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Abstract

Technology-enhanced solutions drive to continuous improvement of production processes in the chemical
industry. An increasing number of manufacturing systems is equipped with digital devices that con-
tinuously monitor the amount of nonconforming items as indication of process quality and efficiency.
Quality control of highly efficient production processes becomes a challenging task when produced items
are mostly zero-defect. An additional complication arises when some covariate affects the amount of
nonconforming items. At Dow Inc., plastic pellets are manufactured and monitored for defects, while the
defect rate depends on a variable inspected weight.

In this Master’s thesis, we consider generalized linear model-based control charts for detecting con-
textual anomalies in data that originates from monitoring high-purity processes for defects. Observations
are assumed to follow a zero-inflated Poisson (ZIP) or zero-inflated negative binomial (ZINB) distribution
that depend on a normally distributed covariate. The ZIP and ZINB regression models are employed for
monitoring predictive Pearson, deviance and randomised quantile residuals in a regression-based Shewhart
chart with both symmetric and probability control limits. A simulation study is proposed to compare
the performance of each monitoring scheme. Results show that both the ZIP and ZINB regression-based
Shewhart charts with deviance residuals and probability control limits perform satisfactory.

In addition, a Gamma GLM-based time-between-events chart is introduced for detecting contextual
anomalies in high-purity count data. Simulation results show that the Gamma GLM-based TBE charts
perform equally well with Pearson, deviance and quantile residuals.

Keywords: Statistical process control, high-purity processes, univariate monitoring, contextual anomaly
detection, zero-inflated Poisson regression, zero-inflated negative binomial regression, Pearson residuals,
deviance residuals, quantile residuals.
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1 | Introduction

In our everyday lives, we often talk about quality. We talk about quality of goods and services, but
we also talk about the quality of systems and processes. We generally seek the products that have high
quality and we aim to improve the quality of those things that we offer to others. Quality improvement of
products and processes generally leads to efficient use of materials and more sustainable industries. Over
the years, this has led to a growing interest in the tools and methodologies that regard quality control.
But what is quality? And how do we achieve it?

The 21st century answer to this question is: data science. We live in a world where data becomes
more available every day and we are rapidly developing the skills to transform this data into valuable
information. Many scientists believe that we are now at the beginning of the fourth industrial revolu-
tion, in which the combination of technology-enhanced solutions with information technology and data
analytics will completely change the way in which we operate. Continuous optimisation of processes will
significantly improve productivity and quality across all sectors such as finance, health care, marketing
and manufacturing. In this Master’s thesis, we focus on data science applications for quality control in
the manufacturing sector. More specifically, we consider generalized linear model-based control charts
for high-purity processes. This study is conducted as part of a research collaboration between Eindhoven
University of Technology and the chemical company Dow Inc.

1.1 Dow

Dow was founded in 1897 and has grown to be one of the words largest chemical manufacturers in
the world. The production site in Terneuzen, The Netherlands, counts 17 factories and is one of the
largest production location of Dow worldwide. The site in Terneuzen hosts many facilities including
production of goods, R&D and supporting functions for all sites in Europe, the Middle-East, Africa and
India. The research of this Master’s thesis is commissioned by the Chemometrics&AI and Statistics
group in the Continuous Improvement (CI) organisation. The Chem&AI and Stats group strives to
support the manufacturing and engineering organisations with data-driven solution for both short-term
problems and long-term strategies. A strategic project is the implementation and support of monitoring
systems for quality and process manufacturing data, providing plant personnel with real-time information
about the state of the processes. Monitoring production processes has led to better decision making so far.
However, it is known that standard monitoring strategies are not always appropriate for complex systems,
particularly for those referred to as high-purity processes. The work of this thesis aims to contribute in
building a more advanced monitoring systems framework in the context of high-purity processes.

1.2 Monitoring high-purity processes

Monitoring production output is a conventional method to obtain real-time information regarding produc-
tion process performances. All produced goods at Dow are compared to their design requirements, which
are called specifications, at the end of the production line. A product that does not meet the requirements
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is labelled as ‘defective’ while all conforming products are labelled as ‘non-defective’. The total amount
of defective products per inspected sample is an indication of the production process performance over
time, whereas fewer defects indicate better performance. If all products in the sample are non-defective,
then this sample is referred to as having zero defect. Highly efficient production processes of which the
monitoring data reports mostly zero defect are in the chemical industry referred to as high-purity process,
and in other fields as high-yield processes. In this research project we consider the high-purity processes
at Dow, and the way in which we can control their quality.

Statistical process control (SPC) is a field of research that considers statistical tools and methods
for monitoring the quality of industrial processes over time. The textbook of Qiu (2013) provides an
overview of the most important concepts and tools in SPC, of which a more elaborate description is
provided in Chapter 4. SPC control charts monitor a quality characteristic over time, to determine
whether the production process is still performing satisfactory. The amount of defective products per
sample is for example a possible quality characteristic. An important assumption of SPC control charts is
all observations are independent and identically distributed. However, this is not always true in practice.

It might be that the outcome of each observation depends on other variables as well. In such cases, it
is necessary to account for the effect that these covariates have on the outcome, when monitoring these
observations over time. Hence, we should not aim to detect abnormalities in the data, but we should
detect events that are abnormal in their context. These events are called contextual anomalies. A method
for detecting contextual anomalies is the application of regression-based control charts. We distinguish
between traditional control charts and regression-based control charts, whereas traditional control charts
aim to detect abnormalities in the data itself. Regression-based control charts aim to detect data points
that are abnormal in their context, i.e., contextual anomalies.

At Dow, plant personnel use traditional control charts to monitor the health of the processes in all sites
around the world. However, constructing regression-based control charts for high-purity processes can be
complex due to complicated data distributions with excessive amounts of zero-occurrences. Nevertheless,
the demand for such monitoring schemes remains. Therefore, in this thesis we focus on the application
of regression-based control charts for high-purity processes, in order to provide Dow with a general
framework to detect contextual shifts.

1.3 Research questions

It is common knowledge in SPC that generally there is not one monitoring strategy that is superior to all
others. An optimal scheme should rather be designed according to a specific process and its monitoring
goal. The goal of this thesis is therefore to provide a framework for identifying a monitoring scheme,
that performs satisfactory given a specific high-purity process and monitoring goal. The main research
question is defined as follows: Which monitoring scheme is most appropriate for detecting contextual
anomalies in univariate count data, that originates from monitoring a specific high-purity processes?
Sub-questions that arise in this setting are:

• Based on published works in the literature, what are the established monitoring methods for detect-
ing contextual anomalies in data that originates from monitoring high-purity processes for defects?

• How can we model the relationship between the response variable and the covariate? And what
type of residuals can we use for a regression-based control chart?

• Which regression-based monitoring schemes can be used for detecting contextual anomalies in data
that originates from monitoring high-purity processes for defects?

• How can we evaluate the performance of a regression-based control chart?

• Which monitoring scheme achieves the best performance when aiming to detect contextual anoma-
lies in data that originates from monitoring high-purity processes for defects?
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1.4 Thesis outline

Before we proceed to answer any of the research questions, it is important become acquainted with the
data at hand. Hence, a description of the high-purity monitoring data is provided in Chapter 2, along
with a definition of two distributions that can be used to model this data. Next, a literature review on
regression-based control charts for high-purity processes is presented in Chapter 3, where the solution
strategy of this project is also provided. A certain level of understanding in SPC theory is assumed in the
literature review, such that inexperienced readers might want to start with Chapter 4. Here, the main
concepts of SPC and SPC control charts are discussed.

A traditional control chart is proposed in Chapter 5, where we focus on monitoring high-purity count
data that is not affected by a covariate. We continue by considering data that is affected by a covariate,
such that regression models for count data are discussed in Chapter 6. Monitoring methods for detecting
contextual anomalies in high-purity count data are described Chapter 7, along with two strategies for
performance evaluation of each method. The performance results are provided and discussed in Chapter 8.
Finally, a new monitoring method is introduced as a suggestion for future work in Chapter 9, where
we consider a regression-based time-between-events chart. Conclusions and discussion of this project
are provided in Chapter 10. The technical mathematical background is attached in Appendix A, and
additional results can be found in Appendix B. The R code of the most important simulations and
computations is attached in Appendix C.
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2 | Data description and models

The core business of Dow includes the production of plastic pellets. Plastic pellets are small grains of
plastic that are used as raw material for producing end-user products. Packaging materials, computer
components and parachute fabric are for example products that are made from plastic pellets such as
polyethylene, urethane and ethylene-octene. Many of these production processes are highly efficient such
that they are considered to be high-purity processes. In this chapter, we consider the data that originates
from monitoring these high-purity processes for defects, where we take the production of plastic pellets
as the leading example. First of all, we discuss the origin of the data in Section 2.1. Two distinct
distributions are discussed afterwards, that are commonly used to model high-purity count data. It
should be noted that due to a strict confidentiality policy at Dow, it has not been possible to include real
plant data in this research. Instead, data properties have been thoroughly discussed with stakeholders
inside of Dow, on which multiple simulation studies are based. Hence, data properties that are discussed
throughout this report are based on simulations from models that capture the important features of the
real data.

2.1 High-purity count data

Production of plastic pellets at Dow is a continuous process. At the end of the production line, production
output is monitored to determine whether the produced pellets meet their design requirements. Pellets
that contain any abnormalities or do not meet their standard are labelled as defects and fail the inspection.
The process of producing and checking pellets for defects is executed as follows:

1. After production is complete, a representative of plastic pellets is collected and inspected continu-
ously on minute basis.

2. The total amount of defects are counted by a detection algorithm, and reported in the monitoring
data. For most production lines, defects are categorised based on their size. In such cases, multi-
variate monitoring data is obtained, reporting the amount of detected defects per size category are
recorded each minute.

In this research project, we only consider univariate count data that represents the total amount of
detected defects across all size categories. From now on, let us denote the total amount of detected
defects with Yi, at time i = 1, 2, . . . . Then, Yi is non-negative and integer such that we refer to it
as count data. Producing plastic pellets at Dow is considered to be a high-purity process when the
monitoring data Yi includes mainly zero-defect occurrences.

However, some production lines of plastic pellets at Dow are more complex than described above.
Namely, the production rate at which pellets are produced is not constant over time. This causes the
amount of pellets in the detection stage to be inconstant over time as well. Hence, each sample of pellets
that goes through the detection stage has different size. Therefore, the total weight of each batch is
measured and reported. Let us denote the inspected weight with Xi for each point in time i = 1, 2, . . . .
It is trivial that the amount of detected defective pellets at time i depends on the inspected weight at
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this particular time point. Hence, deviations in the inspected weight need to be taken into account when
designing a monitoring system for the observed defect count.

In this thesis we consider monitoring methods for high-purity count data, where the response variable
is affected by one input variable. In the context of plastic pellet production, we aim to monitor the total
amount of detected defective pellets, while taking into account the inspected weight. Hence, we aim to
detect contextual anomalies. Existing literature on this topic is discussed in Chapter 3. However, let us
first consider two models for high-purity count data in the following section.

2.2 Models for zero-inflated count data

The Poisson and negative binomial distribution are common choices for modelling count data processes.
The negative binomial distribution models the number of successes in a sequence of Bernoulli trials,
before a specified number of failures. Let us denote number of failures with τ . The Poisson distribution
is a limiting case of the negative binomial distribution, where τ = 1 and the number of trials goes to
infinity while the the expected value remains constant. This is stated by the Poisson limit theorem, that
is explained in the textbook of Koralov and Sinai (2007) (Section 2.3). The negative binomial distribution
is often considered as an alternative to the Poisson distribution, since it includes the size parameter τ .
This size parameter allows for adjustable amounts of variation in the data, whereas the variance of the
negative binomial distribution decreases when τ increases. Therefore, 1/τ is sometimes referred to as the
dispersion parameter.

It is explained in Section 2.1, that data from high-purity processes inherit a particularly large amount
of zero observations. This is often referred to as zero-inflated (ZI) data. It is explained in Mahmood
(2020), that modelling zero-inflated data with a Poisson distribution may cause violation of the equidis-
persion assumption, which leads to inaccurate estimations. The negative binomial distribution does also
not account for an excess amount of zeros in the data, such that modelling zero-inflated data with a
negative binomial distribution also leads to poor estimations due to overdispersion. Instead we can use
zero-inflated distributions to model count data with an excessive amount of zeros. These distributions ac-
count for an additional proportion of zero occurrences with respect to the standard Poisson and negative
binomial distribution. These models are therefore more appropriate to model count data for high-purity
processes. The zero-inflated Poisson distribution and zero-inflated negative binomial distribution are
discussed in the following sections.

2.2.1 The zero-inflated Poisson distribution

The zero-inflated Poisson (ZIP) distribution assumes that all observations emerge from two zero-generating
processes. Namely, with probability 1− p, variable Yi follows a Poisson distribution with expected value
λ. With probability p we have that Yi equals zero. This second process ensures the inflation of additional
zeros to the Poisson model, such that we refer to these observations as structural zeros. The formal
definition of the ZIP distribution for i = 1, 2, . . . is given by the following probability mass function.

P (Yi = y) =

{
p+ (1− p)e−λ if y = 0

(1− p) e
−λλy

y! if y > 0
(2.1)

Note that for p = 0, the ZIP distribution reduces to a regular Poisson distribution with parameter λ.
The expected value of Yi is defined as E[Yi] = (1 − p)λ, of which a proof is provided in A.1.1. Note
that this is the 1 − p proportion of the expected value of a regular Poisson(λ) distribution, since the
ZIP distribution only includes an additional point mass with value zero. In addition, the ZIP variance is
defined as Var(Yi) = (1 − p)(λ + pλ2), of which a proof is provided in A.1.2. In the following chapters,
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we will abbreviate the zero-inflated Poisson distribution with parameters p and λ to ZIP(p,λ). Here, p
denotes the proportion of zero-inflation and λ is the expected value in case Yi is not a structural zero.

2.2.2 The zero-inflated negative binomial distribution

The zero-inflated negative binomial (ZINB) distribution is constructed similarly to the ZIP distribution,
and assumes that all observations emerge from two zero-generating processes. With probability 1−p, the
variable Yi follows a negative binomial distribution with expected value λ and size parameter τ . With
probability p we have that Yi equals a structural zero. When using the Gamma notation of the negative
binomial distribution, we can formally define the ZINB distribution for i = 1, 2, . . . in the following
probability mass function.

P (Yi = y) =

p+ (1− p)
(
1 + λ

τ

)−τ
if y = 0

(1− p)Γ(y+τ)
y!Γ(τ)

(
1 + λ

τ

)−τ (
1 + τ

λ

)−y if y > 0
(2.2)

Size parameter τ is often chosen as an integer, but the ZINB distribution extends all non-negative real
values with τ > 0. Note that for p = 0, the ZINB distribution (2.2) reduces to the negative binomial
distribution with parameter λ. The expected value of Yi is defined as E[Y ] = (1− p)λ, of which a proof
is provided in A.1.3. In addition, the ZINB variance is defined as Var(Y ) = λ(1 − p)(1 + pλ + λ/τ), of
which a proof is provided in A.1.4. In the following chapters, we will abbreviate the zero-inflated negative
binomial distribution to ZINB(p,λ,τ). Again, p denotes the proportion of zero-inflation, λ is the expected
value of the negative binomial distribution in case Yi is not a structural zero and τ is the size parameter.

2.3 Summary

The production of plastic pellets at Dow is considered to be a high-purity process. Monitoring these high-
purity processes for defects results in univariate count data that that contains a large amount of zero
observations. We denote the detected amount of defects with response variable Yi, at time i = 1, 2, . . . .
The corresponding inspected weight is denoted with covariate Xi.

Since common count data distribution such as the Poisson and negative binomial distribution do not
account for excessive amount of zeros, we should use a zero-inflated distribution to model the data. This
can either be the zero-inflated Poisson distribution or the zero-inflated negative binomial distribution of
which definitions are provided in Sections 2.2.1 and 2.2.2, respectively. Ultimately, we aim to construct a
regression-based control chart for detecting contextual anomalies in monitoring data that originates from
high-purity processes. Therefore, we focus on constructing regression-based control charts for data that
follows a zero-inflated distribution. Literature on this topic is discussed in the following chapter.
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3 | Literature review

The field of statistical process control (SPC) was founded by Shewhart in 1924, when he published an
internal report at the Bell Telephone Laboratories that contained the foundation of what is now called
the Shewhart X̄-chart. This control chart for normally distributed data is formally introduced in the
paper of Shewhart (1925), but the ideas of Shewhart did not catch up with the American industry at the
time. Instead, it was Deming and Juran that managed the breakthrough of SPC after Word War II (see
e.g. Juran (1997) and Stauffer (2003)). Since then, many types of control charts have been introduced
to fit specific detection goals or alternative distributions of the data. Some well-known examples are
the cumulative sum chart from Page (1954), and the exponentially weighted moving average chart from
Roberts (1959) and Shiryaev (1963). These charts are generally abbreviated to CUSUM and EWMA
charts, respectively. Nowadays, SPC is rapidly gaining interest as our information infrastructures evolve
and we aim to continuously analyse large amounts of data. The works of Megahed and Jones-Farmer
(2015), Weese et al. (2016) and Qiu (2020) provide an interesting overview of monitoring an surveillance
methods for big data applications that go beyond production line monitoring.

In this thesis, we focus on the application of regression-based control charts for high-purity processes.
The first regression-based control chart was introduced by Mandel (1969), for the purpose of detecting
contextual abnormal behaviour in normally distributed data. This topic appears in econometrics as mon-
itoring structural change, see e.g. Chu et al. (1996). The studies of Brown et al. (1975) and Dufour (1982)
have introduced a recursive approach for regression-based control charts. Both studies are discussed in
Section 3.1, where a literature review is presented regarding the established monitoring techniques for de-
tecting contextual anomalies. Regression models for zero-inflated count data are discussed in Section 3.2,
after which a literature overview regarding GLM-based control charts is provided in Section 3.2. Finally,
a solution strategy for this thesis is presented in Section 3.4.

3.1 Monitoring techniques

Originally, regression-based control charts were introduced to monitor the deviance from an established
regression model over time. In this case, the regression model is estimated from a stable period in
the process, referred as the Phase I period by Hawkins et al. (2003). Monitoring residuals that are
obtained from a fixed Phase I regression model is also referred to as monitoring predictive residuals
by Van Dalen (2018). Here, it is shown that for normally distributed observations, that predictive
residuals are correlated and therefore dependent, since all residuals are obtained from the same regression
model. The application of predictive residuals in a control chart is therefore violating the assumption of
independent observations.

The research from Brown et al. (1975) introduces a recursive approach for obtaining regression resid-
uals over time. Here, a new linear regression model is fitted at the arrival of each new observation, after
which the regression residuals are obtained. These residuals are referred to as recursive residuals, and are
proved to be uncorrelated with zero mean and constant variance for normally distributed observations.
Monitoring recursive residuals dismisses the need for a stable Phase I period, since the recursive approach
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can start after collection of the first p+1 data points. In this context, p denotes the number of covariates
in the regression model (see Van Dalen (2018)).

In addition to recursive residuals, Dufour (1982) introduces an approach for obtaining recursive re-
gression coefficients. A new linear regression model is fit to the data upon the arrival of each new
observation, after which the estimated regression coefficients are obtained. Dufour (1982) proves that the
difference between consecutive regression coefficients follows an independent and identical normal distri-
bution. Chu et al. (1996) and Zeileis et al. (2005) use this property to introduce a monitoring scheme
where the differences between recursively estimated regression coefficients are applied in a control chart.

All together, multiple monitoring techniques have been introduced for regression-based control charts.
However, all previously mentioned studies consider normally distributed data for which linear regression
models are applied. In this thesis, we are dealing with zero-inflated count data such that linear regression
models do not apply. The following section provides an overview of regression models for zero-inflated
count data.

3.2 Regression models for zero-inflated count data

Generalized linear models (GLM) are a special class of regression models that originate from Nelder
and Wedderburn (1972). These regression models go beyond the normal distribution and extend to
all distributions in the exponential family. Jørgensen (1997) expands this class of distributions, and
states that GLMs apply when the response variable follows a distribution that belongs to the family of
exponential dispersion models (EDM). This family includes both continuous and discrete distributions
such as the normal, Gamma and Poisson distribution. However, zero-inflated distributions do not belong
to the EDM family such that GLM regression models are not defined for these distributions. To overcome
this, Lambert (1992) introduced a custom regression model for the zero-inflated Poisson (ZIP) distributed
data. Here, it is assumed that each observation Yi follows a ZIP(pi,λi) distribution, where parameter
pi and λi are functions of the model covariates. Lambert (1992) denotes the regression models where
parameter pi and λi are affected by distinct sets of covariates as the ZIP model. In case pi and λi depend
on the same set of covariates, then the regression model is denoted with ZIP(τ). The additional notation
with τ indicates that every pi can be written as a function of λi. Parameter estimations of both models
are proved to be asymptotically normal and extensive simulations show that estimates can be trusted
when the ZIP or ZIP(τ) are fitted on sufficiently large data sets, i.e. n ≥ 100. For parameter estimation
of the ZIP model, convergence of the expectation maximisation (EM) algorithm is proved.

Heilbron (1994) introduced a zero-inflated negative binomial (ZINB) regression model, as a general-
isation to the ZIP model. In this study, parameter estimates are again proved to have asymptotically
normal distribution. Application of the ZINB model in a use case with zero-inflated data illustrates
the improved model fit in terms of increased log-likelihood, with respect to standard negative binomial
regression. Both models from Lambert (1992) and Heilbron (1994) are similar to GLM, except for the
fact that different algorithms are applied for parameter estimation. For GLMs, the iterative weighted
least squares (IWLS) algorithm is applied, whereas the EM algorithm is used for parameter estimation
of the ZIP model. The Broyden–Fletcher–Goldfarb –Shanno (BFGS) algorithm is applied for the ZIP(τ)
and ZINB regression model. A more detailed discussion on the ZIP and ZINB regression models and
their similarity with GLM is provided in Chapter 6.

Over the years, many studies have been conducted on monitoring residuals from linear regression
models. However, GLM-based control charts are less well researched. Literature regarding regression-
based control charts with the zero-inflated (ZI) regression models is even more scarce, and only appears
in very recent studies. Hence, we consider literature regarding both GLM-based control charts and ZI
regression-based control charts in this thesis. An overview of literature regarding GLM- and ZI regression-
based control charts is provided in the next section.
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3.3 GLM- and ZI regression-based control charts

The first GLM-based control charts were introduced around the same time by Skinner et al. (2003) and
Jearkpaporn et al. (2003). Skinner et al. (2003) introduces a GLM-based Shewhart chart with deviance
residuals, for Poisson distributed response variables. Control limits of the GLM-based Shewhart chart
are solved to match the in-control (IC) false alarm rate of the c-chart, in order to ensure fair performance
comparison. A simulation study shows that the GLM-based control chart outperforms the traditional
c-chart for both univariate and multivariate Poisson distributed data, in terms of lower out-of-control
average run length, i.e., ARL1. As an extension to the research in 2003, Skinner et al. (2004) compares
the performance of linear ordinary least squares (OLS) regression-based Shewhart charts with GLM-based
Shewhart charts. The data is assumed to follow an overdispersed Poisson distribution that is modelled
by a Poisson mixture model with additional dispersion parameter. Again, control limits of the OLS and
GLM-based control charts are solved to match the IC false alarm rate of the c-chart. Simulations show
that GLM-based Shewhart chart outperform both OLS-based Shewhart chart and standard Shewhart
c-chart, in terms of ARL1, when aiming to detect contextual anomalies. The fact that the GLM-based
Shewhart chart outperforms the OLS-based Shewhart chart proves that ignoring non-normality of the
data when constructing a regression-based control chart, leads to less accurate performance in terms of
average run length.

Jearkpaporn et al. (2003) introduces a GLM-based Shewhart chart with deviance residuals, for Gamma
distributed data. It is shown that in the particular case of Gamma GLM, the deviance residual is defined
as a likelihood ratio statistic which is approximately normal. Performance Gamma GLM-based Shewhart
chart is compared with traditional Shewhart chart for individual observations. Control limits of both
charts are solved to obtain a specified in-control ARL, i.e., ARL0. Simulations show that the Gamma
GLM-based Shewhart chart outperforms the traditional Shewhart chart in terms of lower ARL1. The
results in Skinner et al. (2003), Skinner et al. (2004) and Jearkpaporn et al. (2003) combined supports the
general perception that, regression-based control charts outperform traditional control charts in terms of
ARL1, when aiming to detect contextual anomalies.

In addition to the charts for Poisson and Gamma distributed data, Park et al. (2018) introduced
regression-based Shewhart charts for negative binomial and Conway-Maxwell (COM) Poisson distribu-
tions. Interesting from this study is the addition of principal-component-analysis (PCA) as a method
to transform a large number of possibly correlated covariates into a smaller number of uncorrelated
covariates. Also, control limits are fixed at 3σ from the centre line for all regression-based Shewhart
charts, and ARL1 performance is evaluated for underdispersed, equidispersed and overdispersed data,
generated by the COM-Poisson distribution with various values for dispersion parameter v = 0.8, 1, 1.5

respectively. In case of underdispersed data, COM-Poisson and Poisson regression-based control charts
outperform the negative binomial regression-based control chart in terms of lower ARL1. Similarly, the
negative binomial an COM-Poisson regression-based control charts outperform the Poisson GLM-based
control chart. Hence, it can be concluded from Park et al. (2018) that Poisson GLM-based control charts
perform better for underdispersed count data, whereas the negative binomial regression-based control
chart perform better in case of overdispersed data.

Mahmood (2020) focuses on GLM-based control charts for high-purity processes. A regression-based
Shewhart chart for zero-inflated Poisson (ZIP) distributed data is introduced, as well as a regression-based
control chart for data that follows a zero-inflated negative binomial (ZINB) distribution. The regression
models of Lambert (1992) and Heilbron (1994) are applied to the charts, after which Pearson residuals
are obtained. The use of Pearson residuals is remarkable in the research, since deviance residuals are
commonly used in literature.

In general it is often assumed that residuals from a well-fitted regression model are normally dis-
tributed. It is however stated in Dunn and Smyth (2018) (Section 8.3), that when the response data
is dependent and non-normal, as is the case with GLM regression, normality of Pearson and deviance
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residuals is unlikely. In particular when modelling discrete outcome variables when the variance of the
response is high. Quantile residuals are introduced in Dunn and Smyth (1996) as an alternative to
Pearson and deviance residuals. By definition of the probability integral transform, their distribution is
exactly normal apart from the sampling variability in estimating distribution parameters. This implies
that quantile residuals are exactly normally distributed in case all parameters are estimated at their true
values. A deviation from normality can be observed for less well-fitted models. For this reason it is
recommended in Dunn and Smyth (2018) (Section 8.3.4), to use quantile residuals when accessing the
goodness of fit for regression models with discrete data. An additional advantage of quantile residuals
is that their application in a Shewhart chart is not violating the normality assumption. The question
remains, which type of residuals should we apply when constructing a regression-based control chart?

Recent studies from Park et al. (2020) and Jamal et al. (2021) address this matter by comparing control
chart performances for various GLM-based control charts with different residual types. Park et al. (2020)
introduces regression-based Shewhart charts with quantile residuals, in case the data follows a normal,
Poisson, binomial, negative binomial, Conway-Maxwell-Poisson and zero-inflated-Poisson distribution.
The performance of these charts in compared with similar regression-based control charts with deviance
residuals. The control limits of the Shewhart charts are set at w · σ where w = 1, 2, 3. ARL1 simulations
show for all distributions except the Binomial distribution, that GLM-based Shewhart charts with quantile
residuals outperform similar charts with deviance residuals. These results of Park et al. (2020) are however
contradicted by the research of Jamal et al. (2021). This study evaluates the performance of GLM-
based Shewhart, EWMA and CUSUM charts for Conway-Maxwell-Poisson distributed data in terms of
simulated ARL1 performance. Charting constants in the Shewhart, EWMA, and CUSUM chart were
solved to obtain pre-specified ARL0 values to ensure fair comparison between the charts with different
residual types. The results indicate that the control charts with deviance residuals outperform the charts
with quantile residuals.

The contradicting conclusions in recent studies of Park et al. (2020) and Jamal et al. (2021) debate
the existence of one single monitoring strategy that is superior to all others. It rather suggests that
the optimal performing residual type in a regression-based control chart should be found according to
specific properties of the monitoring data and the detection goal. Additionally we can state to the best
of our knowledge, that there is not yet any research published regarding performance of all three residual
types in regression-based control charts for high-purity processes. Mahmood (2020) provides performance
results of the ZIP and ZINB Shewhart chart with Pearson residuals. Park et al. (2020) provides ARL1

results of the ZIP Shewhart chart with deviance and quantile residuals. However, results from both
studies cannot be compared, since control limits are obtained differently. Hence, we can conclude from
the literature review that there exists a research gap regarding the performance of Pearson, deviance and
quantile residuals in regression-based control charts for zero-inflated data.

As a final note, it is remarkable that results from Mahmood (2020) and Park et al. (2020) are obtained
under the assumption ZIP and ZINB regression coefficients are known. The provided results illustrate
the baseline performance of the ZIP and ZINB Shewhart chart with Pearson residuals, while ignoring
the effects of Phase I estimation. It is known that the poor Phase I estimation can cause the true ARL0

to be much lower than the intended ARL0, in case of a Shewhart chart with normally distributed data,
see e.g. Albers and Kallenberg (2004). It is shown in Shu et al. (2005) that such effects of Phase I
estimation are also true when constructing linear regression-based control charts for normally distributed
data. Therefore, it is also expected that Phase I estimation affect the ARL0 performance of the regression-
based control charts for zero-inflated data, although this remains unquestioned in Mahmood (2020) and
Park et al. (2020). This thesis aims to provide more insight in the performance of Pearson, deviance
and quantile residuals in a regression-based control chart for zero-inflated data. In addition, we also aim
to estimate the effects of Phase I estimation on the performance of regression-based control charts for
zero-inflated data. The solution strategy is provided in the next section.



3.4. SOLUTION STRATEGY 31

3.4 Solution strategy

In this thesis, we will focus on monitoring predictive Pearson, deviance and quantile residuals in regression-
based control charts for high-purity processes. There is no literature available on monitoring recursive
residuals or recursive regression coefficients for high-purity processes, such that recursive monitoring is
out of scope in this project as well. The goal is to provide Dow with a framework for identifying the best
performing residual type in a regression-based control chart for zero-inflated data. More specifically, we
narrow the scope of this research to ZIP and ZINB regression-based Shewhart charts.

To become acquainted with monitoring zero-inflated data, we start with the design of a simplified
monitoring scheme where the response variable is not affected by any covariates. The ZIP-EWMA control
chart for independent and identically distributed observations is proposed for this purpose in Chapter 5.
Here, it is explored how the ZIP-EWMA performance is affected by various proportions of zero-inflated.
Afterwards, we proceed with the more advanced setting, where the response variable is affected by one
covariate. The ZIP and ZINB regression-based Shewhart chart are introduced in Chapter 7 with predictive
Pearson, deviance and quantile residuals. Each regression-based control chart is evaluated under various
proportions of zero-inflated in the IC Phase I data, to identify which chart performs best for each scenario.

Monitoring predictive residuals requires a Phase I to obtain estimates of distributional parameters.
Collecting a Phase I data set that reflects a stable period does not represent a limitation at Dow, since
historical monitoring data is available in abundance. However, it is mentioned in Section 3.2 that poor
Phase I estimation can cause the true ARL0 of a control chart to be much lower than the intended ARL0.
In order evaluate the effect of Phase I estimation for the ZIP and ZINB regression-based Shewhart chart,
we propose two distinct performance analysis strategies. At first, the baseline performance of the ZIP and
ZINB regression-based Shewhart charts is established under the assumption that all regression parameters
are known. Afterwards, we evaluate the performance of the same charts when using regression models
that are estimated from simulated Phase I data. The methodology for both approaches are described in
detail in Chapter 7. A graphical representation of the solution strategy is shown in Figure 3.1, where the
dotted lines represent the objective of this thesis.

3.5 Summary

It is discussed in Section 3.1 that since Mandel (1969), various monitoring techniques have been introduced
for detecting contextual anomalies in monitoring data. These techniques include monitoring predictive
residuals, recursive residuals and recursive regression coefficients. The ZIP and ZINB regression models
from Lambert (1992) and Heilbron (1994) are discussed in Section 3.2 and GLM-based control charts
are discussed afterwards in Section 3.3. The literature review shows that regression-based control charts
outperform traditional control charts, when aiming to detect contextual anomalies and that GLM-based
control charts outperform linear regression-based control charts, when dealing with non-normal data.
Regression-based Shewhart charts for zero-inflated data are introduced by Mahmood (2020), for ZIP and
ZINB distributed data. The use of Pearson residuals in this paper is exceptional, since deviance residuals
are commonly used in literature. Additionally, Park et al. (2020) and Jamal et al. (2021) illustrate the
possibility of using quantile residuals for monitoring as well. However, a clear consensus remains absent
regarding which residual type performs best in monitoring schemes for high-purity count data.

The solution strategy of this thesis is provided in Section 3.4, of which a graphical representation
is shown in Figure 3.1. It is proposed to start with performance evaluation of the ZIP-EWMA chart,
for monitoring high-purity count data without covariates. Then, the ZIP and ZINB regression-based
Shewhart charts are evaluated for monitoring high-purity count data with covariates. Pearson, deviance
and quantile residuals are applied, and performance is tested for various proportions of zero-inflation in
the data. Definitions for the Shewhart and EWMA chart are provided in the following chapter.
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Figure 3.1: Flow chart of the solution strategy.



4 | Statistical process control

Statistical process control (SPC) is the field that employs statistical tools and methods to control the
quality of industrial processes. Statistical tools that are considered in SPC include design of experiment,
process capability analysis, regression and many more. In particular, SPC control charts are highly
effective for detecting distributional shifts in process performance data. In this thesis, we focus on
monitoring methods for high-purity count data.

It is described in the solution strategy of Section 3.4, that we aim to construct both a ZIP-EWMA
chart, as well as ZIP and ZINB regression-based Shewhart charts. Therefore, we elaborate on SPC
methodologies in this chapter. The main concepts in SPC are discussed in Section 4.1, followed by a
definition of the Shewhart and EWMA charts in Section 4.2. The textbook of Qiu (2013) is used as a
reference throughout this chapter.

4.1 Concepts in statistical process control

Shewhart (1925) introduced the control chart to distinguish between common cause and special cause
variation. Common cause variation is the type of variability that is caused by uncontrollable factors,
which are inherited in the process. It is explained in Qiu (2013) (Section 1.3), a process is considered to
be in control (IC) when all variability is due to common cause. Special cause variation is the variability
due to unexpected circumstances, which are not inherited in the process. A process is considered to be
out-of-control (OC) when process output contains special cause variation. Control charts aim to identify
special cause variation, as soon as it occurs in the process. Early detection of process malfunctions
contributes to more efficient manufacturing, which typically leads to lower overall production costs and
more efficient use of materials.

SPC is usually divided into two phases, see e.g. Qiu (2013) (Section 1.3). In Phase I, the process is
explored and adjusted to make it run stably. The goal is to obtain a stable data set, which represents
the IC process. Involved parameters are estimated from the Phase I data, which benchmark a stable
process in the future. In Phase II it is assumed that the process runs stably from the beginning. Hence,
process data is assumed to follow the IC distribution that is established in Phase I. The goal of Phase II
is to monitor the process continuously over time, to make sure that it keeps running stably. SPC control
charts are statistical tools that achieve the Phase II goal. Hence, they monitor process data over time,
to identify when it becomes OC. Definitions of the univariate Shewhart and EWMA chart are presented
in the following section.

4.2 SPC Control charts

Control charts are statistical tools for repeated hypothesis testing. At the arrival of each new observation,
we test whether the process is still in control. The null hypothesis of each repetition states that the process
is IC and the alternative hypothesis states that the process is OC. Let us consider an industrial process,
from which a quality measurement is obtained at each point in time, e.g. each minute. Let us define the
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consecutive quality observations as {Y1, Y2, . . . }. We assume that all observations follow an independent
and identical normal distribution with mean µ0 and standard deviation σ0, in case the process is in
control. At the arrival of each observation Yi with i = 1, 2, . . . , a control chart tests whether the process
is IC. Hence, the control chart hypotheses in this example are defined as

H0 : Yi ∼ N(µ0, σ
2
0) for i = 1, 2, . . .

H1 :


Yi ∼ N(µ0, σ

2
0) for i = 1, . . . , T

Yi ∼ N(µ1, σ
2
1) for i = T + 1, T + 2, . . . .

where µ1 6= µ0 and or σ1 6= σ0. In this notation, time T is referred to as the changepoint by Hawkins
et al. (2003), after which the process becomes OC. The statistical tests are executed by plotting the
charting statistic, an upper control limit (UCL) and a lower control limit (LCL) over time. As long as
the charting statistic stays in between the control limits, the null hypothesis is not rejected. Hence, it
is concluded that the process is IC and the monitoring continues. When the charting statistic exceeds
either one of the control limits, the null hypothesis is rejected and it is concluded that the process is OC.
In this case, an OC signal is produced and the production process is stopped for evaluation. Figure 4.1
shows an example of a Shewhart chart.

Figure 4.1: Example of a Shewhart control chart.

It is possible that the alternative hypothesis is not rejected while the process is actually IC. This is
referred to as a false alarm. It is common to evaluate the IC performance of a control chart by its run
length (RL). The RL is the total number of observations from the initial time point until the first OC
signal. The RL is a random variable since it depends on random observations. The average run length
(ARL) is therefore often used as a performance measure for SPC control charts in literature. The ARL of
an IC process is denoted with ARL0, and a high ARL0 is desired. However, the run length distribution
can be highly skewed such that the standard deviation of the run length (SDRL) is often also considered
as a performance measure. The SDRL of an IC process is denoted with SDRL0 and a low SDRL0 is
desired.

Now let us consider a shift in the distribution of observations, such that process that becomes OC.
The number of observations from the time of the shift occurrence to the time of signal is referred to
as the OC run length. The average OC run length is denoted with ARL1 and the standard deviation
of the OC run length is denoted with SDRL1. It is ideal to have a fast OC signal when the process
becomes OC, such that a low ARL1 and a low SDRL1 are desired. It is common in SPC literature to
construct control limits in order to achieve a satisfactory ARL0, and evaluate the charts performance
based upon its ARL1. Construction of control charts is discussed in the following sections. A definition
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of the Shewhart chart is provided in Section 4.2.1, and the EWMA chart is defined in Section 4.2.2.

4.2.1 The Shewhart chart

The first SPC control chart is introduced in Shewhart (1925), and is therefore referred to as the Shewhart
chart. Let us again define observations as {Y1, Y2, . . . }, that are independent and identical normally
distributed with mean µ0 and standard deviation σ0 in case the process is IC. The control limits are fixed
at equal distance from the centre line (CL). This distance is determined by charting constant L, and the
IC standard deviation σ0. Hence, the Shewhart chart is defined as

UCL = µ0 + L · σ0

CL = µ0

LCL = µ0 − L · σ0.

(4.1)

Values for µ0 and σ0 can be estimated from the Phase I data in case the true parameters are unknown.
Under the assumption of independent and identical normally distributed observations, it is usually chosen
to fix L = 3, which leads to a false alarm probability α = 0.0027. The IC run length follows a geometric
distribution in this case, with probability parameter α. Therefore, we obtain ARL0 = 1/0.0027 ≈ 370.
In addition, the SDRL0 equals

√
1− α/α ≈ 370 in this case. It is described in Qiu (2013) (Section 3.2)

that for small values of α we have ARL0 ≈ SDRL0.
Besides L = 3, other values for L can also be chosen when aiming to achieve a different ARL0. The

chart as defined in (4.1) is sometimes referred to as a Shewhart chart with symmetric control limits,
since the UCL and LCL are symmetric around the centre line. Independent and identically distributed
observations {Y1, . . . , Yn} have equal probability of exceeding the UCL and LCL in (4.1), as long as their
distribution is symmetric. However, this assumption is often violated in practice. If the true distribution
of the data is skewed, then the control limit towards which the data is skewed is less likely to be exceeded.

According to Xie et al. (2002a) (Section 2.1), probability control limits can be used instead in such
cases. Let us assume observations {Y1, . . . , Yn} are i.i.d. distributed with cumulative distribution function
Fθ. Here, θ is a defined set of parameters. Then, for a certain quantile level α, we can determine the
upper and lower control limit as Q1 : Fθ(Q1) = 1 − α/2 and Q2 : Fθ(Q2) = α/2 respectively. The
Shewhart control chart with probability limits is then defined as

UCL = Q1

CL = µ0

LCL = Q2.

(4.2)

The run length distribution is again geometrically distributed with probability parameter α, as described
by Chakraborti (2007). Hence, for α = 0.0027 it holds again that ARL0 ≈ SDRL0 ≈ 370. In case
distributional parameters θ are unknown, Q1 and Q2 can be solved based upon the Phase I estimation of
Fθ. Figure 4.2 illustrates the way in which the symmetric Shewhart chart as defined in (4.1) are a better
fit for symmetrically distributed data, while the Shewhart chart with quantile limits is better suited for
observations with skewed distribution.

The fundamental difference between a Shewhart chart and an EWMA or CUSUM is that the Shewhart
chart includes current observations only to test for special cause variation. EWMA and CUSUM charts
both include all observations for testing, from the current time point and earlier time points. In addition,
EWMA charts assign a weight allocation with exponential decay to the historical observations, while
CUSUM charts include all historical data with equal weight. For normally distributed variables Yi we
know that Shewhart charts are better in detecting large distributional shifts in process performance,
whereas EWMA and CUSUM charts are better in detecting small and persistent shifts. It should be
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Figure 4.2: Graphical representation of: (a) a symmetric Shewhart chart with normally distributed
charting statistic, (b) a symmetric Shewhart chart with skewed charting statistic, (c) a Shewhart

chart with probability limits and skewed charting statistic.

noted that this is not necessarily true when Yi follows a non-normal distribution, but Shewhart chart
are nevertheless often employed for detecting large distributional shifts in the data. A definition of the
EWMA chart is provided in the following section.

4.2.2 The EWMA chart

Let us again define observations as {Y1, Y2, . . . }, that are independent and identically distributed with
mean µ0 and standard deviation σ0 in case the process is IC. The charting statistic of the EWMA chart
is the exponentially weighted moving average of all historical observations up to the current time point.
Let us define the current time point as time n, such that observations {Y1, . . . , Yn} are collected so far.
When using notation from Qiu (2013) (Section 5.2), charting statistic En at time n is defined as

En = wYn + (1− w)En−1 (4.3)

for n = 1, 2, . . . . Here, E0 = E [Y0] = µ0 and w is the weight parameter with 0 < w ≤ 1. The contribution
of past observations to En is large when w is chosen close to zero. On the other hand, more weight is
assigned to current observations for larger values of w. The EWMA chart reduces to a Shewhart chart
for w = 1. The EWMA control limits at time n are defined as

UCLn = E [En] + L
√

Var(En)

CL = E [En]

LCLn = E [En]− L
√

Var(En).

(4.4)

for n = 1, 2 . . . . By iterating (4.3) we can write

En = (1− w)nµ0 + w

n−1∑
i=0

(1− w)iYn−i. (4.5)

It follows that En is a convex combination of all observations Yi for i = 1, . . . , n since by definition of the
geometric sum we have

(1− w)n + w

n−1∑
i=0

(1− w)i = (1− w)n + w

(
1− (1− w)n

w

)
= 1.
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By using definition (4.5), the expected value of En is defined as

E [En] = E

[
(1− w)nµ0 + w

n−1∑
i=0

(1− w)iYn−i

]

= (1− w)nµ0 + w

n−1∑
i=0

(1− w)iµ0 = µ0.

(4.6)

Note that E [En] = µ0 for all n = 1, 2, . . . since En is a convex combination of all i.i.d. observations Yi
with i = 1, . . . , n. In addition to the expected value, the variance of En is defined as

Var(En) = Var

(
(1− w)nµ0 + w

n−1∑
i=0

(1− w)iYn−i

)
= w2

n−1∑
i=0

(1− w)2iVar(Yn−i) =
w
(
1− (1− w)2n

)
σ2

0

2− w

where definition (4.5) is substituted for En in the first step, and it is used in the second step that all
observations Yi with i = 1, . . . , n are independent from each other. With these definitions for E[En] and
Var(En), the control limits of the EWMA chart at time n are defined as

UCLn = µ0 + L

√
w

2− w
(1− (1− w)2n)σ2

0

CL = µ0

LCLn = µ0 − L
√

w

2− w
(1− (1− w)2n)σ2

0 .

(4.7)

The limits of the EWMA chart converge for large values of n. Hence, the asymptotic control limits for
n→∞ are given by

UCL∞ = µ0 + L

√
w

2− w
σ0

CL = µ0

LCL∞ = µ0 − L
√

w

2− w
σ0.

(4.8)

Charting constant L is obtained to achieve a predefined ARL0 value. For Shewhart charts it is described
that the RL distribution is geometric, since the charting statistic is independent of time. However, the
EWMA charting statistic includes all historical observations, such that En−1 and En are not independent
for n = 2, 3, . . . . Hence, a geometric run length distribution does not apply here and a closed form
definition ARL does not exist. However, values of ARL0 and SDRL0 can be obtained by simulation, for
specified values of w, L and a known distribution of observations {Y1, Y2, . . . }. Knoth (2021) provides
the spc package in R for simulating the EWMA ARL0, for various distributions of observations.

4.3 Summary

In this chapter, we discussed the basic concepts in the field of statistical process control in Section 4.1.
The hypotheses and general structure of a SPC control chart are discussed in Section 4.2, where the ARL
and SDRL performance measures are introduced as well. A definition of the Shewhart chart is provided
in Section 4.2.1, where both symmetric and probability control limits are discussed. Finally, a definition
for the EWMA chart is provided in Section 4.2.2. In the following chapter, we will continue with an
application of the EWMA chart for ZIP distributed data that is not affected by any covariates. The
application of ZIP and ZINB regression-based Shewhart charts for data that is affected by a covariate is
discussed afterwards in Chapter 7.
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5 | Monitoring count data
without covariates

The goal of this thesis is to design control charts for detecting contextual anomalies in zero-inflated
univariate count data. However, not all high-purity processes at Dow have a covariate that affects the
variable of interest. Therefore, we start with the design of a monitoring scheme where the data is
not affected by any covariates. An EWMA control chart for independent and identically ZIP distributed
observations is proposed in this chapter. Here, it is explored how the ZIP-EWMA performance is affected
by various proportions of zero-inflated in the in-control monitoring data.

The hypotheses and definition of a ZIP-EWMA chart are provided in Section 5.1. Then, the compu-
tation of control limits and performance evaluation is discussed in Section 5.2. Finally, discussion of this
intermediate ZIP-EWMA study are discussed in Section 5.4, followed by the conclusion. Throughout this
chapter, the textbook of Qiu (2013) is used as a main reference. All computations are conducted in R,
and the code is attached in Appendix C.1.

5.1 The ZIP-EWMA control chart

In this section we define a two-sided exponentially weighted moving average control chart for ZIP dis-
tributed observations. In the context of producing pellets, we denote the total amount of detected
defects with {Y1, Y2, . . . } for each point in time i = 1, 2, . . . . Let us assume that all observations follow
an independent and identical ZIP distribution with parameters p0 and λ0, in case the process is IC.
The ZIP distribution is provided in Section 2.2.1, where it is also defined that E[Yi] = (1 − p0)λ0 and
Var(Yi) = (1− p0)(λ0 + p0λ

2
0) when the process is stable and in control. When using the same notation

as in Section 4.2, the hypotheses of a ZIP control chart can be formally defined as

H0 : Yi ∼ ZIP (p0, λ0) for i = 1, 2, . . .

H1 :


Yi ∼ ZIP (p0, λ0) for i = 1, . . . , T

Yi ∼ ZIP (p1, λ1) for i = T + 1, T + 2, . . . .

where p1 6= p0 and or λ1 6= λ0, and T is the changepoint after which the process becomes out-of-control.
Definitions of the EWMA charting statistic and control limits are provided in Section 4.2.2. The ZIP-
EWMA charting statistic is defined as in (4.3), and the control limits are constructed by substituting
(5.1) with µ0 = E[Yi] = (1− p0)λ0 and σ2

0 = Var(Yi) = (1− p0)(λ0 + p0λ
2
0). When denoting the current
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time point as time n, the ZIP-EWMA chart is defined by

UCLn = (1− p0)λ0 + L

√
w

2− w
(1− (1− w)2n) (1− p0)(λ0 + p0λ2

0)

CL = (1− p0)λ0

LCLn = max

{
0, (1− p0)λ0 − L

√
w

2− w
(1− (1− w)2n) (1− p0)(λ0 + p0λ2

0)

} (5.1)

The lower control limit is defined as the maximum between 0 and the unrestricted lower control limit
value since the ZIP distribution has a positive solution space. The asymptotic control limits for n→∞
are given by

UCL = (1− p0)λ0 + L

√
w

2− w
(1− p0)(λ0 + p0λ2

0)

CL = (1− p0)λ0

LCL = max

{
0, (1− p0)λ0 − L

√
w

2− w
(1− p0)(λ0 + p0λ2

0)

}
The charting constant L is unknown, and can be obtained by solving the control limit equation in (5.1)
to achieve a predefined ARL0 value.

5.2 Constructing the ZIP-EWMA chart

In the SPC literature, it is common to construct a control chart for a fixed ARL0 value, and evaluate the
corresponding ARL1. This strategy is also followed to construct the ZIP-EWMA chart. The run length is
a random variable such that we can define the ARL as the expected value of RL. However, it is described
in Section 4.2.2 that a closed form definition of the EWMA ARL does not exist. Monte Carlo simulations
can be used to numerically obtain the performance metrics, as explained in Qiu (2013) (Section 5.2). It
is assumed throughout this chapter that distributional parameters are known. For now we ignore the
effects of Phase I estimations and assume that ZIP parameters p0 and λ0 are well known.

5.2.1 Solving charting constant L

For a given IC distribution with parameters p0, λ0 and w, the charting constant L is obtained according
to the following consecutive steps:

1. We generate a data set of N runs, with in each run n observations. Let us denote the resulting
observations with {Yj,1, . . . , Yj,n} for j = 1, . . . , N . Each observation is ZIP(p0, λ0) distributed.

2. For all observations in each run, we compute the charting statistics En as defined in (4.3) for a
specified value of w. Let us denote these resulting runs with Rj = {Ej,1, . . . , Ej,n} for j = 1, . . . , N .

3. For an arbitrary value of L, we construct the ZIP-EWMA chart as defined in (5.1), and according
to the specified values for p0, λ0 and w.

4. The run length of each run Rj in the ZIP-EWMA chart is determined and denoted with RLj , for
j = 1, . . . , N . The ARL0 is determined as the average of all computed run lengths, i.e. ARL0 =

(RL1 + · · ·+RLN )/N .

5. If the obtained ARL0 does not equal the prespecified ARL0, then we adjust L and repeat step 3-5.

Hence, the ARL0 computations are based on N runs that each include n simulated observations. The
implementation of these simulations in R is attached in Appendix C.1.
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5.2.2 Choice of simulation size

The design of ARL simulations is based on a trade off between precision and computation time. In order
to decrease computational time, a design choice was made to generate all observations at once as a N ×n
matrix. In order to generate reliable results, it is important to carefully chose the values of N and n.
Alevizakos and Koukouvinos (2020) is used as reference study to select the number of iterations. Here,
ARL simulations with similar performances are executed with the total amount of runs equal to 10.000.
It is argued that 10,000 replications is enough to generate reliable results, since the research of Schaffer
and Kim (2007) indicates that 5000 replications is enough for a standard EWMA chart. Therefore, it
was also chosen in this study to fix the number of replications at 10,000 as well.

In addition, n should be large enough to ensure a very small probability of having no OC signal in
the entire run. Hence, it is important to analyse the variance of the run lengths while choosing a value
for n. However, the probability distribution of the run length is complex and therefore it difficult to find
a closed form definition for the variance. Instead, simulations are executed to find a proper value for n.
Here, test runs are simulated for various values of n, p0, λ0 and w to evaluate how many runs result in
no OC signal. Candidate values of n are set at 2, 5 an 10 times the predefined ARL0, since a higher IC
average run length requires a larger simulation size. Values for the predefined ARL0 are set at 200, 370

and 500. The results are shown in Table B.1.
It is observed that the proportion of runs that does not return an OC signal less or equal to 0.01%,

when choosing n as 10 times the predefined ARL0 value. Hence, simulation size n is fixed at 2000, 3700
and 5000 when solving L for predefined ARL0 values of 200, 370 an 500, respectively. The ZIP-EWMA
control limits for various parameter settings are provided in Section 5.2.3. After this, the performance is
evaluated by calculating the ARL1 in Section 5.3.

5.2.3 IC control limits of ZIP-EWMA chart

We explore how the ZIP-EWMA performance is affected by different distributional parameters of the
IC process. Hence, the ZIP-EWMA chart is constructed for IC scenarios where p0 = 0.3, 0.5, 0.8 and
λ0 = 3, 4. These parameter values correspond to a ZIP distribution with multiple proportions of zero-
inflation and a low expected value, which is common for monitoring data from high-purity processes in
practice. In addition, we choose weight parameter w = 0.2, 0.3 and solve charting constant L to achieve
an ARL0 of 200, 370 and 500. The results for charting constant L are provided in Table 5.1

5.3 OC performance evaluation of the ZIP-EWMA chart

As stated in Section 5.1, the null hypothesis of the ZIP-EWMA chart assumes that all observations
{Y1, Y2, . . . } follow a ZIP(p0, λ0) distribution when the process is IC. The alternative hypothesis states
that the process becomes OC after time T , where at least one ZIP parameters changes. Hence, Yi ∼
ZIP(p1, λ1) for i = T + 1, T + 2, . . . . Here, p1 6= p0 and or λ1 6= λ0. It is desired that the ZIP-EWMA
chart produces an OC signal as soon as possible after the process becomes OC. Hence, we simulate the
ARL1 in order to evaluate the OC performance of the chart. Simulated ARL1 values are obtained by
execution of the following consecutive steps:

1. We assume that the IC process observations follow a ZIP distribution with known parameters p0

and λ0. A weight parameter w is defined and charting constant L is chosen from Table 5.1. The
ZIP-EWMA control chart is constructed by substituting p0, λ0, w and L in (5.1).

2. We assume that the process becomes OC at the first time point, i.e., T = 0. To evaluate OC
performance, a data set is generated with N runs that each contain n observations. Let us denote
these resulting runs with {Yj,T+1, . . . , Yj,T +n} for j = 1, . . . , N . Each observation is ZIP(p1, λ1)
distributed where p1 6= p0 and or λ1 6= λ0.
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Solved value L
p0 λ0 w ARL0 = 200 ARL0 = 370 ARL0 = 500

0.3 3 0.2 2.5718 2.8312 2.9683
0.3 3 0.3 2.6883 2.9689 3.0962
0.3 4 0.2 2.5421 2.7609 2.8757
0.3 4 0.3 2.5848 2.8398 2.9546
0.5 3 0.2 2.6915 3.0098 3.1619
0.5 3 0.3 2.8699 3.1668 3.3103
0.5 4 0.2 2.6225 2.9194 3.0525
0.5 4 0.3 2.7583 3.0385 3.1657
0.8 3 0.2 3.1922 3.6200 3.8229
0.8 3 0.3 3.5349 3.9603 4.1537
0.8 4 0.2 3.1203 3.5291 3.7035
0.8 4 0.3 3.4247 3.8267 4.0068

Table 5.1: Solutions for constant L with ARL0 = 200, 370, 500, p0 = 0.3, 0.5, 0.8,
λ0 = 3, 4 and w = 0.2, 0.3.

3. For each run, and for all observations n, we compute the charting statistics En as defined in (4.3)
and specified value for w. Let us denote these resulting runs with Rj = {Ej,T +1, . . . , Ej,T +n} for
j = 1, . . . , N .

4. The run length of each run Rj in the ZIP-EWMA chart is determined and denoted with RLj , for
j = 1, . . . , N . The ARL1 is determined as the average of all computed run lengths, i.e. ARL1 =

(RL1 + · · ·+RLN )/N .

Here, simulation size parameters N and n are chosen similarly as discussed in Section 5.2.2. Hence,
N = 10, 000 and n equals 10 times the predefined ARL0 for which the ZIP-EWMA is designed. It is
assumed in Step 1 that IC distributional parameters p0 and λ0 are known. Hence, the obtained ARL1

reflects the baseline performance of the ZIP-EWMA chart.

In this chapter we consider OC scenarios that cause worse overall process performance, i.e. higher
rate of defective pellets. The expected value of a ZIP(p,λ) distribution increases with λ and decreases
with p. Therefore, more defects are observed in an OC scenario where λ1 is larger than λ0. Also, when
p1 is smaller than p0. Hence, we analyse the ARL1 for various OC scenarios where λ1 = λ + δλ with
δλ = 0.5, 1.0, 2.0 and p1 = p0 + δp with δp = −0.1,−0.2,−0.3. In order to compare the OC performance
of the ZIP-EWMA chart for various proportions of zero-inflation, we evaluate the ARL1 for three distinct
IC distributions. The OC performance evaluation is executed for fixed parameters λ0 = 3 and w = 0.2.
Results for IC scenarios with p0 = 0.3, 0.5, 0.8 are shown in Table 5.2, 5.3 and 5.4 respectively.

The results from Table 5.2, 5.3 and 5.4 show that all ARL1 values of the ZIP-EWMA chart are
significantly lower than the predefined ARL0 values. This indicates that all OC distributional shifts are
detected by the ZIP-EWMA chart. When comparing the ARL1 results, it is observed that a distributional
shift from (p0, λ0) to (p1, λ0) is detected faster when the IC distribution is more skewed, i.e., for a higher
value of IC parameter p0 = 0.5, 0.8 in Table 5.3 and 5.4. However, shift from (p0, λ0) to (p0, λ1) is detected
faster in case the IC distribution is less skewed, i.e., for a lower value of IC parameter p0 = 0.3, 0.5 in
Table 5.2 and 5.3. An OC scenario in which both parameters (p0, λ0) change to (p1, λ1) is slightly detected
faster in case IC parameter p0 is small, i.e., for p0 = 0.3 in Table 5.2.
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ARL1 value for:
OC scenario ARL0 = 200 ARL0 = 370 ARL0 = 500

p1 λ1 L = 2.5718 L = 2.8312 L = 2.9683

0.3 3.5 57.84 86.49 107.71
0.3 4.0 25.98 34.54 40.59
0.3 5.0 10.10 12.06 13.26
0.2 3.0 104.61 174.07 231.51
0.1 3.0 58.16 93.99 118.10
0.0 3.0 35.33 53.54 65.44
0.2 3.5 33.58 46.81 56.68
0.1 4.0 11.31 14.22 15.89
0.0 5.0 4.34 5.02 5.40

Table 5.2: ARL1 values for all OC scenarios with IC parameters p0 = 0.3, λ0 = 3,
w = 0.2, and ARL0 = 200, 370, 500.

ARL1 value for:
OC scenario ARL0 = 200 ARL0 = 370 ARL0 = 500

p1 λ1 L = 2.6915 L = 3.0098 L = 3.1619

0.5 3.5 69.10 107.81 140.94
0.5 4.0 34.69 48.40 58.54
0.5 5.0 14.09 17.72 20.28
0.4 3.0 91.15 159.72 209.00
0.3 3.0 49.01 78.12 100.15
0.2 3.0 29.73 43.97 54.72
0.4 3.5 35.93 54.05 64.93
0.3 4.0 12.85 16.46 18.89
0.2 5.0 5.16 6.07 6.52

Table 5.3: ARL1 values for all OC scenarios with IC parameters p0 = 0.5, λ0 = 3,
w = 0.2, and ARL0 = 200, 370, 500.

5.4 Conclusion and discussion of the ZIP-EWMA chart

Results in Section 5.3 confirm that the ZIP-EWMA chart is able to detect when the process conditions are
deteriorating. The control limits are determined according to predefined ARL0 values and ARL1 values
are simulated for various OC distributional shifts. Table 5.2, 5.3 and 5.4 show for any distributional shift,
as defined in the alternative hypothesis, that the ARL1 is significantly lower than the predefined ARL0

value. However, a higher p0 value leads to faster detection of an OC distributional shift from (p0, λ0) to
(p1, λ0), while a lower p0 value leads to faster detection when (p0, λ0) shifts to (p0, λ1).

Based on these results, it is concluded that the ZIP-EWMA control chart could be used at Dow to
monitor the high-purity processes of which the defect rate is not affected by any covariate. However,
other SPC control charts should also be considered for performance evaluation and comparison when
designing a monitoring scheme. In addition, the calculation of ARL values can also be further explored.
Numerical approaches for exactly solving the ARL are not considered in this study, but they should be
taken into account in further research. Finally, it should be mentioned that the weight parameter w of the
ZIP-EWMA chart is not thoroughly researched in this study. Even though the control limits were defined
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ARL1 value for:
OC scenario ARL0 = 200 ARL0 = 370 ARL0 = 500

p1 λ1 L = 3.1922 L = 3.6200 L = 3.8229

0.8 3.5 97.32 158.46 204.06
0.8 4.0 57.59 86.27 106.12
0.8 5.0 28.27 37.36 43.29
0.7 3.0 67.12 110.98 144.05
0.6 3.0 31.99 48.87 59.46
0.5 3.0 19.18 27.13 32.33
0.7 3.5 37.36 56.31 65.71
0.6 4.0 13.74 18.00 20.23
0.5 5.0 5.89 7.17 7.73

Table 5.4: ARL1 values for all OC scenarios with IC parameters p0 = 0.8, λ0 = 3,
w = 0.2, and ARL0 = 200, 370, 500.

for various values of w, ARL1 computations are limited to w = 0.2. When constructing a ZIP-EWMA
chart at Dow, it is recommended that a more detailed study is conducted to obtain the optimal value of
w.

5.5 Summary

In this chapter, an EWMA control chart is proposed for data that follows an independent and identical
ZIP distribution. Control limits are solved in Section 5.2, to obtain ARL0 values of 200, 370 and 500,
and for various IC parameters p0, λ0 and w. The OC performance of the ZIP-EWMA is evaluated in
Section 5.3, for various distributional shifts. The ARL1 results confirm that the ZIP-EWMA chart is
able to detect when the process conditions are deteriorating. We keep the conclusions from Section 5.4
in mind while preceding to the following chapters, where we will focus on monitoring high-purity count
data that is affected by a covariate.



6 | Regression models for
count data

In this chapter we consider high-purity count data that is affected by one covariate. It is explained in
Chapter 2 that we consider a monitoring scheme for plastic pellet production, in which the observed
number of defective pellets is affected by the inspected weight. The total amount of detected defects is
denoted with Yi, and the inspected weights are denoted with Xi for each point in time i = 1, 2, . . . .

When monitoring the total number of detected defects over time, a correction must be made for the
variable inspected weight. It is discussed in the literature review of Chapter 3 that one method to achieve
this is with regression-based control charts. We can model the relationship between response variable Yi
and Xi with the zero-inflated regression models from Lambert (1992) and Heilbron (1994) for ZIP and
ZINB distributed observations, respectively. These regression models are constructed according to the
structure generalized linear models (GLM), while taking an additional proportion of zero inflation into
account. For this reason, a certain level of understanding in GLM-theory is required before we can fully
understand the structure of zero-inflated regression models. Hence, we focus on the theory regarding
generalized linear models first in Section 6.1. Definitions of the ZIP and ZINB regression models are
provided afterwards in Section 6.2.

6.1 Generalized linear models

It is described in Section 3.2 that generalized linear models are appropriate for modelling data of which
the response variable follows a distribution from the EDM family. The EDM family is therefore discussed
in the following section, after which the definition of a GLM is provided in Section 6.1. Estimation
of regression coefficients and GLM residuals are discussed in Section 6.1.3 and 6.1.4, respectively. The
textbook of Dunn and Smyth (2018) is used as a reference throughout each section. We consider general
GLM theory where any random variable Y is affected by p covariates X1, . . . , Xp, in order to keep this
section generic. In the context of plastic pellet production we have only one covariate, i.e. p = 1.

6.1.1 Exponential dispersion models

According to Dunn and Smyth (2018) (Section 5.3), a distribution for any random variable Y belongs
to the EDM family if the probability function can be written in a specific form, defined in (6.1). This
probability function is the probability density function if Y is continuous, and the probability mass
function if Y is discrete. Hence, a probability distribution belongs to the EDM family if it can be written
as

P(y; θ, ϕ) = a(y, ϕ) exp

{
yθ − κ(θ)

ϕ

}
(6.1)
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where,

• θ is called the canonical parameter.

• κ(θ) is a known function of the canonical parameter, called the cumulant function.

• ϕ > 0 is the dispersion parameter.

• a(y, ϕ) is a normalising function ensuring that
∫
S
P(y; θ, ϕ)dy = 1 in case Y is continuous, and∑

y∈S P(y; θ, ϕ) = 1 if Y is discrete, where S denotes the support of Y . The function a(y, ϕ) does
not necessarily have a closed form.

EDM distributions have some particular properties that are shared among all distributions in the family.
First of all, the mean µ is a known one-to-one function of the canonical parameter θ. Therefore, it is
common to use the notation Y ∼ EDM(µ, ϕ), when stating that Y follows a distribution from the EDM
family with mean µ and dispersion parameter ϕ. The probability function is also sometimes denoted
as P(y;µ, ϕ) for this reason. In addition, the variance of every EDM distribution is a function of the
dispersion parameter and its expectation. Namely, the variance function is defined as Var(Y ) = ϕV (µ).

GLM theory relies heavily on the EDM probability function structure, since convergence of regression
parameter estimation is proved for distribution of the form (6.1) only. This is further discussed in
Section 6.1.3. As an example of how the EDM structure relates to well-known distributions, we can write
the Poisson distribution in EDM format by defining the probability function as

P(y;µ, 1) = exp {y logµ− µ− log(y!)} =
exp{−µ}µy

y!

by substituting (6.1) with θ = logµ as the canonical parameter, κ(θ) = µ as the cumulant function, ϕ = 1

as the dispersion parameter and a(y, ϕ) = 1/y!. The variance function of a Poisson distribution is defined
as Var(Y ) = 1 · V (µ) = µ. For each distribution in the EDM family, the variance function, canonical
parameter, canonical function and dispersion parameter are uniquely defined. These definitions can be
found for the most common EDMs in Dunn and Smyth (2018) (p.221). In the special case of a normal
distribution we have constant variance, i.e., V (µ) = 1 and ϕ = σ2. Now that we have a general notation
of all distributions in the EDM family, we can continue to define generalized linear models in the next
section.

6.1.2 Definition of a Generalized Linear Model

Generalized linear model consists of two components. The first component is referred to as the random
component, which models the distribution of response variable Yi for i = 1, 2, . . . . This distribution is
denoted as EDM(µi, ϕ), with expected value µi and dispersion parameter ϕ. The random component is
occasionally also defined as Yi ∼ EDM(µi, ϕ/wi), where parameters wi are used as non-negative weights
to indicate the importance of each observation differently.

The second component is often referred to as the systematic component, which models the relation
between response variable Yi and all covariates Xi = {Xi,1, . . . Xi,p}. The systematic component is
defined as g(µi) = oi + β0 +

∑p
j=1 βjXi,j , where g(·) is a known, monotonic, differentiable link function.

The right-hand side of the systematic component is often referred to as the linear predictor, since it is a
linear combination of all covariates. Parameters oi are the offset for each individual observation, which
are often set equal to zero. Regression coefficients β = {β0, . . . , βp} can be estimated for a given data
set. Finally, the random and systematic component together define a generalized linear model as yi ∼ EDM(µi, ϕ)

g(µi) = oi + β0 +
∑p
j=1 βjXi,j .

(6.2)



6.1. GENERALIZED LINEAR MODELS 47

The core structure of a GLM is specified by the choice of EDM distribution and the choice of link
function. The canonical link function is defined such that g(µ) = θ, where θ is the canonical parameter
from the EDM distribution. This link function is a common choice in practice since it ensures desirable
statistical properties which generally lead to faster convergence of regression coefficient estimation. More
specifically, the canonical link ensures that a minimal sufficient statistic exists for β = {β0, . . . , βp} (see
e.g. McCullagh and Nelder (2019) (Section 2.2.4)). However, it is also possible to use alternative link
functions as long as distributional properties are preserved. For example, g(µi) = log(µi) is the canonical
link function of the Poisson distribution, since its canonical parameter is θi = log(µi). This link function
ensures that µi is non-negative. However, the link function g(µi) =

√
µi is also a common choice for

Poisson regression, since it ensures µi ≥ 0 as well.

For a given data set, one can define a GLM by selecting an EDM distribution and a corresponding
link function. Then, the GLM can be fitted to the data by estimating the regression coefficients. The
exact estimation procedure is discussed in the following section.

6.1.3 Estimating regression coefficients

Let us define a data set (y, x1, . . . , xp) = {(y1, x1,1, . . . , x1,p), . . . , (yn, xn,1, . . . , xn,p)}, with n observation
and p covariates. Given that the observations follow a distribution form the EDM family, a GLM with
link function g(·) can be fitted to estimate regression coefficients β = {β0, . . . , βp}. The estimates are
obtained by maximising the joint probability function of y, which is also referred to as the likelihood
function (see e.g. Dunn and Smyth (2018) (Section 6.2)). When denoting the EDM probability function
of random variable Yi at point yi with P(yi;µi, ϕ), as described in Section 6.1.1, then the likelihood
function is defined as

L(β0, . . . , βp, ϕ; y) =

n∏
i=1

P(yi;µi, ϕ)

where µi = g−1(oi+β0+
∑p
j=1 βjxi,j). Maximisation of this likelihood function with respect to β provides

the maximum likelihood (ML) estimates of regression coefficients, that are denoted with β̂ = {β̂0, . . . , β̂p}.
The logarithmic function is a monotonically increasing function. Hence, a maximum in the likelihood
function is attained in the log-likelihood function as well. The log-likelihood function is however usually
more convenient to work with, since it is defined by a sum instead of a product. Therefore, maximisation
of the log-likelihood function used for GLM parameter estimation. The log-likelihood function is defined
as

`(β0, . . . , βp, ϕ; y) = logL(β0, . . . , βp, ϕ; y) =

n∑
i=1

logP (yi;µi, ϕ).

It is explained in Jørgensen (1997) (p.114) that maximisation of the log-likelihood is equivalent to min-
imisation of the total deviance function in case of an EDM. The total deviance function can be shown
to be convex (see, e.g. Dunn and Smyth (2018) (Section 5.4.1)). Hence, a unique solution is obtained
for ML estimates β̂ = {β̂0, . . . , β̂p}. An additional advantage of EDM distributions, are their closed form
definitions for the first and second derivative of the log-likelihood function. This assures that the iterative
weighted least squares (IWLS) algorithm can be used to find the optimal solution. The details of this
approach are thoroughly explained in Dunn and Smyth (2018) (Sections 6.2 and 6.3).

The fitted GLM is fully defined after estimating the regression coefficients, and obtaining maximum
likelihood estimators β̂ = {β̂0, . . . , β̂p}. The obtained model can then be used to predict the outcome of
random variable Yn+1 based on covariates xn+1,1, . . . , xn+1,p. The prediction accuracy depends on the
goodness of fit of the GLM, which can be evaluated by inspection of regression residuals. Definitions of
GLM residuals are provided and discussed in the following section.
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6.1.4 GLM residuals

For a defined regression model, we can evaluate the residuals to assess the goodness of fit. Let us assume
that we have a data set (y, x1, . . . , xp) = {(y1, x1,1, . . . , x1,p), . . . , (yn, xn,1, . . . , xn,p)}, with n observation
and p covariates. In addition, lets us denote the GLM with defined link function g(·), offsets oi and ML
regression coefficients β̂ = {β̂0, . . . , β̂p}. Then, predictions for each observation in y = (y1, . . . , yn) are
denoted with µ̂ = (µ̂1, . . . , µ̂n), whereas µ̂i = g−1(oi + β̂0 +

∑p
j=1 β̂jxi,j) for i = 1, . . . , n. The distance

yi − µ̂i is often referred to as the raw residual.
Recall that the variance of any EDM distribution is a function of the expected value, i.e. V (µi).

Hence, the variance of each observation yi depends on the value of its expected value µi, and therefore we
do not have identical distribution of observations. A direct consequence of this property is that the raw
residuals also do not have identical distributions. More specifically, it is possible that ri = yi − µ̂i and
rj = yj − µ̂j have different variances when µi 6= µj . In order to obtain identically distributed residuals
that can be used for goodness of fit assessment, we need to correct for the inconstant variance. Dunn
and Smyth (2018) (Chapter 8.3) describe three distinct methods for obtaining approximately identically
distributed GLM residuals. Namely, Pearson residuals, deviance residuals and quantile residuals. Each
method is briefly discussed in the following sections.

Pearson residuals

Pearson residuals are the most intuitive and direct approach of obtaining GLM residuals. Similarly to
Pearson residuals in linear regression, the idea is to scale the raw residuals by dividing out their inconstant
standard deviation. The estimated standard deviation of the raw residual ri = yi−µ̂i equals the estimated
standard deviation of observation Yi, since prediction µ̂i is a known value. An estimation of the standard
deviation of Yi it given by the square root of the variance function evaluated at point µ̂i, i.e.,

√
V (µ̂i).

For a given set of observations y = (y1, . . . , yn) and predictions µ̂ = (µ̂1, . . . , µ̂n), Pearson residuals are
defined in vector notation as

rP =
y − µ̂√
V (µ̂)

(6.3)

where V (·) is the variance function of the EDM distribution, for which the GLM is constructed. These
Pearson residuals are the square root of the unit Pearson statistic, which is approximately Chi-square
distributed when the central limit theorem applies. This theorem applies under various conditions that
are thoroughly explained in Dunn and Smyth (2018) (Section 7.5). Under the same conditions, Pearson
residuals have an approximate normal distribution. However, it should be mentioned that Pearson resid-
uals can be far from normal when the central limit theorem does not apply. This is often the case for
discrete EDM distributions and especially for discrete distributions with low expected values (see e.g.,
Feller (1945) or Jolliffe (1995)). If the central limit theorem does not hold, then normality of Pearson
residuals is unlikely.

Deviance residuals

A different distance measure between yi and µ̂i is the unit deviance d(yi, µ̂i). This unit deviance is
twice the difference in log-likelihood between the saturated model and the fitted model, multiplied by
dispersion parameter ϕ. This generalises to the residual sum of squares in ordinary linear regression. In
GLM, the saturated model at point yi is the EDM with expected value yi, and the fitted model is the
EDM with expected value µ̂i. The unit deviance of a GLM is defined as d(y, µ) = 2t(y, y)− t(y, µ) with
t(y, µ) = yθ + κ(θ). Here, θ is the canonical parameter of the EDM distribution. Notice that t(y, µ) is
expressed in terms of y and θ since µ and θ are one-to-one functions of each other. The overall measure of
distance between y and µ̂ is provided by the deviance function that is defined as D(y, µ̂) =

∑n
i=1 d(yi, µ̂i).

This deviance function is equivalent to the sum of squared estimate of errors (SSE) in case of normally
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distributed observations. Hence, we can consider the overall deviance to be a generalisation of the SSE
to GLM regression. Deviance residuals are defined as the signed square root of the unit deviance. For
a given set of observations y = (y1, . . . , yn) and predictions µ̂ = (µ̂1, . . . , µ̂n), we can define deviance
residuals as

rD = sign(y − µ̂)
√
d(y, µ̂). (6.4)

The deviance statistic has an approximate Chi-square distribution, when the saddle point approximation
applies to the EDM distribution. This approximation applies under various conditions that are again
explained in Dunn and Smyth (2018) (Section 7.5). Under the same conditions, deviance residuals have
an approximate normal distribution. However, deviance residuals can be far from normally distributed
when the saddle point approximation does not apply. This is again often the case for discrete distributions
with low expected values. Nevertheless, deviance residuals are more likely to be normally distributed than
Pearson residuals, since the central limit theorem has a slower convergence rate then the saddle point
approximation, i.e., O(ϕ1/2) instead of O(ϕ). This is explained in Dunn and Smyth (2018) (Section 7.5).
To illustrate this, let us consider an example where observations y = (y1, . . . , yn) are collected from a
Poisson distributed random variable. Then, the saddle point approximation is sufficiently accurate for
min(y) ≥ 3, while the central limit theorem is only sufficiently accurate for individual observations when
min(y) ≥ 5. This is explained in Dunn and Smyth (2018) (Section 7.5) as well. Hence, deviance residuals
are more likely to be approximately normal than Pearson residuals in this case.

Finally, notice that the unit deviance is only defined for EDM distributions that allow µ = y. Other-
wise, the unit deviance is approximated by choosing y close to µ, which is explained in Dunn and Smyth
(2018) (Section 5.4.1).

Quantile residuals

Dunn and Smyth (1996) introduced quantile residuals for GLM regression as an alternative to both
Pearson and deviance residuals. Quantile residuals have exactly normal distribution apart from the
sampling variability in estimating distribution parameters. The definition of quantile residuals is different
for continuous and discrete GLMs. Let F (yi; µ̂i, ϕ) be the cumulative distribution function of random
variable Y at point yi, with parameters µ̂i and ϕ. Also, lets define a given set of observations y =

(y1, . . . , yn) with predictions µ̂ = (µ̂1, . . . , µ̂n). If Y is a continuous random variable, quantile residuals
is given by

rQ = Φ−1{F (y; µ̂, ϕ)} (6.5)

where Φ(·) is the cumulative distribution function of the standard normal distribution. If Y is a discrete
random variable, then let b = F (y; µ̂, ϕ) and a = limε→0− F (y+ ε; µ̂, ϕ). Here, we use the left-hand limit
such that y + ε < y. The quantile residuals in vector notation are given by

rQ = Φ−1(U) (6.6)

where U is a vector of uniform random variables on the interval (a, b]. We often refer to quantile residuals
for discrete GLMs as randomised quantile residuals, because of the randomisation that is inserted with
U . As mentioned before, quantile residuals and randomised quantile residuals are both continuous and
normally distributed, apart from the sampling variability in estimating µi. This implies that quantile
residuals are exactly normally distributed in case n is large and µ̂i = µi for i = 1, 2, . . . . A deviation
from normality can be observed for less well-fitted models. A proof of this property is provided for the
continuous and discrete case in Lemmas A.2.1 and A.2.2, respectively (see Appendix A).

This concludes the theoretical part regarding GLM. Now that we have discussed the definitions for
the EDM family, GLM regression models, parameter estimation procedures and definitions for GLM
residuals, we can proceed to discuss the regression models of interest in the following section.
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6.2 Zero-inflated regression models

Regression models for zero-inflated count data originate from Lambert (1992), which introduced the zero-
inflated Poisson (ZIP) model. A regression model for zero-inflated negative binomial (ZINB) response was
introduced not much later by Heilbron (1994). Both zero-inflated distributions do not belong to the EDM
family since they cannot be written in the specific form that is defined in (6.1). Zero-inflated regression
models can therefore not be classified as GLM, even though both models show great resemblance with
the GLM structure. Namely, the expected value of the response variable is modelled through a non-linear
link function and a linear predictor that includes all covariates.

In the context of plastic pellet production, the zero-inflated regression models are employed to estimate
the relationship between the total amount of detected defects Yi, and inspected weights Xi for each point
in time i = 1, 2, . . . . Therefore, we focus on one-dimensional zero-inflated regression models, where one
covariate is included. Definitions of the one-dimensional ZIP and ZINB regression model are provided in
Sections 6.2.1 and 6.2.2, respectively, along with an explanation of parameter estimation methods and
definitions of Pearson, deviance and randomised quantile residuals. The defined ZIP and ZINB model
are employed in a regression-based Shewhart chart in Chapter 7.

6.2.1 Zero-inflated Poisson model

High-purity count data processes inherit a particularly large amount of zero observations, which is not
accounted for by the Poisson distribution. Hence, modelling zero-inflated data with a Poisson GLM may
cause violation of the equidispersion assumption, which leads to inaccurate estimates. As an alternative,
Lambert (1992) introduced the zero-inflated Poisson (ZIP) model, of which a one-dimensional variant is
formalised in (6.7). Here, the response variable Yi is assumed to follow a ZIP(pi,λi) distribution as defined
in (2.1), where the effect of the inspected weight Xi is modelled through parameters pi and λi. Hence,
observations are not identically distributed in this model. With probability 1 − pi, variable Yi follows a
Poisson distribution with expected value λi. With probability pi we have that Yi equals a structural zero.

P (Yi = yi|Xi) =


pi + (1− pi)e−λi if yi = 0

(1− pi)
e−λiλyii
yi!

if yi > 0

where λi = exp(β0 + β1Xi) and pi =
exp(γ0 + γ1Xi)

1 + exp(γ0 + γ1Xi)

(6.7)

It is explained in Section 3.2 that two variants of the ZIP regression model are defined by Lambert
(1992). The ZIP(τ) model is defined for a situation where parameters pi and λi depend on the same
set of covariates. In this thesis, we consider a situation where only one covariate affects the response,
such that definitions for pi and λi in (6.7) depend on the same covariate Xi. Hence, a ZIP(τ) model is
considered in this thesis, which we will abbreviate to ZIP in the following sections. The ZIP expected
value, conditional on the value of Xi, is defined as

E[Yi|Xi] = (1− pi)λi (6.8)

where the condition on Xi indicates that values for pi and λi are known. Similarly, the conditional
variance is defined as

Var(Yi|Xi) = (1− pi)(λi + piλ
2
i ). (6.9)

A proof of the ZIP expected value and variance is appended in Lemmas A.1.1 and A.1.2, respectively.
The ZIP regression model is similar to a GLM because the the expected value E[Yi|Xi] = (1− pi)λi = µi
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is modelled through a linear predictor of the covariate, and a Log and Logit link functions for λi and
pi, respectively. The Log link function ensures that expected value λi is strictly positive and the Logit
link function ensures that pi is estimated between 0 and 1. This GLM structure that combines a linear
predictor with a link function is explained in Section 6.1.2.

Let us consider a data set (y, x) = {(y1, x1), . . . , (yn, xn)} with n observations. Maximum likelihood
estimates for parameters β0, β1, γ0 and γ1 are obtained by maximising the ZIP log-likelihood function
that is defined as

`(β0, β1, γ0, γ1; y) =
∑
i: yi=0

log [exp(γ0 + γ1xi) + exp(− exp(β0 + β1xi))]

+
∑
i: yi>0

[(yi − 1) exp(β0 + β1xi)− log(yi!)]−
n∑
i=1

log [1 + exp(γ0 + γ1xi)] .

The maximisation procedure is executed by means of the Broyden–Fletcher–Goldfarb –Shanno algorithm
(BFGS). The parameter estimates are proved to have asymptotically normal distribution in Lambert
(1992), where extensive simulations show that estimates can be trusted when the ZIP(τ) are fitted on
sufficiently large data sets, i.e. n ≥ 100. The obtained ML estimates for regression coefficients β0, β1,
γ0, and γ1 are denoted with β̂0, β̂1, γ̂0 and γ̂1, respectively. With these estimates, we can also obtain
estimates for parameters λ = (λ1, . . . , λn) and p = (p1, . . . , pn) by means of their definitions in (6.7).
These estimates are denoted with λ̂ = (λ̂1, . . . , λ̂n) and p̂ = (p̂1, . . . , p̂n), respectively. Finally, a set of
predictions for observations y are obtained with µ̂ = (1− p̂)λ̂ = (µ̂1, . . . , µ̂n).

We can evaluate the goodness of fit of the regression model by analysis of the residuals. It is explained
in Section 6.1.4 that three different types of residuals can be obtained from a GLM. The same types of
residuals can be obtained from the ZIP regression model. First of all, Pearson residuals computed
similarly to GLM Pearson residuals, which are defined in Section 6.1.4. Hence, ZIP Pearson residuals are
obtained by substituting the ZIP expected value from (6.8) and the ZIP variance from (6.9) into (6.3).
The following definition for ZIP Pearson residuals is obtained

rPi =
yi − (1− p̂i)λ̂i√

(1− p̂i)(λ̂i + p̂iλ̂2
i )

(6.10)

for all observations i = 1, . . . , n. Next, deviance residuals for zero-inflated regression models are less
trivial to define. From Section 6.1.4 we know that in case of GLM regression, we can easily define the
unit deviance as a function of EDM parameters. However, this is not possible for zero-inflated regression
models for which those EDM parameters cannot be defined. Nevertheless, we can still define the unit
deviance of zero-inflated models as the difference between the log-likelihood of the saturated and the
fitted model. It is stated in Feng et al. (2020) that for a ZIP regression model at point yi, the saturated
model is defined as the Poisson regression model with expected value yi. Hence, ZIP deviance residuals
for i = 1, . . . , n are defined as rDi = sign(yi − µ̂i)(2{log g1(yi|yi) − log f1(yi|p̂i, λ̂i)})1/2, where g1(·|λ) is
the Poisson probability mass function with expected value λ and f1(·|p, λ) is the ZIP probability mass
function with parameters p and λ as defined in (2.1). Written in the extensive form, ZIP deviance
residuals are therefore defined as

rDi = sign(yi − µi)
(

2 ·
{
− yi + yi log yi − log(yi!)

− 1{yi=0} log
[
p̂i + (1− p̂i)e−λ̂i

]
− 1{yi>0}

[
log(1− p̂i)− λ̂i + yi log λ̂i − log(yi!)

]})1/2

(6.11)

for observations i = 1, . . . , n. The third and final residual type is the quantile residual. In this case,
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we use randomised quantile residuals since the ZIP distribution is discrete. These residuals are defined
in the exact same way as was explained for GLM in Section 6.1.4. Let us define the ZIP cumulative
distribution function at point yi as as F1(yi; λ̂i, p̂i), with parameters λ̂i and p̂i. Then, ZIP randomised
quantile residual for observations i = 1, . . . , n are defined as

rQi = Φ(ui) (6.12)

where ui is a uniform random variable between ai = limy→yi F1(y | p̂i, λ̂i) and bi = F1(yi | p̂i, λ̂i).

When constructing a regression-based control chart for ZIP distributed data, we can monitor Pearson,
deviance and randomised quantile residuals. A ZIP regression-based Shewhart chart is defined for all three
types of residuals in Chapter 7. Besides the ZIP model, zero-inflated count data can also be modelled by
means of the ZINB distribution. The ZINB model is often considered as an alternative to the ZIP model
since it includes a dispersion parameter that allows for adjustable amounts of variation in the data. The
ZINB model is defined an discussed in the following section.

6.2.2 Zero-inflated negative binomial model

As a generalisation to the ZIP model, Heilbron (1994) introduced a zero-inflated negative binomial (ZINB)
regression model. A one-dimensional variant of this regression model is formalised in (6.13). Here, the
response variable Yi is assumed to follow a ZINB(pi,λi,τ) distribution as defined in (2.2), where the effect
of the inspected weight Xi is again modelled through parameters pi and λi. Hence, observations are
not identically distributed in this model. The strictly positive size parameter is denoted with τ . With
probability 1 − pi, variable Yi follows a negative binomial distribution with expected value λi. With
probability pi we have that Yi equals zero.

P (Yi = yi |Xi) =

pi + (1− pi)
(
1 + λi

τ

)−τ
if yi = 0

(1− pi)Γ(yi+τ)
yi!Γ(τ)

(
1 + λi

τ

)−τ (
1 + τ

λi

)−yi
if yi > 0

where λi = exp(β0 + β1Xi) and pi =
exp(γ0 + γ1Xi)

1 + exp(γ0 + γ1Xi)

(6.13)

The ZINB expected value, conditional on the value of Xi, is defined as

E[Yi|Xi] = (1− pi)λi (6.14)

where the condition on Xi indicates again that values for pi and λi are known. Similarly, the conditional
variance is defined as

Var(Yi|Xi) = λi(1− pi)(1 + piλi + λi/τ). (6.15)

A proof of the expectation and variance is appended in Lemmas A.1.3 and A.1.4, respectively. The Log
and Logit link functions are again applied for the same reasons as discussed in Section 6.2.1.

Let us consider again a data set (y, x) = {(y1, x1), . . . , (yn, xn)} with n observations. Maximum
likelihood estimates for parameters β0, β1, γ0,γ1 and τ are obtained by maximising the ZINB log-likelihood
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function that is defined as

`(β0, β1, γ0, γ1, τ ; y) =

n∑
i=1

log [1 + exp(γ0 + γ1xi)]

−
∑
i: yi=0

log

[
exp(γ0 + γ1xi) +

(
exp(β0 + β1xi) + τ

τ

)−τ]

+
∑
i: yi>0

log

[
τ

(
exp(β0 + β1xi) + τ

τ

)
+ yi log (1 + τ exp(β0 + β1xi))

]
+
∑
i: yi>0

log(Γ(τ)) + log(Γ(1 + yi))− log(Γ(τ + yi)).

The maximisation procedure is executed by means of the Broyden–Fletcher–Goldfarb –Shanno algorithm
(BFGS). It is proved by Heilbron (1994) that parameter estimates of ZINB regression have asymptoti-
cally normal distribution. The obtained ML estimates for regression coefficients β0, β1, γ0, and γ1 are
denoted with β̂0, β̂1, γ̂0 and γ̂1, respectively. If the true value of τ is unknown, then the ML estimate
is obtained which is denoted with τ̂ . With these estimates, we can also obtain estimates for parameters
λ = (λ1, . . . , λn) and p = (p1, . . . , pn) by means of their definitions in (6.13). These estimates are denoted
with λ̂ = (λ̂1, . . . , λ̂n) and p̂ = (p̂1, . . . , p̂n), respectively. Finally, a set of predictions for observations y
are obtained with µ̂ = (1− p̂)λ̂ = (µ̂1, . . . , µ̂n).

Once the ZINB model is fitted and estimates for all parameters are obtained, we can evaluate the
goodness of fit by analysis of residuals. Pearson residuals for ZINB regression computed similarly to
GLM Pearson residuals, which are defined in Section 6.1.4. Hence, ZINB Pearson residuals are obtained
by substituting the ZINB expected value from (6.14) and the ZIP variance from (6.15) into (6.3). The
following definition of Pearson residuals for ZINB regression is obtained

rPi =
yi − (1− p̂i)λ̂i√

λ̂i(1− p̂i)(1 + p̂iλ̂i + λ̂i/τ̂)
(6.16)

for all observations i = 1, . . . , n. It was already explained in Section 6.2.1 that the unit deviance of
zero-inflated models is defined as the difference between the log-likelihood of the saturated and the fitted
model. Hence, deviance residuals are defined as the signed squared root of the unit deviance. It is stated
in Feng et al. (2020) that for a ZINB regression model at point yi, the saturated model is defined as the
negative binomial regression model with expected value yi and size parameter τ . If the true value of τ is
unknown, then the ML estimate τ̂ can be applied. Hence, ZINB deviance residuals for i = 1, 2, . . . are
defined as rDi = sign(yi − µ̂i)(2{log g2(yi|yi, τ̂) − log f2(yi|p̂i, λ̂i, τ̂)})1/2 where g2(·|λ, τ) is the negative
binomial probability mass function with expected value λ and size parameter τ , and f2(·|p, λ, τ) is the
ZINB probability mass function with parameters p,λ and τ as defined in (2.2). Written in the extensive
form, ZINB deviance residuals are therefore defined as

rDi = sign(yi − µi)

(
2 ·

{
log

Γ(yi + τ̂)

Γ(τ̂)Γ(yi + 1)
+ yi log

(
yi

yi + τ̂

)
+ τ̂ log

(
τ̂

yi + τ̂

)

− 1{yi=0} log

[
p̂i + (1− p̂i)

(
τ̂

λ̂i + τ̂

)τ̂]

− 1{yi>0}

[
log(1− p̂i) + log

Γ(yi + τ̂)

Γ(τ̂)Γ(yi + 1)
+ yi log

(
yi

yi + τ̂

)
+ τ̂ log

(
τ̂

yi + τ̂

)]})1/2

(6.17)

for observations i = 1, . . . , n. The third and final residual type is the quantile residual. In this case, we
use randomised quantile residuals since the ZINB distribution is discrete. These residuals are defined
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in the exact same way as was explained for GLM in Section 6.1.4. Let us define the ZINB cumulative
distribution function at point yi as as F2(yi; λ̂i, p̂i, τ̂), with parameters λ̂i, p̂i and τ . Then, ZIP randomised
quantile residual for observations i = 1, . . . , n are defined as

rQi = Φ(ui) (6.18)

where ui is a uniform random variable between ai = limy→yi F2(y | p̂i, λ̂i, τ̂) and bi = F2(yi | p̂i, λ̂i, τ̂).
When constructing a regression-based control chart for ZIP distributed data, we can again monitor
Pearson, deviance and randomised quantile residuals. A ZINB regression-based Shewhart chart is defined
for all three types of residuals in Chapter 7.

When dealing with zero-inflated data in practice, it is important to carefully decide which regression
model to use. The ZINB model is often considered as an alternative to the ZIP model, since it includes
a size parameter τ . This size parameter allows for adjustable amounts of variation in the data, whereas
the ZINB variance of the negative binomial distribution decreases when τ increases. The ZIP model on
the other hand is more simplistic to interpret. In this research, we do not work with real plant data such
that it is not necessary to select one model in particular. Nevertheless, it should be mentioned that a
model selection procedure is provided in Mahmood (2020), which describes how we can choose between
a Poisson, ZIP, negative binomial or ZINB model.

Here, a likelihood-ratio-test (LRT) is proposed to test whether the data contains overdispersion with
respect to a Poisson distribution. The hypotheses of the LRT test are defined as H0 : τ = 0 or H1 : τ > 0.
Hence, we should use a negative binomial distribution in case the null hypothesis is rejected. In addition
to the LRT test, a Vuong test for zero-inflation is proposed to compare the traditional Poisson model
with the ZIP model, and the negative binomial model with the ZINB model. This is a log-likelihood ratio
test that originates from Vuong (1989), where a test statistic V is proposed that follows an asymptotic
standard normal distribution. The zero-inflated model is preferred over the traditional model when
|V | < Φ−1(1 − α/2), where α is the significance level and Φ−1(·) is the inverse standard normal cdf.
When working with real data, it is important to follow these steps of model selection to determine which
model is the best fit. In addition to the LRT-Vuong method, Xie et al. (2001) provides an overview
of alternative statistical tests that can be used to determine whether a zero-inflated model should be
applied.

6.3 Summary

In this thesis, we focus on ZIP and ZINB regression-based Shewhart charts. Both the ZIP and ZINB
regression model are defined according to the structure of generalized linear models, such that we start
with revising the GLM theory. A definition of exponential dispersion models is provided in Section 6.1.1,
after which generalized linear models are defined in Section 6.1.2. The maximum likelihood procedure for
estimating regression coefficients is described in Section 6.1.3, which is followed by a definition of GLM
residuals in Section 6.1.4. Here, Pearson, deviance and quantile residuals are defined. It is discussed
that quantile residuals have exact standard normal distribution under a regression model with perfect
estimates for the regression coefficients. Pearson residuals have approximate normal distribution when
the central limit theorem holds for individual observations. Deviance residuals have approximate normal
distribution when the saddle point approximation applies.

The zero-inflated regression models from Lambert (1992) and Heilbron (1994) are defined in Sec-
tions 6.2.1 and 6.2.2, respectively. Estimation of regression coefficients is described in both sections after
which Pearson, deviance and randomised quantile residuals are defined for each model. The construction
of ZIP and ZINB regression-based Shewhart charts is discussed in the next chapter.



7 | Monitoring count data
with covariates

In this chapter, we design a regression-based monitoring scheme for high-purity count data that is affected
by one covariate. More specifically, we construct a ZIP and ZINB regression-based Shewhart chart for
predictive Pearson, deviance and randomised quantile residuals. Regression models (6.7) and (6.13) are
used throughout this chapter. A definition of the ZIP and ZINB regression-based Shewhart chart is
provided in Section 7.1, along with the hypotheses of the chart. Simulation of zero-inflated data and
distribution of ZIP and ZINB regression residuals is discussed in Sections 7.2 and 7.3, respectively. It is
described in Section 7.4 that we follow two strategies for construction and performance evaluation of each
chart. Finally, the construction and OC performance evaluation procedures are discussed in Sections 7.5
and 7.6.

7.1 Regression-based Shewhart charts

In the context of plastic pellet production at Dow, let us denote the total number of defective pellets
with Yi and the inspected weights with Xi at time i = 1, 2, . . . . When monitoring the amount of detected
defective pellets Yi over time, we must correct for the inspected weights Xi. Regression-based control
charts can be employed for this purpose. Let us define a data set (y, x) = {(y1, x1), . . . , (ym, xm)} of size
m, that reflects the IC process. It was described in Section 4.1 that we refer to this data as the Phase
I data. The construction of a regression-based Shewhart chart is discussed in the following sections, for
ZIP and ZINB distributed observations Yi, respectively.

7.1.1 The ZIP regression-based Shewhart chart

Let us assume that random a variable Yi follows a ZIP distribution. Then, we can fit the one dimensional
ZIP regression model that is defined in (6.7), to the Phase I data (y, x) in order to obtain estimates for
regression coefficients β0, β1, γ0 and γ1. Let us denote these estimates with β̂0, β̂1, γ̂0 and γ̂1, respectively.
Now let (ym+i, xm+i) be a new observation with i = 1, 2, . . . , where m denotes the size of the Phase I
data. We can use the fitted ZIP model to predict the value of ym+i, based on the value of xm+i. Let us
denote the prediction of ym+i with µ̂m+i. It is described in Section 6.2.1 that

µ̂m+i = (1− p̂m+i)λ̂m+i (7.1)

where
p̂m+i =

exp(γ̂0 + γ̂1xm+i)

1 + exp(γ̂0 + γ̂1xm+i)
(7.2)

and
λ̂m+i = exp(β̂0 + β̂1xm+i). (7.3)

55
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Here, µ̂m+i represents the ZIP expected value that is defined in (6.8). For each new observation
(ym+i, xm+i) with i = 1, 2, . . . and corresponding predictions µ̂m+i, p̂m+i and λ̂m+i, we can obtain re-
gression residuals. Namely, ZIP Pearson residuals are obtained by substituting ym+i, p̂m+i and λ̂m+i

into (6.10). Let us denote these residuals with rP = {rPm+1, r
P
m+2, . . . }. Similarly, ZIP deviance resid-

uals are obtained by substituting ym+i, p̂m+i and λ̂m+i into (6.11). Let us denote the ZIP deviance
residuals with rD = {rDm+1, r

D
m+2, . . . }. Finally, ZIP randomised quantile residuals are denoted with

rQ = {rQm+1, r
Q
m+2, . . . } and obtained by substituting ym+i, p̂m+i and λ̂m+i into (6.12). In a regression-

based Shewhart chart, we can monitor Pearson, deviance residuals or randomised quantile residuals over
time.

As long as the process is in control, it is assumed that observations Ym+i with i = 1, 2, . . . follow a
ZIP distribution with parameters p̂m+i and λ̂m+i. These parameters are predicted based on the observed
value of Xm+i and established regression coefficients β̂0, β̂1, γ̂0 and γ̂1, as defined in (7.2) and (7.3),
respectively. Let us denote this relation with Ym+i ∼ ZIP(p̂m+i, λ̂m+i|Xm+i). When monitoring ZIP
regression residuals over time in an SPC control chart, we can define the hypotheses of this chart as

H0 : Ym+i ∼ ZIP(p̂m+i, λ̂m+i|Xm+i) for i = 1, 2, . . .

H1 :


Ym+i ∼ ZIP(p̂m+i, λ̂m+i|Xm+i) for i = 1, . . . , T

Ym+i ∼ ZIP(pOCm+i, λ
OC
m+i|Xm+i) for i = T + 1, T + 2, . . . .

(7.4)

where p̂m+i 6= pOCm+i and or λ̂m+i 6= λOCm+i. Hence, the process becomes out of control after change point
T . For a known observation (ym+i, xm+i), parameters pOCm+i and λOCm+i are defined as

pOCm+i =
exp(γOC0 + γOC1 xm+i)

1 + exp(γOC0 + γOC1 xm+i)
(7.5)

and
λOCm+i = exp(βOC0 + βOC1 xm+i). (7.6)

where at least one of the following holds: β̂0 6= βOC0 , β̂1 6= βOC1 , γ̂0 6= γOC0 or γ̂1 6= γOC1 . Hence, the
process becomes OC when dependent observations {Ym+T+1, Ym+T +2, . . . } follow a ZIP distribution
with parameters that deviate from what is expected by the established regression model, based on the
observed covariate values for {Xm+T +1, Xm+T +2, . . . }.

It is described in Section 4.2.1 that a Shewhart chart can either have symmetric control limits as
defined in (4.1), or probability control limits as defined in (4.2). Let us denote the ZIP regression-
based Shewhart chart with symmetric control limits as ZIP-(rP , L)-Shewhart, ZIP-(rD, L)-Shewhart and
ZIP-(rQ, L)-Shewhart in case of Pearson, deviance and randomised quantile residuals respectively. Let us
denote ZIP-(rP , Q)-Shewhart, ZIP-(rD, Q)-Shewhart and ZIP-(rQ, Q)-Shewhart for similar control charts
with probability limits.

7.1.2 The ZINB regression-based Shewhart chart

Monitoring ZINB residuals is similar as described in the previous section, since the ZIP and ZINB
regression models have the same link functions. Let us assume that random variable Yi follows a ZINB
distribution. Also, let us define the Phase I data with (y, x) = {(y1, x1), . . . , (ym, xm)}. We can fit
the one dimensional ZINB regression model that is defined in (6.13) to the Phase I data in order to
obtain estimates for regression coefficients β0, β1, γ0, γ1 and τ . Here, τ represents the non-negative size
parameter of the ZINB distribution. Let us denote these estimates with β̂0, β̂1, γ̂0, γ̂1 and τ̂ , respectively.
For every new arriving observation (ym+i, xm+i) with i = 1, 2, . . . , predictions µ̂m+i, p̂m+i and λ̂m+i

are defined as in (7.1), (7.2) and (7.3) respectively, where the ZINB estimated regression coefficients are
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applied. Notice that these predictions have the same definition in the ZIP regression model, since the
ZINB and ZIP expected value are the same, as defined in (6.8) and (6.14), respectively.

ZINB Pearson, deviance and randomised quantile residuals are obtained by substituting ym+i, p̂m+i

and λ̂m+i in (6.16), (6.17) and (6.18), respectively. Let us use the same notation as in Section 7.1.1, i.e.,
rP = {rPm+1, r

P
m+2, . . . }, rD = {rDm+1, r

D
m+2, . . . } and rQ = {rQm+1, r

Q
m+2, . . . }. We can monitor each of

these residual types over time in a Shewhart chart. As long as the process is in control, it is assumed
that observations Ym+i with i = 1, 2, . . . follow a ZINB distribution with parameters p̂m+i, λ̂m+i and τ ,
i.e., Ym+i ∼ ZINB(p̂m+i, λ̂m+i, τ |Xm+i). Then the hypotheses of this chart are defined as

H0 : Ym+i ∼ ZINB(p̂m+i, λ̂m+i, τ̂ |Xm+i) for i = 1, 2, . . .

H1 :


Ym+i ∼ ZINB(p̂m+i, λ̂m+i, τ̂ |Xm+i) for i = 1, . . . , T

Ym+i ∼ ZINB(pOCm+i, λ
OC
m+i, τ̂ |Xm+i) for i = T + 1, T + 2, . . . .

(7.7)

where p̂m+i 6= pOCm+i and or λ̂m+i 6= λOCm+i. Hence, the process becomes out of control after change point
T . For a known observation (ym+i, xm+i), parameters pOCm+i and λOCm+i are defined as in (7.5) and (7.6),
where at least one of the following holds: β̂0 6= βOC0 , β̂1 6= βOC1 , γ̂0 6= γOC0 or γ̂1 6= γOC1 . In this notation,
β̂0, β̂1, γ̂0 and γ̂1 represent the estimated regression coefficients from the ZINB model.

Let us denote the ZINB regression-based Shewhart chart with symmetric control limits as ZINB-
(rP , L)-Shewhart, ZINB-(rD, L)-Shewhart and ZINB-(rQ, L)-Shewhart in case of Pearson, deviance and
randomised quantile residuals, respectively. Let us denote similar control charts with probability limits
as ZINB-(rP , Q)-Shewhart, ZINB-(rD, Q)-Shewhart and ZINB-(rQ, Q)-Shewhart.

Throughout this section, we have defined the ZIP and ZINB regression-based Shewhart charts with
both symmetric and probability control limits, and for monitoring Pearson, deviance and randomised
quantile residuals. The goal of this project is to evaluate the performance of each charts, for both high
and low proportions of zero-inflation in the IC data. Figure 7.1 shows a detailed overview of this solution
strategy that was introduced in Section 3.4, where a distinction between symmetric and probability
control limits is made.

In addition, it is described in Section 4.2.1 that Shewhart charts were originally defined for monitoring
normally distributed data. However, it is explained in Section 6.1.4 that normality of Pearson, deviance
and randomised quantile residuals is not guaranteed. Therefore, we evaluate the distribution of each
residual type in Section 7.3. The results in this section are based on simulated data, such that the
methodology for simulating zero-inflated data is described first in the following section.

7.2 Simulation of zero-inflated data depending on one covariate

We can simulate ZIP and ZINB distributed observations Yi that depend on covariate Xi for i = 1, 2, . . .

directly from regression models (6.7) and (6.13), respectively. This method is also described in Mahmood
(2020). In Chapter 2 it is explained that we assume Xi ∼ N(µX , σ

2
X). For simulation purposes, we fix

µX = 0 and σX = 1. In the context of plastic pellet production, this could be achieved by normalisation
of the inspected weights. Then, ZIP and ZINB data simulation for defined values of β0, β1, γ0, γ1 and τ
is executed as defined in (7.8).
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Figure 7.1: Flow chart of the detailed solution strategy.

Xi ∼ N(0, 1) , pi =
exp{γ0 + γ1Xi}

1 + exp{γ0 + γ1Xi}
, λi = exp{β0 + β1Xi}

ci ∼ Bernoulli(pi)

ZIP :

{
Yi ∼ Poisson(λi) if ci = 0

Yi = 0 if ci = 1

ZINB :

{
Yi ∼ NBinom(λi, τ) if ci = 0

Yi = 0 if ci = 1

(7.8)

The random Bernoulli variable ci is simulated to indicate if Yi equals a structural zero, or whether Yi
follows a Poisson or negative binomial distribution. The parameter pi represents the probability that
Yi equals a structural zero. The parameter λi represents the expected value of the Poisson or negative
binomial distribution, in case Yi is not a structural zero. The parameter τ represents the strictly positive
size parameter of the negative binomial distribution. Parameters γ0, γ1, β0 and β1 of (7.8) correspond
to the regression coefficients from the ZIP and ZINB regression model in (6.7) and (6.13), respectively.
Hence, the parameters γ0, γ1, β0 and β1 affect the relationship between covariates Xi and observations
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Yi.

7.2.1 Simulating four IC scenarios

The goal of this project is to compare the performance of each regression-based Shewhart chart under
various IC distributions. Hence, we consider four different IC process scenarios, in which the observations
Yi follow a ZIP or ZINB distribution with either high or low proportions of zero-inflation. These four
scenarios are defined by parameter values for γ0, γ1, β0, β1 and τ . Each scenario is denoted in Table 7.1.
Scenario 1 represents a process where observations Yi follow a ZIP(pi,λi) distribution with a high expected
proportion of zero-inflation and low expected value. Scenario 2 represents a similar process with low
expected proportion of zero-inflation and high expected value. In addition, Scenario 3 represents a
process where observations Yi follow a ZINB(pi,λi,τ) distribution with a high expected proportion of
zero-inflation and low expected value, and Scenario 4 represents a similar process with low expected
proportion of zero-inflation and high expected value.

Scenario Distribution µX σX β0 β1 γ0 γ1 τ E[pi] E[λi]

1 ZIP 0 1 0.1 1.0 0.5 -1.0 - 0.60 1.82
2 ZIP 0 1 1.6 1.0 -0.6 -1.0 - 0.38 8.17
3 ZINB 0 1 0.1 1.0 0.5 -1.0 11 0.60 1.82
4 ZINB 0 1 1.6 1.0 -0.6 -1.0 3 0.38 8.17

Table 7.1: Parameter values for simulating Phase I data for the ZIP and ZINB distributions with
high and low proportions of zero-inflation

The parameters pi and λi are actually random variables since they depend on Xi for i = 1, 2, . . . .
Therefore, their expected values are provided in the last two columns of Table 7.1, as an indication of
the amount of zero inflation in the IC scenario. These values are obtained according to (7.9) and (7.10),
where it is used that Xi ∼ N(0, 1) for all i = 1, 2, . . . .

E [pi] =
1√
2π

∫ ∞
−∞

exp
(
γ0 + γ1x− 1

2x
2
)

1 + exp(γ0 + γ1x)
dx.

(7.9)

E [λi] =
1√
2π

∫ ∞
−∞

exp

(
β0 + β1x−

1

2
x2

)
dx.

(7.10)

Figure 7.2 shows the histograms of 1500 simulated observations Yi in each scenario, to illustrate their
distributions and respective proportions of zero-inflation. Now that we have defined the four IC scenarios,
we can continue to with the construction of ZIP and ZINB regression-based Shewhart charts with Pearson,
deviance and randomised quantile residuals. However, the distribution each type of residuals is analysed
first in the following section.

7.3 Distribution analysis of Phase I regression residuals

In this section, we analyse the distribution of Pearson, deviance and randomised quantile residuals for each
of the IC scenarios that are defined in Section 7.2.1. Let us consider IC Scenario 1, where observations
Yi follow a ZIP(pi, λi) distribution with high expected proportion of zero inflation. We assume for know
that all distributional parameters are known, such that the regression model for each IC scenario is fixed
at the true parameters β0 = 0.1, β1 = 1.0, γ0 = 0.5 and γ1 = −1.0. Hence, we do not have a Phase I
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Figure 7.2: Histogram of simulated Yi for each scenario in Table 7.1

and m = 0. A set of n = 1500 observations (y, x) = {(y1, x1), . . . , (yn, xn)} is simulated as described in
Section 7.2. Pearson, deviance and randomised quantile residuals are obtained from the simulated data,
according to definitions (6.10), (6.11) and (6.12), respectively. Distributions of each type of residuals rP ,
rD and rQ are shown in Figure 7.3. Here, we distinguish between the residual density that originates
from the Poisson distribution, and the density that originates from structural zeros in the data, i.e., the
inflated zeros.

It is concluded from Figure 7.3 that randomised quantile residuals are normally distributed, as ex-
pected. However, this does not hold for Pearson and deviance residuals. It is observed from the coloured
overlay in Figure 7.3 that the positive skewness of Pearson and deviance residuals is mostly caused by
the residuals that correspond to the zero-inflated observations. The non-normal residual distributions are
remarkable, since this is nowhere discussed in the current SPC literature on ZIP and ZINB regression-
based control charts. Namely, a ZIP and ZINB regression-based Shewhart chart with Pearson residuals is
studied in the research of Mahmood (2020), but the skewness of residual distribution remains unnoticed.
In addition, Park et al. (2020) introduces a ZIP regression-based Shewhart chart with deviance residuals.
In the research of Park et al. (2020), similar distribution of deviance residuals is observed as is shown
in Figure 7.3, but the non-normality of ZIP deviance residuals is ignored and symmetric control limits
are proposed nevertheless. Before we continue with constructing any type of Shewhart chart, further
distribution analysis of ZIP Pearson and deviance residuals is needed.

It is described in Section 7.1 how we monitor regression residuals from a given ZIP or ZINB regression
model over time in a Shewhart chart. When monitoring these regression residuals, we aim to detect
contextual anomalies. Hence, we aim to identify data points (yi, xi) for which the predicted value µ̂i
severely deviates from the observed value yi. The Shewhart chart detects OC data points by setting
control limits at the upper and lower distributional tail of the charting statistic. Hence, in order to decide
whether we can use Pearson and deviance residuals in a Shewhart chart, we must discover whether severe
cases of over estimation, i.e., µ̂i � yi show in the upper distributional tail of the regression residuals. We
must also be convinced that severe cases of under estimation, i.e., µ̂i � yi, show in the lower distributional
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Figure 7.3: Density and Q-Q plots of ZIP regression residuals for IC Scenario 1 (ZIP), indicating
whether the residuals originates from the zero-inflation (red) or the Poisson distribution (blue).

tail of the regression residuals. Therefore, a break down of ZIP Pearson and deviance residuals is shown
in Figure 7.4 and 7.5, respectively.

For each observation (yi, xi) with i = 1, . . . , n, Figure 7.4a shows the corresponding raw residual
ri = yi − µ̂i, which is plotted against the prediction µ̂i. Figure 7.4b shows the Pearson residuals rPi =

(yi − µ̂i)/V (µ̂i) plotted against prediction µ̂i. In addition, Figure 7.4c shows the density of Pearson
residuals. When comparing Figure 7.4a with Figure 7.4b, we observe that the density skewness of
Pearson residuals is caused by dividing the raw residual by the variance function, in case V (µ̂i) is very
low. However, Figure 7.4b shows that Pearson residuals rPi that correspond to severe overestimation, i.e.,
µ̂i � yi end up in the lower tail of the density nevertheless. Similarly, the residuals that correspond to
severe cases of underestimation, i.e., µ̂i � yi end up in the upper tail of the density.

A similar analysis is carried out for ZIP deviance residuals in Figure 7.5. Here, Figure 7.5a shows the
square root of the unit deviance, i.e.,

√
di as defined in Section 6.2.1, that corresponds to each observation

(yi, xi), which is plotted against the predicted value µ̂i for i = 1, . . . , n. It is observed that
√
di does not

approach zero when the true value of yi is greater or equal to 1. Only for yi = 0, we observe cases in which√
di is close to zero. Hence, the ZIP regression model seems to structurally underestimate observations

that have true value yi > 0. It is also described in Section 6.2.1 that the ZIP deviance residuals are
defined as the signed square root of the unit deviance, i.e., rDi = sign(yi − µ̂i)

√
di. Figure 7.5b shows

the deviance residuals rDi plotted against µ̂i, where it shows that the two peeks in the distribution are
clearly caused by the multiplication with the sign, and the fact that

√
di does not approach 0 for yi > 0.

However, we observe the same behaviour for deviance residuals as for Pearson residuals. Namely, the
deviance residuals rDi that correspond to severe overestimation, i.e., µ̂i � yi end up in the lower tail of
the density. Also, the values rDi that correspond to severe cases of underestimation, i.e., µ̂i � yi end
up in the upper tail of the density. With these conclusions, it is confirmed that both ZIP Pearson and
deviance residuals are proper measures for goodness of fit, which makes them appropriate for contextual
anomaly detection. Hence, we can monitor ZIP Pearson, deviance and randomised quantile residuals in
a Shewhart chart over time.
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Figure 7.4: Break down of Pearson residuals in IC Scenario 1 (ZIP), with: a) Raw residuals ri = yi − µ̂i
plotted against prediction µ̂i, b) Pearson residuals rPi plotted against prediction µ̂i and c) a density plot

of Pearson residuals.

It is explained in Section 4.2.1 that the run length of a Shewhart chart follows a geometric distribution
if the charting statistic is independent and identically distributed. Therefore, autocorrelation plots of the
simulated residuals are provided in Figure 7.6, to analyse whether each residual type is independently
distributed.

Figure 7.6: Autocorrelation plot of Pearson, deviance and randomised quantile residuals in residuals for
IC Scenario 1 (ZIP).

It is observed from Figure 7.6 that all residual types show signs of autocorrelation. However, the
autocorrelation function (ACF) values appear random with respect to the time lags. Notice that these
ACF results are obtained for 1500 simulated residuals, which causes variation in the ACF results. Let
us from now on assume that the ZIP randomised quantile residuals follow an independent and identical
standard normal distribution. This assumption is not necessarily true, as is slightly indicated by Fig-
ure 7.6, but it simplifies construction of the (rQ, L)- and (rQ, Q)-Shewhart charts significantly. This is
further discussed in Section 7.5. In addition, it is decided to make no assumptions regarding the distri-
bution of ZIP Pearson and deviance residuals, since Figures 7.3 and 7.6 show no convincing distribution
or signs of independence. Hence, we will approach the construction of each (rP , L)-, (rD, L)-, (rP , Q)-
and (rD, Q)-Shewhart chart numerically. This is also further discussed in Section 7.5.

A similar analysis is conducted for all other IC scenarios. The residual distribution and ACF plots for
each of these scenarios are attached in Appendix B.2. Similar conclusions are obtained from each analysis,
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Figure 7.5: Break down of deviance residuals in IC Scenario 1 (ZIP), with: a) the squared unit deviance√
di plotted against prediction µ̂i, b) deviance residuals rDi plotted against prediction µ̂i and c) a

density plot of deviance residuals.

as are discussed in this section. Hence, we assume randomised quantile residuals from a ZIP or ZINB
regression model follow a independent and identical standard normal distribution, and no assumptions
are made regarding the distributions of Pearson and deviance residuals throughout this project. In the
following section, it is discussed how each ZIP and ZINB regression-based Shewhart charts is constructed,
according to two distinct strategies for performance evaluation.

7.4 Two strategies for performance evaluation

The goal of this project is to provide Dow with insights in the performance of the (rP , L)-, (rD, L)-,
(rQ, L)-, (rP , Q)-, (rD, Q)- and (rQ, Q)-Shewhart chart for both ZIP and ZINB distributed data. From
the literature review in Section 3.2 it is known that two studies have been published on the performance
of the ZIP and ZINB regression-based Shewhart chart. However, Park et al. (2020) and Mahmood (2020)
only provide us with the baseline performance of the ZIP and ZINB regression-based Shewhart charts.
These results reflect the best possible performance of each chart, since results are obtained under the
assumption of perfect model fit. However, it is more interesting to understand what the true performance
of each control chart is, while taking into account the effects estimating the Phase I regression coefficients.
This because having a Phase I is inevitable when monitoring predictive residuals for a real life production
process. When taking into account the effect of having Phase I estimates, it is possible that the true
ARL0 will is lower than the intended ARL0 (see e.g. Albers and Kallenberg (2004) and Shu et al. (2005)).

Therefore, two strategies of performance analysis are considered in this thesis. The first strategy is to
establish the baseline performance of each chart, whereas it is assumed that all parameters are known.
This corresponds to a performance evaluation in which we ignore the effects of Phase I estimation. In the
second performance evaluation strategy, we estimate the effect of the Phase I estimation. Hence, results
from this analysis reflect the true performance of each Shewhart chart, while taking into account that we
have a Phase I. Both strategies are discussed in the following sections.

7.4.1 Performance evaluation while ignoring the Phase I effects

The fist strategy is the most simplistic, in which we assume all data properties are known. Therefore, we
do not consider a Phase I, i.e. m = 0. In case observations are ZIP distributed, then the ZIP regression
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model is applied as defined in (6.7), with fixed regression coefficients β0, β1, γ0 and γ1. In case observations
are ZINB distributed, then the ZINB regression model is applied as defined in (6.13), with fixed regression
coefficients β0, β1, γ0 and γ1 and additional size parameter τ . All parameter values are defined for each
IC scenario in Table 7.1. Covariate Xi is assumed to follow a standard normal distribution, i.e., µX = 0

and σX = 1. The steps of performance evaluation in a setting where all data properties are assumed to
be known, are defined as follows:

1. Construct the Shewhart chart: We construct the Shewhart chart to achieve an ARL0 of 200,
by determining L or Q1 and Q2. The procedure for obtaining symmetric and probability control
limits is described in Section 7.5. Known parameters µX , σX , β0, β1, γ0, γ1 and τ are applied in case
L or Q1 and Q2 are numerically solved by simulation.

2. Evaluate performance by simulating ARL1: The performance of each chart is evaluated upon
the ARL1, that is obtained by simulation. The simulation of OC data is described in Section 7.6.1,
for which parameters µX , σX , β0, β1, γ0, γ1 and τ are used as the baseline from which OC parameters
βOC0 , βOC1 , γOC0 and γOC1 are determined. The steps for obtaining the ARL1 are described in
Section 7.6.2.

Figure 7.7: Graphical representation of performance evaluation strategy,
when ignoring the Phase I effects.

A graphical representation of these two steps is shown in Figure 7.7. It is assumed that all IC parameters
are known in this performance evaluation strategy, such that the best possible performance of each chart is
obtained. Hence, we call this the baseline performance. The alternative performance evaluation strategy
takes into account the effects of Phase I estimation, which is described in the following section.

7.4.2 Performance evaluation while estimating the Phase I effects

In the previous section it is assumed that all IC parameters are known. This is however never the case
in practice. Instead, IC parameters are estimated from a stable Phase I period. The effect of Phase I
estimation is taken into account in this second performance evaluation strategy. Shu et al. (2005) follows
a similar performance evaluation strategy, of which the consecutive steps are defined as:

1. Phase I data simulation: We simulate a Phase I data set with m observations (y, x) = {(y1, x1),
. . . ,(ym, xm)}. Simulation of ZIP or ZINB data is described in Section 7.2, for which the true
parameters µX , σX , β0, β1, γ0, γ1 and τ are used. True parameter values are defined per IC
scenario in Table 7.1.

2. Fit the Phase I regression model: The ZIP or ZINB regression model is fitted to the Phase I
data, as defined in (6.7) and (6.13), respectively. Estimated parameters are denoted as x̄, sx, β̂0,
β̂1, γ̂0, γ̂1 and τ̂ .

3. Construct the Shewhart chart: We construct the Shewhart chart to achieve an ARL0 of 200, by
determining L or Q1 and Q2. The procedure for obtaining symmetric and probability control limits
is described in Section 7.5. Estimated parameters x̄, sx, β̂0, β̂1, γ̂0, γ̂1 and τ̂ are applied in case
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L or Q1 and Q2 are numerically solved by simulation. Hence, each Shewhart chart is constructed
according to the estimated IC distribution parameters.

4. Evaluate performance by simulating the true ARL0 and ARL1: The performance of each
chart is evaluated upon the true ARL0 and ARL1, which are both obtained by simulation. The
simulation of OC data is described in Section 7.6.1, for which true parameters µX , σX , β0, β1, γ0, γ1

and τ are used as the baseline from which OC parameters βOC0 , βOC1 , γOC0 and γOC1 are determined.
The steps for obtaining the ARL1 are described in Section 7.6.2. Hence, the true performance of
each control chart is estimated according to the true IC distribution parameters.

5. Repeat: Steps 1-4 are repeated 100 times.

Figure 7.8: Graphical representation of performance evaluation strategy, when estimating the
effect of Phase I.

Steps 1-4 are repeated to eliminate the variation that is inherited in the Phase I data. The ARL results
from step 4 are accumulated and averaged over all 100 iterations, to obtain the final results. The SDRL
results are obtained by computing the standard deviation of all computed run lengths, as well as by
taking the square root of the pooled variance of the 100 iterations. Interpretation of both SDRL results
is further discussed in Section 8.2. A graphical representation of these two steps is shown in Figure 7.8.
The ARL1 results of this strategy reflect the true performance of the ZIP and ZINB regression-based
Shewhart charts, since the effect of Phase I estimations is taken into account. Now that we have defined
two distinct methods for performance evaluation, we continue with the methodology for obtaining control
limits in the following section.

7.5 Constructing the regression-based Shewhart chart

It is described in Section 7.1 that ZIP and ZINB regression residuals are monitored over time in a Shewhart
chart with either symmetric or probability control limits. The conclusion from Section 7.3 states that
both Pearson and deviance residuals follow a unknown distribution, in case of ZIP and ZINB regression.
No assumptions are made regarding independence of Pearson and deviance residuals as well, such that
control limits are solved numerically. Randomised quantile residuals, on the other hand, are assumed to
follow an independent and identical standard normal distribution. Under this assumption, the run length
of the (rQ, L)- and (rQ, Q)-Shewhart charts is geometrically distributed. Hence, the (rQ, L)-Shewhart
chart will achieve an ARL0 of 200 for L = 2.81, since 1−P (LCL < rQ < UCL) = 2(1−Φ(2.81)) ≈ 1/200.
With similar reasoning, the (rQ, Q)-Shewhart chart will also achieve an ARL0 of 200 for Q1 = 2.81 and
Q2 = −2.81. A regression-based control chart with quantile residuals is therefore avoiding the need for
numerically solved control limits. This can be a significant advantage in practice. The procedure for
solving charting constants L, Q1 and Q2 numerically for the Shewhart charts with Pearson and deviance
residuals is discussed in Section 7.5.1.
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7.5.1 Solving charting constants L, Q1 and Q2 numerically

Let us consider again the Phase I data set (y, x) = {(y1, x1), . . . , (ym, xm)} where random variable Yi
follows a ZIP or ZINB distribution. Phase I estimated parameters are denoted with x̄, sx, β̂0, β̂1, γ̂0, γ̂1,
and τ̂ in case Yi follows a ZINB distribution. The Phase I ZIP and ZINB regression models are defined
in (6.7) and (6.13), respectively. The charting constant L is solved for the (rP , L)- and (rD, L)-Shewhart
chart to obtain an ARL0 of 200. Similarly, charting constants Q1 and Q2 are solved for the (rP , Q)- and
(rD, Q)-Shewhart chart to obtain an ARL0 of 200. Both solving procedures are the same for Pearson
and deviance residuals, such that the general notation ri is applied in this section to denote the obtained
residual at time i. The consecutive steps are defined as follows:

1. An IC Phase II data set is generated with N runs of n ZIP or ZINB distributed observations. Let us
denote these observations with (y`,m+i, x`,m+i), where m is the size of the Phase I data, i = 1, . . . , n

and ` = 1, . . . , N . Parameters x̄, sx, β̂0, β̂1, γ̂0, γ̂1 and τ̂ are applied in the simulation, which is
defined in (7.8).

2. The established Phase I ZIP or ZINB regression model is applied to obtain the regression residuals
from each observation (y`,m+i, x`,m+i). Let us denote each run of residuals with R` = {r`,m+1, . . . ,

r`,m+n} with ` = 1, . . . , N .

3. In case of symmetric Shewhart chart, obtain L: A Shewhart chart with symmetric control
limits is constructed as defined in (4.1), with control limits µr ± Lσr. Here, µr and σr denote the
mean and standard of the simulated residuals from Step 2. For an arbitrary value of L, the run
length of each run of residuals R` is determined and denoted with RL`, for ` = 1, . . . , N . The ARL0

is determined as the average of all computed run lengths, i.e. ARL0 = (RL1 + · · ·+RLN )/N . The
charting constant L is obtained by solving the control limit equation in (4.1) to achieve ARL0 = 200.

3. In case of Shewhart chart with probability limits, obtain Q1 and Q2: A Shewhart chart
with probability control limits is constructed as defined in (4.2). For α = 1/200, the limits Q1

and Q2 are obtained ensuring that 100(1 − α/2) percent of the simulated residuals r`,m+i with
i = 1, . . . , n and ` = 1, . . . , N is larger that Q1. Similarly, Q2 is obtained to achieve that 100(α/2)

percent of the simulated residuals is smaller that Q2.

Simulation size parameters are set to n = 3000 and N = 10, 000 when evaluating baseline performance.
There is no Phase I in this case since all parameters are assumed to be known, such that m = 0 and
x̄ = µX , sx = σX , β̂0 = β0, β̂1 = β1, γ̂0 = γ0, γ̂1 = γ1, and τ̂ = τ . Values for L that are obtained for
baseline performance are provided in Table 7.2. Values for Q1 and Q2 that are obtained for baseline
performance are provided in Table 7.3.

IC (rP , L)-Shewhart (rD, L)-Shewhart (rQ, L)-Shewhart
scenario µrP σrP L µrD σrD L µrQ σrQ L

1 (ZIP) 0.0001 1.0003 4.6233 -0.1799 1.0192 2.6843 0.0000 1.0000 2.8100
2 (ZIP) 0.0002 1.0002 3.3353 -0.1338 1.2740 2.1642 0.0000 1.0000 2.8100
3 (ZINB) 0.0001 1.0004 4.7200 -0.1993 1.0018 2.7260 0.0000 1.0000 2.8100
4 (ZINB) 0.0003 1.0003 3.9734 -0.3100 1.2039 2.2902 0.0000 1.0000 2.8100

Table 7.2: Obtained charting constants L for the (rP , L)-, (rD, L)- and (rQ, L)-Shewhart chart, and
for each IC scenario from Table 7.1, in case of baseline performance evaluation.

Simulation size parameters are set to m = 1500, n = 3000 and N = 200 when evaluating performance
while taking into account the effects of Phase I estimation, since 100 replications are executed in this
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IC Obtained probability limits (Q1, Q2) for
scenario (rP , Q)-Shewhart (rD, Q)-Shewhart (rQ, Q)-Shewhart
1 (ZIP) (5.6328, -1.7013) (2.7749, -2.0966) (2.8100, -2.8100)
2 (ZIP) (3.7637, -2.7368) (2.7769, -2.6277) (2.8100, -2.8100)
3 (ZINB) (5.7569, -1.4850) (2.7486, -2.0537) (2.8100, -2.8100)
4 (ZINB) (4.6018, -1.4190) (2.6673, -2.4503) (2.8100, -2.8100)

Table 7.3: Obtained probability limits Q1 and Q2 for the (rP , Q)-, (rD, Q)- and (rQ, Q)-Shewhart
chart, and for each IC scenario from Table 7.1, in case of baseline performance evaluation.

case. The obtained for L, Q1 and Q2 values are different in each of the 100 results, since they are affected
by the simulated Phase I data of each computation. The density of value L for the (rP , L)- and (rD, L)-
Shewhart chart are shown in Figure B.17 for each IC scenario. Similarly, densities for Q1 and Q2 of the
(rP , Q)-Shewhart chart with Pearson residuals are shown in Figure B.18, and densities for Q1 and Q2

of the (rD, Q)-Shewhart chart with deviance residuals are shown in Figure B.19, for each IC scenario.
Argumentation for the choices of m, n and N is discussed in the following section.

7.5.2 Size of Phase I and simulation setup

The design of ARL simulations is based on a trade off between precision and computation time, as is also
explained in Section 5.2.2 for the ZIP-EWMA chart. Namely, a design choice was made to generate all
observations at once as aN×nmatrix. It is stated in Schaffer and Kim (2007), that ≥ 6, 500 replications is
enough to obtain reliable ARL0 estimations in a Shewhart charts, and the required number of replications
for reliable ARL1 results decreases as the OC distributional shift gets larger. Since we are dealing with
unknown run length distributions in the control charts for Pearson and deviance residuals, SDRL0 results
of the (rP , Q)-, (rD, Q)- and (rQ, Q)-Shewhart chart are analysed for various N values. Figure 7.9 shows
that for the SDRL0 results stabilise in all charts after N = 10, 000. It is therefore decided to execute at
least 10,000 replications for each ARL computation. Hence, N = 10, 000 in case of baseline performance
evaluation. In case of performance evaluation while taking into account the effect of Phase I estimation,
it is chosen to fix N = 200. This leads to a total of 20, 000 replications since this performance evaluation
already includes a loop of 100 Phase I replications.

Figure 7.9: SDRL0 of ZIP regression residuals for IC Scenario I, as a function of simulation size
parameter N , with N = 100, 200, . . . , 15, 000.

In addition, we follow a similar approach for determining the total number of observations per run
n, as described in Section 5.2.2. Hence, n is chosen to ensure less than 0.01 percent of all runs has no
OC signal in the entire run. Simulations are executed for n = 2000, 3000, 4000, and for every ZIP and
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ZINB regression-based Shewhart chart with Pearson, deviance and randomised quantile residuals. The
results of these simulations are shown in Tables B.2 and B.3 for the Shewhart charts with symmetric and
probability control limits, respectively. Results show that n = 3000 is large enough to ensure less than
0.01 percent of all runs leads to no OC signal.

Finally, we consider the choice of parameter m which denotes the size of the Phase I data. IC Phase I
data is not always available in large amounts such that it is ideal to choose m small in practice. However,
m should be large enough to ensure a good fit the ZIP and ZINB regression models. Lambert (1992)
states that m must be at least 100 to obtain a reliable ZIP regression model. However, it is not stated
how the required Phase I size m relates to the proportion of zero-inflation in the IC data. In addition,
a required size m for the ZINB regression model is not provided by Heilbron (1994). Therefore, we
determine the goodness of fit of the ZIP and ZINB regression model by simulation. Hence, for each IC
scenario and for m = 100, . . . , 3000, the following steps are executed:

1. A Phase I data set of size m, with ZIP or ZINB distributed observations {(y1, x1), . . . ,(ym, xm)}.

2. The ZIP or ZINB regression model is fitted to the Phase I data to estimate regression coefficients.
These regression models are defined in (6.7) and (6.13), respectively.

3. An IC Phase II data set {(ym+1, xm+1), . . . ,(ym+n, xm+n)} is simulated with n = 3000. Predictions
{µ̂m+1, . . . , µ̂m+n} are obtained from the established regression model, as described in Section 7.1.
These predictions are used to obtain the unit deviance d(ym+i, µ̂m+i) for i = 1, . . . n, as defined
in Sections 6.2.1 and 6.2.2 for ZIP and ZINB regression, respectively. Finally, the total deviance
D(y, µ̂) =

∑n
i=1 d(ym+i, µ̂m+i) is obtained as the overall goodness of fit measure.

4. Steps 1-3 are repeated 200 times to correct for the variance that is inherited in the Phase I data of
Step 1. The obtained total deviance results from Step 3 are averaged over all replications.

The resulting average total deviance for each value of m with m = 100, . . . , 3000 is shown in Figure 7.10,
for each IC scenario. It is observed in each scenario that the total deviance stabilises after approximately
m = 1500. The size of each ZIP and ZINB Phase I data set is therefore fixed at 1500 in this project.
This concludes the construction of the (rP , L)-, (rD, L)-, (rQ, L)-, (rP , Q)-, (rD, Q)- and (rQ, Q)-Shewhart.
In the following section, it is described how the OC performance of each chart is evaluated.

7.6 Performance analysis of regression-based Shewhart charts

In the previous section it is described how we construct the ZIP and ZINB regression-based Shewhart
charts to obtain an ARL0 of 200. In this section, we compare the performance of each chart by simulation
of the ARL1. The method for simulating OC ZIP and ZINB data is discussed in Section 7.6.1, after which
the step-by-step approach of ARL1 simulations are explained in Section 7.6.2.

7.6.1 Out-of-control data simulation

It is described in Section 7.1 that we assume the observations Yi with i = 1, 2, . . . follow a ZIP(pi,λi) or
ZINB(pi,λi,τ) distribution, where the effect of covariate Xi is modelled through parameters pi and λi as
defined in (7.2) and (7.3), respectively. Regression parameters β0, β1, γ0 and γ1 are either estimated from
the IC Phase I data, or assumed to be known. Table 7.1 provides the true parameter values for each IC
scenario. It is described in the control chart hypotheses (7.4) and (7.7) that the IC process becomes OC
after time T when at least one of the following holds: β0 6= βOC0 , β1 6= βOC1 , γ0 6= γOC0 or γ1 6= γOC1 . Let
us assume that OC scenarios are not affecting the distribution of covariate Xi or the relation between Xi

and observations Yi. Hence, we assume µOCX = µX = 0.0, σOCX = σX = 1.0, γOC1 = γ1 and βOC1 = β1.
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Figure 7.10: Average total deviance of the ZIP and ZINB regression model, for Phase I size
m = 100, . . . , 3000, for each IC scenario.

In the context of plastic pellet production at Dow, the total number of defective pellets is denoted
with Yi and the inspected weight with Xi at time i = 1, 2, . . . . Overall process performance deteriorates
when more defects are detected for the same inspected weight. Process performance improves when less
defects are detected for the same inspected weight. In both cases, it is desirable to have an OC alarm
as fast as possible, in order to start an investigation for identifying the root cause to improve future
decision making. Hence, both OC scenarios with deteriorated and improved process performance are
considered while evaluating the performance of the (rP , L)-, (rD, L)-, (rQ, L)-, (rP , Q)-, (rD, Q)- and
(rQ, Q)-Shewhart charts.

Furthermore, we aim to simulate OC data that is proportional to the IC scenario. It is also more
intuitive to define an OC scenario in terms of E[pOC ] and E[λOC ], than in terms of βOC0 and γOC0 . This
because E[pOC ] represents the expected proportion of structural zeros in the OC data, while E[λOC ]

denotes the expected amount of detected defects, in case the observation Yi is not a structural zero. The
expected values E[pOC ] and E[λOC ] are defined as

E [pOC ] =
1√
2π

∫ ∞
−∞

exp
(
γOC0 + γ1x− 1

2x
2
)

1 + exp(γOC0 + γ1x)
dx (7.11)

and
E [λOC ] =

1√
2π

∫ ∞
−∞

exp

(
βOC0 + β1x−

1

2
x2

)
dx (7.12)

The following four types of OC scenarios are simulated:

• Worse process performance due to decreased E[pOC ], i.e. E[pOC ] < E[pIC ]. Equation (7.11) is
solved to obtain values for γOC0 that achieve E[pOC ] = α1·E[pIC ] for α1 = 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9.

• Worse process performance due to increased E[λOC ], i.e. E[λIC ] > E[λIC ]. Equation (7.12) is
solved to obtain values for βOC0 that achieve E[pOC ] = α1·E[pIC ] for α2 = 1.3, 1.6, 1.9, 2.2, 2.5, 2.8, 3.1.

• Improved process performance due to increased E[pOC ], i.e. E[pOC ] > E[pIC ]. Equation (7.11) is
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solved to obtain values for γOC0 that achieve E[pOC ] = α1 ·E[pIC ] for α1 = 1.05, 1.10, 1.15, 1.20, 1.25,

1.30, 1.35.

• Improved process performance due to decreased E[λOC ], i.e. E[λIC ] < E[λIC ]. Equation (7.12) is
solved to obtain values for βOC0 that achieve E[pOC ] = α1·E[pIC ] for α2 = 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9.

The ZIP Scenario 1 and ZINB Scenario 3 have E[pIC ] = 0.60 and E[λIC ] = 1.82. ZIP Scenario 2 and
ZINB Scenario 4 have E[pIC ] = 0.38 and E[λIC ] = 8.16. The obtained parameters βOC0 and γOC0 for each
OC Scenario are provided in Table 7.4. The OC data is simulated as defined in (7.2) with parameters
{βOC0 , β1, γ0, γ1, τ, µX , σX}, or parameters {β0, β1, γ

OC
0 , γ1, τ, µX , σX}. The ARL1 performance of the

(rP , L)-, (rD, L)-, (rQ, L)-, (rP , Q)-, (rD, Q)- and (rQ, Q)-Shewhart chart is simulated for every OC
scenario in Table 7.4. The methodology for obtaining ARL1 is described int the next section.

7.6.2 Performance comparison of regression-based Shewhart charts

In this section it is described how ARL1 simulations are carried out, to compare the OC performance of
each control chart with defined UCL and LCL. Let us denote the Phase I data set again with (y, x) =

{(y1, x1), . . . , (ym, xm)} where random variable Yi follows a ZIP or ZINB distribution. Phase I estimated
parameters are denoted with x̄, sx, β̂0, β̂1, γ̂0, γ̂1, and τ̂ in case Yi follows a ZINB distribution. The Phase
I ZIP and ZINB regression model is defined as in (6.7) and (6.13), respectively. The methodology for
simulating the ARL1 is the same for Pearson and deviance residuals, such that the general notation ri is
again applied in this section to denote the obtained residual at time i. The consecutive steps to obtain
the ARL1 are defined as:

1. An OC Phase II data set is generated with N runs of n ZIP or ZINB distributed observations.
Let us denote these observations with (y`,m+i, x`,m+i), where m is the size of the Phase I data,
i = 1, . . . , n and ` = 1, . . . , N . The OC parameters from Table 7.4 are applied in the simulation
procedure that is defined in (7.8). We assume that the change point T = m, where m denotes the
size of the Phase I data set.

2. The Phase I ZIP or ZINB regression model is applied to obtain the regression residuals from each
observation (y`,m+i, x`,m+i). Let us denote each run of residuals with R` = {r`,m+1, . . . , r`,m+n}
with ` = 1, . . . , N .

3. The run length of each run of residuals R` is determined according to the UCL and LCL of the
defined control chart. These run lengths are denoted with RL`, for ` = 1, . . . , N . The ARL1 is
determined as the average of all computed run lengths, i.e. ARL1 = (RL1 + · · · + RLN )/N . The
standard deviation of the OC run length, i.e., SDRL1 is additionally obtained.

These ARL1 and SDRL1 simulations are executed for the (rP , L)-, (rD, L)-, (rQ, L)-, (rP , Q)-, (rD, Q)-
and (rQ, Q)-Shewhart chart, with simulation size N = 10, 000 and n = 3000, and for each IC ZIP and
ZINB scenario. In addition, ARL1 values are simulated for all OC scenarios denoted in Table 7.4. The
OC performance results are provided and discussed in the following chapter.

7.7 Summary

In this chapter we consider monitoring methods for zero-inflated count data that is affected by one
covariate. The ZIP and ZINB regression-based Shewhart charts are defined in Section 7.1, where the
hypotheses of each chart are also introduced. Simulation of zero-inflated data that depends on one
covariate is discussed in Section 7.2, after which the distribution of ZIP and ZINB Pearson, deviance and
randomised quantile residuals is analysed in Section 7.3. Based on this analysis it is assumed that ZIP
and ZINB randomised quantile residuals follow a independent and identical standard normal distribution.
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Since Figures 7.3 and 7.6 show no convincing distribution or signs of independence, it is decided to make no
assumptions regarding distribution of Pearson and deviance residuals from the ZIP and ZINB regression
models. It is described in Section 7.4 that two distinct strategies are consider for the OC performance
evaluation of the regression-based Shewhart charts. First we establish the baseline performance of each
chart, after which the true performance is estimated while taking into account the effect of having a
Phase I. Construction of the (rP , L)-, (rD, L)-, (rQ, L)-, (rP , Q)-, (rD, Q)- and (rQ, Q)-Shewhart chart is
discussed afterwards in Section 7.5. Finally, the methodology for OC performance evaluation is described
in Section 7.6. The ARL1 and SDRL1 results of each regression-based Shewhart chart are presented for
all IC scenarios in the following chapter.
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Phase I scenario 1 (ZIP) and 3 (ZINB)
IC parameters: β0 = 0.1, β1 = 1.0, γ0 = 0.5, γ1 = −1.0, τ = 11

E[pIC ] α1 α1 · E[pIC ] γOC0 E[pOC ] E[λIC ] α2 α2 · E[λIC ] βOC0 E[λOC ]

0.6020 1.00 0.6020 0.5000 0.6020 1.8221 1.00 1.8221 0.1000 1.8221
0.90 0.5418 0.2028 0.5418 0.90 1.6399 -0.0054 1.6399
0.80 0.4816 -0.0890 0.4816 0.80 1.4577 -0.1231 1.4577
0.70 0.4214 -0.3831 0.4214 0.70 1.2755 -0.2567 1.2755
0.60 0.3612 -0.6877 0.3612 0.60 1.0933 -0.4108 1.0933
0.50 0.3010 -1.0127 0.3010 0.50 0.9111 -0.5931 0.9111
0.40 0.2408 -1.3731 0.2408 0.40 0.7288 -0.8163 0.7289
0.30 0.1806 -1.7946 0.1806 0.30 0.5466 -1.1040 0.5466
1.00 0.6020 0.5000 0.6020 1.00 1.8221 0.1000 1.8221
1.05 0.6321 0.6532 0.6321 1.30 2.3688 0.3624 2.3688
1.10 0.6622 0.8111 0.6622 1.60 2.9154 0.5700 2.9154
1.15 0.6923 0.9753 0.6923 1.90 3.4620 0.7419 3.4620
1.20 0.7224 1.1478 0.7224 2.20 4.0087 0.8885 4.0086
1.25 0.7525 1.3308 0.7525 2.50 4.5553 1.0163 4.5553
1.30 0.7826 1.5279 0.7826 2.80 5.1019 1.1296 5.1019
1.35 0.8127 1.7437 0.8127 3.10 5.6486 1.2314 5.6486

Phase I scenario 2 (ZIP) and 4 (ZINB)
IC parameters: β0 = 1.6, β1 = 1.0, γ0 = −0.6, γ1 = −1.0, τ = 3

E[pIC ] α1 α1 · E[pIC ] γOC0 E[pOC ] E[λIC ] α2 α2 · E[λIC ] βOC0 E[λOC ]

0.3782 1.00 0.3782 -0.6000 0.3782 8.1662 1.00 8.1662 1.6000 8.1662
0.90 0.3404 -0.7971 0.3404 0.90 7.3496 1.4946 7.3494
0.80 0.3026 -1.0038 0.3026 0.80 6.5329 1.3769 6.5329
0.70 0.2648 -1.2241 0.2648 0.70 5.7163 1.2433 5.7163
0.60 0.2269 -1.4634 0.2269 0.60 4.8997 1.0892 4.8997
0.50 0.1891 -1.7298 0.1891 0.50 4.0831 0.9068 4.0831
0.40 0.1513 -2.0364 0.1513 0.40 3.2665 0.6837 3.2665
0.30 0.1135 -2.4078 0.1135 0.30 2.4499 0.3960 2.4498
1.00 0.3782 -0.6000 0.3782 1.00 8.1662 1.6000 8.1662
1.05 0.3971 -0.5042 0.3971 1.30 10.6160 1.8624 10.6160
1.10 0.4161 -0.4097 0.4161 1.60 13.0659 2.0700 13.0657
1.15 0.4350 -0.3163 0.4350 1.90 15.5157 2.2419 15.5157
1.20 0.4539 -0.2238 0.4539 2.20 17.9656 2.3885 17.9657
1.25 0.4728 -0.1318 0.4728 2.50 20.4154 2.5163 20.4155
1.30 0.4917 -0.0402 0.4917 2.80 22.8653 2.6296 22.8653
1.35 0.5106 0.0514 0.5106 3.10 25.3151 2.7314 25.3149

Table 7.4: OC parameter values for γOC0 and βOC0 , according to each ZIP and ZINB IC scenario.



8 | Performance of regression-based
control charts

The performance of the (rP , L)-, (rD, L)-, (rQ, L)-, (rP , Q)-, (rD, Q)- and (rQ, Q)-Shewhart chart are
evaluated based upon their ARL0, SDRL0, ARL1 and SDRL1 in this chapter. Each control chart is
constructed to achieve an ARL0 value of 200. The performance is evaluated by simulation of OC data
as described in Section 7.6.1, and for each IC scenario. It explained in Section 7.4 that the performance
of each chart is also evaluated under two circumstances. At fist, we evaluate the baseline performance
of each chart in Section 8.1. Then, the performance while taking into account the effects of Phase I
estimation are presented afterwards in Section 8.2.

8.1 Baseline performance of regression-based Shewhart charts

The baseline performance of each (rP , L)-, (rD, L)-, (rQ, L)-, (rP , Q)-, (rD, Q)- and (rQ, Q)-Shewhart
chart is discussed in the following section. The methodology for this performance evaluation is described
in Section 7.4.2. In order to keep this chapter structured, it is decided to move the results of IC scenarios
3 and 4 to Appendix B.3. The results for ZIP scenarios 1 and 2 illustrate similar behaviour as for ZINB
scenarios 3 and 4 respectively. The obtained values for ARL1 and SDRL1 are provided in Appendix B.5.

8.1.1 Baseline performance of the (rP , L)-, (rD, L)- and (rQ, L)-Shewhart chart

The baseline performance of the (rP , L)-, (rD, L)- and (rQ, L)-Shewhart charts with symmetric control
limits is shown in Figures 8.1, 8.2, B.13 and B.14, for IC scenarios 1, 2, 3 and 4, respectively. Every
figure throughout this chapter contains four out-of-control scenarios. In the upper left corner, we evaluate
the performance of each regression-based Shewhart chart, for an OC scenario with increasing E[λOC ].
An increased expected amount of defects, is considered as worse process performance in the context of
monitoring defects in plastic pellet production. In the upper right corner, we evaluate the performance
of each chart, for an OC scenario with decreasing E[pOC ]. A decreased amount of zero-inflation leads
to more overall defects as well, such that this is also considered as worse process performance. Besides
evaluating the ARL1 for worse process performance, we also evaluate the ARL1 in case of improved
process performance. The results are shown in the lower two graphs of each figure, whereas the left
graph reflects the ARL1 results for decreasing E[λOC ], and the right graph reflects the ARL1 results for
increasing E[pOC ].

The first ARL1 computation is simulated with the IC parameters of the Phase I scenario. Hence, the
most left simulation result of each graph reflect the ARL0 value. When proceeding to the right in each
graph, more severe cases of OC data distributions are simulated.

Let us first consider baseline performance of the (rP , L)-, (rD, L)- and (rQ, L)-Shewhart chart, for an
OC scenario due to increased E[λOC ]. These results are shown in Figures 8.1a, 8.2a, B.13a and B.14a.
It is observed from the results that all Shewhart charts with Pearson, deviance and randomised quantile
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residuals shows a steep decrease of the ARL1 as the E[λOC ] increases. The (rD, L)-Shewhart with
deviance residuals shows the fastest decrease in ARL1 in all scenarios. When comparing Figure 8.1a with
Figure 8.2a it is observed that the ALR1 decreases slightly faster in the less zero-inflated scenarios, i.e.,
ZIP Scenario 2. This conclusion also holds for the ZINB regression-based Shewhart charts of IC scenarios
3 and 4.

Figure 8.1: Baseline ARL1 performance of the (rP , L)-, (rD, L)- and (rQ, L)-Shewhart
chart for IC ZIP Scenario 1 with E[pIC ] = 0.60 and E[λIC ] = 1.82.

Baseline performance of the (rP , L)-, (rD, L)- and (rQ, L)-Shewhart chart, for an OC scenario due
to decreased E[pOC ], is shown in Figures 8.1b, 8.2b, B.13b and B.14b, for IC scenarios 1, 2, 3 and 4,
respectively. This OC shift corresponds to worse overall process performance due to less zero-inflation. It
is observed that the ARL1 in each of the charts is slowly decreasing with E[pOC ]. The decay in ARL1 is
faster for the more zero-inflated data scenarios, i.e., ZIP Scenario 1 and ZINB Scenario 3. In addition, it is
observed the charts with Pearson and deviance residuals outperform the chart with randomised quantile
residuals in an OC scenario due to decreased E[pOC ]. The (rQ, L)-Shewhart chart with randomised
quantile residuals does not even detect the OC shift for IC ZIP Scenario 2 and ZINB Scenario 4. This
is concluded since the ARL1 remains stable at 200 with a decrease in E[pOC ]. From these results it is
concluded that Pearson and deviance residuals have best performance in detecting deteriorating process
performance.

An improvement of process performance is less well detected in the (rP , L)-, (rD, L)-, (rQ, L)-Shewhart
charts. Figures 8.1c, 8.2c, B.13c and B.14c show the baseline ARL1 performance of each chart under an
OC distributional shift due to decreased E[λOC ]. This OC distributional shift is eventually detected by
the (rD, L)-Shewhart chart with deviance residuals, in case of ZIP distributed data in scenarios 1 and
2. However, the ARL1 increases first before it decreases, such that small decreases in E[λOC ] remain
unnoticed. The charts wit Pearson and randomised quantile residuals do not detect the OC shifts. A
decrease in E[λOC ] remains also unnoticed by all charts in ZINB scenarios 3 and 4.

Finally, Figures 8.1d, 8.2d, B.13d and B.14d show baseline performance of the (rP , L)-, (rD, L)-,
(rQ, L)-Shewhart charts, in case of an OC distributional shift due to increased E[pOC ]. This OC shift
corresponds to improved overall process performance due to an increased proportion zero-inflation. These
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Figure 8.2: Baseline ARL1 performance of the (rP , L)-, (rD, L)- and (rQ, L)-Shewhart
chart for IC ZIP Scenario 2 with E[pOC ] = 0.38 and E[λIC ] = 8.17.

OC scenarios remain unnoticed by all charts with Pearson, deviance and randomised quantile residuals,
since the ARL1 in only increasing with E[pOC ].

All obtained ARL and SDRL values are reported in Appendix B.5. The SDRL0 and SDRL1 results
are approximately equal to the corresponding ARL0 and ARL1 results, for all baseline performance
results for Shewhart charts with symmetric control limits. This is also illustrated in Table 8.1, in which
a fraction of all ARL and SDRL results are shown.

This concludes all baseline performance results of regression-based Shewhart charts with symmetric
control limits. Baseline performance of the (rP , Q)-, (rD, Q)- and (rQ, Q)-Shewhart chart are discussed
in the next section.

OC scenario due to increased E[λOC ]

(rP , L)-Shewhart (rD, L)-Shewhart (rQ, L)-Shewhart
βOC0 E[λOC ] ARL1 SDRL1 ARL1 SDRL1 ARL1 SDRL1

0.10 1.82 202.33 202.66 199.73 198.15 201.62 203.68
0.36 2.37 110.18 108.96 66.51 65.56 91.50 92.01
0.57 2.92 66.61 66.17 27.64 27.32 38.32 37.16
0.74 3.46 39.84 39.62 14.61 14.37 19.52 18.96
0.89 4.01 25.29 25.06 9.37 8.99 11.80 11.46
1.02 4.56 15.92 15.20 7.07 6.48 8.53 7.91
1.13 5.10 10.59 10.02 5.58 5.01 6.47 5.92
1.23 5.65 7.82 7.29 4.74 4.16 5.42 4.81

Table 8.1: Fraction of the baseline ARL1 results with corresponding SDRL1, for the (rP , L)-,
(rD, L)- and (rQ, L)- Shewhart chart, for IC ZIP Scenario 1.
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8.1.2 Baseline performance of the (rP , Q)-, (rD, Q)- and (rQ, Q)-Shewhart chart

The baseline ARL1 results of the (rP , Q)-, (rD, Q)- and (rQ, Q)-Shewhart chart with probability control
limits are shown in Figures 8.3, 8.4, B.15 and B.16, respectively. All three charts with Pearson, deviance
and quantile residuals show a fast decreasing ARL1 in case of an OC scenario that is due to increased
E[λOC ]. These results are shown in Figures 8.3a, 8.4a, B.15a and B.16a, for IC scenarios 1, 2, 3 and
4, respectively. It is observed that the (rD, Q)- and (rQ, Q)-Shewhart chart with deviance and quantile
residuals show best performance for all IC scenarios 1, 2, 3 and 4. Nevertheless, the Shewhart charts with
symmetric control limits are slightly faster in detecting the OC distributional shift due to increased E[λOC ]

than the charts with probability control limits, in case of Pearson and deviance residuals. This is due to
the fact that both ZIP and ZINB Pearson and deviance residuals have positively skewed distributions.

Figure 8.3: Baseline ARL1 performance of the (rP , Q)-, (rD, Q)- and (rQ, Q)-Shewhart
chart for IC ZIP Scenario 1 with E[pIC ] = 0.60 and E[λIC ] = 1.82.

The main difference in performance between the Shewhart charts with probability and symmetric
control limits observed in the lower left corner of each plot. Namely, Figures 8.3c, 8.4c, B.15c and B.16c
show the performance of (rP , Q)-, (rD, Q)- and (rQ, Q)-Shewhart in case of an OC distributional shift
due to decreased E[λOC ]. It is observed from the results that the (rD, Q)-Shewhart chart with deviance
residuals shows decreasing ARL1, for decreasing E[λOC ]. Hence, it can be concluded from this that
the Shewhart chart with probability control limits and deviance residuals is better in detecting process
improvement due to a shift in E[λOC ] then a similar chart with symmetric control limits. The (rD, Q)-
Shewhart chart with deviance residuals chart also outperforms the (rP , Q)- and (rQ, Q)-Shewhart charts
with Pearson and randomised quantile residuals, which are not detecting the shift.

The Shewhart charts with probability limits show similar results as the charts wit symmetric con-
trol limits, in case of an OC scenarios due to increased or decreased E[pOC ]. Namely, it is observed
from Figures 8.3b, 8.4b, B.15b and B.16b that the ARL1 of each chart is slowly decreasing with with
decreased E[pOC ]. The (rD, Q)-Shewhart chart with deviance residuals shows fastest decrease in this
case. Figures 8.3d, 8.4d, B.15d and B.16d show the simulated ARL1 results for OC distributional shifts
is due increased E[pOC ]. These OC shifts remain undetected by the (rD, Q)- and (rQ, Q)-Shewhart chart
with deviance and randomised quantile residuals. The ARL1 of the (rP , Q)-Shewhart chart with Pearson
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Figure 8.4: Baseline ARL1 performance of the (rP , Q)-, (rD, Q)- and (rQ, Q)-Shewhart
chart for IC ZIP Scenario 2 with E[pOC ] = 0.38 and E[λIC ] = 8.17.

residuals is only slightly decreasing in case of an IC scenario with high proportion of zero inflation. Hence,
in ZIP Scenario 1 and ZINB Scenario 3.

In addition, it is again observed from the results in Appendix B.5, that the SDRL0 and SDRL1 results
are approximately equal to the corresponding ARL0 and ARL1 results, respectively. It is described in
Section 4.2.1 that the run length distribution of a Shewhart chart with symmetric or probability control
limits follows a Geometric distribution, in case observations are independent and identically distributed.
In that case, ARL0 ≈ SDRL0, which corresponds to the results of the ZIP and ZINB regression-based
Shewhart charts. Figure 8.5 shows the run length distribution of the (rP , Q)-, (rD, Q)- and (rQ, Q)-
Shewhart charts for IC Scenario 1, together with the distribution of the Geometric(0.005) distribution.
It is observed that the run length distribution of each charts is very similar to the Geometric(0.005)
distribution, even though independence and identical distribution of Pearson, deviance and randomised
quantile residuals is not proved.

Figure 8.5: IC run length distributions of the (rP , Q)-, (rD, Q)- and (rQ, Q)-Shewhart chart, in
ZIP Scenario 1.
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This concludes the results on the baseline performance of the (rP , Q)-, (rD, Q)- and (rQ, Q)-Shewhart
chart. In the following section, simulation results are discussed for all control charts while taking into
account the effect of Phase I estimation.

8.2 Performance results while considering Phase I effects

In this section, we discuss the simulated ARL0, SDRL0, ARL1 and SDRL1 results of the (rP , L)-,
(rD, L)-, (rQ, L)-, (rP , Q)-, (rD, Q)- and (rQ, Q)-Shewhart chart, while taking into account the effect of
Phase I estimation. These results are obtained according to the methodology described in Section 7.4.2.
It is again decided to move the results of IC scenarios 3 and 4 to Appendix B.4, in order to keep this
chapter structured. The obtained values of ARL1 and SDRL1 are provided in Appendix B.5.

Figure 8.6: ARL1 performance of the (rP , L)-, (rD, L)- and (rQ, L)-Shewhart chart, while consid-
ering Phase I estimates, for IC ZIP Scenario 1 with E[pIC ] = 0.60 and E[λIC ] = 1.82.

Figures 8.6, 8.7, B.20 and B.21 show the simulated ARL1 results of the (rP , L)-, (rD, L)- and (rQ, L)-
Shewhart charts, while taking into account the effects of Phase I estimation. These figures are generated
for IC ZIP and ZINB scenarios 1, 2, 3 and 4, respectively. First of all, it is noticed that the ARL results
in each figure resemble the baseline performance results in Figures 8.1, 8.2, B.13 and B.14, even though
ARL behaviour is less smooth. The ARL0 in each figure is close to 200 in each plot, which shows that,
on average, the true ARL0 is approximately equal to the prespecified ARL0.

Figures 8.8, 8.9, B.22 and B.23 show obtained ARL1 results of the (rP , Q)-, (rD, Q)- and (rQ, Q)-
Shewhart charts with probability control limits, while taking into account the effects of Phase I estimation.
It is again observed that the results broadly resemble the baseline performance results, and the true
ARL0 of these charts is on average equal to the prespecified ARL0 of 200. Baseline performance results
of the Shewhart charts with probability control limits are shown in Figures 8.3, 8.4, B.15 and B.16, for
IC scenarios 1, 2, 3 and 4, respectively. However, ARL behaviour while taking into account Phase I
estimations is again less smooth that what is observed from the baseline performance.

Therefore, a critical not should be made on the performance results that are presented in this section.
It is explained in Section 7.5.2 that the SDRL0 of a ZIP and ZINB regression based Shewhart chart
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Figure 8.7: ARL1 performance of the (rP , L)-, (rD, L)- and (rQ, L)-Shewhart, while considering Phase I
estimates, for IC ZIP Scenario 2 with E[pOC ] = 0.38 and E[λIC ] = 8.17.

Figure 8.8: ARL1 performance of the (rP , Q)-, (rD, Q)- and (rQ, Q)-Shewhart, while considering
Phase I estimates, for IC ZIP Scenario 1 with E[pIC ] = 0.60 and E[λIC ] = 1.82.

stabilises when the number of replications N is large enough. Simulations are executed to show that
N=10,000 achieves stable SDRL0 results for Shewhart charts with Pearson, deviance and randomised
quantile residuals. Figure 7.8 shows that 100 replications of run length simulations are executed for this
performance evaluation. It was decided to take N = 200 for each run length simulation while taking
into account the effect of Phase I estimation, to ensure an overall simulation size of 20,000 replications.
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Figure 8.9: ARL1 performance of the (rP , Q)-, (rD, Q)- and (rQ, Q)-Shewhart, while considering
Phase I estimates, for IC ZIP Scenario 2 with E[pOC ] = 0.38 and E[λIC ] = 8.17.

However, this has been an misjudgement. The variation that is inherited in the Phase I data is much
larger than anticipated, such that the ARL results are still subject to variation as well. Hence, a larger
simulation size N should have been chosen for this performance evaluation strategy, but this has not been
possible in this thesis due to time limitations. The ARL results are therefore only an indication of the
performance of each regression-based Shewhart chart while taking into account Phase I estimation, but
more precise results could be obtained.

In addition to that, it is observed that the SDRL results are even more affected by the small simulation
size inside each iteration. Ideally, we would like to obtain the pooled standard deviation over the 100
iterations, where we assume that group averages between each iteration, i.e., ARL results, are not equal.
However, in order to obtain the pooled standard deviation, it is necessary to have reliable estimates of the
standard deviation in each group. Hence, N = 10,000 replications should be simulated in each of the 100
iterations. Currently it takes approximately 6 hours to execute the performance evaluation simulations
of Pearson, deviance and randomised quantile residuals in one IC scenario, and for one type of control
limits. Eight of these simulations have been executed to provide all results in this section. Increasing
simulation size N from 200 to 10,000 is expected to increase the computation time heavily, whereas it
might take over 300 hours per simulation. Nevertheless, it is recommended for future research at Dow
or in general to use a simulation size of 10,000 replications per Phase I iteration anyway. Only then, the
true pooled standard deviation is can be analysed, which would provide valuable information regarding
the run length variability due to Phase I estimation.

Table 8.2 shows the pooled standard deviations for a fraction of the current simulation results, which
are denoted with SDp

RL. Overall standard deviations that were calculated over all 20,000 observations
are provided in Table 8.2 as well, which are denoted with SDRL. The pooled standard deviation is
approximately ten times the size of the corresponding ARL, while the overall standard deviation is
approximately equal to the ARL. Hence, no conclusions can be made from these results, such that SDRL
is not futher considered as a performance measure in this section.
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OC scenario due to increased E[λOC ]

(rP , Q)-Shewhart (rD, Q)-Shewhart (rQ, Q)-Shewhart
βOC0 E[λOC ] ARL1 SDRL SDp

RL ARL1 SDRL SDp
RL ARL1 SDRL SDp

RL

0.10 1.82 281.56 278.64 1986.40 214.37 207.26 1954.34 207.58 214.03 2004.01
-0.01 1.64 301.06 263.38 2250.28 218.41 233.30 1784.37 267.05 265.05 2396.26
-0.12 1.46 288.76 253.25 2441.75 148.56 162.80 1414.13 340.44 327.55 2742.55
-0.26 1.28 332.81 356.67 2601.42 101.92 102.02 981.10 327.77 335.40 3068.97
-0.41 1.09 389.38 397.80 2695.21 64.69 71.78 673.07 338.09 327.47 3166.75
-0.59 0.91 378.08 388.41 2578.85 45.34 50.64 467.34 350.15 368.48 3282.43
-0.82 0.73 307.22 358.86 2155.20 34.34 33.62 343.23 352.23 303.41 3258.06
-1.10 0.55 217.13 205.67 1600.31 27.72 27.79 279.71 371.50 350.74 3186.45

Table 8.2: Fraction of the ARL1 results with corresponding SDRL and SDp
RL while taking into

account Phase I estimation effects, for the (rP , Q)-, (rD, Q)- and (rQ, Q)- Shewhart chart, in IC
ZIP Scenario 1.

8.3 Summary

Simulation results from the (rP , L)-, (rD, L)-, (rQ, L)-, (rP , Q)-, (rD, Q)- and (rQ, Q)- Shewhart chart
are discussed in this section. It is observed that the (rD, Q)-Shewhart charts with deviance residuals and
probability control limits outperforms all other charts, in case of an OC distributional shift in E[λOC ].
This is concluded from both baseline performance, as from performance analysis while taking into account
Phase I effects. It also holds for each IC ZIP and ZINB scenarios 1, 2, 3 and 4.

OC scenarios due to distributional shift in E[pOC ] are less well detected by all Shewhart charts. The
Shewhart charts with Pearson and deviance residuals show a slow decreasing ARL1 in case of decreased
E[pOC ]. However, none of the charts show convincing decreased ARL1 results, in case of OC distributional
shift due to increased E[pOC ]. This is observed in the baseline performance, as well as in performance
results which take into account Phase I effects.

It is additionally observed that each control chart performs better under less zero-inflated IC circum-
stances. Hence, all ARL1 results decrease faster in ZIP Scenario 2 than in ZIP Scenario 1. Similarly,
ARL1 results decrease faster in ZIP Scenario 4 than in ZIP Scenario 3. However, these differences are
very modest. Finally, it is noted that the simulation size should be increased, for performance evaluation
while estimating Phase I effects. Finally, it is observed that the run length distribution of Shewhart
charts with Pearson, deviance and randomised quantile residual is very similar to a Geometric(0.005)
distribution, even though independence and identical distribution of Pearson, deviance and randomised
quantile residuals is not proved.
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9 | GLM-based TBE charts

It is concluded in the previous chapter that the ZIP and ZINB regression-based Shewhart charts work sat-
isfactory for detecting contextual anomalies in monitoring data that originates from high-purity processes.
However, it is observed that an OC scenario due to increased or decreased E[pOC ] is hardly detected and
the overall performance of each charts reduces slightly for larger proportions of zero-inflation in the IC
data. The latter may create a problem for some very high-purity processes at Dow with heavily zero-
inflated monitoring data. Therefore we explore an alternative GLM-based monitoring method in this
chapter.

It is described in Rizzo et al. (2020) that time-between-events (TBE) charts are appropriate tools for
monitoring such very high-purity processes, because they overcome the methodological challenges that
standard control charts present due to extreme proportions of zero-inflation. TBE control charts originate
from Calvin (1983), where it is proposed to monitor the conforming run length (CRL) of low-defect rate
processes, instead of monitoring each individual observation. Based on this idea, Goh (1987) introduced
cumulative count control chart (CCC) for discrete time observations. Xie et al. (2002b) introduced the
tr-chart for continuous time observation from a homogeneous Poisson process. Here, the time until the
rth nonconforming event is monitored over time. In this chapter, we introduce a GLM-based TBE chart
for monitoring data from high-purity processes. A TBE data description is provided in the following
section, after which the Gamma GLM is defined in Section 9.2. The monitoring procedure of Gamma
GLM-residuals is described in Section 9.3, after which the procedure for OC performance evaluation is
defined in Section 9.4. Performance results are finally presented Section 9.5

9.1 TBE data description

In the context of monitoring plastic pellets for defects, we can monitor the time until the rth non-zero
occurrence, i.e. Yi > 0 for i = 1, 2, . . . . It is described in Chapter 2 that plastic pellet production is
a continuous process, such that a portion of pellets is inspected continuously on minute basis. Hence,
observations (Yi, Xi) with i = 1, 2, . . . arrive every minute, where Yi represents the detected defect count
and Xi represents the inspected weight. We can consider the indicator function 1Yi>0 for i = 1, 2, . . . as
a non-homogeneous Bernoulli process. If Yi follows a ZIP(pi,λi) distribution, then

P (1Yi>0 = v) =

{
pi + (1− pi)e−λi if v = 0

1− pi − (1− pi)e−λi if v = 1

as defined in (6.7). If Yi follows a ZINB(pi,λi,τ) distribution, then

P (1Yi>0 = v) =

{
pi + (1− pi)(1 + λi/τ)−τ if v = 0

1− pi − (1− pi)(1 + λi/τ)−τ if v = 1

83
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as defined in (6.13). In both cases, parameters pi and λi depend on covariate Xi such that the Bernoulli
probability is not constant for i = 1, 2, . . . . Instead of monitoring observations (Yi, Xi) over time, we
can monitor the time until the rth nonconforming event, i.e., Yi > 0, while taking into account the
accumulated inspected weight. Let us denote the time until the rth non-zero occurrence with Tj and
the corresponding accumulated inspected weight with Wj . For a given data set (y, x) = {(y1, x1), . . . ,

(ym, xm)}, the TBE data can be obtained as (t, w) = {(t1, w1), . . . , (th, wh)} where h =
∑m
i=1b1{yi>0}/rc.

Figure 9.1 shows a graphical representation of this transformation.

Figure 9.1: Graphical representation of the Bernoulli process 1Yi>0 with i = 1, 2, . . . and
corresponding time between events Tj with accumulated inspected weights Wj with j = 1, 2, . . . .

A GLM-based TBE chart is constructed in this chapter, where we correct for the effect that Wj has on
Tj . Observations Yi follow a ZIP(pi, λi) or ZINB(pi, λi, τ) distribution, of which the parameters pi and λi
depend on Xi. Hence, observations Yi are not independent, nor identically distributed. The distribution
of Tj remains therefore unknown. Nevertheless, we can analyse its distribution by simulation. Let us
simulate 1500 ZIP and ZINB distributed observations as defined in (7.8), and for each IC scenario.
Histograms of the corresponding time-between-events variable Tj are shown in Figure 9.2. It is observed
that the distribution of Tj is skewed for every IC scenario, and that the average value of Tj is higher for
the IC scenarios that contain a large proportion of zero-inflation, i.e. ZIP Scenario 1 and ZINB Scenario
3.

In addition, we can fit several EDM distributions to the corresponding TBE data Tj , and evaluate the
log-likelihood as a goodness of fit measure. Log-likelihood results are shown in Table 9.1 where the
Normal, Poisson, negative binomial, exponential and Gamma distribution are fitted.

Distribution ZIP Scenario 1 ZIP scenario 2 ZINB scenario 3 ZINB scenario 4
Normal -1069.75 -1318.04 -1133.06 -1287.88
Poisson -1038.96 -1288.34 -1087.26 -1270.66
Negative binomial -970.48 -1288.93 -1012.41 -1271.47
Exponential -979.34 -1363.29 -1014.27 -1351.95
Gamma -933.48 -1055.99 -966.54 -1058.79

Table 9.1: Log-likelihood of distribution fit for Tj , for 1500 simulated observations Yi according to all
IC ZIP and ZINB scenarios.

It is observed that the Gamma distribution achieves highest log-likelihood in all IC scenarios, and
goodness of fit increases with higher proportions of zero-inflation in the simulated observations Yi. We
aim to construct the GLM-based TBE chart for high-purity processes with extreme proportions of zero-
inflation, such that the Gamma distribution seems to be an appropriate choice. Let us therefore assume
for now that Tj also follows a continuous Gamma distribution. We continue under this assumption and
explore the performance of the Gamma GLM-based TBE chart in the following sections.
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Figure 9.2: Histograms and Gamma Q-Q plots of Tj , for 1500 simulated observations Yi according
to all IC ZIP and ZINB scenarios.

9.2 The Gamma GLM

Let us assume that the time between events Tj follows a Gamma distribution with shape parameter k
and scale parameter sj . The probability distribution function of Tj at point tj > 0 is defined as

fTj (tj , k, sj) =
1

skj Γ(k)
tk−1
j exp{− tj

sj
}. (9.1)

with k, sj > 0 for all j = 1, 2, . . . . The expected value of Tj is defined as E[Tj ] = ksj of which is provided
by Lemma A.1.5. As shown in Lemma A.1.6, the variance of Tj is defined as Var(Tj) = ks2

j . The
Gamma distribution belongs to the exponential family such that a Gamma GLM is defined by Nelder
and Wedderburn (1972). Let us persist with the notation of Chapter 6. According to Dunn and Smyth
(2018) (Section 11.2), the Gamma distribution can be written in EDM format when we define the EDM
components as follows.

• Canonical parameter θj = − 1
µj

= − 1
ksj

.

• Cumulant function κ(θj) = − log
(

1
ksj

)
.

• Dispersion parameter ϕ = 1
k > 0.

• Normalising function a(tj , ϕ) = kkΓ(k)−1tk−1
j .

Hence, substituting these components into (6.1) provides us with the Gamma probability density function,
that is shown below.

P(tj ; θ, ϕ) = a(tj , ϕ) exp

{
tjθj − κ(θj)

ϕ

}
= kkΓ(k)−1tk−1

j exp

{
k

(
− tj
ksj

+ log

(
1

ksj

))}
= kkΓ(k)−1tk−1

j tk−1
j exp{− tj

sj
}
(

1

ksj

)k
=

1

skj Γ(k)
tk−1
j exp{− tj

sj
}
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The variance function of the Gamma EDM is defined as V (µj) = µ2
j = k2s2

j , where it holds that
ϕV (µj) = Var(Tj), as described in Section 6.1.1. With this EDM formulation of the Gamma distribution,
we can define a Gamma GLM that models the relationship between the time-between-events variable Tj
and the accumulated weights Wj . Substituting the EDM Gamma distribution into (6.2) provides us with
the following model 

fTj (tj , k, sj) =
1

skj Γ(k)
tk−1
j exp{− tj

sj
}

g(µj) = g(ksj) = ν0 + ν1Wj

where ν0 and ν1 represent the regression coefficients. The canonical link function of the Gamma GLM
is defined as g(µj) = θ = −1/µj . However, Dunn and Smyth (2018) (Section 11.1) state that the
logarithmic link function is often used since it avoids the need for constraints on the linear predictor to
achieve µj > 0. Hence, we proceed in a similar way and define the Gamma GLM as

fTj (tj , k, sj) =
1

skj Γ(k)
tk−1
j exp{− tj

sj
}

µj = ksj = exp{ν0 + ν1Wj}.
(9.2)

Now that the Gamma GLM is defined, we can proceed to the following section, in which monitoring of
Gamma GLM residuals is described.

9.3 Monitoring Gamma GLM residuals

Let us assume that we have a Phase I data set (y, x) = {(y1, x1), . . . , (ym, xm)}, from which the Phase
I TBE data (t, w) = {(t1, w1), . . . , (th, wh)} is obtained with h =

∑m
i=1b1{yi>0}/rc. Then, regression

coefficients ν0, ν1 and k are estimated by maximisation of the log-likelihood function

`(ν0, ν1, k; t) =

h∑
j=1

logP (tj ; sj , k)

where sj = 1
k exp{ν0 +ν1wj}. The maximisation procedure is executed by means of the iterative weighted

least squares (IWLS) algorithm. These ML estimates are denoted with ν̂0, ν̂1 and k̂ respectively, and the
model is referred as the fitted Gamma model. Now, let us denote a new observations with (th+j , wh+j)

for j = 1, 2, . . . . We can use the fitted Gamma model to predict the value of th+j , based on the value of
wh+j . The predicted value is denoted with µ̂h+j , which is defined as

µ̂h+j = k̂ŝh+j = exp{ν̂0 + ν̂1wh+j}.

For each new observation (th+j , wh+j) with j = 1, 2, . . . and corresponding prediction µ̂h+j , we can obtain
regression residuals and monitor them over time. Namely, Gamma GLM Pearson, deviance and quantile
residuals residuals are obtained as described in Section 6.1.4. Pearson residuals for a Gamma GLM are
defined by substituting V (µ̂h+j) = k̂2ŝ2

h+j into (6.3). Hence, let us denote the Gamma GLM Pearson
residuals with rPh+j where

rPh+j =
th+j − µ̂h+j

k̂ŝh+j

(9.3)

for j = 1, 2, . . . . In addition, Gamma GLM deviance residuals are obtained by substituting θ = −1/µ̂h+j ,
κ(θ) = − log(1/µ̂h+j) and ϕ̂ = 1/k̂ in definition (6.4). When denoting the deviance residuals with rDh+j ,
we obtain

rDh+j = sign(th+j − µ̂h+j)

√
2

{
− log

(
th+j

µ̂h+j

)
+
th+j − µ̂h+j

µ̂h+j

}
(9.4)
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for j = 1, 2, . . . . Finally, we can define the Gamma GLM quantile residuals by substituting the Gamma
cumulative distribution function into (6.6). Let us denote the Gamma GLM quantile residuals with rQh+j .
Then

rQh+j = Φ−1{F (th+j ; µ̂h+j/k̂, k̂)} (9.5)

where

F (t; s, k) =
1

sk Γ(k)

∫ t

0

xk−1 exp{−x/s}dx

for j = 1, 2, . . . . Each type of residuals can be monitored over time in a Gamma GLM-based control chart.
When monitoring predictive Pearson, deviance or quantile residuals, it is assumed that observations Th+j

with j = 1, 2, . . . follow a Gamma distribution with parameters ŝh+j and k̂ as long as the process is in
control. The parameters ŝh+j are predicted based on the observed value of Wh+j and the established
regression coefficients ν̂0, ν̂1, and k̂ from the Phase I GLM that is defined in (9.2). Let us denote this
assumption with Th+j ∼ Gamma(ŝh+j , k̂ |Wh+j). Then the hypotheses of the Gamma GLM-based control
chart can be defined as

H0 : Th+j ∼ Gamma(ŝh+j , k̂ |Wh+j) for j = 1, 2, . . .

H1 :

Th+j ∼ Gamma(ŝh+j , k̂ |Wh+j) for j = 1, . . . , T

Th+j ∼ Gamma(sOCh+j , k
OC |Wh+j) for j = T + 1, T + 2, . . . .

where sOCh+j 6= ŝh+j and or kOC 6= k̂. If the process becomes OC after time T , then it is either rejected
that the shape parameter equals IC estimation k̂, and or it is rejected that the scale parameter equals IC
estimation ŝh+j for j = T + 1, T + 2, . . . . In this case, sOCh+j is defined as

sOCh+j = exp{νOC0 + νOC1 wh+j} (9.6)

where at least one of the following holds: ν̂0 6= νOC0 or ν̂1 6= νOC1 . Hence, the process becomes OC
when observations {Th+T +1, Th+T +2, . . . } follow a Gamma distribution with parameters that deviate
from what is expected by the established GLM, based on the values of {Wh+T +1,Wh+T +2, . . . }.

Each residual type is monitored over time in a GLM-based Shewhart chart. It is concluded from the
results in Chapter 8 that Shewhart charts with probability control limits have better overall performance
than Shewhart charts with symmetric control limits. Therefore, we construct GLM-based TBE charts
with probability control limits, and for Pearson, deviance and quantile residuals. Let us denote each chart
with (rP , Q)-TBE, (rD, Q)-TBE, and (rQ, Q)-TBE. The construction of each chart and the strategy for
performance evaluation is discussed in the following section.

9.4 OC performance evaluation of the GLM-based TBE chart

The goal of this chapter is to compare the performance of the GLM-based TBE charts with the perfor-
mance of the ZIP and ZINB regression base Shewhart charts. However, observations in the TBE chart
are on a different time scale as the observations in the ZIP and ZINB regression-based Shewhart charts.
This is illustrated in Figure 9.1. Suppose that observations (Ym+i, Xm+i) with i = 1, 2, . . . arrive ev-
ery minute. Then variable Th+1 represents the cumulative time until the rth nonconforming event, i.e.,
mini=1,2,...(Ym+i > 0). The same reasoning holds for Th+j with j = 1, 2, . . . such that the arrival rate of
observations (Th+j ,Wh+j) is not constant.

It is stated in Rizzo et al. (2020) that, when the time interval between cumulative observation varies,
the average length of inspection (ALI) is a more appropriate performance measure than the ARL. The
ALI is also referred to as the average number of observations to signal (ANOS). For a particular run of
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Gamma GLM residuals {rh+1, . . . , rh+RL}, the length of inspection (LI) is defined as

LI =

RL∑
j=1

Th+j (9.7)

where RL is the run length. Hence, the ALI of a Gamma GLM-based TBE chart is on the same time
scale as the ARL of a ZIP and ZINB regression-based Shewhart charts, in case observations arrive on
minute basis. This allows for performance comparison. The IC ALI is referred to as ALI0 while the
OC ALI is denoted with ALI1. The control limits of each (rP , Q)-TBE, (rD, Q)-TBE, and (rQ, Q)-TBE
chart are constructed to achieve an ALI0 of 200. The performance of each chart is evaluated based on
the ALI1.

9.4.1 Performance evaluation strategy of GLM-based TBE charts

We will test the performance of the (rP , Q)-, (rD, Q)- and (rQ, Q)-TBE chart, for each ZIP and ZINB
IC data scenario defined in Table 7.1. It is assumed that all ZIP and ZINB regression parameters β0,
β1, γ0, γ1 and τ are known, to exclude any variability in performance that originates from estimating
ZIP and ZINB regression coefficients. The consecutive steps of solving control limits and evaluating
OC performance of the Gamma GLM-based TBE charts are provided in the following steps, of which a
graphical representation is shown in Figure 9.3.

1. Phase I data generation: a) A Phase I data set of size m is generated with ZIP or ZINB
distributed observations (y, x) = {(y1, x1), . . . , (ym, xm)}. Known parameters β0, β1, γ0, γ1 and τ
are applied in the simulation that is defined in (7.8). b) The Phase I data set (y, x) is transformed
to obtain the time-between-events and accumulated weights between events. Hence, a data set
(t, w) = {(t1, w1), . . . , (th, wh)} is obtained with h =

∑m
i=1b1{yi>0}/rc.

2. Fit the Phase I Gamma GLM: The Gamma GLM as defined in (9.2) is fitted to the Phase I
TBE data (t, w), to obtain estimates ν̂0, ν̂1 and k̂.

3. Constructing TBE control limits: a) An IC Phase II data set is generated with N runs of
n ZIP or ZINB distributed observations. Let us denote these observations with (y`,m+i, x`,m+i)

where i = 1, . . . , n and ` = 1, . . . , N . Known parameters β0, β1, γ0, γ1 and τ are applied in the
simulation, which is defined in (7.8). b) The IC Phase II data set is transformed to obtain the
TBE data, whereas the length of each TBE run equals the amount of non-zero observations in
the corresponding ZIP or ZINB data run. Let us define n` =

∑m+n
i=m+1 1{y`,m+i>0} for each run of

observations ` = 1, . . . , N . Then, the IC TBE Phase II data set is defined as (t`,h+j , w`,h+j) where
j = 1, . . . , n` for each run ` = 1, . . . , N . c) The Phase I Gamma GLM is applied to obtain the
regression residuals from each observation (t`,h+j , w`,h+j). These regression residuals are denoted
with r`,h+j where j = 1, . . . , n` for each run ` = 1, . . . , N . The control limits of the GLM-based
TBE chart Q1 and Q2 are constructed to achieve an ALI0 of 200, as described in Section 9.4.2.

4. ALI1 performance evaluation: a) Once the UCL and LCL of the Gamma GLM-based TBE
chart are defined, an OC Phase II data set is generated with again N runs of n ZIP or ZINB
distributed observations. The first simulated data point is already OC, such that m = T where
T is the changepoint and m denotes the size of the Phase I data. Observations are denoted with
(y`,T+i, x`,T+i) with i = 1, . . . , n and ` = 1, . . . , N . The OC parameters βO0 C, βO1 C, γO0 C, γO1 C
and τ are applied in the simulation, which is described in Section 7.6. b) The OC Phase II data
set is transformed to obtain the OC TBE data. Now we have, n` =

∑T +n
i=T +1 1{y`,m+i>0} and

(t`,h+j , w`,h+j) where j = 1, . . . , n` for each run ` = 1, . . . , N . c) The Phase I Gamma GLM applied
to obtain the regression residuals from each observation (t`,h+j , w`,h+j). These regression residuals
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are denoted with r`,h+j where j = 1, . . . , n` for each run ` = 1, . . . , N . The run length RL` of each
residual run l is obtained according to the values of Q1 and Q2, that are defined in Step 3. The
LI` of each run is obtained afterwards, according to definition (9.7). Finally, the ALI1 is obtained
as the mean of all LI` values with ` = 1, . . . , N .

5. Step 1-4 are repeated 100 times.

Steps 1-4 are repeated in this strategy to eliminate the variation that is inherited in the Phase I data. The
ALI results from step 4 are accumulated and averaged over all 100 iterations, to obtain the final results.
Size parameters are again chosen at m = 1500, n = 3000 and N = 200 as described in Section 7.5.2.
It is analysed again whether simulation size n is large enough to ensure ≤ 0.01% of the runs returns no
OC signal. The simulation results of this analysis are provided in B.20, from which it is concluded that
n = 3000 is sufficiently large. Similar limitations as described in Section 8.2 are experienced due to the
choice of N = 200. Therefore, we do not consider the SDLI as a performance measure in this chapter.
Aggregation level r is fixed at r = 1 for all simulations and performance evaluations.

Figure 9.3: Graphical representation of performance evaluation strategy of
the Gamma GLM-based TBE chart.

Notice that is not possible to establish a baseline performance for the GLM-based TBE charts, since
the distributions of Tj and Wj are unknown. Therefore, the true relation between Tj and Wj is also
unknown. A Gamma GLM is fitted nevertheless, but ν̂0, ν̂1 and k̂ cannot be assumed to capture the
true regression model. Hence, baseline performance is not obtained, but an estimation of the Gamma
GLM-based TBE chart performance is obtained while taking Phase I estimation effects of the GLM
into account and under the assumption that all ZIP or ZINB regression parameters are known. The
performance results in terms of ALI1 are provided in the following Section 9.5. However, it is described
first how the probability control limits of the GLM-based TBE charts are obtained to achieve ALI0 = 200.

9.4.2 Obtaining probability limits for the GLM-based TBE chart

Notice that we cannot solve the probability limits as described in Section 7.5.1 for the ZIP and ZINB
regression-based Shewhart charts, since we are not interested in the ARL of the TBE charts. Instead, we
must obtain a quantile level α of the probability control limits, that ensures ALI0 = 200. Let us continue
with the notation in Step 3 of the previous section. Hence, let us denote the IC TBE Phase II data set
with (t`,h+j , w`,h+j) where j = 1, . . . , n` for each run ` = 1, . . . , N . Here, n` =

∑m+n
i=m+1 1{y`,m+i>0} for



90 CHAPTER 9. GLM-BASED TBE CHARTS

all runs ` = 1, . . . , N . The following steps are executed to solve the probability limits of a GLM-based
TBE chart:

1. The Phase I Gamma GLM applied to obtain the regression residuals from each observation
(t`,h+j , w`,h+j). These regression residuals are denoted with r`,h+j where j = 1, . . . , n` for each run
` = 1, . . . , N . This can be either Pearson, deviance or quantile residuals.

2. For an arbitrary value of α, the value of Q1 is obtained to ensure that 100(1− α/2) percent of the
GLM residuals lies below Q1. Similarly, the value of Q2 is solved to ensure 100(α/2) percent of the
simulated residuals lies below Q2.

3. The GLM-based TBE chart is constructed with UCL = Q1 and LCL = Q2 as defined in (4.2). The
length of inspection of each run of residuals is obtained as defined in (9.7), and denoted with LI`
with ` = 1, . . . , N . The ALI0 is calculated as the average of all computed lengths of inspection,
i.e., ALI0 = (LI1 + · · ·+ LIN )/N .

4. We check if ALI0 = 200. If this does not hold, we adjust the value of α and return to Step 2.

Notice that α ≤ 1/200 since n` ≤ n for all ` = 1, . . . , N . Here, n denotes the amount of simulated
observations (y`,m+i, x`,m+i) with i = 1, . . . , n. The probability control limits Q1 and Q2 are calculated
100 times, as described in Section 9.4. The densities for Q1 and Q2 of the (rP , Q)-, (rD, Q)- and (rQ, Q)-
TBE chart are shown in Figures B.24, B.25 and B.26, respectively. The OC performance results of each
chart in terms of ALI1 are provided in the following section.

9.5 OC Performance results of GLM-based TBE charts

Figures 9.4, 9.5, 9.6 and 9.7 show the ALI1 results of the Gamma GLM-based TBE charts for ZIP and
ZINB scenarios 1, 2, 3 and 4, respectively. First of all, it is noticed that Pearson, deviance and quantile
residuals show the exact same OC performance results. Hence, it can be concluded that the Gamma
GLM-based TBE charts are not sensitive to the specific residual type that is applied, unlike the ZIP and
ZINB regression-based Shewhart charts from the Chapter 7 and 8.

In addition, it is remarkable that an OC distributional shift due to increased or decreased E[pOC ] is
detected by the GLM-based TBE charts since the ALI1 shows a decreasing trend as the distributional
shift gets larger. Hence, OC scenarios with worse or improved overall process performance due to a shift
in E[pOC ] are both well detected. When comparing Figure 9.4 with Figure 9.5, it is observed that the
GLM-based TBE chart has better performance with IC Scenario 1, which corresponds to ZIP distributed
observation with a high proportion of zero-inflation. The same conclusion can be drawn from Figures 9.6
and 9.7, where the TBE charts perform better with IC Scenario 3, which corresponds to ZINB distributed
observations with high proportion of zero-inflation.

An OC distributional shift due to increased or decreased E[λOC ] is less well detected. It is shown
in Figures 9.4c and 9.6c show that the ALI1 decreases for a OC distributional shift due to decreased
E[λOC ], but an OC distributional shift due to increased E[λOC ] is not detected as fast. Hence, an OC
scenario with improved process performance is detected better than an OC scenario with worse process
performance in this case. In addition it is observed from Figures 9.5 and 9.7 that an OC distributional
shift due to increased or decreased E[λOC ] is not detected for IC scenarios 2 and 4, which correspond
to the ZIP and ZINB distributed observations with low proportion of zero inflation and high expected
value. The poor performance of the Gamma GLM-based TBE chart in case of an OC distributional shift
in E[λOC ] is most likely due to the TBE data transformation, in which all events Yi > 0 are treated
equally. The parameter λ of the ZIP and ZINB distribution represents the expected amount of detected
defects, in case Yi is not a structural zero. Hence, a small distributional shift in E[λOC ] does not affect



9.6. SUMMARY 91

the amount of events Yi > 0 very much, in case where the IC E[λ] is already high. The full ALI1 results
are provided in Tables B.21, B.22 and B.24.

Figure 9.4: ALI1 performance of the (rP , Q)-, (rD, Q)- and (rQ, Q)-TBE chart for IC ZIP scenario
1 with E[pIC ] = 0.60 and E[λIC ] = 1.82.

9.6 Summary

In this chapter, we introduce a Gamma GLM-based TBE chart for monitoring the time between noncon-
forming events, i.e., Yi > 0, while correcting for the accumulated inspected weights. The distribution of
TBE data is discussed in Section 9.1, where it is decided to assume TBE variable Tj follows a Gamma
distribution. The Gamma GLM is defined afterwards in Section 9.2 and the monitoring procedure of
TBE residuals is described in Section 9.3. The strategy for performance analysis is defined in Section 9.4
after which the ALI results are provided in Section 9.5. It is concluded based on the ALI1 results that
the Gamma GLM-based TBE charts are performing satisfactory for detecting a shift in E[pOC ]. It is also
observed that the performance of the Gamma GLM-based TBE chart increases with higher proportions
of zero-inflation in the IC process. Hence, this introduction of GLM-based TBE charts could provide
an opportunity for monitoring high-purity processes at Dow, which inherit extreme proportions of zero-
inflation. Nevertheless, it should be noted that the results in this chapter are based on the assumption
that Tj follows a Gamma distribution. This is not proved for ZIP or ZINB distributed observations Yi,
such that other distributions should be considered as well when further investigating the GLM-based
TBE charts.
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Figure 9.5: ALI1 performance of the (rP , Q)-, (rD, Q)- and (rQ, Q)-TBE chart for IC ZIP scenario
2 with E[pOC ] = 0.38 and E[λIC ] = 8.17.

Figure 9.6: ALI1 performance of the (rP , Q)-, (rD, Q)- and (rQ, Q)-TBE chart for IC ZINB scenario
3 with E[pIC ] = 0.60 and E[λIC ] = 1.82.
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Figure 9.7: ALI1 performance of the (rP , Q)-, (rD, Q)- and (rQ, Q)-TBE chart for IC ZINB scenario
4 with E[pOC ] = 0.38 and E[λIC ] = 8.17.
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10 | Conclusion and discussion

The main goal of this thesis is to provide a framework for identifying the most appropriate monitoring
scheme for detecting contextual anomalies in zero-inflated count data. This type of data originates from
monitoring high-purity processes for defects, where the amount of nonconforming observations is affected
by one covariate. In order to achieve this goal, we constructed a ZIP-EWMA chart, multiple ZIP and
ZINB regression-based Shewhart chart for Pearson, deviance and randomised quantile residuals, and we
introduced a Gamma GLM-based TBE chart. The main conclusions from these studies are discussed in
the following section, where we answer the research questions of this project.

10.1 Summary of results and conclusions

The first sub-question of this thesis is: Based on published works in the literature, what are the established
monitoring methods for detecting contextual anomalies in data that originates from monitoring high-purity
processes for defects? The answer is provided in Chapter 3. The literature study showed that regression-
based control charts outperform traditional control charts when aiming to detect contextual anomalies,
and that GLM-control chart outperform linear regression-based control charts when the response data
follows an non-normal EDM distribution. The ZIP and ZINB regression models are employed in literature
for regression-based control charts when monitoring high-purity count data. It is observed that predictive
Pearson, deviance and randomised quantile residuals are used for monitoring, but a clear consensus
regarding which residual type performs best in a regression-based control chart for high-purity count
data does not exist. Literature on regression-based TBE charts does also not exist. Hence, the main
focus of the thesis has been to provide insight in the performance of Pearson, deviance and quantile
residuals in regression-based monitoring schemes for ZIP and ZINB distributed data.

The second sub-question in this research is: How can we model the relationship between the response
variable and the covariate? And what type of residuals can we use for a regression-based control chart?
The answer is provided in Chapter 6, where the one dimensional ZIP and ZINB regression models are
defined with corresponding definitions for Pearson, deviance and randomised quantile residuals. It is
concluded in Chapter 7 that all residual types are proper goodness of fit measures, which makes them
appropriate for contextual anomaly detection. Analysis regarding the distribution of each residual type
showed that randomised quantile residuals from the ZIP or ZINB regression model may be assumed
to follow an independent and identical standard normal distribution. Pearson and deviance residuals
show a clear non-normal distribution, such that no assumptions are made regarding their distribution
throughout this project. Hence, it is concluded that ZIP and ZINB Pearson, deviance and randomised
quantile residuals can all be monitored in a regression-based control chart. However, control limits can
be calculated when monitoring quantile residuals while control limits must be solved numerically when
monitoring Pearson or deviance residuals.

This brings us to the third sub-question, that is: Which regression-based monitoring schemes can be
used for detecting contextual anomalies in data that originates from monitoring high-purity processes for
defects? While many types of control charts exist, it is described in Section 3.4 that we focus of regression-
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based Shewhart charts. Shewhart charts with both symmetric and probability control limits are defined
to monitor the ZIP and ZINB regression residuals over time. In addition, a Gamma GLM-based TBE
chart is introduced as a suggestion for monitoring data contains extreme proportions of zero-inflation.

The fourth sub-question is: How can we evaluate the performance of a regression-based control chart?
The performance of each monitoring scheme is evaluated upon simulated ARL0 and ARL1 values, since
ZIP and ZINB Pearson, deviance and quantile residuals are assumed to all follow an unknown distri-
bution when the monitoring data becomes out-of-control. In order to evaluate how the proportion of
zero-inflation affects the performance of each monitoring scheme, it is decided to consider four distinct
in-control distribution and evaluate corresponding out-of-control performance. It is also described in
Chapter 7 that we consider two strategies for performance evaluation for the ZIP and ZINB regression-
based Shewhart charts. The baseline performance is established first, after which the OC performance of
each chart is evaluated while taking into account the effects of Phase I estimation. The performance of the
Gamma GLM-based TBE charts is evaluated under the assumption that all ZIP and ZINB distributional
parameters are know, while we take into account that the Gamma GLM regression coefficients must be
estimated.

The final sub-question of this thesis is: Which monitoring scheme achieves the best performance when
aiming to detect contextual anomalies in data that originates from monitoring high-purity processes for
defects? It is concluded from the results in Chapter 8 that the ZIP and ZINB regression-based Shewhart
charts with probability control limits and deviance residuals perform best of all evaluated monitoring
schemes. This is observed from both baseline performance results as well as performance results while
taking into account Phase I estimation. It is concluded that the performance of the ZIP and ZINB
regression-based Shewhart charts is rather sensitive to the residuals type that is monitored, and the type
of control limits that are chosen, since the performance results show great differences. This is nowhere
mentioned in the existing literature, but should be taken into account when designing a monitoring
scheme. It is also concluded that each ZIP and ZINB regression-based Shewhart chart with Pearson,
deviance and quantile residuals is detecting an out-of-control distributional shift due to increased or
decreased E[λOC ], while a shift due to increased or decreased E[pOC ] is not detected as well by any
of the ZIP or ZINB regression-based Shewhart charts. It is additionally concluded that each ZIP and
ZINB regression-based Shewhart chart performs better under less zero-inflated IC circumstances, even
thought the differences in performance results are very modest in this thesis. The Gamma GLM-based
TBE charts show satisfactory performance results in case of an out-of-control distributional shift due to
increased or decreased E[pOC ], while a shift due to increased or decreased E[λOC ] is less well detected.
It is additionally concluded that the Gamma GLM-based TBE chart is not sensitive to the residual type
that is monitored, since performance results are the same for each type. The Gamma GLM-based TBE
chart performs better under more zero-inflated IC circumstances, such that these type of control charts
are suggested for further consideration, when dealing with monitoring data contains extreme proportions
of zero-inflation.

The main question of this research is: Which monitoring scheme is most appropriate for detecting
contextual anomalies in univariate count data, that originates from monitoring a specific high-purity
processes? The conclusion is the same for high-purity processes of which the monitoring data follows
a ZIP or ZINB distribution with high or low proportion of zero inflation. Namely, the ZIP and ZINB
regression-based Shewhart chart with deviance residuals and probability control limits performs best. A
graphical representation of the conclusion is shown in Figure 10.1.

10.2 Recommendations for Dow

It has been shown this project that, the performance of a ZIP and ZINB regression-based Shewhart chart
is heavily affected by the specific residual type that is monitored, and by the control limits that are
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Figure 10.1: Recommended flow chart, based upon the results of this thesis.

chosen. The easiest way to construct a ZIP or ZINB regression-based Shewhart chart is by application
of randomised quantile residuals, due to their standard normal distribution. Symmetric and probability
control limits are the same in this case and can be fixed at a chosen value to achieve a certain ARL0.
However, the results show that the ZIP and ZINB regression-based Shewhart charts with deviance resid-
uals and probability control limits outperform the charts for randomised quantile residuals with great
difference. It is therefore recommended to Dow to implement the (rD, Q)-Shewhart chart when moni-
toring zero-inflated count data that is affected by one covariate, even though solving the control limits
numerically takes more effort.

In addition it is recommended to execute a comprehensive Phase I analysis before constructing any
ZIP or ZINB regression-based control chart. Model selection procedures are not considered in this thesis
since it is assumed that the covariate is already known. However, this is often not the case in practice and
the overall performance of a regression-based control chart is affected by the goodness of fit of the Phase
I model. When dealing with a large number of covariates, principal-component-analysis could be applied
to transform a large number of possibly correlated covariates into a smaller number of uncorrelated
covariates (see e.g. Park et al. (2018)). A model selection procedure to distinguish between Poisson, ZIP,
negative binomial and ZINB distributed data is provided by Mahmood (2020), which is briefly discussed
in Section 6.2. It is also recommended to ensure a large Phase I data set of preferably ≥ 1500 observations
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since it is described Section 7.5.2 that the goodness of fit stabilises around 1500 observations. This is not
expected to represent a limitation at Dow since high-purity processes at Dow are monitored continuously
on minute bases and monitoring data is often available in abundance. Additional methods for model
selection are cross validation and evaluation of randomised quantile residuals. Pearson and deviance
residuals cannot be used for this purpose since their distribution is not guaranteed to be normal under
perfect model fit.

Finally, it is recommended for Dow to be aware of the monitoring goal when designing a ZIP or ZINB
regression-based Shewhart charts. It is observed from the results that a sudden increased amount of
defect observations is well detected while an increased defect rate is hardly detected. Hence, when aiming
to detect increased defect rate, it is recommended to consider an alternative control chart design or an
alternative monitoring method such as the GLM-based TBE charts. Both alternatives are discussed in
the following section.

10.3 Future research

It has been shown in the literature review that the application of generalized linear models in statistical
process control for high-purity processes is a very current topic in the field of SPC. Therefore, there
is still a considerable amount of possibilities that remain to be investigated up to now. First of all, it
would be interesting revise the performance evaluation of the ZIP and ZINB regression-based Shewhart
charts, while taking into account the effect of Phase I estimation, for a larger number of replications. It
is discussed in Section 8.2 that a value of N = 10, 000 would provide reliable results regarding the true
effect of Phase I estimation.

Moreover, we have limited this project to the application of regression-based Shewhart charts only.
However, other control charts such as the EWMA or CUSUM chart could also be employed to monitor
regression residuals over time. The Shewhart chart is only considering current observations, such that
small residual values due to minor cases of over- or underestimation of the regression model can never cause
an OC alarm. EWMA and CUSUM charts include all historical observations in the charting statistic,
such that small cases of over- or underestimation can cause an OC alarm if they remain persistent
over time. It is also expected that the ZIP and ZINB regression-based EWMA or CUSUM charts are
better able to detect an OC distributional shift due to parameter E[pOC ]. This because it is shown in
Chapter 5 that the ZIP-EWMA chart performs satisfactory in detecting an OC shift in ZIP parameter
p. The recently published paper of Mahmood et al. (2021) addresses the ZIP and ZINB regression-based
EWMA and CUSUM charts for Pearson residuals. However, it would be interesting to investigate the
performance deviance and randomised quantile residuals in these charts as well. Especially because the
conclusions of this project state that deviance residuals outperform Pearson residuals in the ZIP and
ZINB regression-based Shewhart charts.

In addition to that, it was chosen to limit the scope of this project to monitoring predictive residuals
only. Monitoring predictive residuals is standard in the GLM-based SPC literature, but the existence of
alternatives should be considered as well. Monitoring recursive residuals or recursive regression coefficients
avoids the need for a Phase I, such that a self-starting approach could be designed. It should be noticed
however that the ZIP and ZINB regression models require a large data set to obtain stable estimations
for regression coefficients. This is due to the infrequent non-zero observations. Nevertheless, self-starting
ZIP and ZINB regression-based control charts could present a great advantage in case Phase I data is
unavailable. In addition, it is explained in Section 3.1 that residuals from a recursive linear regression
model follow an independent distribution. This has not been proved so far for GLM, ZIP or ZINB
regression residuals, but independence of residuals could provide an advantage when monitoring them in
a Shewhart chart. Namely, independently distributed observations avoid the need to solve control limits
numerically by simulation.



10.3. FUTURE RESEARCH 99

Then finally, the GLM-based TBE chart could be researched further as well. The design of the Gamma
GLM-based TBE chart in this thesis is completely based on the assumption that the time-between-events
of ZIP or ZINB distributed data is Gamma distributed. This is however not necessarily true in practice,
and the distribution of the TBE data depends on the distribution of defect observations. Nevertheless, we
obtain promising performance results from the Gamma GLM-based TBE charts, which seem to improve
with higher proportions of zero-inflation in the IC data. Hence, GLM-based TBE charts could present an
opportunity for monitoring very high-purity processes which include one or more covariates. Currently,
there is no literature available regrading regression-based TBE charts. This is most likely due to the fact
that not all covariates can be aggregated as easily as in the context of plastic pellet production. Still,
regression-based TBE charts would be interesting to further explore. For example, this thesis is limited
to Gamma GLM-based TBE Shewhart charts with aggregation level r = 1. However, other aggregation
levels should be evaluated as well before designing a GLM-based TBE chart in practice. In addition,
GLM-based TBE EWMA or CUSUM charts could also be designed and other EDM distributions can be
considered for the TBE data as well.
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A | Appendix: Lemmas and proofs

This appendix contains the mathematical details that support the thesis. A proof of the ZIP, ZINB and
Gamma expected value and variance is provided in Section A.1, and a proof of the normality of quantile
residuals is provided in Section A.2.

A.1 ZIP, ZINB and Gamma expected value and variance

Lemma A.1.1 (Expected value of the zero-inflated Poisson distribution). Let us assume random
variable Y follows a zero-inflated Poisson distribution with probability mass function

P (Y = y) =

{
p+ (1− p)e−λ if y = 0

(1− p) e
−λλy

y! if y > 0

where both λ and p are known. Then the expected value of Y is defined as E[Y ] = (1− p)λ.

Proof. The expected value of Y is defined as:

E [Y ] =

∞∑
y=0

y · P (Y = y)

= 0 ·
[
p+ (1− p)e−λ

]
+ (1− p)

∞∑
y=1

y
e−λλy

y!

= (1− p)λe−λ
∞∑
k=0

λk

k!

= (1− p)λ

where the infinite sum equals the Taylor expansion of the exponential function eλ. Hence,
∑∞
k=0

λk

k! = eλ

which ensures E [Y ] = (1− p)λ. This concludes the proof.

Lemma A.1.2 (Variance of the zero-inflated Poisson distribution). Let us assume random vari-
able Y follows a zero-inflated Poisson distribution with probability mass function

P (Y = y) =

{
p+ (1− p)e−λ if y = 0

(1− p) e
−λλy

y! if y > 0

where both λ and p are known. Then the variance of Y is defined asVar(Y ) = (1− p)(λ+ pλ2).

Proof. The variance of a random variable is defined by Var(Y ) = E[Y 2]−E[Y ]2. We have from Lemma
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A.1.1 that E[Y ] = (1− p)λ. We proceed with the definition of E[Y 2] as follows.

E[Y 2] =

∞∑
y=0

y2 · P (Y = y)

= (1− p)
∞∑
y=1

y2 e
−λλy

y!

= (1− p)(λ+ λ2)e−λ
∞∑
k=0

λk

k!

where we substitute y = k+ 1 in the second step and the infinite sum equals the Taylor expansion of the
exponential function eλ. Hence,

∑∞
k=0

λk

k! = eλ which ensures E [Y 2] = (1− p)(λ+ λ2). We can use this
definition, and the result from A.1.1 to obtain a definition for the variance.

Var(Y ) = E[Y 2]− (E[Y ])2

= (1− p)(λ+ λ2)− (1− p)2λ2

= (1− p)(λ+ pλ2)

This concludes the proof.

Lemma A.1.3 (Expected value of the zero-inflated negative binomial distribution). Let us
assume random variable Y follows a zero-inflated negative binomial distribution with probability mass
function

P (Y = y) =

p+ (1− p)
(
1 + λ

τ

)−τ
if y = 0

(1− p)Γ(y+τ)
y!Γ(τ)

(
1 + λ

τ

)−τ (
1 + τ

λ

)−y if y > 0

where parameters τ , λ and p are known. Then the expected value of Y is defined as E[Y ] = (1− p)λ.

Proof. We approach this proof by using the definition of the binomial coefficient, Γ(y+τ)
y!Γ(τ) =

(
y+τ−1
y

)
=

(y+τ−1)!
y!(τ−1)! , and defining the expected value of Y as:

E[Y ] =

∞∑
y=0

y · P (Y = y)

=

∞∑
y=1

(1− p) Γ(y + τ)

(y − 1)!Γ(τ)

(
1 +

λ

τ

)−τ (
1 +

τ

λ

)−y
= (1− p)τ

∞∑
y=1

(
y + τ − 1

y − 1

)(
τ

τ + λ

)τ (
λ

τ + λ

)y

since y
(
y+τ−1
y

)
= τ

(
y+τ−1
y−1

)
by definition of the binomial coefficient. We proceed by rewriting the definition

of E[Y ] into the exact form that is needed to apply the binomial theorem. This requires substituting
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m = y − 1. The binomial theorem is finally applied in the one but last step of the following definition.

E[Y ] = (1− p)τ
∞∑
m=0

(
m+ τ

m

)(
τ

τ + λ

)τ (
λ

τ + λ

)m+1

= (1− p) λ

τ + λ
τ

∞∑
m=0

(
m+ τ

m

)(
τ

τ + λ

)τ (
λ

τ + λ

)m
= (1− p)λ

∞∑
m=0

(
m+ τ

m

)(
τ

τ + λ

)τ+1(
λ

τ + λ

)m
= (1− p)λ

(
τ

τ + λ
+

λ

τ + λ

)m+τ

= (1− p)λ

By use of the binomial theorem we have found that E[Y ] = (1− p)λ. This concludes the proof.

Lemma A.1.4 (Variance of the zero-inflated negative binomial distribution). Let us assume
random variable Y follows a zero-inflated negative binomial distribution with probability mass function

P (Y = y) =

p+ (1− p)
(
1 + λ

τ

)−τ
if y = 0

(1− p)Γ(y+τ)
y!Γ(τ)

(
1 + λ

τ

)−τ (
1 + τ

λ

)−y if y > 0

where parameters τ , λ and p are known. Then the variance of Y is defined as Var(Y ) = λ(1 − p)(1 +

pλ+ λ/τ).

Proof. The variance of a random variable is defined by Var(Y ) = E[Y 2]−E[Y ]2. We have from Lemma
A.1.3 that E[Y ] = (1− p)λ. We proceed with the definition of E[Y 2] as follows.

E[Y 2] =

∞∑
y=0

y2 · P (Y = y)

=

∞∑
y=1

(1− p)y2 Γ(y + τ)

(y)!Γ(τ)

(
1 +

λ

τ

)−τ (
1 +

τ

λ

)−y
= (1− p)τ

∞∑
y=1

y

(
y + τ − 1

y − 1

)(
τ

τ + λ

)τ (
λ

τ + λ

)y
= (1− p)τ

∞∑
m=0

(m+ 1)

(
m+ τ

m

)(
τ

τ + λ

)τ (
λ

τ + λ

)m+1

We can rewrite the binomial coefficient in this definition as:(
m+ τ

m

)
(m+ 1) =

(m+ τ)!

m!τ !
(m+ 1) =

(m+ τ)!

m!τ !
m+

(m+ τ)!

m!τ !
=

(m+ τ)!

(m− 1)!τ !
+

(m+ τ)!

m!τ !

=
(m+ τ)!

(m− 1)!(τ + 1)!
(τ + 1) +

(m+ τ)!

m!τ !
=

(
m+ τ

m− 1

)
(τ + 1) +

(
m+ τ

m

)
Hence, the definition of E[Y 2] can be written as:

E[Y 2] = (1− p)τ(τ + 1)
∞∑
m=0

(
m+ τ

m− 1

)(
τ

τ + λ

)τ (
λ

τ + λ

)m+1

+ (1− p)τ
∞∑
m=0

(
m+ τ

m

)(
τ

τ + λ

)τ (
λ

τ + λ

)m+1
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By the binomial identity we have that
(−n
k

)
=
(
n+k−1

k

)
(−1)k. Therefore,

E[Y 2] = (1− p)τ(τ + 1)

∞∑
m=0

(
−(τ + 2)

m− 1

)
(−1)m−1

(
τ

τ + λ

)τ (
λ

τ + λ

)m+1

+ (1− p)τ
∞∑
m=0

(
−(τ + 1)

m

)
(−1)m

(
τ

τ + λ

)τ (
λ

τ + λ

)m+1

= (1− p)τ(τ + 1)

(
τ

τ + λ

)τ (
λ

τ + λ

)2 ∞∑
m=0

(
−(τ + 2)

m− 1

)(
−λ
τ + λ

)m−1

+ (1− p)τ
(

τ

τ + λ

)τ (
λ

τ + λ

) ∞∑
m=0

(
−(τ + 1)

m

)(
−λ
τ + λ

)m
.

By the binomial theorem, we have that:

E[Y 2] = (1− p)τ(τ + 1)

(
τ

τ + λ

)τ (
λ

τ + λ

)2(
1− λ

τ + λ

)−(τ+2)

+ (1− p)τ
(

τ

τ + λ

)τ (
λ

τ + λ

)(
1− λ

τ + λ

)−(τ+1)

= (1− p)τ(τ + 1)

(
λ

τ + λ

)2(
τ

τ + λ

)−2

+ (1− p)τ
(

λ

τ + λ

)(
τ

τ + λ

)−1

= (1− p)λ [λ+ λ/τ + 1]

Now that we have a definition for E[Y 2], we can define the variance by

Var(Y ) = E[Y 2]− (E[Y ])2

= (1− p)λ [λ+ λ/τ + 1]− (1− p)2λ2

= (1− p)λ [1 + pλ+ λ/τ ] .

This concludes the proof.

Lemma A.1.5 (Expected value of the Gamma distribution). Let us assume that random variable T
follows a Gamma distribution with shape parameter k and scale parameter s. The probability distribution
function at point t is defined as

fT (t, k, s) =
1

skΓ(k)
tk−1e−t/s.

Then the variance of T equals Var[T ] = ks2.

Proof. The expected value of T is defined as

E [T ] =

∫ ∞
0

tfT (t, k, s)dt =
1

skΓ(k)

∫ ∞
0

tke−t/sdt

Substituting z = t/s leads to

=
s

Γ(k)

∫ ∞
0

zke−zdz =
sΓ(k + 1)

Γ(k)
=
skΓ(k)

Γ(k)
= ks

where in the second step we use the definition of the Gamma function Γ(k) =
∫∞

0
zk−1e−zdz, and in the

third we use the Gamma difference equation Γ(k + 1) = Γ(k), which follows directly from the Gamma
function.
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Lemma A.1.6 (Variance of the Gamma distribution). Let us assume that random variable T

follows a gamma distribution with shape parameter k and scale parameter s. The probability distribution
function at point t is defined as

fT (t, k, s) =
1

skΓ(k)
tk−1e−t/s.

Then the expected value of T equals E[T ] = ks.

Proof. The variance of a random variable is defined by Var(T ) = E[T 2] − E[T ]2. By Lemma A.1.5 we
have that E[T ]2 = (ks)2. The value of E[T 2] is defined as

E [T 2] =

∫ ∞
0

t2fT (t, k, s)dt =
1

skΓ(k)

∫ ∞
0

tk+1e−t/sdt

Substituting z = t/s leads to

=
s2

Γ(k)

∫ ∞
0

zk+1e−zdz =
s2Γ(k + 2)

Γ(k)
=
s2k(k + 1)Γ(k)

Γ(k)
= k(k + 1)s2

where in the second step we use the definition of the Gamma function Γ(k) =
∫∞

0
zk−1e−zdz, and in the

third we use the Gamma difference equation Γ(k + 2) = k(k + 1)Γ(k), which follows directly from the
Gamma function. Hence, the variance is defined as

Var(T ) = E[T 2]− E[T ]2 = k(k + 1)s2 − k2s2 = ks2

This concludes the proof.

A.2 Normality of quantile residuals

Lemma A.2.1 (Normality of quantile residuals, continuous case). Let Y be a continuous random
variable with FY (y) = P (Y ≤ y). Let rQ = Φ−1(FY (Y )) where Φ(·) represents the cumulative distribution
function of the standard normal distribution. Then rQ follows a standard normal distribution.

Proof. Let U = FY (Y ) and F−1
Y (u) ≡ inf{u : FY (y) ≥ u} for u ∈ (0, 1). Then:

FU (u) = P (U ≤ u)

= P (FY (Y ) ≤ u)

= P (Y ≤ F−1
Y (u))

= FY (F−1
Y (u))

= u

Hence, we have that U follows a [0,1] uniform distribution. By definition of U , we have that rQ = Φ−1(U).
Thus:

FrQ(r) = P (rQ ≤ r)
= P (Φ−1(U) ≤ r)
= P (U ≤ Φ(r))

= Φ(r)

Hence, rQ follows a standard normal distribution. This concludes the proof.

Lemma A.2.2 (Normality of randomised quantile residuals, discrete case). Let Y be a discrete
random variable with FY (y) = P (Y ≤ y). Let b = FY (y) and a = limε→0− FY (y+ ε). Hence, a, b ∈ (0, 1]
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and a < b. Let rQ = Φ−1(U) where U ∼ Uniform(a, b), and Φ(·) represents the cumulative distribution
function of the standard normal distribution. Then rQ follows a standard normal distribution.

Proof. We have:
FrQ(r) = P (rQ ≤ r)

= P (Φ−1(U) ≤ r)
= P (U ≤ Φ(r))

Let us denote S as the support of Y . Then we can condition on the value of Y , to obtain:

FrQ(r) =
∑
y∈S

P (U ≤ Φ(r)|Y = y)P (Y = y)

=
∑
y∈S

P (U ≤ Φ(r)| lim
ε→0−

FY (y + ε) < U ≤ FY (y))P (Y = y)

=
∑
y∈S

P (U ≤ Φ(r)|ay < U ≤ by)P (Y = y)

where ay = limε→0− FY (y+ ε) and by = FY (y). For a given value Φ(r), let us define the set S1 ⊆ S such
that {y ∈ S1 : Φ(r) < ay}. Notice that for discrete distributions, there is a unique value ỹ ∈ S for which
aỹ ≤ Φ(r) ≤ bỹ}. Finally, let us define the subset S2 ⊆ S such that {y ∈ S2 : by < Φ(r)}. Notice that
{S1 ∪ ỹ ∪ S2} = S. Also notice that and y1 > ỹ and y2 < ỹ for all y1 ∈ S1 and y2 ∈ S2. Then we have:

FrQ(r) =
∑
y∈S1

P (U ≤ Φ(r) |Φ(r) < ay) · P (Y = y) + P (U ≤ Φ(r) | aỹ ≤ Φ(r) < bỹ) · P (Y = ỹ)

+
∑
y∈S2

P (U ≤ Φ(r) |Φ(r) ≥ by) · P (Y = y)

=
∑
y∈S1

0 · P (Y = y) +
Φ(r)− aỹ
bỹ − aỹ

P (Y = ỹ) +
∑
y∈S2

1 · P (Y = y)

=
Φ(r)− P (Y < ỹ)

P (Y = ỹ)
P (Y = ỹ) + P (Y < ỹ)

= Φ(r)

since bỹ−aỹ = limε→0− FY (ỹ)−FY (ỹ+ε) = P (Y = ỹ) and aỹ = limε→0− FY (ỹ+ε) = P (Y < ỹ). Hence,
we have ultimately found that rQ follows a standard normal distribution. This concludes the proof.



B | Additional results

This appendix contains additional results that were used in the project but omitted from the main
report. Section B.1 contains additional results of the ZIP-EWMA chart while Section B.2 shows the
analysis results of regarding distribution of ZIP and ZINB Pearson, deviance and randomised quantile
residuals in IC scenarios 2, 3 and 4. Sections B.3 and B.4 show the baseline performance and performance
while estimating Phase I effects results for IC scenarios 3 and 4. The corresponding ARL and SDRL
values are provided in Section B.5 after which additional results of the Gamma GLM-based TBE charts
are provided in Section B.6.

111
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B.1 Additional results of ZIP-EWMA

p Predefined L n Obtained SDRL Nr. runs with % of

ARL ARL no OC signal total

0.3 200 2.5771 400 174.1836 132.6692 1351 13.51

1000 202.5332 194.4338 61 0.61

2000 197.8801 198.3860 1 0.01

370 2.8360 740 316.2641 243.8205 1307 13.07

1850 365.5290 358.0128 68 0.68

3700 369.8448 363.8795 1 0.01

500 2.9547 1000 428.3289 327.9250 1273 12.73

2500 482.4411 461.5741 51 0.51

5000 491.0324 489.8747 0 0.0

0.5 200 2.7115 400 175.4360 132.6517 1424 14.24

1000 207.8926 199.5865 77 0.77

2000 205.4243 203.5562 0 0.00

370 3.0107 740 319.7327 247.3616 1414 14.14

1850 365.8661 360.2878 79 0.79

3700 369.8831 367.7087 0 0.00

500 3.1554 1000 432.5587 332.3471 1385 13.85

2500 505.3993 488.2312 79 0.79

5000 508.2210 501.1221 0 0.00

0.8 200 3.1804 400 170.0864 133.4355 1375 13.75

1000 199.5170 195.9570 74 0.74

2000 196.7787 198.6387 0 0.00

370 3.5951 740 315.6735 244.3463 1311 13.11

1850 357.9643 350.2038 58 0.58

3700 354.6419 361.5027 0 0.00

500 3.8186 1000 427.6744 331.4937 1349 13.49

2500 491.2253 475.2914 70 0.70

5000 504.2220 508.9362 1 0.01

Table B.1: Results of ARL computations with the total number of observations n equal to 2, 5 and 10
times the predefined ARL value.
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B.2 Distribution of residuals in IC scenarios 2,3 and 4

Figure B.1: Density and Q-Q plots of ZIP regression residuals for IC Scenario 2 (ZIP), indicating
whether the residuals originates from the zero-inflation (red) or the Poisson distribution (blue).

Figure B.2: Breakdown of Pearson residuals in IC Scenario 2 (ZIP), with: a) Raw residuals rj = yj − µ̂j
plotted against prediction µ̂j , b) Pearson residuals rPj plotted against prediction µ̂j and c) a density

plot of Pearson residuals.
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Figure B.3: Breakdown of deviance residuals in IC Scenario 2 (ZIP), with: a) the squared unit deviance√
dj plotted against prediction µ̂j , b) deviance residuals rDj plotted against prediction µ̂j and c) a

density plot of deviance residuals.

Figure B.4: Autocorrelation plot of Pearson, deviance and randomised quantile residuals in residuals for
IC Scenario 2 (ZIP).
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Figure B.5: Density and Q-Q plots of ZIP regression residuals for IC Scenario 3 (ZINB), indicating
whether the residuals originates from the zero-inflation (red) or the Poisson distribution (blue).

Figure B.6: Breakdown of Pearson residuals in IC Scenario 3 (ZINB), with: a) Raw residuals
rj = yj − µ̂j plotted against prediction µ̂j , b) Pearson residuals rPj plotted against prediction µ̂j and c)

a density plot of Pearson residuals.
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Figure B.7: Breakdown of deviance residuals in IC Scenario 3 (ZINB), with: a) the squared unit
deviance

√
dj plotted against prediction µ̂j , b) deviance residuals rDj plotted against prediction µ̂j and

c) a density plot of deviance residuals.

Figure B.8: Autocorrelation plot of Pearson, deviance and randomised quantile residuals in residuals for
IC Scenario 3 (ZINB).



B.2. DISTRIBUTION OF RESIDUALS IN IC SCENARIOS 2,3 AND 4 117

Figure B.9: Density and Q-Q plots of ZIP regression residuals for IC Scenario 4 (ZINB), indicating
whether the residuals originates from the zero-inflation (red) or the Poisson distribution (blue).

Figure B.10: Breakdown of Pearson residuals in IC Scenario 4 (ZINB), with: a) Raw residuals
rj = yj − µ̂j plotted against prediction µ̂j , b) Pearson residuals rPj plotted against prediction µ̂j and c)

a density plot of Pearson residuals.
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Figure B.11: Breakdown of deviance residuals in IC Scenario 4 (ZINB), with: a) the squared unit
deviance

√
dj plotted against prediction µ̂j , b) deviance residuals rDj plotted against prediction µ̂j and

c) a density plot of deviance residuals.

Figure B.12: Autocorrelation plot of Pearson, deviance and randomised quantile residuals in residuals
for IC Scenario 4 (ZINB).



B.2. DISTRIBUTION OF RESIDUALS IN IC SCENARIOS 2,3 AND 4 119

No OC signal (% of total)
IC scenario Residuals ARL0 SDRL0 n = 2000 n = 3000 n = 4000

ZIP 1 Pearson 197.92 202.47 0.00 0.00 0.00
ZIP 1 Deviance 193.09 197.36 0.00 0.00 0.00
ZIP 1 Quantile 195.66 194.08 0.01 0.00 0.00
ZIP 2 Pearson 203.14 205.00 0.01 0.00 0.00
ZIP 2 Deviance 198.89 201.49 0.01 0.00 0.00
ZIP 2 Quantile 202.03 204.90 0.00 0.00 0.00
ZINB 3 Pearson 197.98 202.93 0.02 0.00 0.00
ZINB 3 Deviance 192.91 200.62 0.01 0.00 0.00
ZINB 3 Quantile 196.84 199.18 0.00 0.00 0.00
ZINB 3 Pearson 202.39 207.40 0.02 0.00 0.00
ZINB 3 Deviance 199.44 205.67 0.01 0.00 0.00
ZINB 3 Quantile 198.49 202.19 0.01 0.00 0.00

Table B.2: Percentage of runs with no OC signal for the ZIP and ZINB regression-based Shewhart
charts with symmetric control limits, for n = 2000, 3000, 4000.

No OC signal (% of total)
IC scenario Residuals ARL0 SDRL0 n = 2000 n = 3000 n = 4000

ZIP 1 Pearson 197.98 201.70 0.00 0.00 0.00
ZIP 1 Deviance 194.76 196.27 0.00 0.00 0.00
ZIP 1 Quantile 199.85 200.79 0.02 0.00 0.00
ZIP 2 Pearson 198.66 200.51 0.00 0.00 0.00
ZIP 2 Deviance 196.69 199.75 0.01 0.00 0.00
ZIP 2 Quantile 197.49 198.12 0.01 0.00 0.00
ZINB 3 Pearson 201.26 205.66 0.01 0.00 0.00
ZINB 3 Deviance 195.76 204.94 0.02 0.00 0.00
ZINB 3 Quantile 195.87 199.72 0.00 0.00 0.00
ZINB 4 Pearson 203.78 208.60 0.02 0.00 0.00
ZINB 4 Deviance 198.68 203.58 0.02 0.00 0.00
ZINB 4 Quantile 202.90 203.91 0.00 0.00 0.00

Table B.3: Percentage of runs with no OC signal for the ZIP and ZINB regression-based Shewhart
charts with probability control limits, for n = 2000, 3000, 4000.
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B.3 Baseline performance of regression-based Shewhart chart

Figure B.13: Baseline ARL1 performance of the (rP , L)-, (rD, L)- and (rQ, L)-Shewhart
chart for IC ZINB Scenario 3 with E[pIC ] = 0.61 and E[λIC ] = 1.82.

Figure B.14: Baseline ARL1 performance of the (rP , L)-, (rD, L)- and (rQ, L)-Shewhart
chart for IC ZINB Scenario 4 with E[pOC ] = 0.38 and E[λIC ] = 8.16.
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Figure B.15: Baseline ARL1 performance of the (rP , Q)-, (rD, Q)- and (rQ, Q)-Shewhart
chart for IC ZINB Scenario 3 with E[pIC ] = 0.61 and E[λIC ] = 1.82.

Figure B.16: Baseline ARL1 performance of the (rP , Q)-, (rD, Q)- and (rQ, Q)-Shewhart
chart for IC ZINB Scenario 4 with E[pOC ] = 0.38 and E[λIC ] = 8.16.
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B.4 Performance results while considering Phase I effects

Figure B.17: The density of the charting constant L, solved 100 times for performance evaluation
while taking into account the effects of Phase I, and for the (rP , L)- and (rD, L)-Shewhart chart

in each IC scenario.
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Figure B.18: The density of the charting constants Q1 and Q2, solved 100 times for performance
evaluation while taking into account the effects of Phase I, and for the (rP , Q)-Shewhart chart in

each IC scenario.
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Figure B.19: The density of the charting constants Q1 and Q2, solved 100 times for performance
evaluation while taking into account the effects of Phase I, and for the (rD, Q)-Shewhart chart in

each IC scenario.
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Figure B.20: ARL1 performance of the (rP , L)-, (rD, L)- and (rQ, L)-Shewhart, while considering
Phase I estimates, for IC ZINB Scenario 3 with E[pIC ] = 0.61 and E[λIC ] = 1.82.

Figure B.21: ARL1 performance of the (rP , L)-, (rD, L)- and (rQ, L)-Shewhart, while considering
Phase I estimates, for IC ZINB Scenario 4 with E[pOC ] = 0.38 and E[λIC ] = 8.16.
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Figure B.22: ARL1 performance of the (rP , Q)-, (rD, Q)- and (rQ, Q)-Shewhart, while considering
Phase I estimates, for IC ZINB Scenario 3 with E[pIC ] = 0.61 and E[λIC ] = 1.82.

Figure B.23: ARL1 performance of the (rP , Q)-, (rD, Q)- and (rQ, Q)-Shewhart, while considering
Phase I estimates, for IC ZINB Scenario 4 with E[pOC ] = 0.38 and E[λIC ] = 8.16.
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B.5 ARL and SDRL results of the regression-based
Shewhart charts

OC scenario due to decreased/increased E[λOC ]

(rP , L)-Shewhart (rD, L)-Shewhart (rQ, L)-Shewhart
βOC0 E[λOC ] ARL1 SDRL ARL1 SDRL ARL1 SDRL

0.10 1.82 197.87 197.78 196.23 195.00 205.37 206.83
-0.01 1.64 252.19 255.48 279.91 278.15 246.23 246.97
-0.12 1.46 307.01 308.33 370.11 372.49 274.67 272.31
-0.26 1.28 401.10 402.18 403.93 398.42 306.12 305.46
-0.41 1.09 524.25 524.96 322.63 321.75 318.18 315.73
-0.59 0.91 693.62 688.94 204.47 204.42 332.53 333.42
-0.82 0.73 983.50 913.51 129.59 127.76 332.20 336.41
-1.10 0.55 1398.71 1182.04 85.99 86.28 318.78 318.16
0.10 1.82 202.33 202.66 199.73 198.15 201.62 203.68
0.36 2.37 110.18 108.96 66.51 65.56 91.50 92.01
0.57 2.92 66.61 66.17 27.64 27.32 38.32 37.16
0.74 3.46 39.84 39.62 14.61 14.37 19.52 18.96
0.89 4.01 25.29 25.06 9.37 8.99 11.80 11.46
1.02 4.56 15.92 15.20 7.07 6.48 8.53 7.91
1.13 5.10 10.59 10.02 5.58 5.01 6.47 5.92
1.23 5.65 7.82 7.29 4.74 4.16 5.42 4.81

OC scenario due to decreased/increased E[pOC ]

(rP , L)-Shewhart (rD, L)-Shewhart (rQ, L)-Shewhart
γOC0 E[pOC ] ARL1 SDRL ARL1 SDRL ARL1 SDRL

0.50 0.60 198.30 198.83 200.07 199.53 204.75 203.48
0.20 0.54 162.14 162.85 169.20 166.83 195.00 199.46
-0.09 0.48 132.85 133.10 143.42 142.16 179.85 178.52
-0.38 0.42 106.39 105.94 122.64 122.84 172.09 171.10
-0.69 0.36 87.75 86.71 105.15 104.40 156.42 156.40
-1.01 0.30 76.52 77.11 95.08 93.96 149.45 148.74
-1.37 0.24 63.89 63.49 84.75 84.94 139.89 139.56
-1.79 0.18 55.10 54.37 75.36 74.33 128.08 126.28
0.50 0.60 195.08 194.66 195.14 195.47 200.82 203.05
0.65 0.63 229.40 230.93 216.77 214.34 208.10 208.72
0.81 0.66 254.78 255.34 240.55 246.33 206.66 204.92
0.98 0.69 293.89 294.37 265.96 266.70 218.13 215.24
1.15 0.72 341.04 337.38 303.48 307.97 217.01 218.17
1.33 0.75 405.91 409.66 348.98 350.64 224.00 224.42
1.53 0.78 466.72 474.64 395.96 402.82 227.54 229.45
1.74 0.81 578.17 577.00 462.56 457.85 228.62 227.56

Table B.4: Baseline ARL1 results with corresponding SDRL, for the (rP , L)-, (rD, L)- and
(rQ, L)- Shewhart chart, for IC ZIP Scenario 1 with E[pIC ] = 0.60 and E[λIC ] = 1.82.
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OC scenario due to decreased/increased E[λOC ]

(rP , L)-Shewhart (rD, L)-Shewhart (rQ, L)-Shewhart
βOC0 E[λOC ] ARL1 SDRL ARL1 SDRL ARL1 SDRL

1.60 8.17 200.03 200.96 198.17 194.30 199.92 200.23
1.49 7.35 266.14 263.79 219.36 223.59 277.85 278.05
1.38 6.53 356.75 360.77 112.69 113.69 336.67 345.71
1.24 5.72 449.94 448.38 45.97 45.56 358.54 361.55
1.09 4.90 564.09 564.93 21.29 20.87 367.81 363.85
0.91 4.08 597.51 591.00 11.85 11.40 366.74 363.06
0.68 3.27 498.76 491.07 7.72 7.19 344.79 345.40
0.40 2.45 309.26 308.30 5.54 5.02 323.80 328.90
1.60 8.17 202.57 199.98 200.37 198.91 203.92 202.43
1.86 10.62 81.92 80.55 24.82 24.75 30.64 30.61
2.07 13.07 27.00 26.48 7.11 6.67 8.36 7.86
2.24 15.52 9.29 8.72 3.85 3.34 4.28 3.74
2.39 17.97 4.58 4.08 2.80 2.23 3.02 2.47
2.52 20.42 3.00 2.45 2.30 1.73 2.43 1.87
2.63 22.87 2.33 1.76 2.05 1.48 2.13 1.58
2.73 25.31 2.03 1.46 1.91 1.32 1.96 1.37

OC scenario due to decreased/increased E[pOC ]

(rP , L)-Shewhart (rD, L)-Shewhart (rQ, L)-Shewhart
γOC0 E[pOC ] ARL1 SDRL ARL1 SDRL ARL1 SDRL

-0.60 0.38 202.79 200.84 201.71 203.40 200.69 200.35
-0.80 0.34 182.40 181.69 185.67 186.31 203.02 201.16
-1.00 0.30 164.86 163.01 172.48 168.96 209.50 209.83
-1.22 0.26 151.62 150.93 165.84 164.86 208.89 210.51
-1.46 0.23 137.62 136.12 158.13 156.94 213.17 211.81
-1.73 0.19 125.05 124.54 149.18 146.33 215.45 212.79
-2.04 0.15 109.99 110.51 140.18 140.02 216.51 215.79
-2.41 0.11 98.45 97.62 131.84 132.39 209.50 208.21
-0.60 0.38 202.49 201.17 199.17 197.97 198.62 198.24
-0.50 0.40 207.37 207.19 208.02 208.66 198.61 197.40
-0.41 0.42 215.62 214.08 215.79 217.90 200.74 200.03
-0.32 0.43 221.32 222.04 220.63 218.39 194.43 191.14
-0.22 0.45 232.36 231.16 232.81 233.25 192.44 190.37
-0.13 0.47 236.53 237.69 237.24 238.05 191.29 189.30
-0.04 0.49 244.70 244.04 247.78 245.00 185.30 181.07
0.05 0.51 249.52 246.39 259.14 261.01 183.66 180.73

Table B.5: Baseline ARL1 results with corresponding SDRL, for the (rP , L)-, (rD, L)- and
(rQ, L)- Shewhart chart, for IC ZIP Scenario 2 with E[pIC ] = 0.38 and E[λIC ] = 8.17.
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OC scenario due to decreased/increased E[λOC ]

(rP , L)-Shewhart (rD, L)-Shewhart (rQ, L)-Shewhart
βOC0 E[λOC ] ARL1 SDRL ARL1 SDRL ARL1 SDRL

0.10 1.82 198.08 194.59 194.92 190.84 204.54 202.71
-0.01 1.64 250.81 248.42 286.91 282.86 240.67 243.71
-0.12 1.46 323.50 320.38 414.26 416.24 276.43 274.29
-0.26 1.28 409.60 407.07 570.26 563.56 308.17 308.48
-0.41 1.09 548.21 547.25 687.51 675.64 322.36 325.62
-0.59 0.91 734.39 712.59 674.36 662.76 332.25 335.06
-0.82 0.73 1026.11 958.13 505.37 505.24 325.60 321.70
-1.10 0.55 1484.99 1229.41 309.66 304.92 318.92 325.69
0.10 1.82 196.23 197.23 199.30 200.44 204.68 205.78
0.36 2.37 107.04 105.52 75.24 74.34 98.14 94.90
0.57 2.92 59.90 58.28 34.77 34.01 47.67 47.52
0.74 3.46 36.67 36.42 19.69 19.09 26.72 26.23
0.89 4.01 23.14 22.44 12.70 12.29 16.41 15.98
1.02 4.56 15.73 15.14 9.32 8.80 11.49 10.85
1.13 5.10 11.54 10.85 7.29 6.71 8.80 8.24
1.23 5.65 9.09 8.59 6.16 5.61 7.27 6.70

OC scenario due to decreased/increased E[pOC ]

(rP , L)-Shewhart (rD, L)-Shewhart (rQ, L)-Shewhart
γOC0 E[pOC ] ARL1 SDRL ARL1 SDRL ARL1 SDRL

0.50 0.60 201.59 200.30 202.51 204.07 202.11 201.13
0.20 0.54 160.91 161.67 167.13 166.39 195.98 197.27
-0.09 0.48 130.17 130.11 141.66 140.97 184.01 184.67
-0.38 0.42 108.72 110.61 121.83 122.30 163.40 163.04
-0.69 0.36 88.68 87.61 106.22 105.43 155.87 156.60
-1.01 0.30 76.05 74.02 95.03 93.40 149.72 148.07
-1.37 0.24 64.30 64.52 82.54 83.64 136.35 137.52
-1.79 0.18 55.59 54.49 73.56 71.86 127.41 128.26
0.50 0.60 200.41 197.27 201.39 200.32 200.74 201.94
0.65 0.63 226.80 229.96 219.52 217.57 205.83 204.84
0.81 0.66 246.09 247.81 237.21 240.69 211.36 214.30
0.98 0.69 296.92 298.53 270.56 267.88 213.33 216.59
1.15 0.72 336.19 335.82 307.61 308.50 223.77 225.44
1.33 0.75 389.75 384.79 348.62 353.51 224.22 224.97
1.53 0.78 465.17 473.92 399.38 401.88 223.00 225.39
1.74 0.81 560.72 555.57 478.96 475.48 228.35 227.59

Table B.6: Baseline ARL1 results with corresponding SDRL, for the (rP , L)-, (rD, L)- and
(rQ, L)- Shewhart chart, for IC ZINB Scenario 3 with E[pIC ] = 0.60 and E[λIC ] = 1.82.
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OC scenario due to decreased/increased E[λOC ]

(rP , L)-Shewhart (rD, L)-Shewhart (rQ, L)-Shewhart
βOC0 E[λOC ] ARL1 SDRL ARL1 SDRL ARL1 SDRL

1.60 8.17 199.44 199.76 198.81 196.62 203.74 205.38
1.49 7.35 313.53 315.41 337.89 335.78 258.49 258.90
1.38 6.53 511.67 504.02 600.90 599.17 312.56 311.24
1.24 5.72 854.24 820.70 1000.32 930.82 348.54 342.19
1.09 4.90 1372.18 1159.06 1331.88 1146.28 350.20 348.03
0.91 4.08 2005.68 1390.28 1264.90 1109.14 349.25 353.41
0.68 3.27 2643.65 1427.74 914.42 872.50 334.84 329.63
0.40 2.45 3234.63 1233.03 529.94 530.56 304.28 302.48
1.60 8.17 200.66 199.95 197.72 196.51 199.39 198.70
1.86 10.62 63.71 62.74 56.03 55.92 78.34 78.49
2.07 13.07 28.25 27.91 24.44 24.22 33.49 33.07
2.24 15.52 15.87 15.35 13.90 13.40 18.50 18.01
2.39 17.97 10.28 9.83 9.15 8.59 11.74 11.32
2.52 20.42 7.44 6.94 6.73 6.21 8.32 7.83
2.63 22.87 5.83 5.32 5.39 4.92 6.44 5.89
2.73 25.31 4.85 4.34 4.48 3.94 5.27 4.77

OC scenario due to decreased/increased E[pOC ]

(rP , L)-Shewhart (rD, L)-Shewhart (rQ, L)-Shewhart
γOC0 E[pOC ] ARL1 SDRL ARL1 SDRL ARL1 SDRL

-0.60 0.38 201.54 201.58 200.20 199.02 203.10 203.25
-0.80 0.34 180.20 178.79 182.77 179.47 201.04 198.74
-1.00 0.30 163.84 161.23 173.04 171.81 207.52 204.36
-1.22 0.26 149.73 149.78 161.42 160.00 210.00 210.48
-1.46 0.23 134.71 135.43 149.78 150.30 208.25 206.27
-1.73 0.19 121.06 120.83 139.27 139.60 207.68 204.19
-2.04 0.15 113.24 114.67 130.18 130.85 205.58 203.31
-2.41 0.11 102.48 101.36 121.57 120.17 203.48 204.25
-0.60 0.38 196.70 197.16 195.58 197.64 201.33 202.97
-0.50 0.40 206.54 204.23 205.25 204.95 202.85 199.52
-0.41 0.42 222.15 225.90 213.25 214.37 198.62 198.85
-0.32 0.43 232.48 234.81 224.96 224.99 196.18 193.69
-0.22 0.45 244.96 243.78 232.08 230.83 195.19 196.57
-0.13 0.47 256.34 254.83 241.18 237.66 191.80 191.22
-0.04 0.49 275.60 270.74 254.53 253.11 188.66 188.35
0.05 0.51 283.45 283.27 261.63 261.69 189.62 189.08

Table B.7: Baseline ARL1 results with corresponding SDRL, for the (rP , L)-, (rD, L)- and
(rQ, L)- Shewhart chart, for IC ZINB Scenario 4 with E[pIC ] = 0.38 and E[λIC ] = 8.17.
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OC scenario due to decreased/increased E[λOC ]

(rP , Q)-Shewhart (rD, Q)-Shewhart (rQ, Q)-Shewhart
βOC0 E[λOC ] ARL1 SDRL ARL1 SDRL ARL1 SDRL

0.10 1.82 198.43 200.01 196.40 199.20 199.63 199.11
-0.01 1.64 218.76 219.25 181.91 178.96 240.01 237.98
-0.12 1.46 240.09 240.73 141.32 140.62 278.93 278.09
-0.26 1.28 258.38 258.38 95.84 96.57 309.18 315.64
-0.41 1.09 264.94 264.52 67.38 66.50 318.30 318.42
-0.59 0.91 240.44 240.33 46.39 46.94 335.12 335.15
-0.82 0.73 200.04 199.41 34.38 33.35 328.21 321.96
-1.10 0.55 150.26 149.43 27.94 27.36 323.88 326.14
0.10 1.82 198.76 195.64 199.61 201.54 203.78 207.01
0.36 2.37 145.54 143.25 104.21 104.27 91.34 90.72
0.57 2.92 101.94 100.89 40.50 40.22 38.73 38.36
0.74 3.46 69.85 69.97 20.00 19.22 19.63 18.81
0.89 4.01 47.14 46.64 11.95 11.40 11.84 11.26
1.02 4.56 31.94 31.56 8.48 7.98 8.48 8.04
1.13 5.10 21.16 20.79 6.58 6.02 6.58 6.04
1.23 5.65 14.13 13.70 5.42 4.92 5.44 4.94

OC scenario due to decreased/increased E[pOC ]

(rP , Q)-Shewhart (rD, Q)-Shewhart (rQ, Q)-Shewhart
γOC0 E[pOC ] ARL1 SDRL ARL1 SDRL ARL1 SDRL

0.50 0.60 200.29 200.67 199.52 196.55 202.99 201.23
0.20 0.54 194.40 194.43 185.05 184.62 191.02 190.48
-0.09 0.48 183.12 181.10 163.56 165.37 178.56 177.90
-0.38 0.42 164.53 163.67 150.10 151.42 166.85 164.98
-0.69 0.36 147.08 145.98 139.82 139.21 159.86 162.68
-1.01 0.30 130.26 128.81 126.28 124.73 149.21 150.86
-1.37 0.24 113.16 111.34 118.05 115.00 137.18 135.63
-1.79 0.18 95.51 94.44 106.41 108.21 125.25 126.09
0.50 0.60 201.13 197.42 201.37 199.95 202.31 200.68
0.65 0.63 197.43 196.11 207.07 211.48 205.10 204.40
0.81 0.66 194.07 193.34 221.90 220.23 210.70 209.72
0.98 0.69 187.40 185.12 232.86 227.82 215.43 214.67
1.15 0.72 176.39 174.90 244.21 243.13 218.82 220.63
1.33 0.75 164.46 164.66 257.18 259.97 221.27 221.12
1.53 0.78 150.00 151.80 262.80 262.06 226.01 229.16
1.74 0.81 135.96 134.56 272.29 271.62 226.32 224.83

Table B.8: Baseline ARL1 results with corresponding SDRL, for the (rP , Q)-, (rD, Q)- and
(rQ, Q)- Shewhart chart, for IC ZIP Scenario 1 with E[pIC ] = 0.60 and E[λIC ] = 1.82.
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OC scenario due to decreased/increased E[λOC ]

(rP , Q)-Shewhart (rD, Q)-Shewhart (rQ, Q)-Shewhart
βOC0 E[λOC ] ARL1 SDRL ARL1 SDRL ARL1 SDRL

1.60 8.17 199.21 193.47 202.88 202.44 202.93 204.95
1.49 7.35 233.50 231.62 138.65 137.29 280.00 280.12
1.38 6.53 266.93 262.93 63.35 63.35 330.54 327.37
1.24 5.72 294.39 294.07 28.03 27.60 361.76 360.42
1.09 4.90 292.09 284.47 14.64 14.18 356.88 355.33
0.91 4.08 241.08 243.02 8.80 8.32 363.83 364.41
0.68 3.27 164.91 163.58 5.98 5.43 348.01 350.56
0.40 2.45 102.21 101.64 4.56 4.05 325.00 326.68
1.60 8.17 202.03 202.86 201.16 199.01 202.74 200.29
1.86 10.62 111.36 111.40 32.81 32.02 31.53 30.96
2.07 13.07 47.04 46.33 8.34 7.79 8.28 7.71
2.24 15.52 15.86 15.48 4.32 3.76 4.30 3.76
2.39 17.97 6.76 6.23 3.03 2.43 3.02 2.43
2.52 20.42 3.85 3.31 2.42 1.85 2.43 1.86
2.63 22.87 2.81 2.32 2.12 1.56 2.12 1.55
2.73 25.31 2.26 1.67 1.95 1.35 1.95 1.36

OC scenario due to decreased/increased E[pOC ]

(rP , Q)-Shewhart (rD, Q)-Shewhart (rQ, Q)-Shewhart
γOC0 E[pOC ] ARL1 SDRL ARL1 SDRL ARL1 SDRL

-0.60 0.38 197.87 199.74 202.20 203.68 200.45 199.59
-0.80 0.34 200.41 200.80 186.61 183.54 204.53 204.25
-1.00 0.30 200.46 200.75 182.87 182.60 208.83 206.77
-1.22 0.26 195.33 194.31 170.34 167.03 208.87 208.81
-1.46 0.23 185.13 180.24 163.34 161.18 211.57 210.41
-1.73 0.19 177.89 177.96 157.32 153.39 217.15 217.32
-2.04 0.15 161.90 159.75 147.49 145.24 212.64 213.16
-2.41 0.11 150.91 150.04 146.10 147.41 213.08 211.39
-0.60 0.38 197.40 199.93 200.76 200.22 200.30 196.65
-0.50 0.40 195.88 195.95 208.94 209.10 202.42 203.44
-0.41 0.42 193.26 193.42 210.93 211.87 197.07 197.45
-0.32 0.43 190.90 188.41 221.43 223.40 195.59 193.77
-0.22 0.45 188.55 188.30 220.52 217.46 190.54 189.17
-0.13 0.47 183.02 182.03 230.98 229.10 189.09 189.03
-0.04 0.49 172.50 174.78 240.64 238.57 188.34 186.93
0.05 0.51 168.13 166.59 244.22 244.40 183.94 183.39

Table B.9: Baseline ARL1 results with corresponding SDRL, for the (rP , Q)-, (rD, Q)- and
(rQ, Q)- Shewhart chart, for IC ZIP Scenario 2 with E[pIC ] = 0.38 and E[λIC ] = 8.17.



B.5. ARL AND SDRL RESULTS OF THE REGRESSION-BASED SHEWHART CHARTS 133

OC scenario due to decreased/increased E[λOC ]

(rP , Q)-Shewhart (rD, Q)-Shewhart (rQ, Q)-Shewhart
βOC0 E[λOC ] ARL1 SDRL ARL1 SDRL ARL1 SDRL

0.10 1.82 198.67 198.80 198.49 200.97 203.64 211.16
-0.01 1.64 220.49 220.57 201.44 202.10 242.48 239.64
-0.12 1.46 240.83 242.38 181.06 180.66 283.87 282.76
-0.26 1.28 255.71 254.95 146.08 145.12 307.61 314.91
-0.41 1.09 266.63 266.42 109.84 106.38 319.22 314.96
-0.59 0.91 257.80 257.95 78.27 76.11 332.81 332.88
-0.82 0.73 219.75 220.88 56.81 55.79 331.04 328.13
-1.10 0.55 173.71 174.08 42.90 42.51 323.93 321.11
0.10 1.82 203.27 203.64 200.72 203.92 204.06 201.11
0.36 2.37 139.02 139.14 112.26 110.55 99.69 99.75
0.57 2.92 96.31 96.08 52.72 52.35 48.85 48.57
0.74 3.46 63.03 62.71 27.89 27.17 26.46 25.87
0.89 4.01 41.29 41.02 17.13 16.51 16.53 15.86
1.02 4.56 27.62 27.15 11.58 11.20 11.38 11.00
1.13 5.10 19.36 18.87 8.86 8.39 8.74 8.31
1.23 5.65 14.40 13.85 7.18 6.67 7.14 6.67

OC scenario due to decreased/increased E[pOC ]

(rP , Q)-Shewhart (rD, Q)-Shewhart (rQ, Q)-Shewhart
γOC0 E[pOC ] ARL1 SDRL ARL1 SDRL ARL1 SDRL

0.50 0.60 198.44 198.44 200.16 199.95 200.55 199.09
0.20 0.54 197.48 197.24 184.94 185.21 189.99 192.33
-0.09 0.48 182.76 182.16 166.17 166.50 178.96 177.06
-0.38 0.42 167.83 167.44 157.20 156.58 172.09 169.99
-0.69 0.36 149.11 150.74 142.26 142.89 158.49 159.37
-1.01 0.30 133.91 134.40 128.83 128.32 148.99 149.53
-1.37 0.24 113.07 110.84 120.44 119.04 135.94 134.19
-1.79 0.18 98.01 96.58 109.18 108.75 126.61 125.03
0.50 0.60 199.05 196.78 199.70 199.35 204.05 202.10
0.65 0.63 198.62 199.28 206.82 206.18 205.71 204.11
0.81 0.66 192.14 192.21 216.23 218.52 212.11 213.18
0.98 0.69 186.80 183.86 225.13 227.92 216.98 217.76
1.15 0.72 178.00 177.78 229.76 223.96 217.42 213.52
1.33 0.75 165.80 164.83 238.63 241.79 224.59 228.49
1.53 0.78 150.39 149.44 248.06 243.49 227.51 221.03
1.74 0.81 137.11 137.19 251.10 252.13 232.41 236.12

Table B.10: Baseline ARL1 results with corresponding SDRL, for the (rP , Q)-, (rD, Q)- and
(rQ, Q)- Shewhart chart, for IC ZINB Scenario 3 with E[pIC ] = 0.60 and E[λIC ] = 1.82.
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OC scenario due to decreased/increased E[λOC ]

(rP , Q)-Shewhart (rD, Q)-Shewhart (rQ, Q)-Shewhart
βOC0 E[λOC ] ARL1 SDRL ARL1 SDRL ARL1 SDRL

1.60 8.17 198.42 192.76 198.04 197.20 201.17 201.71
1.49 7.35 242.99 237.80 225.84 225.40 258.99 260.56
1.38 6.53 282.50 277.04 215.02 209.61 314.92 314.74
1.24 5.72 308.04 302.98 178.01 179.79 352.82 347.40
1.09 4.90 321.14 322.62 135.64 133.85 362.80 360.99
0.91 4.08 316.23 317.01 98.43 100.37 354.58 352.45
0.68 3.27 290.59 292.17 67.00 66.20 335.30 333.09
0.40 2.45 239.61 235.73 40.61 40.48 307.94 314.17
1.60 8.17 198.86 197.75 200.52 199.44 199.88 199.09
1.86 10.62 91.76 91.19 85.37 82.91 78.49 77.16
2.07 13.07 42.82 41.76 35.96 35.29 34.05 33.33
2.24 15.52 22.82 22.06 19.14 18.48 18.56 17.72
2.39 17.97 14.17 13.54 11.98 11.31 11.67 11.02
2.52 20.42 9.89 9.41 8.53 8.10 8.40 7.95
2.63 22.87 7.52 7.10 6.56 5.98 6.45 5.87
2.73 25.31 6.07 5.54 5.32 4.72 5.27 4.68

OC scenario due to decreased/increased E[pOC ]

(rP , Q)-Shewhart (rD, Q)-Shewhart (rQ, Q)-Shewhart
γOC0 E[pOC ] ARL1 SDRL ARL1 SDRL ARL1 SDRL

-0.60 0.38 197.42 192.85 198.90 197.84 201.69 201.16
-0.80 0.34 204.57 202.45 190.28 187.11 204.38 207.65
-1.00 0.30 202.07 199.18 183.05 182.32 207.20 204.29
-1.22 0.26 205.45 204.25 178.11 178.04 206.88 206.92
-1.46 0.23 198.98 200.34 171.24 172.23 208.51 207.40
-1.73 0.19 195.17 193.74 165.71 163.67 207.97 207.06
-2.04 0.15 184.28 184.52 158.98 158.28 207.70 204.09
-2.41 0.11 171.55 172.35 153.36 153.61 205.91 206.18
-0.60 0.38 200.23 197.58 200.54 200.36 204.06 202.03
-0.50 0.40 199.32 202.77 202.32 200.49 199.06 200.03
-0.41 0.42 193.73 192.48 205.64 202.56 198.94 199.40
-0.32 0.43 186.91 189.05 208.07 207.17 196.62 198.73
-0.22 0.45 181.68 182.41 211.03 209.77 192.99 194.56
-0.13 0.47 176.97 177.65 217.07 216.26 194.02 193.33
-0.04 0.49 168.58 166.95 221.04 219.15 192.40 190.89
0.05 0.51 162.88 159.23 221.40 220.15 187.15 192.39

Table B.11: Baseline ARL1 results with corresponding SDRL, for the (rP , Q)-, (rD, Q)- and
(rQ, Q)- Shewhart chart, for IC ZINB Scenario 4 with E[pIC ] = 0.38 and E[λIC ] = 8.17.
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OC scenario due to decreased/increased E[λOC ]

(rP , L)-Shewhart (rD, L)-Shewhart (rQ, L)-Shewhart
βOC0 E[λOC ] ARL1 ARL1 ARL1

0.10 1.82 225.25 219.13 176.81
-0.01 1.64 249.31 301.31 254.66
-0.12 1.46 305.12 460.31 262.72
-0.26 1.28 370.56 488.15 288.52
-0.41 1.09 464.81 410.50 302.31
-0.59 0.91 714.36 322.44 297.69
-0.82 0.73 904.07 168.48 320.94
-1.10 0.55 1416.19 111.27 341.83
0.10 1.82 219.76 227.12 173.00
0.36 2.37 147.34 76.17 96.17
0.57 2.92 80.47 28.29 31.81
0.74 3.46 54.82 17.07 21.23
0.89 4.01 26.73 9.54 10.59
1.02 4.56 16.14 6.70 7.30
1.13 5.10 13.99 6.16 6.85
1.23 5.65 8.48 4.61 5.04

OC scenario due to decreased/increased E[pOC ]

(rP , L)-Shewhart (rD, L)-Shewhart (rQ, L)-Shewhart
γOC0 E[pOC ] ARL1 ARL1 ARL1

0.50 0.60 240.19 242.20 201.83
0.20 0.54 168.85 179.03 169.94
-0.09 0.48 124.78 152.84 192.60
-0.38 0.42 119.68 140.44 192.31
-0.69 0.36 98.85 124.98 154.81
-1.01 0.30 92.14 99.83 143.09
-1.37 0.24 69.55 94.01 130.90
-1.79 0.18 62.87 91.17 129.38
0.50 0.60 222.45 235.76 193.25
0.65 0.63 277.52 253.54 214.71
0.81 0.66 243.73 254.85 201.19
0.98 0.69 321.63 312.12 205.25
1.15 0.72 348.60 349.07 203.68
1.33 0.75 429.82 411.71 221.50
1.53 0.78 534.50 403.43 220.31
1.74 0.81 655.97 487.14 217.75

Table B.12: ARL1 results with corresponding SDRL while taking into account Phase I
estimation effects, for the (rP , L)-, (rD, L)- and (rQ, L)- Shewhart chart, in IC ZIP Scenario 1

with E[pIC ] = 0.60 and E[λIC ] = 1.82.
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OC scenario due to decreased/increased E[λOC ]

(rP , L)-Shewhart (rD, L)-Shewhart (rQ, L)-Shewhart
βOC0 E[λOC ] ARL1 ARL1 ARL1

1.60 8.17 178.08 171.59 175.93
1.49 7.35 225.74 221.02 221.73
1.38 6.53 332.38 137.10 289.38
1.24 5.72 468.12 61.43 340.71
1.09 4.90 679.27 27.80 350.49
0.91 4.08 686.63 13.85 333.51
0.68 3.27 603.42 7.51 357.84
0.40 2.45 440.57 5.58 304.05
1.60 8.17 194.34 137.88 150.29
1.86 10.62 66.45 17.61 23.30
2.07 13.07 21.70 7.04 8.60
2.24 15.52 8.62 3.46 3.85
2.39 17.97 4.33 2.61 2.81
2.52 20.42 3.05 2.47 2.53
2.63 22.87 2.30 1.98 2.06
2.73 25.31 2.00 1.97 1.99

OC scenario due to decreased/increased E[pOC ]

(rP , L)-Shewhart (rD, L)-Shewhart (rQ, L)-Shewhart
γOC0 E[pOC ] ARL1 ARL1 ARL1

-0.60 0.38 213.49 185.00 157.21
-0.80 0.34 169.45 163.35 173.26
-1.00 0.30 166.02 126.57 165.79
-1.22 0.26 136.57 115.77 159.04
-1.46 0.23 124.11 134.59 153.20
-1.73 0.19 118.64 117.50 167.47
-2.04 0.15 103.58 132.57 178.84
-2.41 0.11 97.14 108.98 164.27
-0.60 0.38 202.97 167.51 175.83
-0.50 0.40 194.94 157.18 170.12
-0.41 0.42 181.50 177.53 175.84
-0.32 0.43 199.60 183.02 160.57
-0.22 0.45 269.77 196.43 173.66
-0.13 0.47 253.09 189.33 172.07
-0.04 0.49 235.93 171.23 155.42
0.05 0.51 230.32 193.79 134.00

Table B.13: ARL1 results with corresponding SDRL while taking into account Phase I
estimation effects, for the (rP , L)-, (rD, L)- and (rQ, L)- Shewhart chart, in IC ZIP Scenario 2

with E[pIC ] = 0.38 and E[λIC ] = 8.17.
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OC scenario due to decreased/increased E[λOC ]

(rP , L)-Shewhart (rD, L)-Shewhart (rQ, L)-Shewhart
βOC0 E[λOC ] ARL1 ARL1 ARL1

0.10 1.82 139.58 169.94 193.91
-0.01 1.64 158.51 218.01 221.72
-0.12 1.46 236.57 299.95 244.65
-0.26 1.28 296.60 432.54 285.54
-0.41 1.09 364.99 539.48 292.77
-0.59 0.91 501.91 429.54 312.75
-0.82 0.73 769.87 357.89 308.73
-1.10 0.55 1109.11 196.10 305.79
0.10 1.82 157.44 169.02 192.88
0.36 2.37 74.94 66.16 94.99
0.57 2.92 44.60 31.39 42.26
0.74 3.46 31.32 19.05 27.54
0.89 4.01 19.93 11.92 16.28
1.02 4.56 13.63 9.86 12.18
1.13 5.10 10.72 6.61 9.11
1.23 5.65 6.79 5.24 6.34

OC scenario due to decreased/increased E[pOC ]

(rP , L)-Shewhart (rD, L)-Shewhart (rQ, L)-Shewhart
γOC0 E[pOC ] ARL1 ARL1 ARL1

0.50 0.60 142.35 148.67 179.81
0.20 0.54 122.78 134.53 180.63
-0.09 0.48 92.86 109.81 174.66
-0.38 0.42 82.08 97.69 136.78
-0.69 0.36 66.06 90.34 147.50
-1.01 0.30 51.05 72.68 128.29
-1.37 0.24 47.98 70.78 113.05
-1.79 0.18 41.95 54.42 102.37
0.50 0.60 140.06 160.33 185.94
0.65 0.63 182.24 195.43 208.84
0.81 0.66 193.01 191.28 163.86
0.98 0.69 207.81 215.93 201.68
1.15 0.72 263.87 266.31 208.93
1.33 0.75 282.52 308.15 168.37
1.53 0.78 338.90 363.38 207.28
1.74 0.81 440.32 420.49 198.81

Table B.14: ARL1 results with corresponding SDRL while taking into account Phase I
estimation effects, for the (rP , L)-, (rD, L)- and (rQ, L)- Shewhart chart, in IC ZINB Scenario 3

with E[pIC ] = 0.60 and E[λIC ] = 1.82.
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OC scenario due to decreased/increased E[λOC ]

(rP , L)-Shewhart (rD, L)-Shewhart (rQ, L)-Shewhart
βOC0 E[λOC ] ARL1 ARL1 ARL1

1.60 8.17 169.95 160.41 189.99
1.49 7.35 252.56 271.15 233.15
1.38 6.53 392.63 427.59 311.29
1.24 5.72 664.74 668.36 330.80
1.09 4.90 1006.90 793.48 356.00
0.91 4.08 1559.31 640.62 359.44
0.68 3.27 2272.57 340.51 320.25
0.40 2.45 3036.57 269.19 327.94
1.60 8.17 157.19 160.38 188.48
1.86 10.62 57.84 53.70 75.94
2.07 13.07 25.00 21.74 29.57
2.24 15.52 15.98 14.27 19.34
2.39 17.97 9.68 8.64 11.21
2.52 20.42 6.94 6.05 7.35
2.63 22.87 5.29 5.21 5.99
2.73 25.31 4.51 4.17 5.17

OC scenario due to decreased/increased E[pOC ]

(rP , L)-Shewhart (rD, L)-Shewhart (rQ, L)-Shewhart
γOC0 E[pOC ] ARL1 ARL1 ARL1

-0.60 0.38 154.35 160.16 182.23
-0.80 0.34 140.90 152.28 201.63
-1.00 0.30 131.81 147.18 172.96
-1.22 0.26 112.39 127.81 185.14
-1.46 0.23 103.72 117.27 182.01
-1.73 0.19 85.46 99.42 167.53
-2.04 0.15 90.42 99.63 181.83
-2.41 0.11 81.76 93.66 180.59
-0.60 0.38 138.79 141.04 201.33
-0.50 0.40 161.88 172.97 189.99
-0.41 0.42 166.18 168.31 177.31
-0.32 0.43 157.20 164.38 164.12
-0.22 0.45 206.31 179.52 184.74
-0.13 0.47 238.63 214.73 186.24
-0.04 0.49 191.73 187.16 162.11
0.05 0.51 246.62 232.97 214.32

Table B.15: ARL1 results with corresponding SDRL while taking into account Phase I
estimation effects, for the (rP , L)-, (rD, L)- and (rQ, L)- Shewhart chart, in IC ZINB Scenario 4

with E[pIC ] = 0.38 and E[λIC ] = 8.17.



B.5. ARL AND SDRL RESULTS OF THE REGRESSION-BASED SHEWHART CHARTS 139

OC scenario due to decreased/increased E[λOC ]

(rP , L)-Shewhart (rD, L)-Shewhart (rQ, L)-Shewhart
βOC0 E[λOC ] ARL1 ARL1 ARL1

0.10 1.82 281.56 214.37 207.58
-0.01 1.64 301.06 218.41 267.05
-0.12 1.46 288.76 148.56 340.44
-0.26 1.28 332.81 101.92 327.77
-0.41 1.09 389.38 64.69 338.09
-0.59 0.91 378.08 45.34 350.15
-0.82 0.73 307.22 34.34 352.23
-1.10 0.55 217.13 27.72 371.50
0.10 1.82 245.60 229.72 247.68
0.36 2.37 176.37 127.28 103.79
0.57 2.92 131.56 40.89 37.81
0.74 3.46 91.44 20.75 19.89
0.89 4.01 49.17 12.51 12.53
1.02 4.56 31.66 9.65 9.72
1.13 5.10 17.62 6.89 7.03
1.23 5.65 14.74 6.21 6.33

OC scenario due to decreased/increased E[pOC ]

(rP , L)-Shewhart (rD, L)-Shewhart (rQ, L)-Shewhart
γOC0 E[pOC ] ARL1 ARL1 ARL1

0.50 0.60 249.83 243.04 205.87
0.20 0.54 248.75 216.14 212.35
-0.09 0.48 243.69 185.77 214.90
-0.38 0.42 222.11 182.55 216.40
-0.69 0.36 189.00 142.10 180.02
-1.01 0.30 189.28 174.84 214.97
-1.37 0.24 130.45 150.88 163.68
-1.79 0.18 133.86 126.94 148.35
0.50 0.60 276.44 244.50 226.66
0.65 0.63 231.19 239.43 201.97
0.81 0.66 223.40 291.33 237.74
0.98 0.69 253.47 281.97 204.91
1.15 0.72 204.12 311.13 226.67
1.33 0.75 195.59 321.01 259.62
1.53 0.78 181.31 350.76 219.19
1.74 0.81 188.88 404.57 251.29

Table B.16: ARL1 results with corresponding SDRL while taking into account Phase I
estimation effects, for the (rP , Q)-, (rD, Q)- and (rQ, Q)- Shewhart chart, in IC ZIP Scenario 1

with E[pIC ] = 0.60 and E[λIC ] = 1.82.
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OC scenario due to decreased/increased E[λOC ]

(rP , L)-Shewhart (rD, L)-Shewhart (rQ, L)-Shewhart
βOC0 E[λOC ] ARL1 ARL1 ARL1

1.60 8.17 227.79 203.27 198.18
1.49 7.35 272.13 133.81 282.44
1.38 6.53 286.30 55.49 348.74
1.24 5.72 371.17 24.81 381.49
1.09 4.90 330.92 13.63 403.74
0.91 4.08 304.96 7.89 358.32
0.68 3.27 228.03 5.99 376.24
0.40 2.45 126.50 4.05 327.11
1.60 8.17 257.54 209.63 233.29
1.86 10.62 126.58 34.85 31.64
2.07 13.07 55.92 8.95 8.97
2.24 15.52 15.27 4.38 4.28
2.39 17.97 5.95 3.02 2.94
2.52 20.42 3.79 2.33 2.27
2.63 22.87 2.74 2.27 2.26
2.73 25.31 2.31 2.12 2.16

OC scenario due to decreased/increased E[pOC ]

(rP , L)-Shewhart (rD, L)-Shewhart (rQ, L)-Shewhart
γOC0 E[pOC ] ARL1 ARL1 ARL1

-0.60 0.38 228.64 206.82 225.01
-0.80 0.34 252.40 202.03 227.41
-1.00 0.30 276.91 186.09 235.02
-1.22 0.26 253.34 172.95 223.54
-1.46 0.23 239.42 155.17 231.94
-1.73 0.19 213.69 157.84 257.92
-2.04 0.15 223.12 164.05 261.71
-2.41 0.11 173.88 151.40 243.34
-0.60 0.38 229.61 208.82 248.38
-0.50 0.40 221.02 209.34 212.58
-0.41 0.42 202.41 220.22 217.42
-0.32 0.43 246.00 197.63 208.03
-0.22 0.45 241.36 238.39 220.34
-0.13 0.47 197.96 220.82 196.90
-0.04 0.49 201.81 242.30 206.76
0.05 0.51 202.78 278.56 217.56

Table B.17: ARL1 results with corresponding SDRL while taking into account Phase I
estimation effects, for the (rP , Q)-, (rD, Q)- and (rQ, Q)- Shewhart chart, in IC ZIP Scenario 2

with E[pIC ] = 0.38 and E[λIC ] = 8.17.
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OC scenario due to decreased/increased E[λOC ]

(rP , L)-Shewhart (rD, L)-Shewhart (rQ, L)-Shewhart
βOC0 E[λOC ] ARL1 ARL1 ARL1

0.10 1.82 200.38 223.81 224.49
-0.01 1.64 211.26 235.00 264.49
-0.12 1.46 242.34 218.16 267.42
-0.26 1.28 264.43 140.69 324.63
-0.41 1.09 305.42 115.14 324.64
-0.59 0.91 275.84 87.69 342.50
-0.82 0.73 250.88 60.98 372.05
-1.10 0.55 220.78 47.44 343.60
0.10 1.82 233.81 244.62 231.59
0.36 2.37 136.94 115.02 106.89
0.57 2.92 110.72 70.44 58.84
0.74 3.46 72.41 31.86 28.82
0.89 4.01 38.97 19.82 19.71
1.02 4.56 28.91 13.06 12.81
1.13 5.10 19.33 8.95 8.27
1.23 5.65 15.05 7.91 7.57

OC scenario due to decreased/increased E[pOC ]

(rP , L)-Shewhart (rD, L)-Shewhart (rQ, L)-Shewhart
γOC0 E[pOC ] ARL1 ARL1 ARL1

0.50 0.60 210.74 212.29 236.00
0.20 0.54 211.19 223.35 208.72
-0.09 0.48 206.00 185.74 184.62
-0.38 0.42 204.76 175.91 185.95
-0.69 0.36 169.34 154.27 163.31
-1.01 0.30 148.41 171.55 179.38
-1.37 0.24 137.41 143.57 137.98
-1.79 0.18 103.36 119.20 118.97
0.50 0.60 199.22 235.25 225.81
0.65 0.63 221.63 246.37 220.18
0.81 0.66 219.69 240.54 208.59
0.98 0.69 192.12 262.45 212.35
1.15 0.72 181.00 256.23 251.97
1.33 0.75 196.16 287.20 263.38
1.53 0.78 169.91 300.35 231.50
1.74 0.81 153.56 305.31 248.62

Table B.18: ARL1 results with corresponding SDRL while taking into account Phase I
estimation effects, for the (rP , Q)-, (rD, Q)- and (rQ, Q)- Shewhart chart, in IC ZINB Scenario 3

with E[pIC ] = 0.60 and E[λIC ] = 1.82.
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OC scenario due to decreased/increased E[λOC ]

(rP , L)-Shewhart (rD, L)-Shewhart (rQ, L)-Shewhart
βOC0 E[λOC ] ARL1 ARL1 ARL1

1.60 8.17 195.18 210.11 183.53
1.49 7.35 264.92 207.24 220.04
1.38 6.53 332.84 221.27 275.48
1.24 5.72 398.18 185.28 306.54
1.09 4.90 377.02 149.81 368.96
0.91 4.08 373.75 93.65 336.06
0.68 3.27 322.15 63.51 354.00
0.40 2.45 272.88 41.64 325.71
1.60 8.17 198.84 163.54 177.75
1.86 10.62 81.25 70.11 66.83
2.07 13.07 35.64 31.82 30.35
2.24 15.52 21.39 19.83 18.56
2.39 17.97 11.11 9.77 9.56
2.52 20.42 8.90 7.96 7.63
2.63 22.87 6.08 5.04 5.14
2.73 25.31 5.78 5.26 5.26

OC scenario due to decreased/increased E[pOC ]

(rP , L)-Shewhart (rD, L)-Shewhart (rQ, L)-Shewhart
γOC0 E[pOC ] ARL1 ARL1 ARL1

-0.60 0.38 203.34 200.29 189.34
-0.80 0.34 208.04 173.71 180.22
-1.00 0.30 207.93 183.53 208.15
-1.22 0.26 202.56 170.00 209.29
-1.46 0.23 217.50 178.79 184.01
-1.73 0.19 203.69 154.63 206.86
-2.04 0.15 184.25 149.53 177.68
-2.41 0.11 174.84 146.79 184.46
-0.60 0.38 223.96 204.56 172.38
-0.50 0.40 237.65 180.47 188.84
-0.41 0.42 183.86 191.81 167.53
-0.32 0.43 213.79 217.37 198.80
-0.22 0.45 208.19 207.88 172.23
-0.13 0.47 170.99 186.10 178.12
-0.04 0.49 192.90 240.34 182.18
0.05 0.51 165.09 213.50 157.78

Table B.19: ARL1 results with corresponding SDRL while taking into account Phase I
estimation effects, for the (rP , Q)-, (rD, Q)- and (rQ, Q)- Shewhart chart, in IC ZINB Scenario 4

with E[pIC ] = 0.38 and E[λIC ] = 8.17.
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B.6 Additional results of the Gamma GLM-based TBE charts

No OC signal (% of total)
IC scenario Residuals ARL0 SDRL0 n = 2000 n = 3000 n = 4000

ZIP 1 Pearson 199.31 194.77 0.00 0.00 0.00
ZIP 1 Deviance 199.63 195.01 0.00 0.00 0.00
ZIP 1 Quantile 199.80 195.22 0.00 0.00 0.00
ZIP 2 Pearson 202.09 202.17 0.00 0.00 0.00
ZIP 2 Deviance 201.43 201.73 0.00 0.00 0.00
ZIP 2 Quantile 201.74 201.90 0.00 0.00 0.00
ZINB 3 Pearson 201.35 199.71 0.01 0.00 0.00
ZINB 3 Deviance 200.86 199.30 0.01 0.00 0.00
ZINB 3 Quantile 200.88 199.27 0.01 0.00 0.00
ZINB 4 Pearson 201.49 200.42 0.00 0.00 0.00
ZINB 4 Deviance 201.56 200.73 0.00 0.00 0.00
ZINB 4 Quantile 201.54 201.29 0.00 0.00 0.00

Table B.20: Percentage of runs with no OC signal for the Gamma GLM-based TBE chart, for
n = 2000, 3000, 4000.
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Figure B.24: The density of the charting constants Q1 and Q2, solved 100 times for performance
evaluation of the (rP , Q)-TBE chart in each IC scenario.
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Figure B.25: The density of the charting constants Q1 and Q2, solved 100 times for performance
evaluation of the (rD, Q)-TBE chart in each IC scenario.
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Figure B.26: The density of the charting constants Q1 and Q2, solved 100 times for performance
evaluation of the (rQ, Q)-TBE chart in each IC scenario.
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OC scenario due to decreased/increased E[λOC ]

(rP , L)-TBE (rD, L)-TBE (rQ, L)-TBE
βOC0 E[λOC ] ALI1 ALI1 ALI1

0.10 1.82 210.50 207.59 209.44
-0.01 1.64 217.63 217.30 217.02
-0.12 1.46 204.18 203.62 204.00
-0.26 1.28 179.30 178.94 179.49
-0.41 1.09 174.31 172.51 174.20
-0.59 0.91 140.00 140.08 139.93
-0.82 0.73 105.28 104.27 105.26
-1.10 0.55 77.36 76.53 77.17
0.10 1.82 221.18 218.98 220.98
0.36 2.37 195.99 192.39 195.70
0.57 2.92 203.02 201.73 201.65
0.74 3.46 181.44 180.79 181.38
0.89 4.01 158.26 156.91 157.68
1.02 4.56 146.51 146.11 146.58
1.13 5.10 145.20 144.25 145.30
1.23 5.65 133.86 131.13 132.30

OC scenario due to decreased/increased E[pOC ]

(rP , L)-TBE (rD, L)-TBE (rQ, L)-TBE
γOC0 E[pOC ] ALI1 ALI1 ALI1

0.50 0.60 206.44 204.75 205.71
0.20 0.54 225.05 223.00 224.96
-0.09 0.48 196.07 195.72 196.62
-0.38 0.42 145.04 144.80 145.19
-0.69 0.36 116.05 113.87 115.99
-1.01 0.30 91.37 90.16 91.80
-1.37 0.24 67.50 67.49 67.64
-1.79 0.18 55.06 54.85 54.91
0.50 0.60 211.36 210.69 211.17
0.65 0.63 198.13 198.14 197.86
0.81 0.66 171.33 169.56 171.22
0.98 0.69 137.11 135.91 137.00
1.15 0.72 102.03 101.99 101.98
1.33 0.75 84.14 84.11 84.13
1.53 0.78 64.88 65.04 64.84
1.74 0.81 53.98 53.96 53.96

Table B.21: ALI1 results with corresponding SDLI for the (rP , Q)-, (rD, Q)- and (rQ, Q)-TBE
chart, in IC ZIP Scenario 1 with E[pIC ] = 0.60 and E[λIC ] = 1.82.
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OC scenario due to decreased/increased E[λOC ]

(rP , L)-TBE (rD, L)-TBE (rQ, L)-TBE
βOC0 E[λOC ] ALI1 ALI1 ALI1

1.60 8.17 196.19 196.24 196.44
1.49 7.35 196.18 196.13 195.13
1.38 6.53 203.17 203.17 203.83
1.24 5.72 217.58 217.36 215.73
1.09 4.90 203.16 203.01 204.07
0.91 4.08 200.21 200.53 200.74
0.68 3.27 184.36 184.62 184.76
0.40 2.45 151.26 151.18 151.67
1.60 8.17 187.21 187.15 187.47
1.86 10.62 178.48 177.25 177.80
2.07 13.07 168.80 169.15 169.64
2.24 15.52 169.23 168.92 169.25
2.39 17.97 153.45 153.32 153.62
2.52 20.42 145.68 145.42 145.39
2.63 22.87 141.41 141.18 141.83
2.73 25.31 146.86 146.80 146.85

OC scenario due to decreased/increased E[pOC ]

(rP , L)-TBE (rD, L)-TBE (rQ, L)-TBE
γOC0 E[pOC ] ALI1 ALI1 ALI1

-0.60 0.38 207.10 207.01 207.47
-0.80 0.34 210.89 210.32 211.48
-1.00 0.30 207.22 205.24 205.06
-1.22 0.26 190.89 190.73 191.53
-1.46 0.23 164.37 163.04 163.62
-1.73 0.19 141.76 141.70 141.69
-2.04 0.15 115.67 113.99 113.94
-2.41 0.11 85.26 85.14 85.36
-0.60 0.38 201.02 201.06 202.02
-0.50 0.40 168.09 168.04 168.83
-0.41 0.42 170.82 170.64 170.65
-0.32 0.43 155.09 155.05 155.49
-0.22 0.45 118.78 118.47 118.50
-0.13 0.47 119.10 119.06 119.79
-0.04 0.49 106.06 106.03 105.88
0.05 0.51 89.19 89.34 89.46

Table B.22: ALI1 results with corresponding SDLI for the (rP , Q)-, (rD, Q)- and (rQ, Q)-TBE
chart, in IC ZIP Scenario 2 with E[pIC ] = 0.38 and E[λIC ] = 8.17.
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OC scenario due to decreased/increased E[λOC ]

(rP , L)-TBE (rD, L)-TBE (rQ, L)-TBE
βOC0 E[λOC ] ALI1 ALI1 ALI1

0.10 1.82 193.88 197.67 193.46
-0.01 1.64 178.74 179.56 178.80
-0.12 1.46 180.28 183.04 180.54
-0.26 1.28 177.47 180.44 177.42
-0.41 1.09 152.99 156.61 153.76
-0.59 0.91 130.43 130.28 129.49
-0.82 0.73 102.57 103.67 102.44
-1.10 0.55 77.71 78.53 77.67
0.10 1.82 203.64 206.09 202.63
0.36 2.37 190.27 194.67 193.10
0.57 2.92 173.67 177.14 175.40
0.74 3.46 167.40 168.73 166.54
0.89 4.01 140.15 141.75 140.71
1.02 4.56 138.06 138.64 138.45
1.13 5.10 127.93 129.61 127.85
1.23 5.65 120.55 121.26 120.56

OC scenario due to decreased/increased E[pOC ]

(rP , L)-TBE (rD, L)-TBE (rQ, L)-TBE
γOC0 E[pOC ] ALI1 ALI1 ALI1

0.50 0.60 186.05 187.74 185.47
0.20 0.54 201.13 205.18 201.57
-0.09 0.48 161.71 167.04 161.09
-0.38 0.42 129.59 130.24 129.18
-0.69 0.36 106.60 107.74 106.34
-1.01 0.30 84.58 84.86 84.34
-1.37 0.24 64.81 65.97 65.07
-1.79 0.18 55.81 56.09 55.59
0.50 0.60 190.34 193.40 190.35
0.65 0.63 186.48 188.77 186.30
0.81 0.66 145.45 146.96 145.31
0.98 0.69 131.69 132.64 131.61
1.15 0.72 99.84 100.87 99.86
1.33 0.75 83.87 84.36 83.84
1.53 0.78 65.47 66.64 65.57
1.74 0.81 55.00 55.39 55.05

Table B.23: ALI1 results with corresponding SDLI for the (rP , Q)-, (rD, Q)- and (rQ, Q)-TBE
chart, in IC ZINB Scenario 3 with E[pIC ] = 0.60 and E[λIC ] = 1.82.
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OC scenario due to decreased/increased E[λOC ]

(rP , L)-TBE (rD, L)-TBE (rQ, L)-TBE
βOC0 E[λOC ] ALI1 ALI1 ALI1

1.60 8.17 199.88 202.79 202.50
1.49 7.35 184.16 186.58 186.01
1.38 6.53 183.97 186.98 186.69
1.24 5.72 175.22 176.97 176.74
1.09 4.90 181.66 184.94 184.86
0.91 4.08 164.84 166.79 166.72
0.68 3.27 142.25 143.22 143.15
0.40 2.45 106.78 107.16 107.10
1.60 8.17 186.11 189.80 190.73
1.86 10.62 175.51 178.57 178.35
2.07 13.07 161.95 163.18 163.28
2.24 15.52 168.48 170.15 170.09
2.39 17.97 149.88 152.12 151.95
2.52 20.42 137.32 138.41 138.30
2.63 22.87 152.16 152.57 152.60
2.73 25.31 138.33 141.79 141.85

OC scenario due to decreased/increased E[pOC ]

(rP , L)-TBE (rD, L)-TBE (rQ, L)-TBE
γOC0 E[pOC ] ALI1 ALI1 ALI1

-0.60 0.38 183.81 186.35 186.15
-0.80 0.34 185.22 188.70 188.08
-1.00 0.30 191.82 195.65 195.96
-1.22 0.26 172.82 174.10 175.06
-1.46 0.23 157.01 158.70 158.83
-1.73 0.19 144.29 144.94 144.87
-2.04 0.15 98.58 99.72 99.60
-2.41 0.11 86.26 88.06 88.22
-0.60 0.38 182.58 186.03 185.28
-0.50 0.40 162.52 164.21 164.15
-0.41 0.42 151.89 156.36 156.55
-0.32 0.43 149.54 151.59 151.43
-0.22 0.45 120.33 121.18 121.09
-0.13 0.47 108.60 110.41 110.51
-0.04 0.49 100.82 101.97 102.00
0.05 0.51 79.84 80.64 80.42

Table B.24: ALI1 results with corresponding SDLI for the (rP , Q)-, (rD, Q)- and (rQ, Q)-TBE
chart, in IC ZINB Scenario 4 with E[pIC ] = 0.38 and E[λIC ] = 8.17.



C | Appendix: R code

This appendix contains a fraction of the R code that was used to implement all simulations, of which
the most important functions are provided. Section B.1 contains the code that was executed to run
the simulations of the ZIP-EWMA chart. Section C.2 contains the most important functions to execute
a baseline performance analysis of the ZIP and ZINB regression based Shewhart chart with Pearson,
deviance and randomised quantile residuals. An example file that shows how the baseline performance
is executed is provided in Section C.3. Similarly, the functions of the Gamma GLM-based TBE charts
are provided in Section C.4, after which an example file for TBE simulation execution is provided in
Section C.5.

C.1 Simulations for the ZIP-EWMA chart

library(mc2d)
library(VGAM)
library(xtable)
library(RColorBrewer)

#Defining run length function
RL <- function (x,u,l,n) {min(min(n+1,which(x > u)), min(n+1,which(x < l))) - 1}

#Defining ARL function for ZIP EWMA chart
Simulate_ARL <- function (L, p, lambda, w, N, n) {
Y <- matrix(rzipois(n*N, lambda, p),N,n)
V <- t(apply(Y, 1, Reduce, f = function (v,y) w*y+(1-w)*v, init = (1-p)*lambda, accumulate = TRUE))
Bandw <- sapply(0:n+1, function (i) L*sqrt((w/(2-w))*(1-(1-w)^(2*i))*((1-p)*(lambda+p*(lambda^2)))))
UCL <- (1-p)*lambda + Bandw
LCL <- (1-p)*lambda - Bandw
ARL <- mean(apply(V,1,RL, u=UCL, l=LCL, n=n))

}

#Solving for L1, for a fixed ARL value
ineq <- function(L, P, Lambda, W, N, n, SET_ARL) {Simulate_ARL(L, P, Lambda, W, N, n) - SET_ARL}
Solve_L <- function(p, lambda, w, N1, n1, set_ARL, Search_Range) {uniroot(ineq, Search_Range, P = p, Lambda

= lambda, W = w, N = N1, n = n1, SET_ARL=set_ARL, tol=0.001)$root}

#Searching for a proper simulation size n
#First: Solving L for multiple values of ARL and w and MLE parameters p and lambda
i <- 0
j <- 0
lambda <- 3
w <- 0.2
P <- c(0.3,0.5,0.8)
ARL <- c(200, 370, 500)
results_gues_L <- matrix(rep(9*6,0),9,6)
try_L <- seq(2,3.5,0.2)
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ans <- rep(0,length(try_L))
for (p in P) {
for (arl in ARL) {

#Quick solve to determine search range
for (l in try_L){
i <- i + 1
ans[i] <- Simulate_ARL(l ,p, lambda, w, 1000, 5000)
if (i > 1) {
if (ans[i-1] < arl & ans[i] > arl) {
Search_Range <- c(l-0.3,l+0.1)
i <- 0
break

}}}

#Solving for L and storing results
j <- j + 1
print(j)
L <- Solve_L(p, lambda, w, 1000, 5000, arl, Search_Range)
results_gues_L[j,] <- c(p,lambda, w, arl, round(L,4), L)

}}

write.csv(results_gues_L ,"Guess_for_L.csv", row.names = FALSE, quote = FALSE)

#Second: Calculating the amount of runs with no OC signals for ZIP-EWMA with guessed L values
df <- read.csv("Guess_for_L.csv")
L_values <- df[,6]
p_values <- df[,1]
arl_values <- df[,4]
m_values <- c(2,5,10)
N <- 10000
lambda <- 3
w <- 0.2
results_n <- matrix(rep(0,8*length(L_values)*length(m_values)), length(L_values)*length(m_values), 8)
j <- 0

for (i in 1:length(L_values)) {
L <- L_values[i]
p <- p_values[i]
arl <- arl_values[i]
for (m in m_values) {
j <- j + 1
n <- m*arl
Y <- matrix(rzipois(n*N, lambda, p),N,n)
V <- t(apply(Y, 1, Reduce, f = function (v,y) w*y+(1-w)*v, init = (1-p)*lambda, accumulate = TRUE))
Bandw <- sapply(0:n+1, function (i) L*sqrt((w/(2-w))*(1-(1-w)^(2*i))*((1-p)*(lambda+p*(lambda^2)))))
UCL <- (1-p)*lambda + Bandw
LCL <- (1-p)*lambda - Bandw
RLs <- apply(V,1,RL, u=UCL, l=LCL, n=n)
ARL <- mean(RLs)
SDRL <- sd(RLs)
results_n[j,] <- c(p, arl, L, n, mean(RLs), sd(RLs), sum(RLs == n), sum(RLs == n)/100)
print(results_n)

}
}

results_n
write.csv(results_n ,"Results_n.csv", row.names = FALSE, quote = FALSE)

#Solving L for multiple values of ARL and w and MLE parameters p and lambda
i <- 0
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j <- 0
P <- c(0.3, 0.5, 0.8)
LAMBDA <- c(3, 4)
weights <- c(0.2, 0.3)
ARL <- c(200, 370, 500)
results <- matrix(rep(36*6,0),36,6)
try_L <- seq(2,4.5,0.2)
ans <- rep(0,length(try_L))
for (p in P) {
for (lambda in LAMBDA) {
for (w in weights) {
for (arl in ARL) {

#Quick solve to determine search range
for (l in try_L){
i <- i + 1
ans[i] <- Simulate_ARL(l ,p, lambda, w, N = 1000, n = 10*arl)
if (i > 1) {
if (ans[i-1] < arl & ans[i] > arl) {
Search_Range <- c(l-0.3,l+0.1)
i <- 0
break

}}}

#Solving for L and storing results
j <- j + 1
print(j)
L <- Solve_L(p, lambda, w, N = 10000, n = 10*arl, arl, Search_Range)
results[j,] <- c(p,lambda, w, arl, round(L,4), L)

}}}}

results
write.csv(results ,"Results_L.csv", row.names = FALSE, quote = FALSE)
write.csv(results[,5] ,"Results_L_rounded.csv", row.names = FALSE, quote = FALSE)

#Defining function to Calculate ARL1
Simulate_ARL1 <- function (L, p, p1, lambda, lambda1, w, N, n) {
Y <- matrix(rzipois(n*N, lambda1, p1),N,n)
V <- t(apply(Y, 1, Reduce, f = function (v,y) w*y+(1-w)*v, init = (1-p)*lambda, accumulate = TRUE))
Bandw <- sapply(0:n+1, function (i) L*sqrt((w/(2-w))*(1-(1-w)^(2*i))*((1-p)*(lambda+p*(lambda^2)))))
UCL <- (1-p)*lambda + Bandw
LCL <- (1-p)*lambda - Bandw
ARL <- mean(apply(V,1,RL, u=UCL, l=LCL, n=n))
return(ARL)

}

#Initializing ARL1 calculations for various OC scenarios
DF <- read.csv("Results_L.csv")
idx <- c(1,2,3,13,14,15,25,26,27)
lambda <- 3
w <- 0.2
p_values <- results[idx,1]
ARL0_values <- results[idx,4]
L_values <- results[idx,6]
delta_p <- c(-0.1, -0.2, -0.3)
delta_lambda <- c(0.5, 1, 2)
OC_results <- matrix(rep(9*9*3,0),9,9*3)

#Calculating ARL1 for IC(p, lambda, w) = (0.3, 3, 0.2), (0.5, 3, 0.2) and (0.8, 3, 0.2)
j <- 0
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z <- 3
for (i in 1:length(L_values)) {

L <- L_values[i]
ARL0 <- ARL0_values[i]
p <- p_values[i]

for (Dp in delta_p) {
j <- j + 1
print(j)
OC_results[j,1+3*z] <- p + Dp
OC_results[j,2+3*z] <- lambda
OC_results[j,3+3*z] <- Simulate_ARL1(L, p, p + Dp, lambda, lambda, w, N = 10000, n = 10*ARL0)}

for (Dl in delta_lambda) {
j <- j + 1
print(j)
OC_results[j,1+3*z] <- p
OC_results[j,2+3*z] <- lambda + Dl
OC_results[j,3+3*z] <- Simulate_ARL1(L, p, p, lambda, lambda + Dl, w, N = 10000, n = 10*ARL0)}

for (k in 1:3) {
j <- j + 1
print(j)
OC_results[j,1+3*z] <- p + delta_p[k]
OC_results[j,2+3*z] <- lambda + delta_lambda[k]
OC_results[j,3+3*z] <- Simulate_ARL1(L, p, p + delta_p[k], lambda, lambda + delta_lambda[k], w, 10000, n

= 10*ARL0)}
z <- z + 1
j <- 0}

C.2 Functions for baseline performance evaluation

library(VGAM)
library(statip)
library(pscl)

#Simulating ZIP data
Simulate.ZIP.Data = function (b0, b1, g0, g1, n, N, muX, varX) {
X = matrix(rnorm(n*N, muX, sqrt(varX)),N,n)
p = exp(g0+g1*X)/(1+exp(g0+g1*X))
lamb = exp(b0 + b1*X)
c = apply(p, 1:2, rbinom, n=1, size=1) ;c
Y = matrix(0,N,n)
Y[c==0] = rpois(sum(c==0), lamb[c==0])
return(list(Y,X))

}

#Simulating ZINB data
Simulate.ZINB.Data = function (b0, b1, g0, g1, tau, n, N, muX, varX) {
X = matrix(rnorm(n*N, muX, sqrt(varX)),N,n)
p = exp(g0+g1*X)/(1+exp(g0+g1*X))
lamb = exp(b0 + b1*X)
c = apply(p, 1:2, rbinom, n=1, size=1)
Y = matrix(0,N,n)
Y[c==0] = rnbinom(sum(c==0), size=tau, mu=lamb[c==0])
return(list(Y,X))

}

#Pearson residuals function ZIP, ZINB
pearson.residuals = function (data, fixed.model, dist) {
n = length(data)/2
Y = data[1:n]
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X = data[(n+1):(2*n)]
b0 = fixed.model[1]
b1 = fixed.model[2]
g0 = fixed.model[3]
g1 = fixed.model[4]
p = sapply(X, function (X, g0, g1) exp(g0+g1*X)/(1+exp(g0+g1*X)), g0 = g0, g1 = g1)
lamb = sapply(X, function (X, b0, b1) exp(b0 + b1*X), b0 = b0, b1 = b1)
if (dist == "ZIP") {
rp = (Y - (1-p)*lamb)/sqrt((1-p)*(lamb+p*(lamb^2)))
return(rp) }

if (dist == "ZINB") {
tau = fixed.model[7]
rp = (Y - (1-p)*lamb)/sqrt(lamb*(1-p)*(1+(p*lamb)+(lamb/tau)))
return(rp) }

}

#Deviance residuals function ZIP, ZINB
deviance.residuals = function (data, fixed.model, Y, X, dist) {
n = length(data)/2
Y = data[1:n]
X = data[(n+1):(2*n)]
b0 = fixed.model[1]
b1 = fixed.model[2]
g0 = fixed.model[3]
g1 = fixed.model[4]
p = sapply(X, function (X, g0, g1) exp(g0+g1*X)/(1+exp(g0+g1*X)), g0 = g0, g1 = g1)
lamb = sapply(X, function (X, b0, b1) exp(b0 + b1*X), b0 = b0, b1 = b1)
predictions = (1-p)*lamb
r = Y - predictions
if (dist == "ZIP") {
logLik.Pois = log(dpois(Y,Y))
logLik.ZIP = log(dzipois(Y, lambda = lamb, pstr0 = p))
rd = sign(r)*sqrt(2*(logLik.Pois - logLik.ZIP))
return(rd)

}
if (dist == "ZINB") {
tau = fixed.model[7]
logLik.NB = log(dnbinom(Y, size = tau, mu = Y))
logLik.ZINB = log(dzinegbin(Y, size = tau, munb = lamb, pstr0 = p))
rd = sign(r)*sqrt(2*(logLik.NB - logLik.ZINB))
return(rd)

}
}

#Function for randomized quantile residuals ZIP, ZINB
RQ.residuals = function (data, fixed.model, Y, X, dist) {
n = length(data)/2
Y = data[1:n]
X = data[(n+1):(2*n)]
b0 = fixed.model[1]
b1 = fixed.model[2]
g0 = fixed.model[3]
g1 = fixed.model[4]
p = sapply(X, function (X, g0, g1) exp(g0+g1*X)/(1+exp(g0+g1*X)), g0 = g0, g1 = g1)
lamb = sapply(X, function (X, b0, b1) exp(b0 + b1*X), b0 = b0, b1 = b1)

if (dist == "ZINB") {
tau = fixed.model[7]
a = pzinegbin(Y-1, size = tau, pstr0 = p, munb = lamb)
b = pzinegbin(Y,size = tau, pstr0 = p, munb = lamb)
u = runif(length(a), a, b)
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rq = qnorm(u)
return(rq)

}
if (dist == "ZIP") {
a = pzipois(Y-1, lambda = lamb, pstr0 = p)
b = pzipois(Y, lambda = lamb, pstr0 =p)
u = runif(length(a), a, b)
rq = qnorm(u)
return(rq)

}
}

#Function for raw quantile residuals ZIP, ZINB
raw.residuals = function (data, fixed.model, Y, X, dist) {
n = length(data)/2
Y = data[1:n]
X = data[(n+1):(2*n)]
b0 = fixed.model[1]
b1 = fixed.model[2]
g0 = fixed.model[3]
g1 = fixed.model[4]
p = sapply(X, function (X, g0, g1) exp(g0+g1*X)/(1+exp(g0+g1*X)), g0 = g0, g1 = g1)
lamb = sapply(X, function (X, b0, b1) exp(b0 + b1*X), b0 = b0, b1 = b1)
predictions = (1-p)*lamb
r = Y - predictions

}

#Run length function
RL <- function (x,u,l,n) {min(min(n, which(x > u)), min(n, which(x < l)))}

#Shewharts ARL0 simulation
Shewhart.ARL0 <- function(r0, mu.r, sd.r, L) {
n = ncol(r0)
N = nrow(r0)
UCL <- mu.r + L*sd.r
LCL <- mu.r - L*sd.r
RLs <- apply(r0, 1, RL, u=UCL, l=LCL, n=n)
#if (sum(RLs == n) > 0.001*N) {warning("Simulation size too small, in terms of n = nr. of columns") ;

print(sum(RLs == n))}
ARL0 <- mean(RLs)
return(ARL0)

}

#Inequality to solve for L: to be solved by uniroot
inequality = function(L, r0, mu.r, sd.r, SET.ARL) {Shewhart.ARL0(r0 = r0, mu.r=mu.r, sd.r=sd.r, L = L) -

SET.ARL}

#Solving for charting constant L
Shewhart.Solve.L = function(r0, mu.r, sd.r, set.ARL, SR.N = 1000, lowerBound.SR.L = 1.5, upperBound.SR.L =

5.5, stepsize.try.L = 0.2, safety.margin.SR = 0.1) {

#Determining simulation size
n = ncol(r0)
N = nrow(r0)

#Quick solve to determine search range
try.L = seq(lowerBound.SR.L, upperBound.SR.L, stepsize.try.L)
ans2 = 0
i = 0
l = 0
for (l in try.L){
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i = i+1
ans1 = Shewhart.ARL0(r0[1:min(N,SR.N),], mu.r, sd.r, l)
if (ans2 < set.ARL & set.ARL < ans1) {
if (i == 1) {warning("lowerBound.SR.L too high"); break}
search.range = c(l - stepsize.try.L - safety.margin.SR, l + safety.margin.SR)
break

}
if (i == length(try.L)) {warning("upperBound.SR.L too low"); break}
ans2 = ans1

}

#Solving for L
Solved.L = NA
Solved.L = uniroot(inequality, search.range, r0 = r0, mu.r=mu.r, sd.r=sd.r, SET.ARL=set.ARL, tol=0.001)$

root
if (is.na(Solved.L)==TRUE) {warning("safety.margin.SR is probably too small"); break}
return(Solved.L)

}

#Function to calculate average number of proportion r > q1
Calculate.Alpha1 = function(resid, Q1, n){
above.Q1 = apply(resid, 1, function(resid,Q1){sum(resid > Q1)}, Q1=Q1)
proportion.above = above.Q1/n
alpha1 = mean(proportion.above)
return(alpha1)

}

#Function to calculate average number of proportion r < q2
Calculate.Alpha2 = function(resid, Q2, n){
below.Q2 = apply(resid, 1, function(resid,Q2){sum(resid < Q2)}, Q2=Q2)
proportion.below = below.Q2/n
alpha2 = mean(proportion.below)
return(alpha2)

}

#Inequalities to solve probability control limits, for a given quantile level
inequality.Q1 = function(resid, Q1, n, SET.Alpha1) {Calculate.Alpha1(resid = resid, Q1 = Q1, n = n) - SET.

Alpha1}
inequality.Q2 = function(resid, Q2, n, SET.Alpha2) {Calculate.Alpha2(resid = resid, Q2 = Q2, n = n) - SET.

Alpha2}

Solve.Q = function(resid, set.Alpha){
#Determining simulation size
n = ncol(resid)
N = nrow(resid)
#Solving Q1 and Q2
search.range = c(min(resid), max(resid))
Solved.Q1 = NA
Solved.Q1 = uniroot(inequality.Q1, interval = search.range, resid = resid, n = n, SET.Alpha1=set.Alpha/2,

tol=0.001)$root
Solved.Q2 = NA
Solved.Q2 = uniroot(inequality.Q2, interval = search.range, resid = resid, n = n, SET.Alpha2=set.Alpha/2,

tol=0.001)$root
if (is.na(Solved.Q1)==TRUE) {warning("Unable to solve Q1"); break}
if (is.na(Solved.Q2)==TRUE) {warning("Unable to solve Q2"); break}
return(list(Solved.Q1, Solved.Q2))

}

#Defining distributional shift in p as percentage of IC expected value of p
integrand.Ep = function (g0, g1, x, muX, varX) {(1/(sqrt(varX*2*pi)))*exp(g0 + g1*x -0.5*(((x-muX)^2))/varX

)/(1+exp(g0 + g1*x))}
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integral.Ep = function (g0, g1, muX, varX) {integrate(function (x) {integrand.Ep(g0, g1, x, muX, varX)} , -
Inf, Inf)$value}

ineq.Ep = function (g0, g1, set.p, muX, varX) {integral.Ep(g0,g1, muX, varX) - set.p}
solve.g0 = function (set.p, g1, muX, varX) {uniroot(ineq.Ep, interval=c(-5,5), g1=g1, set.p=set.p, muX=muX,

varX=varX)$root}

#Defining distributional shift in lambda as percentage of IC expected value of lambda
integrand.Elamb = function (b0, b1, x, muX, varX) {(1/(sqrt(varX*2*pi)))*exp(b0 + b1*x -0.5*(((x-muX)^2))/

varX)}
integral.Elamb = function (b0, b1, muX, varX) {integrate(function (x) {integrand.Elamb(b0, b1, x, muX, varX

)} , -Inf, Inf)$value}
ineq.Elamb = function (b0, b1, set.lamb, muX, varX) {integral.Elamb(b0,b1, muX, varX) - set.lamb}
solve.b0 = function (set.lamb, b1, muX, varX) {uniroot(ineq.Elamb, interval=c(-5,5), b1=b1, set.lamb=set.

lamb, muX=muX, varX=varX)$root}

#Shewharts ARL1 simulation
Shewhart.OC.RLs <- function(r1, r.mu, r.std, L) {
n = ncol(r1)
N = nrow(r1)
UCL <- r.mu + L*r.std
LCL <- r.mu - L*r.std
RLs <- apply(r1, 1, RL, u=UCL, l=LCL, n=n)
#if (sum(RLs == n) > 0.001*N) {warning("Simulation size too small, in terms of n = nr. of columns") ;

print(sum(RLs == n))}
return(RLs)

}

#Procedure to generate ZIP Shewhart ARL1 results for input OC parameters
ARL1.ZI.Shewhart = function (fixed.model, rp.chart, rd.chart, rq.chart, n, N, dist, ICparams , b0.OC = c(),

g0.OC = c()) {

#Obtaining chart elements
L1 = rp.chart[[1]]; mu.rp = rp.chart[[2]]; sd.rp = rp.chart[[3]]
L2 = rd.chart[[1]]; mu.rd = rd.chart[[2]]; sd.rd = rd.chart[[3]]
L3 = rq.chart[[1]]; mu.rq = rq.chart[[2]]; sd.rq = rq.chart[[3]]

#Obtaining IC parameters
b0 = fixed.model[1]
b1 = fixed.model[2]
g0 = fixed.model[3]
g1 = fixed.model[4]
muX = fixed.model[5]
varX = fixed.model[6]
if (dist == "ZINB") {tau = fixed.model[7]}

#Define simulation size and output storage
nr = max((b0.OC), length(g0.OC))
ARL1.b0.rp = rep(NA, nr)
ARL1.b0.rd = rep(NA, nr)
ARL1.b0.rq = rep(NA, nr)
SDRL1.b0.rp = rep(NA, nr)
SDRL1.b0.rd = rep(NA, nr)
SDRL1.b0.rq = rep(NA, nr)
ARL1.g0.rp = rep(NA, nr)
ARL1.g0.rd = rep(NA, nr)
ARL1.g0.rq = rep(NA, nr)
SDRL1.g0.rp = rep(NA, nr)
SDRL1.g0.rd = rep(NA, nr)
SDRL1.g0.rq = rep(NA, nr)

#Procedure for obtaining OC results
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idx = 0
for (k in b0.OC) {
idx = idx + 1;
print(eval(sprintf("working on ARL1 simulation %s out of %s", idx, length(b0.OC)+length(g0.OC))))
if (dist == "ZIP") {Data = Simulate.ZIP.Data(b0 = k, b1 = b1, g0 = g0, g1 = g1, n, N, muX, varX)}
if (dist == "ZINB") {Data = Simulate.ZINB.Data(b0 = k, b1 = b1, g0 = g0, g1 = g1, tau, n, N, muX, varX)

}
Y1 = Data[[1]]
X1 = Data[[2]]
rp1 = t(apply(cbind(Y1,X1), 1, pearson.residuals, fixed.model = fixed.model, dist = dist))
rd1 = t(apply(cbind(Y1,X1), 1, deviance.residuals, fixed.model = fixed.model, dist = dist))
rq1 = t(apply(cbind(Y1,X1), 1, RQ.residuals, fixed.model = fixed.model, dist = dist))
RLs = Shewhart.OC.RLs(rp1, mu.rp, sd.rp, L1)
ARL1.b0.rp[idx] = mean(RLs)
SDRL1.b0.rp[idx] = sd(RLs)
RLs = Shewhart.OC.RLs(rd1, mu.rd, sd.rd, L2)
ARL1.b0.rd[idx] = mean(RLs)
SDRL1.b0.rd[idx] = sd(RLs)
RLs = Shewhart.OC.RLs(rq1, mu.rq, sd.rq, L3)
ARL1.b0.rq[idx] = mean(RLs)
SDRL1.b0.rq[idx] = sd(RLs)
print(c(k, ARL1.b0.rp[idx], SDRL1.b0.rp[idx], ARL1.b0.rd[idx], SDRL1.b0.rd[idx], ARL1.b0.rq[idx], SDRL1

.b0.rq[idx]))
}
for (m in g0.OC) {
idx = idx + 1;
print(eval(sprintf("Working on ARL1 simulation %s out of %s", idx, length(b0.OC)+length(g0.OC))))
if (dist == "ZIP") {Data = Simulate.ZIP.Data(b0 = b0, b1 = b1, g0 = m, g1 = g1, n, N, muX, varX)}
if (dist == "ZINB") {Data = Simulate.ZINB.Data(b0 = b0, b1 = b1, g0 = m, g1 = g1, tau, n, N, muX, varX)

}
Y1 = Data[[1]]
X1 = Data[[2]]
rp1 = t(apply(cbind(Y1,X1), 1, pearson.residuals, fixed.model = fixed.model, dist = dist))
rd1 = t(apply(cbind(Y1,X1), 1, deviance.residuals, fixed.model = fixed.model, dist = dist))
rq1 = t(apply(cbind(Y1,X1), 1, RQ.residuals, fixed.model = fixed.model, dist = dist))
RLs = Shewhart.OC.RLs(rp1, mu.rp, sd.rp, L1)
ARL1.g0.rp[idx] = mean(RLs)
SDRL1.g0.rp[idx] = sd(RLs)
RLs = Shewhart.OC.RLs(rd1, mu.rd, sd.rd, L2)
ARL1.g0.rd[idx] = mean(RLs)
SDRL1.g0.rd[idx] = sd(RLs)
RLs = Shewhart.OC.RLs(rq1, mu.rq, sd.rq, L3)
ARL1.g0.rq[idx] = mean(RLs)
SDRL1.g0.rq[idx] = sd(RLs)
print(c(m, ARL1.g0.rp[idx], SDRL1.g0.rp[idx], ARL1.g0.rd[idx], SDRL1.g0.rd[idx], ARL1.g0.rq[idx], SDRL1

.g0.rq[idx]))
}
if (length(b0.OC)==length(g0.OC)){
return(data.frame(b0.OC, ARL1.b0.rp, SDRL1.b0.rp, ARL1.b0.rd, SDRL1.b0.rd, ARL1.b0.rq, SDRL1.b0.rq, g0.

OC, ARL1.g0.rp, SDRL1.g0.rp, ARL1.g0.rd, SDRL1.g0.rd, ARL1.g0.rq, SDRL1.g0.rq)) }
if (length(b0.OC)==0){ return(data.frame(g0.OC, ARL1.g0.rp, SDRL1.g0.rp, ARL1.g0.rd, SDRL1.g0.rd, ARL1.g0

.rq, SDRL1.g0.rq)) }
if (length(g0.OC)==0){ return(data.frame(b0.OC,ARL1.b0.rp, SDRL1.b0.rp, ARL1.b0.rd, SDRL1.b0.rd, ARL1.b0.

rq, SDRL1.b0.rq)) }
}

C.3 Example of execution: baseline performance evaluation

library(VGAM)
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library(statip)
library(pscl)

# BASELINE PERFORMANCE EVALUATION OF THE ZIP REGRESSION-BASED SHEWHART CHARTS
# SYMMETRIC CONTROL LIMITS - IC SCENARIO 1

#Fixed parameters
b0 = 0.1
b1 = 1.0
g0 = 0.5
g1 = -1.0
muX = 0
varX = 1.0

#Fixed model
fixed.model.ZIP.SC1 = c(b0, b1, g0, g1, muX, varX)

#Defining simulation parameters
dist = "ZIP"
N = 10000
n = 3000

#Simulating data for control chart construction: size = Nxn
Data = Simulate.ZIP.Data(b0, b1, g0, g1, n, N, muX, varX)
Y = Data[[1]]
X = Data[[2]]

#Obtain IC residuals for constructing control chart limits
rp0 = t(apply(cbind(Y,X), 1, pearson.residuals, fixed.model = fixed.model.ZIP.SC1, dist = "ZIP"))
rd0 = t(apply(cbind(Y,X), 1, deviance.residuals, fixed.model = fixed.model.ZIP.SC1, dist = "ZIP"))
mu.rp = mean(rp0) ; sd.rp = sd(rp0) ; print(mu.rp) ; print(sd.rp)
mu.rd = mean(rd0) ; sd.rd = sd(rd0) ; print(mu.rd) ; print(sd.rd)

#Solving the chart bounds (This is very slow: 1.5h each in 5000)
L1 = Shewhart.Solve.L(rp0, mu.rp, sd.rp, set.ARL = 200)
L2 = Shewhart.Solve.L(rd0, mu.rd, sd.rd, set.ARL = 200)
L3 = 2.81 ; mu.rq = 0 ; sd.rq = 1 ;

#Storing intermediate results
write.csv(data.frame(L1, L2, L3), file="Baseline-Shewhart-Lvalues-SC1.csv", row.names = FALSE, quote =

FALSE)

#Calculating desired distributional shift
Elamb.IC = integral.Elamb(b0, b1, muX, varX); Elamb.IC
alpha2 = c(seq(1.0,0.3,-0.1),seq(1.0,3.3,0.3))
dist.shift.lamb = alpha2*Elamb.IC; dist.shift.lamb
b0.OC = sapply(dist.shift.lamb, solve.b0, b1 = b1, muX = muX, varX = varX);
b0.OC[1] = b0; b0.OC[9] = b0; b0.OC
Elamb.OC = sapply(b0.OC, integral.Elamb, b1=b1, muX=muX, varX= varX); Elamb.OC

Ep.IC = integral.Ep(g0, g1, muX, varX) ; Ep.IC
alpha1 = c(seq(1.0,0.3,-0.1), seq(1.0,1.35,0.05)); alpha1
dist.shift.p = alpha1*Ep.IC ; dist.shift.p
g0.OC = sapply(dist.shift.p, solve.g0, g1 = g1, muX = muX, varX = varX)
g0.OC[1] = g0; g0.OC[9] = g0; g0.OC
Ep.OC = sapply(g0.OC, integral.Ep, g1=g1, muX=muX, varX= varX); Ep.OC

#Defining the Shewhart charts
rp.L.Shewhart = list(L1, mu.rp, sd.rp)
rd.L.Shewhart = list(L2, mu.rd, sd.rd)
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rq.L.Shewhart = list(L3, mu.rq, sd.rq)

#Calculating ARL1 results
ARL1.results = ARL1.ZI.Shewhart(fixed.model.ZIP.SC1, rp.L.Shewhart, rd.L.Shewhart, rq.L.Shewhart, n, N,

dist = "ZIP", ICparams, b0.OC = b0.OC, g0.OC = g0.OC)

#Reordering ARL1 results
ARL1.results$E.lamb.OC = Elamb.OC
ARL1.results$E.p.OC = Ep.OC
ARL1.results = ARL1.results[,c(1,15,2,3,4,5,6,7,8,16,9,10,11,12,13,14)]
k = length(Elamb.OC)
l = length(Ep.OC)
ncol = length(ARL1.results[1,])
ARL1.results = cbind(ARL1.results[1:k,1:(ncol/2)], ARL1.results[(k+1):(k+l),(ncol/2+1):ncol])
ARL1.results

#Storing intermediate results
write.csv(ARL1.results, file="Baseline-Shewhart-L-ARL1-SC1", row.names = FALSE, quote = FALSE)

C.4 Functions for GLM-based TBE performance evaluation

library(VGAM)
library(statip)
library(pscl)
library(MASS)

#Function to calculate time-between-events
Calculate.TBE = function (YT,r) {
n = length(YT)
y = YT[1:(n/2)]
t = YT[(n/2 + 1):n]
event.times = t[y>0]
idx = 1:length(event.times)
event.times.r = event.times[(idx %% r) == 0]
tbe = diff(c(0,event.times.r))
return(tbe)

}

#Function to calculate the accumulated weight, i.e. x, between-events
Calculate.XBE = function (YX,r) {
n = length(YX)
y = YX[1:(n/2)]
x = YX[(n/2 + 1):n]
idx = 1:(n/2)
events = idx[y>0]
Events = rbind(c(0,events[1:(length(events)-1)])+1,events)
xbe = apply(Events, 2, sumfun, x=x)
return(xbe)

}

#Function that calculates the number of observations untill the next event
Calculate.nr.obs = function (YX,r) {
n = length(YX)
y = YX[1:(n/2)]
x = YX[(n/2 + 1):n]
idx = 1:(n/2)
events = idx[y>0]
Events = rbind(c(0,events[1:(length(events)-1)])+1,events)
nr.samples = Events[2,] - Events[1,] + 1
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return(nr.samples)
}

#Intermediate function to accumulate x values
sumfun = function(x, idx) {
start = idx[1]
end = idx[2]
return(sum(x[start:end]))

}

#Calculating residuals of fitting the IC models on OC data
TBE.raw.residuals = function(model, data) {
model = TBE.model
data = cbind(TBE[1,], XBE[1,])
n = length(data)
tbe = data[1:(n/2)]
xbe = data[((n/2) + 1):n]
mu = predict(model, newdata = data.frame(xbe), type="response")
raw = TBE - mu
return(raw)

}

TBE.Pearson.residuals = function(v0, v1, data) {
n = length(data)
tbe = data[1:(n/2)]
xbe = data[((n/2) + 1):n]
mu = exp(v0 + v1*xbe)
rp = (tbe - mu) / mu
return(rp)

}

TBE.Deviance.residuals = function(v0, v1, data) {
n = length(data)
tbe = data[1:(n/2)]
xbe = data[((n/2) + 1):n]
mu = exp(v0 + v1*xbe)
t1 =
d = 2*(-log(tbe/mu) -1 + tbe/mu)

rd = sign(tbe-mu)*sqrt(d)
return(rd)

}

TBE.Quantile.residuals = function(v0, v1, shape, data) {
n = length(data)
tbe = data[1:(n/2)]
xbe = data[((n/2) + 1):n]
mu = exp(v0 + v1*xbe)
scale = as.numeric(mu/shape)
cdf = pgamma(tbe, shape=shape, scale=scale)
rq = qnorm(cdf)
return(rq)

}

#LI function for individual runs
LI = function(data, q1, q2) {
len = length(data)/2
resid = data[1:len]
accumulated.obs.per.event = data[(len+1):(2*len)]
n = length(na.omit(resid))
idx = min(min(n, which(resid > q1)), min(n, which(resid < q2)))
LI = accumulated.obs.per.event[idx]
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#if(idx==n){print("Simulation size n too small")}
return(LI)

}

#Function that obains all LIs for multiple runs
Obtain.LIs = function(resid, alpha, Y, X, r) {
Q = Solve.Q(resid, alpha)
Q1 = Q[[1]]
Q2 = Q[[2]]
#Calculating nr of observations per event
nr.obs.per.event = apply(cbind(Y,X), 1, Calculate.nr.obs, r=r)
accumulated.obs.per.event = lapply(nr.obs.per.event, Reduce, f=sum, accumulate = TRUE)
accumulated.obs.per.event = do.call(rbind, lapply(accumulated.obs.per.event, function(x) ‘length<-‘(

unlist(x), ml)))
#Calculating the LIs
LIs = apply(cbind(resid, accumulated.obs.per.event), 1, LI, q1 = Q1, q2 = Q2)
return(LIs)

}

#ALI inequaltiy to solve for alpha
ALI.inequality = function(resid, alpha, Y, X, r, Set.ALI) {mean(Obtain.LIs(resid, alpha, Y, X, r)) - Set.

ALI}

#Function that solves the required alpha value to assure ALI = Set.ALI (e.g. ALI = 200)
Solve.alpha = function(resid, Y, X, r, Set.ALI) {
search.range.alpha = c(0, 1)
alpha = uniroot(ALI.inequality, interval = search.range.alpha, resid = resid, Y=Y, X=X, r=r, Set.ALI=Set.

ALI, tol=0.001)$root
return(alpha)

}

#Function to calculate average number of proportion r > q1
Calculate.Alpha1 = function(Y, Q1){
above.Q1 = apply(Y, 1, function(Y,Q1){sum(Y > Q1, na.rm = TRUE)}, Q1=Q1)
n = apply(Y, 1, function(x){length(na.omit(x))})
proportion.above = above.Q1/n
alpha1 = mean(proportion.above)
return(alpha1)

}

#Function to calculate average number of proportion r < q2
Calculate.Alpha2 = function(Y, Q2){
below.Q2 = apply(Y, 1, function(Y,Q2){sum(Y < Q2, na.rm = TRUE)}, Q2=Q2)
n = apply(Y, 1, function(x){length(na.omit(x))})
proportion.below = below.Q2/n
alpha2 = mean(proportion.below)
return(alpha2)

}

#Inequalities to solve probability control limits, for a given quantile level
inequality.Q1 = function(Y, Q1, n, SET.Alpha1) {Calculate.Alpha1(Y = Y, Q1 = Q1) - SET.Alpha1}
inequality.Q2 = function(Y, Q2, n, SET.Alpha2) {Calculate.Alpha2(Y = Y, Q2 = Q2) - SET.Alpha2}

#Solve the quantile limits Q1 and Q2
Solve.Q = function(Y, set.Alpha){
#Determining simulation size
N = nrow(Y)
#Solving Q1 and Q2
search.range1 = c(min(Y[Y!=-Inf], na.rm=TRUE), max(Y[Y!=Inf], na.rm=TRUE))
search.range2 = c(min(Y[Y!=-Inf], na.rm=TRUE), max(Y[Y!=Inf], na.rm=TRUE))
Solved.Q1 = NA



164 APPENDIX C. APPENDIX: R CODE

Solved.Q1 = uniroot(inequality.Q1, interval = search.range1, Y = Y, SET.Alpha1=set.Alpha/2, tol=0.001)$
root

Solved.Q2 = NA
Solved.Q2 = uniroot(inequality.Q2, interval = search.range2, Y = Y, SET.Alpha2=set.Alpha/2, tol=0.001)$

root
if (is.na(Solved.Q1)==TRUE) {warning("Unable to solve Q1"); break}
if (is.na(Solved.Q2)==TRUE) {warning("Unable to solve Q2"); break}
return(list(Solved.Q1, Solved.Q2))

}

#Procedure to generate ZIP Shewhart ALI1 results for input OC parameters
Obtain.LIs.OC.ShewhartQ = function (v0, v1, shape, r, Q1, Q2, Q3, Q4, Q5, Q6, data.dist, n, N, ICparams ,

b0.OC = c(), g0.OC = c()) {
#Obtaining IC parameters
b0 = ICparams[1]
b1 = ICparams[2]
g0 = ICparams[3]
g1 = ICparams[4]
muX = ICparams[5]
varX = ICparams[6]
if (data.dist == "ZINB") {tau = ICparams[7]}

#Define simulation size and output storage
n = ncol(rp0)
N = nrow(rp0)
nr = max((b0.OC), length(g0.OC))
Store.LI = matrix(rep(NA, N*(length(b0.OC)+length(g0.OC))*3),N,(length(b0.OC)+length(g0.OC))*3)

#Procedure for obtaining OC results
idx = 0
for (k in b0.OC) {
idx = idx + 1;
print(eval(sprintf("working on ALI1 simulation %s out of %s", idx, length(b0.OC)+length(g0.OC))))
if (data.dist == "ZIP") {Data = Simulate.ZIP.Data(b0 = k, b1 = b1, g0 = g0, g1 = g1, n, N, muX, varX)}
if (data.dist == "ZINB") {Data = Simulate.ZINB.Data(b0 = k, b1 = b1, g0 = g0, g1 = g1, tau, n, N, muX,

varX)}
Y1 = Data[[1]]
X1 = Data[[2]]
arrival.times = t(matrix(rep(1:n),n,N))

#Computing the time and weights between events
TBE1 = apply(cbind(Y1,arrival.times), 1, Calculate.TBE, r=r)
XBE1 = apply(cbind(Y1,X1), 1, Calculate.XBE, r=r)
ml1 = max(lengths(TBE1))
TBE1 = do.call(rbind, lapply(TBE1, function(x) ‘length<-‘(unlist(x), ml1)))
XBE1 = do.call(rbind, lapply(XBE1, function(x) ‘length<-‘(unlist(x), ml1)))

#obtaining residuals
rp1 = t(apply(cbind(TBE1,XBE1), 1, TBE.Pearson.residuals, v0 = v0, v1 = v1))
rd1 = t(apply(cbind(TBE1,XBE1), 1, TBE.Deviance.residuals, v0 = v0, v1 = v1))
rq1 = t(apply(cbind(TBE1,XBE1), 1, TBE.Quantile.residuals, v0 = v0, v1 = v1, shape = shape))

#Calculating the LIs
nr.obs.per.event = apply(cbind(Y1,X1), 1, Calculate.nr.obs, r=r)
accumulated.obs.per.event = lapply(nr.obs.per.event, Reduce, f=sum, accumulate = TRUE)
accumulated.obs.per.event = do.call(rbind, lapply(accumulated.obs.per.event, function(x) ‘length<-‘(

unlist(x), ml1)))

LIs.rp.b = apply(cbind(rp1, accumulated.obs.per.event), 1, LI, q1 = Q1, q2 = Q2)
LIs.rd.b = apply(cbind(rd1, accumulated.obs.per.event), 1, LI, q1 = Q3, q2 = Q4)
LIs.rq.b = apply(cbind(rq1, accumulated.obs.per.event), 1, LI, q1 = Q5, q2 = Q6)
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Store.LI[1:N,(3*(idx-1)+1)] = LIs.rp.b
Store.LI[1:N,(3*(idx-1)+2)] = LIs.rd.b
Store.LI[1:N,(3*(idx-1)+3)] = LIs.rq.b

}
for (m in g0.OC) {
idx = idx + 1;
print(eval(sprintf("Working on ALI1 simulation %s out of %s", idx, length(b0.OC)+length(g0.OC))))
if (data.dist == "ZIP") {Data = Simulate.ZIP.Data(b0 = b0, b1 = b1, g0 = m, g1 = g1, n, N, muX, varX)}
if (data.dist == "ZINB") {Data = Simulate.ZINB.Data(b0 = b0, b1 = b1, g0 = m, g1 = g1, tau, n, N, muX,

varX)}
Y1 = Data[[1]]
X1 = Data[[2]]
arrival.times = t(matrix(rep(1:n),n,N))

#Computing the time and weights between events
TBE1 = apply(cbind(Y1,arrival.times), 1, Calculate.TBE, r=r)
XBE1 = apply(cbind(Y1,X1), 1, Calculate.XBE, r=r)
ml1 = max(lengths(TBE1))
TBE1 = do.call(rbind, lapply(TBE1, function(x) ‘length<-‘(unlist(x), ml1)))
XBE1 = do.call(rbind, lapply(XBE1, function(x) ‘length<-‘(unlist(x), ml1)))

#obtaining residuals
rp1 = t(apply(cbind(TBE1,XBE1), 1, TBE.Pearson.residuals, v0 = v0, v1 = v1))
rd1 = t(apply(cbind(TBE1,XBE1), 1, TBE.Deviance.residuals, v0 = v0, v1 = v1))
rq1 = t(apply(cbind(TBE1,XBE1), 1, TBE.Quantile.residuals, v0 = v0, v1 = v1, shape = shape))

#Calculating the LIs
nr.obs.per.event = apply(cbind(Y1,X1), 1, Calculate.nr.obs, r=r)
accumulated.obs.per.event = lapply(nr.obs.per.event, Reduce, f=sum, accumulate = TRUE)
accumulated.obs.per.event = do.call(rbind, lapply(accumulated.obs.per.event, function(x) ‘length<-‘(

unlist(x), ml1)))

LIs.rp.g = apply(cbind(rp1, accumulated.obs.per.event), 1, LI, q1 = Q1, q2 = Q2)
LIs.rd.g = apply(cbind(rd1, accumulated.obs.per.event), 1, LI, q1 = Q3, q2 = Q4)
LIs.rq.g = apply(cbind(rq1, accumulated.obs.per.event), 1, LI, q1 = Q5, q2 = Q6)
Store.LI[1:N,(3*(idx-1)+1)] = LIs.rp.g
Store.LI[1:N,(3*(idx-1)+2)] = LIs.rd.g
Store.LI[1:N,(3*(idx-1)+3)] = LIs.rq.g

}
return(data.frame(Store.LI))

}

C.5 Example of execution: TBE performance evaluation

library(VGAM)
library(statip)
library(pscl)
library(MASS)

#True parameters
b0 = 0.1
b1 = 1.0
g0 = 0.5
g1 = -1.0
muX = 0
varX = 1

#Size of the phase I data
m = 1500
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#Forloop to eliminate the variation that originates from having a phase I
nr.loops = 100
Qvalues = matrix(NA, nr.loops,6)
for (i in 1:nr.loops) {
print(i)

#Simulating phase 1 data - Y = response variable, X = covariate - size = 1 x m
Data = Simulate.ZIP.Data(b0, b1, g0, g1, m, 1, muX, varX)
Y = as.numeric(Data[[1]])
X = as.numeric(Data[[2]])
arrival.times = rep(1:m)
r = 1

#Calculating the TBE and XBE from the phase 1 data
tbe = Calculate.TBE(cbind(Y, arrival.times), r=r)
xbe = Calculate.XBE(cbind(Y,X), r=r)

#Obtaining the phase 1 TBE model
TBE.model = glm(tbe ~ xbe, family=Gamma(link="log"))
coef = coefficients(TBE.model)
v0 = coef[1]
v1 = coef[2]
shape.estimation = gamma.shape(TBE.model)
est.shape = as.numeric(shape.estimation[1])

#Defining simulation parameters
dist = "ZIP"
N = 200
n = 3000

#Simulating data for control chart construction: size = Nxn
Data = Simulate.ZIP.Data(b0, b1, g0, g1, n, N, muX, varX)
Y = Data[[1]]
X = Data[[2]]
arrival.times = t(matrix(rep(1:n),n,N))

#Computing the time and weights between events
TBE = apply(cbind(Y,arrival.times), 1, Calculate.TBE, r=r)
XBE = apply(cbind(Y,X), 1, Calculate.XBE, r=r)

#Converting into proper format
ml = max(lengths(TBE))
TBE = do.call(rbind, lapply(TBE, function(x) ‘length<-‘(unlist(x), ml)))
XBE = do.call(rbind, lapply(XBE, function(x) ‘length<-‘(unlist(x), ml)))

#Fitting a ZIP GLM to the data and obtain residuals (15 min)
rp0 = t(apply(cbind(TBE,XBE), 1, TBE.Pearson.residuals, v0 = v0, v1 = v1))
rd0 = t(apply(cbind(TBE,XBE), 1, TBE.Deviance.residuals, v0 = v0, v1 = v1))
rq0 = t(apply(cbind(TBE,XBE), 1, TBE.Quantile.residuals, v0 = v0, v1 = v1, shape = est.shape))
print(sum(rq0==Inf,na.rm=TRUE)); rq0[rq0==Inf] = max(rq0[rq0!=Inf],na.rm=TRUE)

#Solving the control limits such that ALI = 200
alpha.rp0 = Solve.alpha(rp0, Y, X, r, Set.ALI = 200); print(alpha.rp0)
alpha.rd0 = Solve.alpha(rd0, Y, X, r, Set.ALI = 200); print(alpha.rd0)
alpha.rq0 = Solve.alpha(rq0, Y, X, r, Set.ALI = 200); print(alpha.rq0)
Q = Solve.Q(rp0, alpha.rp0); Q1 = Q[[1]]; Q2 = Q[[2]]
Q = Solve.Q(rd0, alpha.rd0); Q3 = Q[[1]]; Q4 = Q[[2]]
Q = Solve.Q(rq0, alpha.rq0); Q5 = Q[[1]]; Q6 = Q[[2]]

#Storing intermediate results
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Qvalues[i,] = c(Q1, Q2, Q3, Q4, Q5, Q6)

#Calculating desired distributional shift
Elamb.IC = integral.Elamb(b0, b1, muX, varX); Elamb.IC
alpha2 = c(seq(1.0,0.3,-0.1),seq(1.0,3.3,0.3))
dist.shift.lamb = alpha2*Elamb.IC; dist.shift.lamb
b0.OC = sapply(dist.shift.lamb, solve.b0, b1 = b1, muX = muX, varX = varX);
b0.OC[1] = b0; b0.OC[9] = b0; b0.OC
Elamb.OC = sapply(b0.OC, integral.Elamb, b1=b1, muX=muX, varX= varX); Elamb.OC

Ep.IC = integral.Ep(g0, g1, muX, varX) ; Ep.IC
alpha1 = c(seq(1.0,0.3,-0.1), seq(1.0,1.35,0.05)); alpha1
dist.shift.p = alpha1*Ep.IC ; dist.shift.p
g0.OC = sapply(dist.shift.p, solve.g0, g1 = g1, muX = muX, varX = varX)
g0.OC[1] = g0; g0.OC[9] = g0; g0.OC
Ep.OC = sapply(g0.OC, integral.Ep, g1=g1, muX=muX, varX= varX); Ep.OC

#Calculating ARL1 results
ICparams = c(b0, b1, g0, g1, muX, varX)
LIs = Obtain.LIs.OC.ShewhartQ(v0 = v0, v1 = v1, shape = est.shape, r, Q1, Q2, Q3, Q4, Q5, Q6, data.dist="

ZIP", n, N, ICparams, b0.OC = b0.OC, g0.OC = g0.OC)

#Merge results
if (i == 1) {current.LIs = LIs}
if (i > 1) {current.LIs = rbind(current.LIs,LIs)}
}

write.csv(current.LIs, file="All-LIs-TBE-SC1.csv", row.names = FALSE, quote = FALSE)
ALI1.results = merge.results(LIs, pooled.sd = FALSE)

#Reordering ALI1 results
ALI1.results$b0.OC = b0.OC
ALI1.results$g0.OC = g0.OC
ALI1.results$E.lamb.OC = Elamb.OC
ALI1.results$E.p.OC = Ep.OC
ALI1.results = ALI1.results[,c(13,15,1,2,3,4,5,6,14,16,7,8,9,10,11,12)]
print(ALI1.results)

#Storing results
write.csv(ALI1.results, file="TBE-ALI1-SC1", row.names = FALSE, quote = FALSE)
write.csv(Qvalues, file="TBE-Qvalues-SC1.csv", row.names = FALSE, quote = FALSE)


