
 Eindhoven University of Technology

MASTER

Vulnerable code repair using Deep Learning

Klarenbeek, Jordi R.

Award date:
2021

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/97ad38ca-963c-4670-9c06-efeb127483d0

Master Thesis

Vulnerable code repair using Deep
Learning

Author: Jordi R. Klarenbeek, 0904147

Study program: Information Security Technology

Graduation Supervisor: Vadim Liventsev

Version 1.2

Eindhoven, August 15, 2021

Abstract
This work showcases multiple approaches to vulnerable code repair using deep learning. Deep
learning has been proven to be effective in source code analysis tasks, such as vulnerable code
repair. One of the existing problems is the lack of datasets containing complex vulnerabilities.
The Big-Vul dataset contains 11823 vulnerable functions from 348 open-source projects in the
C and C++ programming language and thus solves this problem. We explore how existing
LSTM models, trained with this dataset, perform on the task of predicting the repaired code
and the repair operations, such as add and delete. Our findings are that LSTM models that
use the code’s AST structure perform best. Furthermore, that the dataset is promising, but
not large enough for a LSTM model to learn how to produce correct and functional programs.
Pretraining the LSTM model with other C programs would be necessary for improving the
output.

1

Acronyms
AST Abstract Syntax Tree

ANTLR ANother Tool for Language Recognition

BLEU Bilingual Evaluation Understudy, Papineni et al. (2002)

CFG Context-Free Grammar

CNN Convolutional Neural Network

GP Genetic Programming

GRU Gated Recurrent Unit, Cho et al. (2014)

LSTM Long Short-term Memory, Hochreiter and Schmidhuber (1997)

NLP Natural Language Processing

NMT Neural Machine Translation

RNN Recurrent Neural Network, Bengio et al. (1994)

CVE Common Vulnerability and Exposures

CWE Common Weakness Enumeration

CWSS Common Weakness Scoring System

CVSS Common Vulnerability Scoring System

SLM Structural Language Model, Alon et al. (2020)

2

Contents

1 Introduction 5

2 Background 8
2.1 Vulnerabilities and MITRE databases . 9
2.2 Encoder-decoder . 10
2.3 Recurrent Neural Network . 11

2.3.1 Long Term Short Memory (LSTM) networks 11
2.3.2 Tree LSTM . 13
2.3.3 Gated Recurrent Unit (GRU) . 14

2.4 Attention Mechanism . 14
2.5 Vocabulary . 15
2.6 Edit models . 16
2.7 Vector embedding of language and code . 16
2.8 Metrics of translation effectiveness . 17

2.8.1 BLEU . 17
2.8.2 F-score . 17
2.8.3 Top-k accuracy . 17
2.8.4 Levenshtein distance . 18

3 Related Work 19
3.1 Models in literature . 19
3.2 Embedding layer setup . 21
3.3 Grammar correction models . 21
3.4 Research that uses Big-Vul Dataset . 22

4 Models 23
4.1 Implementation . 24

4.1.1 Software framework . 24
4.1.2 Sequential Encoder . 24
4.1.3 Tree Encoder . 24
4.1.4 Sequential Decoder . 24
4.1.5 Binary Classifier . 24
4.1.6 Implementation Testing . 24

5 Dataset and Processing 25
5.1 Preprocessing . 25

3

5.2 Sequential encoder data . 27
5.2.1 Padding . 27

5.3 Tree encoder data . 28
5.4 Edit decoder data . 28
5.5 Binary Classifier data . 28
5.6 Input and output sequence length . 29

6 Method 31
6.1 Hidden vector size . 31
6.2 Training . 31
6.3 Evaluation . 32
6.4 Teacher Forcing . 32

7 Results 33
7.1 Translation and Edit models . 33
7.2 Binary Classifier . 34

8 Discussion 37

9 Conclusion 40

Bibliography 42

Chapter 1

Introduction

Repairing security vulnerabilities is an important part of the software development life cycle.
Programs can contain millions of lines of code and can have many contributors. So, it is
difficult to prevent vulnerabilities from existing. The potential damage of vulnerabilities has
been proven by the ransomware attack by the REvil hacker group spread via the Kaseya
IT management system (Kari, 2021). In this attack the Kaseya IT management software
was compromised, resulting in malware being uploaded to their clients as an update to the
software. The estimate is that 2000 companies have been hit by the ransomware and that
the ransom for releasing all the data is 70 million dollars. Applying vulnerability repair
before the implementation of software would decrease the risk of such an attack.

The problem with vulnerability repair is that the costs might outweigh the benefits. Solving
vulnerabilities can be done by a human programmer, but this costs resources and is not fool
proof. Human programmers have created the vulnerability and thus there is no insurance
that the repair will not create a new vulnerability. Another approach used in the past was
using genetic programming (Monperrus, 2018), in genetic programming a few operations are
chosen which mutate the source code. A test suite or oracle is used to quantify the success of
the mutation. The most successful mutation would be used to further mutate the program.
In the case of using genetic programming, an oracle needs to be constructed that can validate
the new mutations, for example using a compiler that gives errors with faulty code or a test
suite that tests for the desired outcomes. Genetic programming has the downside that the
oracle and test suite needs to be defined by a human, so it is also prone to human error. An
example where genetic programming is useful is for shortening the runtime of a program, as
it is easy to compare two mutations on their runtime. Comparing two mutations on security
requires us to define what secure code is and that is difficult.

The difficulty with defining vulnerability and defining rules for capturing vulnerable software
is due to the diverseness and fluidity of the concept. The word is often applied when a threat
actor can misuse a system or access data that they were not supposed to. Vulnerable is not
something that software is by itself, software is vulnerable because a specific action or series
of actions makes it vulnerable. For a classic example of this we can look at an SQL injection.
In such an injection the attacker inputs SQL code into a HTML web form used to input

5

username and password. Example is given in figure 1.1. The HTTP form should only get
text and no special characters, but if an end string token is passed (’) as regular text, then
the parser that parses the SQL request will have a problem since it will read this (’) token
as part of the programming language. That causes everything after this token to not be
processed as text, but as SQL. This can be abused by adding SQL commands after this
token, allowing for unauthorized access of the database or logging in with the admin account
by inserting ”pass’ OR 1=1 –”, which would be always be equivalent to true even as ”pass” is
not the admin’s password, as 1=1 is always true. Important to note is that the HTML form
and the SQL parser are not doing something wrong separately, but how they communicate
together is what creates the vulnerability. This makes it difficult to define the vulnerability.

Figure 1.1: Basic SQL injection

Finding vulnerabilities and fixing vulnerabilities is a never ending process, but smart solu-
tions can be created to help defenders stay ahead of attackers. A possible solution would be
to use deep learning, to let a neural network learn the definition of a vulnerability and work
with this definition. Deep learning has been shown to work well in tasks where the rules
behind certain decisions or categories are fuzzy and hard to define, for example with the cat
or dog classification task in computer vision (Liu et al., 2014).

There has been research on using deep learning for repairing code. Examples are the Se-
quenceR model of Chen et al. (2019) and the Deepfix model of Gupta et al. (2017). The
Deepfix model was able to repair common programming errors, such as a missing semicolon
or a missing curly bracket. The SequenceR model was able to produce one-line patches. The
problem with current research is that the vulnerabilities repaired are simple and thus would
easily be spotted by a competent programmer. As such, these repair models would not be
useful for complex vulnerabilities that have evaded the detection by competent programmers
and static analysis tools.

Therefore there is need for models that research automatic repair of complex vulnerabilities.
To help with this the Big-Vul C/C++ code vulnerability dataset was created by Fan et al.
(2020). The dataset is unique in the high number of real-world vulnerabilities and the
richness of information available for each vulnerability. This dataset has been constructed
by scraping GitHub for C/C++ vulnerabilities and matching fixes. All the vulnerabilities

6

are registered in the public Common Vulnerabilities and Exposures (CVE) database. The
dataset contains 3754 vulnerabilities of 91 different vulnerability types, all accompanied
with a solution to the vulnerability. In the literature there has not been many deep learning
models that use the Big-Vul dataset. So, exploring how different deep learning models train
and function with this dataset will be valuable for the scientific community. The research
question this thesis will try to answer is: What is the best design for a deep learning C/C++
vulnerability repair model trained with the Big-Vul dataset?

First section after the introduction will be the background information that will be useful in
understanding the method, models and metrics. Next section will be an analysis of earlier
work on the subject of source code analysis. The related works section will be followed up
with the model section, this section will relate how the models were created. The method
section contains the steps that were taken to perform the experiments. The dataset section
explains what the dataset contains and the steps that were taken to preprocess the data.
The results section will show the results for the implemented models. Lastly the conclusion
will discuss the findings and the implications of those findings.

7

Chapter 2

Background

In the literature there exists a lot of research on vulnerable software repair with deep learning.
Allamanis et al. (2018) talked about the naturalness hypothesis of code, that programming
languages are a form of communication and have similar statistical properties to natural
languages. This would mean that natural language processing models can be applied to
programming language analysis. An important distinction between programming languages
and natural languages is that the structure of code is more fixed than for natural languages.
A compiler needs to be able to interpret the code and a compiler is not as flexible as a
human. This shows the bimodality of code, it needs to be read by a human and by a
computer. Another important distinction is that programming languages are defined by a
few designers at big software companies, while natural languages change all the time from
the bottom-up.

The naturalness hypothesis might be extended to draw a comparison between grammatical
errors in natural language and vulnerabilities in programming languages. Deep learning
models have been able to learn the statistical properties of grammatical errors (Zhao et al.,
2019), so they might also be able to learn the properties of vulnerabilities. A prerequisite
for our vulnerable code repair model would be that there are learnable statistical properties
between vulnerable code and non-vulnerable code in the dataset. The absence of these
statistical properties would mean that a neural network will have problems with learning to
translate vulnerable code into non-vulnerable code, as there is no learnable mapping from
vulnerable to non-vulnerable.

Natural language analysis is often based on sequential analysis methods. N-grams were the
first attempts at analysing natural language, which looked at a corpus of data to determine
which words are most probable in the company of other words. Next the RNN networks
were used, such as GRU and LSTM (Hochreiter and Schmidhuber, 1997), which had the
benefit from n-grams to process input in a particular order. In the last four years a new
sequential solution has been proposed and used, the transformer (Vaswani et al., 2017). This
transformer uses multi-headed attention mechanisms to dynamically process a sequence, so
not purely from left to right. Secondly a Transformer can map longer dependencies in the
data. Downside of the transformer network is that it requires vast quantities of data to train

8

properly.

Analysing code with deep learning can be solved with similar sequential models as for natural
language. The only big difference is that programming languages have a strong functional
structure and that it is useful for the analysis and transformation of code to process this
structure. When a compiler compiles a program, it first parses the program into an Abstract
Syntax Tree (AST). This AST is used to generate the machine code needed to execute the
program on the Central Processing Unit (CPU). This AST structure can be processed in
multiple forms, the tree paths can be embedded instead of individual tokens or the AST can
be sequentialized in a way that retains information from the AST structure. Another way
is to influence the embedding of a token by the parent node’s embedding or the child node’s
embedding. The most straightforward approach would be to use a model that is structured
as a tree and uses the token embeddings, using a tree-LSTM for example.

The task of vulnerable code repair can be compared with two natural language processing
tasks. The first is language translation and the other is grammar correction. In language
translation the network takes a sequence of tokens in the input language, for example French,
and translates it into the output language, for example German. For our task the input
language would be insecure code and the output language would be secure code. Translating
the insecure code into secure code would fix the vulnerabilities. Positive about this approach
is that the network will be able to correct vulnerabilities that are very complex and span
multiple lines, since it completely rewrites the program. Negative is that this approach will
need a lot of data, as it is difficult to have a decoder produce long sequences.

The second approach is to approach the task as grammar correction. This would require the
network to learn to produce the edit operations that are needed to fix the input sequence.
These edit operations would be predefined and the model will only need to learn when
to apply these edits. Positive about this approach is that less data should be needed,
since shorter sequences have to be produced. Negative is that preprocessing is necessary
to create the train and test output dataset and the repair operations chosen will limit the
transformative capacity of the neural model. As the model will only be able to produce the
operations.

2.1 Vulnerabilities and MITRE databases
To increase the public knowledge on security vulnerabilities, the Common Vulnerabilities
and Exposures (CVE) database was created by MITRE (https://cve.mitre.org/cve/). This
database contains many of the vulnerabilities that are discovered by security researchers.
The goal is to lift the secrecy around vulnerabilities and not to leave this knowledge only
on black markets. Each vulnerability is given a unique ID starting with CVE, then the year
of occurrence and then some random numbers. The vulnerability used in the EternalBlue
hacking tool, which allowed access to Microsoft for the Wannacry ransomware attack and
the NotPetya cyberattack, is classified as CVE-2017-0144.

The CVE’s are scored on their severity with the Common Vulnerability Scoring System
(CVSS). the scoring is separated in Base metrics and Impact metrics. The Base metric
measures how a vulnerability would be accessed, for example only on the local network, and

9

the complexity of that access. The Impact metric measures the impact on confidentiality,
Integrity and Availability. There have been multiple ways of calculating the score. In
the current version 3 of the CVSS, the EternalBlue vulnerability was scored an 8.1 by the
National Vulnerability Database of the USA.

As described in the introduction it is difficult to define what makes code vulnerable. Still it
is possible to a certain extent to categorize vulnerabilities and improve the communication
between security researchers and developers. For this the Common Weakness Enumeration
(CWE) system was developed. Every vulnerability that is disclosed in the Common Vulnera-
bility and Exposures database is categorized with a CWE. The EternalBlue vulnerability was
classified as CWE-20: Improper Input Validation. Other existing categories are cross-site
scripting (CWE-79), Out-of-bound Write (CWE-787) and SQL injection (CWE-89).

The CWE’s are also scored on their severity with the Common Weakness Scoring System
(CWSS). This score is an indicator for which vulnerabilities would need to be prioritized for
repairing. The metric is divided in three metric subgroups: Base Finding, Attack Surface and
Environmental. Figure 2.1 shows an overview of the metric subgroups. The Base Finding
quantifies the inherent risk of the weakness. The Attack Surface quantifies the difficulties
an attacker needs to overcome to use the weakness. Environmental quantifies how the
environment impacts the risk of the weakness. These subgroups are combined in a score
between 0 and 100 indication the risk of a CWE. For example a SQL injection vulnerability
has a CWSS of 20.69 and a Cross-site Scripting vulnerability has a score of 46.82.

Figure 2.1: CWSS metric groups

2.2 Encoder-decoder
Transforming data to another form is often done in deep learning with an encoder-decoder
architecture (Cho et al., 2014). An encoder-decoder pair contains an encoder model and
a decoder model. The encoder encodes the input to a context vector that represents the
input. The context vectors of all inputs form a vector space where closeness of vectors can
be interpreted as inputs being similar. The decoder takes the context vector and reconstructs
it according to how the decoder is trained. The encoder-decoder architecture is very flexible
and can be used for many tasks. For example for the task of translating a sentence from one
language to another language or for image caption generation, where the image processing
encoder creates the context vector and a language processing decoder reconstructs the vector

10

into a sentence. In our case we will use language processing models for both encoder and
decoder.

Figure 2.2: Encoder-Decoder architecture

2.3 Recurrent Neural Network
The neural network that is most relevant for our research is the Recurrent Neural Network
(RNN). Fully connected networks are not good at processing sequences, as they cannot take
into account the order of the tokens in a sequence. The Recurrent Neural Network (RNN)
was designed for the purpose of processing sequences (Bengio et al., 1994). A RNN network
processes the order of input by having cells influence each other.

Figure 2.3: RNN cell

A RNN cell produces a hidden state, which it passes to the cell processing the next token
in the sequence. A sequence of 5 token would use 5 cells, with the weights matrix being
the same for each neuron. The hidden state is also the output of the model. An example
is shown in Figure 2.3. The value of y0 is equal to h1. Figure 2.4 shows how multiple RNN
cells would be chained in sequence.

2.3.1 Long Term Short Memory (LSTM) networks

A RNN works good for sequences, but there is a problem with vanishing or exploding gra-
dients for long sequences. To deal with this the Long Short-Term Memory network was
developed (Hochreiter and Schmidhuber, 1997). With the LSTM model the cell contains a
cell state c that can be updated by a cell and influences the outgoing hidden state. This
allows the network to retain knowledge over longer sequences.

11

Figure 2.4: Recurrent Neural Network

The LSTM cell is divided in three parts: the forget gate, the input gate and the output gate.

The forget gate allows the cell to remove any knowledge of the previous cell state or to pass
it on. The input gate processes the input from the previous hidden state and the next input
in the sequence. The output gate combines the calculated cell state and the output state to
calculate the hidden state and the output of the cell. Each of the gates are calculated by
separate formula.

For the forget gate formula, fn+1 is the output of the forget formula for position n+ 1 in the
sequence. xn+1 is the input token embedding for position n + 1 in the sequence. U is the
first weight matrix for the forget gate, which is multiplied with the input token embedding.
hn is the hidden state of the previous LSTM cell of position n in the sequence. W is the
second weight matrix for the forget gate. For the input gate and output gate the formulas
are the same, except with different weight matrices U and W for each gate. The σ stands
for the sigmoid activation function.

The forget gate:
fn+1 = σ(xn+1U

f + hnW
f)

The input gate:
in+1 = σ(xn+1U

i + hnW
i)

The output gate:
on+1 = σ(xn+1U

o + hnW
o)

For calculating the input activation vector C̄n+1 the hyperbolic tangent is taken from the
input xn+1 multiplied with the weight matrix U plus the previous hidden state hn multiplied
with the weight matrix W .

C̄n+1 = tanh(xn+1U
g + hnW

g)

With the input activation vector C̄n+1 we can calculate the new cell state. The output of
the forget gate is elementwise multiplied with the previous cell state, this allows the model
to ”forget” the previous cell state. The input gate in+1 is elementwise multiplied with the

12

Figure 2.5: LSTM cell

input activation vector C̄n+1. The sum of both Hadamard products is put through a sigmoid
function.

Cn+1 = σ(fn+1 � Cn + in+1 � C̄n+1)

The new hidden state hn+1 is calculated by multiplying the output gate on+1 with the
hyperbolic tangent of the new cell state Cn+1.

hn+1 = tanh(Cn+1)� on+1

2.3.2 Tree LSTM

The LSTM network is very good at processing sequential data and learning sequential pat-
terns. In the case of programming language analysis it would be better to process the tree
structure of the data. Tai et al. (2015) created for this purpose a tree structured encoder
LSTM model with two variants. The child-sum variant and the N-ary variant.

In the child-sum variant the children hidden states are added into a combined hidden state
hj which is processed similar to a normal LSTM. In the formula below C(j) is the set of
children of node j.

hj =
∑

k∈C(j)

hk

13

The second difference with normal LSTM is that there is a forget gate for each child. So
a parent cell has the choice to ignore its left child’s cell state and not its right child’s cell
state. In the formula below C(j) is again the set of children of node j.

Cj = ij � C̄n+1 +
∑

k∈C(j)

fjk � ck

With the N-ary variant each child gets its own parameter matrix. The formula below shows
how the matrix child multiplications are combined in formula for calculating the input gate
ij. Each child gets its own U matrix. N is the number of children. This formula would
calculate the input gate for node j.

ij = σ(W (i)xj +
N∑
l=1

U
(i)
l hjl + b(i))

The child-sum variant is best for trees with a high branching factor or where the children are
unordered. The branching factor is the amount of child nodes. The N-ary variant is most
useful when there is a recurrent pattern with the locations of tokens, for example if the left
child always contain a noun phrase and the right child a verb phrase in natural text analysis.
The N-ary variant is also best with a low branching factor. For our situation the child-sum
variant is best, as the AST’s of the different programs are very different and as such have a
high branching factor.

2.3.3 Gated Recurrent Unit (GRU)

The Gated Recurrent Unit (GRU) is a form of RNN cell (Cho et al., 2014), designed to limit
the effect of exploding and vanishing gradients. Figure 2.6 shows the structure of the cell.
The GRU cell contains a forget gate, which allows the model to remember the hidden state.
In many ways it is similar to the LSTM, but since it only has a hidden state it has less
parameters.

2.4 Attention Mechanism
A drawback of the encoder-decoder setup is that the decoder only receives info about the
input via the context vector and thus is not very flexible. The context vector that is passed
between the encoder and decoder, gives a good summary of the input sequence, but it might
contain more information about the latter half of the sequence and less on the first half. To
solve this problem the attention mechanism was introduced. The attention mechanism works
similar to how humans focus on a particular word while reading a sentence. It allows the
decoder to focus on parts of the encoder hidden states. Concretely the attention mechanism
is a matrix that is multiplied with the input sequence, the result is added in the decoder
model.

14

Figure 2.6: GRU cell

2.5 Vocabulary
Similar to natural languages, programming language have some words that are used more
often than others. For example ”int” will occur more often than a function defined in an
obscure library. Furthermore since programmers can define variable and functions names,
there are almost infinite possible tokens. To use our data we need to determine a fixed
vocabulary, as this will be needed to define the size of the embedding space. So choices
need to be made on the size of the vocabulary, a large vocabulary might allow our model to
process a complex input of tokens, which would allow the model to better process certain
information of a program. Negative about a large vocabulary is that more data is needed
to correctly learn the embedding space. Another problem is that some tokens do not occur
often in a text, so the model has little context to learn the embedding vector of these rare
tokens. A small vocabulary would be easier to learn and it would simplify which choices the
decoder model needs to make, but it might also lead to the input becoming generic and thus
not giving the model useful information to learn.

There are a few possibilities for decreasing the vocabulary size, all centered around handling
the infinite number of programmer defined tokens. A possible approach could be to use
<UNK>(unknown) tokens, these tokens will be used as placeholder for function and variable
names. Downside of this approach is that it might result in a very small vocabulary. Upside
is that it is easy to implement. Another approach could be to use a copying mechanism,
which is used to replace any <UNK> tokens in the output predicted by the decoder with
tokens from the input where <UNK> was not yet inserted. A possible third approach could
be to separate the user generated tokens in multiple categories: variable names and function
names. These categories can each get a token, for example <VAR> and <FUNC NAME>.
This will allow the model to learn the place of these different categories in the embedding
space. A twist on this approach would be to number these tokens, so for example if there are 3

15

variable names in a function, these are tokenized as <VAR1>, <VAR2> and <VAR3>. This
would help with compiling the output programs as a compiler needs unique and consistent
variable names. If all variables are represented with the same<VAR> token, then the ”same”
variable will be defined multiple times and cannot be correctly parsed by the compiler.

2.6 Edit models
As shortly discussed at the start of this chapter, there are two main approaches for our
model. A translation model and an edit model. An edit model would focus on predicting
the edit operations needed to fix the buggy code and less on transforming the full code
fragment. An edit model needs to predict two types of data, the edit operations and the
new tokens. A model might need to decide to add or delete a line. In the case of an add,
the model would also need to decide which tokens need to be added. Predicting these two
types of data might be achieved by using two separate models, one for the tokens and one
for the operations. Another approach would be to add the edit operations as tokens to the
body of text. For example encapsulating an added line of code with special tokens <add>
and </add>, this is easy to implement and reduces the complexity of the model.

2.7 Vector embedding of language and code
Besides the set-up of the neural network, another important part of the processing is how
the word embeddings are created. A neural network needs numerical input and as such it
cannot accept a word as input. For training our network we need to create a numerical
representation of the words in our vocabulary. With natural language processing often a
vocabulary is created with all the unique existing words. The position of each word has a
position in this vocabulary. In the example below a vocabulary is constructed of the words
”I”, ”am”, ”a”, ”neural” and ”network”. Each word is given a position in the vocabulary,
this can be used to translate a sentence with these words in to numbers. The sentence ”a
neural network I am”, would be translated into {3, 4, 5, 1, 2}.

Vocabulary = {1 : ”I”, 2 : ”am”, 3 : ”a”, 4 : ”neural”, 5 : ”network”}

These positional numbers do not give any insight in the relation between words. For example
’queen’ and ’king’ are close as words semantically, but this could not be reflected in their
position in the vocabulary. A single number cannot hold enough information for a model
to learn the semantics of a word. A solution is to express a word with a vector. In natural
and programming language models a word embedding vector is a vector that is used to
represents a word. The place of a word in the embedding vector space says something about
the properties of a word. ’queen’ and ’king’ should be close to each other in the embedding
space.

In a RNN network a linear embedding layer is added, to serve as a lookup table for the
embedding vector of a word. This embedding layer is a fully connected layer with as output
the embedding vector. The embedding layer is trained together with the whole network, as
such the embedding space that is constructed in the training phase cannot be interpreted.

16

2.8 Metrics of translation effectiveness
The task the model will need to perform is similar to natural language translation. Except
in this case the bad code needs to be translated into good code. Since it is similar, we can
use metrics used in natural language processing to measure how well a machine translates,
also for this task.

2.8.1 BLEU

The BLEU score, BiLingual Evaluation Understudy, is a method of quantifying the quality
of a machine translation (Papineni et al., 2002). It can be used for evaluating natural
language processing and programming language processing. It combines the modified n-
gram precision with a correction based on the length difference of machine translation and
desired translation. The n-gram precision is the amount of n-grams match between the
machine translated sentence and the real translation. An n-gram is a subpart of a sentence,
for example the sentence ”I like to eat cookies”, can be divided into 5 1-grams: {”I”, ”like”,
”to”, ”eat”, ”cookies”}, 4 2-grams: {”I like”, ”like to”, ”to eat”, ”eat cookies”}, 3 3-grams:
{”I like to”, ”like to eat”, ”to eat cookies”}, 2 4-grams: {”I like to eat”, ”like to eat cookies”}
and into 1 5-gram {”I like to eat cookies”}. If a machine learning algorithm would output
”I like eat only brownies”. The Bleu score would be calculated with the amount of same
n-grams. So 3/5 1-grams, 1/4 2-grams and none of the other n-grams.

2.8.2 F-score

The F-score is a measure for the accuracy of predictions, It is the harmonic mean of the
precision and recall. Precision is the percentage of true positives in all the positive classi-
fications. Recall is the percentage of true positives in all datapoints that should have been
classified as positive. For an example we could look at a model that detects cancer. The
precision of this model would be the amount of correctly diagnosed patients, compared to
the total amount of patients diagnosed by the model. The recall of this model would be the
amount of correctly diagnosed patients, compared to the total amount of patients that have
cancer.

F1 =
tp

tp+ 1
2
(fp+ fn)

Tp is the number of true positives, the number of correct positive classifications. Fp is the
number of false positives, the number of incorrect positive classifications. Fn is the number
of false negatives, the number of incorrect negative classifications. The F-score is not relevant
for the encoder-decoder models, as for these model the BLEU score will be more informative
to the success of the model. For the binary classifier the F-score could be informative.

2.8.3 Top-k accuracy

Top-k accuracy is a fairly straightforward measure and is best used with beam search, where
the model predicts multiple candidates. The k indicates where the correct answers can be
and still be counted as a correct prediction. For example with top-5 accuracy, if the model’s
fourth candidate is the target output that would count as a win for the model, with top-3

17

accuracy this would not be a win. With top-k accuracy it does not matter if the fourth
candidate or first candidate is correct, it is only important if the correct candidate is in the
top-k candidates.

2.8.4 Levenshtein distance

The Levenshtein distance is the minimum number of single character changes to a sequence
to turn it into another sequence. This edit distance can be used as a metric for quantifying
how different two words or two sequences are. Often this distance is calculated with the
separate characters in a word. In the case of source code analysis it might be applied on a
token level.

The word error rate is derived from the Levenshtein distance and works on the word level
and not the character level.

18

Chapter 3

Related Work

3.1 Models in literature

The history of automatic software repair is fairly brief, but nevertheless rich (Monperrus,
2018). In the 90s genetic programming started gaining popularity as a method of automatic
program synthesis, Koza (1992) described genetic programming in detail in his book ”Ge-
netic Programming”. Wotawa and Stumptner (1996) outlined an approach for model-based
software debugging using a set of test cases. In the late 2000s approaches were developed for
using genetic programming to repair programs, examples of this were the approach of Forrest
et al. (2009) and of Murali et al. (2009). A practical implementation of these approaches
was the Genprog model (Le Goues et al., 2011), which used the compiler as an oracle for
choosing the mutations that fix a program.

After improvements in natural language processing, source code analysis also began to use
deep learning models. Similar to natural language processing sequential oriented techniques
are mostly used. Although there have been some models that use Convolutional Neural
Networks (CNN), Russell et al. (2018) used a CNN model with a kernel the width of the
token embedding. The task of their model was automatic vulnerability detection. Downside
of their model is that it cannot map long dependencies without losing efficiency, as increasing
the height of the kernel to map a longer dependency also means more neuron weights.
Another CNN model was made by Mou et al. (2016), their model used a 1D convolutional
layer for classifying the function of code.

Due to the exploding and vanishing gradient problem vanilla RNN is not suitable for analysis
of long sequences. The Gated Recurrent Unit (GRU) model was developed to overcome
this problem, the Deepfix model of Gupta et al. (2017) used GRU in their RNN for fixing
common programming errors. Similar to Genprog, they used the compiler as an oracle to
decide whether Deepfix needed to continue changing the code.

Another RNN variant that is commonly used is the LSTM (Hochreiter and Schmidhuber,
1997), which can encode very long sequences. Examples of using LSTM for source code
processing are the SequenceR model of Chen et al. (2019), the CODIT model of Chakraborty
et al. (2020) and the Structural Language Model (SLM) of Alon et al. (2020). These three

19

models operate with the same network setup, the difference being how they embed the input
data. The CODIT model translated the AST’s into Context Free Grammar (CFG) rules
and processed those in sequence, the SequenceR model embeds the tokens without using the
AST structural information, Alon et al. encode the path from all leaf to the place where
code needs to be predicted.

Besides seq2seq models there also exist models that process the input as trees, so in that
case there is no need to preprocess the AST into a sequence. Tai et al. (2015) designed such
a tree-LSTM. In their paper they used the model for sentiment classification. Tai et al. used
the tree LSTM for encoding the input, another difficulty is to generate tree structured output
with a tree lstm decoder. Alvarez-Melis and Jaakkola (2016) developed an approach in which
the topology of a tree is first generated and next the tokens of the nodes were produced using
a combination of the hidden states of the parents and of the siblings, combining knowledge
of the parents and the siblings of a node.

Most of the RNN models above have a similar method of learning, they output the probability
of a particular token and use categorical cross-entropy to quantify how wrong the predicted
output is. Another approach was used by Harer et al. (2018), they used a GAN setup with
a RNN generator and CNN discriminator. Instead of discriminating between real and fake
generated output, the discriminator needed to determine what secure code was and what
insecure code. The generator was pretrained as a de-noising autoencoder, to ensure that it
has a good starting point.

In 2017 the transformer network was proposed by Vaswani et al. (2017), this transformer
network has taken an increasingly prominent place in sequential data analysis. The Trans-
former uses no RNN model, but a multi-headed attention mechanisms to dynamically link
sequence tokens to each other. Attention mechanisms were earlier applied in the RNN mod-
els, but not as the primary way of processing data. Another important finding of Vaswani et
al. was the use of a positional encoding, this means adding some value to the token vector
embedding to indicate the corresponding token’s place in the sequence. This is needed as
the embedded tokens are put into a fully connected layer and as such without the positional
encoding the network would not be able to learn location of tokens in the sequence.

The transformer model has shown great promise for natural language processing. Since
a transformer model needs a lot of data to train, many approaches use pre-training and
fine-tuning. For pre-training often unsupervised data is used and after pre-training the
network is fine-tuned on a particular task with supervised data. Examples of this is the
GPT2 model (Radford et al., 2019) and the BERT model (Devlin et al., 2018). Based on
the BERT model, Feng et al. (2020) created the codeBERT model, which uses the structure
of the BERT model for bimodal source code analysis tasks. Bimodal in the sense that the
tasks involve transforming programming language into natural language, for example code
comment creation. Another interesting source code transformer is the tree-transformer of
Harer et al. (2019). This network uses a Tree Convolutional block to process the AST tree
and does not use any positional encoding. Researchers at Facebook (Kim et al., 2020) used a
pre-trained GPT2 model to do next token prediction. The most interesting of their paper is
their use and comparison of different embedding strategies, which will be further highlighted
in the next section.

20

3.2 Embedding layer setup
Processing code into a set of embedding vectors is a topic which is very crucial for the
functioning of our model. The embedding layer will need to embed the input code in a way
that most information is stored about the input tokens and program. One crucial part of
code is its inherent structure, the structure that a compiler uses to translate the high-level
language into assembly language. As earlier stated the AST structure is the representation
created by the compiler of the structure of a program and using this AST will benefit our
model greatly. Focussing on the AST structure also makes the solution space smaller as the
solutions are constrained by the grammar rules of the AST (McKay et al., 2010). There have
also been models that use the program in sequence with no regard for the AST structure,
codeBERT and SequenceR for example. A program is for these models only sequence of
tokens with no structure.

Other approaches embed the structural information of the AST into the token embedding
or embed paths instead of tokens. The SLM model (Alon et al., 2020) uses the paths to
the unknown node from all leaf nodes and root. Every path is encoded with a LSTM
model and the resulting encodings are aggregated. Another approach by Kim et al. (2020),
sequentialized the AST by embedding leaf nodes together with their respective root path,
encoding the rootpath with a LSTM. The leaf embeddings where entered into the transformer
without positional embedding. Kim et al. also used a depth-first sequentialization that did
not embed the paths but only in what order the nodes where embedded. Harer et al. (2019),
as mentioned earlier, used a tree convolutional block. This TCB layer uses the embedding
of the parent node and left sibling nodes to influence the embedding of a node. This TCB
layer is also used instead of the feedforward layers in the encoder and decoder.

There have also been attempts at developing a positional encoding that will help the trans-
former learn the position of a token in the tree. Shiv and Quirk (2018) proposed a possible
tree related positional encoding limited to binary trees. Their paper was not published since
the depth and breadth of their evaluation was found lacking. So it is an interesting idea, but
not yet fully developed.

3.3 Grammar correction models
The task of code repair can be seen as a translation task or a grammar correction task. Most
of the models mentioned above use the translation approach. Chen et al. (2021) use the Big-
Vul dataset to predict the correct changes to buggy code and as such they approach it as
a grammar correction task. There also exist examples in literature for using the editorial
approach for natural language grammar correction, which is quite similar with the only
difference that natural language is corrected and not a programming language.

Awasthi et al. (2019) created a grammar correction model called the Parallel Iterative Edit
model, it outputs edits instead of sequences and it uses a parallel inference method instead
of beam search. The PIE model predicts edits for all the tokens in parallel, so the edits do
not influence each other. They model iteratively applies predicts edits until the sequence is
correct. The PIE model used a pretrained BERT model to encode the sequences. The edit
operations were add, delete, replace and clear (no edit), the edits are seen as labels placed

21

on the original edit.

Another grammar correction model by Zhao et al. (2019), featured a copy-augmented ar-
chitecture. Their model was a seq2seq model pretrained as a denoising auto-encoder. Zhao
et al. handled the grammar correction task as a translation task, translating the incorrect
sentence into a correct sentence. Zhao et al. use a copy mechanism to handle the out of
vocabulary tokens.

3.4 Research that uses Big-Vul Dataset
In the literature there are 4 papers that cite the Big-Vul dataset. In the paper of Xu
et al. (2020), they referenced to the dataset in a paper analysing the memory related CVE’s
on the Rust programming language. The reference was used to compare the amount of
executable bugs in Rust with the amount in C/C++. Li et al. (2021) used the dataset to
train their vulnerability detection model IVDetect, together with two other C/C++ datasets
from Chakraborty et al. (2021) and Zhou et al. (2019). The programs in the dataset where
represented as program dependence graphs and graph-based classification was applied to find
vulnerable code. The paper got a mean average precision increase of 27% over the baseline of
50%. The third paper was the master thesis published by Michl (2021). His master thesis was
an analysis of faulty software design which can lead to software vulnerabilities and possible
artificial intelligent solutions to mitigate them. He uses the dataset to analyse vulnerabilities
in C/C++. The last paper of Chen et al. (2021), uses the dataset to train a neural network
to repair the security vulnerabilities in the dataset. They create a custom bug-fix dataset by
scraping Github and pretrain their VRepair transformer model with this data. The Big-Vul
dataset is used to finetune the VRepair transformer model. The programs were inputted
as sequences and no method was used to encode the AST structure of the programs. The
VRepair model achieved 17,3% accuracy in predicting the fixes for the vulnerabilities.

22

Chapter 4

Models

In the background and related works section multiple possible networks were showcased.
The overarching model architecture for the translation and edit models will be Encoder-
Decoder, as this has been shown to be most effective in similar tasks, for example for the
SequenceR model and the Deepfix model. The next choice that needs to be made is what
network the encoder will be and what network the decoder will be. Considering the literature
there are three main networks we can choose: the sequential LSTM, the tree LSTM and the
transformer network. The transformer network requires a lot of data, more than is available
in the Big-Vul dataset. A possible solution would be to manually scrape Github for more
bug-fix data and pretrain a transformer with this information. Although this would cost
much time to do and this has already been tested by Chen et al. (2021). What they did
not research is the effectiveness of using a neural network that is specifically designed for
tree inputs. So it will be interesting to compare the sequential encoder LSTM with the tree
encoder LSTM. Due to time constraints only the sequential decoder will be explored and
not the tree LSTM decoder. For the predicted output we have two possible outputs, the
sequentialised parse trees and the edit patches. The naming scheme of the models will be
enc2dec, indicating to what the model transforms the data. For a tree encoder the model
will start with tree and with a sequential encoder it will start with seq. A model with tree
encoder and seq decoder will be a tree2seq model. An encoder-decoder model that predicts
the edits will end with edit, so for example seq2edit.

To evaluate the existence of statistical properties between vulnerable and secure code, an
encoder LSTM architecture will be used to encode the information of the programs in the
dataset. Multiple fully connected layers ending in a single neuron will decide on the vulner-
ability of the code. If this binary classifier architecture will be able to distinguish between
vulnerable and non-vulnerable code, then that would be an argument in favor of statistical
learnable difference between vulnerable and non-vulnerable code in our dataset.

In total we have 4 encoder-decoder models: seq2seq, tree2seq, seq2edit and tree2edit. We
have two binary classifiers: seq2clas and tree2clas.

23

4.1 Implementation

4.1.1 Software framework

For constructing the deep learning models the Python programming language was used,
with the Pytorch machine learning library. Pytorch allows for extensive customization of
the model implementation, which is essential as source code analysis is a fairly niche area
of deep learning and there is no deep learning library that contain prefab models for this
purpose. As source code analysis is closely related to natural language processing we can
use natural language models as inspiration for our models.

4.1.2 Sequential Encoder

The sequential encoder is a fairly straightforward encoder model. It contains an embedding
layer and an LSTM layer. The LSTM has two layers and is bidirectional.

4.1.3 Tree Encoder

The tree encoder is based on the pytorch-tree-lstm repository (Dawe, 2019). This tree LSTM
implementation is based on the child-sum design of Tai et al. (2015). It uses the node order
of a tree, the order in which nodes in a tree need to be processed, to determine which node
needs to be passed through the LSTM layer. It ’batches’ LSTM inputs based on the order in
which they need to be processed. This approach also allows us to batch trees, which greatly
decreases training time. Other approaches to the tree LSTM use recursion to get to all the
nodes and to process them bottom up, but this is slow and costs a lot of memory. Also with
recursion it is not possible to batch trees.

4.1.4 Sequential Decoder

The decoder receives the hidden and cell state of the seq encoder or tree encoder and uses
it to initialize the first cell, after initializing, again with a for loop the decoder LSTM is fed
the hidden and cell state of the previous iteration. For the teacher forcing the target tensor
tokens are used, without teacher forcing the predictions of the model is used. The LSTM
has two layers and is unidirectional.

4.1.5 Binary Classifier

The binary classifier uses the hidden vector and passes it through 2 fully connected layers,
with the last layer being passed through a sigmoid layer into a single neuron.

4.1.6 Implementation Testing

The implementation of each model was checked by overfitting on a small portion of the
dataset. To achieve this overfitting, the models were trained on 10 datapoints for 300 epochs
and also tested on these same 10 datapoints. This showed that the models are able to learn
and that the metrics are functioning correctly.

24

Chapter 5

Dataset and Processing

The Big-Vul dataset (Fan et al., 2020) contains only vulnerabilities that are linked to the CVE
database, as such all vulnerabilities have a CVE identification and a CWE classification. The
vulnerabilities are from the period 2002 until 2019. In total there are different 91 CWE’s
in the dataset. The three most often occurring CWE types are Improper Restriction of
Operations within the Bounds (CWE-119), Improper Input Validation (CWE-20) and Out-
of-bounds Read (CWE-125).

The columns in the dataset are shown in Table 5.1. From these columns we mostly use
the func before and func after since this contains the vulnerable functions and fixes. The
columns CWE ID and CVE ID are used to analyse the effect of the models on different types of
vulnerabilities. In preprocessing the vul column is used to split the functions into vulnerable
functions and non-vulnerable functions. If this column is set to 0, the func before is the
same as the func after.

5.1 Preprocessing

The dataset gathered by Fan et al. (2020) contains a lot of data, but it is not ready to be
used by a deep learning network without preprocessing. For the networks we will need the
programs’ parse tree as a sequence or the tree itself in some format, for example as a json
tree or Python dictionary.

First step in the preprocessing pipeline is to split the MSR dataset into non vulnerable
functions, the vulnerable functions and the fixed functions. At this stage the code, program
id, CWE ID, CVE ID and Vulnerability Classification is saved, the other data is not passed
along as it is not needed for our network or any analysis.

The second step in the preprocessing pipeline is to parse the programs into Abstract Syntax
trees. On a first attempt the Clang compiler was used, which has an option for intercepting
the AST’s before they are passed to the compiler. This resulted in only 66% being parsed
without error, so around 6000 bug-fix pairs. The low amount was caused by the dataset
containing code fragments and not full programs. Fan et al. (2020) collected vulnerable
functions and divided a full program into fragments to separate these vulnerable functions.

25

Table 5.1: Columns of Big-Vul dataset

Features Description
Access Complexity Reflects the complexity of the attack required to exploit the

software feature misuse vulnerability
Authentication Required If authentication is required to exploit the vulnerability
Availability Impact Measures the potential impact to availability of a success-

fully exploited misuse vulnerability
Commit ID Commit ID in code repository, indicating a mini-version
Commit Message Commit message from developer
Confidentiality Impact Measures the potential impact on confidentiality of a suc-

cessfully exploited misuse vulnerability
CWE ID Common Weakness Enumeration ID
CVE ID Common Vulnerabilities and Exposures ID
CVE Page CVE Details web page link for that CVE
CVE summary CVE summary information
CVSS Score The relative severity of software flaw vulnerabilities
Files Changed All the changed files and corresponding patches
Integrity Impact Measures the potential impact to integrity of a successfully

exploited misuse vulnerability
Mini-version After Fix Mini-version ID after the fix
Mini-version Before Fix Mini-version ID before the fix
Programming Language Project programming language
Project Project name
Publish Date Publish date of the CVE
Reference Link Reference link in the CVE page
Update date Update date of the CVE
Vulnerability Classification Vulnerability type
func before The function before the vulnerability being fixed
func after The function after the vulnerability being fixed
lines before The modified lines in the function before the vulnerability

being fixed
lines after The modified lines in the function after the vulnerability

being fixed
vul ”1” means vulnerable function and ”0” means non-

vulnerable function
vul func with fix The code comments showing how the vulnerability was fixed

26

The code fragments miss information that the Clang parser needs to successfully parse the
functions.

The second attempt involved ANTLR. Which is a text parser developed for language analysis.
The trees that are generated by ANTLR are not used for compiling code, but only for
language analysis. Therefore the parser does not care about the code being fragments of
programs. The parser only cares about whether the text matches the grammar file. For
simplicity the C grammar was used, as 98% of the dataset contains C functions and the C
grammar is less complex than the C++ grammar. To prevent problems with parsing C++
programs with the C grammar, all the C++ functions were dropped from the dataset.

Negative about the ANTLR C grammar is that it ineffectively handles expressions. Com-
pound expressions such as ”var1||var2→ var3” or ”var1∗var2 = var3&&var4” are difficult
to handle, since they contain so many expressions. The solution of the C grammar was to
check the existence of all possible expressions and safe the existing expressions. This would
create long tree branches of practically useless nodes, which would only make it more difficult
to train a model on this data. To solve this specific problem and in general to reduce the
size of the parsed tree, all nodes are skipped that have only one child. This ensures that the
neural models only train on nodes that are relevant for the structure of the program.

Another difficulty that arose with parsing were how C macro definitions were used as place-
holders for zero or more variables. An example of such a definition is function(x, y, z
DEF DEF), where DEF DEF could be used to inject ”, a, b” or ”, a” into the function
call. The definitions could also be replaced with an empty string. As the C grammar did
not anticipate these definitions, it could not correctly match them. To solve this a Regex
pattern was used to replace the definitions with an empty string.

The ANTLR grammar still has some matching errors after the above mentioned fixes, the
ANTLR program places <ERROR> tokens in the tree at these locations and continues
parsing. My assumption is that there is enough structure left in a tree for the model to
learn from and that it is still useful to use the AST even if there was a parsing error. The
possible downside could be that the produced output is not usable as parts are missing in
the predicted fix.

5.2 Sequential encoder data
After the parse trees are created they need to be made into sequences for the sequential
encoder. To achieve this the parse trees were travelled with the depth-first algorithm. Figure
5.1 shows the order in which this particular tree would be traversed. This order is used to
create a sequence out of the parse tree. The sequences were started with a <START> token
and the sequences were ended with an end of function token <EOF>.

5.2.1 Padding

The sequential encoder uses a fixed length input to process the input sequences. For example
if the limit is set to 500 tokens, then all sequences need to be of length 500 to process these
sequences in batches. The sequences that were shorter than this limit were padded with
zeros during the preparation of the data.

27

Figure 5.1: Depth-first traversal

5.3 Tree encoder data
The implementation of the tree encoder used is from the Github pytorch-tree-lstm repository
(Dawe, 2019). The data needed for using this software needs to be a different format than
a tree datastructure. The implementation needs a list with node features, an adjacency list,
node order and edge order. The list with node features contains the number paired with
the token in the vocabulary. The adjacency list contains which node are connected with
each other. The node order contains in which order the nodes need to be processed by the
LSTM. The root node will get the highest number in this list and the leaf nodes will get a
0, as they can be processed at the first calculation step. The edge order is similar, but then
handling when an edge needs to be taken into account. This edge order combined with the
adjacency list allows the implementation to process the child-parent information. During
the preprocessing phase the trees are processed into these dataformats.

5.4 Edit decoder data
For the seq2edit and tree2edit model the Github patches are used from the Big-Vul dataset.
These patches contain the information about which changes occurred on the vulnerable
functions to fix the vulnerability. Extra tokens are added to indicate the start of a patch
(<patch>) and the lines that are added begin with <add> token and the lines that are
deleted begin with .

5.5 Binary Classifier data
The input data used for the binary classifier was the vulnerable functions and the repaired
functions. So, the model had to classify the vulnerabilities and the repaired code of the
vulnerabilities. The output was either the function is vulnerable ”1” or non-vulnerable ”0”
for the repaired functions. In total the dataset for the binary classifiers with sequential
LSTM contained 17339 datapoints, with a maximum length of 1000 on the input sequences.
The dataset for the tree LSTM contained 21272 datapoints, with no upper bound on length
or depth.

28

Figure 5.2: Github commit

Figure 5.3: Edit patch

Table 5.2: Table with lengths and amount of sequences

Length AST Sequence output Edit output
200 tokens 3199 1091
500 tokens 6511 3859
700 tokens 7632 5164
1000 tokens 8602 6440

5.6 Input and output sequence length
The programs in the Big-Vul dataset can be very long and this might be a problem for
the LSTM network. Predicting a sequence that is of length 100000 is more difficult than
a sequence of length 10, as the model will need to ’remember’ data longer. Therefore we
will need to chose the maximum length of the input and output sequences. If the length
is too short, there are less datapoints to train the model on. The longest program in the
dataset is 61639 tokens long, the average length in the dataset is 790 tokens. Table 5.2 shows
the number of programs that fit a particular maximum length. All the sequences that have
maximum length 200 are also included with the sequences that have maximum length 500.
This table was made with the length of the output sequences. During the experiments the
models will be trained on these 4 different maximum sequence lengths. Figure 5.4 shows
the distribution of sequence lengths below maximum length 5000. In Table 5.2 it is visible
that the edit sequences are often longer than the output sequences. This indicates that the
patches are long and span the whole function.

29

Figure 5.4: Distribution of program length with max length 5000

30

Chapter 6

Method

For our experiments there are some differences in how the models work, but there are also
some similarities. The similarities are described in this section. The differences are described
in chapter 4.

6.1 Hidden vector size
The hidden vector size will determine how much information can be stored in the hidden
vector and thus can be memorized by the LSTM network. The hidden vector size will also
determine how many parameters the model contains and thus the memory use and training
time of the model. So the trade-off is between information stored in the model and training
time.

6.2 Training

The models were trained on the train dataset for multiple epochs. 90% of the dataset was
used to train the model. The other 10% were used to test the model. Early stopping was
used to stop the training phase if the difference between the current loss was less than 1%
of the average loss of the last 5 epochs. Minimum amount of epochs was 25, to ensure that
the model trained for some time before stopping. The Adam optimizer was used to train
the models with a starting learning rate of 0.01. For the loss function categorical cross-
entropy was used for the translation and edit models. The binary classifiers used the binary
cross-entropy loss function.

As demonstrated in the introduction it is difficult to define security vulnerabilities and inse-
curity. Ideal would be to give feedback to the model on the quality of a repair and to use a
loss function that quantifies how secure the produced output is. A possible approach could
be a discriminator that decides whether a function is vulnerable, similar to a discriminator
in a Generative Adversarial Network (Goodfellow et al., 2020). This approach would require
more data as the data used to train the generator cannot be used to pretrain the discrimi-
nator. For our models the choice was made to compare the produced output with the fixes
available in the dataset. This approach ignores the possibility of other repairs that could be
made on a vulnerability, but this is mitigated by the diversity of vulnerabilities and repairs

31

in the dataset. Since the vulnerabilities are fixed by different programmers, the assumption
is that this teaches the model different ways of repairing the vulnerable functions.

6.3 Evaluation
In the evaluation phase the models are tested on their effectiveness with the BLEU score
and with top1 accuracy. The BLEU score measures the similarity and as such is useful in
determining how close the produced output is to the desired output. The evaluation function
only compares the strings up until the end of function token or the beginning of the zero
padding. It is possible that a model predicts the zero padding correct, but not the EOF
token. The top1 accuracy is useful in determining how many exact matches are produced
by the model.

6.4 Teacher Forcing
Another important part of training our network will be how we are going to correct the
wrong output. The goal is for the network to learn how to fix bad code into good code.
Vulnerable code can be repaired in multiple ways, the challenge is how the network will
learn this. The approach mostly used in literature is to use Categorical Cross-Entropy for
the produced output with the expected output. With this method the network will learn
only one fix per vulnerable program, but to a certain extent this is mitigated by the data
coming from different programmers that solved bugs in different ways. So to a certain extent
this approach learns the model the statistical properties of fixing bugs.

Besides the loss function, it is also important to consider if wrong output should also be
inputted into the decoder for predicting the next token in the tree. Another approach would
be forced learning, in this approach the input of the decoder is not the previous output of
the decoder, but the tokens of the expected outcome.

32

Chapter 7

Results

In this section the results are shown of the experiments. In section 7.1 we will show the
results for the translation and edit models. In section 7.2 we will show the results for the
binary classifier.

7.1 Translation and Edit models
Table 7.1 shows the BLEU scores for the different lengths of input and output sequences.
All models have a hidden size of 512 and learning rate of 0.01. For the models with a tree
encoder, the lengths requirement is set on the length of the output. The values in the table
are an average of multiple training sessions. The base line column is what the BLEU score
would be if the vulnerable function is compared with the repair, so if no change is made to
the input function.

Table 7.1: BLEU scores of translation and edit models

Seq2Seq Seq2Edit Tree2Seq Tree2Edit Base line
200 tokens 0.0826 0.0847 0.4205 0.0341 0.3358
500 tokens 0.0577 0.0409 0.4930 0.0222 0.2896
700 tokens 0.0617 0.0242 0.607 0.0153 0.2429
1000 tokens 0.0138 0.0177 0.0124 0.0000 0.1735

Below an example output is given of a produced program. Most of the produced information
is abstract parse tree tokens. The <UNK> tokens represent variable and function names.
The <ERROR> token represents parts of the program that the parser failed to parse. A
deparser based on the ANTLR C grammar would be needed to deparse it to a program.

[’<START>’, ’translationUnit’, ’externalDeclaration’, ’externalDeclaration’, ’<ERROR>’,
’externalDeclaration’, ’declarator’, ’<UNK>’, ’<ERROR>’, ’<ERROR>’, ’externalDecla-
ration’, ’declarator’, ’directDeclarator’, ’<UNK>’, ’(’, ’parameterTypeList’, ’parameterDec-
laration’, ’declarationSpecifiers’]

33

7.2 Binary Classifier
The binary classifier had the task to classify whether a function was vulnerable or not. The
dataset for training contains 50% vulnerable and 50% non-vulnerable (repaired functions).
Therefore the baseline accuracy would be 50%, as this would be as good as random guessing
by the model. Table 7.2 contains the results of our model with different hidden sizes, these
hidden sizes are given in the first column.

Table 7.2: Accuracy scores of binary classifier

Seq Tree
256 50.75% 50.99%
512 50.70% 49.90%
768 48.70% 49.88%

Table 7.3 contains the results per CWE for the binary classifier with the seq encoder. The
model was trained 3 times and the sum number of test cases per CWE is noted in column
”Total Number”, column ”Correct Guesses” contains the number of times the model correctly
guessed whether a fragment of code with this CWE was vulnerable or non-vulnerable. The
CWE types were retained for the non-vulnerable fragments to check how successful the
model was in classifying similar fragments of code. Since the test cases in the test dataset
were randomly selected, not everytime the same CWE’s were classified. So multiple training
sessions were done to get results on more CWE types. The sum of column ”Total Number”
is the number of test cases in the three training instances. Table 7.4 shows similar results
per CWE but for the binary classifier with the tree encoder.

34

Table 7.3: Accuracy per CWE for the seq classifier

CWE Correct Guesses Total Number Accuracy
CWE-404 11 19 0,579
CWE-264 171 298 0,574
CWE-617 18 32 0,563
CWE-79 17 31 0,548
CWE-284 74 139 0,532
CWE-285 17 32 0,531
CWE-19 19 36 0,528
CWE-59 11 21 0,524
CWE-732 41 79 0,519
CWE-119 603 1167 0,517
CWE-369 31 60 0,517
CWE-20 208 406 0,512
CWE-125 153 301 0,508
CWE-200 101 204 0,495
CWE-000 385 781 0,493
CWE-476 65 132 0,492
CWE-254 27 55 0,491
CWE-787 52 108 0,481
CWE-835 13 27 0,481
CWE-415 12 25 0,480
CWE-190 61 128 0,477
CWE-494 15 32 0,469
CWE-189 52 111 0,468
CWE-416 59 126 0,468
CWE-17 22 47 0,468
CWE-399 163 353 0,462
CWE-362 70 156 0,449
CWE-400 34 78 0,436
CWE-704 24 60 0,400
CWE-94 6 18 0,333
CWE-310 3 12 0,250

35

Table 7.4: Accuracy per CWE for the tree classifier

CWE Correct Guesses Total Number Accuracy
CWE-369 5 8 0,625
CWE-358 7 12 0,583
CWE-94 11 19 0,579
CWE-787 97 170 0,571
CWE-347 18 32 0,563
CWE-362 66 121 0,545
CWE-17 35 65 0,538
CWE-79 40 75 0,533
CWE-134 17 32 0,531
CWE-119 666 1258 0,529
CWE-269 38 72 0,528
CWE-190 82 156 0,526
CWE-284 63 120 0,525
CWE-310 35 67 0,522
CWE-416 88 172 0,512
CWE-189 151 298 0,507
CWE-20 342 676 0,506
CWE-476 71 143 0,497
CWE-125 115 234 0,491
CWE-000 596 1214 0,491
CWE-254 57 117 0,487
CWE-264 90 185 0,486
CWE-404 45 93 0,484
CWE-399 219 453 0,483
CWE-664 10 21 0,476
CWE-362 15 32 0,469
CWE-79 15 32 0,469
CWE-77 13 28 0,464
CWE-200 153 334 0,458
CWE-400 10 22 0,455
CWE-59 23 58 0,397
CWE-22 12 32 0,375
CWE-617 11 32 0,344
CWE-285 1 3 0,333
CWE-426 2 13 0,154
CWE-354 0 1 0,000

36

Chapter 8

Discussion

During the experiments two different encoders were compared, namely the tree LSTM and
the sequential LSTM. The sequential LSTM used a sequentialized version of the function’s
parse tree. The results show that the tree encoder was superior to the sequential encoder in
processing the input data, in the case of the translation models (seq2seq vs tree2seq). For
the edit models the tree encoder performed worse. In the case of the seq2edit and tree2edit,
the decoder does not predict in any way the parse structure of the function, as such it might
be disruptive to use an encoder that is focused on the parse tree structure.

Comparing the results of the edit models with the translation models, it is visible that the
translation models worked better than their respective edit counterpart. The difference is
smaller between seq2seq and seq2edit than between tree2seq and tree2edit. As mentioned
earlier using a tree encoder might be negative for predicting the edits. As the edits contain
both the lines that are removed and are added, there is a high amount of duplicate code.
This duplicate code might disrupt the tree structure of the program. Another reason could
be that the predicted tokens do not contain parse tree information, as the github patches
of the edit output are not parsed by ANTLR. Therefore the model might have difficulty
predicting the edits, as there is no tree structure to learn.

Besides comparing the 4 different models with each other, it is also important to compare
them with the baseline results. The baseline is to directly calculate the BLEU score similarity
between the vulnerable functions and the fixes in the dataset. Table 7.1 shows that the base
line scored better than most models. Except for the tree2seq model, which scored higher on
sequence lengths 200, 500 and 700. Interesting is that the scores of tree2seq increased even
with the length of the sequence increasing, except for length 1000. For the other models the
scores decreased as the length increased. For the tree2seq model the amount of datapoints
might have had a stronger effect on training the model, then for the other models. It seems
that at length 1000 this effect decreased strongly and this disrupted the ability of the model
to learn to produce correct repairs.

The programs produced by the best model tree2seq show how the model produced the parse
tree structure of a function. The translation models produce a sequentialized parse tree of
the repair. An example can be seen in the produced function below. This repair was made

37

on a CWE-200 (Exposure of Sensitive Information to an Unauthorized Actor) vulnerability.
The BLEU score between the predicted repair and the actual repair was 0.39. As can be
seen the produced repair correctly guesses the actual repair until the closing bracket token,
after which all tokens were wrong. This problem occurred in multiple programs produced
by the tree2seq model. The model has problem recovering from a wrong guessed token,
probably since all further predicted tokens are based on this wrong guess. This issue might
be solved by adding a self-attention mechanism to the decoder. A self-attention mechanism
would allow the decoder to focus on previous predicted words and not only on the cell state
and hidden state of the previous LSTM cell.

Predicted repair: [’<START>’, ’translationUnit’, ’externalDeclaration’, ’externalDeclara-
tion’, ’<ERROR>’, ’externalDeclaration’, ’declarator’, ’<UNK>’, ’<ERROR>’, ’<ERROR>’,
’externalDeclaration’, ’declarator’, ’directDeclarator’, ’<UNK>’, ’(’, ’parameterTypeList’,
’parameterDeclaration’, ’declarationSpecifiers’, ’<UNK>’, ’declarator’]

Actual repair: [’<START>’, ’translationUnit’, ’externalDeclaration’, ’externalDeclara-
tion’, ’<ERROR>’, ’externalDeclaration’, ’declarator’, ’<UNK>’, ’<ERROR>’, ’<ERROR>’,
’externalDeclaration’, ’declarator’, ’directDeclarator’, ’<UNK>’, ’(’, ’)’, ’compoundState-
ment’, ’’, ’blockItemList’, ’expression’, ’primaryExpression’, ’<UNK>’, ’(’, ’)’, ’->’, ’<UNK>’,
’(’, ’argumentExpressionList’, ’<UNK>’, ’)’, ’;’, ’’, ’<EOF>’]

In the paper of Chen et al. (2021), they propose a vulnerability repair model using the
transformer network and training with the Big-Vul dataset. Their VRepair model got a
17,3% accuracy on predicting repairs. Their approach is similar to our edit model. Focussing
on the part of the code fragment that needed to be repaired, the difference is that they predict
only the added and removed tokens instead of whole lines. The TFix model by Berabi et al.
(2021), used a transformer model pretrained on natural language and achieved 46.3% in
predicting exact matches. Both models VRepair and TFix outperformed our model, as our
model achieved 0% top-1 accuracy. This is most likely attributable to the length of the
sequences our model needs to predict, increasing the difficulty of producing an exact match.
The other models only needed to predict small parts of a program.

The results of the binary classifier show that the neural network could not learn the dif-
ference between the vulnerable functions and non-vulnerable functions. The results are not
significantly different from random guessing. The dataset is split between 50% vulnerable
and 50% non-vulnerable, so an accuracy of 50% of the model means that it is random guess-
ing or choosing one of the two options for all data and getting 50% accuracy. The classifier
IVDetect made by Li et al. (2021) was trained on the same dataset. Their model performed
better than other state-of-the-art models on the same dataset. This shows that their IVDe-
tect approach can learn the statistical differences between vulnerable and non-vulnerable
code. The IVDetect model was trained on three different C and C++ datasets, the model
performed the worst on the Big-Vul dataset. This indicates that the dataset is less suitable
for deep learning than other datasets.

The results for the different CWEs of Table 7.3 and Table 7.4 show that the binary classifier
is a little better with classifying some vulnerabilities types. The highest accuracy is achieved
for the sequential LSTM classifier for CWE-404 (Improper Resource Shutdown or Release).

38

With an accuracy of 57.9% out of 19 cases. This accuracy is probably caused by chance and
not an indicator of a significant difference of accuracy. This is confirmed by the accuracy
of the tree LSTM classifier on this same vulnerability type. The tree classifier achieves an
accuracy of 48,38% for this CWE, so not higher than the baseline of 50%. In the two tables
it is also visible that the more times a vulnerability type had to be classified, the closer
the accuracy reaches 50%. This indicates that the vulnerabilities where the classifiers had a
higher or a lower accuracy than 50% will get closer to 50% after more tests.

The success of a machine learning model is not only caused by the architecture of a model.
The data used to trained the model is also important. The code in the Big-Vul dataset is
a fragment of a larger program, as such it cannot be compiled. This could be the cause
of the parsing problems with the Clang parser and the ANTLR parser. The <ERROR>
tokens, used for mitigating parsing errors, allowed us to train the model on more data, but
it might also hinder the data quality by removing important program information from the
data. This might cause information to be missing in the dataset that would be needed for
a model to learn to fix vulnerabilities. Another problem with the dataset is that a single
vulnerability can span multiple fragments, so the fragment itself might not be vulnerable.
A fix would be to combine all the fragments from a CVE and use that as input, downside is
that this increases the input size. Looking at how successful other researchers were in using
the dataset, the IVDetect model trained worse using the Big-Vul dataset compared with two
other C/C++ datasets. The VRepair model only used the Big-Vul dataset for evaluation,
so it is difficult to draw conclusions on the effect of the dataset on their model.

The models and the accompanying code that was created in this thesis will be useful for other
researchers that also research automatic vulnerability repair. The code is publicly available
on Github (https://github.com/Jordi-klarenbeek/LSTM-Bug-Fixing). The ANTLR parser
for C might be an inspiration for researchers that also have to parse C or another pro-
gramming language. The ANTLR language recognition framework is easy to learn, but still
having example implementations are useful for understanding the framework.

39

Chapter 9

Conclusion

Problems with software can have a great impact on our life. Issues relating to the security
of software can be devastating through ransomware or data leaks. Therefore it is important
that the software we use is repaired of security vulnerabilities. Vulnerabilities are hard to
define, a smart solution such as deep learning could be useful. Since deep learning allows the
computer to learn the rules and definitions of a security vulnerability. Goal of this thesis was
to explore deep learning models for repairing vulnerabilities in the C and C++ programming
language, using the Big-Vul dataset (Fan et al., 2020).

The implications of our findings are that the vulnerabilities in the Big-Vul dataset are difficult
to train a model on. The tree2seq model learns to a certain extent how to reconstruct the
vulnerable functions into non-vulnerable functions, but it does not succeed in producing
exact matches.

The results of the binary classifier show that it is difficult for a neural model to learn the
statistical differences between vulnerable and non-vulnerable code in this dataset. This
might have different reasons. The first reason could be that the fixes to the vulnerabilities
are not as effective as expected by the programmers. The programmers that repair the
vulnerabilities are often not the same as the security experts that found the vulnerabilities.
Therefore the programmers might miss knowledge to prevent new vulnerabilities. The second
reason could be that the vulnerabilities are not detectable since they are indistinguishable
from non-vulnerable code. As described in the background section, vulnerabilities are often
valid functionalities of a program that can be misused via a series of actions. These series
of actions might be harmless by themselves, but result in a vulnerability if these actions are
taken after each other.

Predicting the full program has been shown to be difficult, as the model needs to predict
long sequences. A better approach would be to only predict the code that needs to change.
The edit model tried to achieve this with the Github patches, the problem is that the Github
patches contained a lot of duplicate code. Better preprocessing would be needed to remove
the duplicate tokens and reduce the output sequence length.

A few possible changes to the current models could be to use an attention mechanism, a copy

40

mechanism for the <UNK> tokens and beam search for the patch interference. Currently
greedy search is used, so selecting the token candidate which has the highest probability.
With beam search multiple candidate sequences are created and the top candidate when the
maximum sequence length is reached.

In the Big-Vul dataset there exist some non-vulnerable functions that have not been used
in training the models. These functions might be used to pretrain the LSTM models. This
pretraining might simply be the identity function or returning some tokens that are replaced
with random tokens (to mimic completion and practicing code comprehension). In this
manner the network will learn to produce functions before fixing vulnerabilities.

Another possibility would be to train the model on another dataset containing bugs and fixes.
For example the SATE IV dataset (Okun et al., 2013), which contains over 120000 synthetic
examples in the C and C++ programming language. Besides using an already existing
dataset, we could also create our own dataset by searching on Github for git commits that
mention ”bug fix” or ”repair”, and use the pre and post code.

On the side of the neural network choice an improvement might be to use a transformer
network or the network of the IVDetect model (Li et al., 2021). Transformer networks
need a lot of data to learn properly, so only training on the Big-Vul dataset might not be
sufficient to get a good functioning network. An option could be to use another pretrained
transformer network such as codeBERT (Feng et al., 2020) and copy parameters from that
model to initialize our model.

For the binary classifier an interesting avenue to pursue would be to classify which CWE
vulnerability type a vulnerable code fragment is. Training a model only on vulnerable code
fragments. The model would have difficulty learning less frequent vulnerability types, as it
has less opportunity to learn about these types. Therefore it would be best to train this
vulnerability type classifier on types that occur often in the dataset. For example CWE-119
(Buffer Overflow) or CWE-264 (Permissions, Privileges, and Access Controls).

41

Bibliography

M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton. A survey of machine learning for big
code and naturalness. ACM Computing Surveys (CSUR), 51(4):1–37, 2018.

U. Alon, R. Sadaka, O. Levy, and E. Yahav. Structural language models of code. In
International Conference on Machine Learning, pages 245–256. PMLR, 2020.

D. Alvarez-Melis and T. S. Jaakkola. Tree-structured decoding with doubly-recurrent neural
networks. 2016.

A. Awasthi, S. Sarawagi, R. Goyal, S. Ghosh, and V. Piratla. Parallel iterative edit models
for local sequence transduction. arXiv preprint arXiv:1910.02893, 2019.

Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient
descent is difficult. IEEE transactions on neural networks, 5(2):157–166, 1994.

B. Berabi, J. He, V. Raychev, and M. Vechev. Tfix: Learning to fix coding errors with a
text-to-text transformer. In International Conference on Machine Learning, pages 780–
791. PMLR, 2021.

S. Chakraborty, Y. Ding, M. Allamanis, and B. Ray. Codit: Code editing with tree-based
neural models. IEEE Transactions on Software Engineering, 2020.

S. Chakraborty, R. Krishna, Y. Ding, and B. Ray. Deep learning based vulnerability detec-
tion: Are we there yet. IEEE Transactions on Software Engineering, 2021.

Z. Chen, S. J. Kommrusch, M. Tufano, L.-N. Pouchet, D. Poshyvanyk, and M. Monperrus.
Sequencer: Sequence-to-sequence learning for end-to-end program repair. IEEE Transac-
tions on Software Engineering, 2019.

Z. Chen, S. Kommrusch, and M. Monperrus. Neural transfer learning for repairing security
vulnerabilities in c code. arXiv preprint arXiv:2104.08308, 2021.

K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio. Learning phrase representations using rnn encoder-decoder for statistical ma-
chine translation. arXiv preprint arXiv:1406.1078, 2014.

J. Dawe. pytorch-tree-lstm. https://github.com/unbounce/pytorch-tree-lstm, 2019.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

42

https://github.com/unbounce/pytorch-tree-lstm

J. Fan, Y. Li, S. Wang, and T. N. Nguyen. Ac/c++ code vulnerability dataset with code
changes and cve summaries. In Proceedings of the 17th International Conference on Mining
Software Repositories, pages 508–512, 2020.

Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin, T. Liu, D. Jiang,
et al. Codebert: A pre-trained model for programming and natural languages. arXiv
preprint arXiv:2002.08155, 2020.

S. Forrest, T. Nguyen, W. Weimer, and C. Le Goues. A genetic programming approach to
automated software repair. In Proceedings of the 11th Annual conference on Genetic and
evolutionary computation, pages 947–954, 2009.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio. Generative adversarial networks. Communications of the ACM, 63(11):
139–144, 2020.

R. Gupta, S. Pal, A. Kanade, and S. Shevade. Deepfix: Fixing common c language errors by
deep learning. In Proceedings of the aaai conference on artificial intelligence, volume 31,
2017.

J. Harer, O. Ozdemir, T. Lazovich, C. P. Reale, R. L. Russell, L. Y. Kim, and P. Chin.
Learning to repair software vulnerabilities with generative adversarial networks. arXiv
preprint arXiv:1805.07475, 2018.

J. Harer, C. Reale, and P. Chin. Tree-transformer: A transformer-based method for correc-
tion of tree-structured data. arXiv preprint arXiv:1908.00449, 2019.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

P. Kari. Who’s behind the kaseya ransomware attack – and why is it so dangerous?
The Guardian, 2021. URL https://www.theguardian.com/technology/2021/jul/06/

kaseya-ransomware-attack-explained-russia-hackers.

S. Kim, J. Zhao, Y. Tian, and S. Chandra. Code prediction by feeding trees to transformers.
arXiv preprint arXiv:2003.13848, 2020.

J. R. Koza. Genetic programming: on the programming of computers by means of natural
selection, volume 1. MIT press, 1992.

C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. Genprog: A generic method for
automatic software repair. Ieee transactions on software engineering, 38(1):54–72, 2011.

Y. Li, S. Wang, and T. N. Nguyen. Vulnerability detection with fine-grained interpretations.
arXiv preprint arXiv:2106.10478, 2021.

B. Liu, Y. Liu, and K. Zhou. Image classification for dogs and cats. TechReport, University
of Alberta, 2014.

R. I. McKay, N. X. Hoai, P. A. Whigham, Y. Shan, and M. O’neill. Grammar-based genetic
programming: a survey. Genetic Programming and Evolvable Machines, 11(3):365–396,
2010.

43

https://www.theguardian.com/technology/2021/jul/06/kaseya-ransomware-attack-explained-russia-hackers
https://www.theguardian.com/technology/2021/jul/06/kaseya-ransomware-attack-explained-russia-hackers

M. J. Michl. Analyse sicherheitsrelevanter Designfehler in Software hinsichtlich einer De-
tektion mittels Künstlicher Intelligenz. PhD thesis, Technische Hochschule, 2021.

M. Monperrus. Automatic software repair: a bibliography. ACM Computing Surveys
(CSUR), 51(1):1–24, 2018.

L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin. Convolutional neural networks over tree
structures for programming language processing. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 30, 2016.

P. Murali, A. Sandur, and A. A. Patil. Correction of logical errors in c programs using
genetic algorithm techniques. International Journal of Recent Trends in Engineering, 1
(2):176, 2009.

V. Okun, A. Delaitre, and P. E. Black. Report on the static analysis tool exposition (sate)
iv. NIST Special Publication, 500:297, 2013.

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a method for automatic evaluation
of machine translation. In Proceedings of the 40th annual meeting of the Association for
Computational Linguistics, pages 311–318, 2002.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language models are
unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer, O. Ozdemir, P. Ellingwood, and
M. McConley. Automated vulnerability detection in source code using deep representation
learning. In 2018 17th IEEE international conference on machine learning and applications
(ICMLA), pages 757–762. IEEE, 2018.

V. L. Shiv and C. Quirk. Novel positional encodings to enable tree-structured transformers.
2018.

K. S. Tai, R. Socher, and C. D. Manning. Improved semantic representations from tree-
structured long short-term memory networks. arXiv preprint arXiv:1503.00075, 2015.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. arXiv preprint arXiv:1706.03762, 2017.

F. Wotawa and M. Stumptner. A model-based approach to software debugging. DBAI
technical reports, (TR-96-05), 1996.

H. Xu, Z. Chen, M. Sun, Y. Zhou, and M. Lyu. Memory-safety challenge considered solved?
an in-depth study with all rust cves. arXiv preprint arXiv:2003.03296, 2020.

W. Zhao, L. Wang, K. Shen, R. Jia, and J. Liu. Improving grammatical error correc-
tion via pre-training a copy-augmented architecture with unlabeled data. arXiv preprint
arXiv:1903.00138, 2019.

Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu. Devign: Effective vulnerability identification
by learning comprehensive program semantics via graph neural networks. arXiv preprint
arXiv:1909.03496, 2019.

44

	Introduction
	Background
	Vulnerabilities and MITRE databases
	Encoder-decoder
	Recurrent Neural Network
	Long Term Short Memory (LSTM) networks
	Tree LSTM
	Gated Recurrent Unit (GRU)

	Attention Mechanism
	Vocabulary
	Edit models
	Vector embedding of language and code
	Metrics of translation effectiveness
	BLEU
	F-score
	Top-k accuracy
	Levenshtein distance

	Related Work
	Models in literature
	Embedding layer setup
	Grammar correction models
	Research that uses Big-Vul Dataset

	Models
	Implementation
	Software framework
	Sequential Encoder
	Tree Encoder
	Sequential Decoder
	Binary Classifier
	Implementation Testing

	Dataset and Processing
	Preprocessing
	Sequential encoder data
	Padding

	Tree encoder data
	Edit decoder data
	Binary Classifier data
	Input and output sequence length

	Method
	Hidden vector size
	Training
	Evaluation
	Teacher Forcing

	Results
	Translation and Edit models
	Binary Classifier

	Discussion
	Conclusion
	Bibliography

