network has more trainable para-
meters, the error bar tends to become larger than that with less trainable parameters.

e With lack of labeled training data, the performance of supervised learning from scratch is less
than that of unsupervised representation learning and with the amount of labeled training
data increasing, the performance difference becomes less.

e Latent space visualization using t-SNE is a good method to inspect how good the unsuper-
vised representation learning has learned by visualizing how separable the tasks are.

e Data quality plays an important role in unsupervised representation learning, by observing
the latent space visualization using t-SNE, we can intuitively distinguish which one learns
better and that results tend to be consistent with the result of the downstream classification
task.

e LSTM-VAE is the best performed model while it takes the most amount of training time,
CNN-VAE costs the least amount of training time.

e By unfreezing the encoder, the training time of LSTM classification neural network increases
dramatically while for CNN classification neural network, the training time slightly increases.

e SVM classifier training takes more time than Softmax classifier training.

6.1 Future Work

In this section, we provide some possible future work based on this thesis:

e The good performance of VAE motivates further investigation with generative models such
as generative adversarial network (GAN) for animal activity recognition

e As CNN-VAE training time consumption is much less than that of LSTM-VAE although
the performance of CNN-VAE is worse than LSTM-VAE, by using a different CNN-VAE
architecture (for example, deeper architecture, different kernal size, etc.), we might obtain
better performance which is close to LSTM-VAE while with less resource usage.

e As for our best performed LSTM-VAE model, we only have one hidden layer for encoder
and one hidden layer for decoder. It might be the case that with deeper architecture (more
hidden layers), we can obtain better results.

e As the reasons why individual horse model performs different from each other leave open in
this thesis, it might be interesting to inspect the reasons, for example, by looking into the
data distribution, doing controlled experiments to see whether it is the reason of horse or
sensors, etc.
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