
 Eindhoven University of Technology

MASTER

Extending the Scope of Algebraic Kernelization for Constraint Satisfaction Problems

Beukers, Stijn

Award date:
2021

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/7d1ffa70-359d-4b34-b1c9-1341b98e2dda

Department of Mathematics and Computer Science
Algorithms Geometry and Applications

Extending the Scope of Algebraic Kernelization
for Constraint Satisfaction Problems

Master Thesis

Stijn Beukers
0993791

Supervisor:
dr. B.M.P. Jansen

Assessment committee:
dr. B.M.P. Jansen
prof. dr. M.T. de Berg
dr. J.J.A. Keiren

30 August 2021

Eindhoven University of Technology

Abstract

The constraint satisfaction problem (CSP) is a problem which asks whether it is possible to
find a satisfying assignment for a number of variables such that a set of constraints is satis-
fied. While the complexity of any CSP depends on the types of allowed constraints, many
have been observed to be NP -hard. Some well-known instances include q-Graph Coloring
and d-CNF-SAT for d > 2. One way to more efficiently solve NP -hard CSP s is through
kernelizations. A kernelization is a formalization of preprocessing the original problem to a
simpler one without changing the solutions. We will explore how the size of the set of suit-
ably preprocessed constraints for CSP depends on the number of variables and the types
of allowed constraints. The work by Chen, Jansen and Pieterse showed how to construct a
kernel with a constraint set of linear size in terms of the number of variables for CSPs over
a Boolean domains where the types of allowed constraints are so-called “balanced”. Their
approach relied on representing the constraints by low-degree polynomials. By computing a
basis for these polynomials it was then possible to sparsify the set of constraints. Earlier work
only considered applying this method on Boolean domain CSP s however.
In this thesis we will expand upon the method provided by Chen, Jansen and Pieterse over
non-Boolean finite domains, and show how to identify which CSP s have a kernel of size O(nt)
for t > 1, thus going beyond linear kernelization. For Boolean CSP s we show that when the
allowed types of constraints are so-called t-balanced, it is possible to construct polynomials of
degree t which represent the constraints of the CSP . These polynomials can then be used to
sparsify said CSP as mentioned before. A similar approach can be applied for non-Boolean
CSP by first rewriting the constraints of such a CSP to an equivalent binary constraint
and then applying a framework similar to that of the CSP over a Boolean domain. For a
specific type of CSP , known as 3-Uniform Hypergarph 3-Coloring, we will show that
it is unlikely for a kernel with O(n3−ε) constraints for ε > 0 to exist. This type of CSP is
similar to 3-Graph Coloring except that the graph is structured differently. In a 3-uniform
hypergraph, each edge consists of 3 vertices instead of 2. In addition, a coloring is said to be a
proper coloring if each edge contains at least 2 uniquely colored vertices. This can be thought
of as a CSP where each constraint consists of 3 variables and each variable can be assigned
a value from 1 to 3.

Extending the Scope of Algebraic Kernelization for Constraint Satisfaction Problems

CONTENTS Eindhoven University of Technology

Contents

1 Introduction 1

2 Preliminaries 5
2.1 CSP . 5
2.2 Sparsification . 5
2.3 Balanced operations . 7
2.4 Polynomials . 8

3 Kernels for non-uniform CSP 10
3.1 Generic Kernel for Boolean non-uniform CSP . 10
3.2 Kernel for non-uniform CSP over finite domains . 15
3.3 Difficulties of constructing single capturing polynomials 21
3.4 Importance of rings when constructing single capturing polynomials 22
3.5 Reducing a set of capturing polynomials . 23

4 Lower Bound for 3-Uniform Hypergraph 3-Coloring 25

5 Conclusion 36

Extending the Scope of Algebraic Kernelization for Constraint Satisfaction Problems

1 INTRODUCTION Eindhoven University of Technology

1 Introduction

Background and motivation. An important aspect of computer science is the search for effi-
cient algorithms which can be used to solve complex problems. Although for many problems it is
possible to find algorithms that find solutions efficiently, there are also many problems for which
this does not seem to be feasible. An algorithm is called efficient if it is capable of computing a
solution for a problem in time polynomial to the size of the input. Such problems are also referred
to as tractable and the set containing all such problems is denoted by P . Problems for which
it is believed that they cannot be solved in time polynomial in the size of the input are called
intractable. Many intractable problems are also often referred to as NP -hard. The set of problems
NP is characterized by the fact that a solution for a problem contained in NP can be checked
on correctness in polynomial time. The definition NP -hard stems from the fact that an NP -hard
problem is at least as hard as the hardest problems in NP , which are believed to be intractable. In
addition to a problem being NP -hard, a problem is called NP -complete if it is both NP -hard and
contained within NP . The definition of NP trivially leads to P ⊆ NP however, NP ⊆ P has not
been proven and is generally thought to be false. This leads to the well-known conjecture P 6= NP .

One specific a class of NP -complete problems is the constraint satisfaction problem (CSP) which,
given a set of variables and constraints, requires one to compute an assignment to said variables
in order to satisfy all constraints. Although general CSP is NP -complete, some variations of
CSP are tractable. A well-known example of a tractable variant of CSP is 2-CNF-SAT [1, 2, 3].
This problem requires multiple disjunctive clauses of two literals, which are either variables or
the negations of variables, to be assigned a Boolean value. A solution would require each clause
to evaluate to true. Now, if each clause were to contain more than two variables, also referred to
as d-CNF-SAT for d 3, this problem becomes NP -complete [4]. Whether a variant of CSP is
NP -complete depends on the types of allowed constraints. More generally we can refer to a set
of allowed constraint types by a so-called constraint language Γ. A constraint type contained in
a language is also often referred to as a relation R ∈ Γ. A more formal definition will be pre-
sented in Section 2. If the constraint language Γ is fixed for CSP , then the problem is known
as non-uniform constraint satisfaction problem and is denoted by CSP (Γ). For a long time the
conjecture whether any CSP (Γ) is either tractable or NP -complete depending on the language Γ
was an open problem. It was eventually proven that this conjecture is correct [5, 6, 7]. In this the-
sis we will not focus on tractable instances of CSP (Γ) and instead focus on NP -complete instances.

To get around this computational complexity, new ways of dealing with NP -complete problems
had to be invented. A well-known way to do so is by looking at so-called parameterized problems.
These are problems where instead of only consisting of an input instance I, an integer k is also
provided which is known as the parameter. Some examples are Vertex Cover parameterized by
the size of the vertex cover or Graph q-Coloring parameterized by the size of the largest clique.

One way in which such parameterized problems can be applied is by creating so-called kernels.
A parameterized problem Q ⊆ {0, 1}∗ × N is the set of pairs (I, k) with I being the encoding of
a decision problem with answer yes, also referred to as a yes-instance, and integer parameter k.
A kernel for Q is an algorithm A : {0, 1}∗ × N → {0, 1}∗ × N which satisfies that any instance
(I, k) ∈ Q can be efficiently reduced to an instance (I ′, k′) ∈ Q such that the size of (I ′, k′) is
bounded by some function g(k), and such that (I, k) ∈ Q if and only if (I ′, k′) ∈ Q. Thus the size

Extending the Scope of Algebraic Kernelization for Constraint Satisfaction Problems 1

Eindhoven University of Technology 1 INTRODUCTION

of the kernelized instance (I ′, k′) directly depends on k. A more formal definition will be provided
in Section 2. In general, the size of I can be reduced when it is large with respect to k. If this is
not the case then it is possible that no smaller equivalent instance for (I, k) exists. It is thus not
possible to indefinitely reduce a parameterized problem instance.

When it comes to non-uniform CSP , finding a kernel is especially relevant as many computational
problems can be formulated as variants of CSP (Γ) with an appropriate language Γ. Some exam-
ples are d-CNF-SAT, which was previously introduced, and Graph q-Coloring. However, for
many non-uniform CSP variants, it has been proven that the best obtainable kernels are so-called
trivial kernels. A kernel is trivial when it is obtained by simply removing duplicate constraints. An
example would be for d-CNF-SAT for which it was proven by Dell and Van Melkebeek that there
is no kernel of size O(nd−ε), where n denotes the number of variables, d the size of all clauses and
ε > 0, unless NP ⊆ coNP/poly [8]. The conjecture that NP ⊆ coNP/poly is false is a generally
accepted hypothesis for proving kernel lower bounds. A kernel of size O(nd) is trivial since for any
instance of d-CNF-SAT there can be at most 2d

(
n
d

)
= O(nd) distinct constraints. In addition,

Jansen and Pieterse have shown that Graph q-Coloring when parameterized by the number of
vertices does not admit a nontrivial kernel of size O(n2−ε) for ε > 0, unless NP ⊆ coNP/poly,
since a trivial kernel has size O(n2) [9]. It was later shown that for a different instance of non-
uniform CSP there exists a nontrivial kernel. Jansen and Pieterse showed that for d-Not All
Equal SAT (d-NAE-SAT) there exists a kernel with O(nd−1) constraints [10]. The problem of
d-NAE-SAT is similar to d-CNF-SAT in that each constraint consists of exactly d literals, but a
constraint in d-NAE-SAT is only satisfied when not all literals in a clause get assigned the same
value. Their approach models the constraints of a d-NAE-SAT instance as polynomials, which
can be sparsified by computing a basis for all such polynomials and removing the polynomials
which are not in the basis.

In addition, using an algebraic interpretation of CSP (Γ), Lagerkvist and Wahlström showed that
it is possible to identify instances of CSP (Γ) that have linear sized kernel, i.e. of at most O(n)
constraints, by checking if the language admits a so-called Maltsev embedding [11]. This result is
significant as it gives a generic way to identify CSP (Γ) instances that admit a linear kernel. Chen,
Jansen and Pieterse later showed that for so-called balanced constraint languages [12] it is possible
to construct a kernel of O(n) constraints. A constraint language is balanced when for each of the
relations in the language, each unsatisfying assignment of a relation cannot be expressed as an
integer linear combination whose coefficients sum up to 1 of the satisfying assignments of the same
relation. Constructing a linear kernel for CSP (Γ) defined over a balanced Γ is done by creating
low-degree polynomials which represent the constraints of a CSP (Γ) and then computing a basis
for these polynomials, similarly to Jansen and Pieterse [10].

During this thesis we will investigate which CSP (Γ) variants have a non-trivial kernel and which
do not. We will show that there is a generic scheme that, for any CSP (Γ) defined over a finite
domain, identifies whether CSP (Γ) admits a kernel of O(nt) constraints for some t > 0 and n
being the number of variables. Values of t which are not trivial are especially of interest.

Our results. We show that it is possible for any variant of CSP (Γ), given a so called t-balanced
language Γ, to construct a kernel of size O(nt). The definition of t-balancedness will be introduced
in Section 3.1 for Boolean domains and will be enriched for finite domains in Section 3.2. This ap-

2 Extending the Scope of Algebraic Kernelization for Constraint Satisfaction Problems

1 INTRODUCTION Eindhoven University of Technology

proach is based on the work by Chen, Jansen and Pieterse [12]. They showed that when a language
is balanced, it is possible for each relation to create a set of capturing polynomials. A polynomial is
said to capture a relation R ∈ Γ with respect to some unsatisfying assignment when all satisfying
assignments of R evaluate to 0 under the polynomial and the unsatisfying assignment evaluates
to some nonzero value. Thus testing if an assignment is satisfying is equivalent to checking if all
capturing polynomials evaluate to 0 when given the same assignment. The approach by Chen,
Jansen en Pieterse showed that it is possible for each balanced constraint language to construct a
set of linear capturing polynomials [12]. Then by computing a basis over these polynomials, they
found that it was possible to construct a kernel for CSP (Γ) with O(n) constraints. Our work
expands upon this framework with the notion of t-balanced constraint languages. Given such a
language, it is possible to construct a set of capturing polynomials of degree t which then allows us
to compute a basis, resulting in a kernel for CSP (Γ) of O(nt) constraints. For CSP (Γ) over finite
domains the relations are first transformed to a binary representation called the choice represen-
tation. A choice representation introduces for each entry in the original relation, a new entry for
each possible value of the domain which can be assigned to the entry in the original relation. An
entry in the choice representation is set to 1 if and only if the related entry in the original relation
was given the related value of the domain. Thus representing the value assigned in the original
relation as a binary “choice”, after which an approach similar to CSP (Γ) over Binary domains is
applied to find a kernel of O(nt) constraints.

We also show that, while in many cases it is possible to find for each relation R ∈ Γ a single poly-
nomial which captures R, using our approach there is no simple way to find such a polynomial.
Being able to find such a polynomial would be of interest as having a single polynomial for every
relation instead of a set of polynomials simplifies the process greatly. This does not mean that no
such polynomial exists, just that our approach cannot easily be applied to find such polynomials.
It is, however, possible to combine two capturing polynomials which each capture a single unsat-
isfying assignment with respect to R into a single capturing polynomial.

Finally, it would be desirable to show that the kernels our method finds are tight. This means
that whenever a t-balanced CSP (Γ) has a kernel of O(nt) constraints, then there does not exist
a kernel for the same CSP (Γ) with O(nt−ε) constraints for any ε > 0. While proving this for all
CSP (Γ) in general is a daunting task, we provide further evidence that this seems to be the case.
We say “further” evidence as when we tested our method on problems with known tight upper
bounds, such as Graph q-Coloring and d-Not All Equal SAT, our method gave the same
result as an upper bound. To this end we show that 3-Uniform Hypergraph 3-Coloring has
no kernel with O(n3−ε) edges for any ε > 0 unless NP ⊆ coNP/poly. 3-Uniform Hypergraph
3-Coloring asks whether a 3-Hypergraph, which is a graph where each edge contains 3 vertices,
can be colored such that each edge is colored using at least 2 distinct colors. This problem trivially
has a kernel of O(n3) edges, thus implying that this problem does not have a nontrivial kernel.
To prove this lower bound, we combine a set of specific graph coloring problem instances into a
single 3-uniform hypergraph which can only be 3-colored if at least one of the original instances
can be properly colored. We note that this specific graph coloring problem is a subproblem of
graph coloring called 2-3-Coloring with Triangle Split Decomposition for which the def-
inition is provided in Section 4. It is also interesting to note that both Graph q-Coloring and
3-Uniform Hypergraph 3-Coloring do not admit a nontrivial kernel. In addition, since a
specific subset of graph coloring problems was used to construct the kernel for 3-Uniform Hy-

Extending the Scope of Algebraic Kernelization for Constraint Satisfaction Problems 3

Eindhoven University of Technology 1 INTRODUCTION

pergraph 3-Coloring, it is clear that the complexity of these problems is tightly related.

Related work. Graph q-Coloring is a well-known instance of CSP (Γ). The goal is, given
a graph G, to check whether it is possible to assign each vertex in V (G) a color from the set
{1, ..., q} such that each edge in E(G) has endpoints in differently colored vertices. It was shown
by Jansen and Pieterse that is possible to find a kernel of size O(kq−1) for Graph q-coloring
with k being the size of the vertex cover [9]. A more general definition of Graph q-coloring
is List H-Coloring. Here the goal is to map each vertex in a graph G to a vertex in another
graph H such that for each edge in G, the end points are mapped to vertices in H which also
share an edge. In addition, each vertex in G is only allowed to be mapped to a subset of vertices
from H which is referred to as a list. For List H-Coloring it was proven by by Feder, Hell
and Huang showing that based on H, the problem is either tractable or NP -complete [13]. It
was later found by Chen, Jansen, Okrasa, Pietese and Rząz̀ewski that it is not possible to find a
kernel of size O(n2−ε) with ε > 0 unless NP ⊆ coNP/poly for the NP -complete instances of List
H-Coloring [14]. As O(n2) is a trivial kernel for List H-Coloring, this result implies that it
is unlikely that a non-trivial kernel exists for List H-Coloring.

It is also noteworthy how the complexity of parameterized CSP changes depending on the chosen
parameter. First, we introduce the notion of fixed parameter tractable problems for which the set is
denoted by FPT . Parameterized problems Q ⊆ {0, 1}∗×N in FPT are those for which a solution
can be found in time O(f(k)nO(1)), where f is some computable function, n represents the size of
a problem instance and k is the parameter. Essentially this states that a solution to the problem
must be found in time polynomial in terms of the input size and time f(k) on k. Note that no
restrictions are put on what kind of function f can be, so it can even be superpolynomial, meaning
that f does not have to be bounded by a polynomial. It is important to note that a decidable
problem Q is part of FPT if and only if Q has a kernelization, as shown in the book by Cygan et
al. [15]. Not all problems are in FPT however, and these problems are higher in the complexity
hierarchy. Similar to NP -hard problems in classical complexity theory, parameterized problems
which are believed not to be fixed parameter tractable are called W [1]-hard. Majdoddin has proven
that uniform CSP parameterized by the size of the solution is W [1]-hard [16]. This result implies
that no kernelization exists for uniform CSP parameterized by the solution size. Another example
of how complexity differs can be seen by looking at the Clique problem, which asks if a graph
contains a clique of a certain size. When the Clique problem is parameterized by the size of a
clique, it is known to be W [1]-hard. However, when parameterized by the maximum degree of the
graph, it is known to be in FPT , which implies that it has a kernel as well. This shows that the
choice of parameter is equally as important to the choice of the problem when trying to construct
a kernel for any parameterized problem.

Organization. In Section 2 we go over all the preliminaries required to understand this paper.
In Section 3 we show our kernelization algorithm for both Boolean and finite domain constraint
languages. In addition we show that it is not trivial to construct a single polynomial for any
CSP (Γ). In Section 4 we show the construction for the lower bound for 3-Uniform Hypergraph
3-List-Coloring. Finally we will summarize and discuss our results in Section 5.

4 Extending the Scope of Algebraic Kernelization for Constraint Satisfaction Problems

2 PRELIMINARIES Eindhoven University of Technology

2 Preliminaries

2.1 CSP

First, we define what CSP (Γ) is. To get there, we introduce the formal definition of a relation.
We define a finite set D to be the domain and V to be the set of variables over which an instance
of CSP (Γ) is specified. A relation is a set of tuples R ⊆ Dk of arity k containing some satisfying
assignments. A constraint language Γ is then the set of relations, which specifies all valid con-
straint types for CSP (Γ). A constraint defined over a relation R is given by R(x1, ..., xk), with
x1, ..., xk ∈ V . A constraint R(x1, ..., xk) is satisfied by an assignment f : V → D when it holds
that (f(x1), ..., f(xk)) ∈ R holds. This leads to the formal definition of CSP (Γ):

CSP (Γ)
Input: A tuple (C, V) where C is a finite set of constraints, V is a finite set of variables, and
each constraint is of the form R(x1, ..., xk) for R ∈ Γ and x1, ..., xk ∈ V .
Question: Does there exists a satisfying assignment, that is, an assignment f : V → D such
that for each R(x1, ..., xk) ∈ C it holds that (f(x1), ..., f(xk)) ∈ R?

A mapping f for which a clause R(x1, ..., xk) satisfies (f(x1), ..., f(xk)) ∈ R is called a satisfying
assignment for R(x1, ..., xk). Since we will be referring to the relations of a CSP (Γ) instance quite
extensively, we introduce the following notation for simplicity.

Definition 2.1. For a positive integer n, we let [n] denote the set of all positive integers {1, 2, ..., n}.

Definition 2.2. For a tuple t ∈ Dk of arity k, we define t[i] for i ∈ [k] as the ith element of t.

Since we have defined a relation R ⊆ Dk as a set of tuples of size k over the domain D, we can
thus also denote all elements of some r ∈ R by using r[i]. For completeness, we introduce the
following notation which will be used later on for the construction of certain relations.

Definition 2.3. For a finite set S,
(
S
i

)
denotes the collection of subsets of S of size i and

(
S
¬i
)

the collection of all subsets of S of size at most i.

2.2 Sparsification

It was proven that, depending on the constraint language Γ, CSP (Γ) is either polynomial time
solvable or NP -complete [5, 6, 7]. While the polynomial time solvable instances provide few prob-
lems in terms of running time, many NP -complete instances are still of interest and we would
thus like to find a way to solve them more efficiently. It is unlikely that we can find a polynomial
time algorithm which can find a solution for these NP -complete problems as this would imply
NP = P . One way to solve NP -complete problem instances more efficiently is to reduce the input
size in polynomial time before trying to solve the problem. This is where kernelization comes in,
which is a kind of sparsification. A kernelization algorithm is a type of preprocessing algorithm
that tries to reduce an instance I of some NP -hard problem until the irreducible core is reached
(just like the kernel of a seed). We also say that such an irreducible core is a sparsified instance.
First off, a kernelization algorithm uses so-called parameterized instances for which the definition
is given in Definition 2.4.

Definition 2.4 (Parameterized problem). A parameterized problem is a language L ⊆ (Σ∗ × N)
with Σ being a fixed finite alphabet . For an instance (x, k) ∈ (Σ∗ × N), k is called the parameter.

Extending the Scope of Algebraic Kernelization for Constraint Satisfaction Problems 5

Eindhoven University of Technology 2 PRELIMINARIES

We note that without loss of generality we can represent any alphabet Σ by a binary interpretation
{0, 1}∗. The parameter k of a parameterized problem can be defined as anything and will greatly
aid in the construction of a kernelization algorithm. An example of such an instance is a graph
coloring (G, k) where G is some undirected graph and k the size of the largest clique in G. The
key idea of a kernelization algorithm is to efficiently reduce the size of the original problem as
much as possible before applying an algorithm with an exponential worst case running time. This
allows the instance to be solved in much less time than it would normally take. For defining a
kernelization algorithm A : Σ∗ × N→ Σ∗ × N we first need the following notion:

sizeA(k) = sup{|I ′|+ k′ : (I ′, k′) = A(I, k), I ∈ Σ∗}

This means that the size of some natural number k with respect to a kernelization algorithm A
is defined for all I ∈ Σ∗ as the largest sum of |I ′| and k′ where (I ′, k′) is the output of A over
instance (I, k). Let Q,Q′ ⊆ Σ∗ × N be two parameterized problems. We say that the instances
(I, k) ∈ Q and (I ′, k′) ∈ Q′ are equivalent if it holds that (I, k) ∈ Q if and only if (I ′, k′) ∈ Q′.
This essentially means that (I, k) is a yes-instance if and only if (I ′, k′) is a yes-instance. Using
this notation, the definition of a kernelization algorithm is given in Definition 2.5.

Definition 2.5 (Kernelization, Kernel). A kernelization algorithm, or simply a kernel, for a
parameterized problem Q is an algorithm A that, given an instance (I, k) ∈ Σ∗ × N, works in
polynomial time and returns an equivalent instance (I ′, k′) ∈ Σ∗ × N such that (I, k) ∈ Q if and
only if (I ′, k′) ∈ Q. Moreover, we require that sizeA(k) ¬ g(k) for some computable function
g : N→ N.

Note that this final requirement of kernelization gives an upper bound on the size of any kernel
of a parameterized problems (I, k) depending on k. We call a kernel a polynomial kernel if the
function g in Definition 2.5 is a polynomial. During the course of this paper we will construct a
kernel for variants of CSP (Γ). While kernelization algorithms are very powerful tools, it is also
good to know whether or not we can improve upon an established kernel. To do so we would like
to make a statement regarding the lower bound of a kernel. To this end, a construct called a cross-
composition is used which requires a so-called polynomial equivalence relation. These concepts are
defined in Definitions 2.7 and 2.6 respectively.

Definition 2.6 (Polynomial equivalence relation [17, Definition 3.1]). An equivalence relation R
on Σ∗ is called a polynomial equivalence relation if the following conditions hold.

• There is an algorithm that, given two strings x, y ∈ Σ∗, decides whether x and y belong to
the same equivalence class in time polynomial in |x|+ |y|.

• For any finite S ⊆ Σ∗ the equivalence relation R partitions the elements in S into a number
of classes that is polynomially bounded in the size of the largest element of S.

Definition 2.7 (Cross-composition [17, Definition 3.3]). Let L ⊆ Σ∗ be a language, let R be
a polynomial equivalence relation on Σ∗, let Q ⊆ Σ∗ × N be a parameterized problem, and let
f : N → N be a function. An or-cross-composition of L into Q (with respect to R) of cost f(t)
is an algorithm that, given t instances x1, x2, ..., xt ∈ Σ∗ of L belonging to the same equivalence
class R, takes time polynomial in Σti=1|xi| and outputs an instance (y, k) ∈ Σ∗ × N such that:

• the parameter k is bounded by O(f(t) · (maxi |xi|)c), where c is some constant independent
of t, and

6 Extending the Scope of Algebraic Kernelization for Constraint Satisfaction Problems

2 PRELIMINARIES Eindhoven University of Technology

• instance (y, k) ∈ Q if and only if there is an i ∈ [t] such that xi ∈ L.

This finally leads to Theorem 2.8.

Theorem 2.8 ([17, Theorem 3.8]). Let Q ⊆ Σ∗ × N be a parameterized problem, let Σ be an
alphabet, and let d, ε be positive reals. If L is NP -hard under Karp reductions, has an or-cross-
composition into Q with cost f(t) = t1/d+O(1), where t denotes the number of instances, and Q
has a polynomial (generalized) kernelization with size bound O(kd−ε), then NP ⊆ coNP/poly.

HereNP ⊆ coNP/poly is a conjecture which is believed to be false and is generally used for proving
conditional kernel lower bounds. We will call an or-cross-composition with cost function f(t) =
t1/d+O(1) a degree-d cross-composition. Such a cross-composition in combination with Theorem 2.8
will be used to prove lower bounds for some parameterized problem Q. More specifically, if there
is a degree-d or-cross-composition from an NP -hard problem L into a parameterized problem Q,
then Q does not admit a kernel of size O(kd−ε) with k being the parameter of Q and ε > 0 unless
NP ⊆ coNP/poly. Note that during this thesis we will generally consider k to be the number of
variables, given by n.

2.3 Balanced operations

Next we introduce the notions of balanced relations and operations. These properties form the basis
of our sparsification method. First we introduce what a partial operation is. A partial operation is
a function f : X → Y , where X,Y are some sets, which is only defined over some subset X ′ ⊆ X.
This means that for any x ∈ X ′, f(x) ∈ Y and for all x′ ∈ X \X ′, f(x′) is undefined. One such a
function is the square root operation f(x) =

√
x defined over the integers. It can only be applied to

positive numbers which are also perfect squares. So 0, 1, 4, 9, ... are in the domain and 2,−3, 17 are
not in the domain of f defined over the integers. Since an operation is always a type of function,
we will use the notions of operation and function interchangeably. With this definition and the
definition of a relation, we give the definition of a relation being preserved by a partial operation
in Definition 2.9.

Definition 2.9. Let f : {0, 1}n → {0, 1} be some partial operation over the binary domain and let
R be some relation. We say that R is preserved by f when for each r1 = (r1[1], ..., r1[k]), ..., rn =
(rn[1], ..., rn[k]) ∈ R, if the entries of the tuple (f(r1[1], ..., rn[1]), ..., f(r1[k], ..., rn[k])) are defined,
then this tuple is an element of R. If all relations in constraint language Γ are preserved by f then
we say that Γ is preserved by f .

During this thesis we will mainly focus on a subset of partial operations defined over a binary
domain, in particular on partial functions which are considered balanced. The definition of a
balanced partial operation is given in Definition 2.10.

Definition 2.10. A partial Boolean function f : {0, 1}n → {0, 1} is called balanced if there exist
integer coefficients α1, ..., αn such that:

•
∑n
i=1 αi = 1,

• (x1, ..., xn) is in the domain of f if and only if
∑n
i=1 αixi ∈ {0, 1}

• f(x1, ..., xn) =
∑n
i=1 αixi for all tuples in the domain of f .

Extending the Scope of Algebraic Kernelization for Constraint Satisfaction Problems 7

Eindhoven University of Technology 2 PRELIMINARIES

Definition 2.11. A Boolean relation R is balanced if it is preserved by all balanced operations. A
Boolean constraint language Γ is balanced if all relations R ∈ Γ are balanced.

A specific balanced partial operation which will be important later on is called the alternating
operation, which is defined in Definition 2.12.

Definition 2.12. For each odd n 1, the alternating operation is defined to be the balanced
operation an : {0, 1}n → {0, 1} such that the coefficients alternate between +1,−1 such that:

αi =
{

+1 i is odd
−1 i is even (1)

Using this definition, Proposition 2.13 was proven by Chen, Jansen and Pieterse [12].

Proposition 2.13 ([12, Proposition 2.8]). A Boolean relation R is balanced if and only if for all
odd k 1, the relation R is preserved by the alternating operation of arity k.

2.4 Polynomials

Polynomials are a powerful tool which can be utilized effectively to sparsify constraint satisfaction
problems. This was first shown by Jansen and Pieterse [10] which showed how to construct poly-
nomials for Not-All-Equal-SAT (NAE-SAT) and thus allowed for the construction of a kernel
of size O(nk−1) with k being the arity of all relations and n being the number of variables over
which the instance of NAE-SAT is defined. The main tool they used is to construct polynomials
that capture an unsatisfying assignment. By computing a basis for these polynomials a kernel can
then be constructed. We call a polynomial d-variate if it is defined over d variables. The definition
of a polynomial capturing some unsatisfying assignment is given in Definition 2.14.

Definition 2.14. For a k-ary Boolean relation R ⊆ {0, 1}k and a k-variate polynomial pu defined
over some ring Eu, we say that u ∈ {0, 1}d \R is captured by pu with respect to R if the following
two conditions hold over Eu.

• pu(x) = 0 for all x ∈ R and

• pu(u) 6= 0

Using such polynomials, a system of linear equations can be constructed which can then be used
to reduce to a kernel of size O(nk−1) for k-NAE-SAT [10].

For 3-NAE-SAT this is done as follows. First we note that a clause in 3-NAE-SAT is only satisfied
when not all literals in a constraint evaluate to the same value. For example, if we have a constraint
R(x1, x2, x3) = (x1, x2,¬x3) of 3-NAE-SAT then the assignment γ : V → {0, 1} with γ(x1) =
1, γ(x2) = 1, γ(x3) = 0 would not be a satisfying assignment. By applying γ to the constraint we
get (γ(x1), γ(x2),¬γ(x3)) = (1, 1,¬0) = (1, 1, 1) from which it follows that γ is not satisfying as all
literals evaluate to 1. However, an assignment γ′ : V → {0, 1} with γ′(x1) = 1, γ(x2) = 1, γ(x3) = 1
does satisfy the clause as this results in (γ′(x1), γ′(x2),¬γ′(x3)) = (1, 1,¬1) = (1, 1, 0) and thus
clearly not all literals evaluate to these same value. With this in mind, a 3-variate polynomial
which captures a constraint R(x1, x2, x3) defined over some relations should be constructed. Since
all relations are similar up to negation, the polynomial in Equation 2 can be used to capture the

8 Extending the Scope of Algebraic Kernelization for Constraint Satisfaction Problems

2 PRELIMINARIES Eindhoven University of Technology

constraints of 3-NAE-SAT. Here `(xi) = xi if xi is not negated in R(x1, x2, x3) and `(x1) = 1−xi
if xi is negated in R(x1, x2, x3).

p(x1, x2, x3) = 1− `(x1)− `(x2)− `(x3) + `(x1)`(x2) + `(x1)`(x3) + `(x2)`(x3) (2)

So for example, the clause (x1, x2,¬x3) of 3-NAE-SAT would be captured by the polynomial
shown in Equation 3.

p(x1, x2, x3) = 1− x1 − x2 − (1− x3) + x1x2 + x1(1− x3) + x2(1− x3)
= x3 + x1x2 − x1x3 − x2x3

(3)

It is simple to confirm that this polynomial does capture (x1, x2,¬x3). By creating these polyno-
mials it is then possible to find a kernel of size O(n2) for 3-NAE-SAT as shown by Jansen and
Pieterse [10].

This was later expanded upon by Chen, Jansen and Pieterse to find a kernel [12] for the more
general problem definition CSP (Γ) in Theorem 2.15. Here the definition Z/qZ is used. This denotes
the field of integers modulo q. Here two integers i, i′ are equivalent if i ≡ i′ mod q. This is
abbreviated by i ≡q i′. One important notion which they use is that of the span of a set of vectors
as given in Definition 2.16.

Theorem 2.15 ([12, Theorem 3.5]). Let R ⊆ {0, 1}k be a fixed k-ary relation, such that for every
u ∈ {0, 1}k \ R there exists a ring Eu ∈ {Q} ∪ {Z/quZ|qu > 1 and qu ∈ N} and polynomial pu
over Eu of degree at most d that captures u with respect to R. Then there exists a polynomial-time
algorithm, given a set of constraints C over R over n variables, outputs C ′ ⊆ C with |C ′| =
O(nd), such that any Boolean assignment satisfies all constraints in C if and only if it satisfies all
constraints in C ′.

Definition 2.16 (Span). Given a set of k-ary vectors S = {s1, ..., sm} in Zk, SpanZ(S) is defined
as the set of all vectors y ∈ Zk such that there exist integers α1, ..., αm ∈ Z such that y =∑
i∈[m] αisi. Similarly, Spanq(S) defines the set of all k-ary vectors y over Z/qZ such that there

exist integers α1, ..., αm such that y ≡q
∑
i∈[n] αisi.

For some m × n matrix A we let ai for i ∈ [m] denote the ith row vector of A. In this thesis
we will denote for such an m × n matrix A the span of the row vectors ai by SpanZ(A) and
Spanq(A) as defined in Definition 2.16. Using this definition, Chen, Jansen and Pieterse proved,
among others, Lemmas 2.17 and 2.18 which are used to construct polynomials pu that capture
unsatisfying u ∈ U = {0, 1}k \ R assignments with respect to the respective relation R over the
ring Z/qZ.

Lemma 2.17 ([12, Lemma 4.3]). Let S be an m×n integer matrix. Let u ∈ Zn be a row vector. If
u 6∈ SpanZ(S), then there exist a prime power q such that u 6∈ Spanq(S). Furthermore, there is a
polynomial-time algorithm that computes a (possibly composite) integer q′ for which u 6∈ Spanq′(S).

Lemma 2.18 ([12, Lemma 4.6]). Let q > 1 be an integer. Let A be an m × n matrix over Zq.
Suppose am 6∈ Spanq({a1, ..., am−1}). Then there exists a constant c 6≡q 0 for which the system
Ax ≡q b has a solution, where b = (0, ..., 0, c)T is the vector with c on the last position and zeros
in all other position. Furthermore, x and c can be computed in polynomial time.

Extending the Scope of Algebraic Kernelization for Constraint Satisfaction Problems 9

Eindhoven University of Technology 3 KERNELS FOR NON-UNIFORM CSP

3 Kernels for non-uniform CSP

In this section we will be constructing a kernel for CSP (Γ). In Section 3.1 we will show how to
construct a kernel of O(nt) for CSP (Γ) defined over a so-called t-balanced Boolean constraint
language Γ. This will be done by constructing polynomials of degree t which capture the unsat-
isfying assignments of the relations in Γ. In section 3.2 we will enrich this definition for CSP (Γ)
defined over a finite domain D of size |D| 2. In Section 3.3 and 3.4 we show the difficulties of
constructing a single polynomial for a relation R ∈ Γ which captures all unsatisfying assignments
with respect to R. Finally in Section 3.5 we show that for any two polynomials which each capture
a different unsatisfying assignment with respect to R, it is possible to construct a single polynomial
that captures both unsatisfying assignments with respect to R.

3.1 Generic Kernel for Boolean non-uniform CSP

First we introduce the notion of a t-extended form of a relation R over a binary domain, denoted
by Rt. To do so properly we first introduce the δ(k, t) function.

Definition 3.1. For non-negative integers k, t, the function δ(k, t) is defined by δ(k, t) =
∑t
i=0

(
k
i

)
.

Using Definition 3.1, we give the definition of the t-extended form of a relation R in Definition
3.2.

Definition 3.2. For a k-ary Boolean relation R, the t-extended form of R is defined as the Boolean
relation Rt of arity δ(k, t) which contains the extended tuples r′, extended from r ∈ R, for which
for all sets S1, S2, ..., Sδ(k,t) ∈

([k]
¬t
)

sorted in lexicographical order, it holds that r′[j] =
∏
l∈Sj r[l].

Note that in this definition, for all r ∈ R, r′i[1] is set to 1, since the set S1 = ∅ for S1 ∈
([k]
¬t
)

and
therefore r′[j] =

∏
l∈∅ ri[l] = 1 as the product of the elements of ∅ is considered to be 1. A matrix

representation can be seen for 3-NAE-SAT and 4-NAE-SAT in Equations 4 and 5 respectively.
The matrix on the left represents the non-negated relation of the d-NAE-SAT problem and the
matrix on the right represents the degree-(d− 1)-extended form.

r[1] r[2] r[3]

1 0 0
0 1 0
0 0 1
1 1 0
1 0 1
0 1 1

S1 = S2 = S3 = S4 = S5 = S6 = S7 =
∅ {1} {2} {3} {1, 2} {1, 3} {2, 3}

1 1 0 0 0 0 0
1 0 1 0 0 0 0
1 0 0 1 0 0 0
1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1

(4)

10 Extending the Scope of Algebraic Kernelization for Constraint Satisfaction Problems

3 KERNELS FOR NON-UNIFORM CSP Eindhoven University of Technology

r[1] r[2] r[3] r[4]

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1
1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 1 0 0 0 0 0 0 0 0
1 1 0 0 1 0 0 1 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 1 0 0 0 0 0 0
1 0 1 0 1 0 0 0 0 1 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0 1 0 0 0 0
1 1 1 1 0 1 1 0 1 0 0 1 0 0 0
1 1 1 0 1 1 0 1 0 1 0 0 1 0 0
1 1 0 1 1 0 1 1 0 0 1 0 0 1 0
1 0 1 1 1 0 0 0 1 1 1 0 0 0 1

(5)

Using this definition we will define what it means when a relation is t-preserved and what it means
to be t-balanced.

Definition 3.3. Let f : {0, 1}n → {0, 1} be some partial operation. Let R ⊆ {0, 1}k be a Boolean
relation of arity k and let U = {0, 1}k \ R be the set of all Boolean assignments of arity k not
satisfying R. Let Rt, Ut be the t-extended forms of R,U respectively, and let I = {0, 1}δ(k,t) \
(Ut ∪ Rt) be the set of invalid assignments. A relation R is t-preserved by f if for any tuples
r′1, ..., r

′
n ∈ Rt for which the entries of the tuple (f(r′1[1], ..., r′n[1]), ..., f(r′1[δ(k, t)], ..., r′n[δ(k, t)]))

are defined and not contained in I, then the tuple is an element of Rt.

Definition 3.4. Let R ⊆ {0, 1}k be a k-ary Boolean relation. A relation R is t-balanced if it is
t-preserved by all balanced operations f . A constraint language Γ is t-balanced when all relations
R in Γ are t-balanced.

A good example of such a relation is 3-NAE-SAT shown in Equation 4. While it is not 1-balanced,
it is 2-balanced. It is not 1-balanced as the balanced operation f(x1, x2, x3) = x1−x2 +x3 does not
preserve the 1-extended relation, which is the same as the matrix on the left with 1s appended to
the left. If we were to take the tuples (1, 1, 0, 0), (1, 1, 1, 0), (1, 0, 1, 0) one can verify that applying
f this will result in the tuple (f(1, 1, 1), f(1, 1, 0), f(0, 1, 1), f(0, 0, 0)) = (1, 0, 0, 0) which is not
satisfying as this is the 1-extended form of (0, 0, 0), which is an unsatisfying assignment. However,
it is 2-balanced since we cannot construct a balanced operation which does not preserve the 2-
extended form. It is easy to confirm that for the previous example, if we take the same f and the
2-extended forms of the same tuples, i.e (1, 1, 0, 0, 0, 0, 0), (1, 1, 1, 0, 1, 0, 0), (1, 0, 1, 0, 0, 0, 0), the re-
sult of applying f on these tuples results in the tuple (1, 0, 0, 0,−1, 0, 0) which is not unsatisfying.
It is, however, invalid since it does not represent an actual tuple, either satisfying or unsatisfying.
This does therefore not make 3-NAE-SAT not 2-balanced by Definition 3.3.

We can see that Definition 3.3 is an extension of Definition 2.9 since the definitions are equivalent
when t = 1. The same can be said for Definitions 3.4 and 2.10. We also define Rt to be the
t-extended form of some arbitrary k-ary Boolean relation R and Ut to be the t-extended form of
the unsatisfying assignments U = {0, 1}k \ R. Using these Definitions, we will prove Lemma 2.13
for a t-balanced relation.

Lemma 3.5. Let R ⊆ {0, 1}k be a Boolean relation of arity k. Then the following statements are
equivalent:

Extending the Scope of Algebraic Kernelization for Constraint Satisfaction Problems 11

Eindhoven University of Technology 3 KERNELS FOR NON-UNIFORM CSP

1. R is t-balanced,

2. for all odd n 1 the alternating operation of arity n t-preserves R,

3. for all u′ ∈ Ut it holds that u′ 6∈ SpanZ(Rt).

Proof. To prove this Lemma, we first prove the equivalence of 1 and 2. Since the alternating
operation is a balanced operation, it must t-preserve R if R is t-balanced. Thus it remains to
be proven that whenever for all odd n 1 the alternating of arity n t-preserves R, then R is
t-balanced. Let R be a non t-balanced relation. By Definition 3.3 this means that there is a partial
operation f : {0, 1}n → {0, 1} which is balanced and has the property

(f(r′1[1], ..., r′n[1]), ..., f(r′1[δ(k, t)], ..., r′n[δ(k, t)])) ∈ Ut

for some r′1, ..., r
′
n ∈ Rt. In addition, we know that there are coefficients α1, α2, ..., αn ∈ Z such that∑n

i=1 αi = 1 and f(x1, x2, ..., xn) =
∑n
i=1 αixi by definition of a balanced operation. Thus for the

chosen tuples r′i ∈ Rt we can generalize this as
∑n
i=1 αir

′
i ∈ Ut. Now using these coefficients we can

construct an alternating operation with the same properties. We now replace αir′i by r′i+ ...+r
′
i(αi

times) if αi is positive and by −xi− ...−xi (−αi times) if αi is negative. Since all αi sum up to 1,
we know that these new coefficients 1,−1 will sum to 1 as well. By simply rearranging the terms
we can create an alternating operation that preserves the equality of the original function f .

This shows that statements 1 and 2 are equivalent. To finalize the proof we show that statements 1
and 3 are equivalent. We do so by proving the contrapositive for both directions of the equivalence.

case (⇐):
Let R be some non-t-balanced relation. This means there is some partial balanced operation
f : {0, 1}n → {0, 1} for which there is an entry u′ ∈ Ut for which there are tuples r′1, ..., r

′
n ∈ Rt

such that (f(r′1[1], ..., r′n[1]), ..., f(r′1[δ(k, t)], ..., r′n[δ(k, t)])) = u′. Now by Definition 2.10 we know
that there exist integer coefficients α1, ..., αn which satisfy

∑n
i=1 αi = 1, (x1, ..., xn) is in the do-

main of f if and only if
∑n
i=1 αixi ∈ {0, 1}, and f(x1, ..., xn) =

∑n
i=1 αixi for all tuples in the

domain of f . Now since f(x1, ..., xn) =
∑n
i=1 = αixi for all tuples in the domain of f , we can

express u′ as u′ =
∑n
i=1 αir

′
i. By Definition 2.16 this is equivalent to u′ ∈ SpanZ(Rt) thus proving

this case.

case (⇒):
Let u′ ∈ Ut be the t-extended form of some unsatisfying assignment such that u′ ∈ SpanZ(Rt).
By Definition 2.16, we know that there exist integer coefficients α1, ..., αn exist such that u′ =∑n
i=1 αir

′
i for some r′1, ..., r

′
n ∈ Rt. Using these α1, ..., αn, we construct the partial operation

f : {0, 1}n → {0, 1} such that f(x1, ..., xn) =
∑n
i=1 αixi. In addition, for this f we define that

any tuple (x1, ..., xn) is in the domain of f if and only of
∑n
i=1 αixi ∈ {0, 1}. Now we need to

prove that f is a balanced operation. Clearly by construction, requirements 2 and 3 of Definition
2.10 are already satisfied. Thus it remains to be proven that

∑n
i=1 αi = 1. By choice of α1, ..., αn,

we know that u′ =
∑n
i=1 αir

′
i, and therefor u′[1] =

∑n
i=1 αir

′
i[1]. By definition of a t-extended

tuple, any arbitrary t-extended tuple a would satisfy a[1] = 1 as we have stated previously. Thus
u′[1] = 1 and also r′i[1] = 1 for all i ∈ [n]. Thus we get that the summation u′[1] =

∑n
i=1 αir

′
i[1]

is equivalent to 1 =
∑n
i=1 αi, and therefore f is a balanced partial operation. Finally it is easy

to see that, since u′ =
∑n
i=1 αir

′
i = (f(r′1[1], ..., r′n[1]), ..., f(r′1[δ(k, t)], ..., r′n[δ(k, t)])) and r1, ..., rn

12 Extending the Scope of Algebraic Kernelization for Constraint Satisfaction Problems

3 KERNELS FOR NON-UNIFORM CSP Eindhoven University of Technology

are elements of Rt, f does not t-preserve R and thus R is not t-balanced which proves this case.

Now with the equivalence of statements 1 and 3 proven, we can infer by the equivalence of 1 and
2 that 2 and 3 are equivalent as well. Thus statements 1,2 and 3 are equivalent for any Boolean
relation R ⊆ {0, 1}k.

This gives us a powerful tool to identify t-balanced relations. In order to sparsify an instance
CSP (Γ) over a t-balanced language Γ, it would be desirable if this relation can be captured by a
degree t polynomial as this allows us to construct a kernel of size O(nt) by Theorem 2.15. To this
end we prove Lemma 3.6, which is an extension of method used for constructing linear polynomials
for balanced relations by Chen, Jansen and Pieterse [12].

Lemma 3.6. Let R ⊆ {0, 1}k be a k-ary t-balanced Boolean relation and let U = {0, 1}k \ R be
the set of Boolean assignments of arity k not satisfying R. For each u ∈ U there exists a k-variate
polynomial pu of degree t over Z/qZ, for some integer q ∈ N, that captures u with respect to R.

Proof. Let Rt = {r′1, r′2, ..., r′m} denote the t-extended form of R = {r1, r2, ..., rm} such that r′i is
the t-extended form of ri for i ∈ [m]. Now since R is t-balanced, we know that there is no balanced
partial operation f : {0, 1}n → {0, 1} which will result in (f(r′1[1], ..., r′n[1]), ..., f(r′1[δ(k, t)], ...,
r′n[δ(k, t)])) ∈ Ut for any choice of r′1, ..., r

′
n ∈ Rt.

For Rt we construct its matrix representation, which contains all tuples of Rt as row vectors, which
will be used to construct the desired polynomial. This is shown in Equation (6).

r′1[1] r′1[2] r′1[3] · · · r′1[δ(k, t)]
r′2[1] r′2[2] r′2[3] · · · r′2[δ(k, t)]
r′3[1] r′3[2] r′3[3] · · · r′3[δ(k, t)]

...
...

...
. . .

...
r′m[1] r′m[2] r′m[3] · · · r′m[δ(k, t)]

 (6)

The matrix of Rt is thus an m×δ(k, t) matrix, since there is a row for each satisfying assignment in
the matrix. Using this matrix we will show that for each u ∈ U there exists a k-variate polynomial
pu of degree t for which there exists an integer q such that pu is defined over the ring Z/qZ. For
the remainder of this proof, we will pick an arbitrary choice of u ∈ U for which a polynomial pu
will be constructed. Since R is t-balanced, we know that u′ 6∈ SpanZ(Rt) for all u′ ∈ Ut by Lemma
3.5. By using Lemmas 2.17 and 2.18 since u′ 6∈ SpanZ(Rt), we can find integers q, c 6≡q 0 and
α1, ..., αδ(k,t) such that the following system is satisfied.

r′1[1] r′1[2] r′1[3] · · · r′1[δ(k, t)]
r′2[1] r′2[2] r′2[3] · · · r′2[δ(k, t)]
r′3[1] r′3[2] r′3[3] · · · r′3[δ(k, t)]

...
...

...
. . .

...
r′m[1] r′m[2] r′m[3] · · · r′m[δ(k, t)]
u′[1] u′[2] u′[3] · · · u′[δ(k, t)]

α1

α2

α3
...

αδ(k,t)

 ≡q

0
0
0
...
c

 (7)

Note that the matrix on the left is an (m + 1) × δ(k, t) matrix which represents Rt with some
u′ ∈ Ut concatenated as the last row. In addition, the vector of values αi for i ∈ [δ(k, t)] is of

Extending the Scope of Algebraic Kernelization for Constraint Satisfaction Problems 13

Eindhoven University of Technology 3 KERNELS FOR NON-UNIFORM CSP

length δ(k, t) and the desired outcome is a vector of length m + 1. For the values α1, ..., αδ(k,t)
an arbitrary assignment is chosen which satisfies (7) and fixed for the remainder of the proof. We
claim that for u there is a k-variate polynomial pu defined over Z/qZ of degree t such that R is
captured by pu with respect to u which is given by Equation (8).

pu(x1, x2, ..., xk) ≡q
δ(k,t)∑
i=1

αi
∏
j∈Si

xj (8)

Here the sets Si for all i ∈ [δ(k, t)] are defined as S1, S2, ..., Sδ(k,t) ∈
([k]
¬t
)

sorted in lexicographical
order. Since this uses the same sets Si as in Definition 3.2 we see that there is a multivariate term
in pu corresponding to each value in a tuple r′i ∈ Rt and similarly for all u′ ∈ Ut. In addition, since
the size of any Si ∈

([k]
¬t
)

is at most t, the construction thus creates a polynomial which is the sum of
terms which are at most of degree t. Thus the entire polynomial which is constructed is of degree t.

Now suppose that pu does not capture u with respect to Rt. This means that either for some
r ∈ R, p(r) 6≡q 0 or for u ∈ U it holds that pu(u) ≡q 0. The second case would imply that
pu(u) =

∑δ(k,t)
i=1 u′[i] ·αi = u′~α ≡q 0 where ~α = (α1, ..., αδ(k,t))T . However, this contradicts Lemma

2.18 as this ensures that u′~α ≡q c for some c 6≡q 0.

Thus it remains to be proven that for all r ∈ R, pu(r) ≡q 0. Assume the inverse. This would mean
that there is some r ∈ R for which pu(r) 6≡q 0. Now we know by equation 8 that pu(x1, ..., xk) =∑δ(k,t)
i=1 αi

∏
i∈Si xi for S1, ..., Sδ(k,t) ∈

([k]
¬t
)
. In addition, the values for some entry r′, where r′ is the

t-extended form of some tuple r ∈ R, were also constructed similarly by taking r′[i] =
∏
i∈Si r[i].

Now one can rewrite pu(x1, ..., xk) to the inner product of the row vector ~x and to column
vector ~α as pu(x1, ..., xk) = ~x~α. Here ~x is the row vector containing multivariate monomials
of pu sorted in lexicographical order in terms of the sets Si ∈

([k]
¬t
)

used to define the re-
lated monomial. Then by definition, if our assumption is to be correct, this would mean that
pu(r) =

∑δ(k,t)
i=1 r′[i] · αi = r′~α 6≡q 0. However, this contradicts that the values of ~α for a solution

to (7). Thus we conclude that this polynomial satisfies pu(r) ≡q 0 for all r ∈ R.

From this we can conclude that, if R is t-balanced, for each u ∈ U we can find a polynomial of
degree t that captures u with respect to R.

Using Lemma 3.6, we want to find a kernel for CSP (Γ) with O(nt) constraints. We thus want to
prove Lemma 3.7.

Lemma 3.7. Let Γ be some Boolean constraint language that is t-balanced. Then CSP (Γ) param-
eterized by the number of variables n admits a kernel with O(nt) constraints which are a subset of
the original constraints.

Proof. Let the instance (I, n) denote an instance I = (C, V), where C is the set of constraints
and V the set of variables, of CSP (Γ) parameterized by the number of variables n = |V |. Let
CSP (Γ) be defined over a t-balanced language Γ. By definition of a t-balanced language, we know
that all Ri ∈ Γ are t-balanced. For each Ri ∈ Γ, compute its set of unsatisfying assignments
Ui = {0, 1}k \ Ri. For any subset of constraints Ci ⊆ C defined over the relation Ri which is
part of some problem CSP (Γ), where Ri(x1, ..., xk) is a constraint in Ci and u ∈ Ui, we know

14 Extending the Scope of Algebraic Kernelization for Constraint Satisfaction Problems

3 KERNELS FOR NON-UNIFORM CSP Eindhoven University of Technology

that polynomials pu(x1, ..., xk) exists by Lemma 3.6 that capture these constraints since Ri is
t-balanced. By applying Theorem 2.15 we get a set of constraints C ′i ⊆ Ci which is satisfied if and
only if Ci is satisfied. In addition, we know that C ′i is of size O(nt). The kernelized instance of
(I, n) is given by (I ′, n) where I ′ = (C ′, V). Here C ′ is constructed by C ′ = ∪|Γ|i=1C

′
i. Since each

C ′i is of size O(nt) and since |Γ| is constant, we find that C ′ = |Γ|O(nt) = O(nt). Now it is easy
to see that I ′ is also an instance of CSP (Γ) equivalent to I from which we conclude that Lemma
3.7 is correct.

We have thus found a way to sparsify any instance of CSP (Γ) defined over a Boolean t-balanced
constraint language Γ to an equivalent instance with O(nt) constraints. Using computer aided
calculations, we found that 1-in-4-SAT and 4-NAE-SAT are 1-balanced and 3-balanced respec-
tively. This implies that these problems have kernels of O(n) and O(n3) constraints respectively.
So the presented method agrees with the established kernel bounds of previous work [10].
In addition we explored a new relation, which is given in Equation (9).

R =

0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 1 0 0
1 0 0 0 1
0 1 0 1 0
0 0 1 1 0

(9)

This relation represents all possible ways to select an independent vertex set from the graph shown
in Figure 1. The columns in Equation (9) represent the vertices sorted in numerical order and the
rows represent a specific selection of vertices such that the selection forms an independent set.

Figure 1: Graph related to the relation in Equation (9)

We found that this relation was 2-balanced, thus implying that a variant of CSP (Γ) which is
defined over this relation has kernel of O(n2) constraints. This result is significant as this relation
has not yet been shown to have a nontrivial kernel.

3.2 Kernel for non-uniform CSP over finite domains

While we can construct a kernel of O(nt) constraints for any CSP (Γ) defined over a t-balanced
Boolean constraint language, it would be desirable to extend this methodology to constraint lan-
guages over any domain D. The main property that we will apply is the notion of a choice repre-
sentation which transforms a relation R over a finite domain D into a binary representation. This

Extending the Scope of Algebraic Kernelization for Constraint Satisfaction Problems 15

Eindhoven University of Technology 3 KERNELS FOR NON-UNIFORM CSP

representation can then be used to create polynomials which capture unsatisfying assignments
u ∈ Dk \R with respect to R. The definition of a choice assignment is given in Definition 3.8.

Definition 3.8 (Choice representation). Let D = {d1, ..., dh} be some arbitrary domain. Let
x ∈ Dk be some vector of size k defined over D. The choice representation of x, denoted by xc, is
the k · h-dimensional vector satisfying for all i ∈ [k], j ∈ [h], xc[(i − 1) · h + j] = 1 if and only if
x[i] = dj.

This essentially means that for each value of i ∈ [k], there is only a single value j ∈ [h] for which
it holds that xc[(i− 1) · h+ j] is set to 1. This effectively means that xc[(i− 1) · h+ j] represents
the binary choice of the values which could be assigned to x[i], as xc[(i − 1) · h + j] = 1 if and
only if x[i] = dj and any entry x[i] can only be assigned a single value of D. Definition 3.8 can
then be applied to a relation R ⊆ Dk to transform a relation over a finite domain into a binary
one. We let the set Rc denote the set choice representations of all tuples in the relation R. This
can also be thought of as a relation of arity k · h which we will denote by k′. In Equation (10) an
example is shown for 3-coloring. The left matrix shows the matrix representation of the original
relation for an edge with vertices v1, v2 and the right matrix shows the matrix representation of
the choice representation of the same relation. Here the row vectors represent the tuples of the
given relations. For example, for the tuple (1, 2) of 2-coloring shown in the left matrix, the choice
representation is given by the tuple (1, 0, 0, 0, 1, 0) in the right matrix.

v1 v2

1 2
1 3
2 1
2 3
3 1
3 2

v[1] v[2] v[3] v[4] v[5] v[6]

1 0 0 0 1 0
1 0 0 0 0 1
0 1 0 1 0 0
0 1 0 0 0 1
0 0 1 1 0 0
0 0 1 0 1 0

(10)

This will be used to construct a set of k′-variate polynomials pu defined over Z/qZ for some
integer q which captures u ∈ Uc, where U = Dk \ R is the set of unsatisfying k-ary assignments
with respect to R and Uc the set of all choice representations of the tuples in U . In addition,
we need to use the t-extended form of these choice representations. For a choice representation
Rc of R we denote the t-extended form by (Rc)t as we first take the choice representation of R
and then t-extend it. For brevity we will denote this by Rct. To construct these polynomials, a
new definition for balanced relations must be constructed using the choice representation, which
is given by Definitions 3.9, 3.10 and 3.11.

Definition 3.9. Let D = {d1, ..., dh} be a domain and let R ⊆ Dk be some k-ary relation defined
over the domain D. Let Rc and (Dk)c = Dk

c be the k · h = k′-ary choice representations of R
and Dk respectively. Let Rct and (Dk

c)t = Dk
ct be the t-extended form of Rc and Dk

c respectively
of arity δ(k′, t). Let Uc = Dk

c \ Rc be the k′-ary choice representations of all assignments not in
Rc and let (Uc)t = Uct be the t-extended form of Uc of arity δ(k′, t). A choice representation Rc
is choice t-preserved by a partial function f : {0, 1}n → {0, 1} when for each choice of tuples
r′1, r

′
2, ..., r

′
n ∈ Rct, if the entries in the tuple (f(r′1[1], ..., r′n[1]), ..., f(r′1[δ(k′, t)], ..., r′n[δ(k′, t)])) are

defined and this tuple is in Dk
ct, then this tuple is in Rct.

16 Extending the Scope of Algebraic Kernelization for Constraint Satisfaction Problems

3 KERNELS FOR NON-UNIFORM CSP Eindhoven University of Technology

Definition 3.10. Let D = {d1, ..., dh} be a domain and let R ⊆ Dk be some k-ary relation defined
over the domain D. Let Rc and (Dk)c = Dk

c be the k · h = k′-ary choice representations of R and
Dk respectively. A choice representation Rc is choice t-balanced if it is choice t-preserved by all
balanced operations f : {0, 1}n → {0, 1}.

Definition 3.11. Let R ⊆ Dk be a k-ary relation over a domain D and let Rc be the choice rep-
resentation of R. We say that R is t-balanced if Rc is choice t-balanced. By extension, a constraint
language Γ is t-balanced if all relations R ∈ Γ are t-balanced.

Using these definitions we first prove that there is always an alternating operation that choice
t-preserves Rc with R being a t-balanced relation over a domain D.

Lemma 3.12. Let R ⊆ Dk be a relation of arity k over the domain D = {d1, ..., dh}. Let Rc be
the choice representation of R. Let U = Dk \R be the set of assignments not satisfying R and Uc
be the choice representation of U . Then the following statements are equivalent:

1. R is t-balanced

2. for all odd n 1 the alternating operation of arity n choice t-preserves Rc
3. for all u′ ∈ Uct, it holds that u′ 6∈ SpanZ(Rct)

Proof. Similar to the proof of Lemma 3.5 we will first prove that 1 and 2 are equivalent. First off,
it is easy to verify that if R is t-balanced, that the alternating operation would choice t-preserve
Rc as the alternating operation is a balanced operation. Now it remains to be proven that when
the alternating operation choice t-preserves Rc that R is t-balanced.

Consider a non t-balanced k-ary relation R over a domain D. Since R is not t-balanced, then for
the t-extended choice assignment representation Rct of R there exists a balanced partial function
f : {0, 1}n → {0, 1} which does not choice t-preserve Rct. Let U ⊆ Dk \R be the set of all unsatis-
fying assignments of arity k over domain D and let Uc be the choice representation of U . We again
denote the t-extended form of Uc by Uct. This thus means that for some r′1, ..., r

′
n ∈ Rct it holds

that (f(r′1[1], ..., r′n[1]), ..., f(r′1[δ(k′, t)], ..., r′n[δ(k′, t)])) ∈ Uct, with k′ = k · h. By extension, there
exist integer coefficients α1, α2, ..., αn for which it holds that

∑n
i=1 αir

′
i = u′ for some u′ ∈ Uct. It is

then possible to replace each term αir
′
i in this summation by r′i+ ...+r′i (αi times) if αi is positive

and −r′i− ...− r′i (−αi times) if αi is negative. By reordering these newly created terms it is possi-
ble to create an alternating operation since we know that

∑n
i=1 αi = 1 which thus proves this case.

Finally it is easy to confirm that 1 and 3 are equivalent. This will be proven by proving the con-
trapositive if this equivalence.

(⇐):
Suppose R is not t-balanced. This implies that there is a balanced partial operation f : {0, 1}n →
{0, 1} which does not choice t-preserve Rc. This means that there are some tuples r′1, ..., r

′
n ∈ Rct

for which it holds that (f(r′1[1], ..., r′n[1]), ..., f(r′1[δ(k′, t)], ..., r′n[δ(k′, t)])) = u′ and u′ ∈ Uct by
Definition 2.10. In addition, since f is balanced partial operation, we know that there exist in-
tegers α1, ..., αn ∈ Z such that

∑n
i=1 αi = 1, (x1, ..., xn) is in the domain of f if and only if∑n

i=1 αixi ∈ {0, 1} and f(x1, ..., xn) =
∑n
i=1 αixi for all tuples in the domain of f . Thus the tuple

u′ can be rewritten as u′ =
∑n
i=1 αir

′
i. By Definition 2.16 we can conclude that u′ ∈ SpanZ(Rct).

Extending the Scope of Algebraic Kernelization for Constraint Satisfaction Problems 17

Eindhoven University of Technology 3 KERNELS FOR NON-UNIFORM CSP

(⇒):
Suppose that u′ ∈ SpanZ(Rct). By Definition 2.16 there exist integers α1, ..., αn ∈ Z such that
u′ =

∑n
i=1 αir

′
i for some r′1, ..., r

′
n ∈ Rct. Using these values for α1, ..., αn we construct the par-

tial operation f : {0, 1}n → {0, 1} such that f(x1, ..., xn) =
∑n
i=1 αixi and a tuple (x1, ..., xn)

is in the domain of f if and only if
∑n
i=1 αixi ∈ {0, 1}. Now we will prove that f is a bal-

anced operation. f already fulfills the second and third property of Definition 2.10. It thus re-
mains to prove that

∑n
i=1 αi = 1. Note that for any t-extended tuple a satisfies a[1] = 1. Thus

also u′[1] = 1 and r′i[1] = 1 for any choice of i ∈ [n]. Since we know u′ =
∑n
i=1 αir

′
i, then

also u′[1] =
∑n
i=1 αr

′
i[1] should hold. Therefore 1 = u′[1] =

∑n
i=1 αir

′
i =

∑n
i=1 αi, which leads

us to conclude that f is a balanced partial operation. Now it is easy to see that by definition
(f(r′1[1], ..., r′n[1]), ..., f(r′1[δ(k′, t)], ..., r′n[δ(k′, t)])) = u′ and that u′ 6∈ Rct. This means that Rc is
not choice t-balanced and thus R is not t-balanced.

Since we have proven both cases, we can conclude that 1 and 3 are equivalent. Thus by equivalence
of 1 and 2, we can conclude that 2 and 3 are equivalent as well. This proves that statements 1, 2
and 3 are equivalent for any relation R ⊆ Dk defined over a finite domain D.

Using Lemma 3.12 we will show that it is possible to construct polynomials which capture a
relation R in terms of its choice assignment representation Rc.

Lemma 3.13. For a t-balanced relation R ⊆ Dk with the set of unsatisfying assignments U =
Dk \R and partial choice assignment representation Rc and Uc respectively, there exists an integer
q and a k · |D|-variate polynomial pu over domain Z/qZ which captures u ∈ Uc with respect to Rc.

Proof. Let Rct be the t-extended form of Rc. Using this form we construct for each u ∈ Uc a
k′-variate pu, with k′ = k · |D|, over the ring Z/qZ which captures u with respect to Rc for some
integer q. We denote the tuples in Rct by r′1, ..., r

′
n. We construct the system in Equation 11 using

this information.

r′1[1] r′1[2] r′1[3] · · · r′1[δ(k′, t)]
r′2[1] r′2[2] r′2[3] · · · r′2[δ(k′, t)]
r′3[1] r′3[2] r′3[3] · · · r′3[δ(k′, t)]

...
...

...
. . .

...
r′n[1] r′n[2] r′n[3] · · · r′n[δ(k′, t)]
u′[1] u′[2] u′[3] · · · u′[δ(k′, t)]

α1

α2

α3
...

αδ(k′,t)

 ≡q

0
0
0
...
c

 (11)

u′ in Equation 11 denotes some tuple from Uct. We know by Lemmas 2.17 and 2.18 and the fact
that Rc is choice t-balanced, as this implies that u′ 6∈ SpanZ(Rct) by Lemma 3.12, that there exist
integers q, c, where c 6≡q 0, and α1, ..., αδ(k′,t) which will ensure that equation 11 is satisfied. For
the remainder of the proof we will fix these values of q, c and α1, ..., αδ(k′,t). It now remains to use
this system of equations to construct a polynomial of degree t. Since we have a solution for this
system, we know that we can construct the polynomial

pu(x1, x2, ..., xk′) ≡q
δ(k′,t)∑
i=1

αi
∏
l∈Si

xl (12)

for all S1, S2, ..., Sδ(k′,t) ∈
(
k′

t¬
)
. Now if we take some r ∈ Rc and define ~α = (α1, ..., αδ(k′,t))T we

get pu(r) ≡q
∑δ(k′,t)
i=1 αi

∏
l∈Si rl ≡q

∑δ(k′,t)
i=1 αir

′[i] ≡q r′~α. Now by Equation 11 and Lemmas 2.17

18 Extending the Scope of Algebraic Kernelization for Constraint Satisfaction Problems

3 KERNELS FOR NON-UNIFORM CSP Eindhoven University of Technology

and 2.18 we can confirm that r′~α ≡q 0 which is exactly the desired property. It can similarly be
reasoned that pu(u) 6≡q 0. Thus pu captures u with respect to Rc.

While Lemma 3.13 shows us how to construct a set of polynomials which together capture Rc, it
should still be possible to convert the obtained result into a kernel for the original problem over
the domain D = {d1, ..., dh}. Since by construction the values of a choice assignment tuple rc
satisfy rc[(i − 1) · h + j] = 1 if and only if for the related tuple r ∈ R it holds that r[i] = dj , we
have a trivial way of converting our solution from the choice system to the original system. Now
we must still show how to construct a kernel of size O(nt) for an instance of CSP (Γ). First we
introduce the notion of a choice equivalent constraint.

Definition 3.14. Let R ⊆ Dk be a k-ary relation defined over domain D = {d1, ..., dh}. Let Rc
denote the choice representation of R. For a set C of constraints R(x1, ..., xk) defined over the
variables x1, ..., xk ∈ V , we define the set of choice equivalent constraints as the set B defined
over the set of variables Vc = {xi,1, ..., xi,h | xi ∈ V } such that for each R(x1, ..., xk) ∈ C, the set
B contains the constraint Rc(x1,1, ...x1,h, ..., xk,1, ..., xk,h).

In addition, we define what it means for a Boolean assignment f to be a k-choice assignment.

Definition 3.15. Let f be a Boolean assignment to the variables x1, ..., xn. Let k be an integer
such that k · d = n with d being some integer. f is called a k-choice assignment if for all i ∈ [d] it
holds that

k·i∑
j=k·(i−1)+1

f(xj) = 1

With this definition we show that CSP (Γ) defined over a finite domain and t-balanced constraint
language Γ has a kernel of O(nt) constraints in Theorem 3.16.

Theorem 3.16. For any t-balanced constraint language (not necessarily Boolean) Γ, the problem
CSP (Γ) parameterized by the number of variables n admits a kernel of with O(nt) constrains
which are a subset of the original constraints.

Proof. Let (I, n) be the parameterized instance of CSP (Γ) with I = (C, V) being an instance
of CSP (Γ), where C is the set of constraints and V is the set of variables, and n = |V |. Let
D = {d1, ..., dh} be the domain over which CSP (Γ) is defined. Let R ⊆ Dk be some k-ary relation
contained in Γ. For the remainder of the proof we will fix this choice of R. Since R was chose
arbitrarily, this will imply that the proposed method will work for any choice of R. Let CR ⊆ C
denote the subset of constraints defined over the relation R. Let U = Dk \R be the set of assign-
ments over D that do not satisfy R. Let Rc, Uc be the choice representations of R,U respectively.
Let BR be the set of choice equivalent constraints of CR defined over the variables V ′. We note
that Rc, Uc are relations of arity k′ = k · h.

By applying Lemma 3.13 we know that there exists a set of polynomials where each pu ∈ P
captures u ∈ Uc with respect to Rc. These polynomials are hard coded during execution and
we let P denote the set of such polynomials for Rc. Let R∗ be the set of Boolean assignments
r∗ ∈ {0, 1}k′ which satisfy that for all pu ∈ P it holds that pu(r∗) = 0. It is easy to verify that
Rc ⊆ R∗ since all polynomials in P were designed to satisfy pu(r) = 0 for all r ∈ Rc. In addition,
there may be some other r ∈ {0, 1}k′ which are in R∗ but not in Rc since they are not choice

Extending the Scope of Algebraic Kernelization for Constraint Satisfaction Problems 19

Eindhoven University of Technology 3 KERNELS FOR NON-UNIFORM CSP

assignments. We also note that Uc∩R∗ = ∅ since all polynomials pu ∈ P were designed so that for
each u ∈ Uc, pu(u) 6= 0. Let AR denote the set of constraints defined over the set of variables V ′

and the relation R∗ containing the constraints R∗(x1,1, ..., xk,h) such that Rc(x1,1, ..., xk,h) ∈ BR.
Now we need to confirm that a choice assignment f satisfies all constraints in AR if and only if f
satisfies all constraints in BR.

Claim 3.17. Any h-choice assignment f satisfies all constraints in AR if and only if it satisfies
all constraints in BR.

Proof.
(⇒) :
Let f be a choice assignment such that all R∗(x1,1, ..., xk,m) ∈ AR satisfy (f(x1,1), ..., f(xk,h)) ∈
R∗. By construction we know that f satisfies all pu(f(x1,1), ..., (xk,h)) = 0. Now suppose f
does not satisfy some Rc(x1,1, ..., xk,h) ∈ BR, which implies (f(x1,1), ..., f(xk,h)) 6∈ Rc. Let
u = (f(x1,1), ..., f(xk,h)). Since f is an h-choice assignment, it must hold that u ∈ Uc, where
Uc is set of all choice representations not contained in Rc. However, this would mean by construc-
tion of all pu ∈ P , there is some pu such that pu(u) 6= 0. This contradicts that f satisfies all
constrains in AR. Thus, we conclude that if f is an h-choice assignment which satisfies AR, then
it also satisfies BR.

(⇐) :
Let f be an h-choice assignment such that all constraints Rc(x1,1, ..., xk,m) ∈ BR are satisfied. By
construction of the polynomials in P , it must hold that this assignment also satisfies p(f(x1,1), ...,
f(xk,h)) = 0 for all polynomials p ∈ P . Now assume that f does not satisfy some constraint
R∗(x1,1, ..., xk,h) in AR, implying that (f(x1,1), ..., f(xk,h)) 6∈ R∗. By construction of R∗, this
means that there is some polynomial p ∈ P for which p(f(x1,1), ..., f(xk,h)) 6= 0. However, this is
a contradiction as we have already shown that p(f(x1,1), ..., f(xk,h)) = 0 for all p as f satisfies all
constraints in BR. As such we conclude that this case holds.

Since we have proven all cases, we conclude that the claim holds. �

We can now apply Theorem 2.15 to AR and P to obtain a set of constraints A′R ⊆ AR. Using this
we create a new set of constraints B′R in which we put all constraints c ∈ A′R defined over Rc rather
than R∗. First off, note that since AR was constructed to contain the constraints R∗(x1,1, ..., xk,h)
if BR contains the constraint Rc(x1,1, ..., xk,h) and since A′R ⊆ AR and since B′R contains the
constraints Rc(x1,1, ..., xk,h) if A′R contains the constraint R∗(x1,1, ..., xk,h), it follows that B′R ⊆
BR. The following claim remains to be proven:

Claim 3.18. Any h-choice assignment f satisfies BR if and only if it satisfies B′R.

Proof. Since B′R ⊆ BR, it is trivial that if f satisfies all constraints in BR, then it also satisfies all
constraints in B′R. For the other direction let f be an h-choice assignment satisfying all constraints
in B′R. Since all constraints Rc(x1,1, ..., xk,h) in B′R are added if R∗(x1,1, ..., xxk,h) is in A′R, and
since we know by construction of R∗ that any choice assignment satisfies Rc(x1,1, ..., xk,h) if and
only if it satisfies R∗(x1,1, ..., xxk,h), we conclude that f must satisfy all constraints in A′R. By
Theorem 2.15 it must hold that f satisfies AR and by claim 3.17 f must satisfy BR as well. Thus
if a choice assignment f satisfies B′R, then it also satisfies BR, proving the claim. �

20 Extending the Scope of Algebraic Kernelization for Constraint Satisfaction Problems

3 KERNELS FOR NON-UNIFORM CSP Eindhoven University of Technology

We can then translate B′R to a set C ′R ⊆ CR by simply transforming the constraints on the
choice representation Rc to equivalent constraints on R. It is not hard to see that an assignment
f : V → D satisfies all constraints in CR if and only if it satisfies all constraints in C ′R. Fi-
nally, since Γ is t-balanced, all polynomials constructed for BR have degree at most t by Lemma
3.13. Thus by Theorem 2.15, |A′| = O(nt) from which it follows by construction that |C ′| = O(nt).

If we do this for all R ∈ Γ and take C ′ = ∪R∈ΓC
′
R to be the set of constraints for the instance

I ′ = (C ′, V) we can construct a new parameterized problem (I ′, n). It follows that I and I ′ are
equivalent. Since each C ′R is of size O(nt) and since |Γ| is constant, we get that |C ′| = |Γ|O(nt) =
O(nt). We have thus proven that it is possible for a parameterized instance (I, n) of CSP (Γ), with
n = |V | as the parameter and the language Γ being t-balanced, to find a kernel (I ′, n) with O(nt)
constraints.

We have thus shown how to construct a kernel with O(nt) constraints for a parameterized instance
of CSP (Γ) over a finite domain, defined over a t-balanced language Γ with the parameter being
the number of variables. Using computer aided calculations we were able to use these results to
find kernels for some interesting problems. The main problem of interest which we considered was
d-Uniform Hypergraph q-Coloring where the question is if for a d-Uniform Hypergraph G
there exist a coloring of the vertices of G such that each contains two distinctly colored vertices.
Note that in a d-Uniform Hypergraph each edge contains exactly d vertices. During our tests it
turned out that it was not possible to obtain a nontrivial kernel for all variants of this problem
on which we performed our tests. However, if we ask whether a coloring exists such that each
edge contains at least three distinctly colored vertices, we do find there exists a nontrivial kernel.
When looking at the problem 4-Uniform Hypergraph 4-Coloring it turned out that when
each edge must contain at least three distinctly colored vertices, that the problem admits a kernel
of O(n3) constraints, which are edges in this case, which is a nontrivial kernel. Even more so,
the problem 4-Uniform Hypergraph 3-Coloring when each edge must contain at least three
distinctly colored vertices admits a kernel of size O(n2) constraints which is even less. This shows
that the provided method can be utilized to find nontrivial kernels for CSP (Γ) defined over finite
domains that are not Boolean.

3.3 Difficulties of constructing single capturing polynomials

While in practice it has been observed that it is possible to generate a single polynomial which
captures each relation of some CSP (Γ) [10, 14], directly extending Lemma 2.18 in order to create
polynomials which capture multiple unsatisfying assignments at once with respect to some relation
R can be shown to be infeasible. More specifically, it is not possible to use Lemma 2.18 and extend
it so that it can be applied to multiple row vectors c1, c2, ..., cm which are not in Spanq(A) of some
matrix A, where q is the same for all c1, c2, ..., cm. This will be shown by constructing an example
on which we cannot simply apply the methodology provided by Lemma 2.18 in order to find a
solution for the system. First we construct a matrix A and a matrix of row vectors C which are
not in Spanq(A). In this example we will use q = 2 and thus also for all row vectors in C, c = 1
as this is the only value larger than zero in the ring Z/2Z.

A =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

 C =

0 0 0 1 0
0 0 0 0 1
0 0 0 1 1

Extending the Scope of Algebraic Kernelization for Constraint Satisfaction Problems 21

Eindhoven University of Technology 3 KERNELS FOR NON-UNIFORM CSP

It can be verified that for each of the row vectors in C it would be possible to find q = 2 by applying
Lemma 2.17. In addition, for each row in C we can apply Lemma 2.18 to find both a solution
x and constant c for which there is a solution to the system RA′′x = b where b = (0, 0, 0, 1),

A′ =
(
A
ci

)
, which means that A′ is the matrix A with row vector ci appended at the end, and

ci is a row vector of C. If we now try to construct a single polynomial for all ci ∈ C applying
the same process, it becomes clear that this becomes impossible. First we construct the following
system of equations:

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 1 1

x ≡2

0
0
0
1
1
1

 (13)

It is easy to verify that this system of equations has no solution in the unknown x. This follows
from the fact that if we satisfy the fourth and fifth equation, which only happens when the solu-
tion x satisfies x[4] = x[5] = 1, then the sixth equation cannot be satisfied as this will imply that
a′6x ≡2 a

′
6[4] +a′6[5] ≡2 1 + 1 ≡2 0 and this will thus not capture the sixth assignment. In addition

one can verify that the smith normal form decomposition of A in this example has the property
S = A since A is a diagonal matrix. Note that via this construction, we can only break the schema
provided by Lemma 2.18 because we have at least 3 row vectors which we try to append to A.
Finally we note that A is a balanced relation, thus showing that there is no way to directly extend
Lemma 2.18.

3.4 Importance of rings when constructing single capturing polynomials

While Section 3.3 shows that it is not always possible to construct a single polynomial that cap-
tures some relation R while it is possible to construct polynomials that capture each unsatisfying
assignment with respect to R defined over the same ring Z/qZ, one may wonder whether this
means that there does not exist such a polynomial at all. As it turns out, this is not the case.
While it is not possible to construct a single polynomial over the ring Z/qZ that captures R, it
may be possible to construct such a polynomial over a different ring. To illustrate this we will use
the relations shown in Equation (14) which show the matrix form of some 3-ary balanced relation
R and the unsatisfying assignments U = {0, 1}3 \R.

R =
(

0 0 0
1 1 0

)
U =

1 0 0
0 1 0
0 0 1
1 0 1
0 1 1
1 1 1

 (14)

It is not hard for one to confirm that for each u ∈ U it is possible to construct a polynomial pu over
the ring Z/2Z which captures u with respect to R. This can actually be done with 2 polynomials,
i.e. p1(x1, x2, x3) ≡2 x1 + x2 and p2(x1, x2, x3) ≡2 x3. However, for this choice of R there is no

22 Extending the Scope of Algebraic Kernelization for Constraint Satisfaction Problems

3 KERNELS FOR NON-UNIFORM CSP Eindhoven University of Technology

single degree-1 polynomial defined over the ring Z/2Z which captures all u ∈ U with respect to
R. We can confirm this as follows, suppose for a contradiction that p is the polynomial which
captures all u ∈ U with respect to R. Let p be given by p(x1, x2, x3) ≡2 α0 +α1x1 +α2x2 +α3x3.
We know that in order to ensure that p evaluates to 0 on (0, 0, 0) ∈ R it must hold that α0 = 0. In
addition, to ensure that p evaluates to 0 on (1, 1, 0) ∈ R, p must satisfy α1 = α2 since q = 2. Since
we are computing over the ring Z/2Z, there are thus only 4 valid assignments of these coefficients
that are given in Table 1.

α1 α2 α3

0 0 0
1 1 0
0 0 1
1 1 1

Table 1: valid assignments for the coefficients of the polynomial p

Trivially, the first assignment will return p(x) = 0 for all possible x ∈ {0, 1}3 and thus also for
all values of U , which in turn means that p does not capture any unsatisfying assignment with
respect to R. For all subsequent assignments of α1, α2, α3 we can find some u ∈ U which is not
captured by p. For the second assignment (1, 1, 1) is not captured, for the third one (0, 1, 0) is not
captured and for the last one (0, 1, 1) is not captured. So it turns out that over the ring Z/2Z it
is not possible to capture all u ∈ U with our choice of R. This does not mean there does not exist
any q ∈ Z which allows for the construction of a single polynomial which captures all u ∈ U with
respect to R. To illustrate pick q = 4 and let p(x1, x2, x3) ≡4 2x1 + 2x2 + x3. It is easy to confirm
that this polynomial does capture all u ∈ U with respect to R. Thus while it may not be possible
to find a single polynomial to capture a relation using already known values for q, it may still be
possible to use a different value for q and still get a single polynomial which captures all u ∈ U
with respect to R.

3.5 Reducing a set of capturing polynomials

Although these examples do illustrate that it is not trivial to construct a single polynomial which
captures some relation R, it is possible to create a single polynomial which captures at least
2 unsatisfying assignments with respect to R. More specifically, for two arbitrary unsatisfying
assignments u, u′ ∈ U , where U = Dk \R, it is possible to find a single polynomial which captures
both u, u′ with respect to R. This is shown in Lemma 3.19

Lemma 3.19. Let R ⊆ Dk be a k-ary relation over the domain D and let u, u′ ∈ Dk \ R be two
unsatisfying assignments with respect to R. If there exist two polynomials pu, pu′ defined over their
respective rings Z/qZ, Z/q′Z which capture u, u′ respectively with respect to R, then it is possible
to construct a polynomial p which captures both u, u′ with respect to R.

Proof. Let pu, pu′ be the polynomials which capture the unsatisfying assignments u, u′ ∈ U re-
spectively with respect to R. Let pu be defined over the ring Z/qZ and pu′ over the ring Z/q′Z.
If we have pu(u′) 6≡q 0 or pu′(u) 6≡q′ 0, it is easy to see that the polynomial which satisfies this

Extending the Scope of Algebraic Kernelization for Constraint Satisfaction Problems 23

Eindhoven University of Technology 3 KERNELS FOR NON-UNIFORM CSP

property already captures both u, u′. Thus if either of these hold, simply pick p = pu or p = pu′

depending on which case is satisfied.

Suppose neither of these cases hold and we have pu(u′) ≡q 0 and pu′(u) ≡q′ 0. This allows p to be
constructed as follows. First we create a new Z/q′′Z. We define q′′ = q · q′. Then define p to be

p(x) = pu(x) · q′ + pu′(x) · q

To confirm that this polynomial captures u, u′ all that needs to be done is to insert them and
check the results. First, p(u) gives the following:

p(u) ≡q′′ pu(u) · q′ + pu′(u) · q
≡q′′ (q · d+ c) · q′ + (q′ · d′) · q
≡q′′ c · q′ + d · q′′ + d′ · q′′
≡q′′ c · q′

Now we need to confirm that c · q′ 6≡q′′ 0. First, we know that c is the value of pu(u) over the ring
Z/qZ. Now since we are left with c · q′ we note that 0 < c < q by definition of pu. Thus c · q′ is no
multiple of q′′ as q′′ = q · q′. This thus allows us to conclude that c · q′ 6≡q′′ 0 and thus p captures
u with respect to R. This can similarly be reasoned for u′.

Finally, we need to confirm for all r ∈ R, p(r) ≡q′′ 0. Let r ∈ R be some arbitrary satisfying
assignment. Then we get the following:

p(r) ≡q′′ pu(r) · q′ + pu′(r) · q
≡q′′ (q · d) · q′ + (q′ · d′) · q
≡q′′ d · q′′ + d′ · q′′
≡q′′ 0

This equality holds since pu(r) = d · q for some d ∈ Z and similarly pu′(r) = d′ · q′ for some d ∈ Z
if these polynomials were used over the integers. By this fact we conclude that the above equation
is correct.

Now since u, u′ are captured with respect to R and since for any arbitrary r ∈ R it holds that
p(r) ≡q′′ 0, we conclude that p has the desired property.

So it is always possible to construct a single polynomial which captures two unsatisfying assign-
ments u, u′ with respect to a relation R. We also note that this newly generated polynomial p has
the same degree as the highest degree of the original polynomials since p was created by addition of
the original polynomials. Since we know for a t-balanced relation R that degree t polynomials exist
which capture the unsatisfying constraints with respect to R by Lemmas 3.6 and 3.13, it is possi-
ble to reduce the amount of degree t polynomials used to capture the unsatisfying assignments of R.

We also note that this approach may not work when trying to combine 3 polynomials. It is
possible that two polynomials cancel each other out, which was not possible when combining 2
polynomials. In the proof of Lemma 3.19 it is important that either 1 polynomial of pu, pu′ captures
both u, u′ or both polynomials do not capture the other unsatisfying assignment, i.e. pu(u′) ≡q 0
and pu′(u) ≡q′ 0. Now with 3 unsatisfying assignments it could be that there is a new case where

24 Extending the Scope of Algebraic Kernelization for Constraint Satisfaction Problems

4 LOWER BOUND FOR 3-UNIFORM HYPERGRAPH 3-COLORING Eindhoven University of Technology

each polynomial captures 2 unsatisfying assignments except for 1. More concretely, for u, u′, u′′

and respective polynomials pu, pu′ , pu′′ it could be that the following equalities are all satisfied:

pu(u) 6≡q 0
pu(u′) 6≡q 0
pu(u′′) ≡q 0

pu′(u) ≡q′ 0
pu′(u′) 6≡q′ 0
pu′(u′′) 6≡q′ 0

pu′′(u) 6≡q′′ 0
pu′′(u′) ≡q′′ 0
pu′′(u′′) 6≡q′′ 0

This gives a structure where each polynomial does not capture exactly 1 unsatisfying assignment
from u, u′, u′′. Because of this structure, if we were to simply add these polynomials over a new
ring, it could be that for some unsatisfying assignment the results of those polynomials cancel
each other and give 0 as a result, thus not capturing said unsatisfying assignment.

For example, let p(x) = pu(x) · q′ · q′′+ pu′(x) · q · q′′+ pu′′(x) · q · q′ be defined over the ring Z/q′′′Z
with q′′′ = q · q′ · q′′. If we were to insert u into this polynomial we would get the following result:

p(u) ≡q′′′ pu(x) · q′ · q′′ + pu′(x) · q · q′′ + pu′′′(x) · q · q′
≡q′′′ (d+ c · q) · q′ · q′′ + c′ · q · q′ · q′′ + (d′′ + c′′ · q′′) · q · q′
≡q′′′ d · q′ · q′′ + d′′ · q · q′

We cannot guarantee that d·q′ ·q′′+d′′ ·q ·q′ 6≡q′′′ 0 as it could be that they sum up to 0 modulo q′′′.
If this could be guaranteed, however, this approach would be able to construct a single polynomial
for any relation R. Otherwise if one could guarantee that this case never occurs in practice, the
same result could be achieved. This is no trivial task and requires further investigation.

4 Lower Bound for 3-Uniform Hypergraph 3-Coloring

First off, the problems which will be used to prove our lower bound are defined as follows:

3-Uniform Hypergraph 3-Coloring
Input: A graph G with V (G) the set of vertices and E(G) ⊆

(
V (G)

3

)
the set of 3-hyperedges.

Question: Is there a 3-coloring γ : V (G)→ [3] where for each hyperedge e ∈ E(G) it holds
that there exists two distinct vertices v, v′ ∈ e such that γ(v) 6= γ(v′)?

A more intuitive way to interpret this problem is to think of a standard graph, where each edge
consists of 3 vertices instead of 2 and such an edge is properly colored if and only if it contains at
least 2 distinctly colored vertices. Next the other problem which we will use to construct a lower
bound is defined as follows:

Extending the Scope of Algebraic Kernelization for Constraint Satisfaction Problems 25

Eindhoven University of Technology 4 LOWER BOUND FOR 3-UNIFORM HYPERGRAPH 3-COLORING

2-3-Coloring with triangle split decomposition
Input: A graph G with a partition of its vertex set into V ∪W such that G[V] is an edgeless
graph and G[W] is a disjoint union of triangles.
Question: Is there a 3-coloring γ : V (G)→ {1, 2, 3} of G, such that γ(v) ∈ [2] for all v ∈ V ?

For 2-3-Coloring with Triangle Split Decomposition the following Lemma was proven:

Lemma 4.1 ([18], Lemma 3). 2-3-Coloring with Triangle Split Decomposition is NP -
complete.

Using these definitions, t input instances of 2-3-Coloring with Triangle Split Decomposi-
tion will be used to construct an instance of 3-Uniform Hypergraph 3-Coloring. To do so,
a couple of gadgets must be introduced. The first of which will be referred to as the restricting-
gadget. Before we introduce this gadget and prove its correctness, we first introduce the notion of
a 3-uniform hypergraph clique.

Definition 4.2. A k-hypergraph d-clique of a k-uniform hypergraph G is a set of vertices C ⊆
V (G) of size d such that for any subset of k vertices of C there is a hyperedge in E(G).

For brevity a k-hypergraph d-clique will sometimes be refered to as a d-clique from which it will
be clear from the context what the value for k is. Using this definition we will show that for 3-
Uniform Hypergraph Coloring that a 3-hypergraph 6-clique can only be properly 3-colored
if all 3 colors are used exactly twice.

Lemma 4.3. A 3-hypergraph 6-clique C can be colored using 3 colors if and only if each color is
used exactly twice.

Proof. Assume the inverse and let γ : V (C)→ [3] be its related coloring. It is easy to confirm that
some color must have been used at least three times, since if not every color was used exactly twice
to color C or some vertices were left uncolored, which is not allowed. Let the vertices v1, v2, v3 ∈ C
satisfy γ(v1) = γ(v2) = γ(v3). However, since in a 3-hypergraph 6-clique it holds that any set
of 3 vertices, there is also an edge {v1, v2, v3}. However, this edge is then improperly colored
as all vertices share the same color which is a contradiction. From this contradiction the claim
follows.

For simplicity, we will say that a vertex v is connected to a d-clique C if {v} ∪ C forms a d + 1-
clique. Similarly, if we have two sets of vertices C,D and we say that we connect C and D then
edges are added such that C ∪ D forms a (|C| + |D|)-clique. The restricting gadget is given by
the 3-uniform hypergraph in Figure 2. Here the groups of 5 vertices represent 5-cliques and the
edges from 1 vertex to a clique means that we connect that vertex to that clique. For example,
{c1,3} ∪C2 represent 6-clique. It now remains to be shown that this structure actually behaves as
our restricting gadget.

Lemma 4.4. For the 3-uniform hypergraph G shown in Figure 2 the following holds: for any
proper 3-coloring γ : V (G) → [3] of G each clique Ci satisfies that ci,5 has a unique color within
Ci and γ(ci,5) 6= γ(cj,5) for all i 6= j.

Proof. First we observe that each 5-clique Ci has 4 vertices which form 6-cliques with the other
5-cliques. Let for a clique Ci the vertices ci,k, ci,k′ , where k, k′ ∈ [4] and k 6= k′, be the vertices

26 Extending the Scope of Algebraic Kernelization for Constraint Satisfaction Problems

4 LOWER BOUND FOR 3-UNIFORM HYPERGRAPH 3-COLORING Eindhoven University of Technology

Figure 2: illustration of a degree-1 restricting gadget for 3-uniform hypergraph coloring

which are connected to the clique Cj , with j ∈ [3] and j 6= i. Since these vertices form a 6-clique
with Cj , Lemma 4.3 states that these cliques must use each color exactly twice. This allows us to
infer that ci,k, ci,k′ must have the same color, since if we assume γ(ci,k) 6= γ(cj,k′) with γ being
some proper 3-coloring, then if either {ci,k} ∪ Cj or {ci,k′} ∪ Cj is properly colored, the other
must have some hyperedge that is improperly colored. It is easy to confirm that if, without loss
of generality, {ci,k} ∪ Cj would be properly colored, then the colors [3] \ γ(ci,k) are used twice in
Cj . Since ci,k′ is colored using one of these colors and since {ci,k′} ∪ Cj is a 6-clique, there must
be an edge that is colored using only 1 color, thus contradicting that γ is a proper 3-coloring.

Now we note that the color assigned to ci,k, ci,k′ in any proper coloring only occurs once in Cj .
For each clique Ci we denote this color which only gets assigned to one vertex in Ci by ci. It is
easy to see by the previous argument, since all ci,5 do not form 6-cliques, that these vertices must
be assigned ci, since all other vertices in Ci form pairs which are assigned the same color. Now it
remains to be checked that for any two vertices ci,5, cj,5 for i 6= j it holds that γ(ci,5) 6= γ(cj,5)
for some proper coloring γ. Assume that these vertices are given the same color under γ. We
know that in Cj there are two vertices cj,k, cj,k′ which are given the color ci which was established
previously. In addition, γ(ci,5) = ci by definition. However, since we assumed γ(ci,5) = γ(cj,5) = ci,
this means that there are 3 vertices in Cj which have been assigned the same color. Since Cj is a
5-clique, there is an edge which is not properly colored, contradicting the assumption that γ is a
proper 3-coloring. Thus we conclude that for any pair of vertices ci,5, cj,5, where i 6= j, any proper
3-coloring γ satisfies γ(ci,5) 6= γ(cj,5) thus proving the Lemma.

From now on we will refer to the graph shown in Figure 2 as a degree-1 restricting gadget. Degree-1
comes from the fact that whenever an arbitrary vertex v would be connected to any 5-clique Ci
which is part of the gadget, then v only has one degree of freedom in terms of its coloring, namely
only ci. From here on forth we will assume that without loss of generality any 5-clique Ci in a
degree-1 restricting gadget is colored only once by color i.

Using the degree-1 restricting gadget we can construct a degree-2 restricting gadget as follows.

Extending the Scope of Algebraic Kernelization for Constraint Satisfaction Problems 27

Eindhoven University of Technology 4 LOWER BOUND FOR 3-UNIFORM HYPERGRAPH 3-COLORING

Figure 3: example of a degree-2 restricting gadget C1,2 for 3-uniform hypergraph coloring

Let 1, 2 be the colors which we want a certain vertex to be restricted to. First create a set C1,2

with vertices v1, v2. Connect these vertices individually to the clique C3 of the degree-1 restricting
gadget. Now we know that v1, v2 are colored using the color 3. If we now take some arbitrary
vertex v which is not part of any of the gadgets and connect it to C1,2 the only color which cannot
be assigned to v is 3 since the edge {v1, v2, v} would be improperly colored. Thus v has 2 degrees
of coloring freedom, namely 1,2. An example of a degree-2 restricting gadget can be seen in Figure
3.

Now in addition we will need another gadget which will allow us to construct the logical-or of our
t instances of 2-3-Coloring with Triangle Split Decomposition. This gadget will use a
similar construction to that of the blocking-gadget(c) as used by Jansen and Pieterse which was
first presented by Jaffke and Jansen [9, 19]. Todo so we first introduce the problem 3-Uniform
Hypergraph 3-List-Coloring.

3-Uniform Hypergraph 3-List-Coloring
Input: A graph G with V (G) being a set of vertices, E(G) ⊆

(
V (G)

3

)
of 3-hyperedges and for

each vertex v ∈ V (G) a set l(v) ⊆ [3].
Question: Is there a 3-coloring γ : V (G)→ [3] where for each vertex v ∈ V (G) it holds that
γ(v) ∈ l(v) and for each hyperedge e ∈ E(G) there exists two distinct vertices v, v′ ∈ e such
that γ(v) 6= γ(v′)?

Note that if for all v ∈ V l(v) = [3], then 3-Uniform Hypergraph 3-List-Coloring is equiva-
lent to 3-Uniform Hypergraph 3-Coloring. We will first show how to construct such a gadget
for 3-Uniform Hypergraph 3-List-Coloring and then extend this gadget to 3-Uniform Hy-
pergraph 3-Coloring.

Lemma 4.5. There is a polynomial-time algorithm that, given c = (c1, ..., cm) ∈ [3]m, outputs a
3-Uniform Hypergraph 3-List-Coloring instance G = (V,E) where V is a set of vertices
of size O(m) containing distinguished vertices (π1,1, π1,2, ..., πm,1, πm,2), such that the following
holds. For each d = (d1, ..., dm) ∈ [3]m there is a proper 3-uniform-hypergraph 3-list-coloring γ of
G in which γ(πi,j) 6= di for all i ∈ [m], j ∈ [2], if and only if (c1, ..., cm) 6= (d1, ..., dm) and for each
pair of distinguished vertices πi,1, πi,2 it holds that γ(πi,1) = γ(πi,2).

Proof. First we create the consecutive vertices v0,1, v0,2, ..., v6m+1,1, v6m+1,2 to add to our graph.
We will denote the pairs vi,1, vi,2 by the set Vi for all i ∈ [6m+ 1]∪{0}. In addition, we want that

28 Extending the Scope of Algebraic Kernelization for Constraint Satisfaction Problems

4 LOWER BOUND FOR 3-UNIFORM HYPERGRAPH 3-COLORING Eindhoven University of Technology

Figure 4: Example showcasing the blocking gadget for c = (3, 2, 2)

for any i ∈ [6m] that all vertices in Vi have the same color. To enforce this we create a 5-clique
Ci for each i ∈ [6m + 1] ∪ {0} and connect all v ∈ Vi to Ci. This in turn creates 2 6-cliques
which enforces all v ∈ Vi to have the same colors as a consequence of Lemma 4.3. We then restrict
all v ∈ V0 ∪ V6m+1 to only the color 2. We will refer to vertices in V0 as the sources and the
vertices in V6m+1 as the sinks. Let l(vi,j) denote the set of colors which vertex vi,j is allowed to
be assigned. More general, since all vertices in some set Vi are required to get the same color,
we define l(Vi) to denote the set of colors which all vertices v ∈ Vi are allowed to take. Now all
sets Vi for i ∈ [6m] get assigned the following lists l(Vi) = [3] \ {((i− 1) mod 3) + 1}. Thus each
vertex that is not a sink is allowed exactly 2 colors. We then add hyperedges such that Vi−1, Vi are
connected, which we recall means that Vi−1∪Vi forms a 4-clique, for all i ∈ [6m+1]. Observe that
this construction as it is does not allow for a proper list-3-uniform-hypergraph-3-coloring. This
can be seen since the vertices v ∈ V0 are forced to be colored using 2 and they form a 4-clique with
vertices v′ ∈ V1, which means that all v′ are forced to be colored with color 3 since we only allowed
colors [3] \ {((i− 1) mod 3) + 1} = {2, 3}. In general we find that each vertex vi,j is colored with
((i + 1) mod 3) + 1 by this construction. This then results in v6m,j being colored with (6m + 1
mod 3)+1 = 2 and also vm+1,j to be colored by 2 for all j ∈ [2]. This thus results in a clique of size
4 where all vertices share the same color which means that all edges in this clique are improperly
colored. This fact will be used to construct the gadget with the exact requirement stated in the
Lemma.

We now identify m groups Di for k ∈ [m] where Dk is defined by Dk =
⋃6k
i=6(k−1)+1 Vi. We then

call all vertices vi,j ∈ Dk such that i 6∈ {6k, 6(k − 1) + 1} the interior vertices of Dk. We will use
these interior vertices to then identify our distinguished vertices π1,1, π1,2, ..., πm,1, πm,2. We will
denote each pair {πi′,1, πi′,2} by the set Πi′ . All πi′,j are picked as follows, for each ci′ in (c1, ..., cm)
we pick a set Vi such that Vi ⊂ Di′ such that ci′ 6∈ l(Vi). We then add ci′ to the list l(Vi) and this
set will thus function as the set Πi′ . An example can be seen in Figure 4.

We will now prove that this construction has the desired property. First, assume that for some
c = (c1, ..., cm) we pick d = (d1, ..., dm) such that c = d. In this case, we observe that since
γ(πi′,j) 6= di′ = ci′ we cannot use the new colors added to the vertex vi,j . This thus means that we
can only use the colors which were already on l(vi,j) which means that the construction cannot
be properly colored as was established earlier.

Thus, we consider the case where c 6= d. For all sets Πi′ for which ci′ 6= di′ we assign to its vertices
ci′ . We then start from the source and start coloring in the direction of the sink. This is continued

Extending the Scope of Algebraic Kernelization for Constraint Satisfaction Problems 29

Eindhoven University of Technology 4 LOWER BOUND FOR 3-UNIFORM HYPERGRAPH 3-COLORING

until the first pair of distinguished vertices Vi = Πi′ is reached, where γ(v) = ci′ for all v ∈ Vi.
We then note that this does not impose a problem as the vertices in Vi−1 must have been colored
with (((i− 1) + 1) mod 3) + 1 and the vertices in Vi are colored using ci′ which by construction is
equal to ((i− 1) mod 3) + 1 and thus they are colored differently. We can also color the vertices
in Vi+1 with ((i + 1) mod 3) + 1 as this color is still part of vi+1,j and different from the color
assigned to the vertices in Vi. Now we color the remaining vertices as follows:

1. If i′ was the last index of the last Πi′ such that ci′ 6= di′ we color all vertices in Vi′′ for
i′′ ∈ [6m]\ [i+ 2] with (i′′ mod 3) + 1 as this allows the sink vertices to be properly colored.

2. Otherwise we color Vi+2 with the color ((i + 3) mod 3) + 1 = (i mod 3) + 1 which is
part of l(Vi+2) and does not create conflict since by construction the vertices vi+2,j are not
interior vertices. We then propagate this coloring until we reach the next pair of distinguished
vertices.

By repeating this scheme the graph will eventually be properly list-colored.

Thus we see that for List-3-Uniform Hypergraph 3-Coloring we can create such a gadget.
Now lifting this gadget to 3-Uniform Hypergraph 3-Coloring is done by constructing degree-
1 and 2 restricting gadgets and connecting them such that the proper 3-list coloring is maintained.
We also note that a simpler and more straightforward way of interpreting Lemma 4.5 is that
there must be some pair Πi which gets the color ci assigned from c = (c1, ..., cm). With this we
have all the tools at our disposal to prove the kernel lower-bound for 3-Uniform Hypergraph
3-Coloring. To do so we will first prove a kernel lowerbound on 3-Uniform Hypergraph 3-
List-Coloring by providing a degree-3 cross-composition and then show how to extend such a
construction to 3-Uniform Hypergraph 3-Coloring.

Theorem 4.6. 3-Uniform Hypergraph 3-List-Coloring parameterized by the number of ver-
tices n does not have a generalized kernel of size O(n3−ε) for any ε > 0, unless NP ⊆ coNP/poly.

Proof. In order to prove this statement we will give a degree-3 cross-composition from 2-3-
Coloring with Triangle Split Decomposition to 3-Uniform Hypergraph 3-List-Coloring.
To do so we must first establish some polynomial equivalence relation R between our instances of
2-3-Coloring with triangle split decomposition. An instance (G,V,W) of 2-3-Coloring
with Triangle Split Decomposition is defined such that G denotes the graph, V is the set
of independent vertices and W the set of vertex disjoint triangles. We refer to the vertex set of
the graph as V (G) and the edge set as E(G). We note that in this case V (G) = V ∪W . We call
two such instances equivalent if their respective sets V and W have the same size. It is easy to see
that this is a polynomial equivalence relation.

Let us be given t instances of 2-3-Coloring with Triangle Split Decomposition. We want
ensure that we always have a cubic number of instances to work with. This can always be ensured
by taking one of our inputs and duplicating it until we get a cubic number of 2-3-Coloring with
Triangle Split Decomposition instances. This at most increases the amount of instances by
a factor 8 and it does not change the value of the OR. So now suppose we are given t instances
2-3-Coloring with triangle split decomposition such that t′ = 3

√
t is an integer. We

denote our given instances by Xi,j,k = (Gi,j,k, Vi,j,k,Wi,j,k) for i, j, k ∈ [t′]. We also assume that
these instances are equivalent under R and say that |Vi,j,k| = m and that Wi,j,k contains n vertex
disjoint triangles for all instances Xi,j,k. The vertices in Vi,j,k are labeled v1, ..., vm and the vertices

30 Extending the Scope of Algebraic Kernelization for Constraint Satisfaction Problems

4 LOWER BOUND FOR 3-UNIFORM HYPERGRAPH 3-COLORING Eindhoven University of Technology

in Wi,j,k are labeled w1, ..., w3n such that any group of 3 vertices w3`−2, w3`−1, w3` for ` ∈ [n] forms
a triangle. Using this we now proceed to the construction of the graph G′ which is an instance of
3-Uniform Hypergraph 3-List-Coloring.

1. Initialize the graph G′ to contain t′ sets that contain m · 3n vertices called Si for i ∈ [t′]. We
label each vertex siα,` with α ∈ [m], ` ∈ [3n], i ∈ [t′]. Here a set of vertices siα,` which share
the same i, α represents a vertex of the sets of independent vertices V .

2. For each j ∈ [t′], add to G′ the vertex set Tj = {tj1, ..., t
j
3n} of size 3n. These vertices are

labeled such that tj3`−2, t
j
3`−1, t

j
3` for ` ∈ [n] correspond to a triangle w3`−2, w3`−1, w3` in the

original graph of some input instance Xi,j,k. They are not connected so that when they are
not part of the 2-3-colorable input instance they can safely be colored using the color 3.

3. For each k ∈ [t′], add to G′ the vertex sets Uk = {uk1 , uk2 , uk3} of size 3. These vertices do
not correspond to any vertices in the original input instances and are used to ensure the
2-3-colorability of the original input instance.

4. Add edges {siα,`, t
j
` , u

k
β} for i, j, k ∈ [t′], α ∈ [m], ` ∈ [3n], β ∈ [3] if there is an edge (vα, w`)

in Xi,j,k. This way if one were to take the vertex set V (G′[Si ∪ Tj]) for any i, j ∈ [t′] and
construct a normal graph G, such that all siα,1, ..., s

i
α,3n would be merged into a single vertex

vα for all α ∈ [m], all vertices tj` are relabeled to w` for all ` ∈ [3n], add edges between
all vertices of the triplet w3`′−2, w3`′−1, w3`′ for `′ ∈ [n] and introduce edges {vα, w`} if the
hyperedges {siα,`, t

j
` , v

k
β} are in G′ for some k ∈ [t′] all β ∈ [3], the derived graph would be

equivalent to the graph of the instance Xi,j,k.

5. Add vertex sets A = {a1, ..., at′}, B = {b1, ..., bt′} and D = {d1, ..., dt′}. We will use these
vertex sets to select i, j, k ∈ [t′] such that Xi,j,k is 2-3-colorable.

6. For all vertices in siα,` ∈ Si for all i ∈ [t′] we set l(siα,`) = [2]. We do the same for all vertices
in the sets A,B and D.

7. For all vertices in tj` ∈ Tj assign l(tj`) = [3] for all j ∈ [t′]. Do the same for all vertices in the
sets Uk for all k ∈ [t′].

8. For the vertex set A, we add a blocking-gadget with the vector c = (c1, ..., ct′) where ci = 2
for all i ∈ [t′]. We then add edges (ai, πi,1, πi,2) for all i ∈ [t′]. This ensures that at least one
vertex in A is colored using 1 as otherwise the blocking-gadget can not be properly colored.
We repeat this process for the vertex sets B and D.

9. For all i ∈ [t′], α ∈ [m], ` ∈ [3n − 1] we add blocking gadgets with c = (c1, c2, 1) where
c1, c2 ∈ [2] and c1 6= c2 and add edges (siα,`, π1,1, π1,2), (siα,`+1, π2,1, π2,2) and (ai, π3,1, π3,2).
This ensures that if ai is colored 1, then all vertices siα,1, ..., s

i
α,3n are colored using the same

color.

10. For all j ∈ [t′], ` ∈ [n] we add blocking-gadgets with c = (c1, c2, c3, 1) where c1, c2, c3 ∈ [3] are
not all pairwise distinct. We then add edges (tj`−2, π1,1, π1,2), (tj`−1, π2,1, π2,2), (tj` , π3,1, π3,2)
and (bj , π4,1, π4,2) where bj ∈ B. This ensures that whenever bj is colored using color 1, then
all sets of 3 vertices tj`−2, t

j
`−1, t

j
` have different colors.

Extending the Scope of Algebraic Kernelization for Constraint Satisfaction Problems 31

Eindhoven University of Technology 4 LOWER BOUND FOR 3-UNIFORM HYPERGRAPH 3-COLORING

11. For all k ∈ [t′], we add blocking-gadgets with c = {c1, c2, c3, 1} where c1, c2, c3 ∈ [3] are not
all pairwise distinct. We then add edges (uk1 , π1,1, π1,2), (uk2 , π2,1, π2,2), (uk3 , π3,1, π3,2) and
(dk, π4,1, π4,2) where dk is a vertex from D. This ensures that whenever dk is colored with
1, the blocking-gadgets can only be properly colored whenever uk1 , u

k
2 , u

k
3 all have different

colors.

This concludes the construction of G′. An example can be seen in Figure 5. Here if an edge from
S to T and an edge from T to U share the same color and node in T , then this means there is
a hyper edge between the vertex in S, the vertex in T and all vertices in U . For example, this
means in Figure 5 that the edges {s1

1,5, t
1
5, t

2
1}, {s1

1,5, t
1
5, t

2
2}, {s1

1,5, t
1
5, t

2
3} are part of G′ as they all

share the green edge. For simplicity the vertex sets A,B,D and the blocking-gadgets have been
omitted.

(a) Constructed graph G′ (b) X1,1,2

Figure 5: Construction of G′ with t′ = 3,m = 3, n = 2. Edges between S, T and U are shown for
the instance X1,1,2. All gadgets and sets A,B,D are left out.

Now we will prove that G′ can only be 3-colored if and only if there is some instance Xi,j,k which
can be properly 2-3-colored. First we will prove some properties of our graph.

Claim 4.7. For each proper 3-uniform hypergraph 3-coloring γ : V (G′)→ [3] of the graph G′ there
exists an i ∈ [t′] such that for all α ∈ [m] and distinct `, `′ ∈ [3n] it holds that γ(siα,`) = γ(siα,`′)

Proof. First assume the inverse. Now we pick this i to be such that γ(ai) = 1, as we know by
step 8 that such a vertex must exists otherwise G′ cannot be properly colored. Let siα,` and siα,`′

32 Extending the Scope of Algebraic Kernelization for Constraint Satisfaction Problems

4 LOWER BOUND FOR 3-UNIFORM HYPERGRAPH 3-COLORING Eindhoven University of Technology

be the two vertices such that γ(siα,`) 6= γ(siα,`′) for α ∈ [m] and distinct `, `′ ∈ [3n]. This implies
that there is also some ` ∈ [3n − 1] such that γ(siα,`) 6= γ(siα,`+1). We also know that there exist
blocking-gadgets with c = (c1, c2, 1) for all distinct colors c1, c2 ∈ [2] which are connected to
ai, s

i
α,`, s

i
α,`+1 by step 9. Now since ai is colored using 1, we know that π3,1, π3,2 are not colored

using 1, as they are forced to have the same color by construction and assigning them the color 1
would improperly color the edge (ai, π3,1, π3,2). Now since the blocking gadgets both have c1 6= c2
and since there are edges (siα,`, π1,1, π1,2), (siα,`+1, π2,1, π2,2) we know that the only way to color
them properly is for siα,` and siα,`+1 to be assigned the same color, which is a contradiction to our
assumption that γ is a proper coloring. �

We will say that a triple of vertices v1, v2, v3 is colorful under a coloring γ whenever γ(v1) 6=
γ(v2) 6= γ(v3), which means they all get different colors.

Claim 4.8. Let γ be a proper 3-hypergraph coloring of G′. Then there exists some j ∈ [t′] such
that for all ` ∈ [n] the triple tj`−2, t

j
`−1, t

j
` is colorful under γ.

Proof. First off, we know that there exists some j such that γ(bj) = 1 by step 8. We pick this to be
our j of choice. We then assume that for this choice of j there is some triplet tj`−2, t

j
`−1, t

j
` which is

not colorful. Now by step 10 we know that there are blocking-gadgets with c = (c1, c2, c3, 1) with
c1, c2, c3 ∈ [3] not being all pairwise distinct. Now since γ(bj) = 1, we know that for all possible
pairs of the vertices tj`−2, t

j
`−1, t

j
` it must hold that they are colored distinctly, otherwise there is

some gadget introduced in step 10 that can not be properly colored and by extension G′. However,
this is a contradiction to the assumption that γ is a proper 3-list-coloring for G′. �

It is easy to confirm that there exists some k ∈ [t′] such that the triple uk1 , u
k
2 , u

k
3 is colored

colorfully by steps 8 and 11 using a similar reasoning to Claim 4.8. Now with this we will prove
Claim 4.9.

Claim 4.9. The hypergraph G′ is 3-list-colorable if and only if there is some input instance
Xi∗,j∗,k∗ which is properly 2-3-colorable.

Proof. We prove the claim by splitting the proof in two cases, one for the forward and one for the
backwards direction of this claim.

(⇒) :
Let γ be a proper coloring for G′. We will now show how to use this coloring to construct a new
coloring γ′ for some instance Xi∗,j∗,k∗ . First, by construction and Claims 4.7 and 4.8 that there
are some i∗, j∗, k∗ ∈ [t′] such that γ(ai∗) = γ(bj∗) = γ(dk∗) = 1. We will choose these indices for
i∗, j∗, k∗ to be the indices of the instance Xi∗,j∗,k∗ , which will be colored using γ′. First for i∗, we
know that for all α ∈ [m] and distinct `, `′ ∈ [3n] that γ(si

∗

α,`) = γ(si
∗

α,`′). We then color all vertices
vα ∈ V of Xi∗,j∗,k∗ with γ′(vα) = γ(si

∗

α,1) for all α ∈ [m].

Similarly we know that for j∗ it holds for all ` ∈ [n] that any triple tj
∗

`−2, t
j∗

`−1, t
j∗

` is colorful. Now

we assign to all w` ∈ W for ` ∈ [3n] colors as follows γ′(w`) = γ(tj
∗

`). We note that this means
that all triangles in W are properly colored as all such triangles must by definition of coloring γ

Extending the Scope of Algebraic Kernelization for Constraint Satisfaction Problems 33

Eindhoven University of Technology 4 LOWER BOUND FOR 3-UNIFORM HYPERGRAPH 3-COLORING

be colored colorfully. It now remains to be checked that all edges between V,W of Xi∗,j∗,k∗ are
properly colored.

We now recall the fact that since γ(dk) = 1, that the vertices uk
∗

1 , uk
∗

2 , uk
∗

3 are colored color-
fully. In addition, during step 4 of the construction of G′ we added edges (si∗α,`, t

j∗

` , u
k∗

β) for
α ∈ [m], ` ∈ [3n], β ∈ [3] if there was an edge between (vα, w`) in Xi∗,j∗,k∗ . Now since all
uk
∗

1 , uk
∗

2 , uk
∗

3 are colorful under γ and each of these vertices have an edge with the pair si∗α,`, t
j∗

` in

G′, we can conclude that γ(si∗α,`) 6= γ(tj
∗

`) as otherwise one of those edges would be improperly col-
ored. Thus by extension we know that all γ′(vα) 6= γ′(w`) for all vα ∈ V,w` ∈W such that (vα, w`)
is an edge in Xi∗,j∗,k∗ . Finally, by step 6 we know that γ(si∗α,`) ∈ [2] and thus also γ′(vα) ∈ [2].
From this we can conclude that all vertices in V are properly 2-colored. In addition, we conclude
that all edges between V,W are properly colored and all triangles within W are properly colored.
Thus γ′ is a proper 2-3-coloring for Xi∗,j∗,k∗ .

(⇐) :
Let γ be a proper 2-3-coloring for Xi∗,j∗,k∗ . We will use this coloring to construct a coloring γ′

for G′. First off we pick the vertices ai∗ , bj∗ , dk∗ and assign γ′(ai∗) = γ′(bj∗) = γ′(dk∗) = 1. We
then assign to all uk

∗

β for β ∈ [3] the coloring γ′(uk
∗

β) = β. We then color the vertices si
∗

α,` for

α ∈ [m], ` ∈ [3n] with γ′(si
∗

α,`) = γ(vα) where vα ∈ Vi∗,j∗,k∗ and we color γ′(tj
∗

`) = γ(w`) where
w` ∈Wi∗,j∗,k∗ .

We then assign to the vertices in A,B and D that have not yet been colored the color 2. Finally,
color all blocking-gadgets in accordance to this coloring. We note that this does allow the blocking
gadgets introduced in step 8 to be properly colored as ai∗ , bj∗ and dk∗ were already colored with 1.
We then add for all β ∈ [3] and k ∈ [t′] where i 6= i∗ the coloring γ′(ukβ) = 3, for all ` ∈ [3n], j ∈ [t′]

where j 6= j∗ the coloring γ′(tj`) = 3 and finally for all i ∈ [t′], α ∈ [m], ` ∈ [3n] where i 6= i∗ we
assign to all siα,` a color from [2] \ {γ′(tj

∗

`)}. We will now proceed to show that this coloring is a
proper coloring of G′.

It is easy to verify that all edges (si
∗

α,`, t
j∗

` , u
k∗

β) for all α ∈ [m], ` ∈ [3n], β ∈ [3] which were added

in step 4 are properly 3-colored since by definition of γ, si
∗

α,` and tj
∗

` must have gotten different
colors since they represent adjacent vertices in Xi∗,j∗,k∗ . Since γ is a 2-3-coloring we also know for
all si

∗

α,` ∈ Si∗ satisfy γ′(si
∗

α,`) ∈ l(si
∗

α,`) since all v ∈ Vi∗,j∗,k∗ are colored using 1, 2. For all vertices
in A,B,D it also holds that they are properly list colored as they are all colored using either 1
or 2. We also note that for i∗, j∗, k∗ the blocking-gadgets added in steps 9-11 are colored properly
since all uk

∗

β for β ∈ [3] were given distinct colors, all triplets tj∗`−2, t
j∗
`−1, t

j∗
` for ` ∈ [n] have dis-

tinct colors and all vertices si
∗

α,`, s
i∗

α,`′ for α ∈ [m] and distinct `, `′ ∈ [3n] satisfy γ′(si
∗

α,`) = γ′(si
∗

α,`′).

From this we conclude that coloring all ai, bj , dk for i, j, k ∈ [t′] and i 6= i∗, j 6= j∗, k 6= k∗ being
colored using the color 2 is fine as each ai∗ , bj∗ , ck∗ has already been assigned color 1. This thus
means that all Si, Tj and Uk are not restricted by the gadgets in steps 9-11 and thus we can color
those vertices with any color with respect to the blocking-gadgets. We note that for any choice of
i 6= i∗, j 6= j∗, k 6= k∗ it holds that the edges added in step 4 are properly colored as all vertices in
Si, Tj , Uk will be colored by γ′(siα,`) ∈ [2] and γ′(tj`) = γ′(ukβ) = 3 for α ∈ [m], ` ∈ [3n], β ∈ [3]. It

34 Extending the Scope of Algebraic Kernelization for Constraint Satisfaction Problems

4 LOWER BOUND FOR 3-UNIFORM HYPERGRAPH 3-COLORING Eindhoven University of Technology

thus remains to be proven that any hyperedges in G′ that are partially related to i∗, j∗, k∗, which
means that there is at least one and at most two indices i, j, k for which i = i∗, j = j∗, k = k∗, are
properly colored.

Consider that we have a some k where k 6= k∗. Here we know that all uk1 , u
k
2 , u

k
3 are colored using

3. All edges involving these vertices are trivially properly 3-colored as for any edge, the vertex
si
′

α,` for i′ ∈ [t′], α ∈ [m], ` ∈ [3n] is colored using some color from [2]. This thus means that the
edge always has 2 different colors and thus it is properly colored. By this same argument any
edge involving vertices from Tj where j 6= j∗ are always properly colored, as all these vertices are
colored using the color 3 as well.

Thus it remains to be proven that for any i 6= i∗ it holds that any edge involving the vertices in Si
are properly colored. We can trivially see that if we have some edge involving some vertex from Si
and Tj for j 6= j∗ then the edge is trivially colored properly as all vertices in Tj are colored using
the color 3. Thus we consider the edges involving Si and Tj∗ . Now by construction, a vertex siα,`
was colored using [2] \ {γ′(tj

∗

`)} for α ∈ [m], ` ∈ [3n]. Now we know that this set is never empty
as by construction step 4, there is only a single vertex from tj

∗

` with which siα,` shares edges. In

addition, since this color is chosen such that γ′(siα,`) 6= γ′(tj
∗

`), we conclude that these edges are
also properly colored.

Since all vertices are colored and since we concluded that all edges are properly colored, we con-
clude that G′ is properly 3-colored and thus the case holds.

Since both cases have been proven the claim follows. �

It thus remains to bound the cost of the amount of vertices in G′. First in steps 1 through 3 we
create t′ ·m · 3n, t′ · 3n and 3t′ vertices respectively. In step 5 we add 3t′ vertices. In step 8 we
add per blocking-gadget vertices in the order O(t′). In step 9 we add blocking-gadgets which have
constant size for which we add t′ ·m · (3n − 1) so a total of order O(t′ ·m · n) vertices. In step
10 we again add blocking-gadgets of constant order of which we add t′ · n so a total of vertices of
order O(t′ · n) were added. Finally in step 11 a total of t′ blocking-gadgets of constant order were
added, which together add vertices of order O(t′). By now summing these amounts of vertices we
get a total of O(t′ ·m · n) = O(3

√
t · (maxi,j,k |Xi,j,k|)O(1)). This together with Claim 4.9, Lemma

4.1 and Theorem 2.8 allows us to conclude that 3-Uniform Hypergraph 3-List-Coloring has
no kernel of size O(n3−ε) for any ε > 0 unless NP ⊆ coNP/poly.

To now extend this proof to one for 3-Uniform Hypergraph 3-Coloring all that is needed is to
add degree-1 and 2 restricting gadgets and then add edges so that the lists for all vertices in G′ are
preserved. Since all restricting gadgets of any degree only require a constant amount of vertices to
be added and since these are the only vertices added to G′, we can conclude that there is no kernel
of size O(n3−ε) for 3-Uniform Hypergraph 3-Coloring where ε > 0 unless NP ⊆ coNP/poly.
Since a kernel of size O(n3) for 3-Uniform Hypergraph 3-Coloring is trivial, the extension
on Theorem 4.6 thus proves that there is no non-trivial kernel for 3-Uniform Hypergraph 3-
Coloring. This result thus leads us to conclude that for 3-Uniform Hypergraph 3-Coloring
this trivial upper bound is tight.

Extending the Scope of Algebraic Kernelization for Constraint Satisfaction Problems 35

Eindhoven University of Technology 5 CONCLUSION

5 Conclusion

In conclusion, we have provided a framework which allows for kernels to be created for non-uniform
CSP . Using the structure of a t-balanced language Γ over which a non-uniform CSP is defined, it
is possible to create a kernel of O(nt) constraints for CSP (Γ). This approach expands on already
constructed framework as this approach allows for the construction of non-linear kernels and such
kernels for CSP (Γ) when it is defined over any finite domain, whereas most known methods tend
to be restricted to CSP (Γ) over a Boolean domain [10, 12]. The results of this thesis were obtained
by first rewriting constraints as polynomials of degree at most t that capture the unsatisfying as-
signments with respect to the satisfying assignments of said constraints. By computing a basis
for these polynomials it is then possible to construct a kernel of size O(nt). It is interesting to
note that it is possible to check whether a relation R ∈ Γ is t-balanced in polynomial time by
using the same methodology provided by Chen, Jansen and Pieterse [12]. This was utilized to
confirm that the relation shown in Equation (9) is 2-balanced and it thus a set of constraints
which utilizes this relation admits a kernel of O(n2) constraints. This is a significant result as this
relation has a trivial kernel of O(n5) constrains. When it comes to larger domains the presented
approach allowed for the construction for a nontrivial kernel of hypergraph coloring. More specifi-
cally 4-Uniform Hypergraph 4-Coloring with the requirement that each hyperedge contains
at least 3 distinctly colored vertices showed to have a kernel of O(n3) constraints. Moreover, 4-
Uniform Hypergraph 3-coloring with the requirement that each hyperedge contains at least
3 distinctly colored vertices has an even smaller kernel of O(n2) constraints. Again these results
are significant as for both of these problems a trivial kernel consists of O(n4) constraints. This
shows that the presented approach can be used to find nontrivial kernels for many instances of
non-uniform CSP . In addition we have explored and shown what it would take for CSP (Γ) to
have a single polynomial that captures a constraint defined over a relation R. First of we showed
that it would not be possible to extend the presented methodology in order to find such a single
polynomial, although this does not imply that they do not exist. This was followed by showing
that it is possible to capture at least 2 unsatisfying constraints of some relation R by combining
two already known polynomials for some CSP (Γ) into single polynomial. It was shown that this
is possible for any pair of polynomials but for anymore than 2 polynomials this is no simple feat.

Finally we have shown a kernel lower bound for 3-Uniform Hypergraph 3-Coloring which
showed that no kernel of size O(n3−ε) exists for any ε > 0. As Hypergraph Coloring is a form of
CSP (Γ) over a finite domain, this result yields insight in the complexity of such problems. Since
for 3-Uniform Hypergraph 3-Coloring a trivial kernel contains O(n3) constraints, this also
shows that 3-Uniform Hypergraph 3-Coloring does not admit nontrivial kernel. Thus the
method presented in Section 3.2 is also unable to find a nontrivial kernel for 3-Uniform Hy-
pergraph 3-Coloring. However, as we have shown earlier, different variations of hypergraph
coloring do admit nontrivial kernels so there is still a lot to be explored with regards to hypergraph
coloring.

In addition, there are still other questions of interest which remain unanswered. First off, one can
wonder whether a single polynomial exists per relation R ∈ Γ which captures said relation. This is
an important question as it will simplify the polynomial representation of CSP (Γ). The question
whether CSP (Γ) can sparsified for non-finite domains also remains open. Answering this question
will allow more problems to be sparsified which can greatly impact the efficiency of solving these

36 Extending the Scope of Algebraic Kernelization for Constraint Satisfaction Problems

5 CONCLUSION Eindhoven University of Technology

computational problems. Finally it is not clear whether the bound O(nt) for some t-balanced
language Γ is tight. Although when put to practice, the provided methodology does agree with
already known lower bounds, such as for d-NAE-SAT we find that t = d− 1, it is not yet clear if
this holds for all languages over which CSP (Γ) can be defined.

Extending the Scope of Algebraic Kernelization for Constraint Satisfaction Problems 37

Eindhoven University of Technology REFERENCES

References

[1] M. R. Krom, “The decision problem for a class of first-order formulas in which all disjunctions
are binary,” Mathematical Logic Quarterly, vol. 13, no. 1-2, pp. 15–20, 1967.

[2] B. Aspvall, M. F. Plass, and R. E. Tarjan, “A linear-time algorithm for testing the truth of
certain quantified boolean formulas,” Information Processing Letters, vol. 8, no. 3, pp. 121–
123, 1979.

[3] S. Even, A. Itai, and A. Shamir, “On the complexity of timetable and multicommodity flow
problems,” SIAM Journal on Computing, vol. 5, no. 4, pp. 691–703, 1976.

[4] R. M. Karp, Reducibility among Combinatorial Problems, pp. 85–103. Boston, MA: Springer
US, 1972.

[5] A. A. Bulatov, “A dichotomy theorem for constraint satisfaction problems on a 3-element
set,” J. ACM, vol. 53, no. 1, pp. 66–120, 2006.

[6] A. A. Bulatov, “A dichotomy theorem for nonuniform CSPs,” in 58th IEEE Annual Sympo-
sium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17,
2017 (C. Umans, ed.), pp. 319–330, IEEE Computer Society, 2017.

[7] D. Zhuk, “A proof of the CSP dichotomy conjecture,” J. ACM, vol. 67, no. 5, pp. 30:1–30:78,
2020.

[8] H. Dell and D. Van Melkebeek, “Satisfiability allows no nontrivial sparsification unless the
polynomial-time hierarchy collapses,” J. ACM, vol. 61, July 2014.

[9] B. M. P. Jansen and A. Pieterse, “Optimal data reduction for graph coloring using low-degree
polynomials,” Algorithmica, vol. 81, no. 10, pp. 3865–3889, 2019.

[10] B. M. P. Jansen and A. Pieterse, “Optimal sparsification for some binary csps using low-degree
polynomials,” ACM Trans. Comput. Theory, vol. 11, no. 4, pp. 28:1–28:26, 2019.

[11] V. Lagerkvist and M. Wahlström, “Kernelization of constraint satisfaction problems: A study
through universal algebra,” in Principles and Practice of Constraint Programming - 23rd
International Conference, CP 2017, Melbourne, VIC, Australia, August 28 - September 1,
2017, Proceedings (J. C. Beck, ed.), vol. 10416 of Lecture Notes in Computer Science, pp. 157–
171, Springer, 2017.

[12] H. Chen, B. M. P. Jansen, and A. Pieterse, “Best-case and worst-case sparsifiability of boolean
CSPs,” Algorithmica, vol. 82, no. 8, pp. 2200–2242, 2020.

[13] M. Datar, T. Feder, A. Gionis, R. Motwani, and R. Panigrahy, “A combinatorial algorithm
for MAX CSP,” Inf. Process. Lett., vol. 85, no. 6, pp. 307–315, 2003.

[14] H. Chen, B. M. P. Jansen, K. Okrasa, A. Pieterse, and P. Rząz̀ewski, “Sparsification Lower
Bounds for List H-Coloring,” in 31st International Symposium on Algorithms and Computa-
tion (ISAAC 2020) (Y. Cao, S.-W. Cheng, and M. Li, eds.), vol. 181 of Leibniz International
Proceedings in Informatics (LIPIcs), (Dagstuhl, Germany), pp. 58:1–58:17, Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, 2020.

38 Extending the Scope of Algebraic Kernelization for Constraint Satisfaction Problems

REFERENCES Eindhoven University of Technology

[15] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,
and S. Saurabh, Parameterized Algorithms. Springer, 2015.

[16] R. Majdoddin, “Uniform CSP parameterized by solution size is in W[1],” in Computer Science
- Theory and Applications - 14th International Computer Science Symposium in Russia, CSR
2019, Novosibirsk, Russia, July 1-5, 2019, Proceedings (R. van Bevern and G. Kucherov, eds.),
vol. 11532 of Lecture Notes in Computer Science, pp. 275–285, Springer, 2019.

[17] H. L. Bodlaender, B. M. P. Jansen, and S. Kratsch, “Kernelization lower bounds by cross-
composition,” SIAM J. Discret. Math., vol. 28, no. 1, pp. 277–305, 2014.

[18] B. M. P. Jansen and A. Pieterse, “Sparsification upper and lower bounds for graph problems
and not-all-equal SAT,” Algorithmica, vol. 79, no. 1, pp. 3–28, 2017.

[19] L. Jaffke and B. M. P. Jansen, “Fine-grained parameterized complexity analysis of graph
coloring problems,” in Algorithms and Complexity (D. Fotakis, A. Pagourtzis, and V. T.
Paschos, eds.), (Cham), pp. 345–356, Springer International Publishing, 2017.

Extending the Scope of Algebraic Kernelization for Constraint Satisfaction Problems 39

	Introduction
	Preliminaries
	CSP
	Sparsification
	Balanced operations
	Polynomials

	Kernels for non-uniform CSP
	Generic Kernel for Boolean non-uniform CSP
	Kernel for non-uniform CSP over finite domains
	Difficulties of constructing single capturing polynomials
	Importance of rings when constructing single capturing polynomials
	Reducing a set of capturing polynomials

	Lower Bound for 3-Uniform Hypergraph 3-Coloring
	Conclusion

