
 Eindhoven University of Technology

MASTER

Automatic Anti-Pattern Detection in Microservice Architectures based on Distributed Tracing

Hübener, Tim

Award date:
2021

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/8e81416d-0820-414d-8e2d-8d9905ea7f57

Automatic Anti-Pattern Detection in
Microservice Architectures based on

Distributed Tracing

August 3, 2021

Author:
Tim Hübener | 0979287

Supervisor:
Yaping Luo

Mathematics and Computer Science Department
Software Engineering and Technology

M.Sc. Computer Science and Engineering
Eindhoven University of Technology

February 21, 2020

Declaration concerning the TU/e Code of Scientific Conduct

I have read the TU/e Code of Scientific Conducti.

In carrying out research, design and educational activities, I shall observe the five central values of scientific integrity,
namely: trustworthiness, intellectual honesty, openness, independence and societal responsibility, as well as the
norms and principles which follow from them.

Date

…………………………………………………..…………..

Name

…………………………………………………..…………..

ID-number

…………………………………………………..…………..

Signature

…………………………………………………..…………..

Submit the signed declaration to the student administration of your department.

i See: https://www.tue.nl/en/our-university/about-the-university/organization/integrity/scientific-integrity/
The Netherlands Code of Conduct for Scientific Integrity, endorsed by 6 umbrella organizations, including the VSNU, can be found

here also. More information about scientific integrity is published on the websites of TU/e and VSNU

26.07.21

Tim Hübener

0979287

Acknowledgments

First of all I would like to thank my family for their love and support throughout my studies.

Next, I want to thank Michel Chaudron, Pieter Vallen, Jonck van der Kogel and Tom Liefheid for their
extensive time and effort. I greatly appreciate their commitment and contributions to this project.
Their presence during our weekly meetings and availability throughout the weeks is something I don’t
take for granted and has been fundamental in the success of my graduation project.

Finally, I want to give a special thanks to Yaping Luo for her tremendous support throughout the
last year. From the day I applied for this graduation project to its completion she has gone above
and beyond to ensure the success of my graduation project. For this I am deeply thankful.

Abstract

The successful migration to microservice based applications by large companies such as Netflix and
Amazon popularized the idea of this architectural style and it has led to an industry wide adoption
starting around 2015. The problem with microservice architectures is the fact that identifying ar-
chitectural anti-patterns has become increasingly difficult. This is due to the continuous change of
the architecture and the overall growth of applications in size and complexity. Current visualization
and anti-pattern detection techniques are not adequate enough to help developers in identifying anti-
patterns. Therefore, the goal of this study is to develop a methodology for detecting anti-patterns in
microservice architectures based on execution traces.

Our approach is to first reconstruct the microservice architecture from execution traces and represent
the architecture as a graph. Then we compute node level metrics based on graph algorithms. Finally,
we link the computed metrics to a set of anti-patterns.

The contribution of this research is threefold. The first contribution is the approach of distributed
tracing for architecture recovery. The second contribution is the application of concepts and algo-
rithms, developed within the field of graph theory for automatic identification of architectural anti-
patterns. The third contribution is the application of our approach on a large scale (400+ services)
industry application.

Contents

1 Introduction and
Research Question 1
1.1 Introduction . 1
1.2 Research Question . 2
1.3 Thesis Structure . 2

2 Background and Related Work 4
2.1 Distributed Tracing . 4
2.2 Service Dependency Graphs . 9

2.2.1 Tracing Data . 9
2.2.2 Service Discovery Mechanism . 9

2.3 Architectural Technical Debt . 10
2.3.1 Anti-Patterns . 11

2.4 Network Analysis . 12
2.4.1 Service Metrics for Architecture Evaluation . 12
2.4.2 Microservice Anti-Pattern identification . 12

2.5 Summary . 13

3 Methodology 14
3.1 Data Collection . 14
3.2 Data Processing . 15
3.3 Metrics to Anti-Pattern Matching . 17
3.4 Expert Validation . 19
3.5 Summary . 19

4 Visualization Tool 20
4.1 Motivation . 20
4.2 Requirements . 20
4.3 Architecture . 21
4.4 Data Visualization . 26
4.5 Summary . 35

5 Case Study and Results 36
5.1 Case Study . 36
5.2 Results . 36

5.2.1 Methodology Results . 36
5.2.2 Expert Validation Results . 40

5.3 Result Research Question . 41
5.4 Summary . 41

6 Discussion, Future Work and Threats to Validity 42
6.1 Discussion . 42

6.1.1 Automatic Anti-Pattern Detection . 42
6.1.2 ING/Viz tool evaluation . 43

6.2 Future Work . 45

Automatic Anti-Pattern Detection in Microservice Architectures

6.2.1 Automatic Anti-Pattern Detection . 45
6.2.2 ING/Viz tool . 45

6.3 Threats to validity . 45
6.4 Personal Recommendations for ING . 46
6.5 Summary . 47

7 Conclusion 48

List of Figures

2.1 The path taken through a simple serving system on behalf of user request X. The
letter-labeled nodes represent processes in a distributed system. | Reprinted from B. H.
Sigelman et al., “Dapper , a Large-Scale Distributed Systems Tracing Infrastructure,”
Google Res., no. April, p. 14, 2010, [Online]. Available: link. 5

2.2 The causal and temporal relationships between five spans in a Dapper trace tree. |
Reprinted from B. H. Sigelman et al., “Dapper , a Large-Scale Distributed Systems
Tracing Infrastructure,” Google Res., no. April, p. 14, 2010, [Online]. Available: link. 6

2.3 An overview of the Dapper collection pipeline. | Reprinted from B. H. Sigelman et al.,
“Dapper , a Large-Scale Distributed Systems Tracing Infrastructure,” Google Res., no.
April, p. 14, 2010, [Online]. Available: link. 7

2.4 The high level architecture of Eureka. Taken from Netflix Tech Blog. 10
2.5 ATD and the related concepts | Reprinted from S. S. de Toledo, A. Martini, and

D. I. K. Sjøberg, ”Identifying architectural technical debt, principal, and interest in
microservices: A multiple-case study,” J. Syst. Softw., vol. 177, no. April, p. 110968,
Jul. 2021, doi: 10.1016/j.jss.2021.110968. link. 11

3.1 Sequence of three Client-Server-Spans between services forming a single trace. 15
3.2 Graph database schema after trace aggregation. 15
3.3 Final graph database schema after second processing step. 15

4.1 ING/Viz architecture overview. 21
4.2 The event sequence for fetching the relational data from the Graph DB and inserting

it into the ING/Viz Graph DB. 22
4.3 The event sequence for fetching the trace-metrics data and displaying it in the ING/Viz

Frontend . 24
4.4 The event sequence for displaying a Business Value Chain trace and displaying it in

the ING/Viz Frontend . 25
4.5 ING/Viz tool displaying the whole architecture with trace-metrics projected onto the

edges. 26
4.6 ING/Viz tool displaying a flagged mega-service surrounded by its depending services. 27
4.7 ING/Viz tool’s diagram page displaying dual axis line diagrams of the computed node

metrics. 28
4.8 ING/Viz tool’s metrics table listing the metrics for all services. 29
4.9 ING/Viz tool displaying a BVC list of services and operations. 30
4.10 ING/Viz tool displaying a BVC in a list and graph format. 31
4.11 ING/Viz tool highlighting a BVC services within the overall architecture. 31
4.12 ING/Viz highlighting the four largest Louvain communities within ING’s architecture.

In total 13 Louvain communities are detected. 32
4.13 ING/Viz tool’s report page listing the flagged services for each anti-pattern. 33
4.14 ING/Viz highlighting 5 services flagged as mega-service. 34

5.1 ING/Viz mega-service anti-pattern matching results as diagram with the threshold
marked with an orange line. 37

5.2 ING/Viz nano-service anti-pattern matching results as diagram with the threshold
marked with an orange line. 37

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36356.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36356.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36356.pdf
https://netflixtechblog.com/netflix-shares-cloud-load-balancing-and-failover-tool-eureka-c10647ef95e5
https://www.sciencedirect.com/science/article/pii/S0164121221000650

Automatic Anti-Pattern Detection in Microservice Architectures

5.3 ING/Viz ambiguous-service anti-pattern matching results as diagram with the thresh-
old marked with an orange line. 37

5.4 ING/Viz bottleneck-service anti-pattern matching results as diagram with the thresh-
old marked with an orange line. 38

5.5 ING/Viz tool displaying all cyclic dependencies. 40

List of Tables

3.1 Abbreviation and description of metrics . 16
3.2 Anti-Pattern Vectors . 18

5.1 Percentage Flagged Services . 36
5.2 Distance service to mega-service anti-pattern . 39
5.3 Distance service to nano-service anti-pattern . 39
5.4 Distance service to bottleneck anti-pattern . 39
5.5 Distance service to ambiguous-service anti-pattern . 39

Glossary

APM Application Performance Management. 9, 41, 44

ATD Architectural Technical Debt. 4, 10, 11, 13

BVC Business Value Chain. 23–25, 30, 31, 44

DT Distributed Tracing. 4, 8, 9, 12–14, 21, 41, 42, 46, 48

MSA Microservice Architecture. 1, 2, 4, 9, 11–14, 19, 21, 26, 42, 45, 47, 48

RPC Remote Procedure Call. 4

SDG Service Dependency Graph. 4, 9, 13, 35

SOA Service Oriented Architecture. 12

TD Technical Debt. 10, 13

Chapter 1

Introduction and
Research Question

This chapter introduces the thesis’ motivation and provides the context for the defined problem of
this graduation thesis. Furthermore, our contributions are highlighted and the research question is
defined. Finally, this chapter provides an overview of this thesis’ structure.

1.1 Introduction

The successful migration to microservice based applications by large companies such as Netflix and
Amazon popularized the idea of this architectural style and has led to an industry wide adoption
starting around 2015. The idea of the microservice architectural style is to develop a single application
as a suite of small components called microservice or simply service. Each service runs in its own
process and communicates often via a REST-ful HTTP connection. These services are built around
business capabilities, emphasizing loose coupling and high cohesion, and are independently developed
and deployed by a single team [1]. The switch towards a Microservice Architecture (MSA) has enabled
companies and organizations to deliver software more efficiently, as smaller developer teams can work
independently from one another. Additionally, it can increase the resilience and the reliability as well
as improve the scalability and maintainability of the overall application.

Even though microservices provide several advantages compared to a monolithic application, this
architectural style introduces its own set of challenges and potential drawbacks. For example, appli-
cations need to be able to tolerate the failure of services, since a service might be unavailable due to
high load, maintenance or other factors. Hence, all other services that make calls to this service have
to handle the situation in which they do not get a response. This leads to increasing complexity in
each individual service. Consequently, the chances of suboptimal implementations increase, not only
within the individual services, but possibly also in how the services communicate with each other. In
MSAs the inter-service communication is closely linked to the application’s overall architecture. Any
suboptimal inter-service communication solutions are suboptimal architectural solutions (also called
architectural anti-patterns, or simply anti-patterns). The creation of anti-patterns is not always a
conscious decision, but can be the result of teams independently working on separate parts of the
application. In practice, the presence and impact of anti-patterns might not always be immediately
detectable. Nonetheless, it is important to find and remove anti-patterns. If implemented incorrectly,
a microservice based application can suffer from numerous and significant drawbacks. For example,
failing to maintain loose coupling and high cohesion means services cannot be deployed separately
offsetting any scalability, maintainability or ease of deployment gains. Additionally, it can decrease
the application’s resilience as well as runtime performance. Due to the communication complexity de-
bugging becomes harder compared to monoliths. The problem is that identifying anti-patterns within
MSAs becomes increasingly difficult as their architectures are continuously changing and applications
are ever increasing in size and complexity.

1

Automatic Anti-Pattern Detection in Microservice Architectures

Currently, visualization tools have been a popular approach to get a holistic understanding of an
application. Open-Source and commercial tools such as Vizceral [2] Buoyant [3] and AHAS [4] are
currently being used and developed within the industry. The academic community has developed
several visualization tools for recovering an application’s architecture [5, 6, 7, 8]. The larger an
application becomes, the less information these types of tools provide. This is due to the visualization
becoming too cluttered and therefore making it difficult to identify anti-patterns. Thus, for large
scale applications it is necessary to filter and selectively show only parts of the overall architecture
to prevent the aforementioned cluttering. Another approach to better understand a MSA is to use
concepts and algorithms developed within the field of graph theory [9, 10, 11]. These algorithms
compute metrics for each service which can be used for evaluating the architectural design or to
detect architectural anti-patterns. However, the computed metrics are difficult to interpret and do
not provide definitive results. In the mentioned studies the metrics are computed for relatively small
(< 70 services) applications which are created as a testing benchmark and therefore do not organically
evolve over time.

1.2 Research Question

The contribution of this research is threefold. The first contribution is the approach of using dis-
tributed tracing for architecture recovery. The second contribution is to utilize concepts and algo-
rithms, developed within the field of graph theory for the automatic identification of architectural
anti-patterns. The third contribution is the application of these on a large scale (> 400 services) indus-
try application. The results of this research can help developers gain a better overall understanding of
their application as well as help pinpoint areas within the application’s architecture with suboptimal
structures. Furthermore, developers can use the tool to reason about architectural changes and make
better estimates of the potential impact to the architecture. To verify our contribution we formulate
the following research question.

Can anti-patterns in microservice architectures be automatically identified from dis-
tributed tracing?

1.3 Thesis Structure

The thesis has seven chapters, and it is organized as follows:

Chapter 1: Introduction
This chapter introduces the thesis’ problem and its context. Furthermore, the contribution and
research question are defined.

Chapter 2: Background and Related Work
This chapter presents the background knowledge and fundamental concepts used in this thesis. It
also highlights related work in the field of automatic anti-pattern detection.

Chapter 3: Methodology
This chapter presents the approach used for the automatic detection of anti-patterns within microser-
vice based applications.

Chapter 4: Visualization Tool
This chapter presents the dashboard developed alongside the anti-pattern detection approach for
presenting and visualizing the results. Additionally, this chapter presents the results from applying
the approach in a large scale industry application.

Chapter 5: Case Study and Results
This chapter outlines the performed case study and presents the results.

2

Automatic Anti-Pattern Detection in Microservice Architectures

Chapter 6: Discussion, Future Work and Threats to Validity
This chapter discusses the results from our approach and their implications for ING. Furthermore,
future work possibilities are discussed and the threats to validity are addressed.

Chapter 7: Conclusion
This chapter summarizes this graduation thesis by drawing a final conclusion.

3

Chapter 2

Background and Related Work

This chapter presents the background knowledge and fundamental concepts used in this report.
Furthermore, related work in the field of anti-pattern detection in MSAs is highlighted. In the first
section the concept of distributed tracing is explained. In the second section the Service Dependency
Graph is introduced and how it can be recovered from different data sources. The third section
explains the concept of Architectural Technical Debt (ATD) and the difference between ATD and
anti-patterns. In the last section the concept of network analysis is presented and the related work
regarding automatic anti-pattern detection is highlighted.

2.1 Distributed Tracing

Distributed Tracing (DT), also called distributed request tracing, is a method used to profile and
monitor applications. Distributed applications, such as ones based on the microservice architecture,
make root cause analysis of application failures more complex compared to a monolithic application.
For example, a front-end service might query a back-end service to fetch data requested by the user.
The back-end service in return might query potentially hundreds of other services, which again might
call more services, to aggregate the information requested by the user. This stream of requests
continues until all data is gathered and processed. Continuing the example, we assume the first back-
end service encounters a failure and cannot serve the front-end the requested data. The failure is
detected by the team responsible for the first back-end service. However, the failure is not caused by
their service, as it does not receive data from its downstream service. But the team has no access to
the downstream service that does not return the requested data. As a result, the team cannot verify
if that service is the root cause or if the failure arises further downstream. DT solves this problem
by keeping a record and providing an overview of all service to service calls.

While not being the first tracing tool [12, 13, 14], the design paper for Google Dapper [15] was a
significant publication for popularizing the idea of DT. In the paper Siegelman et al. describe the
development of a production-grade tracing tool, with three key goals in mind.

1. Low overhead: The tracing system should have negligible performance impact on running
services. In highly optimized services small monitoring overheads might compel the deployment
teams to turn the tracing system off.

2. Application-level transparency: Tracing should not require deployment teams to actively
maintain the tracing infrastructure.

3. Scalability: It needs to handle Google’s scale for at least a few years.

Dapper and most of its descendants work with an annotation-based scheme. This means applications
or middleware have to explicitly tag every call between services with a global identifier that links
these message records back to the originating request. All messages belonging to the same request
are grouped in a trace. In the case of Dapper, a trace is a tree of Remote Procedure Calls (RPC).

4

Automatic Anti-Pattern Detection in Microservice Architectures

The data model is also suited to trace SMTP sessions as well as HTTP requests. Traces are modeled
using trees, spans and annotations. In a trace tree, as shown in Figure 2.1, the tree nodes are basic
units of work which are referred to as spans and the edges represent a relationship between a span
and its parent span. Spans without a parent id are called root spans.

Figure 2.1: The path taken through a simple serving system on behalf of user request X. The letter-
labeled nodes represent processes in a distributed system. | Reprinted from B. H. Sigelman et al.,
“Dapper , a Large-Scale Distributed Systems Tracing Infrastructure,” Google Res., no. April, p. 14,
2010, [Online]. Available: link.

5

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36356.pdf

Automatic Anti-Pattern Detection in Microservice Architectures

Figure 2.2 shows the structure of a trace. The trace is made up of five spans. The first span called
Frontend.Request, starting at timestamp 20, has no parent-id and span-id one. The second span is
called Backend.Call and has span-id two and parent-id one. This span starts at timestamp 21 and
ends at timestamp 23. The next span is Backend.DoSomething starting at timestamp 24. This span
itself invokes two new spans with span-id four and five both running in parallel. At timestamp 29,
spans four and five have both returned back to span three. At that timestamp, span three is complete
and can return back to span one. The Frontend.Request span now has performed its unit of work
and stops at timestamp 31. For each span, the span’s name and its start as well as end times need
to be recorded by Dapper’s RPC library instrumentation. Each service has to implement the RPC
library separately and ensure the correct annotations are made for each span. This is a drawback
of Dapper but also allows the service’s developers to extend their spans with annotations to provide
more information about the trace.

Figure 2.2: The causal and temporal relationships between five spans in a Dapper trace tree. |
Reprinted from B. H. Sigelman et al., “Dapper , a Large-Scale Distributed Systems Tracing Infras-
tructure,” Google Res., no. April, p. 14, 2010, [Online]. Available: link.

Dapper stores the recorded spans in local log files of the service. Dapper daemons then pull the
information from all services that log their spans and store the information in a Dapper Bigtable (See
Figure 2.3). In a Dapper Bigtable, a trace is stored as a single row, with each column corresponding
to a span. Bigtable supports sparse table layouts, as individual traces can have an arbitrary number
of spans. Figure 2.3 shows a small table representing a Dapper Bigtable. There are three traces and
five spans stored in the table. If a span is not part of a trace, its cell for that trace is set to nil. This
example shows that most cells in the table will be nil, which is referred to as a sparse table.

One descendant of Dapper is Zipkin. It is an open source version of Google’s Dapper that was further

6

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36356.pdf

Automatic Anti-Pattern Detection in Microservice Architectures

Figure 2.3: An overview of the Dapper collection pipeline. | Reprinted from B. H. Sigelman et al.,
“Dapper , a Large-Scale Distributed Systems Tracing Infrastructure,” Google Res., no. April, p. 14,
2010, [Online]. Available: link.

developed by Twitter. Similar to Dapper, services need to implement a tracer or instrumentation
library to report trace data to Zipkin. The most popular ways to report data to Zipkin are via
HTTP or the Kafka event streaming platform 1. The data is then sent to the user interface and
stored in-memory. Data can also be persisted with a supported backend such as Apache Cassandra
or Elasticsearch. An alternative to Zipkin is Jaeger, which was created at Uber. Jaeger’s architecture
differs from Dapper and Zipkin as it includes a client that emits traces to an agent. The agent listens
for inbound spans and routes them to the collector, which then validates, transforms and persists
the spans. Jaeger uses a distributed architecture which makes it more scalable compared to Zipkin.
Jaeger also differs in the way it collects data. It does not collect every trace and span generated, but
takes a sample of the monitored data. This approach not only allows Jaeger to handle sudden surges
in traffic, but increases Jaeger’s overall performance. However, currently the future of the Jaeger
project is somewhat uncertain. In 2019 OpenTelemetry was announced as a new CNCF 2 sandbox
project resulting from a merger of OpenTracing 3 and OpenCensus 4. OpenTelemetry and Jaeger
have some overlap in the problems they solve. These are the client libraries, agent and collector. For
these areas the Jaeger team is planning on collaborating with OpenTelemetry and ideally deprecating
the respective Jaeger components to avoid redundant software [16].

1https://kafka.apache.org/
2https://www.cncf.io/
3https://opentracing.io/
4https://opencensus.io/

7

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36356.pdf

Automatic Anti-Pattern Detection in Microservice Architectures

The Distributed Tracing implementation within ING is based on the OpenTracing specification. The
OpenTracing specification defines a span as follows. A span is a 6-tuple (n, s, f, T, L, sc):

• n: the name of the operation

• s: the start timestamp

• f: the finish timestamp

• T: a set of span tags T as key value pairs < k, v >, where k is a string and v is a string, Boolean
or numeric type.

• L: a set of span logs L as key value pairs < t,< k, v >>, where the key t is a timestamp and
the value is another key value pair < k, v >. k must be a string and v can be of any type.

• sc: the SpanContext sc is a tuple (R,B). R is a set of references as key value pairs < k, v >,
where k is ∈ {′trace id′,′ span id′} and v is a string. B is a set of Baggage items as key value
pairs that apply to the given span, its SpanContext, and all spans which directly or transitively
reference the local Span.

8

Automatic Anti-Pattern Detection in Microservice Architectures

2.2 Service Dependency Graphs

To better understand microservices based architectures, researchers and companies build tools to vi-
sualize microservices and their dependencies. Generally, the MSA is represented in a Service Depen-
dency Graph (SDG) that visualizes services as nodes and their dependencies as edges. The graphs
can be generated from several different data sources, the most common being a service discovery
mechanism and tracing data.

2.2.1 Tracing Data

One SDG recovery method is to use trace information from a Distributed Tracing system. For this all
traces need to be assembled. This is done by grouping all spans by their trace-id and then connecting
the spans according to the parent span-id recorded in each span. Once this is done, relations can be
set according to the following pattern. If a client span from service s1 is followed by a server span
from service s2 a relation between s1 and s2 can be set. These server to server relations can then
be exported to a graph database and be used to visualize the SDG. Since the SDG can be recovered
from Distributed Tracing data, several Application Performance Management (APM) tools such as
AWS X-Ray 5, Datadog 6, Elastic APM 7 offer such visualizations as part of their license-based
product. An open source alternative is Netflix’s Vizceral [2] which provides an intuitive overview of
an application’s architecture as well as it’s real-time traffic flow.

2.2.2 Service Discovery Mechanism

Another SDG recovery method is to use a service discovery mechanism. Within a MSA, services
have to communicate with each other. However, since services can be dynamically added or removed
the IP and port numbers of services can change frequently. Therefore, to allow services to find each
other and communicate is a problem that needs to be addressed. In 2012 Netflix open-sourced its
service registry tool called Eureka [17] which originally solves the need for mid-tier load balancing
but also is a popular service discovery mechanism. Figure 2.4 shows a typical Eureka deployment,
representative for also many other service registry tools. Per region there is one Eureka cluster which
only knows about the service instances in its region. Each service registers with Eureka and then
sends a heartbeat every 30 seconds to the Eureka cluster. If a service fails to send three heartbeats,
it is taken out of the service registry. The registration information and the renewals are replicated to
all the Eureka nodes in the cluster. Services from any zone can look up the registry information to
locate their required services and make remote calls. Since the service registry knows which services
are currently active and which services communicate with each other, retrieving the SDG is relatively
simple.

5https://aws.amazon.com/xray/
6https://www.datadoghq.com/
7https://www.elastic.co/apm/

9

Automatic Anti-Pattern Detection in Microservice Architectures

Figure 2.4: The high level architecture of Eureka. Taken from Netflix Tech Blog.

2.3 Architectural Technical Debt

Architectural Technical Debt (ATD) is a type of Technical Debt (TD) consisting of suboptimal
architectural solutions, that provide short-term development benefits but increase overall development
costs in the long run. TD is comprised of three main concepts, which are the debt, its interest and
the principal [18]:

• Debt: A sub-optimal solution that provides short-term benefits but which creates future inter-
est payment.

• Interest: The extra cost that needs to be paid due to the accumulated debt. This extra cost can
be of any form. For example, longer development time, deployment dependencies, performance
decrease, etc.

• Principal: The principal can be two things. On the one hand it can be the cost of developing
a better solution that prevents debt. On the other hand it can be the cost of refactoring an
existing sub-optimal solution, removing the existing debt.

In some cases it can be cheaper to accumulate debt instead of removing it [19]. This is the case
when the interest is less than the principal. If the interest is more costly than the principal, the debt
should be removed. However in practice, it is hard to estimate the actual costs of the principal and
the interest. Therefore, generally speaking it is desirable to identify and remove ATD, since problems
in the architecture may slowdown new functionalities and raise the related costs.

10

https://netflixtechblog.com/netflix-shares-cloud-load-balancing-and-failover-tool-eureka-c10647ef95e5

Automatic Anti-Pattern Detection in Microservice Architectures

2.3.1 Anti-Patterns

Figure 2.5: ATD and the related concepts | Reprinted from S. S. de Toledo, A. Martini, and D. I. K.
Sjøberg, ”Identifying architectural technical debt, principal, and interest in microservices: A multiple-
case study,” J. Syst. Softw., vol. 177, no. April, p. 110968, Jul. 2021, doi: 10.1016/j.jss.2021.110968.
link.

The research on anti-patterns in MSA is still in its infancy and there is no well-defined taxonomy
[20]. Mo et al. [21] define architectural anti-patterns as repeatable suboptimal design constructs that
violate design principles and increase the likelihood of having bugs and changes. Toledo, Martini and
Sjøberg [22] follow the definition of Mo et al. [21] by defining anti-patterns as repeatable suboptimal
design constructs. However, they expand on the definition and define suboptimal design constructs
to consist of one or more occurrences of Architectural Technical Debt. Their definition of ATD and
related concepts is shown in Figure 2.5.

Tighilt et al. [23] aggregate a set of 16 anti-patterns for MSAs from previous literature. They orga-
nize their set of anti-patterns into four categories, based on the development cycle of a microservice-
based system. The categories are: design, implementation, deployment and monitoring. For each
anti-pattern they explain among other things its general form, list the symptoms, mention the con-
sequences and highlight a refactoring solution. For example, a design anti-pattern is the Hardcoded
Endpoints anti-pattern. Its general form is: Microservice IP addresses, ports, and endpoints are ex-
plicitly/directly specified in the source code. The symptoms are: Hardcoded endpoints anti-pattern
show via the presence of IP addresses or fully qualified domain names in source code, configuration
files, or environment variables. The consequences are: When there are many microservices in a sys-
tem, it becomes more difficult to track all the endpoints and URLs. Running multiple instances of
a microservice with a load-balancer becomes impossible. Changing the IP address or port number
of a microservice requires changing and redeploying other microservices. The recommended solution
is: Service discovery prevents hardcoding IP addresses and port numbers. It tracks microservices
endpoints and ease the communications among microservices [23].

11

https://www.sciencedirect.com/science/article/pii/S0164121221000650

Automatic Anti-Pattern Detection in Microservice Architectures

2.4 Network Analysis

Networks are used to denote a relational perspective on data and are used in a large variety of domains
(e.g., electrical circuits, communication networks, bioinformatics, etc.) and are commonly used for
modeling complex systems. The notation of graphs fit this conceptualization well and is therefore
commonly used to formalize network analysis concepts. A graph is defined as follows G = (V,E)
with V being a finite set of vertices (nodes) and E being a set of edges (links). Edges are defined by
pairs of vertices u and v, such that u ∈ V and v ∈ V . In a directed graph, the edges are specified by
ordered pairs 〈u, v〉 where u is the source vertex and v is the target vertex. In an undirected graph,
the edges are specified as sets such that {u, v} = {v, u}. There are various metrics that quantify the
properties of a vertex. For example, the degree centrality is defined to be the number of edges in E
that connect to a vertex v and is denoted by deg(v). In a directed graph a further distinction can
be made between the in-degree, being the number of edges with v as its target, and an out-degree,
being the number of edges with v as its source.

Based on these vertex properties a large number graph algorithms are being developed [24]. Graph
algorithms can be categorized into three types: path-finding, centrality, and community detection.
Centrality algorithms are are used to identify the most critical nodes within a graph. For example, the
degree centrality algorithm does this by counting the number of edges a node has. Another centrality
algorithm is the betweenness centrality which counts the number of shortest paths passing through a
node. Community detection algorithms look at the groups and partitions. For example, the weakly
connected communities algorithm finds groups where each node is reachable from every other node in
that same group. Path-finding algorithms try to find the shortest path between two nodes. However,
we do not use any path-finding for our anti-pattern detection methodology.

2.4.1 Service Metrics for Architecture Evaluation

From these graph algorithms a large number of metrics are being developed for measuring and evalu-
ating services and service-based systems. Bogner, Wagner and Zimmermann [25] provide an overview
of the metrics in current literature with focus on maintainability and analyze their applicability for
microservice systems. Except for the centralization metrics the majority of the identified metrics are
found to be also applicable for microservice systems. Bogner, Wagner and Zimmermann present a
maintainability model for service-oriented and microservice systems [26]. They first identify quality
attributes desired for the system architecture and then determine applicable metrics to measure the
maintainability. For example, the coupling degree of a service can be measured considering the num-
ber of consumed services, the number of consumers and the number of pairwise dependencies in the
system. The granularity is measured with the number of exposed interface operations.

2.4.2 Microservice Anti-Pattern identification

Similar to the service metrics mentioned above, graph algorithms can also be used for identifying
patterns that are undesirable in the structure of software (so-called ’anti-patterns’). Anti-patterns
are poor solutions to recurring design problems not limited to microservices. There is a large body
of research in anti-pattern detection [27] [28] [29] [30], however, these approaches are not suited to
detect anti-patterns in MSAs. Previous work on Service Oriented Architecture (SOA) also proposes
the automatic detection of anti-patterns. Nayrolles, Moha and Valtchev [31] propose the equivalent
to our approach for SOA based applications. They use execution trace mining to compute a set of
metrics that they link to so called rule cards. These rule cards capture the expected symptoms of
possible anti-patterns. The conceptual approach of our work is similar, however, we implement this
for MSAs. Furthermore, we compute our metrics with graph algorithm and provide a visualization
of the architecture. Pigazzini et al. [10] extend the Arcan [32] tool for the automatic detection of
Shared Persistence, Hard-Coded Endpoints, and Cyclic Dependency anti-patterns. Our study differs
from this study as we detect a different set of anti-patterns. Furthermore, we conduct our evaluation
on a single large application (> 400 services) instead of five smaller applications (< 20 services), use
graph algorithms for anti-pattern detection and we recover the architecture from Distributed Tracing
data. Kobyliński and Sobczak [9] use a very similar set of graph algorithms as we do to detect
the distributed monolith and the cycling dependency anti-pattern. However, they perform a manual

12

Automatic Anti-Pattern Detection in Microservice Architectures

analysis to link the metrics to the anti-patterns. In this thesis we detect a different set of anti-patterns
and implement a computation based approach for automatically linking graph algorithm metrics to
anti-patterns.

2.5 Summary

Distributed applications, such as ones based on the microservice architecture, make root cause analysis
of application failures more complex compared to a monolithic application. To allow developers to
perform root cause analysis, Distributed Tracing, also called distributed request tracing, has been
developed. DT is used to profile and monitor applications, but lately it has also been used to recover
Microservice Architectures.

Microservice Architectures are commonly represented in a Service Dependency Graph that visualizes
services as nodes and their dependencies as edges. The graphs can be generated from several different
data sources. The most common is a service discovery mechanism and Distributed Tracing data. SDG
recovery with Distributed Tracing is done by grouping all spans by their trace-id and then connecting
the spans according to the parent’s span-id recorded in each span. Relations can then be set according
to the following pattern. If a client span from service s1 is followed by a server span from service s2,
a relation between s1 and s2 is set.

Architectural Technical Debt is a type of Technical Debt (TD) consisting of suboptimal architectural
solutions, that provide short-term development benefits but increase overall development costs in the
long run. Toledo, Martini and Sjøberg [22] follow the definition of Mo et al. [21] by defining anti-
patterns as repeatable suboptimal design constructs. However, they expand on the definition and
define suboptimal design constructs to consist of one or more occurrences of Architectural Technical
Debt. Tighilt et al. [23] have aggregated a set of 16 anti-patterns for MSAs from previous literature.
They organized their set of anti-patterns into four categories, based on the development cycle of a
microservice-based system. The categories are: design, implementation, deployment and monitoring.

Networks are used to denote a relational perspective on data and are used in a large variety of
domains. The notation of graphs fits this conceptualization and therefore is commonly used to
formalize network analysis concepts. The research body on graphs is extensive and over the years
many graph algorithms have been developed to gain insights into graphs. Graph algorithms can
be categorized into three types: path-finding, centrality, and community detection. In recent years,
graph algorithms have been used to detect anti-patterns in MSAs.

13

Chapter 3

Methodology

This chapter describes the methodology used to answer the research question. The structure of our
methodology is based on a general data collection, data processing and analysis approach. We first
describe the data collection process. Section 3.2 highlights the data processing. In Section 3.3 the
matching of metrics to anti-patterns is explained. Finally, Section 3.4 details the process of the expert
validation.

3.1 Data Collection

The first step of our methodology is the data collection to recover the application’s architecture. The
practice of architecture recovery is extensively studied and several different approaches are compared
[33]. These architecture recovery approaches are all developed for monolithic applications and use
a static analysis of the application’s source code. However, these approaches cannot be used for
the Microservice Architecture, as a static analysis cannot recover the dependencies between services.
For example, MicroART [8] uses a combination of static and dynamic architecture recovery. In a
first step, given a GitHub repository link, it searches for: (i) a Docker-compose file specifying the
system components interactions (e.g., container name and build-path), and (ii) a Docker-file for each
microservice from which it retrieves specific listening ports and exposed ports. In a second step,
MicroART queries the Docker environment at runtime in order to retrieve the IP address and the
network interface used by each microservice to recover the service dependencies.

This two-step approach highlights a fundamental problem of static architecture recovery for microser-
vice based applications. Since it is not able to recover service dependencies, it requires an analysis step
at runtime. Additionally, the architecture of microservice based applications is continuously changing
as teams add and remove services, which a static analysis is not able to detect without rerunning
the analysis step. Another problem that arises in larger companies, is the fact that the source code
is distributed throughout many teams and might not be accessible in a central way. Therefore, it
might be challenging to find all source code artifacts for the analysis. MICROLYZE [7] uses a fully
dynamic approach and rebuilds the microservice infrastructure that is registered in a service discovery
tool like Eureka 1 or Consul2. Next, it uses Distributed Tracing to recover the service dependencies.
This approach is better suited for continuously recovering the application’s architecture, however it
requires a service discovery tool to be present and needs two steps to recover the architecture.

ING’s code base consists of several thousand repositories spread over multiple subsidiary companies
with multiple version control providers. This means getting access all source code artifacts is im-
practical and time consuming. Furthermore, there does not exist a central service discovery tool for
ING’s MSA. Therefore, our approach needs to solely rely on distributed tracing data to recover the
application’s architecture. In the first step we continuously listen for two days for new spans on a
Kafka 3 event stream and group spans into buckets by their trace-id. Each bucket has a timer that is

1https://github.com/Netfix/eureka
2https://www.consul.io/
3https://kafka.apache.org/

14

Automatic Anti-Pattern Detection in Microservice Architectures

reset whenever a new span is added to the bucket. When the timer for a bucket runs out we assume
that the trace is complete and we continue to the next step.

Figure 3.1: Sequence of three Client-Server-Spans between services forming a single trace.

Given a trace as shown in Figure 3.1, we have a total of four spans. Each service to service call has
a client span and a server span summarized as Client/Server call CS. In this example, the client
span in Client/Server call CS1 has id 1 and no parent id and the server span has id 2 and parent
id 1. Similarly, the client span in Client/Server call CS2 has id 3 and parent id 2 and the server
span has id 4 and parent id 3. Each server span in every Client/Server call contains the service’s
name as well as the name of the operation that is called. Thus we can now set the link Operation1
of Service1 consumes Operation2 of Service2 and store this information in a graph database. The
database schema is shown in Figure 3.2

Figure 3.2: Graph database schema after trace aggregation.

3.2 Data Processing

After the data collection we perform two processing steps. In the first step we add direct ser-
vice to service relations. That is, if Service1 −HAS OPERATION− Operation1 and Operation1
−CONSUMES− Operation2 and Service2 −HAS OPERATION− Operation2 we set a CALLS
relation between Service1 and Service2. The final schema of our database is shown in Figure 3.3.

Figure 3.3: Final graph database schema after second processing step.

15

Automatic Anti-Pattern Detection in Microservice Architectures

The second processing step is to compute a set of metrics, based on a subset of the service-based
maintainability metrics [25], and graph theory based metrics [34]. For each service in the database
we compute the metrics shown in Table 3.1

Table 3.1: Abbreviation and description of metrics
Abbrev. Name Description
AIS Absolute Impor-

tance of the Service
Number of services which depend on a service.

ADS Absolute Depen-
dence of the Service

Number of other services a service depends on.

WSIC Weighted Service
Interface Count

Weighted number of exposed interfaces or operations
per service (all weights = 1.0).

SIUC Service Interface
Usage Cohesion

Quantifies cohesion of a service based on the number of operations
invoked by every client.

BTW Betweenness Score Calculates unweighted shortest paths between all pairs of nodes
in a graph. Each service receives a score, based on the number of
shortest paths that pass through the node.

LCC Local Clustering
Coefficient

The local clustering coefficient Cn of a node n describes the like-
lihood that its neighbors are also connected.

CSD Cyclic Service De-
pendencies

Indicates if a service has a cyclic dependency

For the following metric definitions we consider a graph G = (V,E, L) where V is the set of all nodes
in our graph database, E ⊆ V × V is the set of all edges in our graph database and L is a labeling
function which maps from a node or an edge to the corresponding label. The set of node labels is
defined as follows L(node) = {Service,Operation} and the set of edge labels is defined as follows
L(edge) = {CALLS,HASOPERATION,CONSUMES}.

We define s to be a node such that s ∈ V and L(s) = Service. Furthermore, we define the following
functions, where v ∈ V and L(v) = Service ∨Operation:

• degin services(v) returns the set of nodes N in V that have a directed edge e = 〈n, v〉 with n
as source and v as target such that n ∈ N,n ∈ V , L(n) = Service and L(e) = CALLS ∨
HASOPERATION .

• degout services(v) returns the set of nodes N in V that have a directed edge e = 〈v, n〉 with
v as source and n as target such that n ∈ N,n ∈ V , L(n) = Service and L(e) = CALLS ∨
HASOPERATION .

• degin operations(v) returns the set of nodes N in V that have a directed edge e = 〈n, v〉
with n as source and v as target such that n ∈ N,n ∈ V , L(n) = Operation and L(e) =
HASOPERATION ∨ CONSUMES.

• degout operations(v) returns the set of nodes N in V that have a directed edge e = 〈v, n〉
with v as source and n as target such that n ∈ N,n ∈ V , L(n) = Operation and L(e) =
HASOPERATION ∨ CONSUMES.

AIS is computed as follows:
AIS(s) = degin services(s) (3.1)

ADS is computed as follows:
ADS(s) = degout services(s) (3.2)

16

Automatic Anti-Pattern Detection in Microservice Architectures

WSIC is computed as follows:

WSIC(s) = degout operations(s) (3.3)

SIUC is computed as follows:

SIUC(s) =

∑WSIC(s)
i=1 degout operations(oi)∑WSIC(s)

i=1 degin operations(oi) ∗WSIC(s)
(3.4)

Where
∑WSIC(s)

i=1 degout operations(oi) is the sum of outgoing operation dependencies of all operations

of s and
∑WSIC(s)

i=1 degin operations(oi) is the sum of incoming operation dependencies of all operations
of s.

BTW is computed as follows [35]:

BTW (s) =
∑
n 6=v

δ(n, v|s) (3.5)

Where δ(n, v|s) is the length of the shortest path connecting the services n and v that goes through
s.

LCC is computed as follows:

LCC(s) =
2T (s)

degservices(s)(degservices(s)− 1)
(3.6)

Where T (s) is the number of triangles of service s [36] and degservices(s) = degin services(s) ∧
degout services(s).

CSD is computed as follows:

CSD(s) =

{
1 if s has a cyclic dependency

0 otherwise
(3.7)

3.3 Metrics to Anti-Pattern Matching

For our data analysis step we compute the weighted euclidean distance between each service and the
following set of anti-patterns.

• Mega-Service: A service that serves multiple purposes and has high number of lines of code,
modules or files, as well as a high in degree.

• Nano-Service: A service that is too fine-grained such that its communication and maintenance
efforts outweigh its utility.

• Bottleneck-Service: A service that is being used by too many consumers and therefore be-
comes a bottleneck and single point of failure.

• Ambiguous-Service: A service that implements a large amount of functionality, but provides
only one public operation to invoke all of it. Accepted requests are internally forwarded to
various methods.

To compute the euclidean distance we perform a min-max normalization of all metrics for all services
and then define vectors for each anti-pattern based on the anti-pattern symptoms characterized in
[23] and [37]. An alternative for defining the anti-pattern vectors can be a multiple regression on

17

Automatic Anti-Pattern Detection in Microservice Architectures

Table 3.2: Anti-Pattern Vectors
AIS ADS WSIC SIUC BTW LCC CSD

Mega Service 1* 1 0 0 - - -
Nano Service 0 0 0* - - - 1*
Bottleneck 1 1 0 - 1* 1 -
Ambiguous Service 1 1 0* 0* - - -

the attributes or similarly the GainRatioAttributeEval from the WEKA 4 tool. We do not use this
approach as we do not have a ground truth of which services’ metrics express an anti-pattern.

Tighilt et al. [23] describe the mega microservice as a service that serves multiple purposes and
has high number of lines of code, modules or files, as well as a high fan-in. Since the high fan-in is
explicitly described as one of the symptoms we expect the number of incoming dependencies (AIS,
see Table 3.1) to be high and we increase the weight for this metrics. Furthermore, as a mega service
serves multiple purposes we expect the number of outgoing dependencies (ADS) to be high and the
usage cohesion (SIUC) to be low.

Tighilt et al. [23] state that a nano-service anti-pattern exists if the system has a large number of
microservices; (2) microservices exchange a lot of information; (3) cyclic dependencies exist. Bogner
[37] describes the nano-service anti-pattern as a small or too fine grained service with only one or
very few operations. Therefore, we expect the number of operations metric (WSIC) to be low and
the CSD metric to be 1 as this indicates cyclic dependencies. We give both of these metrics a higher
weight factor. To approximate the small or fine grained functionality of a nano-service we set the
expected AIS and ADS to 0 as we expect a service with little functionality to be called by fewer other
services.

Bogner [37] states that an ambiguous service has a large amount of functionality, but provides only
one public operation to invoke all of it. We therefore expect the WSIC metric to be low and give
it a higher weight. Again we approximate the large functionality with high AIS and ADS but also
expect the usage cohesion (SIUC) to be low as probably many different services will invoke different
functionality of the service.

The bottleneck anti-pattern is defined by Bogner as a service that is being used by too many consumers
and therefore becomes a bottleneck and single point of failure. We therefore expect AIS, ADS, BTW
and LCC to be high. Additionally, to better capture the single point of failure aspect we give the
betweenness score a higher weight factor.

The vectors for the anti-patterns can be found in Table 3.2. Cells with a zero or one indicate that
we expect the value of that metric to be low or high respectively after the min-max normalization.
The weight for the distance computation of each metric is one. Cells that are also marked with a *
have twice the weight when computing the euclidean distance, as these metrics are identified to be
characteristic of the given anti-pattern as mentioned above. Cells marked with a - indicate that the
respective metric is not applicable for the given anti-pattern. Thus, in the distance computation, the
weight of the metric is set to zero. The distance computation can be found in Formula 3.8, where
patterni and servicei is the i− th metric of the anti-pattern vector or the microservice respectively.
wi is the metric’s assigned weight as just detailed.

d(pattern, service) =

√∑
i

wi ∗ (patterni − servicei)2 (3.8)

As the anti-pattern distances are computed with different vectors, which have different value ranges,
we cannot directly compare the distances with each other. A microservice might have a distance

4https://waikato.github.io/weka-wiki/

18

Automatic Anti-Pattern Detection in Microservice Architectures

of 1 to the mega-service anti-pattern and a distance of 0.5 to the nano-service anti-pattern. Then
even though it appears to be closer to the nano-service anti-pattern it might still be a mega-service.
For example, this can be the case if the value range for mega-service goes from 1 to 10 and the
nano-service range goes from 0 to 0.5. Therefore, the relative ranking for each anti-pattern expresses
better our confidence level that a service’s metrics express an anti-pattern. Thus as a final step we
do a min-max normalization on the computed anti-pattern distances.

To detect the Cyclic Dependencies anti-pattern we use the query capabilities of the graph database.
We chose to limit length of cyclic dependencies to 6 edges. We find this to have the best trade-off
between the number of detected cycles and runtime performance.

3.4 Expert Validation

To validate our methodology we perform two rounds of expert validation. The first round is after
the data processing to verify that the computed metrics represent the actual architecture and can be
used for further analysis. As the aspect of continuous monitoring of the architecture is central to this
study we take two snapshots of the architecture, with two months between them, and compute the
relative change in metrics. We then take a sample of the services with the highest relative change in
metrics and interview the responsible teams.

In total we interview nine ING developers from six teams. With each team we first show them the
screenshots of the two architecture snapshots and then present the computed metrics. Next, we ask
them to confirm whether the recovered architecture is correct for both snapshots and what the reason
is for the change in architecture. After the developers confirm the snapshot, we discuss the computed
metrics for their service. For this we first explain how we compute the metric and what the metric
indicate. The developers can then ask any questions about the metrics. Lastly, we discuss if the
computed metrics are a valid representation of their service.

The second round is after matching the metrics to the anti-patterns to validate our results. For this
we talk to three ING developers from two teams, where the team is developing a service that is flagged
for an anti-pattern. Again we show them our snapshot from the architecture, explain the metrics and
how we link them to anti-patterns. Then they can ask any questions about our approach. Finally, we
ask them whether they agree with the result of our methodology and why they designed the service
and its dependencies in this specific way. The results from our expert validation are discussed in
Section 6.1.

3.5 Summary

This chapter presents the methodology used to automatically detect anti-pattern within MSAs. The
structure of our methodology is based on a general data collection, data processing and analysis
approach. The first step is to reconstruct the application’s architecture from distributed trace data.
The distributed trace data is collected by listening to an event stream of all traced spans. The spans
are then grouped into traces from the span-ids. The reconstructed traces allow to recover the service
to operation and operation to operation relations. The next step is the processing of the data. The
first processing step is to set the service to service relations based on the data recovered in the data
collection step. In the second processing step, the metrics are computed for each service. The last
step of the approach is the linking of the service’s metrics to anti-patterns. This is done by computing
the weighted euclidean distance between the services’ metrics vector and the anti-pattern vector. The
approach is validated by sampling a set of flagged services and interviewing the respective teams to
verify the results.

19

Chapter 4

Visualization Tool

This chapter provides the motivation for the developed ING/Viz tool in Section 4.1, the defined
requirements in Section 4.2 and the tool’s architecture in Section 4.3. Section 4.4 presents the data
visualization and discusses how the tool meets the defined requirements.

4.1 Motivation

During the expert validation teams are not able to derive meaningful insights from only the computed
metrics. Without spending more time to understand the metrics the teams don’t know how to
interpret the metrics and draw actionable conclusions. Linking the metrics to anti-patterns allows
teams to quickly understand what the problem is. However, without a visual representation, providing
more context information, it is difficult for teams to get an overview and understanding of the abstract
architecture.

Visualizations are an outstanding tool to get a holistic understanding of complex and abstract con-
cepts, which is why they are frequently used for representing microservice architectures. However,
for large scale applications the visualization becomes too cluttered to provide meaningful insight. By
combining the metrics and detected anti-patterns with a visualization tool we want to overcome the
shortcomings of both approaches. By visualizing the flagged services within the overall architecture,
teams not only get a better understanding of why a service is flagged as an anti-pattern but also get a
visual overview of the surrounding architecture of the application. Additionally, filtering for flagged
services ensures that the visualization does not become too cluttered. Furthermore, starting from a
single flagged service teams are be able to expand the number of services step by step.

4.2 Requirements

To build a tool that can add meaningful insights to our computed metrics, together with a team from
ING, we define the following set of requirements.

• R1: Provide an overview of the entire architecture.

Motivation: The tool must be able to provide an Overview+Detail view, as discussed by
Cockburn, Karlson and Bederson [38]. This way users can get a better understanding of
the architectural context of a single service and a group of services.

• R2: Provide possibilities to filter out specific areas of the architecture.

Motivation: To prevent cluttering of the visualization the tool must be able to filter out
services that are not relevant.

• R3: Provide possibilities to dynamically add and remove parts of the architecture.

Motivation: To help users explore the architectural context of a single service or a group
of services the tool must be able to add and remove service to the current visualization.

20

Automatic Anti-Pattern Detection in Microservice Architectures

• R4: Provide an overview of the computed metrics.

Motivation: The tool must be able to display an overview of the metrics to allow users
to find dependencies or patterns within the metrics and compare them with each other.

• R5: Provide a summary of identified anti-patterns.

Motivation: The tool must give an overview of the identified anti-patterns such that
users can quickly gain insights from the tool.

• R6: Provide additional context and information for services.

Motivation: Metrics and anti-pattern are not able to capture the whole situation of a
service. Therefore, to help users decide if a flagged service needs more attention, the tool
must provide more context information for each service.

4.3 Architecture

After defining the requirements for the tool we build ING/Viz. ING/Viz provides a visualization
of ING’s Microservice Architecture within an interactive dashboard. Users can see the computed
metrics, a report of the detected anti-patterns and a graph representation of the MSA. It also provides
extra context information for users, fulfilling the aforementioned requirements. Figure 4.1 shows
the architecture of ING/Viz. The components in orange are already present within ING and the
components in blue are added as part of this graduation thesis. The only ING component that is
adapted for this graduation thesis is the REST -API, as it needs to be able to handle the new request
from the Backend API.

Figure 4.1: ING/Viz architecture overview.

The first component in the architecture is the event bus. This is a central event bus within ING. The
event bus provides a topic that all microservices that are connected to the Distributed Tracing can
use to publish their spans. In the next step the data collector subscribes to the same topic that all
spans are being published on. The data collector then groups all spans it receives into traces. From
the trace annotations it extracts the service to operation and operation to operation relations and
stores these into the Graph DB as described in Section 3.1. Furthermore, the data collector exports

21

Automatic Anti-Pattern Detection in Microservice Architectures

meta data about the traces to the Time-series DB. The meta data contains whether the trace was
successful, the duration time and a counter of the number of requests.

The REST -API connects to the Graph DB and the Time-series DB to provide REST endpoints to
access the relational data and trace-metrics data. As part of this graduation thesis two new endpoints
are added to the REST -API component for the Backend API to connect to. The endpoints are:

• POST /query - accepts a JSON object with a query key and a Neo4j Cypher query as value.
Returns a JSON object with the data requested in the query from the Graph DB.

• POST /trace-metrics - accepts a JSON object with a query key and a Prometheus-QL query
as value. Returns a JSON object with the data requested in the query from the Time-series
DB.

Figure 4.2: The event sequence for fetching the relational data from the Graph DB and inserting it
into the ING/Viz Graph DB.

The ING/V iz Backend API is a Kotlin 1 Vert.x 2 application. We choose to use Kotlin with Vert.x
as this technology stack is popular within ING and therefore makes it easier for ING developers
to continue working on and maintaining this project. The ING/V iz Backend API fetches the all
relational data from the Graph DB and stores it in the ING/V iz Graph DB as shown in Figure
4.2. The ING/V iz Backend API also connects to the Event API to fetch trace and span data.
The ING/V iz Graph DB is a Neo4j 3 graph database. The ING/V iz Backend API then calls the
ING/V iz Graph DB and computes the metrics as described in Section 3.2 and does the linking of
metrics to anti-patterns as described in Section 3.3. Again we choose a technology that is already
present within ING for the graph database. The Neo4j Graph Data Science Library 4 provides
two algorithms that we use for the metrics computation. All computed metrics and anti-pattern
information is subsequently stored in the ING/V iz Graph DB. The ING/V iz Backend API itself
also provides a REST API for the ING/V iz Frontend to connect to. The endpoints are:

• GET /remote/graph/data - accepts a JSON object with a query key and a Neo4j Cypher query
as value. Returns a JSON object with the data from calling the /query endpoint of the REST
API.

1https://kotlinlang.org/
2https://vertx.io/
3https://neo4j.com/
4https://neo4j.com/docs/graph-data-science/current/

22

Automatic Anti-Pattern Detection in Microservice Architectures

• POST /remote/trace/metrics - accepts a JSON object with a ”query” key and a Prometheus-QL
query as value. Returns a JSON object with the data from calling the /trace-metrics endpoint
from the REST API.

• GET /remote/trace/search - requires a trace-id as id query parameter. Returns an array of the
trace’s spans as JSON objects. The JSON objects contain the span’s operation name and the
name of the span’s service.

• GET /remote/bvc - Returns a string array of all Business Value Chain names.

• GET /remote/bvc - Given a BVC query parameter returns a string array of trace-ids for the
given BVC.

• POST /local/graph/query - accepts a JSON object with a query key and a Neo4j Cypher query
as value. Returns a JSON object with the data requested in the query from the ING/V iz Graph
DB.

• GET /local/graph/metrics/compute - Calls the ING/V iz Graph DB to compute all metrics.
Returns ”Success” if the computation was successful.

The ING/V iz Frontend is a React 5 application. For the menus and layout the ant.design 6 compo-
nent library is used. The graph visualization is implemented with the Graphin 7 library. We choose
this technology stack for the frontend mainly because of the Graphin library. The Graphin library
provides powerful graph visualization functionalities as React components. Therefore, we choose to
use the React framework for the frontend. Through the API of the ING/V iz Backend API, the
ING/V iz Frontend can access all data stored in the ING/V iz Graph DB and all data stored in
the Time-series DB. The ING/V iz Frontend is responsible for the visualization of the dependency
graph and the presentation of the metric results. The data and metric visualization is described in
Section 4.4.

We deliberately choose to develop ING/Viz as a separate standalone web application with its own
database, backend and frontend. One key factor for this decision is development speed. Applications
that are part of the ING ecosystem must to undergo rigorous security and data protections audits.
However, since ING/Viz is an internal tool that is not exposed to the internet the security and data
protections audits are not necessary at the moment and would take too long for the rapid prototyping
approach we use. Once ING/Viz goes into production it has to pass the security and data protections
audits. Furthermore, it is not clear whether ING/Viz will be continued within ING, thus integrating
it into the ecosystem is not desired at this point. Also in a future development stage ING/Viz could
be used outside of ING. Therefore, we choose to develop ING/Viz as a separate standalone web
application.

Figures 4.3 and 4.4 show two example sequences for user interaction with the ING/V iz Frontend.
Figure 4.3 details the use case of a user requesting trace-metrics data to be overlaid on the graph’s
edges as shown in Figure 4.5. In this case the ING/V iz Frontend calls the /remote/trace/metrics
endpoint of the ING/V iz Backend API. The ING/V iz Backend API in return calls the /trace−
metrics endpoint of the RESTAPI which fetches the requested data from the Time-series DB.

5https://reactjs.org/
6https://ant.design/
7https://graphin.antv.vision/en-US/

23

Automatic Anti-Pattern Detection in Microservice Architectures

Figure 4.3: The event sequence for fetching the trace-metrics data and displaying it in the ING/Viz
Frontend

Figure 4.4 details the use case in which a user wants to see the trace of a Business Value Chain
(BVC). The sequence starts when the user navigates to the BVC page. The ING/V iz Frontend
then calls the /remote/bvc endpoint of the ING/V iz Backend. Next, the ING/V iz Backend calls
the /lov/bvc endpoint of the REST API. The REST API sends back a list of all BVC names,
which is subsequently displayed in the ING/V iz Frontend. From this list the user can select a BVC.
The ING/V iz Frontend then calls the /remote/bvc endpoint of the ING/V iz Backend again, but
this time provides the BVC-id as query parameter. The ING/V iz Backend extract the BVC-id
from the query and calls the /spans/search endpoint of the Event API and provides the BVC-id
as filter. The Event API returns a list of spans that belong to the provided BVC-id from the last
two hours. The ING/V iz Backend processes this list and only sends the distinct trace-ids to the
ING/V iz Frontend. The user can then select a trace-id of which she wants to see the entire trace.
The ING/V iz Frontend then calls the /remote/trace/search endpoint of the ING/V iz Backend,
which in return continuously calls the /spans/search endpoint of the Event API until it has received
all spans of the requested trace. Once the ING/V iz Backend has received all spans, it extracts the
service names and operation names of all spans and sends this data to the ING/V iz Frontend.

24

Automatic Anti-Pattern Detection in Microservice Architectures

Figure 4.4: The event sequence for displaying a Business Value Chain trace and displaying it in the
ING/Viz Frontend

25

Automatic Anti-Pattern Detection in Microservice Architectures

4.4 Data Visualization

The Microservice Architecture is visualized as dependency graph, where nodes represent microservices
and edges represent dependencies. Figure 4.5 shows an overview of the entire architecture with trace-
metrics data projected onto the edges. The thickness of edges represents the throughput of traces
per minute between the two services in the last hour. The thickness scales in five steps between two
and ten pixels in width and depends on the logarithmic scaling from 10 to 100000. The color of an
edge can be one of four states: green, orange, red and black. An edge is red if the success-rate of
the traces is below 95% or the average response time is greater than 500ms. An edge is orange if
the success-rate is below 98% or the average response time is greater than 100ms. Otherwise the
edge is green. An edge is black if no throughput is measured within the last hour. The trace metric
information can help users assess the impact of an identified anti-pattern. For example, if a service’s
metrics are flagged as an anti-pattern, but the trace-metrics are green, the users could decide to
postpone a refactor. However, if the trace-metrics are red on most of the service’s edges, this could
mean that refactoring this service needs a high priority. This overview satisfies requirements R1, R3
and R6.

Figure 4.5: ING/Viz tool displaying the whole architecture with trace-metrics projected onto the
edges.

26

Automatic Anti-Pattern Detection in Microservice Architectures

Going from a high level overview to a detailed view, Figure 4.6 shows a mega microservice identified
by the anti-pattern metrics and its dependencies. This detail view gives users the possibility to get
a clear understanding of the dependencies of a part of the architecture and allows them to make
a better judgment whether an anti-pattern is identified correctly. Each service in the view can be
removed or expanded to show its operations as well as its in and outgoing service dependencies. This
allows for an easy exploration of the architectural context, letting the user seamlessly switch from
the detail view back to a higher level overview. This satisfies requirements R2, R3 and R6.

Figure 4.6: ING/Viz tool displaying a flagged mega-service surrounded by its depending services.

27

Automatic Anti-Pattern Detection in Microservice Architectures

Figure 4.7 shows dual axis charts such that the user can compare computed metrics with each other.
In the top left corner the user can select the metric she wants to compare and then the dashboard
shows a dual axis chart for all other computed metrics with the selected metric. For example, in
Figure 4.7 we can see AIS plotted against SIUC and WSIC, where AIS is shown in dark blue sorted
from high to low. This view can help users find dependencies or correlations between metrics. For
example, AIS does not appear to be correlated with SIUC or WSIC.

Figure 4.7: ING/Viz tool’s diagram page displaying dual axis line diagrams of the computed node
metrics.

28

Automatic Anti-Pattern Detection in Microservice Architectures

All metric information can also be displayed in a sortable table as shown in Figure 4.8. The table
gives an easy overview of a service’s metrics. Furthermore, the sorting allows users to quickly get the
highest or lowest scoring services for a particular metric. Additionally, there is a metrics table view
for all operations. This helps users identify operations with bad metric scores. The diagrams and
table views satisfy R4.

Figure 4.8: ING/Viz tool’s metrics table listing the metrics for all services.

29

Automatic Anti-Pattern Detection in Microservice Architectures

Figures 4.10,4.9,4.11 show how annotation based distributed tracing can add additional context in-
formation. The collected traces do not only include service name and operation name information
as described in Section 3.1. Some spans also contain information about the Business Value Chain
they belong to. Business Value Chain are also called customer journeys within ING and describe a
series of events that belong to a certain action an ING customer might perform. For example, signing
up as a new ING customer or changing his home address. This means if all services annotate their
spans with the BVC their spans belongs to, we can explore the overall graph from a BVC perspective.
Combined with the computed metrics and identified anti-patterns this can help improve BVC and
therefore the application’s architecture. ING/Viz provides the possibility to list all BVCs currently
traced within ING. Once a user selects a BVC a list of all services and their operations that belong
to the BVC trace are listed as shown in Figure 4.9. If the user wants, she can also change the view
and have the list as well as a graph representation of the trace presented side by side as shown in
Figure 4.10. This side by side view gives a better understanding of how the trace passes between
services and operations. This gives a developer a different angle for finding refactoring possibilities
not only on an architectural level but also from a BVC level. Additionally, to provide users with a
better understanding of the context of a BVC, ING/Viz can highlight all services of a BVC within
an overview of the entire architecture. Figure 4.11 shows the same BVC trace as in Figure 4.9 but in
relation to the entire dependency graph. These overviews satisfy requirements R2 and R6.

Figure 4.9: ING/Viz tool displaying a BVC list of services and operations.

30

Automatic Anti-Pattern Detection in Microservice Architectures

Figure 4.10: ING/Viz tool displaying a BVC in a list and graph format.

Figure 4.11: ING/Viz tool highlighting a BVC services within the overall architecture.

31

Automatic Anti-Pattern Detection in Microservice Architectures

Figure 4.12 shows four Louvain communities 8 within the overall architecture. We compute the
communities with the weakly connected communities algorithm and Louvain community algorithm
provided by the Neo4j Data Science Library 9. In her GOTO 2019 talk Nicki Watt [39] discusses
how community detection algorithms can be used to confirm logical groupings of services. Users can
verify if the communities confirm their understanding of logical groupings of services. If this is not
the case, this can be an indication of bad domain separation within the application. Furthermore, if
a service has dependencies with services from many different communities this can be an indication
of bad separation of functionality. This view satisfies requirement R6.

Figure 4.12: ING/Viz highlighting the four largest Louvain communities within ING’s architecture.
In total 13 Louvain communities are detected.

8https://neo4j.com/docs/graph-data-science/current/algorithms/louvain/
9https://neo4j.com/docs/graph-data-science/current/

32

Automatic Anti-Pattern Detection in Microservice Architectures

Figure 4.13 shows the results page of the dashboard. On this page the user gets a small rundown for
each computed anti-pattern. For each anti-pattern there is a small description of the anti-pattern’s
symptoms. Furthermore, the top 5 services that are closest to the given anti-pattern are listed, which
is followed by a possible refactoring solution. At the end of the page there is a sortable table with
all results. Additionally, the user can dynamically include or exclude gateways and ngnix services
and can set the distance thresholds for each anti-pattern. These thresholds are used to compute the
occurrence percentage for each anti-pattern. For example, in Figure 4.13 the distance threshold for
the mega-service anti-pattern is set to 0.62. Given this threshold, 4% of services are flagged, which
is displayed next to the name of the anti-pattern. This is especially helpful for the nano-service
anti-pattern as a symptom of the anti-pattern is a high number of nano-services.

Figure 4.13: ING/Viz tool’s report page listing the flagged services for each anti-pattern.

33

Automatic Anti-Pattern Detection in Microservice Architectures

In Figure 4.14 the top 5 services that are closest to the mega-service anti-pattern are highlighted
within the architecture. However, the user can also have the other anti-patterns highlighted. This
provides the user with additional context information and an intuition of where the anti-patterns are
situated within the architecture. Furthermore, this view could possibly reveal areas of the architecture
that have significantly more flagged services. Thereby, revealing not only suboptimal services but also
problem areas in the architecture.

Figure 4.14: ING/Viz highlighting 5 services flagged as mega-service.

Figure 5.1 shows the results from the anti-pattern matching as a diagram. This is an easy way to
see the distribution of the results and helps the user get an understanding of the computed results.
These three views satisfy requirement R5.

34

Automatic Anti-Pattern Detection in Microservice Architectures

4.5 Summary

This chapter presents the ING/Viz dashboard developed as part of this graduation thesis. In Sec-
tion 4.1 the motivation behind the dashboard is highlighted. In Section 4.3 the architecture of the
dashboard is presented and in Section 4.4 the dashboard itself is presented.

The dashboard provides an interactive visualization of the application’s architecture as a Service
Dependency Graph. It allows the user to filter, expand and explore ING’s architecture. Furthermore,
it gives an overview of the computed metrics as well as a report on the detected anti-patterns.
Additionally, it provides the user with several additional data sources to gain a better understanding
of the application’s architecture. The user can use the additional context information to make a
better judgment whether the detected anti-patterns need additional in depth investigation or can be
ignored.

35

Chapter 5

Case Study and Results

In Section 5.1, this chapter details the case study that was performed with the developed anti-pattern
detection approach and the developed visualization tool. Furthermore, the results of this case study
are presented in Section 5.2. In Section 5.3 we answer the research question.

5.1 Case Study

For evaluation purposes, we integrate the tool within the ING Group (ING). ING is a Dutch multi-
national banking and financial services corporation. Its primary businesses are retail banking, direct
banking, wholesale banking, private banking, asset management, and insurance services [40]. From
our data collection we register 426 services within ING’s microservice architecture for retail and small
and medium businesses (NL/BE). However due to the collection process as described in Section 3.1
there might be more services. These could be services that use distributed tracing but did not cre-
ate any traces in the collection period or there might be microservices not using the tracing client.
Nonetheless, we are certain that we have registered the vast majority of services within the applica-
tion and our dataset is large enough to confidently demonstrate our approach. There is another set
of ING’s code base that is not captured in our approach, namely the legacy services that connect
to the microservice architecture but have no tracing client installed. Since this paper focuses on the
analysis of microservice architectures, we would have excluded these parts of ING’s application from
our results regardless.

5.2 Results

5.2.1 Methodology Results

In Table 5.1 we present the percentage of services that are flagged for each anti-pattern given a set
threshold. The threshold is chosen by us after manually testing different thresholds and verifying that
the flagged services meet our expectations. Therefore, the thresholds can be very different within
the same application, depending on who sets them. Also the thresholds will be very different for
other applications. With the selected thresholds we can see that the two most common anti-pattern
are the mega-service and the nano-service. The least common anti-pattern is the ambiguous-service
anti-pattern with 2%.

Table 5.1: Percentage Flagged Services
Anti-Pattern Threshold Flagged %
Mega Service 0.61 4
Nano Service 0.04 4
Ambiguous Service 0.26 2
Bottleneck Service 0.63 3

36

Automatic Anti-Pattern Detection in Microservice Architectures

Figures 5.1, 5.2, 5.3, 5.4 show the distribution of distances for each anti-pattern. The orange line
indicates the selected threshold for each anti-pattern. The distributions of all four anti-patterns follow
a similar trajectory. For small values the slope is steep and for higher values the slope becomes flatter.
We expect this distribution as we only expect a small percentage of microservices’ metrics to express
an anti-pattern. However, from these diagrams we can also see that there is no clear distinction in
the slope to identify services whose metrics express an anti-pattern. For example, in Figure 5.2 the
slope drops abruptly for distances < 0.7. However, we choose a threshold of 0.04, as services above
this threshold do not meet our expectations of a nano-service. The threshold we choose is half way
between an almost linear increase from 0 to 0.06 and is therefore impossible to detect automatically.
An automated approach could detect the change in slope at 0.7 but this is an incorrect threshold.

Figure 5.1: ING/Viz mega-service anti-pattern matching results as diagram with the threshold marked
with an orange line.

Figure 5.2: ING/Viz nano-service anti-pattern matching results as diagram with the threshold marked
with an orange line.

Figure 5.3: ING/Viz ambiguous-service anti-pattern matching results as diagram with the threshold
marked with an orange line.

37

Automatic Anti-Pattern Detection in Microservice Architectures

Figure 5.4: ING/Viz bottleneck-service anti-pattern matching results as diagram with the threshold
marked with an orange line.

In Tables 5.2, 5.3, 5.4, 5.5 we list for each anti-pattern the top 5 closest services. We filter out any
gateways/load-balancer services as these are listed in the top 5 for Mega-Service, Bottleneck and
Ambiguous-Service. After consulting with domain experts, we conclude that these gateway/load-
balancer services cannot be seen as a microservice in this application. We will discuss this further in
Chapter 6.1. We can see that MDM, InvolvedPartyAPI, ConsentOrchestrationAPI and Permission-
sAPI are listed for mega-service, bottleneck-service and ambiguous service.

38

Automatic Anti-Pattern Detection in Microservice Architectures

Table 5.2: Distance service to mega-service anti-pattern
Name MegaService
MDM 0.00
InvolvedPartyAPI 0.09
ConsentOrchestrationAPI 0.18
PermissionsAPI 0.21
AuthenticationOrchestrationAPI 0.38

Table 5.3: Distance service to nano-service anti-pattern
Name NanoService
DNL PMDM RequestManagement 0.00
ApprovalWorkflowAPI 0.01
AgreementPreferencesAPI 0.01
DNL PMDM ArrangementNotificationAdapter 002 OnePAM 0.01
DNL PMDM ArrangementNotificationAdapter 002 Kim 0.01

Table 5.4: Distance service to bottleneck anti-pattern
Name Bottleneck
ConsentOrchestrationAPI 0.12
MDM 0.25
InvolvedPartyAPI 0.42
PermissionsAPI 0.42
DNL PMDM MDM Notification Bridge OnePAM 0.48

Table 5.5: Distance service to ambiguous-service anti-pattern
Name AmbiguousService
ConsentOrchestrationAPI 0.00
PermissionsAPI 0.04
MDM 0.05
InvolvedPartyAPI 0.50
AuthenticationOrchestrationAPI 0.17

39

Automatic Anti-Pattern Detection in Microservice Architectures

As described in Section 3.2 we identify cyclic dependencies via a graph query and the CSD metric
only indicates whether a service is part of a cyclic dependency. Therefore, it is easier to present the
results via a figure. Figure 5.5 shows all cyclic dependencies that we detect. In total 38 services have
a cyclic dependency. Our query identifies 4 clusters of services that have cyclic dependencies between
the services. Most cycles are of length 2, but there are also larger cycles of length 3.

Figure 5.5: ING/Viz tool displaying all cyclic dependencies.

5.2.2 Expert Validation Results

The results from the expert validation are that the service to service and service to operation relations
are correct but not complete. For some services relations are missing. The number of missing services
for Java based applications is less than 10%. However, the number of inconsistencies and missing
services is significantly higher for services that are based on the TIBCO software 1 compared to Java
based services. The TIBCO services belong to the legacy code and are developed as a suite of services

1https://www.tibco.com/

40

Automatic Anti-Pattern Detection in Microservice Architectures

but originally not with the microservice architecture in mind. The services do not use HTTP calls as
the Java based applications but communicate via JMS 2 messaging which causes some side effects.
For example, the DNL DCRD Notification has two operations where one calls the other according
to our DT data. However, these are JMS calls which are considered to be internal procedure calls
for TIBCO services. Thus, the information that is sent to the DT does not represent the real world
correctly. Furthermore, as some relations are missing we do not detect all anti-patterns. According
to one expert the DNL SOLS DebitCardBlockManagement should be flagged as an anti-pattern. In
our database the DNL SOLS DebitCardBlockManagement has four service dependencies. However,
it actually has 16 service dependencies, which would have caused it to be flagged as mega-service
by our methodology. We can also confirm that the DNL DCRD BusinessRules service which is
flagged as mega-service is in fact a mega-service. The DNL DCRD BusinessRules centralizes a lot of
functionality which causes it to perform a large number of checks.

The feedback for ING/Viz is mostly positive with some remarks on the usage of ING /Viz. This first
remark is that developers do not require this dashboard in their day to day work. The reasoning
being, that a service’s team knows which other services they connect to. The second remark is, to
have a clear separation between our tool and Application Performance Management tools such as
AWS X-Ray 3 and Datadog 4 as these also provide architecture overviews. The positive feedback
is that the tool raises awareness for anti-patterns within teams as these are not usually taken into
consideration during development. Furthermore, the tool creates an observability for architecture
design and ”stimulates or scrutinizes” teams to spend more time on architecture design as it is
measured and checked in possible architecture audits.

5.3 Result Research Question

From our results we conclude that we can automatically identify anti-patterns in microservice archi-
tectures from distributed tracing. However, the output from our approach is not a definitive identi-
fication of anti-patterns but has to be evaluated by domain experts. Based on our computed metrics
some desirable architectural designs have metric properties that classify them as an anti-pattern. For
example, a central authentication service will have many dependencies with other services as it is un-
desirable for all services to implement their own authentication logic. Therefore, additional domain
knowledge is needed to get a definitive result. But the metrics can prioritize and reduce the number
of services that need to be manually checked and can therefore provide valuable automated support
for developers in identifying anti-patterns in microservice architectures.

5.4 Summary

In this chapter we present the results from the anti-pattern detection approach and the developed
visualization tool. To verify our approach and visualization tool we perform a case study within the
ING Group (ING). We register 426 services within ING’s microservice architecture for retail and small
and medium businesses (NL/BE). With the selected thresholds the two most common anti-patterns
are the mega-service and the nano-service. The least common anti-pattern is the ambiguous-service
anti-pattern. Furthermore, we detect 38 services with cyclic dependencies grouped in 4 clusters. From
our results we conclude that we can automatically identify anti-patterns in microservice architectures
from distributed tracing. However, the output from our approach is not a definitive identification of
anti-patterns but has to be evaluated by domain experts.

2https://en.wikipedia.org/wiki/Jakarta Messaging
3https://aws.amazon.com/xray/
4https://www.datadoghq.com/

41

Chapter 6

Discussion, Future Work and
Threats to Validity

This chapter is made up of four sections. Section 6.1 discusses the results from the case study. Section
6.2 presents possible future work directions. Section 6.3 highlights potential threats to validity of this
thesis. In Section 6.4 we provide personal recommendations for ING based on our results.

6.1 Discussion

In this thesis we present the methodology for automatic anti-pattern detection in microservice ar-
chitectures and we present the ING/Viz tool for visualizing the results from the methodology. The
visualization tool requires the anti-pattern detection methodology to work, however, the methodology
does not require the visualization and can be used by itself. Therefore, we discuss the two topics
separately.

6.1.1 Automatic Anti-Pattern Detection

From the results we conclude that our approach for Microservice Architecture recovery via Distributed
Tracing works but is impeded by the reality of an industrial application. The expert validation con-
firms that the detected service dependencies are correct, however, several services and dependencies
are missing due to the inconsistent way that spans are traced and annotated. Therefore, in the case of
ING further work is required to recover the full and correct application architecture. But for simpler
applications or applications with more consistently implemented DT our approach is able to recover
the application’s architecture.

Furthermore, we conclude that our approach for automatic anti-pattern detection can identify anti-
patterns within MSAs as demonstrated with the DNL DCRD BusinessRules service. However, ad-
ditional domain knowledge is needed to definitively determine whether a tagged service’s metrics
express an anti-pattern. We need an expert to confirm any flagged service as the metrics cannot
account for some deliberate design decisions. For example, in Tables 5.2,5.4,5.5, the MDM service
is ranked first for the mega-service anti-pattern, ranked second for bottleneck and ranked second for
ambiguous-service. Thus, based on the metrics we expect an anti-pattern. However, this architecture
is by design, as the MDM service provides customer data, which is the central point for authentication
and consent processes. This design decision is made to prevent repetition in implementing the com-
plex authentication logic. Therefore, the service is currently not a candidate for redesign. Though
one could argue, from an availability perspective, to use sharding and have MDM services per geo-
graphical region. Nevertheless, our approach reduces and prioritizes the number of services that need
to be manually checked, which is a significant improvement over manually searching for anti-patterns.
Our approach provides valuable automated support for teams in identifying anti-patterns in MSAs.

Additionally, our approach can help to confirm or disprove developer’s intuition of architectural

42

Automatic Anti-Pattern Detection in Microservice Architectures

refactoring possibilities. For example, several developers we talked to expect the number of mega-
services to be high but not the number of nano-services. To verify this we manually determine the
threshold for the mega-service and nano-service anti-patterns such that the flagged services satisfy our
expectations. Having set the threshold we find that 4% of services are flagged for both anti-patterns.
This result is very interesting and not expected by the developers we interviewed. Such biases in
teams might result in decreased performance as possible improvement possibilities are ignored. In
this example, a high number of very small services can cause a severe decrease in maintainability.
This is a result of teams having to deal with a comparatively large development overhead compared
to the provided functionality of the service. This shows the strength of a data driven identification
compared to intuition as it is less prone to biases.

We can also conclude that more work is needed to improve the results. This is especially the case for
the ambiguous-service anti-pattern. The results for the ambiguous-service are similar to the mega-
service and bottleneck anti-pattern results. However, after analyzing the results we conclude that
the listed services do not represent what we expect an ambiguous service to be. The flagged services
have clearly defined functionality and have several operations to interface with the service. The
commonality between the flagged services is the fact that they provide essential functionality (e.g.
authentication) which many different services use. From a metrics perspective, the flagged service
appears to serve multiple purposes. Therefore, we conclude that the metrics we use are not suitable
to detect the ambiguous-service anti-pattern. In the case of the ambiguous-service a different set of
metrics is needed, as the current metrics fail to correctly capture the symptoms of the anti-pattern.

Likewise, the results for the bottleneck-service anti-pattern are very similar to the mega-service re-
sults. This is to be expected as the dominant metric of the mega-service is the number of incoming
dependencies and the dominant metric of the bottleneck anti-pattern is the betweenness score. This
leads to a clear dependency. The more incoming dependencies a service has the higher the chance
that a shortest path leads through this service increasing the betweenness score. However, we do see
some differences. For example, the ConsentOrchestrationAPI is closer to the bottleneck anti-pattern
and therefore it might make more sense to use a refactoring solution for the bottleneck anti-pattern.
However, more work is needed to better define or expand the anti-pattern vectors, to ensure the
results have a clearer separation.

The results for the cyclic-service anti-pattern are the most definitive. Visualizing the flagged services
provides the most added value of all the anti-patterns. In this use case, it allows us to easily see
that there are clusters of cyclic dependent services. This could mean that the services are highly
dependent on each other, which closely resembles the distributed monolith anti-pattern. Thus, the
visualization adds valuable context information.

From our evaluation with teams within ING we conclude that the metrics are correct. But from
the discussion we notice that the metrics are very difficult to quickly understand. Furthermore, the
feedback from the interviewed teams is that it is hard to develop an intuition of the insights they
provide. In our second validation round the team finds it a lot easier to understand the results.
We are therefore convinced that the matching of metrics to anti-patterns provides a valuable step
in communicating the results to a broader audience. The matching gives teams a starting point for
possible refactoring solutions for the detected anti-patterns.

6.1.2 ING/Viz tool evaluation

From the feedback the ING teams provide and from personal testing we conclude that the developed
ING/Viz tool is a valuable addition to our developed anti-pattern detection methodology. The results
in form of the metrics are very abstract. This means the metrics provide very little actionable insights
for people and teams that do not know how to interpret the metrics. The linking of metrics to anti-
patterns makes the results more understandable, however, a simple list of flagged services does not
spark any discussion. After showing the teams the flagged services in the tool, they immediately
start discussing the results. The fact that the architecture is tangible with the visualization makes

43

Automatic Anti-Pattern Detection in Microservice Architectures

it far easier for teams to reason about the results and weigh pros and cons of refactoring solutions.
Therefore, we are convinced of the tool’s value.

We are not able to fully assess the additional context data ING/Viz provides. From personal usage
the trace-metrics data is especially interesting. It makes it possible to estimate the criticality of
a detected anti-pattern without having domain expertise of the particular service. If a service is
flagged, but the metrics are green for all edges this is a lesser problem as this means the percentage
of successful spans is greater than 97% and the average response time for all spans is smaller than
100ms. If a flagged service has many red edges, this might be a serious problem as this means that
either the percentage of successful spans is lower than 95% or the spans average response times are
greater than 500ms. This is valuable information. However, at the moment the trace-metrics are
based on the traffic of the previous hour. Having historic data at this point makes more sense and
would provide more reliable information. Unfortunately, at the moment trace-metrics data is only
stored for two weeks and therefore unsuitable.

We are not able to verify the value the community detection provides as we have no ground truth to
compare it to. Without an upper limit to the number of communities, the Louvain community detec-
tion algorithm divides the application into 13 communities. Interestingly, the largest four communities
seem to be grouped around three mega-services (InvolvedPartyAPI, MDM, DNL DCRD BusinessRules)
and the InternalGateway. This is shown in Figure 4.12. However, we cannot confirm whether these
communities make sense, as we are not able to find a single overview of ING’s application with
all services grouped by their logical business domains. Therefore, we cannot compare the detected
communities to the intended groups by ING.

So far the Business Value Chain visualization has not been used by teams in the intended purpose
but the feedback from two developers is very positive. They like the ability to focus on a single BVC,
which significantly reduces the number of services in the visualization. This makes it easier for a
software architect to single out the weakest link in the BVC and work on improving that service first.
This provides a clear angle for improvement, compared to looking at the entire architecture. Finding
a refactoring possibility, that has a positive impact on the application’s architecture, is difficult. But
for a chain of services this becomes a lot simpler.

As discussed in Section 5.2 the feedback from the expert validation is mostly positive with some
remarks on the usage of ING /Viz. Regarding the first remark, that developers do not need this tool
in their day to day work, we agree that it is correct. However, we argue that this tool is not intended
for the day to day work of developers. We rather see this tool being used by software architects
and product owners in cross team evaluations of the architecture. Having a tangible overview of the
complete architecture makes it easier for teams to discuss possibilities for improvement. Therefore, we
think the remark is valid, however it does not apply to our intended use case of the tool. Regarding the
second remark to have a clear separation between our tool and Application Performance Management
tools such as AWS X-Ray 1 and Datadog 2 as these also provide architecture overviews. This is surely
something to consider when continuing work on this project. But we see a clear distinction between
APM tools and ING/Viz. APM tools focus on real time metrics and incident analysis. ING/Viz
focuses on historic metric data and long term effects of the application’s architecture. We are certain
that ING/Viz has a clear use case that does not overlap with APM tools.

The discussion highlights the main strength of the developed tool. It can spark discussion about
architectural design decisions and allow teams to potentially find better solutions. We envision the
tool being used in regular architecture audits similar to security audits. In these audits teams use
the tool to identify weaknesses in their architecture and develop mitigation strategies to ensure high
availability for essential services. For example, using sharding for the MDM service as discussed
above. Furthermore, this could allow teams to monitor anti-patterns in the architecture development
over a long period and help them prevent bad architectural solutions. For example, our approach

1https://aws.amazon.com/xray/
2https://www.datadoghq.com/

44

Automatic Anti-Pattern Detection in Microservice Architectures

flags all gateway services and NGINX 3 services as mega-service, bottleneck and ambiguous-service.
After consulting domain experts we learn that all gateways are thin infrastructure layers and while
being a key element in a MSA, they should not be seen as a microservice. However, many enterprise
applications add increasingly more logic, such as circuit breakers, to their gateways. These solutions
might offer short term gains but once too much logic is put in the gateways they should be regarded
as microservices and consequently show anti-pattern symptoms. Recently, this exact problem has
been slowing down Netflix, which addresses the problem with graph-federation [41].

6.2 Future Work

6.2.1 Automatic Anti-Pattern Detection

There are four future work possibilities for the automatic anti-pattern detection methodology. Firstly,
in future work we want to verify in depth the results from the methodology. That is to contact a
majority of the teams within ING and discuss whether their service is rightfully flagged as an anti-
pattern. Any findings from this work we then want to use to improve the matching of metrics with
anti-patterns. This could be achieved by changing the definition of the anti-pattern vectors to get more
accurate results. Here a multiple regression could be used to find the best combination. Another
possibility for improving the anti-pattern detection is by changing the linking approach. At the
moment a simple euclidean distance is computed but the application of machine learning techniques
could lead to better results [29]. Additionally, we want to expand the methodology to include more
metrics and anti-patterns. For this research we choose the metrics and anti-patterns that can be
detected with the available data and that would provide the most insight for ING. This research
shows the potential of the developed methodology and that it is worth expanding on this research.
Thus, in future work, by adding more metrics, we expect to be able to better differentiate and detect
more anti-patterns. Moreover, for the final prioritization of anti-patterns, we look to linking with
the strategic software development roadmap which includes prioritization of feature-areas as well as
development-hot-spots [42]. In future work we want to look at measuring the metrics development
over an extended period of time. Analyzing the computed metrics over an extended period of time
could provide insight into whether the overall architecture is improving or deteriorating. This could
help teams to prioritize their efforts to maintain or improve an application’s architecture. Finally, we
expect knowing more about the business role of each microservice could lead to great improvements in
identifying anti-patterns. However, as shown in this research it is not always given that the business
roles of a service are known. Therefore, we want to look at automatic approaches for business role
extraction. One possible direction for automated extraction of knowledge about the roles of services
in the overall design is the use of role-stereotypes [43].

6.2.2 ING/Viz tool

Parties from the TU/e as well as ING show interest in continuing the work on ING/Viz. The source
code for the project is transferred to two teams within ING. They maintain and continue to work on
the project via new graduate interns. At the end of this thesis we get in contact with a new team
from ING, that retrieves the Microservice Architecture and additional information from several data
sources within ING. They are interested in collaborating on this project to provide more data points
for the dashboard. For example, they link services to their respective teams. This information could
be used in combination with the community detection algorithms and could be an interesting overlay
in the dashboard. Thus, in future work we can look into how to improve the current functionality and
update ING/Viz to take advantage of any improvements from the automatic anti-pattern detection.

6.3 Threats to validity

Wohlin et al. [44] provide a list of possible threats that researchers can face during a scientific
research. In this section, we describe the actions taken in order to increase the validity and decrease
the threats.

3https://www.nginx.com/

45

Automatic Anti-Pattern Detection in Microservice Architectures

External validity concerns how the results and findings can be generalized. As discussed in Section
5.2 the computed distances between services and anti-pattern cannot be generalized as these are
relative for each application. However, the presented methodology is generalizable and can be used
to implement a similar tool in other applications. To increase the external validity we provide as
much detail as possible for the methodology section.

Internal validity is defined as the extent to which the observed results represent the truth in the
studied population. We mitigate this threat by rigorously checking our approach and verifying that
each step in our process produces correct results. Furthermore, we verify the collected data by
manually validating samples with the responsible teams.

Construct validity concerns how the selected studies represent the real population to answer the
research questions. This is one of the biggest challenges of our studies because the provided span
annotations are not uniform throughout all teams. Some spans do not provide all information or
provide wrong information. Also, not all services within ING implement the tracing client and are
therefore not in the dataset. We are not able to mitigate these two threats as this would exceed the
scope of this study.

Conclusion validity concerns the relations between the conclusions that we draw and the analyzed
data. Even though we are not able to completely mitigate the construct validity threat, we document
our methodology as detailed as possible and discuss any decisions made. Therefore, we believe that if
other researchers were to duplicate this work, given the same application, they would draw the same
conclusions.

6.4 Personal Recommendations for ING

My graduation internship at ING was kicked off by the question of how ING could improve the service
dependencies within its microservice architecture. After a literature study preceding this graduation
internship the scope and research question for this graduation internship was determined. Finalizing
my internship, I want to conclude my research with two recommendations regarding the original
problem statement, by combining the insights from my research with the insights and impressions I
gained working at ING.

Firstly, I think that more emphasis needs to be put on observability. The first step to solve a problem
is to know and understand the current situation. However, until now there has been no visualization
of the architecture of ING. And there is still no overview of the entire ING architecture as this thesis
only collects data on a subset of business domains of ING. No one knows all existing services and how
they are connected. This makes it challenging to understand the current situation, monitor progress
and therefore makes it hard to determine solutions for current dependency problems. This graduation
thesis shows that a visualization can greatly improve discussion regarding architecture and therefore
I recommend continuing the work on visualizing ING architecture. Furthermore, there needs to be a
greater push towards widespread usage of Distributed Tracing. At the moment not all services use
DT leading to blind spots in the architecture. Not all spans are annotated correctly making it more
difficult to trust the data collected from DT. However, as every team manages its span’s annotations
a company wide push for improving DT is needed. Another part of observability is accountability. At
the moment it is possible, but too difficult, to know which teams develop which service. This makes
simple tasks, like sending emails, unnecessarily difficult. Consequently, hampering productivity as
communication between teams is challenging.

Secondly, ING has a large code base and therefore is still in the process of migrating to the microservice
architecture. I think this is a necessary migration to ensure the growth of the application. However, I
would recommend siding on initially creating fewer but larger services. Many small services inherently
create many dependencies and a lot of maintenance overhead. If a service turns out to be a mega
service, it can still be split into smaller services. From the results of this research we see that currently

46

Automatic Anti-Pattern Detection in Microservice Architectures

there are as many nano-services as mega services. But the developers interviewed did not expect nano-
services to be a problem and were focused on the number of mega-services. Thus, there might be a
bias towards creating many small services. I would recommend creating an awareness that creating
services is not a goal in itself.

6.5 Summary

In this chapter we discuss the results of this graduation thesis, outline future work possibilities,
address threats to validity and provide recommendations for ING.

From the results we conclude that our approach for automatic anti-pattern detection can identify anti-
patterns within MSAs. However, additional domain knowledge is needed to definitively determine
whether a tagged service’s metrics express an anti-pattern. Additionally, our approach can help to
confirm or disprove developer’s intuition of architectural refactoring possibilities. We find that our
developed tool can spark discussion about architectural design decisions and allow teams to potentially
find better solutions. We envision the tool being used in regular architecture audits similar to security
audits. In these audits, teams use the tool to identify weaknesses in their architecture and develop
mitigation strategies to ensure high availability for essential services.

There are numerous future work possibilities for the automatic anti-pattern detection methodology.
We want to perform an extensive verification of our results, improve the matching of metrics with
anti-patterns, add more metrics and anti-patterns to the approach, measure our metrics over an
extended period of time and combine our metrics with business roles of services. Additionally, we
want to continue work on the ING/Viz tool within ING and add new functionality as well as adapt
it to work with changes made to the automatic anti-pattern detection methodology.

47

Chapter 7

Conclusion

In this thesis, we present our approach for automatically recovering microservice based application
architectures via distributed tracing and detecting architectural anti-patterns within the recovered
architecture. Furthermore, we present a tool for visualizing the system’s architecture in an interactive
dashboard. The dashboard allows the filtering of specific services and enables developers to explore
the application’s architecture. Additionally, the tool provides extra information such as the success-
rate of traces between services as well as linking traces to business processes.

From the results we conclude that our approach for Microservice Architecture recovery via Distributed
Tracing works but is impeded by the reality of an industrial application. The expert validation con-
firms that the detected service dependencies are correct, however, several services and dependencies
are missing due to the inconsistent way that spans are traced and annotated. Furthermore, we learn
that linking the computed service metrics to anti-patterns provides more insight for developers than
solely the metrics. We also conclude that our approach for automatic anti-pattern detection can
identify anti-patterns within MSAs. However, additional domain knowledge is needed to definitively
determine whether a tagged service’s metrics express an anti-pattern. Additionally, our approach can
help to confirm or disprove developer’s intuition of architectural refactoring possibilities. We find
that our developed tool can spark discussion about architectural design decisions and allow devel-
opers to potentially find better solutions. We envision the tool being used in regular architecture
audits similar to security audits. In these audits developers use the tool to identify weaknesses in
their architecture and develop mitigation strategies to ensure high availability for essential services.
However, more research is needed on improving the detection anti-patterns based on metrics. In the
case of the ambiguous-service the results are similar to the mega-service and bottleneck anti-pattern
results. From analyzing the results, we conclude that a different set of metrics might be needed as
the current metrics fail to correctly capture the symptoms of the anti-pattern. Likewise, the results
for the bottleneck-service anti-pattern are very similar to the mega-service results. Therefore, more
work is needed to better define or expand the anti-pattern vectors, to ensure the results have a clearer
separation.

In short, the combination of ING/Viz and our methodology for automatic anti-pattern detection in
microservice architectures based on distributed tracing is a significant step in helping developer teams
to identify anti-patterns in large and complex Microservice Architectures. Furthermore, we provide
ample possibilities for future research directions.

48

Bibliography

[1] M. F. J. Lewis. Microservices. [Online]. Available: http://martinfowler.com/articles/
microservices.html

[2] C. R. Justin Reynolds. Vizceral open source. [Online]. Available: https://netflixtechblog.com/
vizceral-open-source-acc0c32113fe

[3] bocoup. Microservice networks. [Online]. Available: https://bocoup.com/work/buoyant

[4] A. Cloud. Visualizing a microservices architecture with ahas. [Online]. Available: https:
//alibaba-cloud.medium.com/visualizing-a-microservices-architecture-with-ahas-d763167013b7

[5] S.-P. Ma, C.-Y. Fan, Y. Chuang, I.-H. Liu, and C.-W. Lan, “Graph-based and scenario-driven
microservice analysis, retrieval, and testing,” Future Generation Computer Systems, vol. 100,
pp. 724–735, nov 2019. [Online]. Available: https://doi.org/10.1016/j.future.2019.05.048https:
//linkinghub.elsevier.com/retrieve/pii/S0167739X19302614

[6] X. Guo, X. Peng, H. Wang, W. Li, H. Jiang, D. Ding, T. Xie, and L. Su, “Graph-based trace
analysis for microservice architecture understanding and problem diagnosis,” in Proceedings of
the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. New York, NY, USA: ACM, nov 2020, pp.
1387–1397. [Online]. Available: https://dl.acm.org/doi/10.1145/3368089.3417066

[7] M. Kleehaus, Ö. Uludağ, P. Schäfer, and F. Matthes, “MICROLYZE: A Framework for
Recovering the Software Architecture in Microservice-Based Environments,” in Lecture Notes
in Business Information Processing, 2018, vol. 317, no. June, pp. 148–162. [Online]. Available:
http://link.springer.com/10.1007/978-3-319-92901-9 14

[8] G. Granchelli, M. Cardarelli, P. Di Francesco, I. Malavolta, L. Iovino, and A. Di
Salle, “MicroART: A Software Architecture Recovery Tool for Maintaining Microservice-
Based Systems,” in 2017 IEEE International Conference on Software Architecture
Workshops (ICSAW), no. April. IEEE, apr 2017, pp. 298–302. [Online]. Available:
https://ieeexplore.ieee.org/document/7958510/

[9] A. Kobyliński and A. Sobczak, Perspectives in Business Informatics Research, ser. Lecture
Notes in Business Information Processing, R. A. Buchmann, A. Polini, B. Johansson,
and D. Karagiannis, Eds. Cham: Springer International Publishing, 2020, vol. 398.
[Online]. Available: http://link.springer.com/10.1007/978-3-642-40823-6http://link.springer.
com/10.1007/978-3-030-61140-8

[10] I. Pigazzini, F. A. Fontana, V. Lenarduzzi, and D. Taibi, “Towards microservice
smells detection,” in Proceedings of the 3rd International Conference on Technical
Debt. New York, NY, USA: ACM, jun 2020, pp. 92–97. [Online]. Available: https:
//dl.acm.org/doi/10.1145/3387906.3388625

[11] T. Engel, M. Langermeier, B. Bauer, and A. Hofmann, “Evaluation of Microservice
Architectures: A Metric and Tool-Based Approach,” in Lecture Notes in Business Information
Processing. Springer International Publishing, 2018, vol. 317, pp. 74–89. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-92901-9 8

49

http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
https://netflixtechblog.com/vizceral-open-source-acc0c32113fe
https://netflixtechblog.com/vizceral-open-source-acc0c32113fe
https://bocoup.com/work/buoyant
https://alibaba-cloud.medium.com/visualizing-a-microservices-architecture-with-ahas-d763167013b7
https://alibaba-cloud.medium.com/visualizing-a-microservices-architecture-with-ahas-d763167013b7
https://doi.org/10.1016/j.future.2019.05.048 https://linkinghub.elsevier.com/retrieve/pii/S0167739X19302614
https://doi.org/10.1016/j.future.2019.05.048 https://linkinghub.elsevier.com/retrieve/pii/S0167739X19302614
https://dl.acm.org/doi/10.1145/3368089.3417066
http://link.springer.com/10.1007/978-3-319-92901-9_14
https://ieeexplore.ieee.org/document/7958510/
http://link.springer.com/10.1007/978-3-642-40823-6 http://link.springer.com/10.1007/978-3-030-61140-8
http://link.springer.com/10.1007/978-3-642-40823-6 http://link.springer.com/10.1007/978-3-030-61140-8
https://dl.acm.org/doi/10.1145/3387906.3388625
https://dl.acm.org/doi/10.1145/3387906.3388625
http://dx.doi.org/10.1007/978-3-319-92901-9_8

Automatic Anti-Pattern Detection in Microservice Architectures

[12] M. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer, “Pinpoint: problem determination
in large, dynamic Internet services,” in Proceedings International Conference on Dependable
Systems and Networks, no. February. IEEE Comput. Soc, 2002, pp. 595–604. [Online].
Available: http://ieeexplore.ieee.org/document/1029005/

[13] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica, “X-trace: A pervasive network
tracing framework,” in Proceedings of the 4th USENIX Conference on Networked Systems Design;
Implementation, ser. NSDI’07. USA: USENIX Association, 2007, p. 20.

[14] P. Barham, R. Isaacs, R. Mortier, and D. Narayanan, “Magpie: Online modelling and
performance-aware systems,” Proceedings of HotOS 2003 - 9th Workshop on Hot Topics in Op-
erating Systems, pp. 85–90, 2003.

[15] B. H. Sigelman, L. Andr, M. Burrows, P. Stephenson, M. Plakal, D. Beaver,
S. Jaspan, and C. Shanbhag, “Dapper , a Large-Scale Distributed Systems Tracing
Infrastructure,” Google Research, no. April, p. 14, 2010. [Online]. Available: https:
//static.googleusercontent.com/media/research.google.com/en//pubs/archive/36356.pdf

[16] Y. Shkuro. Jaeger and opentelemetry. [Online]. Available: https://medium.com/jaegertracing/
jaeger-and-opentelemetry-1846f701d9f2

[17] K. Ranganathan. Netflix shares cloud load balancing and failover
tool: Eureka! [Online]. Available: https://netflixtechblog.com/
netflix-shares-cloud-load-balancing-and-failover-tool-eureka-c10647ef95e5

[18] P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, “Managing Technical Debt in Software
Engineering (Dagstuhl Seminar 16162),” Dagstuhl Reports, vol. 6, no. 4, pp. 110–138, 2016.
[Online]. Available: http://drops.dagstuhl.de/opus/volltexte/2016/6693

[19] T. Besker, A. Martini, R. Edirisooriya Lokuge, K. Blincoe, and J. Bosch, “Embracing technical
debt, from a startup company perspective,” in 2018 IEEE International Conference on Software
Maintenance and Evolution (ICSME), 2018, pp. 415–425.

[20] J. Bogner, T. Boceck, M. Popp, D. Tschechlov, S. Wagner, and A. Zimmermann, “Towards a
collaborative repository for the documentation of service-based antipatterns and bad smells,” in
2019 IEEE International Conference on Software Architecture Companion (ICSA-C), 2019, pp.
95–101.

[21] R. Mo, Y. Cai, R. Kazman, L. Xiao, and Q. Feng, “Architecture anti-patterns: Automatically
detectable violations of design principles,” IEEE Transactions on Software Engineering, vol. 47,
no. 5, pp. 1008–1028, 2021.

[22] S. S. de Toledo, A. Martini, and D. I. Sjøberg, “Identifying architectural technical
debt, principal, and interest in microservices: A multiple-case study,” Journal of
Systems and Software, vol. 177, no. April, p. 110968, jul 2021. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0164121221000650

[23] R. Tighilt, M. Abdellatif, N. Moha, H. Mili, G. E. Boussaidi, J. Privat, and Y.-G. Guéhéneuc,
“On the Study of Microservices Antipatterns,” in Proceedings of the European Conference on
Pattern Languages of Programs 2020, no. 1. New York, NY, USA: ACM, jul 2020, pp. 1–13.
[Online]. Available: https://dl.acm.org/doi/10.1145/3424771.3424812

[24] S. Even, Graph Algorithms, 2nd ed., G. Even, Ed. Cambridge University Press, 2011.

[25] J. Bogner, S. Wagner, and A. Zimmermann, “Automatically measuring the maintainability of
service- and microservice-based systems,” in Proceedings of the 27th International Workshop
on Software Measurement and 12th International Conference on Software Process and Product
Measurement, vol. Part F1319, no. October. New York, NY, USA: ACM, oct 2017, pp.
107–115. [Online]. Available: https://dl.acm.org/doi/10.1145/3143434.3143443

50

http://ieeexplore.ieee.org/document/1029005/
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36356.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36356.pdf
https://medium.com/jaegertracing/jaeger-and-opentelemetry-1846f701d9f2
https://medium.com/jaegertracing/jaeger-and-opentelemetry-1846f701d9f2
https://netflixtechblog.com/netflix-shares-cloud-load-balancing-and-failover-tool-eureka-c10647ef95e5
https://netflixtechblog.com/netflix-shares-cloud-load-balancing-and-failover-tool-eureka-c10647ef95e5
http://drops.dagstuhl.de/opus/volltexte/2016/6693
https://linkinghub.elsevier.com/retrieve/pii/S0164121221000650
https://dl.acm.org/doi/10.1145/3424771.3424812
https://dl.acm.org/doi/10.1145/3143434.3143443

Automatic Anti-Pattern Detection in Microservice Architectures

[26] ——, “Towards a practical maintainability quality model for service-and microservice-based
systems,” in Proceedings of the 11th European Conference on Software Architecture: Companion
Proceedings, vol. Part F1305, no. September. New York, NY, USA: ACM, sep 2017, pp.
195–198. [Online]. Available: https://dl.acm.org/doi/10.1145/3129790.3129816

[27] F. Palomba, A. De Lucia, G. Bavota, and R. Oliveto, “Anti-pattern detection: Methods, chal-
lenges, and open issues,” in Advances in Computers. Elsevier, 2014, vol. 95, pp. 201–238.

[28] A. Maiga, N. Ali, N. Bhattacharya, A. Sabane, Y.-G. Guéhéneuc, and E. Aimeur, “Smurf: A
svm-based incremental anti-pattern detection approach,” in 2012 19th Working Conference on
Reverse Engineering. IEEE, 2012, pp. 466–475.

[29] A. Maiga, N. Ali, N. Bhattacharya, A. Sabané, Y.-G. Guéhéneuc, G. Antoniol, and E. Aimeur,
“Support vector machines for anti-pattern detection,” in 2012 Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineering. IEEE, 2012, pp.
278–281.

[30] R. Fourati, N. Bouassida, and H. B. Abdallah, “A metric-based approach for anti-pattern detec-
tion in uml designs,” in Computer and Information Science 2011. Springer, 2011, pp. 17–33.

[31] M. Nayrolles, N. Moha, and P. Valtchev, “Improving soa antipatterns detection in service based
systems by mining execution traces,” in 2013 20th Working Conference on Reverse Engineering
(WCRE). IEEE, 2013, pp. 321–330.

[32] F. A. Fontana, I. Pigazzini, R. Roveda, D. Tamburri, M. Zanoni, and E. Di Nitto, “Arcan:
A tool for architectural smells detection,” in 2017 IEEE International Conference on Software
Architecture Workshops (ICSAW), 2017, pp. 282–285.

[33] J. Garcia, I. Ivkovic, and N. Medvidovic, “A comparative analysis of software architecture re-
covery techniques,” in 2013 28th IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2013, pp. 486–496.

[34] E. Gaidels and M. Kirikova, “Service dependency graph analysis in microservice architecture,”
in Perspectives in Business Informatics Research, R. A. Buchmann, A. Polini, B. Johansson, and
D. Karagiannis, Eds. Cham: Springer International Publishing, 2020, pp. 128–139.

[35] U. BRANDES and C. PICH, “Centrality estimation in large networks,” International
Journal of Bifurcation and Chaos, vol. 17, no. 07, pp. 2303–2318, 2007. [Online]. Available:
https://doi.org/10.1142/S0218127407018403

[36] Neo4j. Local clustering coefficient. [Online]. Available: https://neo4j.com/docs/
graph-data-science/current/algorithms/local-clustering-coefficient/

[37] J. Bogner. Service-based antipatterns. [Online]. Available: https://xjreb.github.io/
service-based-antipatterns/

[38] A. Cockburn, A. Karlson, and B. B. Bederson, “A review of overview+detail, zooming, and
focus+context interfaces,” ACM Comput. Surv., vol. 41, no. 1, Jan. 2009. [Online]. Available:
https://doi.org/10.1145/1456650.1456652

[39] N. Watt. Explore your microservices architecture with graph theory & network science. [Online].
Available: https://www.youtube.com/watch?v=0G5O1ffYIPI&t=1578s

[40] Wikipedia. Ing group. [Online]. Available: https://en.wikipedia.org/wiki/ING Group

[41] Netflix. How netflix scales its api with graphql federation (part 1). [Online]. Available: https:
//netflixtechblog.com/how-netflix-scales-its-api-with-graphql-federation-part-1-ae3557c187e2

[42] M. R. V. Chaudron, B. Katumba, and X. Ran, “Automated prioritization of metrics-based design
flaws in uml class diagrams,” in 2014 40th EUROMICRO Conference on Software Engineering
and Advanced Applications. IEEE, 2014, pp. 369–376.

51

https://dl.acm.org/doi/10.1145/3129790.3129816
https://doi.org/10.1142/S0218127407018403
https://neo4j.com/docs/graph-data-science/current/algorithms/local-clustering-coefficient/
https://neo4j.com/docs/graph-data-science/current/algorithms/local-clustering-coefficient/
https://xjreb.github.io/service-based-antipatterns/
https://xjreb.github.io/service-based-antipatterns/
https://doi.org/10.1145/1456650.1456652
https://www.youtube.com/watch?v=0G5O1ffYIPI&t=1578s
https://en.wikipedia.org/wiki/ING_Group
https://netflixtechblog.com/how-netflix-scales-its-api-with-graphql-federation-part-1-ae3557c187e2
https://netflixtechblog.com/how-netflix-scales-its-api-with-graphql-federation-part-1-ae3557c187e2

Automatic Anti-Pattern Detection in Microservice Architectures

[43] A. Nurwidyantoro, T. Ho-Quang, and M. R. V. Chaudron, “Automated classification of class
role-stereotypes via machine learning,” in Proceedings of the Evaluation and Assessment on
Software Engineering, 2019, pp. 79–88.

[44] C. Wohlin, P. Runeson, M. Hst, M. C. Ohlsson, B. Regnell, and A. Wessln, Experimentation in
Software Engineering. Springer Publishing Company, Incorporated, 2012.

52

	Introduction and Research Question
	Introduction
	Research Question
	Thesis Structure

	Background and Related Work
	Distributed Tracing
	Service Dependency Graphs
	Tracing Data
	Service Discovery Mechanism

	Architectural Technical Debt
	Anti-Patterns

	Network Analysis
	Service Metrics for Architecture Evaluation
	Microservice Anti-Pattern identification

	Summary

	Methodology
	Data Collection
	Data Processing
	Metrics to Anti-Pattern Matching
	Expert Validation
	Summary

	Visualization Tool
	Motivation
	Requirements
	Architecture
	Data Visualization
	Summary

	Case Study and Results
	Case Study
	Results
	Methodology Results
	Expert Validation Results

	Result Research Question
	Summary

	Discussion, Future Work and Threats to Validity
	Discussion
	Automatic Anti-Pattern Detection
	ING/Viz tool evaluation

	Future Work
	Automatic Anti-Pattern Detection
	ING/Viz tool

	Threats to validity
	Personal Recommendations for ING
	Summary

	Conclusion

