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Abstract

The problem of dry back has been around in the print industry for a very long time. Hence, with
this project, we try to solve this problem partially, which means we do not eliminate the dry back
but predict it. When a new type paper is used in a printer for the first time, one needs to make a
color profile for calibration. The use of wet print results in inaccurate color profile and waiting for
hours (or days) for color to dry costs time. The phenomena of dry back is dependent on various
factors ranging from properties of the ink, the paper and settings of the printer. This scope of
this report is limited to study the properties of the coated papers as we keep the keep the other
factors as constants.

In this report we study the factors that affect the dry back. This study comprises of smaller
individual studies. The impact of weight in the dry back is studied by considering a medium and
taking different weight categories into consideration. The study revealed that the weight does not
have a significant impact on drying when compared to the effect of the actual color i.e., the CMYK
values. However, the impact is comparable to that of the media characteristics. Further, we study
the media characteristics such as thickness, brightness, whiteness, bulk, opacity, gloss percentage
etc. and try to study their impact. The results suggest that some of these characteristics have
a more impact than others. Then, we use some of these factors to make regression models that
predict the colors after they have dried. We study the previous approaches made to predict the dry
back and later a range of regression algorithms such as the neural networks, tree-based ensemble
learning algorithms and support vector regression algorithm.

The main contribution of this work is the study of the properties of coated papers and the
study of their impact on the dry back. The regression models used in the past were limited to a
few features for prediction. They only included the color aspect of drying (CMYK and L∗a∗b∗).
This limited the consistent performance of their model to a certain paper types used in the training
data. With this work, we have included the paper aspect to the prediction model which not only
improved the accuracy but also expanded the range of the media types. The results from the
regression model suggest that the predicted colors can be indeed used for making the color profile
for a new paper type for a set of regions. However, the scope of the data used is limited to certain
regions (EU and US). Hence, the drying behavior of coated media from other regions is yet to be
determined.
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Chapter 1

Introduction

The production printers use inkjet technology that takes some time to dry for a sheet after a print.
Due to the drying process, the color changes. Hence, the output may not be the same as it was
intended to be. Hence, a prediction model is required such that it can predict the color after it has
dried (aka stabilized). So, the output of the printer would be such that when the color has dried,
we get the intended colors. This is particularly important while printing photographic images.
The printer being used for the collection of data is Canon VarioPrint iX 3200 (hitherto called the
printer) available at the Customer Experience Center, CPP Venlo.The printer uses the CMYK
(A) ink. Hence, the input for a color is the target CMYK value. All the colors are printed using
a combination of CMYK colors. There are a number of factors that influence the change of color.
Horvath et al. [25] have provided a list of such factors.

• dryers in the ink,

• viscosity of the ink,

• quantity and quality of the lubricant used during printing,

• air temperature,

• ambient air humidity,

• paper surface,

• paper volume and aA value,

• air flow

However, the previous studies in the organization suggest that the print conditions have effect
on the drying. The print conditions include the temperature, roll drum for steam treatment, color
grip, ink amount, and print speed. These settings can be adjusted depending on the requirement.
However, all of these conditions remained constant during the data collection. Furthermore,
the study by Horvath et al. [25] touched upon the broader effect of media characteristics. In
this report, we attempt to study the effect of each of these characteristics and use it to make
predictions. The media characteristics consist of the properties of the paper which include the
whiteness, brightness, bulk, thickness etc. We discuss about the media characteristics in detail
in the subsequent chapters. Our study is focused on understanding the effect of these media
characteristics on dry back while treating the other factors as constants.

1.1 Research Problem

In this study, we try to find out the different factors that contribute to the degree of change in
color upon drying. Generally speaking, the time taken by the sheet to dry varies from 24 hours

2 Prediction model of Colour Dryback



CHAPTER 1. INTRODUCTION

to about 72 hours. As suggested by Horvath et al. [25], the drying time and the degree of dry
back depends on the different types of surface of paper (i.e., treated/coated/uncoated). Our study
will focus on the coated media type. While collecting the data for each media, it is important to
make sure that the color does not change after the measurements (or after it has stabilized) are
taken. Hence, the regression model should take these factors into account, and provide a reliable
prediction for the new media introduced to the printer in the future. Furthermore, we discuss the
factors that determine the dry back.

1.2 Contributions

The main technical contribution of this report is to assist the printer operators to make a more
reliable color profiler for the media so that it provides the best results for new papers without
having to wait for days to let the color dry. While making a profile, if someone does not want
to wait for the color to dry and use wet measurements (or the Default Media Entries (DME)),
this can lead to inaccurate calibration and eventually imperfect printing. There have been some
studies in the past to understand the dry back phenomena. However, the results were limited to
predicting the dry back of selected media for test charts with few colors. This report provides a
foundation, and sets a benchmark on the dry back effect by different media types under the given
conditions.

1.3 Outline

The remainder is described as follows; The problem formulation is described in Chapter 3. Chapter
2 covers the preliminary of the concepts and basic assumptions in the report such as regression
along with the notation and definitions used throughout this report. The literature survey is
discussed in Chapter 4, the experiments conducted prior to the data collection, and the model
is discussed in Chapter 5, the results, and observations are discussed in Chapter 6, and Chapter
7 concludes the research while discussing about the limitations and the future possibilities. The
extended results, terms, and definitions, and some experiments that are not directly a part of this
study are included in the Appendix A.

Prediction model of Colour Dryback 3



Chapter 2

Preliminaries

In this chapter, several definitions, assumptions, and notations are introduced which will be used
throughout this report. In Section 2.1, we briefly discuss the concepts, notations, and assumptions
about the dry back, and the collected data. In Section 2.2, we introduce regression, and the basic
concepts around it. We also discuss the candidate models that can be used for prediction.

2.1 Data and Dry Back

In general terms, a medium is a surface used for printing. In the context of this project, we use
medium in place of page/paper. The inkjet printers use a liquid ink which takes certain amount of
time to dry. The dry back is an effect when the density and/or gloss of the freshly printed ink film
decreases upon drying [25]. It is generally related to an overly absorbent paper surface or a poor
ink/paper combination [25]. The dry back causes the color of the ink to change. The magnitude
of δE helps in quantifying this change of color. Hence, if the δE is large the change is high, and
if the δE is small, the change is low. The δE is discussed in detail in Chapter 4.

These color changes are identified printing, and scanning a test chart with a spectrophotometer.
The data is collected at 3 points in time i.e., just after the print, after 24 hours, and after 96 hours
(or 4 days). The data collected at these points in time are referred to as Time 00, Time 24, and
Time 96 respectively. The Xrite ISIS spectrophotometer device was used to measure the L∗, a∗,
and b∗ values.

2.1.1 Test Chart

The test chart contains 760 color patches with 365 unique colors. Each color appears at least twice
in the test chart. A study performed at CPP suggested that the location of the color patches affects
the color measurements. In other words, the measurement of the L∗, a∗, b∗ values of a color varies
depending upon the location, if is located near the left or right edge or somewhere around the
center. The inconsistency is because of the printing process, it also depends on the adjustment
of the printer and the media itself. Hence, the patches have been placed in the test chart to take
the effect of location into account. The Figure G.1 shows the test chart used in the research. The
tables in Appendix G show the details of colors along with their CMYK values used in each patch
in the test chart.

2.1.2 Concepts and Standards of Color

There are various aspects of color that are useful while defining a color. There are color spaces
such as the L ∗ a ∗ b∗ and XY Z color space that define a color. Moreover, the perception of color
on a surface also depends on its illuminant (i.e. the type of light). Furthermore, we discuss about
the concept of δE which is one of the key metrics used to evaluate the regression models.
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L∗ a∗ b∗ Color Space

The L∗ a∗ b∗ color space (or CIELAB) was defined by the International Commission on Illumi-
nation (or CIE) in 1976. The L∗ a∗ b∗ values signify the perceptual lightness, red-green, and
blue-yellow respectively. As shown in Figure 2.1, the X-axis (or a∗) goes from green to red, and
the Y-axis (or b∗) goes from blue to yellow. The values of L∗ a∗ b∗ varies from [0, 100], [127, 128],
and [127, 128] respectively. This color space covers the entire range of human color perception.

Figure 2.1: Representation of L∗ a∗ b∗ color space[4]

As shown in Figure 2.1, the X-axis (or a∗) goes from green to red, and the Y-axis (or b∗) goes
from blue to yellow.

Quantifying the Color-Difference: δE

Once, the colors have been quantified (with the L∗ a∗ b∗ color space), the change in color can
also be quantified just by finding the difference. Hence, δE is just the difference of the visual
perception of two colors. However, the formula to compute δE has been changing over the years
(CIE76, and CIE94 [44]). The version used in the report is the latest version introduced in 2000
by Sharma et al. [53]. The value of δE typically varies from 0 to 100. The significance of the
values of δE is defined in Table 2.1.

δE Perception
≤ 1.0 Not perceptible to human eye.
1− 2 Perceptible through close observation.
2− 10 Perceptible at a glance.
11− 49 Colors are more similar than opposite

100 Colors are exactly opposite

Table 2.1: δE values with Perception.

The L∗ a∗, and b∗ values are present in both the inputs (or X), and the outputs (or y) The
difference is that the values in inputs are from Time 00, and the values in y are at Time 96 for a
given color patch. Ideally the predictions should be same as the values Time 96 (or ytest = ypred).
However, we know that is not possible in practice. Hence, we try to minimize the difference
between ytest, and ypred. We quantify this difference by computing the δE between the ytest,
and ypred. Hence, this is the target δE we are trying to minimize with our regression model.
Throughout this report (unless stated otherwise) the δE always refers to the δE between the ytest,
and ypred.

Prediction model of Colour Dryback 5
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Figure 2.2: Pictorial representation of δE between different sets of L∗ a∗, and b∗

In Figure 2.2, it is interesting to note that the δEX test y test signifies the actual dry back.
Furthermore, we want the regression model to generate results (i.e., L∗ a∗, and b∗) such that it is
close to δEX test y pred.

The definition of the modern δE was given by Sharma et al. [53]. The details of each step can
be found in their work. However, a concise sequence of steps for a given pair of colors (i.e. L∗1a

∗
1b
∗
1

and L∗2a
∗
2b
∗
2) and weighting factors (i.e. kL, kC , and kH) to find the δE is as follows [53].

• Calculate C ‘
i, and h‘i

C∗i,ab =
√

(a∗i )2 + (b∗i )2, i = 1, 2 (2.1)

C
∗
ab =

C
∗
1,ab + C

∗
2,ab

2
(2.2)

G =0.5(1−

√√√√ C∗
7

ab

C∗
7

ab + 257
) (2.3)

a‘i =(1 +G)a∗i , i = 1, 2 (2.4)

C ‘
i =
√

(a‘i)
2 + (b∗i )2, i = 1, 2 (2.5)

h‘i =

{
0, b∗i = a‘i = 0

tan−1(b∗i , a
‘
i) otherwise

i = 1, 2 (2.6)

(2.7)

• Calculate ∆L‘, ∆C ‘, and ∆H ‘

∆L‘ =L∗2 − L∗1 (2.8)

∆C ‘ =C ‘
2 − C ‘

1 (2.9)

∆h‘ =


0, C ‘

1C
‘
2 = 0

h‘2 − h‘1, C ‘
1C

‘
2 6= 0; |h‘2 − h‘1| ≤ 180o

h‘2 − h‘1 − 360, C ‘
1C

‘
2 6= 0; (h‘2 − h‘1) > 180o

h‘2 − h‘1 + 360, C ‘
1C

‘
2 6= 0; (h‘2 − h‘1) < −180o

(2.10)

∆H ‘ =2
√
C ‘

1C
‘
2sin(

∆h‘

2
) (2.11)

(2.12)
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• Calculate δE00 (or just δE)

L
‘
=(L∗1 + L∗2)/2 (2.13)

C
‘
=(C ‘

1 − C ‘
2)/2 (2.14)

h
‘
=


h‘
2+h‘

1

2 , C ‘
1C

‘
2 6= 0; |h‘2 − h‘1| ≤ 180o

h‘
2+h‘

1+360
2 , C ‘

1C
‘
2 6= 0; (h‘2 + h‘1) < 360o; |h‘2 − h‘1| > 180o

h‘
2+h‘

1−360
2 , C ‘

1C
‘
2 6= 0; (h‘2 + h‘1) ≥ 360o; |h‘2 − h‘1| > 180o

h‘2 + h‘1, C ‘
1C

‘
2 6= 0

(2.15)

(2.16)

T =1− 0.17cos(h
‘ − 30o)) + 0.24cos(2h

‘
) + 0.32cos(3h

‘
+ 6o)− 0.20cos(4h

‘ − 63o)

(2.17)

∆θ =30exp

{
−

[
h
‘ − 275o

25

]}
(2.18)

RC =2

√√√√ C
‘7

C
‘7

+ 257
(2.19)

SL =1 +
0.015(L

‘ − 50)2√
20 + (L

‘ − 50)2
(2.20)

SC =1 + 0.045C
‘

(2.21)

SH =1 + 0.015C
‘
T (2.22)

RT =− sin(2∆θ)RC (2.23)

δE12
00 =δE00(L∗1, a

∗
1, b
∗
1, L
∗
2, a
∗
2, b
∗
2) (2.24)

=

√(
L‘

kLSL

)2

+

(
C ‘

kCSC

)2

+

(
H ‘

kHSH

)2

+RT

(
C ‘

kCSC

)2(
H ‘

kHSH

)2

(2.25)

(2.26)

For most of the scenarios, kL= kC= kH = 1.

2.1.3 Selection of Media

The media selection is a vital step as there are a lot of manufacturers (based on different parts
of the world) that provide a range of offset coated media. Hence, it is not feasible to include
each of these types in the data set. However, there is chance to get restricted to a small range of
δE if the dataset is not carefully chosen. Since, the drying effect of each medium has not been
studied before, the selection of the media was a challenge. Discussions with domain, and market
experts helped us to determine the prominent manufacturers, and their range of products that are
available at the CPP warehouses that can show substantial drying effect. Broadly, there are the
following types of papers [31] (Table 2.2).
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Media Type Coated/Uncoated
Offset coated WFC
Inkjet coated Digital/Special

Speciality Board WFC
Speciality Embossed WFU

Speciality NCR Reduced Ink Volume
Inkjet treated Uncoated WFU

Uncoated WFU

Table 2.2: Types of papers/media

A study by conducted in the past suggested that uncoated media have relatively small δE. It
is in the order of δE95 ∈ [0.3, 0.7]. Since, the change in color is not significant, a prediction model
would not be necessary for the WFU types. The domain experts suggested that the offset coated
type is most commonly used in the industry. Hence, this report is focused only on the offset coated
type.

There are 3 broad types of coating materials used by different paper suppliers. These are gloss,
silk, and matt. These variations have been covered by the dataset. Table H.1 provides the list of
media used in this study.

We conducted a study to understand the effect of weight on δE (discussed in Section 5.3),
we used the 6 different weight categories of the Magno Gloss by Sappi (EU). The choice of the
medium was based on availability of a wide range of weights for a medium. The weights categories
are mentioned in the Table 2.3.

115 gsm 135 gsm 150 gsm 250 gsm 300 gsm 350 gsm

Table 2.3: List of weights used to study the impact of weight

2.2 Regression

Regression is a statistical technique to study the relationships between variables [2]. These rela-
tionships help in making predictions of certain quantities based on the values of other quantities.
It is used when we want to predict a continuous dependent variable using a number of indepen-
dent variables. Regression analysis finds its use in time series forecasting, modeling, finding the
relation between the variables and predict continuous values. There are various types of regression
techniques, and the choice can be made based on the data set, and the end goal. The most basic
regression technique is Linear Regression which uses the linear regression line to best fit the linear
relationship. There are certain assumptions that the data has to satisfy for it to be effectively used
for linear regression. These include linear relationship between dependent variables and features,
normality of residuals, multicollinearity, no autocorrelation in features and homoscedasticity of er-
ror terms. The tests on the data suggest that most of the features do not have linear relationship
with the dependent variables. Moreover, the Anderson-Darling test [3] on the residuals suggests
that the residuals are not normal.

The data set of this project is heterogeneous and some features (such as CMYK) do not follow
any well-defined distribution. Hence, there is a need to explore the techniques that do not have
such underlying assumptions and constraints. The approach for various regression algorithms
differs greatly and hence the accuracy of these models also varies as well (for a given problem) for
each of these. In Chapter 4, we discuss the regression technique we use in greater detail. Further,
in Chapter 5, we discuss the design choices for each of the regression algorithm in the context of
our problem.
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2.3 Summary

In this chapter, we discussed the concept of dry back, δE, and the test chart. This laid the ground
for evaluation of the regression models in the context of this problem. We also discussed the
different types of media, the motivation behind the choices, and their importance in the study.
Later, we discussed the basic concept of regression, and discussed some commonly used regression
techniques. In Chapter 3, we describe the problem, and define scope of this project, as well as
discuss the approach to answer the research questions.
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Problem Description

In this chapter, we discuss the context of the problem in Section 3.1. The approach to answer the
research questions is described in Section 3.2.

3.1 Problem Context

The color profiles are available in the printer’s software which calibrate the settings for each
medium. However, when a new medium is introduced, the operator has to either take a print
of the test chart, wait for the color to dry and then make a color profile or just use a default
media entry for the coating. While the first approach gives better quality outputs, it takes time
to perform. Whereas if the second approach is taken, it is instantaneous as it does not even need
a sample printout with the medium but there is a compromise with the quality. Hence, with the
prediction model, we intend to save the time of the printer operator while maintaining the quality.

This project is a proof of concept to determine if it is possible to predict the dry back of a
media based on its properties and make an accurate color profile. Finding the factors that affect
the dry back is important as these results could be a good starting point if a coated media needs
to be manufactured with focus to address the problem of dry back. The results from this study
can also be used to identify the need to install stand-alone sensors to collect data on an unknown
medium introduced to the printer since the data required to accurately predict the dry back may
not be available in advance.

In Chapter 2, we discussed that the color changes when the ink is absorbed by the surface of
the medium. Among all the factors, this project primarily focuses on the effect of media on dry
back (keeping the other factors as constants). The problem is to understand:

What are the factors that impact the drying behavior? How can this drying effect be predicted
under different printing and media conditions?

There are measures that are typically used to evaluate the performance of the regression
algorithm such as the mean squared error (or MSE), mean absolute error (or MAE), r2 score
and accuracy score. However, in the context of our research problem, we add another measure to
evaluate the quality of the predictions i.e., δE. The quantity has been described in Chapter 2.
Since, the δE is computed for each color patch, we use the aggregations of δE i.e., the average
δE (or δEavg), the 95 percentile of δE (or δE95) and maximum δE (or δEmax). If the δE of most
of the color patches is less than 1, we can say that the change of color cannot be perceived by
humans. However, considering the errors in printing and measurement, the goal of our prediction
model is to have a δE95 < 0.5.
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3.2 Research Framework

The research problem can be divided into 2 parts:

• Finding the factors that affect the drying behavior.

• Predicting the change of color based on these factors.

In this study, we focus only on the factors around media. Any medium has a number of
characteristics that play a key role in printing. These include its media characteristics such as
the weight, thickness, brightness, whiteness, opacity, gloss, bulk etc. These characteristics are
described in detail in the subsequent chapters. All these characteristics might not have equal
impact on the dry back phenomena. The domain knowledge can provide a route to solve this
problem. The domain experts suggest that the dry back is a surface phenomenon and depends on
the size of the pores at the surface of medium (along with other factors of ink which are constant
to us). Moreover the pores in the surface affect the gloss, opacity and brightness. Furthermore, the
effect of dry back (or δE) can also be studied by finding the correlation of all the inputs with the
δE (computed between Time 00 and Time 96). In fact, this analysis can also be performed while
working on the second sub-problem. Once a good regression model is implemented and trained,
the feature importance score of each of the inputs (features) would provide information about the
features that contributed more for the accurate prediction.

Figure 3.1: Flow Chart of the steps for the project

In order to solve the second problem, we need to fix an initial data set with a broad set of
features. Then some candidate regression algorithms can be selected based on the composition
of the data set. By composition, we mean the type of features i.e., numerical or categorical, the
scale of data in each of the numerical features, the distribution of data in each of the numerical
features, the number of outliers in each of the numerical features etc. Once the candidate regression
algorithms have been implemented, they can be tuned for the best set of hyperparameters. Those
models need to be tested and validated before their final results can be compared with each other to
select the best candidate. Similar problems have been solved in the past in CPP by implementing
some regression model.
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3.3 Summary

In this chapter, we defined the problem statement and the scope of this project. We also discussed
the approach to solve the problem and the potential challenges. In Chapter 4, we dive deeper
into the relevant concepts used in this report such as δE, L∗, a∗, b∗ color space. We also discuss
some of the previous models used to predict these quantities. Furthermore, we also discuss the
background of the regression techniques we use.
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Chapter 4

Literature Survey

In this chapter, we discuss the concepts used in this report. In Section 4.1, we discuss the media
characteristics that are available in the dataset. In Section 4.2, we study, and evaluate the regres-
sion models that have been used by CPP, and ISO in the past. In Section 4.3, we propose some
regression models for implementation based on the collected data.

4.1 Media Characteristics

Media characteristics are the properties of the paper that it exhibits due to its composition.
The suppliers of these media keep these information public to assist the printing companies,
and customers regulate the printer settings based on this data for best quality outputs. Each
supplier has its own set of procedures, and techniques which it uses to manufacture the paper.
These techniques are generally confidential but some of the key factors that determine the media
characteristics are publicly available as media specifications in the suppliers’ website. There are
several media characteristics, some of them are listed as follows:

• Thickness: It is defined as the thickness of a sheet of paper under specific conditions.
Generally, the thickness is measured in nm or thousandths of an inch or mils. Most of the
suppliers use unit, and method of measurement in accordance with ISO 534 [30].

• Opacity: Opacity is the characteristic of medium to block the transmission of light. It is
measured, and expressed as a percentage of the light that cannot pass through the medium.
Hence, 95% opacity means that 95% of the light cannot pass through the medium. Most of
the suppliers measure, and communicate the opacity in accordance with ISO 2471 [28].

• Whiteness: It is measured in CIE Whiteness C/2-degree (indoor illumination conditions)
or CIE D65/10 (outdoor illumination conditions). It is communicated on the basis of mea-
surements made in accordance with ISO 11475 [27].

• Gloss: Gloss is the shininess or glare reflected from surface of a medium. It is the reflection of
light when the angle of incidence, and reflection is kept at a standard angle from the surface,
as compared to a polished plate of black glass. The angle of incidence varies depending upon
the ISO standard being used. For papers, and boards, ISO 8254-1 [29] has 75 degrees with
a converging beam, ISO 8254-2 [32] has 75 degrees with parallel beam, and ISO 8254-3 [33]
has 20 degrees with converging beam. It is expressed in percentage, and the medium may
be termed as dull or glossy depending upon the measure of gloss.

• Brightness: It is the amount of light reflected from the surface of a medium, compared
to light reflected from a block of Magnesium Oxide. The measurement is made with a
specific range of wavelength of light, with the surface of the medium being illuminated at
a 45-degree angle, and the reflection being measured at a 90-degree angle. The brightness
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influences the printed contrast, and the amount of reflected illuminating light. It is measured,
and communicated in accordance with ISO 2470-1 [34] or ISO 2470-2 [35] in percentage.

• Bulk: It is the measure of the density with respect to the weight of a sheet of paper. The
unit used is pages per inch (PPI). Individual sheets do not necessarily add to the PPI as it
may vary depending on how the sheets stack together. Most of the suppliers use unit, and
method of measurement in accordance with ISO 534 [30].

• Smoothness: Also known as finish, smoothness is the texture of the surface of the medium.
It is determined by measuring the flow of air along the surface of a medium under stan-
dardized loading, thermal, and pressure conditions. The faster the flow of air, lesser is the
smoothness. It is communicated on the basis of measurements made in accordance with the
ISO 5627 [26].

• Fluorescence: The fluorescence is the rays produced from the surface as a result of incident
light of a shorter wavelength. It is communicated on the basis of measurements made in
accordance with ISO 11475 [27].

Further details about these standards are beyond the scope of this report. Since, these media
characteristics are provided by the suppliers, they do not provide the data about all the charac-
teristics. Hence, using these characteristics in the model introduces a risk of bias.

4.2 Previous Approaches to the Problem

There have been some attempts in the past to predict the dry back. Some have used the spectral
reflectance data as inputs, and outputs. Before using it in the model they remove the surface
diffusion component from the dried, and wet data.

A similar project was undertaken at CPP in the past to predict the L∗, a∗, and b∗ values. They
used three different algorithms viz. Multi-layer Perceptron (MLP) model, LASSO regression, and
Ridge regression. The LASSO, and Ridge regression yielded a MSE of 0.24, and 0.25 respectively.
Moreover, the input dataset varied by each model.

Their MLP model has 3 different variations, each with a different number of inputs. The
first model has 7 inputs, C, M , Y , K, and L∗, a∗, b∗ at Time 00, and the outputs has the L∗,
a∗, b∗ values when the color has stabilized. The second MLP model contained both coated, and
uncoated media. Hence, a binary input was included in the model to signify if the model was
coated/uncoated. The third MLP model added 3 more inputs i.e. the L∗, a∗, b∗ values after
5-10 mins of the first measurements. The hidden layer in all these models has 13 neurons. In all
the three MLP models, output variables remained the same i.e. L∗, a∗, b∗ after the color had
stabilized. The time interval between the measurements varied by each medium. However, this is
less likely to affect the results as it was ensured that the color had stabilized. In fact, the data
from this study helped us restrict the dataset to coated media as coated media showed significant
change in color when compared to uncoated media. Moreover, this study also helped us set the
duration between the 2 measurements to ensure that the color of all the media had stabilized.

The dataset used for training, and testing was limited to Magno Gloss, Magno Matt, Magno
Silk, Mitsubishi, Soporset. When the training, and testing dataset contained a single medium,
the 95 percentile of δE varied from 0.88 to 1.49. However, the model thus trained cannot be used
for predicting other media. The results suggest that the regression models were not scalable, and
required more data, and complexity. This study laid the groundwork for the project described in
this report.

The previous approaches also made use of LASSO, and Ridge regression algorithms. The 7
features of the data (i.e. C, M , Y , K, and L∗, a∗, b∗ at Time 00) which were scaled down
using Robust Scaling before they were used for training. The media covered was the same as the
aforementioned list. Almost all of the hyperparameters of both the algorithms remained retained
the default values except the regularization factor alpha which was 0.0001, and 0.01 respectively.
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This resulted in the MSEtest of these algorithms to be 0.280, and 0.250 respectively. However,
these models lacked the generalizability over different weights, and types of media.

In these approaches, we observe that there is no feature in the training data that differentiates
between two (or more) media (and its properties) with an exception of one model that used a
binary input to differentiate between the coated and uncoated media. Since we know from these
experiments that the degree of drying varies by media, we need to use this information (and more)
to effectively use in the model so that it makes more accurate and informed predictions. Hence,
we study the properties of each of these media and make use of them for prediction.

4.3 Regression Techniques

The studies have shown that the extent of drying varies for each media. However, it is not
known exactly what features determine this variation across different media. The results from the
previous studies in the organization did not take the media into account. This suggests that more
data (more media and more features for each medium) should be collected to get a clearer picture
of the relationships. After collecting the data, we start with considering the MLP model just like
the one used in the past with an increase the number of inputs. Furthermore, the model can be
made more complex by adding more hidden layers, and including embedding layers for categorical
inputs.

The data set contains a variety of features such as categorical features (such as supplier),
numerical features that do not follow a standard distribution (CMYK), features at different
scales etc. This poses a limitation to the regression techniques that can be used. Hence, we need
some regression techniques that can provide robust results with such data and do not have many
constraints. Moreover, we also need regression models that are able provide interpretable solutions
because we also study the role media characteristics play in determining the dry back.

Introduced in 1963 by Morgan et al. [45], the tree-based regression techniques provide simple
and efficient solutions without any condition on the data. Moreover, the regression trees are very
flexible regression methods as they do not need any major preprocessing (such as scaling/nor-
malization) for optimal performance. Furthermore, the obtained models are relatively more in-
terpretable. The ensemble regression trees can be broadly classified into 2 types: bagging, and
boosting. Both the techniques are known to generate interesting yet useful results. Additionally,
the support vector machines are also able to model complex data, and are tolerant to outliers.
The following algorithms are useful to the project, and can be explored further:

4.3.1 Decision Tree Regression

In decision tree modeling, a tree represents a division of data created by applying a series of trivial
rules. These trees are made from these set of rules which can be used for prediction through the
repetitive process of splitting. It is one of the most commonly used methods for classification, and
regression problems [58]. The most effective splitting strategy is to use the entropy of split. An
advantage of the decision tree is that it produces a model which can represent interpretable rules.
In other words, it can provide useful information on the importance of each feature for prediction
[58]. However, decision tree induction generally does not perform as good as neural networks for
nonlinear data, and it is vulnerable to noisy data [13]. But the tree-based algorithms are more
effective when the data contains categorical values.

4.3.2 Ensemble Learning

Before we discuss about the other tree-based regression algorithms, let us discuss the concept of
ensemble learning. One of the earliest researches on ensemble learning was by Dasarath et al.
[14] for solving classification problems. The ensemble learning is the process by which a number
of regression models are generated, and their combined result is used to make predictions. It
is used to improve the prediction of a model, and to reduce the chances of selection of a bad
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model. There are other applications of ensemble learning, such as classification, selecting optimal
features, data fusion, incremental learning etc. There is no guarantee that a combination of
multiple regressors would always perform better than the best model in the ensemble. Moreover,
an improvement on the ensembles average performance cannot be guaranteed in most of the
cases [20]. Hence, combining regressors may not necessarily provide the best performance in the
ensemble, but it would reduce the overall risk of making a bad selection of model. An advantage
of the ensemble learning is that unlike the MLP, it needs few tuning parameters, and in most cases
default configuration yields satisfactory performance. The results for each of these algorithms is
discussed in the Section 6.

There are broadly 3 types of ensemble learning viz. Bagging, Boosting, and Stacking. In this
report, we cover 2 out of these 3 types of ensemble learning. They are described as follows.

Bagging

It is one of the earliest, and the simplest ensemble learning technique with a good performance
[6]. Diverse regressors in bagging are obtained by bootstrapping the replicas of the training data.
Individual regressors are then combined by taking a simple aggregation of their decisions. Since
the training datasets may overlap (due to bootstrapping), additional measures can also be used to
increase diversity, such as using a subset of the training data for training each regressor or using
relatively weak regressors (such as stumps).

• Random Forest Regression

Random forest is a most popular bagging technique. As the name suggests, it is a forest of
decision trees. The trees in random forests run in parallel. Hence, there are no interactions
between the trees while building the trees. There are 2 unique properties of the random
forest regression. There is a limitation to the number of features that can be split on at
each node. Hence, the ensemble model is able to make fair use of all potentially predictive
features. An informed choice is made during the splitting in each node. This ensures the
best decision for a split in each node. The SciKit Learn [47] library provides 2 such criteria
for splitting. The default splitting criteria is the Gini Impurity. Gini is the probability of
correctly predicting a randomly chosen element if it was randomly predicted according to
the distribution of independent variables in the node [36]. The Gini criterion for the parent
node is always higher than its child-nodes [36]. Entropy is another criteria for splitting of
the nodes. Entropy is also used for calculating the purity of a node. Lower is the entropy,
higher is the purity of the node.

• Extra Trees Regression

Extremely randomized trees (or extra trees) [21] algorithm is very similar to the random
forest. In principle, it is an extension of random forest algorithm, and unlike the random
forest it is less likely to overfit [21]. Extra trees employ the same principle of building lot
of decision trees as random forest, and use a random subset of features to train each base
estimator [37]. However, unlike the random forest, the extra tree randomly selects the best
feature, and its corresponding value for splitting the node [37]. The extra tree uses the
whole training dataset to train each regression tree unlike the random forest which uses
bootstrapping during training [1].

These differences result in the reduction of bias, and variance for extra tree. Using the whole
original sample instead of bootstrapping reduces bias, and choosing random split point for
each node reduces the variance [21]. It is also interesting to note that the time taken by the
extra tree regression algorithm to evaluate is lower than that of the random forest. It can
be attributed to the fact that there no bootstrapping in extra trees, and for each node time
is saved by not computing the best strategy to split.
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Boosting

Boosting was introduced in around 1990 by Schapire et al. [51]. It is another ensemble technique
to create a collection of predictors. In this technique, the learning happens sequentially with
early learners fitting simple models to the data, and then analyzing data for errors. Hence, the
model learns sequentially in an adaptive way (depends on the previous steps), and then combines
the results using a deterministic strategy [16]. The working mechanism is similar to the bagging
methods: we construct a forest of models that are aggregated to obtain a strong learner that
performs better. Unlike the bagging method that aims at reducing variance, the boosting method
fits the multiple weak learners sequentially in an adaptive way. Each model in the sequence is
fitted giving more importance to observations in the data set that had bad results by the previous
models in the sequence [16] [41]. The base models mainly focus at reducing bias; hence we begin
with shallow decision trees with high bias (and low variance).

A drawback of this algorithm is the computation time. Unlike bagging, the training of these
models cannot be done in parallel. As a result it could be an expensive operation to fit these
complex models sequentially. We need to find out how we evaluate the models in the sequence.
In other words, we need to find what information from the previous model do we need to consid-
eration while fitting the current model. In this report, we discuss the three most commonly used
variants i.e. Adaptive Boosting (also known as AdaBoost), Gradient Boosting, and XG Boosting
regression. The Adaptive Boosting updates the weights attached to each observation whereas
Gradient Boosting updates the value of these observations.

• Adaboost Regression

Introduced by Freund et al. [19], the AdaBoost (Adaptive Boost) algorithm involves very
shallow (generally just one-level) decision trees as weak learners (also known as stumps)
that are added sequentially to the ensemble. A weak learner is a tree that is very shallow,
although it does provide some insight on the data set. Each subsequent weak learner attempts
to correct the predictions made by the model before it in the sequence. This is achieved by
weighing the training dataset to put more focus on the same training examples on which
prior models made prediction errors. The AdaBoost algorithm puts more weight on difficult
features (to predict), and less on those already handled well.

• Gradient Boost Regression

The Gradient Boosting algorithm is very similar to the Adaptive Boosting algorithm. Just
like the other boosting techniques, it also trains many models in a gradual, additive, and
sequential way. The major difference between AdaBoost, and Gradient Boost regression
algorithms is how the two algorithms identify the shortcomings of weak learners (i.e. decision
trees or stumps). While the AdaBoost identifies the shortcomings by using high weight data
points, Gradient Boost performs the same by using gradients in the loss function. The loss
function is a function indicating the models performance at fitting the training data.

• Extreme Gradient Boost Regression

Introduced in 2016 by Chen et al. [10], the eXtreme Gradient Boosting (also known as XG-
Boost) regression technique is similar to its predecessor, the Gradient Boosting regression.
In fact, the prime difference between XGBoost and Gradient Boosting method is that XG-
Boost uses more accurate approximations to find the best tree model (which are relatively
expensive). It computes the second partial derivatives of the loss function to get more infor-
mation about the direction of gradients, and how to get to the minimum of our loss function
[11] [10]. This step is similar to the Newton-Raphson’s method to find approximate the root
of a function. While the gradient boosting uses the loss function of the model (e.g. Decision
Tree) as a measure for minimizing the error of the overall model, XGBoost always uses the
2nd order derivative as an approximation. As a result, the training is relatively faster, and
can also be parallelized. XGBoost also includes a variety of regularization techniques (such
as L1, and L2) that reduce overfitting, and improve overall performance. You can select the
regularization technique by setting the hyperparameters of the XGBoost algorithm [10].
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4.3.3 Support Vector Regression

The concept of support vector was first introduced at AT&T Bell Laboratories by Vapnik et al. [5]
[23]. The support vector machines (SVM) is a popular classification technique that classifies the
data by making a hyperplane between the two (or more) classes. However, similar approach has
also been used for regression. The SVR is somewhat similar to the linear regression techniques.
The main objective is to minimize the squared errors. For example, in Ordinary Least Squares
(OLS) the objective function (for one predictor) is

min

n∑
i=1

(yi − wixi)
2 (4.1)

where yi is the target variable, wi is the weight, and xi is the independent variable (or feature).
SVR has the flexibility to have a range for acceptable error in the regression model, and will

find an optimal hyperplane to fit the data. Hence, unlike OLS the objective of SVR is to minimize
the L2-norm of the coefficient vector (and not the squared error) [54]. In fact, the absolute error
term is constrained to be less than or equal to a specified margin (Equation 4.3).

Minimize:

min
1

2
‖w‖2 (4.2)

Constraint:
|yi − wixi| ≤ ε, (4.3)

where ε is the maximum error.
Since, we can define the maximum error, there are always chances that the data will lie outside

the margins [wixi−ε, wixi +ε]. These deviations from the margin can be denoted as ξ[54]. Hence,
the Equations 4.2, and 4.3 become

Minimize:

min
1

2
‖w‖2 + C

n∑
i=1

|ξ| (4.4)

Constraint:
|yi − wixi| ≤ ε+ |ξ| (4.5)

where C is the regularization parameter.

4.4 Summary

In this chapter, we discussed the media characteristics, some past implementations, and poten-
tial regression algorithms to explore. In Chapter 5, we dive into the implementation of each
step beginning with the data collection, data preprocessing, and implementation of each of the
aforementioned algorithms.
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Implementation

In this chapter, we discuss the entire implementation phase of this project. We begin with config-
uring the spectrophotometer to collect the data (Section 5.1), and obtaining the accuracy scores,
and using it to collect the data (Section 5.2). In the preliminaries, we had discussed the motiva-
tion, and the choice of media we covered in the dataset. We then find the stabilization time of
each of the media, and set a standard interval for stabilization (Section 5.5). Then, we discuss
briefly about the data on media characteristics, and the limitation around it (Section 5.3.2). We
begin the implementation with studying the data, and preprocessing it (Section 5.6). This step
varied depending upon the regression algorithm, however, the broader steps remained the same.
Later, we dive into dimensionality reduction, and feature selection (Section 5.7). Finally we dis-
cuss the theoretical concept, and the implementation aspect of each of the regression techniques
we introduced in Section 5.8.

5.1 Measurement Accuracy Test

Before the L∗ a∗, and b∗ values are collected using the spectrophotometer, it needs to be tested
for accuracy as the level of accuracy of any device deteriorates over a long period of time. This
would help us set an upper limit to the accuracy of the model. This is because we cannot expect
the model to make the predictions to the accuracy that cannot be measured. To conduct this
test, the printed test chart is measured multiple times (seven times in our case) after the color
has stabilized (i.e., at least after a 3-4 days of printing). The medium or media settings do not
have any impact as the measurements are taken repeatedly for the same setting. For our study we
used the Magno Satin (115 gsm) by Sappi. The L∗, a∗, b∗ values were measured after 120 hours.
Hence, it can be assumed that the color had stabilized during the measurement.

Ideally, the L∗, a∗, b∗ values are supposed to be the same, as all the conditions are same for
each measurement. Hence, the difference between any two measurements (i.e., the δE) helps us
determine the measurement error in the data. This helps in setting up a limit for the accuracy of
the prediction model. In other words, if the uncertainty in a measurement is x, the accuracy of
prediction cannot be lower than x.

5.2 Data Collection

In this section, we describe the sequence of the steps taken to get the required data. It begins with
selecting the test chart that is used for printing. It is important to have a wide range of colors
(technically, the combination of CMYK values) as experts have suggested that different colors
have varying an impact on the δE. Then the media to be used in the research is determined. The
colors are obtained as printed outputs generated by Canon Varioprint ix 3200. These outputs are
a grid of different color patches. These are then inserted in a spectrophotometer, Xrite i1 Isis.
The output contains the CYMK, and the L∗, a∗, and b∗ values of each color patch.
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However, there are certain aspects of a medium that would determine the variety we need to
have in our data set. The impact of media grammage (or weight) on the dry back has not been
widely studied. If the impact of weight is very significant, we may need to include a wide range
of weight categories in each medium. If the weight does not a significant impact, we can limit the
variation of weight in each of the medium. Hence, in the next section we describe the setup the
experiment to study the effect of weight.

5.3 Effect of Weight on Dry Back

The study was conducted on different weights of Magno Gloss. In this experiment, we employ
statistical approaches along with the domain knowledge was applied to understand the effect of
weight on δE. Hence, the research questions are: Is there any trend in δE by weights? If yes, how
significant?

5.3.1 Setup

Data was collected from a single medium type with 6 different weights. All the other print settings
were the same to maintain consistency in the results. The TAC limit was set to 16.8ml/m2 opposed
to the default 12ml/m2 to be consistent with the media settings for the original data. The L∗,
a∗, b∗ values were measured at Time 00, Time 24, and Time 96. However, Time 00, and Time 96
were used while computing the δE.

5.3.2 Media Characteristics

We employ the domain knowledge to evaluate the usefulness of the features. Hence, in this section
we discuss the media characteristics. However, all characteristics are not provided by all the
suppliers. The media characteristics are mentioned in Figure 5.1. Since data on opacity, and gloss
were provided by almost all the suppliers, they have been considered to be included in all the
regression models. The units of the quantities have been mentioned along with the number. Units
have not been specified for some of the quantities as it was not provided by the supplier. The data
on these media characteristics are not available in the organization at this moment.

Figure 5.1: Media Characteristics

The percentage of missing data of the media characteristics varies from 37.5% to 62.5% Please
refer to Table 5.1 for details. There are some techniques that can be used since there are missing
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values in the dataset. In this situation, the data is Missing At Random (MAR) [42]. The data is
MAR if the missingness depend on other observed information in the dataset. In this case, the
missingness of the medium characteristic depends on its supplier.

Thickness Opacity Whiteness Gloss Brightness Bulk Smoothness Fluorescence
62.4% 4.2% 37.5% 4.2% 45.8% 37.5% 37.5% 58%

Table 5.1: Percentage of missing data on media characteristics

Bootstrap is a resampling method which allows estimation of the sampling distribution of
almost any statistic using random sampling methods [52]. The bootstrap resampling is asymp-
totically valid, and effective irrespective of the sampling design or the imputation method [52].
However, since the percentage of missing data is very high (at least a third of data), these methods
may not provide reliable data for prediction. The results from feature importance can potentially
generate a need to install sensors to measure these characteristics in the upcoming printers such
as Mogami.

However, while there are many factors (such as thickness and size of pores in the coating of
the sheet) that are useful in determining the drying effect, this information are not available for
all media. In fact, this information may or may not be available when a new media is introduced
to the printer. Hence, the tests are motivated by the opinions of the domain experts, keeping in
mind the scope, and limitations with the new media.

5.4 Experimental Setup

In this section, we discuss the spectrophotometer’s configuration while collecting the data. To
maintain consistency, we will keep these as constants for all the media. These settings are suggested
by the experts, and their description is beyond the scope of this report. The D50 illuminant [39]
is used in the setup. The observer angle across all the measurements is 2o at the temperature of
23oC at measurement mode 2 (or M2) of the device.

Each category of medium has a different color profile. The default setting for each category is
used in the experiment as suggested by the experts. These settings include the TAC limit, color
grip, print speed, temperature, and super-heated steam.

5.5 Finding the Stabilization Time

Previous study show that the color keeps changing for a number of days. However, the rate of
change of color decreases with time. We term the color to be dried if the change of color from that
point of time is very little (or not observable by human eye). We find the minimum stabilization
time so that the same model can be applied to the data that is collected after this time interval
because the color has not changed. The aim of this study is to find the minimum time taken by the
colors to stabilize. That is, the minimum time after which the change of color is not significant.
To conduct this study, the measurements of L∗, a∗, b∗ are taken at certain intervals of time, and
the δE is computed with respect to the initial measurement. Hence, we get the δE values for that
point of time.

The previous study in the organization showed that the color stabilizes after 24 hours. However,
the study also suggested that this time interval varied significantly by media. Moreover, the data
set was limited. Hence, it is important to determine if the color has stabilized before we determine
the δE at that point of time. In Figure 5.2, the change of δE95 is < 0.1 after 24 hours. The trend
is similar is case of other media used in the research as well.
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Figure 5.2: δE of Sappi Magno Matt Over Time

5.6 Preprocessing

The precise steps of preprocessing varies depending upon the algorithm in question. For example,
the neural networks provide the best accuracy if the inputs, and outputs belong to certain range.
However, this is not the case with tree-based algorithms. Moreover, the neural network does
not accept categorical data (directly), whereas the categorical data can be directly used on tree-
based algorithms. We discuss the distribution of data in Section 5.6.1, followed by analysis, and
encoding of categorical data (in Section 5.6.2). Further, we study the outliers, and finally explore
the different scaling techniques.

5.6.1 Distribution of Data

We discuss the distribution of data as this analysis would suggest the range, and distribution of
each of the features which may or may not reveal biases in the data set. Such a possibility cannot
be ruled out as the data set is relatively small, and covers limited numbers of suppliers, and media.

5.6.2 Categorical Data

The media in our data set has 5 different suppliers, with 3 coatings from 2 regions. The suppliers
are Canon, Gprint, Sappi, UPM, and Verso. They have 3 coatings viz. Gloss, Silk, and Matt. The
2 regions are EU, and US. We observe that these quantities are categorical variables, and hence
cannot be used directly on some regression techniques such as neural networks. Hence, they need
to be encoded before they can be used in the model. The following two encoding algorithms were
considered for this task:

• One-hot Encoding: In one hot encoding, each category is represented by a string of
binary digits. This is useful when there is no relationship between the categories [9] [56].
In our dataset, the three independent categorical variables do not have any relationships
between themselves. The representation of one hot encoding for the suppliers are listed in
Table 5.2.

Supplier Encoding
Canon 0 1 0 0 0
Gprint 0 0 1 0 0
Sappi 0 0 0 1 0
UPM 0 0 0 0 1
Verso 1 0 0 0 0

Table 5.2: One-hot Encoding of the Suppliers

22 Prediction model of Colour Dryback



CHAPTER 5. IMPLEMENTATION

• Ordinal Encoding: In ordinal encoding, each category is assigned an unique integer
value. The SciKit Learn [47] ordinal encoding scheme arranges the list of categories in
alphabetical order before assigning the integer value. The advantage of this algorithm is
that it is the simplest representation of categorical data. However, there is a drawback in
using this algorithm. It may provide a sense of relationship between categories (similar to
the Likert Scale) when there is none [7]. For instance, refer to the Table 5.3. It provides the
list of the category of suppliers along with their encoded values. Since, 1 is close to 0 than
it is to 4, when these encoded values are used as input to the MLP regressor, the regressor
would learn that the Gprint is closer to Canon than Verso. However, there is no evidence
to suggest that the dry back pattern of Gprint is more similar to Canon than that of Verso.

Supplier Encoding
Canon 0
Gprint 1
Sappi 2
UPM 3
Verso 4

Table 5.3: Ordinal Encoding of the Suppliers

5.6.3 Outliers

An outlier in a distribution is an observation that appears to deviate significantly from other
observations. They could be a result of errors in measurement or a property of the data. Some
outlier tests detect the presence of a single outlier (such as Doornbos’ Test [15] and Grubbs’ Test
[22]) while other tests are able to detect multiple outliers (such as Hampel’s Test [40] and Tukey’s
Test [59]) as it is not feasible to apply a single outlier test sequentially to find multiple outliers.
The easiest way to detect outliers is to perform the Tukey’s Test [59] (using the boxplot). A
boxplot shows the distribution, and the skewness of the data. The box goes from the 25th quantile
to 75th quantile. Hence, the whiskers at the end signify the top, and bottom 25 percentile. The
points beyond these whiskers are the outliers. The distance of these points from the box is at least
1.5 times the IQR.

5.6.4 Scaling

Some of the regression models under consideration such as neural networks need the inputs, and
outputs to be scaled. As the features in the real data can have a wide range of data values, models
work better if we scaled all these data points [50].

Robust Scaler

The Robust Scaler removes the median, and scales the data to the Inter Quartile Range (IQR).
The IQR is the range between the 25th quantile, and 75th quantile. The quartile range can also
be customized based on the requirement. The median and IQR are computed for each feature and
are stored so they can be used later to transform data [47]. This scaling technique is robust to
outliers. This technique is an easy way is to remove the mean, and scale it to the unit variance.

However, if the data contains outliers, it can potentially influence the sample mean/variance
in a negative way. In such cases, the median, and the interquartile range often give better results
[47]. In our dataset, except for few features most of the features do not contain outliers. The
SciKit Learn [47] library was used for the implementation.

Standard Scaler

The standard scalar also standardizes each feature independently by removing the mean, and
scaling to unit variance. The standard score of the sample is calculated as z = (x − u)/s, where
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u is the mean of the training samples, and s is the standard deviation of the training samples.
In this technique, unlike robust scaler (which uses median and IQR), the mean and standard
deviation are stored to be used on later data using the transform method [50]. This technique
is most effective when machine learning estimators are sensitive to non-normal distributions and
the individual features are not close to standard normal distribution [47]. The SciKit Learn [47]
library was used for the implementation.

Normalization

In normalization, each row in the dataset (with at least one non-zero component) is rescaled
independently (of other columns) so that its L1 norm (or L2, L∞) equals one. Hence, it normalizes
samples individually to unit norm. However, a drawback is that it cannot be inverse transformed
(or denormalized) back to the original scale [47]. We need to have a scaling method that has the
feature to inverse transform because the predicted values of L∗, a∗, and b∗ are needed to be in
original scale to compute δE. The SciKit Learn [47] library was used for the implementation.

Min-Max Scaler

This is a scaling technique that does not affect the distribution of the data. This algorithm scales
down each feature individually within the specified range of the training set. In our case, the data
is scaled between 0, and 1. SciKit Learn [47] Min-Max scaler library is used for the implementation.
The advantage of min-max scaler is its reversibility. The predicted values (i.e., the L∗, a∗, and b∗
values) can be scaled back to the original scale to calculate the δE. Due to these advantages, we
use the minmax scaler for the Neural Network regression models.

5.7 Dimensionality Reduction

The dataset has 35720 (47 ∗ 760) rows, and has a total of 55 dimensions. However, it is important
to note that NOT all the dimensions are relevant to our study. Moreover, there are 6 dimensions
for which adequate data is not available (discussed in detail in Section 5.3.2). Even if we keep that
data aside, having such a large number of dimensions in the feature space would unnecessarily
increase the volume of that space. It can expand to the extent that even a large amount of data
would look sparse in the feature space. It is popularly called as the “Curse of Dimensionality”.
It can have adverse effects on the performance of regression models. Trunk et al. in 1979 [57]
discuss the concept of Hughes Phenomenon, where the power of regressor increases as we add the
number of relevant features . However, after a certain number of dimensions, the performance
starts to decline [8] [57]. Hence, there is a need to study the relevance of each of the feature, and
use dimensionality reduction to bring down the dimensions. In other words, we need the feature
elimination, and feature extraction at the same time.

5.7.1 Principal Component Analysis

Principal Component Analysis (PCA) reduces the dimensionality of a dataset with a large number
of correlated variables, while retaining as much variation (or information) as possible present in
the data set. Hence, this algorithm falls under the category of feature extraction. The variables
are transformed into the principal components (PC), which are uncorrelated, and are in decreasing
order of the variation present original variables. Note: input to the PCA is the raw data (and not
the scaled data) as PCA itself performs the necessary scaling.

The motivation behind the use of PCA lies in the fact that it is a feature extraction method.
Since there are a lot of candidate features that can be used in the regression model, we investi-
gate the possibility of using fewer features without compromising with the accuracy during the
implementation of the regression algorithms discussed later in this chapter.

The PCA calculates the principle components that capture the information (or variation) in the
data. The principal components are determined in such a way that the first principal component
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signifies the largest possible variance in the dataset, the second principal component signifies the
second largest variance in the dataset, and so on. Thus, the number of principal components can
be chosen based on the information they capture. Hence, PCA is useful when we want to decrease
the number of features used in the training data set. There are some disadvantages of PCA as
well. The features provided as output by the PCA are not interpretable. This means that it will
not be possible to study the significance of each of the original features in the regression model.
There is always a loss of variation (or information) while choosing the number of PCs. However,
if enough PCs are selected for training, this loss is not significant.

5.7.2 t-Distributed Stochastic Neighbor Embedding

Introduced by Maarten et al. [61], t-Distributed Stochastic Neighbor Embedding (tSNE) is an-
other technique for reducing the dimensions, and visualizing the high-dimensional data sets. The
prime difference between the tSNE, and PCA is that the tSNE preserves small pairwise distances
(Equation 5.1)or local relations whereas PCA primarily preserves the large pairwise distances to
maximize variance. The algorithm calculates a similarity score between pairs of features in the
high dimensional space, and low dimensional space. Then, it optimizes these scores using a cost
function. These high-dimensional data points (i.e., xi, and xj are converted into a joint probability
distribution P over all pairs of non-identical points [62]. Hence, P is a matrix with the following
entries in Equation 5.2 [62].

δ2ij = ‖xi − xj‖2 (5.1)

pij =
exp(−δ2ij)/σ∑

k

∑
l 6=k

exp(−δ2ij)/σ
,∀i∀j : i 6= j (5.2)

t-SNE also defines qij that measures the similarity of the points yi, and yj in the low-
dimensional space [62]. In other words, qij is the low-dimensional counterpart of pij . Hence,
we get Equation 5.3 [62].

qij =
(1 + ‖yi − yj‖2)−1∑

k

∑
l 6=k

(1 + ‖yk − yl‖2)−1
,∀i∀j : i 6= j (5.3)

First, we measure similarities between the points in the high dimensional space. For each point
(in 2-d space) we enter a Gaussian distribution over that point, and measure the density of all
points in that distribution. Now, normalize for all points to get the probabilities for all the points.
So, higher is the similarity, higher is the probability. Now, instead of using a Gaussian distribution
we use the Cauchy distribution. It is the Student t-distribution with one-dimension.

Hence, we have the second set of probabilities in the low dimensional space. Then, we measure
the difference between the probability distributions of these two-dimensional spaces (i.e., the low
dimension space, and the high dimension space) using Kullback-Liebler divergence [60](Equation
5.4). Finally, we minimize the Kullback-Liebler cost function (Equation 5.4) by using the gradient
descent. The t-SNE algorithm was implemented using the Scikit Learn[47] library.

C(Y ) = KL(P ||Q) =

∑
i

∑
j 6=i

pij log
pij
qij

(5.4)

We will now discuss about the regression algorithms we use in the training. The tree-based
regression algorithms and the SVR do not require any specific preprocessing. Furthermore, the
prime features (i.e. CMYK and L∗, a∗, b∗), and weight do not have any missing value. However,
there are few missing values for opacity and gloss. The average values of opacity and gloss from
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other media with the same coating have been used. There are few algorithms such as the DNN
and MLP that require preprocessing (such as encoding and scaling) of data for optimal results.
Hence, for these algorithms the categorical data is first encoded using ordinal encoding and then
the complete data set is scaled using the Min-Max scaler. Now, our data is ready for regression
analysis. In the subsequent sections we discuss the different regression techniques such as Neural
Network (Section 5.8), ensemble methods (Section 5.10), and Support Vector Machines. In this
situation, the L∗, a∗, and b∗ at Time 96 can be independently predicted, and later used to compute
the δE. In the subsequent sections, we briefly discuss the background of each of the regression
algorithms used in this report. We have categorized it into 3 parts viz. neural networks, tree based,
and support vectors machine. The tree based regressor are further divided into 2 categories: single
decision trees, and ensemble learning algorithms. The hyperparameters are tuned to obtain the
most optimal set of results from each of the algorithms. This is performed using the SciKit Learn
[47] GridSearchCV that performs an exhaustive search over specified values for a given estimator.

5.8 Multi-Layer Perceptron (MLP) Regression

The result from Grid Search CV [47] suggests that a fully connected Multi-Layer Perceptron (MLP)
Regression model with a single hidden layer of 20 neurons has least errors. Furthermore, it has 11,
and 3 neurons at the input, and output layers respectively. Figure 5.3 shows the network diagram
of the model. The SciKit Learn [47] library of MLPRegressor was used in the implementation.

Figure 5.3: The MLP neural network model

5.8.1 Feature Importance

Analysis on the features show that the some features play a very significant role compared to others.
Since, the MLP regressor model object does not have any attribute for feature importance, the
mlxtend library [49] is used for analysis of feature importance. We first train the model on the
training dataset, and estimate the baseline performance on the validation dataset. Now that we
have the scores with all the features as input, we pick the feature in question, and perform the
random permutation. Now, train the model with the new dataset. Then record the scores with
the validation dataset. The difference between the scores of the model with original training data,
and the scores of the model with modified dataset is the score for the feature importance. Now,
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perform the same exercise with all the features. A comparison can be performed between each
feature with its scores.

5.9 Deep Neural Network (DNN)

In the previous section, we discussed, and evaluated the results of a simple MLP model with a
single hidden layer. In this section, we pay more attention to the categorical variables. In the
previous chapter, we had discussed the dangers of using the ordinal encoded values directly into
the MLP regressor. Hence, there is another approach that can be used if the dataset contains both
numerical, and categorical values. In this approach, the numerical values are directly fed to the
dense layer. However, the categorical values are first encoded, and passed though the embedding
layers. We define an embedding layer corresponding to each categorical variable. The model is
visualized in Figure 5.4

In the DNN model, there are 4 input layers, 3 for each of the categories, and 1 for all the
numerical variables. The input layer is connected to the dense layer with 18 neurons. The input
layers for the categorical variables are connected to their respective Embedding layer. Each of
these Embedding layers are connected to the Flatten layer whose outputs are concatenated to each
other, and then again concatenated to the output of the other dense layer. These concatenated
outputs are concatenated outputs are connected to the dense layer with 12 neurons. The output
of this layer is finally connected to the output layer with 3 neurons (for 3 outputs). The loss
function, and the metrics used are the MAE.
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Figure 5.4: Deep Neural Network Model Architecture

5.10 Tree Based Regression Techniques

In the above subsection, we saw the neural network based regression technique. However, there
are some other state of the art rule-based decision tree, and tree-based ensemble methods that
have been proven to perform well [24] [18] [46]. One of the advantages of using these models is
that it is not restricted by the scale of the input, and output. Since, there is a significant variation
in the scale of various features in the dataset, it was important to scale them down to an optimal
scale for lower MSE. However, the tree-based algorithms do not have such limitations. Hence, it
has a potential to predict L∗, a∗, and b∗ values with better accuracy than the MLP model.

5.10.1 Decision Tree (DT) Regression

The SciKit Learn library [47] offers a lot of hyperparameters to work with. The criterion measures
the quality of the split. In this case both the gini, and entropy do not make a difference. The
splitter is set to best as it takes longer to compute but chooses the best split. The max depth is
set to none as deeper tree has higher accuracy. The min impurity split is the minimum number of
samples required to split a node. It can be used to control overfitting. The min sample leaf, which
is the minimum sample required to be at a leaf is also set to default of 1. The min impurity decrease
is set to default of 0.

5.10.2 Ensemble Learning

Bagging

The following results are obtained on implementation of random forest, and extra trees algorithms,
discussed in Section 4.3.2.
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• Random Forest (RF) Regression: The Scikit Learn [47] library provides an elegant im-
plementation of the random forest regression algorithm. The number of trees (or n estimator)
can be explored to find the least error without having overfitting as very large number
of trees can lead to overfit. The max features is set to auto. The min samples leaf, and
min samples split is set to default of 1, and 2 respectively, and there is no limit for max depth
so it is also set to default of None.

• Extra Tree (ET) Regression: The Scikit Learn [47] library was used for the implementa-
tion of the extra tree regression algorithm. The hyperparameters of Extra Trees algorithm
is same as that of random forest (because the algorithm itself is very similar). Hence, the
tuning is only performed on n estimator.

Boosting

Since, these algorithms do not support multivariate output. Hence, three models were implemented
for prediction of L∗, a∗, and b∗ separately. The parameters remain the same for all of them. The
reported MSE, and MAE values are computed using the same method as previous models. The
δE values are computed from the L∗, a∗, b∗ predicted from each of the three models.

• AdaBoost (AB) Regression: The Scikit Learn [47] library does not have a lot of hy-
perparameters to tune for the Adaptive Boosting algorithm. We perform the tuning on
n estimtor, and learning rate whereas the loss function remained square.

• Gradient Boost (GB) Regression: The Scikit Learn [47] library provides a plethora
of hyperparameters to work with. These hyperparameters can be divided into 3 categories
based on their functions viz. tree-Specific, boosting, and miscellaneous parameters. These
tree-specific parameters are ones that we discussed in the previous regression algorithms
such as max depth, min samples split, min samples leaf, and max features. The max depth
is the maximum depth of each of the tree which is set to default (of 3) as increasing it
did not improve the model but increased the training time. The min samples split, and
min samples leaf are the same as discussed in the Random Forest. Hence, min samples split
is minimum number of samples required to split a node in each tree, and min samples split
is the minimum number of samples required at a leaf node [47]. These values are set to
default of 2, and 1 respectively. max features is the number of features that are considered
while making a split at each node of a tree. Since, we do not have a lot of features, this
parameter is set to consider all the features.

There are some hyper-parameters that are specific to boosting algorithm such as learn-
ing rate, n estimators, and subsample. These parameters primarily set this algorithm (and
boosting, in general) apart from other algorithms we explored. Hence, we explore different
combinations of these parameters. The learning rate determines the impact of each tree,
hence can be used to enhance the performance. We also explore the different values of
n estimators to reach an optimal value. subsample is the fraction of samples that is used to
fit the individual base (or weak) learners. If it is < 1.0, it is Stochastic Gradient Boosting
[47]. However, results have shown no improvements on decreasing subsample. In the other
miscellaneous hyperparameters, the warm start is set to True, the loss function is set to lad
(or least absolute deviation), and criterion is set to MAE.

• Extreme Gradient Boost (XGB) Regression:

XGBoost open-source library [10] provides a robust implementation of the algorithm. The
hyperparameters of this algorithm are very similar to Gradient Boosting algorithm. Hence,
most of those parameters remain the same. However, there are some hyperparameters specific
to XGBoost that need some discussion. We have min child weight that is similar to the
min samples leaf in GB, but in case XGB, it is the minimum sum of weights. We also have
alpha, and lambda which are the L1, and L2 regularization terms respectively. The objective
(loss) function is set to reg:linear.
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The parameter grow policy controls the way child nodes are added to the tree. The depthwise
split makes the split at nodes closest to the root, while the lossguide split makes the split
at nodes with the maximum change of loss [10].

Most of the well-established regression models, are complex, and require high computational
resources during training [17]. Rule-based decision tree, and tree-based ensemble methods, e.g.,
Gradient Boosting, Random Forest, and eXtremely Randomized Trees (Extra-Trees) have recently
begun to gain momentum, because they are simple but still powerful, and robust predictive algo-
rithms, and they have less parameters for tuning [24] [18] [46].

5.11 Support Vector (SV) Regression

There are primarily 4 hyperparameters in Scikit Learn [47] that determine the accuracy of a
support vector model. The regularization parameter (or C ), kernel, degree of the polynomial
kernel function,, and kernel coefficient (or gamma). The degree of polynomial is only relevant if
the kernel is poly. The gamma is set to default of frac1n features. The hyperparameter tuning
is performed to determine the kernel, and C.

Just like the boosting regression algorithms, Support Vector Regression does not support mul-
tivariate output. Hence, three different models (with same parameters) were implemented for
prediction of L∗, a∗, and b∗ values. The reported MSE, and MAE values are computed using the
same method as previous models. The δE values are computed from the L∗, a∗, b∗ predicted from
each of the three models.

5.12 Validation

In the previous sections, we discussed the approaches for implementing the model, and testing
it. However, the model(s) will be put to test when a new medium is used for prediction, and
compared with the actual values of L∗, a∗, and b∗ at Time 96. Since, the main aim of this project
is to assist the operators to make high quality color profiles without costing a significant amount
of time, this model will be put to use only with new media, since color profiles already exist for
existing media. Hence, it is important to evaluate the performance of this model with new medium
(i.e., a medium that was not used for training).

We conduct 2 set of validation tests, one from our perspective, and another from the perspective
of the use case. Once we have compared the models, and selected the model to use, we retrain
the model with almost the same data set but remove a medium this time. The removed medium
is used for evaluating the model as it is “unknown” to the model. The test is done iteratively by
removing different medium from the data set each time, and retraining the model.

The other validation test has the setup of the actual use case, i.e., to make a color profile.
Currently, the operators of the printers use the default media entry available based on the coating
for color profiles. This does not produce the best quality results but saves the time. Hence, the
dried measurements of L∗, a∗, b∗ is used as a reference for comparison. The color profiles are
made from L∗, a∗, b∗ values using the prismaSync software developed by the color management
team at CPP. If the color profile made by the predicted values is close to the actual color profile
(made using L∗, a∗, b∗ values at Time 96), we conclude that the model performs sufficiently well,
and can be used to make color profiles for new media. In addition to the color profile, the δE
values can also be computed and compared with the test results. We use new media for this test,
and the details are as follows.
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Serial Number Supplier Medium Name Weight Coating Region
1 Gold East Space Shuttle 157 gsm Matt CN
2 Zanders Silver Digital 200 gsm Matt EU
3 Zhonghua Ninbo Star 250 gsm Gloss CN
4 Sappi Magno Plus Gloss 150gsm Gloss EU

Table 5.4: Media for Validation

5.13 Summary

In this chapter, we discussed the entire implementation phase of the project starting from the
selecting the media, collecting the data, preprocessing it, and implementing the regression models.
Each of these algorithms have their own set of parameters that need to be tuned to get the
best results. In the next chapter, we discuss the results obtained on running the aforementioned
algorithms under different parameters.
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Results

In Chapter 5, we discussed about implementations involved in various stages of this project.
In this chapter, each section is dedicated to the results obtained upon implementation of those
algorithms/tests. In Section 6.1, we cover the results obtained from the measurement accuracy
test. Further, in Section 6.2, we discuss the discuss the results obtained from the tests conducted
during the data collection phase. Section 6.3 details some interesting results obtained upon some
tests and preprocessing on the collected data. Section 6.4 describes the data obtained on applying
the dimensionality reduction algorithms. In the subsequent sections of this chapter, we discuss the
results obtained on implementing the MLP regression model (Section 6.5), deep neural network
regression model (Section 6.6), tree based regression algorithms (Section 5.10) and support vector
regression (Section 6.8)

6.1 Measurement Accuracy Test

The setup of this test was discussed in Section 5.1. The results suggest that the standard deviation,
average, maximum and 95 percentile are about 0.06, 0.09, 0.42 and 0.2 respectively. The prediction
model cannot predict something with higher accuracy than its measurement as it is hard to predict
something that cannot be measured. These numbers set a limit to the prediction model. The
results have been deemed satisfactory by the color experts in CPP and other spectrophotometers
used in the organization have also shown similar margin of error in the past. The table of results
of the accuracy test is provided in Appendix B.

6.2 Data Collection

In this section, we discuss the results obtained on performing some tests while collecting the
data. These tests help us to verify if the target accuracy for the model is realistic and can be
achieved (with sufficient data and robust model). These tests also help us to find the time interval
after which it can be said with certain level of certainty that the ink in the media has dried (or
stabilized).

6.2.1 Effect of Weight on Dry Back

The motivation and setup of the experiment were discussed in the Section 5.3. Figure 6.1 suggests
that the δEavg, δEmax and δE95 for each weight are relatively close to each other. The range of
these values is 0.17, 0.4 and 0.4 respectively.
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Figure 6.1: Overview of δE of the Weight Categories

However, this test does not conclusively suggest an outcome. The δE for each weight group
has a distribution with 760 data points. Hence, if the distributions are the same, then it can be
concluded that the weight does not have any impact. In this data set, we have 6 distributions of
δE, each distribution corresponds to a weight category.

To determine if the two distributions are the same we used the Kolmogorov-Smirnov Test
[38]. Kolmogorov-Smirnov Test [38] is used to find if the given 2 sets of data belong to the same
distribution i.e. the two distributions of the those points are equal. The 2 sample Kolmogorov-
Smirnov Test [38] has the following assumptions:

• The two samples are independent.

• The outcomes are ordinal or numerical.

The above assumptions are satisfied by the given dataset. Since we have 6 distributions (by
weight), a pair of distributions is selected and the test is conducted under the following hypothesis
for 2 sample Kolmogorov-Smirnov Test [38].

H0 : The two dataset values are from the same continuous distribution.
H1 : The two dataset values are NOT from the same continuous distribution.

The test suggests that the almost none of the distributions are the same except for the 135gsm
and 250gsm. However, when a similar test was performed with the data from the Measurement
Device Accuracy Test (Section 5.1), the result was similar. The distributions of the δE from
the same device from the same medium under same conditions were not the same. The setup of
that study is provided in the Appendix C. A plausible reason is that the measurement error is
significant enough to change the distribution of each set of measurement under the same setting.

Since, weight does not have a significant impact on the drying effect, the data of a wide range
of different weights of media was not required to be collected for each medium. Since, not all
weights have an impact, some of the weight categories are not included in the dataset as well.

6.2.2 Finding the Stabilization Time

The motivation and the experimental setup to find the stabilization time was discussed in Section
6.2.2. In this subsection, we discuss the results and its implications. The study in the organization
had shown that the drying time is about 24 hours. However, when the same study was conducted
with the new data, there were some media that took longer than 24 hours to stabilize. In Figure
6.2, the δE 24 hours and 96 hours are listed for each medium used in the prediction model. The
Digi Finesse Premium Silk by UPM showed significant difference in δE between 24 hours and 96
hours.
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Figure 6.2: δE After 24 Hours and 96 Hours

The colors (for each medium) have fairly stabilized after 96 hours. Hence, the δE to be used
in the prediction model is between the initial L∗, a∗, b∗ (hitherto called Time 00) and the L∗, a∗,
b∗ measurements after 96 hours (hitherto called Time 96).

6.3 Preprocessing

In this section, we discuss the results of the analyses performed in the pre-processing phase,
discussed in Section 5.6.

6.3.1 Distribution of Data

The histograms in Figure 6.3, Figure 6.4, Figure 6.5, Figure 6.6, Figure 6.7 and Figure 6.8 repre-
sents the frequency of each of those discrete values.

These histograms suggest that these variables are discrete and only take few values. The
CMYK are obtained from the test chart and the Opacity and Gloss values are the media charac-
teristics obtained from the respective suppliers.

The plots in Figure 6.10, Figure 6.11 and Figure 6.12 represent the probability density functions
and histograms of the measured dependent variables. The plots in Figure 6.14, Figure 6.15, Figure
6.16 represent the probability density functions and histograms of the independent variables

The distribution of each of the dependent and independent variables suggest some interesting
outcomes. The distribution of L∗, a∗ and b∗ before and after drying are very similar. This result

Figure 6.3: C Figure 6.4: M
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Figure 6.5: Y Figure 6.6: K

Figure 6.7: Opacity Figure 6.8: Gloss

Figure 6.9: Probability Density Function of the Independent Variables

Figure 6.10: L Figure 6.11: a
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Figure 6.12: b

Figure 6.13: Probability Density Function of the Measured Independent Variables

Figure 6.14: L dry Figure 6.15: a dry

Figure 6.16: b dry

Figure 6.17: Probability Density Function of the Target Variables
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is coherent to the fact the correlation of the respective values of L∗, a∗ and b∗ before and after
drying are very high (See Appendix D).

6.3.2 Outliers

Figure 6.18: Boxplot of the Independent Variables

Figure 6.19: Boxplot of the Dependent Variables

The outlier’s analysis performed in Section 5.6.3 suggests that the C, M , Y , K values are skewed
towards the higher values (or right, if the plot is considered horizontal) with their median at 50,
except K whose median is at 25. Perhaps, that is because the values cannot be negative, so it sets
the lower bound for the values. The L∗, a∗, b∗ values are spread out in their respective range of
values i.e. [0, 100], [−127, 128] and [−127, 128]. There are a few outliers in L∗, a∗ and (encoded)
suppliers. Moreover, there are a significant number of outliers in b∗, compared to other quantities
for unknown reasons. A similar trend is observed in the dependent variables (i.e. L∗, a∗, b∗ values
at Time 96) because there is a very high correlation with the L∗, a∗, b∗ values at Time 00. This
means the use of regression techniques that are sensitive to outliers should be avoided.
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6.3.3 Scaling

We discussed the techniques for scaling in Section 5.6.4, i.e. Min-Max scaling, Robust scaling,
Standard scaling and Normalization. In this section, we see the results when the data was prepro-
cessed using the aforementioned techniques using the Scikit [47] library. Then it was used in MLP
regressor to obtain the results in Table 6.1. Note: The δE in the table is computed between the
actual L∗, a∗ and b∗ values and the predicted L∗, a∗ and b∗ values at Time 96.

Min-Max Robust Standard Normalization
Time Elapsed (s) 0.24 0.32 0.55 0.27

MSE 0.003 0.008 0.013 0.001
R2 Score 0.93 0.98 0.99 0.94
Avg δE 0.07 0.15 0.17 0.07
95% δE 0.16 0.31 0.34 0.13
Max δE 0.39 0.60 0.64 0.26

Table 6.1: Effect of different scaling algorithms on the output

The above techniques were applied to a smaller set (in fact, a subset with 3 media) to obtain
the results in Table 6.1. In Table 6.1, it is observed that the time elapsed (to run the regression
algorithm) is least for the min-max scaler and followed by normalizer, robust scaler and standard
scaler. The key factors to determine the performance of the model are the MSE and the δE95.
In case of the MSE and δE95, it is observed that the best results are obtained for the normalizer
followed by the min-max scaler, robust scaler and standard scaler. Apart from the R2 score, all
the other metrices follow the same trend. The standard scaling of the data does not significantly
influence the results. However, as we observed in the previous sections, there are a few features
that contain outliers. Since, MLP regressors are sensitive to outliers, this can be the reason for
relatively better performance of the Robust scaling. Since, we obtained the best results with
Min-Max, we use this scaling techniques for the neural networks.

6.4 Dimensionality Reduction

In this section, we will try to obtain the dataset that can be used later in the regression. We will
compare the different algorithms and select one ones that yield the best dataset i.e. the ones that
capture more information, save space, and computation time.

6.4.1 Principal Components Analysis

The concept of the PCA was discussed in Section 5.7.1. We have the 13 features (viz. C, M , Y ,
K, L∗, a∗, b∗, Weight, Opacity, Gloss, Supplier, Coating, Region) under consideration for inputs
to the model. When this algorithm was used to obtain the principal components (or PC), the
results were as shown in Table 6.2.

Principal Component Explained Variation (%) Cumulative Explained Variation (%)
PC0 24.38 24.38
PC1 17.58 41.96
PC2 14.21 56.17
PC3 12.96 69.13
PC4 12.59 81.72
PC5 6.88 88.60
PC6 4.39 92.99
PC7 3.31 96.3

Table 6.2: Principal Components obtained from the inputs
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Figure 6.20: Percentage variance explained by each principle component

In Table 6.2 and Figure 6.20, we observe that more than half of the variation is explained by
the three principal components. The eight principal components explain 96% of the variation in
the data. The number of required features is down to 8 (from 13). This would mean a significant
improvement in training time with information loss of about 3-4%. To obtain the results in the
Table 6.3, we used 80% of the dataset for training and the remaining 20% for testing. We have
only used two algorithms to study the impact of PCA.

MLP (PCA) MLP (Regular Data) RF (PCA) RF (Regular Data)
MSE 0.212 0.164 0.447 0.304
MAE 0.387 0.299 0.501 0.366

R2 Score 0.986 0.987 0.993 0.999
Avg δE 0.26 0.15 0.52 0.473
95% δE 0.84 0.751 1.738 1.166
Max δE 2.92 2.42 7.561 6.144

Table 6.3: Performance Comparison Between Each Regression Algorithm

In Table 6.3, we observe that when the features from the PCA were used in the MLP regression
model, there was no significant difference in the errors and δE values. It should be noted that
the MLP models were different for both the datasets. The MLP model for the regular features
has 20 neurons in the hidden layer, whereas the MLP model for the PCA features has 13 neurons.
We also observe a similar trend in case of random forest i.e. the similarity in performance of the
model in both the cases. The random forest model was the same in both the cases.

6.5 Multi-Layer Perceptron (MLP) Regression

In Section 6.4, we discussed the algorithms to reduce the number of dimensions in use. We observed
when we use PCA, we are able to reduce the number of dimensions from 13 to 8 while losing only
3-4% of data. However, we also observed that applying the PCA did not bring a substantial
decrease in the training time. Hence, we choose not to use the PCA and include all the features in
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the training data. Note that there are three categorical features in the dataset. MLP regression
technique cannot be directly used to evaluate the categorical features. Hence, they have been
encoded using the ordinal encoding (Section 5.6.2).

The data set was trained on the MLP regressor with different activation functions and solvers.
Figure 6.21 represents the heatmap with MAE for each of combination activation and solver used.
The values of the other metrices is available in Appendix E.1.

Figure 6.21: Heatmap of MAE for activation functions and solvers in MLP regression

The above heatmap suggests that the Adaptive Moment estimator (or Adam solver) with the
Logistic activation function has the least MAE. A similar trend is also observed with other metrices
such as MAE δE95, δEavg, δEmax as well.

We try to find the importance of each of the features to learn more about the factors that
affect the drying behavior. Moreover, this will help us to potentially eliminate the less relevant
features from the training data. However, the MLP regressor by SciKit Learn [47] does not have
an inbuilt function to get the scores. Hence a different approach is taken which is discussed in the
next subsection.

6.5.1 Feature importance

While predicting the L∗, a∗ and b∗ values we also try to identify the features that contributed
the most in the prediction. There could also be some features that are not very relevant to the
prediction. The features used in the model were chosen based on the domain knowledge and
their availability. Hence, we can expect to find some interesting results from the test on feature
importance. However, the MLP regressor library by SciKit Learn [47] does not provide any
function (or return any object) to evaluate the feature importance. Hence, we used the mlxtend
library [48] to evaluate the importance of each feature.

The library takes a model that was fit to the training data and estimate the performance
(by using the r2 score) of the model on the validation dataset. So, it now has the baseline
performance. Then, it iterates over all the features and for each feature, it randomly permutes
the column. Then, it records the performance (r2 score) of the model and compares it with the
baseline performance [48]. This algorithm has a disadvantage that the importance of correlated
features may be overestimated [55]. This would reflect on our results as we observed that there is
a significant correlation between the respective values of L∗, a∗ and b∗ at Time 00 and Time 96.

Figure 6.22 provides the importance score for each feature. It is evident that the Coating and
Region are the lowest and insignificant. Hence, they are not being used in the dataset of the final
model. However, the data set has 3 types coating and from just 2 regions. Since, there is not
much variation in the encoded coating and region, we can expect the growth of their importance
if more regions are included in the data set.
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Figure 6.22: Feature Importance Plot with MLP regressor

6.5.2 Media Characteristics

In Section 5.3.2, we discussed several media characteristics and their limitations for using them in
the model. However, it would be interesting to see these characteristics have enough information
that can help in improving the accuracy of the model. If the media characteristics turn out to be
useful, it can be a starting point for an approach to further improve the accuracy of the model.
Since, there are a lot of missing values of the media characteristics. We changed the training data
set to use only the media that had the media characteristics. Figure 6.23 is the plot of the feature
importance score of the media characteristics obtained by using the mlxtend library [48]. The
other features are not included in the model as these values are in different scale.

Figure 6.23: Feature Importance Plot for media characteristics

The above plot suggests that the Weight, Opacity, and Gloss have relatively high importance
when compared to other media characteristics. Moreover, the brightness also has a high score.
However, the since a lot of data is not available for brightness, it cannot be used for reliable results.
However, if there is a need to increase the accuracy in the model by including more features in
the future, brightness and whiteness are the best candidates for data collection.

We have selected the dataset to be used for each of the regression algorithm. Now, we discuss
the results in the successive sections.
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6.6 Deep Neural Network

While implementing the neural network we used different combinations of activation functions for
the dense layers. The Keras library [12] provides a list of predefined activation functions such
as RELU, linear, sigmoid, softmax, softplus, softsign, tanh, exponential. Various combinations of
these activation functions were used in the models with RELU and linear functions in the output
layer. Figure 6.24 and Figure 6.25 are the results when these activation functions were used in
dense layers with linear function in the output layer.

Figure 6.24: Heatmap of MAE on the Training Data with Linear Activation function in the last
layer

Figure 6.25: Heatmap of MAE on the Testing Data with Linear Activation function in the last
layer

Similarly, Figure 6.26 and Figure 6.27 are obtained when RELU was used in the output layer.
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Figure 6.26: Heatmap of MAE on the Training Data with RELU Activation function in the last
layer

Figure 6.27: Heatmap of MAE on the Testing Data with RELU Activation function in the last
layer

In Figure 6.24, Figure 6.25, Figure 6.26, Figure 6.27, we observe that the MAE values with
the linear activation function is considerably lower than that of RELU. This can be attributed
to the fact that the RELU never returns negative value, whereas a∗ and b∗ take negative values.
Furthermore, we also observe that the softsign and softplus activation functions have the minimum
MAE values for train and test data. However, other combinations such as softmax-linear and
softplus-softplus some of the least MAE values. Hence, we also consider other metrics i.e. δE
for analysis (Appendix E.2.1). There is a very small difference between the δE95 values for these
combinations, but it is clear that the softsign- softplus combination is still the best.
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6.6.1 Optimizers

The optimizers in the Keras [12] are the methods that change the attributes of the deep learning
model such as weights and learning rate to reduce the losses (or the MAE, in our case). Hence,
the right optimizers can reduce the number of epochs and help in quicker convergence. Keras [12]
provides a wide range of optimizers (mentioned in Figure 6.28). The activation functions thus
obtained in the previous subsection are used in these models and the results are as follows (Figure
6.28).

Figure 6.28: Plot of MAE on Train and Test Data with Different Optimizers

There are a number of optimizers that result in very low MSE. The lowest is in the case of
Adamax and followed by SGD and RMSprop. There is no overfitting in the data. In fact, similar
trend is followed in case of other metrices such as δE95 (Appendix E.2.2), MSE (Appendix E.2.2)
etc. as well.

6.6.2 Embedding Initializers

The deep neural network has 3 embedding layers, each corresponding to one categorical variable.
The optimally initialized embedding matrix would reach convergence relatively faster. Keras [12]
provides 11 such initializers and the MAE values of their respective models are plotted in Figure
6.29.

Figure 6.29: Plot of Errors and δE on the Training and Testing Data with Over Different Initial-
izers for Embedding layers
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In Figure 6.29, the identity has the minimum MAE. The metrices such as δE95 (Appendix
E.2.3) and MSE (Appendix E.2.3) also have the same minimum. Moreover, we also observe that
there is no overfitting.

6.7 Tree Based Regression Algorithms

The decision trees are inherently more intuitive and interpretable than the MLP models. Moreover,
the decision trees are nt bounded by the scale and distribution of data. However, using a single
decision tree might not be sufficient hence, we also use ensemble learning. The working principle of
each of these techniques has been discussed in Chapter 5. The results for each of those algorithms
are discussed in the subsequent subsections.

6.7.1 Decision Tree (DT) Regression

Decision trees are one of the most interpretable regression techniques, which has evolved into more
complex techniques. An advantage of the decision tree is that it is simple and does not have a
lot of parameters to tune. During the implementation (using SciKit-learn [47] library), we defined
the Mean Absolute Error (or MAE) as the loss function. MAE minimizes the L1 loss using the
median of each terminal node. The accuracy score and the r2 score were consistently very high
(99.9%) for all the observations. Hence, they have not been included in the following tables.

Figure 6.30: MAE scores of the Decision Tree model on min impurity split
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Figure 6.31: MSE scores of the Decision Tree model on min impurity split

In Figure 6.30 and Figure 6.31, we observe that there is overfitting for lower values ofmin impurity split.
The optimal performance is achieved at min impurity split = 0.8. We observe that as we increase
the min impurity split, the error values keep increasing, however, after 0.75, the difference be-
tween the train and test errors remains consistent. There is a significant change in the errors
and δE values. The performance is satisfactory and can be compared with other methods for
evaluation.

6.7.2 Random Forest (RF) Regression

Random Forest is an ensemble regression technique that uses bagging technique. We briefly
discussed the random forest regression in the previous chapter. We used the SciKit-learn [47]
library for the implementation of this algorithm. The design choices of the algorithm includes
selecting n estimators or the number of trees in the forest. The other parameters are set to
default and need to be changed in case of significant overfitting. The criterion is set to MAE
instead of MSE. It was observed that the good models have very low MSE, which made them
difficult to compare with other models with similar values. However, this was not the case with
MAE. Hence, MAE is always the choice of the loss function and the primary criteria to assess the
quality of the models with this dataset.
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Figure 6.32: MAE scores of the Random Forest model on n estimators

In Figure 6.32, there is a little overfitting, However, this is not very significant and suggests
that the number of trees for the subsequent algorithms can remain default (of 100). The other
metrices E.3 such as MSE, δEavg, δE95 and δEmax also have similar trend.

6.7.3 Extra Tree (ET) Regression

As we discussed in Section 5.10.2, the basic principle of extra trees is similar to that of random
forest. However, unlike random forest, the extra trees use a random subset of features to train each
base estimator [37]. We used the SciKit-learn [47] library of the extra trees for implementation
and the results are as follows.

Figure 6.33: MAE scores of the Extra Trees Tree model on n estimators

In Figure 6.33, we observe that there is a marginal (but tolerable) overfitting. Other metrices
also exhibit similar trends.
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6.7.4 Adaboost (AB) Regression

In Section 5.10.2 we saw that the Adaptive Boost regression uses weak learners that improve the
prediction error over iterations. The SciKit learn [47] library was used for the implementation.
The model was iterated over the number of trees and the learning rates. The results obtained are
in Figures 6.34 and 6.35.

Figure 6.34: Heatmap of MAE scores of the Adaboost models on the training data

Figure 6.35: Heatmap of MAE scores of the Adaboost models on the testing data

We observe that the MSE and MAE are in the similar scale. The MAE decreases with the
increase in learning rate and increase in the number of trees. The boosted ensemble is made
from the DecisionTreeRegressor as the errors of the Decision Tree regressor are low. Hence, the
cumulative result of such trees performs well. The loss function used for all the tested models was
squared as the model had lower error values and lesser δE values compared to other available loss
functions like linear and exponential.
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6.7.5 Gradient Boosting (GB) Regression

In Section 5.10.2, we discussed on how the Gradient Boost identifies the shortcomings by using
gradients in the loss function instead of using high weight data points in AdaBoost. Figure 6.36
and Figure 6.37 show training and testing performance of the model on our dataset.

Figure 6.36: Heatmap of MAE scores of Gradient Boost models on the training data

Figure 6.37: Heatmap of MAE scores of Gradient Boost models on the testing data

We observe that that the number of trees do not really have any significant impact (after
a point) on the performance. Moreover, high is the impurity, higher is the error. This can be
attributed to the fac that if the final impurity decrease is less than the minimum impurity decrease,
then the split will not be performed. As this threshold kept increasing, the trees started becoming
shorter and shorter, deteriorating the results.
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6.7.6 Extreme Gradient Boosting (XGB) Regression

We discussed the XGBoost regression algorithm in Section 5.10.2. The key difference between the
Extreme Gradient Boosting (XGBoost) algorithm and the regular Gradient Boosting algorithm is
that the regular Gradient Boosting uses the loss function of the base model (e.g. decision trees) to
minimize the error of the overall model, XGBoost uses the 2nd order derivative for approximation.
Unlike the Gradient Boosting the XGBoost uses L1 and L2 regularization techniques to reduce
overfitting and improve model generalization. We used the python library XGBoost [10] for
implementation. The results are as follows (refer to Figure 6.38 and Figure 6.39).

Figure 6.38: Heatmap of MAE scores of XGBoost models on the training data

Figure 6.39: Heatmap of MAE scores of XGBoost models on the testing data

In Figure 6.38 and Figure 6.39, we observe that the MAE for XGBoost increases with decreasing
learning rate and abruptly high at 0.01. Moreover, the error decreases with increasing number of
trees in the forest. However, for when there are 1000 trees in the forest, it leads to overfitting.
Hence, the 250 trees with 0.05 learning rate provides the optimal result. Moreover, the MSE and
MAE scores are the lowest we have observed so far with other algorithms. Other metrices (such
as the MSE, δEavg, δE95 and δEmax)also follow the similar trend. The details are provided in the
Appendix E.7.
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6.8 Support Vector (SVR) Regression

The Support Vector Regression (SVR) is based on the same basic principles as the SVM (for
classification). However, there are minor differences. In SVR, we have a decision boundary from
the original hyperplane such that the Support Vectors are within the decision boundaries. The
algorithm is briefly explained in Section 5.11. The SciKit-learn [47] library was used for the
implementation of this model.

Figure 6.40: MAE scores of the SVR on train data

Figure 6.41: MAE scores of the SVR on test data

In Figure 6.40 and Figure 6.41, we observe that the linear kernel has the least error, followed by
Polynomial, RBF and Sigmoid. Further, as we increase the value of the regularization parameter,
the value of the error increases. Similar trends are followed by other metrices as well (Appendix
E.8).

6.9 Comparative Analysis

Table 6.4 represents best model (in terms of lowest δE95) from each of the algorithms. It should
be noted that the data set used for the DNN network is different compared to the other methods
to obtain the following results.
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MLP DNN DT RF ET GB AB XGB SV
MAE 0.279 0.294 0.361 0.255 0.512 0.381 0.522 0.120 0.306
MSE 0.144 0.193 0.473 0.144 0.474 0.417 0.447 0.028 0.164

95% δE 0.712 0.704 1.320 0.781 1.504 1.248 1.916 0.392 1.175
Avg δE 0.340 0.374 0.461 0.323 0.666 0.491 1.029 0.173 0.558
Max δE 2.248 2.813 13.50 4.251 2.816 9.704 3.313 1.604 4.536

Table 6.4: Results from all the regression algorithms

Let’s begin the analysis with the best model. Here, the best model is the model that has
the minimum δE95. We observe that the least MSE, MAE and δE95 is achieved with XGBoost.
In fact, this is the only algorithm that has δE95 lower than the threshold of 0.5 (we set in the
beginning). The trend of MSE and MAE is very similar to that of δE95. Moreover, if we compare
the performance of the MLP model and the deep neural network, we observe that even though
the deep neural network is more complex and uses 2 extra features (Region and Coating), the
difference between the respective errors is not very significant. However, these results are not the
best representatives of what we can expect when a new medium is tested with the model.

6.10 Validation

Table 6.5 illustrates the performance of the XGBoost algorithm when the indicated medium was
removed from the training data set and used as an “unknown medium” to the model for testing.
Each medium is randomly selected from each of the 5 suppliers.

Media MAE MSE δE95 δEavg δEmax

GPrint Arctic Paper 115gsm 0.361 0.226 0.73 0.44 1.37
UPM Digi Finesse Premium Silk 115gsm 0.485 0.418 0.82 0.55 2.36

Sappi Flo Digital Gloss Text 118gsm 0.280 0.138 0.65 0.34 1.80
Verso Sterling Premium Silk Cover 271gsm 0.284 0.160 0.69 0.32 1.12

Sappi Magno Plus Silk 115gsm 0.284 0.166 0.71 0.35 1.58

Table 6.5: Performance of XGBoost with different media

The δE95 with these results are higher than 0.5 in all these cases. This is a deviation of results
from the test dataset. However, the results suggest that the errors and δE are consistent across
all different suppliers with a bit higher error for UPM supplier. The reason could be higher drying
effect of the media by UPM or relatively smaller data set for training or a combination of both.

To investigate the first reasoning, we conduct a test. We find the correlation between δE X y
and δE y pred y. Please refer to Figure 2.2 for visualization. However, this time instead of X test
and y test, we use the entire data set (hence, X and y) to make predictions and compute δE. The
Pearson correlation between δE X y and δE y pred y is 0.28. This suggests that there is not a
very significant correlation between the actual drying effect and the error in prediction. Hence,
we can conclude that the higher relative δE is attributed to smaller data set. We had used 17
different media from 5 suppliers. The training data set is decided based on the suggestions by the
experts and stock in the warehouses. Hence, it can be concluded that the data set might not be
the best representative of all the coated media in the industry. Moreover, the unavailability of dry
back data for the media posed a challenge while selecting the data set for training the models.

When the validation is performed on the validation data set (Refer to Table 5.4), it is observed
that the model does not perform very well for media that belong to a different region. Table 6.6
shows the actual drying for each of the media used in the validation.
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Media δE95 δEavg δEmax

Gold East Space Shuttle 157gsm 3.15 1.80 8.1
Zanders Silver Digital 200gsm 1.60 1.00 2.24
Zhonghua Ninbo Star 250 gsm 3.96 2.10 9.54

Table 6.6: Actual Drying Pattern of Validation Data

Table 6.7 shows the δE between the L∗, a∗, b∗ values at Time 96 and the predicted L∗, a∗, b∗
values.

Media MAE MSE δE95 δEavg δEmax

Gold East Space Shuttle 157gsm 1.00 1.98 2.65 1.20 7.41
Zanders Silver Digital 200gsm 0.32 0.18 0.72 0.38 1.63
Zhonghua Ninbo Star 250gsm 1.15 3.21 3.76 1.43 9.53

Sappi Magno Plus 150gsm 0.501 0.439 0.85 0.49 1.76

Table 6.7: Errors and δE in prediction of drying data

There are 2 media from China that have significantly high actual δE. Perhaps, there are some
factors that the model has not learned from the given data set. However, the predicted δE95 is
relatively low for Zanders’ Silver Digital (from EU) for decently high actual δE. Hence, it can be
concluded that the data set considered for training is not representative of all the coated media.
Hence, the drying effect of media from different region needs to be studied before they are used
for prediction in the model.

6.11 Summary

In this chapter, we studied the results and obtained key observations about the data, the regression
techniques and the predicted outputs. We evaluated each of the models under different hyper-
parameters and compared them with each other. In the next chapter, we will draw final conclusions
from the results and discuss come other salient observations that are not directly related to this
study but can be used for research pertaining to dry back predictions. Furthermore, we discuss
the challenges and future scope of this project.
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Conclusion

In this chapter, we conclude this project. Section 7.1 summarizes the project. The challenges and
future scope of the project is covered in Section 7.2. Further, we discuss some of the miscellaneous
tests we performed during the course of the project but are not directly related to our research
problem.

7.1 Concluding Summary

In the beginning of this project, we set an aim to study the effects of the factors that contribute to
the dry back. We limited the scope of our project to cover only the media aspect of it. Based on
these factors, we then make a regression model to predict the L∗, a∗ and b∗ values after the color
has stabilized. We can divide the data set into 3 parts, the colors (i.e. CMYK), the L∗a∗b∗ and
the media characteristics including the region, coating and supplier. During the implementation
and testing of the models, it was observed that there is a disparity between the importance of
each of these factors on the dry back. The L∗, a∗ and b∗ values at Time 96 depend on the L∗, a∗
and b∗ at Time 00 while the other factors only have a little contribution.

This behavior is expected because the new L∗, a∗ and b∗ are the just the old L∗, a∗ and b∗
values at a later point of time. As far as the other factors are concerned, the color also plays an
important role. For instance, the higher quantity of yellow color showed higher δE and longer
drying time. Experts suggest that this is a known phenomenon and this had been demonstrated
in the CPP in the past. The media characteristics have significantly lower impact on the dry back
but when compared among themselves, weight and gloss seem to have high importance.

Experts have suggested that the dry back is a surface phenomenon and its extent depends on
the size of the pores at the surface of the medium (along with other factors) as the pores absorb
the ink. The coating at the surface affects the size of the pores. This would explain why the gloss
percentage has importance in predicting the dry back. If this reasoning is true, there should have
been other characteristics that would have had similar importance scores such as the brightness.
However, the reason we did not find this could be because of the lack of data of brightness.

In a study conducted before the data collection had revealed that the weight does not have a
very significant role in determining the dry back. This conclusion is backed by the evidence that
there was no pattern whatsoever between the δE and the weight when all the other factors re-
mained constant. However, during the prediction it is observed that the importance is comparable
to the media characteristics adding the weight number only improved the models. Each medium
has only a maximum of two weight categories. This ensured a balance and helped us cover more
media and suppliers.

The results from Section 6.9 suggest that the best algorithm to use is the XGBoost as it
provides the least δE. Since the model is supposed to predict the dry back for new (which is
unknown) medium, we simulated the scenario by taking a medium out of the training dataset
and retraining the model. Now, the medium was used to make predictions and hence, evaluate
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the model. The results suggest that the δE95 is not very consistent across all the media. When
the aforementioned exercise was performed with some media, the δE95 varied from 0.4 to 0.8.
However, the color experts have suggested that this error is within the tolerable limit.

The results from validation (Section 6.10) suggest that this trained model is not good enough
to be used for all the coated media. Since, it shows relatively good performance in case of EU and
US media, the model can be used for media from these regions. The 2 media used for validation
from China cannot be used as a conclusive evidence to suggest that the Asian media have high dry
back. This means that the model can still be used on media from other regions that do not have
very high dry back. Since it can be tricky to determine if a new (coated) media from a different
region has very high dry back or not without actually finding out the δE, the media properties
can be used to compare it with the current data on media characteristics to have an estimation
of dry back and decide whether to use the model.

7.2 Limitations and Future Scope

The biggest challenge in this project was around the data set. The data set contains 17 different
types of media from 5 suppliers. This is minuscule compared to the actual numbers in the global
market. Hence, it cannot be guaranteed that the dataset is representative of all the coated media.
The results are satisfactory in the sense that the error (δE) is low and the (predicted) color profile
is similar to that of the actual dried one in case of the American and European coated media.
However, the validation results highlight the need to have a bigger training dataset to enhance
the generalizability. The challenge around the media characteristics has been discussed in the
implementation section 5.3.2. The deficiency of data of the media characteristics has restricted
their comprehensive study and use in the regression models.

A major challenge was around the availability of data on dry back. The phenomena of dry back
has not been studied thoroughly in the context of media in the past and very limited information
is available in the public domain. For instance, there is no information available on the typical
δE we can expect on dry back of coated media for different suppliers (and coatings). As a result,
we are not able to determine if the current data set (used for training) is representative of the
drying behavior. The validation results reveal that it is not representative. However, we are not
able to determine the actual range of δE (for dry back) across different coated media. Experts
suggest that the dry back is dependent upon the composition of materials used in the paper and
it is known that the composition varies by region. However, the extent of its influence is yet to
be determined (and quantified). The entire process of data collection is relatively lengthy and
demands availability of various different types of media during this process.

The data set for this project was obtained from the Niagara R4 engine. Hence, the validity of
the model can be ensured only for the printers that use the R4 engine. Since, the print conditions
change with the engine version, its effects on the dry back (and hence, the predictions) are yet to
be determined. For instance, the R2 engine does not have the super-heated steam which reduces
the dry back effect. Hence, the data set obtained from R2 engine is expected to have relatively
higher δE for a given medium. However, the configuration of the model would remain the same.

Furthermore, there are a plethora of printer settings that may or may not have an impact on
drying. Since all the printer settings were maintained as constants in our study, if the regression
model needs to be used in the printer software, it needs to be tested in all the conditions. The
printer settings that do affect the drying patterns should be studied and factored into the model
(perhaps by adding more features). The printer settings for each of the prints (by the printer) are
logged in the media catalog. The media catalogs of the printers would be good starting points to
collect the data on the printer settings.

In the future, a more diverse training data set would help in better training of the model. Even
though, the δE and the errors in the test data set might still not improve, such a model will be able
to accommodate new suppliers from different regions of the world and enhance generalizability.
The feature importance test on the media characteristics revealed that brightness has relatively
higher contribution in the predictions. Since we are dependent upon the suppliers to provide the
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data on media characteristics, if we are able to collect the data ourselves (perhaps by installing
sensors in the printers), it will ensure consistent and reliable data which can consequently improve
the accuracy of the model.
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Appendix A

Terms and Definitions

• Bootstrapping: Bootstrap is a method of resampling which is used to estimate the statistics
on a population by sampling a dataset with replacement.

• CYMK (Cyan Yellow Magenta Black): These are the primary colors used in a printer.
All the other colors can be derived from combination of these colors. The representation of
these colors is done on percentage. Hence, the value of each constituent color is from 0 to
100.

• Dry back: It is a phenomena of decrease in the density and gloss of the wet freshly printed
ink film upon drying.

• Media: It is a physical substrate that can be processed by a printer. It is a tangible object
or can be laid down somewhere.

• TAC (Total Area Coverage): Also known as Ink Density or Total Ink Coverage, TAC is
the limit of the amount of ink that can be put on the medium. The unit is ml/m2

• Range: The difference between maximum and minimum values in the given category.

62 Prediction model of Colour Dryback



Appendix B

Measurement Device Accuracy
Test

Table B.1 represents the standard deviation, average, maximum and 95 percentile of the δE
between each pair of measurement. The measurements are index from 0 to 6.

Figure B.1: Device Accuracy Test
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Appendix C

Kolmogorov-Smirnov Test on
Device Accuracy Test Data

When the Kolmogorov-Smirnov Test [43] was performed on each pair of δE (Figure B.1) to inves-
tigate if the δE from the same device and same test chart belong to the same distribution.

C.0.1 Setup

The δE values computed in the accuracy test (Appendix B) were used in this study. The
Kolmogorov-Smirnov Test [43] was performed on each of the pairs of these δE distributions.

C.0.2 Results

Each δE distribution is indexed in the order of their measurement. Table C.1 represents the test
statistic of the Kolmogorov-Smirnov Test [43], its p-value and conclusion whether the distributions
are same based on the p-value.

C.0.3 Conclusion

The result suggests that the most of the δE distributions are not the same. However, it is
interesting to note that these distributions are coming from the same sheet and measured with
the same measuring device. Ideally, the values of each δE should be 0. Based on the results of
the Device Accuracy Test (Appendix B), it was expected that these sets of δE would belong to
the same distribution.

Hence, it can be concluded that the measurement error is significant enough to change the
distribution of δE over a number of iterations.
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APPENDIX C. KOLMOGOROV-SMIRNOV TEST ON DEVICE ACCURACY TEST DATA

Figure C.1: Kolmogorov-Smirnov Test on the Accuracy Test Dataset
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Appendix D

Correlation Between Variables

Some algorithms such as the feature importance [48] are prone to biased results if the predicted
quantities are highly correlated to the input features [55]. Moreover, some of these interesting
results can be used in other projects at the organization as well. We performed an analysis to
study the correlation between all the variables. We used the Pandas’ [63] implementation for
Pearson’s correlation and the results are as follows in Figure D.1.

Figure D.1: Correlation Matrix (Part 1)

We observe that there is a very high correlation between the respective values of L∗, a∗, b∗ at
Time 00 and Time 96. There is a significant negative correlation between the L∗, a∗, b∗ values
at Time 96 and the C, M , Y and K (except for the 2 values). Generally speaking, the media
characteristics (Section 5.3.2) do not seem any correlation with the C, M , Y and K values. This
can be attributed to the fact that these values are not a property of media or ink but are values
manually provided in the test chart. In fact, other than the L∗, a∗ and b∗ values (at Time 00 and
Time 96) the C, M , Y and K values do not have a correlation with any other quantity.

Generally speaking, the media characteristics have relatively higher correlation (in magnitude)
among themselves compared to the correlation with other quantities such as L∗, a∗, b∗, C, M , Y
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APPENDIX D. CORRELATION BETWEEN VARIABLES

Figure D.2: Correlation Matrix (Part 2)

and K. This analysis helps us to understand how the different quantities are correlated to each
other and also helps us understand the significance of each feature (or quantity). In other words,
it conveys how much information about a quantity can be attained by measuring other quantity
(or quantities).
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Appendix E

Model Performance Under
Different Parameters

E.1 Multilayer Perceptron Model (MLP)

The following heatmaps are obtained on performing grid search on testing data with various solvers
and activation functions of MLP regression algorithm.

Testing
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APPENDIX E. MODEL PERFORMANCE UNDER DIFFERENT PARAMETERS

Figure E.1: Plot of Errors and δE on the Testing Data

E.2 Deep Neural Network

In this section, we provide the results obtained on the implementation of DNN model with various
hyperparameters.

E.2.1 Activation Functions

In this sub-section, we provide the results obtained on having linear and RELU activation functions
in the final layer of the DNN model.

Linear Activation Function in Final Layer

Training
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The following heatmaps are obtained on performing grid search on training data with various
activation functions on first and second layer.
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Figure E.2: Plot of Errors and δE on the Training Data on Linear Activation Function

Testing

The following heatmaps are obtained on performing grid search on testing data with various
activation functions on first and second layer.
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Figure E.3: Plot of Errors and δE on the Testing Data on Linear Activation Function

Relu Activation Function in Final Layer

Training The following heatmaps are obtained on performing grid search on training data with
various activation functions on first and second layer.
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Figure E.4: Plot of Errors and δE on the Training Data on Relu Activation Function

Testing

The following heatmaps are obtained on performing grid search on testing data with various
activation functions on first and second layer.
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APPENDIX E. MODEL PERFORMANCE UNDER DIFFERENT PARAMETERS

Figure E.5: Plot of Errors and δE on the Testing Data on Relu Activation Function

E.2.2 Optimizers

In this sub-section, we provide the results obtained on having different optimizers in the DNN
model.
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Figure E.6: Plot of Errors and δE on the Training and Testing Data with Over Different Optimizers

E.2.3 Embedding Initilizers

In this sub-section, we provide the results obtained on having different embedding initializers on
all the embedding layers in the DNN model.
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Figure E.7: Plot of Errors and δE on the Training and Testing Data

E.3 Random Forest (RF) Regression

In this section, we provide the results obtained on the having different n estimator for Random
Forest algorithm.
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Figure E.8: Plot of Errors and δE on the Training and Testing Data for Random Forest

E.4 Extra Tree (ET) Regression

In this section, we provide the results obtained on the having different n estimator for Extra Trees
algorithm.
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Figure E.9: Plot of Errors and δE on the Training and Testing Data

E.5 Adaptive Boost (AB) Regression

In this section, we provide the results obtained on performing grid search with different hyperpa-
rameters.

E.5.1 Train

In this sub-section, we provide the results obtained on the training data with different combinations
of learningrate and n estimators.
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Figure E.10: Plot of Errors and δE on the Training Data for Adaboost

E.5.2 Test

In this sub-section, we provide the results obtained on the testing data with different combinations
of learningrate and n estimators.
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Figure E.11: Plot of Errors and δE on the Testing Data for Adaboost

E.6 Gradient Boost (GB) Regression

In this section, we provide the results obtained on performing grid search on Gradient Boost
algorithm with different hyperparameters.

E.6.1 Train

In this sub-section, we provide the results obtained on the training data with different combinations
of min impurity and n estimator.
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Figure E.12: Plot of Errors and δE on the Training Data

E.6.2 Test

In this sub-section, we provide the results obtained on the testing data with different combinations
of min impurity and n estimator.
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Figure E.13: Plot of Errors and δE on the Testing Data

E.7 XGBoost (XGB) Regression

In this section, we provide the results obtained on performing grid search on XGBoost algorithm
with different hyperparameters.

E.7.1 Train

In this sub-section, we provide the results obtained on the training data with different combinations
of learning rate and n estimator.
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Figure E.14: Plot of Errors and δE on the Training Data for XGBoost

E.7.2 Test

In this sub-section, we provide the results obtained on the testing data with different combinations
of learning rate and n estimator.
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Figure E.15: Plot of Errors and δE on the Testing Data for XGBoost

E.8 Support Vector (SVR) Regression

In this section, we provide the results obtained on performing grid search on Support Vector
Regression algorithm with different hyperparameters.

E.8.1 Train

In this sub-section, we provide the results obtained on the training data with different combinations
of kernels and C.
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Figure E.16: Plot of Errors and δE on the Training Data

E.8.2 Test

In this sub-section, we provide the results obtained on the testing data with different combinations
of kernels and C.
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Figure E.17: Plot of Errors and δE on the Testing Data
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Appendix F

Correlation with δE

In this chapter, we study the correlation between δE and all the features used in the regression
models. Note that the δE is computed between Time 00 and Time 96. This analysis is different
from the analyses we performed in the previous sections (i.e. the analysis of the correlations among
all the features (Appendix D) and the feature importance analysis for different prediction models
(Section 5.8.1) and (Section 6.7.2). In Appendix D, we discussed the correlation among the media
characteristics, L∗, a∗, b∗, C, M , Y and K. However, that analysis did not indicate the effect
of each quantity on the change of color (measured by δE) upon drying. That analysis indicated
on the correlation between each of the quantities. The feature importance analyses (Section 5.8.1
and Section 6.7.2) helped us to quantify the contribution of each of the feature for the prediction
of L∗, a∗ and b∗ values at Time 96. However, that analysis did not evaluate the effect of each of
the features on the extent of drying (i.e. δE).

In this analysis, we study the contribution of each of the factors on δE. We know that
correlation does not imply causation. However, we also know that the δE cannot have any effect
on the features (or quantities) but the features have an effect on the δE. So, if we find high
correlation between features and δE we can conclude that the feature has an effect on δE. The
results of this analysis are as follows F.1.

Figure F.1: Plot of Correlation between δE and all the features

In the above plot, we observe that the δE has a high correlation with Y and K. Generally
speaking, the plot suggests that the color itself (represented by C, M , Y and K) contributes the
most to the change of color. The L∗, a∗ and b∗ values seem to have negative correlation with δE.
Moreover, (most of) the media characteristics seem to have very small negative correlation with
δE. However, the correlation of the media characteristics cannot be compared with C, M , Y and
K (and L∗, a∗ and b∗ values) due to insufficient data.
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Test Chart Data

The following test chart is used to collect the data for this project.

Figure G.1: Color Test Chart

Following is the list of the colors (in CYMK format) in the test chart alongwith their frequen-
cies.
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Appendix H

Media Used in Training Data

The following media are used in the project (and ultimately in the training dataset).

Serial Number Supplier Medium Name Weight Coating Country
1 G-print Arctic Paper 115 gsm Matt EU
2 G-print Arctic Paper 300 gsm Matt EU
3 Verso Blazer Satin Text 148 gsm Silk US
4 UPM Digi Finesse Premium Silk 115 gsm Silk EU
5 UPM Digi Finesse Premium Silk 300 gsm Silk EU
6 Sappi Magno Plus Gloss 115 gsm Gloss EU
7 Sappi Magno Satin 115 gsm Silk EU
8 Sappi Magno Satin 300 gsm Silk EU
9 Sappi Flo Digital Dull Text 148 gsm Silk US
10 Sappi Flo Digital Dull Cover 270 gsm Silk US
11 Sappi Magno Gloss 115 gsm Gloss EU
12 Sappi Magno Gloss 300 gsm Gloss EU
13 UPM Digi Gold Gloss 130 gsm Gloss EU
14 Sappi Flo Digital Gloss Text 118 gsm Gloss US
15 Sappi Magno Matt 115 gsm Matt EU
16 Sappi Magno Matt 300 gsm Matt EU
17 Sappi Magno Plus Silk 115 gsm Silk EU
18 Sappi Magno Volume 135 gsm Matt EU
19 Sappi Magno Volume 250 gsm Matt EU
20 Sappi Mccoy Gloss Cover 325 gsm Gloss US
21 Sappi Mccoy Silk Cover 270 gsm Silk US
22 Verso Sterling Premium Gloss Cover 271 gsm Gloss US
23 Verso Sterling Premium Silk Cover 271 gsm Silk US
24 Canon Symbol Card 2SC 300 gsm Silk US

Table H.1: Media included in the data set
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