
 Eindhoven University of Technology

MASTER

Digital Twin of an Indoor Navigation System using TurtleBot3 WafflePi

Bansal, Saharsh

Award date:
2021

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/72a93790-b839-434a-a829-02988266090e

Department of Mathematics and Computer Science
Software Engineering and Technology

Digital Twin of an Indoor Navigation System using
TurtleBot3 WafflePi

Saharsh Bansal
1423819

Supervisor:
dr. ir. Ion Barosan

dr. ir. Eugene Lepelaars (TNO)

Eindhoven, August, 2021

Digital Twin of an Indoor Navigation System

Abstract
This project aims at developing a system centered around a CPS device, which is able to direct the
robot to specified locations in a known indoor environment. The concerned region is mapped using
a LIDAR and the scanned map is then used for identifying locations as well as to plan the path.
A multitude of path planning algorithms are used to plan the path and a comparison between
them is performed to find which algorithm would work best in which scenario. Once the path is
calculated the physical device is directed to its location along the path. Additionally the project
also focuses on mapping the magnetic field of the concerned region. To do so the magnetic field
is modelled using Gaussian process regression. The entire project is developed using a MDSE
approach. This approach is selected because of the advantages it poses in terms of identifying the
system requirements and developing each aspect of the system individually and comprehensively.
Using this systematic approach also helps in identifying any contradictions or pitfalls early in the
development cycle. Additionally using this approach allows developing each service as an individual
model, which can be translated to future/other systems. Doing so allows the project to be scaled
up as a whole or even individual components of it. It was achieved by implementing aspects of it
in the ongoing projects at the TruckLab Automotive Lab at TU/e.

iii

Digital Twin of an Indoor Navigation System

List of Abbreviations
amcl Adaptive Monte Carlo Localization.

BDD Block Decision Diagram.

BFS Breadth First Search.

CN Digital Twin Communication Network.

CPS Cyber-Physical Systems.

DD Digital Twin Digital Data.

DT Digital Twin.

GP Gaussian Process.

IMU Inertial Measurement Unit.

LIDAR Light Detection and Ranging.

MDSE Model Driven System Engineering.

PE Digital Twin Physical Entity.

SBC Single-Board Computer.

Ss Digital Twin Services.

TB3 TurtleBot3 WafflePi.

TBT TurtleBot Truck.

TCP Transmission Control Protocol.

TRIZ Theory of Inventive Problem Solving.

VE Digital Twin Virtual Entity.

v

Digital Twin of an Indoor Navigation System

Contents

Abstract iii

List of Abbreviations v

List of Figures viii

List of Tables ix

1 Introduction 1
1.1 Digital Twin(DT) and CPS . 1
1.2 Problem Definition and Goal . 1
1.3 Scope of the project . 2
1.4 Research Questions . 3
1.5 System Context . 3

1.5.1 Digital Twin using MDSE approach . 4

2 Background Information 5
2.1 Digital Twin model . 5
2.2 Magnetic Field Mapping . 6
2.3 Path Finding Algorithms . 7
2.4 Equipment/Tools Used . 7

2.4.1 PE Equipment . 7
2.4.2 VE Tools . 8
2.4.3 Ss Tools . 9
2.4.4 CN Tools . 9

3 Methodology 11
3.1 SYSMOD . 11

3.1.1 TRIZ Analysis . 11
3.1.2 Requirements Analysis . 12
3.1.3 TRIZ contradictions and solutions . 12
3.1.4 System Context . 13
3.1.5 Use Cases . 14
3.1.6 Architecture of the system . 14
3.1.7 Behaviour diagrams . 14
3.1.8 Functional Analysis . 14
3.1.9 Conceptual Models of Individual Components 16

3.2 VE Component . 18
3.2.1 Forming the virtual replication of the indoor region 18
3.2.2 Displaying the planned path . 19

3.3 PE Component . 19
3.3.1 Integrating RM3100 with the TurtleBot . 19

3.4 Ss Component . 21
3.4.1 Physical Map . 22
3.4.2 Magnetic Field Mapping . 22
3.4.3 Planning the path . 25
3.4.4 Move to destination . 28

vi

Digital Twin of an Indoor Navigation System

4 Implementation 31
4.1 Rhapsody GUI . 31
4.2 Path Planning . 32

4.2.1 Visualizing Path on VE . 34
4.3 Magnetic Field Mapping . 34

4.3.1 Individual Axis . 34
4.3.2 Joint Model . 35

4.4 TruckLab Implementation . 36
4.4.1 Path Planning . 37
4.4.2 Obstacle Detection . 38
4.4.3 Magnetic Field Mapping . 38

5 Evaluation 41
5.1 Evaluation of path planning . 41

5.1.1 Memory Requirement . 41
5.1.2 Timing Characteristics . 43

5.2 Evaluation of magnetic field extrapolation . 44
5.2.1 Individual Axis Model . 44
5.2.2 Joint Model . 45

5.3 Assessment of magnetic field extrapolation . 45

6 Discussion 47
6.1 Research Questions . 47

6.1.1 RQ1 How to map magnetic fields of a region on a low resource device? . . . 47
6.1.2 RQ2 Which navigation algorithm is optimal in an indoor environment? . . 47
6.1.3 RQ3 How feasible is it to use both magnetic fields and LIDAR for indoor

navigation? . 48
6.2 Project Constraints . 48

7 Conclusions 51

Bibliography 53

Appendix A SYSMOD Steps 55
A.1 Requirements Analysis . 55
A.2 Use Cases . 59
A.3 Behaviour Diagrams . 61

Appendix B Code Listings 63
B.1 Listings for the PE . 63

B.1.1 Magnetometer Connections . 63
B.1.2 Code to read RM3100 Magnetometer readings 63

B.2 Listings for the VE . 65
B.2.1 Unity Listing for Displaying Predicted Path 65

B.3 Listings for the Ss . 68
B.3.1 Listing for Ss: MATLAB . 68
B.3.2 Listing for Ss: Python . 75

vii

Digital Twin of an Indoor Navigation System

List of Figures
1 Five-Dimensional Framework for DT . 6
2 BFS exploration sequence of graph . 7
3 TurtleBot3[4] . 8
4 TRIZ 9 Box analysis . 12
5 System Context of DT . 13
6 Architecture of the System . 15
7 Path Planning Behaviour Diagram . 15
8 Function analysis of the system . 16
9 Conceptual Model of PE . 17
10 Conceptual Model of VE . 17
11 Conceptual Model of DD . 18
12 Conceptual Model of Ss . 18
13 Floor Plan Replication on VE . 19
14 Magnetometer Orientation . 20
15 Calibration of Magnetometer . 20
16 Contour of Magnetic Field . 21
17 Positional Value of magnetometer . 23
18 Absolute Error vs Time . 26
19 amcl Data Rate vs TB3 speed . 26
20 Flow Chart for TB3 Motion Control . 29
21 TB3 Obstacle Detection . 29
22 Rhapsody GUI . 31
23 Manual Control Contradiction . 32
24 BFS Generated Path . 32
25 Dijkstra Generated Path . 32
26 A* Euclidian Generated Path . 33
27 A* Manhattan Generated Path . 33
28 BFS generated Path: Edges . 33
29 Dijkstra Generated Path: Edges . 33
30 A* Euclidian Generated Path: Edges . 34
31 A* Manhattan Generated Path: Edges . 34
32 Visualization of Path on VE . 34
33 Expected vs Predicted Field Values For Individual Models 35
34 Predicted Magnetic Field on Map using Individual Axis Models 35
35 Expected vs Predicted Field Values For Joint Model 36
36 Predicted Magnetic Field on Map using Joint Axis Model 36
37 TruckLab PE . 37
38 TruckLab Path Planning . 37
39 TruckLab TBT Obstacle Detection . 38
40 Magnetic Field Data Collected . 39
41 TruckLab Predicted Magnetic Field on Map using Individual Axis Model 39
42 TruckLab Predicted Magnetic Field on Map using Joint Axis Model 39
43 Number of explored nodes in Path Finding Algorithms 42
44 Memory Consumption for path planning algorithms 43
45 Average memory consumption per algorithm . 43
46 Time taken for path finding . 44
47 Average Time taken for path finding . 44
48 MSE Score for Individual Axis Model . 45
49 MSE Score for joint Model . 45
50 Peak RAM taken to fit Gaussian Regression Model 46
51 Requirement Diagram: Display . 55

viii

Digital Twin of an Indoor Navigation System

52 Requirement Diagram: Magnetic Mapping . 56
53 Requirement Diagram: Movement . 57
54 Requirement Diagram: Path Planning . 58
55 Use Case Diagrams . 59
56 Behaviour State Chart Diagrams . 61

List of Tables
1 Equipment/Tools Used . 8
2 Requirements Table . 12
3 Use Case Description: Go To Destination . 14
4 PE Component Analysis . 16
5 Requirements Table: Display . 55
6 Requirements Table: Magnetic Mapping . 56
7 Requirements Table: Movement . 57
8 Requirements Table: Path Planning . 58
9 RM3100 Pinout . 63

ix

Digital Twin of an Indoor Navigation System

1 Introduction

Over the past decade since its introduction, cyber physical systems(CPS) have had a significant
contribution in various industries. They play key roles in automation, manufacturing and robotics.
As a result, they have applications in many fields of research including health-care, robotics etc.
This report focuses on the development of a system for an indoor navigation system. In this section
the motivation for this project, its overall scope and use cases will be focused upon.

1.1 Digital Twin(DT) and CPS

In general a CPS is one which includes engineered networks between physical and computational
devices [17]. Using a CPS device has various advantages such as distributed computing, inter-
connected and integrated systems. A Digital Twin (DT), while being a relatively new concept,
first introduced in 2006, refers to a system which has both a physical and virtual component. In
this system it is widely accepted that the purpose of the virtual component is to replicate the
actions of the physical component. As can be seen from the generally accepted meanings of the
two aforementioned concepts, there is some overlap between the understanding of what a CPS
device and a DT is. The inter-connectivity of a CPS device can be considered to be equivalent to
the link formed between the physical and virtual components of a DT. Whereas, the distributed
computing ability of the CPS, can be the equivalent of any external services added into the DT.
This is further explained in Section 2. It can therefore be assumed that a DT is a type of CPS
device in itself, as is done in this project.

Given the features mentioned above, a DT system can act as the perfect medium for developing,
executing and testing new systems, as it can replicate the physical motions onto a virtual envi-
ronment. Doing so, helps in visualizing the actions of the physical device remotely. It also allows
emulating the actions of the physical device entirely on a virtual platform. This allows for sped up
simulations and behaviour monitoring. While, the concept of a DT has expanded over the years,
there is still no industry/academic standard. The model used in this project will be explained in
detail in Chapter 2, and its relevance to the targeted goals.

However, taking into consideration even the rudimentary understanding of what a DT is, it can
be seen that it would be a suitable platform to develop and test a navigation system designed for
indoor environments. A navigation system would require the implementation of various algorithms
to calculate an appropriate path and then testing to validate its accuracy.

1.2 Problem Definition and Goal

Navigation has held a special place in human history over the centuries. From the times of the
colonial explorers discovering new lands, to finding the path to the nearest supermarket. A key
aspect in navigation and location is a pre-requisite knowledge of the concerned environment.
The environment may be either internal, an enclosed region such as a building, or even external,
intra/inter-city. This can be done by constructing a map of the area. However, for the purposes
of navigation, the map need not necessarily be restricted to geographic landmarks, but could
be about various features such as magnetic fields, radio signatures, heat maps etc. as shown by
Brena et al. [8]. Performing the survey operation for generating these maps is a tedious and time
consuming process, as it requires a physical walk-through of the concerned region and collecting
data. However, this procedure can be automated. It requires a self exploring CPS device with the
ability to store and process data.
These CPS devices enable unguided exploration and data collection possibilities in unexplored
environments. They can also be expanded to path planning including collision avoidance. This has
several advantages.

1

Digital Twin of an Indoor Navigation System

1. Acting as a safety precaution by allowing an alternate mapping option, thereby protecting
humans from potentially dangerous situations.

2. Instant mapping and access of environment map.

3. Consideration of other environmental parameters, such as heat signatures, geo-magnetic fields
thereby providing multiple maps reflecting various conditions.

For example, a single device could be configured in a way that it can at the same time map not
only the geographical map of an area but also characterise other features such as temperature,
pressure, radiation etc. It further helps illustrate the importance of autonomous robotic mapping
as, if humans were to perform the same task various safety considerations would restrict access to
potentially harmful environments.
Outdoor mapping has been tackled extensively and is now possible with satellite detection, Li
and Zhijian [15], Malarvizhi et al. [16]. However, the challenge lies in indoor mapping, along with
GNSS(Global Navigation Satellite System) denied regions. Much work has been done to tackle the
indoor problem with using WiFi signals. However, it is susceptible to interference from external
factors. Especially in a shared public space such as a university or a library where there may
be multiple such networks added or removed at any given time. This necessitates the need for
mapping using a relatively stable source of information, which is not as susceptible to change. A
potential source of mapping information is the geo-magnetic field of the region as explored by
Brena et al. [8], Yeh et al. [24]

Introduction to magnetic field mapping

Identifying the magnetic field of a region is not a completely new concept. Birds have been using
it for centuries to navigate while migrating. Bats also use it for characterizing their environment.
There have been concerns in the past about the effect of magnetic field on human health and
various studies have been done regarding it as shown in Kheifets et al. [13], Stein and Udasin [20].
These papers mainly focus on the effects of induced magnetic fields due to proximity to high power
electric lines, and specify the limits of exposure to humans in various places where these lines are
present. Various governments across the EU including the Netherlands have limitations on the
acceptable levels of magnetic field, especially in regions where children are exposed the most[18].
This provides another reason for mapping the magnetic field of an indoor region, other than to use
it for navigation. The field map can be used to identify magnetic hot-spots and therefore be used
to ensure that the magnetic field is always below the prescribed levels.
The next concern would be regarding the issue of information stability over time. As shown in
Yeh et al. [24], Gozick et al. [12], Angermann et al. [7] the geo-magnetic field in a region remains
fairly constant over extended periods of time. It may be argued that the presence of ferromagnetic
materials in the building such as iron bars or steel beams and such may have an effect on the
geo-magnetic field in that space. However, once construction is done, it is fairly improbable that
there would be much deviation in the magnetic signature of the region. A potential case when there
may be significant changes is when there are renovations/alterations made to the structure of the
building. In that case, a simple rerun of the mapping procedure would be in order to get the new
data. Doing this would be a simple enough task for an automated robot. This further elaborates
the advantage of having an automated bot do this task rather than have a human perform it.

1.3 Scope of the project

Up till now the need for a system for indoor navigation has been described. Additionally, a potential
new source for information for generation of the map, magnetic fields was introduced. The project
aims at developing an indoor navigation system which can also map the magnetic field of a given
region. Setting up such a system can be further divided into developing two working systems.

2

Digital Twin of an Indoor Navigation System

• The first part aims to develop a proper navigation system in an indoor setting. It encompasses
a CPS device which is able to accurately navigate from a given source location to a destination
in the shortest available path.

• The second part of the solution is to accurately map the magnetic field of the given region.

These parts will be tackled separately before merging them to present a final solution to this
project. Generating this map will help identify location based on the magnetic signature of specific
landmarks, which is the underlying target of this project. However, identifying the specific magnetic
signatures requires extensive knowledge in magneto-statics and falls outside the scope of this project.
Therefore in this project the magnetic map generated can be used to direct the CPS device to
location of highest/lowest magnetic field values. This project can therefore act as a stepping stone
to future research into identifying locations by their magnetic signatures. It can also be used to
test a technology other than magnetic fields to act as the driving force behind the generation of
the map. That map and its feasibility as a viable location identifier source can be tested using the
navigation system being developed in this project.

1.4 Research Questions

The system being developed in this project aims at answering particular questions concerning both
indoor magnetic field mapping and indoor navigation. They are:

• RQ1 How to map magnetic fields of a region on a low resource device?

Aims at evaluating the feasibility of deploying existing magnetic field mapping solutions on
devices with limited RAM availability such as the Raspberry Pi 3b+.

• RQ2 Which navigation algorithm is optimal in an indoor environment?

Aims at comparing the various path finding algorithms implemented on the following criteria

– SRQ2_1 Which algorithm has the least mean error in directing to target location?

– SRQ2_2 Which algorithm yields the path in shortest amount of time?

– SRQ2_3 Which algorithm utilizes the least resources to find the solution?

• RQ3 How feasible is it to use both magnetic fields and LIDAR for indoor navigation?

Aims at trying to establish the reasonableness of using both the mentioned sensors as the
basis for navigation indoors.

1.5 System Context

Having defined the scope of this project it is now important to discuss the overall method which
will be used in the implementation of the various aspects of this project. Given the various facets
of this project a structured approach will be required which properly defines each task and is able
to merge all of them together. For this reason a model driven system engineering(MDSE) approach
will be taken. It helps in properly defining the individual components of the project.
The system being developed in this project has various features being implemented simultaneously.
This therefore necessitates the development of a singular controller which is able to oversee and
control all the required features. Developing such a system and deploying it directly in the
physical environment runs a few risks, of damages due to unpredicted consequences of implemented
solutions. It is therefore wise to first test the developed system onto a virtual platform replicating
the behaviour of the actual physical system. As a result the system developed in this project will
be on a digital twin.

3

Digital Twin of an Indoor Navigation System

1.5.1 Digital Twin using MDSE approach

MDSE is able to develop extremely complex systems with relative ease. Each of the services
being tackled in the project are represented as individual models which interact with the necessary
components or each other if required. This helps in compartmentalizing tasks and tackling them
individually. Thereby making the development cycle relatively smooth. It is therefore an ideal
approach to proceed with the development of the digital twin in this project.
Developing the digital twin of a system allows for a virtual platform, where multiple possible
theories/algorithms can be tested without expending any physical resources. Additionally since its
on a virtual environment the simulation can be sped up and thus verification can be expedited.
For this project, should an accurate virtual replica of the PE be made on the VE, the entire area
can be mapped without having to do any physical testing. This also allows for various routing
algorithms to be tested. Executing a model based system will also give the shortcomings of the
tested system without risking any damage to the physical devices.
It also provides a platform to test the response time of the actual designed system by, connecting
it to the simulation environment and check any possible implementation virtually before being
implemented physically. This provides a environment for ensuring that implemented systems work
as intended. This not only saves time as the simulated environment can be sped up, but also saves
on potential physical damage to any of the concerned devices. All the reasons explained above
further reaffirm the choice of developing the digital twin for this project.

This section covers the overall target of this project, while simultaneously explaining the base
concepts which will be employed in its development. However, some base information specific
to topics tackled in this project is required before the system can be developed. These topics
will be elaborated in detail in the following section. Once a basic understanding of the base
concepts is established, the report focuses on the implementation of the DT. The results of the
the implementation of the system and its services are then visualized and evaluated on various
parameters. Finally the proposed research questions are answered based on the implementation
and findings made during the project, before presenting the final conclusions on the project and
suggestions on any potential future work concerning it.

4

Digital Twin of an Indoor Navigation System

2 Background Information
Before starting the development of the project, basic information about various concepts utilized
in this project needs to be explored in further detail. In this section a brief explanation of the DT
concept is presented along with some background information about magnetic field mapping. In
addition to it, the tools used to develop the system are also presented along with the rationale to
do the same are also explored.

2.1 Digital Twin model

A DT typically has no fixed definition but various concepts, have been commonly accepted by
researchers and academics in the field. The most widespread concept is the three dimensional
model, as explained in Wu et al. [23]. It contains a virtual replica of the physical environment,
the physical devices and a communication network between the two components. However, this
architecture does not account for any external services which can be incorporated into the DT
system. A different architecture is the four dimensional model, which includes the digital data,
the virtual replica, an additional model which is the predictive twin and the decision making twin.
This model ignores the effects and needs of the physical entity. It is best suited to evaluate a
purely virtual system which would be useful for simulation based testing in the initial stages of
product development. Due, to the lack of the physical device in the architecture, it is not best
suited to this project which focuses on incorporating a physical robot and collecting data from
sensors interacting with the physical environment. Wu et al. [23] also discusses a six dimensional
model which has the following components: 1) physical data source, 2) local data repository, 3)
data information transformation level, 4) cloud-based information repository, 5) emulation and 6)
simulation module. While this model covers the issue of the previous one by incorporating the
physical entity and accounts for data received from the physical sensors, it does not discuss the
interactions between the various components. It is an important part of this project as there is
constant data transfer between the various components especially between the services offered and
the physical device.

Accepted Model

The final model considered is a five dimensional model as described in Wu et al. [23]. This model
consists of the Physical Entity(PE), the Virtual Entity(VE), the Services(Ss), Digital Data(DD)
and the Communication Network(CN). It is better represented in Figure 1. This model better
considers the requirements of this project and allows for a proper conceptual understanding of the
various aspects of the system. It is the model which will be used for this project. Figure 1a shows
how the components of the system of this project fits into the different dimensions of the DT.

PE: Encompasses the physical TB3, the sensors taking readings from the environment, namely
the LIDAR, the IMU and the RM3100 magnetometer.

VE: Consists of the virtual replication of the TB3, its movement and the virtual visualization of
the predicted path.

Ss: Includes indoor mapping, path planning and magnetic field extrapolation. A final service
offered is a MBSE based system controller which controls not just the TB3 itself, but also
the other offered services.

DD: Accounts for the data read from the sensors listed previously as well as the results of the
services offered, namely the extrapolated magnetic fields and the results of the path planning
service.

CN: The communication network is achieved using a distributed ROS network over a WiFi
connection.

5

Digital Twin of an Indoor Navigation System

(a) Conceptual [23]

LIDAR, IMU,
Magnetometer Data,

Magnetic Field Values

CN
_P

S

CN_PV

CN_PD CN_VD

CN_SD

CN_VS

VEPE

DD

Ss
Magnetic Field Mapping

Path Planning

Rhapsody Controller

ROS Topic

ROS Topic

TCP Socket

ROS Topic

Internal
Memory

RO
S

To
pi

c

(b) DT Framework for project

Figure 1: Five-Dimensional Framework for DT

A visual representation of these components in the framework format can be seen in Figure 1b.
The Ss is generally associated with additional services used for analysis or functional services which
assist the DT itself. However for this project the scope of the Ss is expanded to allow for control
services of the PE and the VE. This is to allow for distributed, parallel control of the services
offered. In addition to this doing so also allows for a system which could easily be expanded to
allow for cloud computing and thereby allow for complex controls and services be incorporated to
this project.

2.2 Magnetic Field Mapping

While forming the map of an indoor region there are 2 potential magnetic field sources that we
can consider. The first is source is the geo-magnetic field. The second source can be artificially
induced by physically placing (electro)magnets in strategic location to induce a magnetic field,
which will be used to form a map. The disadvantage of introducing external magnets is that we
are physically changing the magnetic field of the region. Should the strength of the field be high
it may start adversely affecting human health [6]. There have additionally been multiple studies
covering the effects on static magnetic fields on humans, Ueno [21], Kheifets et al. [13]. However,
no conclusive correlation between magnetic fields and human health has been established for now.
Despite this there are restrictions on the levels of acceptable magnetic fields in different regions,
such as industrial factories, proximity to power stations etc. [10]. Taking all these factors into
consideration, the mapping of induced magnetic fields falls outside the scope of this project. We
will therefore be focusing on mapping the geomagnetic field.
A key requirement when developing a navigation system based on geomagnetic field is that the
magnetic field should remain stable across large periods of time. Gozick et al. [12] show that
the magnetic field in a region remains fairly stable across a period of nearly a year. The slight
variations in data collected over time can be attributed to human error as they have mentioned.
Hence it can be reasonably assumed that barring any major changes to the region or changes made
to the structure of the building/massive renovations involving ferromagnetic metals, the magnetic
field should remain reasonably constant over time.
To get the most accurate readings to form the magnetic map, an ideal implementation would be to
take readings from each cubic unit of the given region. However, as this method is not feasible
in vast regions, this necessitates the requirement of some form of interpolation of readings taken
over some region. A proposed method to do so has been shown by Solin et al. [19] using Gaussian
Process Regression. A few methods have been proposed in this paper. One method illustrates
capturing the magnetic field readings in all 3 axes along a random path. Using Gaussian Process
regression this data is then used to predict the magnetic field along the unidentified regions.

6

Digital Twin of an Indoor Navigation System

2.3 Path Finding Algorithms

All the path finding algorithms used in this project are based on graph theory[14]. In this context a
graph refers to a set of vertices(V), which are connected to each other via edges(E). Using various
algorithms, it is possible to find a route from a source vertex(Vs) to a destination vertex(Vd), as a
list of intermediate nodes. The edges could have certain weights associated with it which signifies
the cost of using it. The following path finding algorithms are used in the implementation of this
project:

BFS Algorithm

Breadth First Search(BFS), is a graph search algorithm which searches all adjacent nodes from the
Vs, till it reaches Vd. The order in which the nodes are searched can be seen in Figure 2.

1

2

4

3

65

Figure 2: BFS exploration sequence of graph

BFS, assumes that all the edges have the same weight.

Dijkstra Algorithm

Dijkstra algorithm works similar to the BFS algorithm in that it keeps exploring all unvisited
neighbours of a vertex, till the Vd is found. It differs from BFS in the process of exploring the next
vertices. Once a vertex is reached the next vertex is chosen based on the shortest distance from
the current set of visited vertices.

A* Algorithm

A* works in a similar way to Dijkstra, but instead of simply trying to minimize the cost to the
current node, it associates a cost function which accounts for the cost to reach the destination from
the current node. This cost is calculated by means of a heuristic function. The heuristic function
is problem specific and the complexity of A* varies with the choice of heuristic. Possible examples
of heuristic functions for A* path planning are Manhattan distance, absolute distance between 2
points, and Euclidian distance, distance along a straight line.

2.4 Equipment/Tools Used

In this section the equipment and tools used to develop the individual models of the DT in this
project are explored in detail.

2.4.1 PE Equipment

This section outlines the tools used in the PE of the digital twin. The robot that was used to
design the aspects of this project is the TB3. In addition to it, the magnetometer used to read the
geomagnetic values is the RM3100. The following sections give a more detailed explanation on the
reason for the selection of these components.

7

Digital Twin of an Indoor Navigation System

DT Component Equipment/Tool Description

PE TB3 Physical Device
RM3100 Physical Sensor

VE Unity Software

Ss
MATLAB Software
Python Software
Rhapsody Software

CN ROS Kinetic Communication Platform
TCP Socket Communication Platform

Table 1: Equipment/Tools Used

TurtleBot3 WafflePi

The specific device being used for this project is the "TurtleBot3 Waffle Pi" robotTur [4]. It was
recently purchased by the Model-Driven Software Engineering Group at Eindhoven University
of Technology. It has various sensors inbuilt onto it, such as the 360◦ LIDAR and a 9-axis IMU
among others. These sensors detect the physical information from the surroundings and the data
is then used to guide the bot as needed. A digital twin of this device has already been developed
Busch [9] and it will be used in this report to develop the navigation system.

Figure 3: TurtleBot3[4]

RM3100 Geomagnetic Sensor

This requires getting magnetic field data from all 3 axis which can be used to predict the field for the
entire region. In the current TB3, there are 2 potential sources of field data. The IMU magnetometer
and the RM3100 magnetometer. For this project we select the RM3100 magnetometer. The reasons
for doing so are as follows:

• It has an adjustable output data rate which can be tuned depending on the application and
scenario.

• Has a measurement range of ±1100µT which falls well within the limits for the geomagnetic
field.

• Has a sensitivity which can measure changes upto 13nT(Geo-Magnetic field typically lies
in the range of ±50µT). However the onboard IMU(MPU9250) has an accuracy of 0.6µT.
This difference in potential accuracy lead to favoring the RM3100 over the onboard IMU
magnetometer.

2.4.2 VE Tools

The VE in this project is used to mainly visualize the movement of the bot on the PE on a virtual
platform as well as visualize other services offered by this project such as the planned path from

8

Digital Twin of an Indoor Navigation System

source to destination. In order to replicate both the motion of the bot and see the path calculated
the visualization tool used in this project is the Unity Game Engine.

2.4.3 Ss Tools

The final model developed in the DT in this project is the Ss and this section discusses the tools
used to develop the services of this project.

MATLAB

The first tool used to develop the Ss is MATLAB. This was done, because the main operating
system used during the development of this project on the remote PC(system which hosts the
Ss, DD and the VE of the DT) is Windows, whereas the communication platform between the
TB3 and the remote PC is ROS kinetic. MATLAB was the only programming tool found which
provided a link to the ROS network hosted on a remote machine(Linux Virtual Machine hosted on
the same PC), as well as provide a platform where the parts of the system can be developed.

Python

Python is the tool used to form the GP model for magnetic field extrapolation. Python was the
tool selected as it has a wide extension of comprehensive libraries for GP modelling, which helps in
optimizing the model hyperparameters for magnetic field extrapolation.

IBM Rational Rhapsody

Rhapsody is the modelling tool which uses SysML to develop the project using the MDSE approach.

2.4.4 CN Tools

A ROS network established over a WiFi connection acts as the primary CN tool for communication
between the different components of the DT. It allows for communication between Ss-PE, VE-PE
and the Ss-VE. Additionally TCP socket communication is also implemented to communicate
between services.

With a basic understanding of the concepts utilized in this project, we now have an accepted model
of the DT framework for the system. Additionally the information required to proceed to magnetic
field mapping is also discussed along with the tools used to develop the project. Using this, we
can now move onto the development of the individual models of the system, using the appropriate
methodology, as is discussed in the subsequent section.

9

Digital Twin of an Indoor Navigation System

3 Methodology

The next step in of the project is to focus on the development of the individual features offered. To
tackle the development in a systematic method, the methodology used to define the entire system
is the SYSMOD methodology. In this chapter the details of this methodology and its relevance to
this project will be explored. Additionally, the process of development of each individual aspect of
the DT, will be explored.

3.1 SYSMOD

SYSMOD [2] is a general purpose methodology which provides a good foundation to develop models
with the SysML language. Therefore it is the methodology which will be employed in this project.
Following this method yields a structured and well formed final result. It also helps in determining
the interactions and dependencies of the various components. The specific steps required in the
SYSMOD method are shown below.

• Requirement Analysis: Identify properties of the system which are needed or wanted by the
stakeholder of the project.

• System Context : It is represented by a Block Decision Diagram(BDD) which shows the
interaction between the system and external components/actors/stakeholders

• Use Cases: Use Cases help identify the different services offered by the system

• Architecture: Architecture is a BDD, which shows the interactions between the Use Cases
and the flow of data/commands between them.

• Behaviour Diagram: This shows the realization of the individual use cases as a state chart
diagram.

These are the 5 typical steps followed in the SYSMOD methodology. However, these steps do not
cover the development cycle of the project. Additionally it does not relate the requirements of the
system to the DT model implemented in this project as explained in Section 2. In order to cover
these, the SYSMOD methodology is extended. TRIZ 9 boxes is drawn to visualize the development
cycle of the project. Additionally a functional analysis of the system to relate the requirements to
the individual components of the developed DT is also performed.

3.1.1 TRIZ Analysis

Having identified the framework for the DT that will be followed, as seen in Section 2, the next
step would be to start identifying the specifics of the system and how it fits into the different
components of the DT. To do so, first the requirements of this project are identified and how it
relates to past work done. Additionally potential improvement in the future are also considered,
giving a more streamlined development cycle to the project. The tool utilized in this project to
do so is the TRIZ 9 box. Performing an analysis with the TRIZ 9 boxes helps better realize the
system. Figure 4 shows the 9 box analysis performed for the system developed in this project.

11

Digital Twin of an Indoor Navigation System

PAST PRESENT FUTURE

Sub System

Individual Room Individual Room,
TuckLab

Industrial/ Academic/ Commercial
Complex

Virtual Visualization of Magnetic
Fields. Virtual Replication of

motion of bot

Path Planning and Magnetic Field
extrapolation

LIDAR, Motor, IMU LIDAR, Motor, IMU, Magnetometer

Magnetic Signature Extraction.
Localization using visual features

Camera, Odometer, QR Scanner

System

Super System

Figure 4: TRIZ 9 Box analysis

While drawing up the 9 box diagram does not help in developing any individual component of the
DT, such as the PE, VE or the Ss, it does help put the project in the correct context and visualize
the progression that it should take during its development cycle.

3.1.2 Requirements Analysis

Deriving precise requirements before the design of the system is crucial. A requirement can be
defined as a property of a system that is either needed or wanted by a stakeholder. Coming up
with the necessary requirements in the early stages of the project will increase confidence. When
the requirements of the system are understood, the system can be demonstrated and accepted.
Customers could already agree with the project at the initial or conceptual stages.
Requirements have to be chosen carefully as they will drive the project. Every aspect should be
traceable back to the source requirement. A complete list of all the requirements that have been
considered and the requirement diagrams can be seen in Table 2.

Display Magnetic Mapping Movement Path Planning
Show Magnetic Field

Map
Mapping using Individual

Axis Models
Change Direction of

Bot
Plot Path with
A* Algorithm

Show Physical
Obstacle Map

Mapping using Joint
Axis Model Change Speed of Bot Plot Path with

Dijkstra Algorithm

Show Calculated Path Read Instantaneous Field
Values

Move Bot in Straight
Line

Plot Path with
BFS Algorithm

Stop the Bot Identify Destination
Localize the Bot
Go to Specified

Target

Table 2: Requirements Table

Here we see that the requirements of the entire system can be divided into a few broad categories
and have been listed as such. A full description of all the requirements along with their relevant
requirement diagram is elaborated in Appendix A.1.

3.1.3 TRIZ contradictions and solutions

Having defined the requirements of the system, the next step is to analyze them and identify
any contradictions which may arise between them in any given scenario. Having determined the
contradictions, we will be using the TRIZ 40 principles to find a solution. The 40 principles are
chosen here as they were created to solve ambiguities and contradictions between requirements or
if there are any overlapping requirements.

12

Digital Twin of an Indoor Navigation System

The first contradiction detected is that the Show Path Predicted requirement would be futile if no
path has been calculated. This further can be broken down into the selection of a path finding
algorithm and identifying a destination. The solution for this is to segment the path predicted
function which will work only once an algorithm and a destination have both been selected.
The second contradiction is similar to the first in that the Go To Specified Target, requirement
only makes sense when an algorithm and a destination have been selected. A similar segmentation
solution can be followed for this contradiction.
A final contradiction detected is between the Go To Specified Target requirements of the Path
Planning category and the requirements of the Movement category. Trying to control the bot
manually while having it move to its destination could lead to unfavorable results and can deviate
the bot from its target. We use the property of local quality[3] and ensure that the bot can move
automatically to its destination only when the bot is not being controlled manually.

3.1.4 System Context

After the elicitation of the requirements, the view of the system in terms of actors and the rest of
the instances which interact with our system, is clear. We are now able to construct the context
of the system, where the high level interactions of this system is depicted. The system context
diagram is created in IBM Rhapsody with a Block Definition Diagram, which is presented in
Figure 5, where the high level entities which are related to our system are shown.

bdd [Package] StructuralDiagrams [SystemContext]

System
«Block»

ComputationUnit
«Block»

UI
«Block»

Actuators
«Block»

Sensors
«Block»

Memory
«Block»

Environment
«Block»

Communication
«Block»

User
«Block»

SystemContext

Page 1 of 1

Figure 5: System Context of DT

As can be seen from the system context we have various different components each working in
tandem to perform all the tasks of the system. The Actuators represent the wheels/motors of
the TB3, which cause it to move. The UI has various different aspects. It includes the display
unit of the VE, the display aspects of the Computation Unit which allow for the path display and
various other aspects which come out of calculations and a GUI for the controller which allows
the User to provide commands and manual control over the system. The Communication block
is a rather important block as it allows for the inter-operation of the different aspects of this
project as well as helps relay commands and data to the different software being used over WiFi.
Memory accounts for the aspect which helps store the information of the DD, which is read from

13

Digital Twin of an Indoor Navigation System

Sensors and generated from the Computation Unit. The final aspect of the system context is the
Environment which provides the source for all information used to model not just the physical
environment but the magnetic field information as well.

3.1.5 Use Cases

Use cases have been created based on the requirements which were going to be implemented.
These Use Cases provide a description which identifies the services the system provides for the
stakeholders. The System Use Cases give an outside-in view on the system functions from the
perspective of the system actors. This enables the system development to build a system that
satisfies the needs of the system actors. A well defined Use Case should address certain aspects
such as a short description of its goal, preconditions, post conditions, error situations, the trigger
that starts the Use Case, associated system actors, the standard process and an alternative process
(if applicable). All use cases are depicted in their respective diagrams in Appendix A.2

Name PathCalcUC: GoToDestination
Short Description The bot is made to go to targeted destination
Precondition Path is calculated from current location to destination
Post Condition The bot is ready for new target or manual motion control
Error Situation No path planned or manual control
System State in State
of error Error message displayed

Actors User, TB3
Trigger Go To Destination Command
Standard Process Enable movement control to destination
Alternative Process NA

Table 3: Use Case Description: Go To Destination

3.1.6 Architecture of the system

The Controller system, consists of separate utilities and functions, which serve a specific purpose
for the smooth functioning of the system as a whole. This abstraction of a system to its respective
subsystems is represented, using a Block Definition Diagram, and the composition association of
the subsystems with the system as shown in Figure 6. The subsystems are a directed composition
of the main (high level) system, because they structure it as parts, exactly like the parts of an
engine.
In the case of this system, the subsystems are the realized Use Cases.

3.1.7 Behaviour diagrams

The functionalities of the system are conceived through the Use Cases and realized with behavioural
diagrams. Behavioural diagrams execute the scenarios of a specific Use Case in a structured way.
In certain cases, a behavioural diagram can realize more than one Use Case, if their scenarios are
short and can be combined. Behavioural diagrams can be of different types, for example state
machine diagrams, sequence diagrams, activity diagrams, etc. For this project, the most effective
solution is the state machine diagram implementation, because the system changes states using
event messages, or guards. An example of the state diagram is shown in Figure 7. The complete
list of the behavioural diagrams of this project is shown in Appendix A.3

3.1.8 Functional Analysis

Having identified a brief overview of the system, we now move to defining the conceptual model
of the digital twin using the TRIZ framework as discussed by Wu et al. [23]. The first step in

14

Digital Twin of an Indoor Navigation System

bdd [Package] ContrPkg [Controller_Architecture]

Controller
«Block»

Values

Operations

Display_UC
«Block»

Values

DispMessage:char*="Display...

Go:int

ShowMap:int

tempMap:int

Operations

DisplayMap():int

evDisplayMap()

Go:int

ShowMap:int

1
itsDisplay_UC

Go:int

ShowMap:int

BotMov_UC
«Block»

Values

MovDir:int=1

MoveMsg:char*="Stationary"

Speed:int=0

StateBot:int=0
Operations

BotDir():int

BotMove():bool

evMove()

evSetDir()

evSetSpeed()

MoveSpeed():int

StateBot:int

MovDir:int

Speed:int

1
itsBotMov_UC

StateBot:int

MovDir:int

Speed:int

PathCalc_UC
«Block»

Values

Destination:int=0

Go:int=0

PathAlgo:int=0

PathMsg:char*="Hello"

Operations

evGoToDest()

evPathPlan()

evSetDest()

GoToDest():void

MoveDestAlgo():int

Go:int

StateBot:int

PathAlgo:int

Destination:int

1itsPathCalc_UC Go:int

StateBot:int

PathAlgo:int

Destination:int

MagCalc_UC
«Block»

Values

GetMagVal:int=0

MagCalcMethod:int=0

MagMsg:char

Operations

CurrentMagVal():int

evCheckMagVal()

evSetMagExtrpMethod()

MagValExtrpMethod():int

MagCalcMethod:int

GetMagVal:int

1
itsMagCalc_UC

MagCalcMethod:int

GetMagVal:int

SendToUnity
«Block»

Values

Operations

Go:int

ShowMap:int

StateBot:int MagCalcMethod:int

GetMagVal:int

PathAlgo:int

Destination:int

MovDir:int

Speed:int

1
itsSendToUnity

Go:int

ShowMap:int

StateBot:int MagCalcMethod:int

GetMagVal:int

PathAlgo:int

Destination:int

MovDir:int

Speed:int

Page 1 of 1

Figure 6: Architecture of the System

Figure 7: Path Planning Behaviour Diagram

doing so is to identify the functions that are expected to be performed by the digital twin. For this
project the basic functions expected to be performed can be broadly categorized as data collection,
mapping and navigation. These functions can be further decomposed into further smaller functions.
The complete function analysis can be seen in Figure 8.
The functions above can now be categorized in the concerned components of the DT. The data
collection and its sub-components are all performed on the physical environment and therefore
become a component of the PE. Mapping the environment, and especially formulating the magnetic
map, requires computation post data collection and would have results which concern the user and
other stakeholders involved in the project. It therefore is a part of the Ss. Finally the navigation
function, while requiring computation and control of its own, has a sub-function in it which requires
changes in the PE. We can therefore consider that the sub-functions of the navigation function
barring the direct to destination, which belongs to the PE and the VE(as the VE of the TB3 needs
to replicate the movements of the PE), all are a part of the Ss. The final component which is the
system controller would be a part of the Ss.
The next step is identifying the various components involved in the PE and analysing their functions.
In addition to this it is determined if enough information is available about the operation of the

15

Digital Twin of an Indoor Navigation System

System

Data Collection Mapping Navigation

Physical
Obstacle Map

Magnetic Map
Generation

Individual Axis Scalar Potential
Regression

Localization Path Planning Direction to
destination

Dijkstra A*

LDS Data
Collection

RM3100 Data
Collection

IMU Data
Collection

LIDAR
Occupancy map

Location
Labelling

Random Data
Collection

Gaussian
Regression

Extrapolation

LIDAR
Localization BFS

LIDAR
IMU

Magnetometer

Turtlebot Navigation
Instructions

Magnetic MapDestination

System
Controller

Motion Control Destination
Selection

Algorithm
Selection

Display
Selection

Navigation
Algorithm

Magnetic Field
Extrapolation

Figure 8: Function analysis of the system

component or if the entire scope of the device is currently unknown. The results of this analysis
can be seen in Table 4

Component Function Description
Battery Power Supply
IMU Sensor Information

Accelerometer Acceleration Information
Gyroscope Orientation Information

Magnetometer Magnetic Field Information
RM3100 Magnetic Field Information
Motors Motion of robot
LIDAR Obstacle Detection, Position
Obstacles Information Input
Floor Plan Information Input
Geo-Magnetic Field Information Input
Raspberry Pi Computation, information input
OpenCR 1.0 Computation, information input
TurtleBot Remote Steering Input
Wifi Connection

Table 4: PE Component Analysis

3.1.9 Conceptual Models of Individual Components

With the individual components of the PE, the next step is to visualize the interactions between the
components. Doing so presents us with a conceptual model elaborating the connections between
the components of the PE and a first view of how the overall architecture of the DT will look like.
This is shown in Figure 9
In the conceptual model of the PE we can see not only the physical components and their interactions
but also what the purpose of the interactions are. From the figure we should also note the WiFi
block. It acts as the medium to host all the inter component communication, i.e. the CN dimension
of the DT.
This conceptual model can now be elaborated upon by adding the required features of the VE as
shown in Figure 10.

16

Digital Twin of an Indoor Navigation System

RM3100
Magnetometer

IMU

LIDAR

OpenCR1.0

Motor1
Battery

Raspberry Pi

Motor2

Power

Steering and Throttle

Steering and Throttle

Information Input

Information Input

Information Input

Information Input

Information Input

Information Input

Information Input

Turtlebot Remote
Controller

Information Input

PowerMovement
Command

Information
Input

Floor Plan

Physical
Obstacles

Geo-Magnetic
Field

 Wifi

Figure 9: Conceptual Model of PE

RM3100
Magnetometer

IMU

LIDAR

OpenCR1.0

Motor1
Battery

Raspberry Pi

Motor2

Power

Steering and Throttle

Steering and Throttle

Information Input

Information Input

Information Input

Information Input

Information Input

Information Input

Information Input

Turtlebot Remote
Controller

Information Input

PowerMovement
Command

Information
Input

Floor Plan

Physical
Obstacles

Geo-Magnetic
Field

Turtlebot Location

 Wifi

Magnetic Map

Physical Map

Virtual Entity Addition
Information Input

Information Input

Figure 10: Conceptual Model of VE

The VE conceptual model shows the source of information for the various aspects of the virtual
replication. As noted in the figure the source of the physical map in the VE is the floor plan of
the concerned region. This simply means that the region has to be replicated into the virtual
replication manually beforehand. At present there is no provision wherein live information from
the physical sensors can be modelled live onto the VE. In addition to this the source of information
for the magnetic map is presently not shown, however it will be discussed in a later figure.
To the model containing both the PE and VE we now add the features of the DD as shown in
Figure 11
While not providing any additional interaction information other than the source of the various
information at this time, the DD conceptual model provides a platform on which the components
of the Ss can be added. Doing so provides us with a complete picture of the entire DT and can be
seen in Figure 12
From the figure we can now see what the entire DT should look like.

Having discussed the methodology used to define the system and models of the DT, the next step
is to develop these individual models of the DT. The following sections cover the development of

17

Digital Twin of an Indoor Navigation System

RM3100
Magnetometer

IMU

LIDAR

OpenCR1.0

Motor1
Battery

Raspberry Pi

Motor2

Power

Steering and Throttle

Steering and Throttle

Information Input

Information Input

Information Input

Information Input

Information Input

Information Input

Information Input

Turtlebot Remote
Controller

Information Input

PowerMovement
Command

Information
Input

Floor Plan

Physical
Obstacles

Geo-Magnetic
Field

Turtlebot Location

 Wifi

Magnetic Map

Physical Map

Virtual Entity Addition
Information Input

Information Input

Magnetic Field Data

LDS Occupancy Map

Digital Data Addition

Information
Input

Information
Input

TurtleBot Location

Information
Input

Figure 11: Conceptual Model of DD

RM3100
Magnetometer

IMU

LIDAR

OpenCR1.0

Motor1
Battery

Raspberry Pi

Motor2

Power

Steering and Throttle

Steering and Throttle

Information Input

Information Input

Information Input

Information Input

Information Input

Information Input

Information Input

Turtlebot Remote
Controller

Information Input

PowerMovement
Command

Information
Input

Floor Plan

Physical
Obstacles

Geo-Magnetic
Field

Turtlebot Location

 Wifi

Magnetic Map

Physical Map

Virtual Entity Addition
Information Input

Information Input

Magnetic Field Data

LDS Occupancy Map

Digital Data Addition

Information
Input

Information
Input

TurtleBot Location

Information
Input

Path Planning

Magnetic Field Map

Information Input
Information Input

Information Input

Information
Input

Movement Command

Information
Input

Information
Input

Services Addition

Information Input

System Controller
Movement Command

Information Input

Figure 12: Conceptual Model of Ss

the individual aspects of the DT.

3.2 VE Component

The first component being developed is the VE model. The basis for this is the project developed
by Busch [9]. The aforementioned model was developed further by adding a new environment
to it(the development environment for the project). Additionally a service was also added which
displays the path calculated onto the VE replica of the physical environment. Doing so helps
visualize the predicted path and how it would be around any physical obstacles.

3.2.1 Forming the virtual replication of the indoor region

Having defined the system controller, the next step would be to develop the various aspects of the
services offered in this project. Among them the first one tackled is creating a virtual replica of the
concerned indoor region. The virtual replica is developed on Unity. It was chosen due to ease of
use, as well as pre-existing solutions for connections to a ROS network. An existing ROS1 bridge,
which allows for data from the TB3 to be directly read into the VE is used as the CN_PV and
CN_DD links of the DT
The first environment which was chosen to be worked on was my residence at the time of writing.
shows the 1:1 virtual model which was made.

18

Digital Twin of an Indoor Navigation System

Figure 13: Floor Plan Replication on VE

The model created was a 1:1 model to accurately represent the movement of the TB3 in the physical
world accurately in the virtual environment. One requirement of for the virtual model is that the
origin of this model, i.e. (0,0,0) be at the point where the TB3 origin lies. This is done because
the point where the TB3, is positioned in Figure 13 is the location where it was positioned initially
when the map using the LIDAR was formed.

3.2.2 Displaying the planned path

One of the requirements of the system as mentioned in Section 3.1.2, is the display of the predicted
path based on the path calculation algorithm implemented. This path is displayed in the VE,
highlighting the path to be taken by the TB3. This is shown visually in Section 4.2.1.
The reason for the implementation of this is to add to the visual asthetic of the project at this point.
However, this implementation can have far reaching implementations in the future, especially if
AR/VR is introduced into a future implementation of the project.

3.3 PE Component
The next development component is working on the PE model. This step works on integrating the
external geomagnetic sensor onto the TB3.

3.3.1 Integrating RM3100 with the TurtleBot

In a previous project by Busch [9], the RM3100 sensor was integrated to the TB3, via means of a
Arduino Pro Mini data proxy. However, doing so limited the data rate of the sensor to around 5Hz.
In this project, the magnetometer was integrated directly into the RaspberryPi of the TurtleBot.
Doing so allows for a much higher data rate, thereby providing more data and helping smooth
out any disturbances caused by noisy readings. An additional reason why the Arduino was done
away with was that it had a magnetic signature of its own and provided an unnecessary source of
magnetic field disturbance.

3.3.1.1 Calibrating the RM3100

Out of the box the RM3100 provides magnetic field values, however given the various cycle counts
and output rates, this data can get distorted. This requires calibrating the data so as to get
accurate and meaningful data from the sensor.

19

Digital Twin of an Indoor Navigation System

To calibrate the sensor, readings from it needed to be taken in a region with known magnetic
field data. This was achieved in the TNO facility at Den Haag. The setup is shown in Figure 15.
Figure 14 shows the orientation in which the magnetometer was calibrated.

x

y

z

Figure 14: Magnetometer Orientation

To get the accurate known readings of the field a previously calibrated Mag658 magnetometer [1]
was used which can be seen in Figure 15b. The positioning of the Mag658 was kept such that
it is as close to the position of the rm3100 on-board magnetometer. This was done to get the
most accurate readings as possible. The positioning of the rm3100 itself was kept such that it is
as far away as possible from potential sources of magnetic disturbance such as the motors, and
the on-board SBC, the RaspberryPi and the OpenCR1.0. In addition to this the work done by
Busch [9] further confirms that the positioning of the magnetometer at said position causes it to
experience the least interference.
In Figure 15 we can see that the entire calibration setup is placed in a cage of sorts. This cage has
wires running along its periphery on all 3 of its dimensions. These coils can be used to control
the magnetic field inside the cage, and provide us with a known magnetic field environment using
which we can calibrate the sensor. In this setup readings were taken when custom fields were setup
using the following scenarios:

• No external field

• ±0.3A and ±0.6A in the coil corresponding to a disturbance only in the x-axis.

• ±0.3A and ±0.6A in the coil corresponding to a disturbance only in the y-axis.

• ±0.3A and ±0.6A in the coil corresponding to a disturbance only in the z-axis.

Readings were take for the above scenarios to cover the entire range of potential geo-magnetic
field of ±50µT , along all 3 axis. Now with both the raw data from the rm3100 and the expected
values from the Mag658, a linear relation can be found such that the data from the rm3100 closely
resembles that from the Mag658.

(a) Calibration orientation (b) Known Sensor vs RM3100

Figure 15: Calibration of Magnetometer

As can be seen from Figure 15, the sensor is calibrated while it is placed on board the TB3.
This was done to primarily account for the magnetic field disturbance caused by the TB3 itself.
Figure 16b shows the magnetic disturbance that the TB3 causes in the 3 magnetic fields whereas

20

Digital Twin of an Indoor Navigation System

the ambient undisturbed field can be seen in Figure 16a. Looking at the 2 figures, we can clearly
see that the TurtleBot even in a powered down state has a significant magnetic signature in all 3
axis. Should an externally calibrated sensor have been placed on the TB3, the field values it would
have read, would be corrupted by the presence of the TB3. However having calibrated the sensor
while it is atop the TB3, it ensures that the values now read are the actual field values.

(a) Ambient Field Contour

(b) TB3 Field Contour

Figure 16: Contour of Magnetic Field

Unlike the Arduino as explained above, the TB3, itself could not be done away with and as a result
it was determined that the calibration of the magnetometer would be done in a manner such that
the data read from it would account for any disturbances caused by the TB3.

3.4 Ss Component
The final DT component developed as part of the DT, is the Ss. Various features are developed as
a part of the Ss model of the DT, such as physical and magnetic field mapping, path planning and
movement to destination. They are discussed in detail in the following sections.

21

Digital Twin of an Indoor Navigation System

3.4.1 Physical Map

As mentioned, the physical map defines the physical aspects of the indoor region. Forming this
map requires identifying the locations of all physical obstacles. This is done with the use of the
on-board LIDAR. The exact steps taken to form the map are the same as listed on the TurtleBot
website Tur [4]. An example map generated using the listed procedure can be seen in.
The map generated using this procedure is of the format .map and is accessed using the corresponding
.yaml file. This map is transferred from the host machine(virtual machine hosting the ROS network),
to the corresponding service provider software, Matlab. It is read in Matlab in the form of a binary
occupancy grid of size (n,m), where n denotes the no of rows of the grid and m denotes the no of
columns of the grid. A binary occupancy grid of a region defines a region in small boxes of known
dimensions. Each cell has a value signifying if the cell is either occupied or empty. A cell in the
occupancy grid denotes a 5x5 cm2 area in the physical environment.
This binary occupancy grid, is then used to generate an adjacency matrix of size (k, k), where
k = n×m. Each row and column denotes a single cell in the occupancy grid. The value of each
cell in the adjacency matrix is determined by Equation (1)

AMij =

{
1 if Equation (2) is true
0 otherwise

(1)

OGxi,yi
= free & OGxj ,yj

= free &((
(xi == xj) & (yi == yj ± 1)

)
||
(
(yi == yj) & (xi == xj ± 1)

)) (2)

In the above equation AMij represents cell (i, j) of the adjacency matrix and OGxi,yi
represents

cell ((i/n), (i%n)) of the occupancy grid. In Equation (2), the portion of xi == xj ... xi == xj
± 1, considers only adjacent nodes to be connected to each other. It excludes nodes diagonally
adjacent as in this project we restrict ourselves to straight line motion of the TB3.
The generated adjacency grid is then used to make an undirected, unweighted graph. The edges
of the graph are all unweighted or have equal weight signifying that they each have the same
significance. The generated graph is then used for path planning as explained further in Section 3.4.3

3.4.2 Magnetic Field Mapping

Having mapped the physical region we can now move onto mapping the magnetic field. The
procedure followed to map the magnetic field is the one which has been discussed in detail by Solin
et al. [19], Wahlstrom et al. [22]. The process followed will be discussed in detail in the following
sections.

3.4.2.1 Data Collection

Before trying to model the magnetic fields, a set of training data needs to be collected. The data
required for the magnetic field mapping is the x, y and z field values and the positional data of the
magnetometer. In order to do this, the TB3 is controlled manually and made to follow a random
path in the indoor environment along which the magnetic field readings from the magnetometer
are read and stored. This data will now be used to model the Gaussian model which will then be
used to predict the magnetic field for the entire region. As seen in Section 3.3.1, the orientation of
a magnetometer is crucial to taking meaningfully consistent readings of the magnetic field data.
However, the TB3 has 2 degrees of freedom in regards to its motion. Movement in the forward
direction and rotating around its axis. This can lead to shifting the magnetometer from the
orientation in which it was calibrated. This changes the X-Y axis orientation of the magnetometer
and can therefore lead to inconsistent readings. However, since there is no change in the orientation
of the Z-axis, its readings are always consistent.

22

Digital Twin of an Indoor Navigation System

This issue is tackled by reading magnetic field values in the X and Y axis only when the TB3 faces
a fixed orientation, i.e. when the orientation of the TB3 is 0◦

Having considered the collection of the magnetic field values, we now consider the collection
of the positional values of the magnetometer. The position of the magnetometer onboard the
TB3, is shown in Figure 17. The positional data, (x,y) coordinates at a time of the TB3 can be
obtained from the localization method followed in this project. This is explained in further detail
in Section 3.4.3. However the positional data received is of the base link point of the TB3 as seen in
Figure 17. This therefore leads to the requirement of converting the positional data corresponding
to the base link of the TB3, to the position of the magnetometer. In Figure 17a helps visualize the
position of the magnetometer, (pb,qb), with respect to the base link position, (pa,qa). Equation (3)
shows the conversion of the positional data from base link to magnetometer location.

(pb, qb) =

(pa − 0.18, qa), if θ = 0.

(pa + 0.18, qa), else if θ = 180.

(pa, qa − 0.18), else if θ = 90.

(pa, qa + 0.18), else if θ = 90.

Solve Equations (4) to (6), else.

(3)

√
(pb − pa)2 + (qb − qa)2 = 0.18 (4)

(
qb − qa
pb − pa

)
= tan(θ) (5)

(
(pb < pa) ∧ (cos(θ) > 0)

)
∨
(
(pa < pb) ∧ (cos(θ) < 0)

)
(6)

Equation (4) accounts for the x axis offset between (pa,qa) and (pb,qb) as seen in Equation (4).
Equation (5) calculates the position upon rotation of the TB3.Using Equation (4), and Equation (5),
we get 2 point along the x axis of the TB3. However, a single point needs to be selected from
the two. This selection can be made using Equation (6), which determines which of the 2 points
generated by the previous 2 equations is to be finally selected.
In Equations (3) and (4), the 0.18 indicates the 18cm offset between the base link point and the
magnetometer position.

18cm

(a) Magnetometer Position Translation

Base
PointMagnetometer

Location

(b) Magnetometer Position on TB3

Figure 17: Positional Value of magnetometer

3.4.2.2 Magnetic Field Extrapolation

Having collected the training data for modelling the Gaussian process, we now move on to actually
building the model. A Gaussian model in general follows the principle outlined in Equation (8).
From the equation we see that the GP posterior yi can be modelled as a result of a GP prior for
value xi and some noise value εi.

f(x) ∼ GP(0, κ(x, x′)) (7)

23

Digital Twin of an Indoor Navigation System

yi = f(xi) + εi (8)

The observed noise is also a Gaussian model ∼ N (0, σ2
noise). Given that both the prior and the

noise are Gaussian it stands to reason that the posterior yi is also Gaussian.
A key aspect of the GP prior is the covariance matrix which is signified by κ(x, x′) in Equation (7).
While there are various covariance functions available, after looking at the trend that the magnetic
field training data takes, it was concluded that the squared exponential covariance function is what
will be followed in the following models. The equation for the function is shown in Equation (9).

κSE(x, x
′) = σ2

SE exp

(
−‖x− x

′‖2

2`2SE

)
(9)

Here the values of σ2
SE and l2SE are called the magnitude and length scale hyperparameters

respectively. The values for these are learned from training the model on the data.

fd(x) ∼ GP(0, κconst(x, x′) + κSE(x, x
′)) (10)

The independent predictor variables(xi in Equation (8)) are the spatial coordinates at which the
field values are taken. After the generation of the model the purpose of this section is to predict
the magnetic field(y) for previously unknown locations, such that (y : R2 → R3). R2 denotes the
spatial coordinates(xi, yi) in a known environment.
With this basic knowledge on GP and the concerned covariance functions we move onto the
formation of the models. 2 different processes are followed. They are as follows.

Individual Axis Model

The first method followed considers the field values for each axis separately. The field for each axis
is modelled as a prior separately. However, the covariance function listed in Equation (7) assumes
that the mean of the prior is 0. However, as the magnetic field is a physical field which does not
have a zero mean, this assumption becomes invalidated. Therefore as mentioned in Solin et al. [19],
the covariance for the GP prior is adjusted as shown in Equation (11)

fd(x) ∼ GP(0, κconst(x, x′) + κSE(x, x
′)) , d ε {X,Y, Z} (11)

where κconst is a constant value kernel which can be expressed as σ2
const.

This GP prior for each individual axis is now used to predict the magnetic field for the respective
axis at the

yd,i = fd(xi) + εi,d (12)

Here εi,d denotes the Gaussian noise corrupting the output data with a noise variance of σ2
noise.

Each axis model has 4 hyperparameters:

• σSE(magnitude scale for SE kernel)

• `SE(length scale for SE kernel)

• σnoise(noise variance)

• σconst(variance for const kernel)

According to what was reported by Solin et al. [19], allowing the model to tune these hyperpa-
rameters can cause it to be stuck at local minima points. However, despite this when experiments
were run to optimize the parameters by maximizing the log marginal likelohood of the functions,
the results seemed favorable enough to be accepted. This will be further elaborated in Section 4.

24

Digital Twin of an Indoor Navigation System

Joint Model

The magnetic field was modelled using the method described above. However considering the
observations of Solin et al. [19], about individual model hyperparameters converging at local minima
another model was also considered. This process was also laid out in the same report. It allows for
shared hyperparameter tuning of the 3 axis fields. To do so, a single model was constructed with
the same kernel as the previous section, however for training instead of having a single field as the
predictor variable all 3 fields are considered the predictor variables for the same model. The result
for this is seen in Section 4.

3.4.3 Planning the path

With the completion of the mapping part of this project the path planning and movement to
destination is developed. All the path planning algorithms used in this project are born out of
graph theory and the graph generated in 3.4.1 is used. The section focuses of forming the required
path and following it to reach the destination.

3.4.3.1 Localization

A pre-requisite to planning a path is knowledge of the current location/start point of the path. In
addition to finding the start position for path planning the localization of the TB3, plays a key role
in the magnetic field mapping as was explained in paragraph 3.4.2.2. This is because the model
developed relates the magnetic field location to the X-Y coordinate of a region. It is therefore
extremely important that we have the accurate values of the X-Y coordinates as they are directly
related to the magnetic field values.
There are 2 potential methods considered for localizing the TB3.

• Odometry(odom): Localizing by integrating the data from the wheel encoder over time.
This data is calculated by the TB3 itself and is readily available on the /odom ROS topic.

• Adaptive Monte Carlo Localization(amcl): Localizing using the scan data from the
LIDAR. This data is then used in the turtlebot navigation node as shown in Tur [5], giving
the current X-Y coordinates of the bot.

The odom method returns the current location of the TB3, by keeping track of the wheel rotations
and accumulating it over time. This method is highly accurate as can be seen in Figure 18. As a
consequence of this the location calculated using this method is independent of any pre-formed
map. Thus making it immune to any localization errors which may occur when the localization
algorithm is run in an environment which may have slight changes compared to the previous map,
such as a new table/chair being introduced which was not accounted for in the map which was
previously formed. Additionally it was observed that the data rate for this localization method
given the current sensors aboard the TB3, is 20 Hz. After testing experimentally it was observed
that this data rate was updating the location at a rate sufficient for not only directing the bot to
its final destination(as will be explained in Section 3.4.4), but also was sufficiently higher than
the data rate of the magnetic field values read. Having location values at a higher rate than the
magnetic field values ensures that when the magnetic field data is available it is represented by
the accurate location values, thereby avoiding any data spillage/inaccuracies. A concern when
considering this method is that, there would be errors arising and accumulating over time, should
there be any inaccuracies in the position calculation, which would compound over time. This would
give incorrect values of the position as more time passed. To verify this a test was performed
at 3 different speeds of the TB3. Different speeds(linear:Lin and angular:Ang) were tested, to
ensure that the localization algorithm would return accurate locations, even when the location was
updated at a faster rate. The results of this test can be seen in Figure 18. In the graph, the y axis
represents the squared error between the reported location from the odom topic and the actual
expected location. It is calculated with Equation (13). All reported speeds are in m/s

25

Digital Twin of an Indoor Navigation System

score =
√
(xa − xr)2 + (ya − yr)2 (13)

0 200 400 600 800
Time (in s)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Err
or (

in m
)

Lin=0.03, Ang=0.01
Lin=0.05, Ang=0.02
Lin=0.08, Ang=0.02

Figure 18: Absolute Error vs Time

Here (xa,ya) represents the actual position and (xr,yr) is the reported location position from the
odom topic. From the graph we can see, that at varying speeds upto 0.08m/s the error is recorded
position never exceeds 0.02m. This error itself could be attributed to slight discrepancies which
were made during recording of readings, because there are instances when the error does go to 0.
This further supports that at the instances when there were errors the readings were taken when
the bot was at a slight offset from the expected location. Hence, from the results presented in the
graph we can conclude that the results of using this localization method are accurate.
However, a limitation of using this localization method is that the origin gets reset to the point
where the TB3 is turned on every time the bot is rebooted.
The amcl method performs the localization by reading the data from the LIDAR scans, and relating
it to a previously formed map using the LIDAR. The accuracy of this method is dependant on the
relevance of the previously formed map to the present time. This method of localization would
be susceptible to any slight changes which may have been made in the map. In addition to this
the data rate of updating the location for this method is dependant on the rate at which new
information is read from the LIDAR. In other words it is dependant on the speed of the bot. This
can be seen in Figure 19.

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
TurtleBot Speed (in m/s)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

am
cl d

ata
 rat

e (i
n H

z)

Figure 19: amcl Data Rate vs TB3 speed

The data rate for localization is important in the magnetic field data sampling explained in
paragraph 3.4.2.1, to ensure that magnetic field values are collected along every 0.01m. During the
collection of the data the speed of the bot is kept relatively low, 0.05m/s, so as to record maximum
data points for training the Gaussian models. At 0.05m/s the observed data rate of the amcl
method is 0.13Hz, which equates to a new data point approximately every 7s. In this duration
the bot would move forward by 0.35m and we do not collect any data over this distance. This
limits the amount of training data points available, thereby affecting the accuracy of the trained
Gaussian models. Additionally during the movement of the bot to its target destination, as will be
elaborated in Section 3.4.4, the speed of the bot is kept at 0.1m/s. At this speed the observed data
rate of the amcl method is approximately 0.24Hz. This results in a new data point every 4s. This

26

Digital Twin of an Indoor Navigation System

causes the bot to move a distance of .4m before a new localization result is observed which could
cause the bot to overshoot its destination, which is not an acceptable outcome.
Considering the assessment done of both potential localization algorithms, it was concluded that
though both algorithms give an accurate value for the localization, the amcl, is limited by its data
rate. This limitation is a result computing the location from the amcl algorithm and additionally
it is also limited by the data rate of the onboard LIDAR, which is 5Hz. Considering all the
outlined parameters the odom, method was selected for localization. This was primarily due to
the advantage of higher data rate it has over the amcl method without compromising accuracy.
Even though doing so, presents us with the limitation that every time the bot has to be booted
up at the same initial position, it is a compromise that offsets the errors which may occur by low
location update rates.

3.4.3.2 Destination Selection

Another pre-requisite of implementing path planning is determining the destination node for the
algorithm. The destination node is determined based on the coordinates of the destination. While
the destination can be set to any coordinate which has been previously mapped a general practice
throughout the rest of the project is to select destination coordinates based on pre-determined
landmarks of the region.
In addition to the pre-determined landmarks, a system has been implemented such that the system
is able to detect the region of largest magnetic field intensity, and can use that point as its target
destination.
The coordinates as previously mentioned inSection 3.4.1 are based on the previously mapped region.
Having a destination coordinate which was not previously mapped by the bot is not supported by
this project.

3.4.3.3 Path Planning Algorithms

In this project the path planning service is offered using Matlab as the computation unit. Doing so
allows us to take advantage of pre-existing solutions in Matlab to calculate a path from one node
to another in a graph. The implementations of the concerned algorithms are discussed below. For
this project we restrict ourselves to shortest path algorithms.

BFS
BFS is one of the most basic shortest path finding algorithms. In order to implement the BFS
shortest path finding algorithm, the in-built MATLAB function shortestpath(), is used.
To ensure that BFS algorithm is used for path calculation the Method parameter of the function is
set to unweighted. Doing this makes the function return a path from the start node to destination
node which was calculated using the BFS algorithm.

Dijkstra
Dijkstra’s algorithm is one of the most popular path finding algorithms in graph theory. It has
the advantage of being able to find a path using a weighted graph where each edge has a penalty
value. However, for this project this does not matter as all edges in our graph have the same
weight/penalty.
Similar to the BFS algorithm an in-built Matlab function is used to find a path using Dijkstra’s
algorithm on a graph. It is done using the same shortestpath function.
To ensure that Dijkstra algorithm is used for path calculation the Method parameter of the function
is set to positive. Doing this makes the function return a path from the start node to destination
node which was calculated using the Dijkstra algorithm.

A*
A* is the last algorithm considered for path planning. It works in a similar manner as Dijkstra’s
algorithm, but has an added feature of using a heuristic function in addition to the distance to

27

Digital Twin of an Indoor Navigation System

the destination to calculate the path from one node to another. 2 different heuristic functions are
considered:

• Euclidian Distance: the length of a straight line from source to destination

• Manhattan Distance: the sum of the individual distance between the source and destination
along both axis(as project considers a 2D space)

To the best of knowledge there are no pre-existing functions in Matlab which provide A* path
finding in a graph. To that extent a custom code was written for finding the path using A*.
This code incorporates a selection parameter which allows it to switch between the 2 considered
heuristics. The full code is provided in Appendix B.3.

3.4.4 Move to destination

Having determined the path to the destination from the current location, the next step is to direct
the TB3 to the destination along the determined path. Given that the path only consists of straight
lines1, it was determined that the robot only ever moves forward. In the case of a route along the
other axis the TB3 is made to rotate along its central axis till it faces the direction it needs to
move in. Figure 20 shows the steps taken when directing the TB3 to its target destination.
The path which is returned by the path planning algorithm described above provides a constant
list of adjacent nodes from source to destination. However implementing the movement over this
constant adjacent nodes, led to issues of jerking like behaviour of the bot. This is because of the
constant start and stop which happens due to the next node in the path being the one adjacent to
the current node. This led to a disturbance in the orientation of the bot and ultimately caused
to bot to drift significantly away from its destination. To overcome this, the path calculated was
filtered down to identify the edges of the path. Doing so ensured that the local target node would
not always be the adjacent node(unless in the case of a quick s-bend). This prevented the constant
movement and stop of the bot and mitigated the problem of jerking and drifting of the bot to a
large extent.

3.4.4.1 Obstacle Detection

During the motion of the TB3 to its destination the calculated path refers to a map made at a
previous time. However, from the time the map was made, there could be new obstructions or
obstacles along the way. As a result of this obstacle detection was added to the code. Obstacle
detection in this case uses the data from the LIDAR. The data from the LIDAR comes in as
an array of length 360, where each index of the array contains a float value which indicates the
distance to the closest obstacle at that angle from the central lateral axis of the TB3, in a clockwise
direction.
Given that the motion of the TB3 is restricted to straight line movement in the forward direction,
as explained earlier, we need to focus on the data concerning only the front facing side of the TB3.
Figure 21a shows the range of values which are considered when searching for obstacles. For this
project we assume that the TB3, will stop in its motion if there is an object in front of it at a
distance of ≤ 0.5m. Considering this distance and that the width of the turtlebot is approximately
0.3m, we need to search a distance of at least 0.3 m parallel to the TB3, for obstacles, which could
interfere with the bot’s motion. For the sake of safety we consider a buffer of 0.025m on each
side as well, and therefore we scan a distance of 0.35m, 0.5m in front of the TB3. Considering
these values and using the equation Equation (14), where S = 0.35m and R = 0.5m, we get that
the angle, θ is approximately 0.69 rad, or 40◦. As a result of this, we look at data for 20◦ from
either side of the central axis of the TB3. A continuous scan of the array points returned from
the LIDAR data at the aforementioned points tells us the distance to the closest obstacle in the

1This is because of the choices made during the graph forming where only non-diagonal adjacent matrices were
considered connected

28

Digital Twin of an Indoor Navigation System

Localize the Bot

Plan the Path

Target Straight Ahead Rotate TB3
Accordingly

Present Location ==
Target Destination

No

Yes

Identify next
Target Node

No

Move Straight
Ahead

Yes

Present Location ==
Target Node

No

Yes

Obstacle Ahead Stop TB3
Yes

No

Stop

Figure 20: Flow Chart for TB3 Motion Control

defined range, and should a value on any of those points be less than 0.5, the motion of the TB3 is
halted until all the values are > 0.5 again.

S = R× θ (14)

40

0.5 m

0.35 m

(a) TurtleBot Cone of View

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
Distance to obstacle (in m)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Sto
pp

ing
 di

sta
nc

e (
in

m)

(b) Stopping Distance

Figure 21: TB3 Obstacle Detection

A test was performed to check the braking distance of the TB3. This test was necessary to ensure
that the distance selected of 0.5m was sufficient and that there would be no collisions. The result of
the test performed are shown in Figure 21b2. As can be seen from the results, that the TB3 stops
well within a safe distance from an obstacle at any distance. However, despite this the scanning
distance is still kept at 0.5m to ensure the safety of the TB3 and any potential obstacles, human or

2The speed of the turtlebot in all these cases was kept at 0.1 m/s(approximately 33% of the top speed of the bot)

29

Digital Twin of an Indoor Navigation System

otherwise. The data from the graph about distance less than 0.5m tells us that should any obstacle
come suddenly in front of the bot, it should still be able to stop within a reasonable distance.
The complete code for the motion control of the bot to its target destination is provided in
Section B.3.

This concludes the methodology used for the development of the project as a whole as well as the
services offered in the individual models of the DT. With the developed individual aspects, the
next step is to consider the results of implementing the developed system.

30

Digital Twin of an Indoor Navigation System

4 Implementation
The previous chapter elaborated on the procedure followed to create the project. This chapter
focuses on visualizing the results of the implementation. In addition to the services discussed, this
chapter also presents a control interface which was developed as an over-arching interface to the
DT developed.

4.1 Rhapsody GUI

The services being offered in this project have multiple choices in them, such as a variety of path
planning algorithms and magnetic field extrapolation methods. Given these choices, a Graphical
User Interface(GUI) was developed on Rhapsody which allows the user to select from the different
available choices, during the final implementation of the system. It consists of various elements
such as buttons, display screens, lights and knobs. It allows the user to make various selections
such as navigation algorithm, target destination and choices on the different map to be displayed.
The GUI is shown in Figure 22.

Figure 22: Rhapsody GUI

The GUI is divided into various parts. Each part is labelled appropriately. The movement controls
allow for override manual control of the motion of the TB3. Additionally it also indicates if the bot
is in manual control or not. Path Plan portion allows the user to select the destination(hard-coded
coordinates of the target) and the path planning algorithm(1: BFS, 2: Dijkstra, 3: A* Euclidian, 4:
A* Manhattan). Additionally it also sends the command to send the TB3 to the target destination.
The GUI also has controls for the magnetic field mapping service of the system. It allows the
user to choose between the 2 field extrapolation methods(1: Individual Axis Model, 2: Joint Axis
Model) and also gets the system to read the instantaneous field value at the current position of
the TB3. The final aspect of the GUI is the display option. The GUI allows the user to make the
following choice options about the display:

1: Display the predicted path

2: Display the X-axis extrapolated magnetic field

3: Display the Y-axis extrapolated magnetic field

31

Digital Twin of an Indoor Navigation System

4: Display the Z-axis extrapolated magnetic field

In addition to allowing for choices the GUI also provides feedback messages which are pertinent to
system. Doing so helps visualize and ensure that the TRIZ contradictions are ensured. The results
of this can be seen in Figure 23. As can be seen from the image when the bot is in manual control
mode, it cannot be used for path planning.

Figure 23: Manual Control Contradiction

4.2 Path Planning

The path planning implemented in this project as explained in Section 3.4.3, returns a path from
point A to B. The result of this path planning can be seen in Figures 24 to 27. As can be seen
from the figure, the path consists only of straight lines. This is due using graph theory algorithms
and that the entire region is mapped as nodes of a graph. Establishing a path as such has the
advantage in controlling the motion of the TB3, as it allows for motion along a singular axis at a
time.

10 20 30 40 50 60 70 80 90 100 110

10

20

30

40

50

60

70

80

90

100

(a) TurtleBot Station to Door
10 20 30 40 50 60 70 80 90 100 110

10

20

30

40

50

60

70

80

90

100

(b) TurtleBot Station to Table

Figure 24: BFS Generated Path

10 20 30 40 50 60 70 80 90 100 110

10

20

30

40

50

60

70

80

90

100

(a) TurtleBot Station to Door
10 20 30 40 50 60 70 80 90 100 110

10

20

30

40

50

60

70

80

90

100

(b) TurtleBot Station to Table

Figure 25: Dijkstra Generated Path

32

Digital Twin of an Indoor Navigation System

10 20 30 40 50 60 70 80 90 100 110

10

20

30

40

50

60

70

80

90

100

(a) TurtleBot Station to Door
10 20 30 40 50 60 70 80 90 100 110

10

20

30

40

50

60

70

80

90

100

(b) TurtleBot Station to Table

Figure 26: A* Euclidian Generated Path

10 20 30 40 50 60 70 80 90 100 110

10

20

30

40

50

60

70

80

90

100

(a) TurtleBot Station to Door
10 20 30 40 50 60 70 80 90 100 110

10

20

30

40

50

60

70

80

90

100

(b) TurtleBot Station to Table

Figure 27: A* Manhattan Generated Path

The edges of the path are extracted and the results of this are shown in Figures 28 to 31.

10 20 30 40 50 60 70 80 90 100 110

10

20

30

40

50

60

70

80

90

100

(a) TurtleBot Station to Door
10 20 30 40 50 60 70 80 90 100 110

10

20

30

40

50

60

70

80

90

100

(b) TurtleBot Station to Table

Figure 28: BFS generated Path: Edges

10 20 30 40 50 60 70 80 90 100 110

10

20

30

40

50

60

70

80

90

100

(a) TurtleBot Station to Door
10 20 30 40 50 60 70 80 90 100 110

10

20

30

40

50

60

70

80

90

100

(b) TurtleBot Station to Table

Figure 29: Dijkstra Generated Path: Edges

33

Digital Twin of an Indoor Navigation System

10 20 30 40 50 60 70 80 90 100 110

10

20

30

40

50

60

70

80

90

100

(a) TurtleBot Station to Door
10 20 30 40 50 60 70 80 90 100 110

10

20

30

40

50

60

70

80

90

100

(b) TurtleBot Station to Table

Figure 30: A* Euclidian Generated Path: Edges

10 20 30 40 50 60 70 80 90 100 110

10

20

30

40

50

60

70

80

90

100

(a) TurtleBot Station to Door
10 20 30 40 50 60 70 80 90 100 110

10

20

30

40

50

60

70

80

90

100

(b) TurtleBot Station to Table

Figure 31: A* Manhattan Generated Path: Edges

4.2.1 Visualizing Path on VE

Having developed the path planning system for all 4 algorithms, we now visualize the path on the
VE model of the space. The results can be seen in Figure 32.

(a) Top View (b) First Person View

Figure 32: Visualization of Path on VE

4.3 Magnetic Field Mapping

Having developed the models for the magnetic field extrapolation we now move onto visualizing
the results of the efforts. The results of both extrapolation methods are demonstrated below.

4.3.1 Individual Axis

Firstly we visualize the results obtained from the models developed individually for each field.
Figures 33a to 33c shows the result of the predictions of the model, compared against the measured
value at those points.
Looking at the results in Figure 35, we can see that the predictions made by the models are very
close to the actual expected values. An in-depth analysis on this is done in Section 5. The next
step is to predict and visualize the individual field components for the entire test space. The results
of this are seen in Figure 34. In this figure for each field the figure on the left shows the field
value measured at each point which is used as the training point for the Gaussian Model for the

34

Digital Twin of an Indoor Navigation System

0 100 200 300 400 500 600

30

20

10

0

10

20

M
ag

ne
tic

 F
ie

ld
 (i

n
 T

)

X-axis GP test
Test Value
Predicted Value
95% CI

(a) X Axis

0 100 200 300 400 500 600

0

10

20

30

40

50

M
ag

ne
tic

 F
ie

ld
 (i

n
 T

)

Y-axis GP test
Test Value
Predicted Value
95% CI

(b) Y Axis

0 100 200 300 400 500 600
0

5

10

15

20

25

30

35

40

M
ag

ne
tic

 F
ie

ld
 (i

n
 T

)

Z-axis GP test
Test Value
Predicted Value
95% CI

(c) Z Axis

Figure 33: Expected vs Predicted Field Values For Individual Models

concerned field. The figure on the right then represents the results of the extrapolation done using
the trained model.

0 1 2 3 4
X (in m)

3

2

1

0

1

Y
(in

 m
)

Data Collected

0 1 2 3 4 5
X (in m)

3

2

1

0

1

Y
(in

 m
)

Extrapolated Field

30

20

10

0

10

20

30
 T

X Field

(a) X Field

0 1 2 3 4
X (in m)

3

2

1

0

1

Y
(in

 m
)

Data Collected

0 1 2 3 4 5
X (in m)

3

2

1

0

1

Y
(in

 m
)

Extrapolated Field

0

10

20

30

40

50
 T

Y Field

(b) Y Field

0 1 2 3 4
X (in m)

3

2

1

0

1

Y
(in

 m
)

Data Collected

0 1 2 3 4 5
X (in m)

3

2

1

0

1

Y
(in

 m
)

Extrapolated Field

30

20

10

0

10

20

30

40
 T

Z Field

(c) Z Field

Figure 34: Predicted Magnetic Field on Map using Individual Axis Models

4.3.2 Joint Model

We next move onto visualizing the predictions from the model developed for all the axes together.
Similar to the results visualized in the individual axis, we now move onto the visualization of the
results of the model developed for all 3 axis together. Figure 35 shows the results of the field values

35

Digital Twin of an Indoor Navigation System

predicted by the model compared to their actual values. As it seems other than a few outliers, all
predicted values lie in the range of actual values.

0 100 200 300 400 500 600

30

20

10

0

10

20

30

M
ag

ne
tic

 F
ie

ld
 (i

n
 T

)

X-axis GP test
Test Value
Predicted Value
95% CI

(a) X Axis

0 100 200 300 400 500 600

0

10

20

30

40

50

60

M
ag

ne
tic

 F
ie

ld
 (i

n
 T

)

Y-axis GP test
Test Value
Predicted Value
95% CI

(b) Y Axis

0 100 200 300 400 500 600

20

10

0

10

20

30

40

M
ag

ne
tic

 F
ie

ld
 (i

n
 T

)

Z-axis GP test
Test Value
Predicted Value
95% CI

(c) Z Axis

Figure 35: Expected vs Predicted Field Values For Joint Model

0 1 2 3 4
X (in m)

3

2

1

0

1

Y
(in

 m
)

Data Collected

0 1 2 3 4 5
X (in m)

3

2

1

0

1

Y
(in

 m
)

Extrapolated Field

30

20

10

0

10

20

30
 T

X Field

(a) X Field

0 1 2 3 4
X (in m)

3

2

1

0

1

Y
(in

 m
)

Data Collected

0 1 2 3 4 5
X (in m)

3

2

1

0

1

Y
(in

 m
)

Extrapolated Field

0

10

20

30

40

50
 T

Y Field

(b) Y Field

0 1 2 3 4
X (in m)

3

2

1

0

1

Y
(in

 m
)

Data Collected

0 1 2 3 4 5
X (in m)

3

2

1

0

1

Y
(in

 m
)

Extrapolated Field

0

5

10

15

20

25

30

35

40
 T

Z Field
- 40

- 30

- 20

- 10

- 0

- -10

- -20

- -30

(c) Z Field

Figure 36: Predicted Magnetic Field on Map using Joint Axis Model

4.4 TruckLab Implementation
A main requirement during the development of this project was its ability to be scaled up to a
larger environment or even to other projects. Considering this, each service offered was developed

36

Digital Twin of an Indoor Navigation System

as an individual model. Using these individual service models, the concerned features can be ported
to a different project.
The TruckLab Automotive Technology Department, uses TurtleBot Burger to replicate physical
trucks, which are referred to as TurtleBot Trucks(TBT), Figure 37a, hereon. The service developed
in this project can be ported to be used with the trucks in the Trucklab workspace, Figure 37b.
The workspace considered here is a near 6 × 6 m2 area. Using the TBT and the physical space
as mentioned earlier the following services of this project are implemented in the TruckLab
environment. This development provides a proof of the scalability of the services of this project
and helps reaffirm confidence in the development process taken.

(a) TBT (b) TruckLab Space

Figure 37: TruckLab PE

4.4.1 Path Planning

The path planning service of this project was scaled to be implemented in the TruckLab environment.
Firstly a map of the region was developed, using the onboard LIDAR. However, the onboard
LIDAR, has a maximum range of 3.5m. However, the free space of the lab has a free space much
larger than the range of the LIDAR. This led to issues in mapping the physical region and its
obstacles. Incidentally the entire experimental space is a completely empty rectangle which was
then hard-coded as an occupancy grid matrix. In this matrix each cell is represented as a 5x5 cm
cross section of the region. The matrix is then used to generate the graph of the region with each
node representing the individual cells of the matrix and edges representing a connection between
any two nodes. The generated graph is then used to plot a path from a given source node to a
different destination node. The results of this is shown in Figure 38.

Figure 38: TruckLab Path Planning

The TBT, used in this implementation is not a two wheeled differential robot, the same as the TB3.
It is a 4 wheeled vehicle based model. As a result it cannot be used to make 90◦ turns around its
own axis. Therefore even though an accurate path was generated using the algorithms proposed in
this project for the TruckLab space, the motion control service developed in this project cannot be

37

Digital Twin of an Indoor Navigation System

translated for the TBT. To control the motion of the TBT to be directed to its target destination
along the calculated path, a separate motion control algorithm would be required which is able to
accurately control a vehicle based model. Given the model based implementation of this project,
integrating this control algorithm, once it is developed, into this project would be a relatively easy
task.

4.4.2 Obstacle Detection

The work being implemented at the TruckLab by Ayush Maheshwari, includes controlling the
motion of the TBT across the physical space. As an additional feature to the motion control of the
truck, the obstacle detection implemented in this project was ported to be accommodated in the
motion control of the truck developed by Ayush. The implementation of the obstacle detection in
this section differs slightly from the implementation as described in Section 3.4.4. The difference
lies in the cone of view, which is 10◦, instead of 40◦. The change was made for the following
reasons.

• The width of the truck is less than that of the TB3. The scanned region is around 0.25m,
1.5m in front of the truck. This is appropriate for the truck as its width is approximately
0.18m.

• The obstruction in the side views of the truck caused due to presence of the 3D printed
covering on top of it.

Figure 39, shows the results of suddenly sliding an obstacle in front of the truck during its motion.
Though it is not evident from the figures, the truck halted in its motion upon detecting the
hindrance in its path, and only moved forward upon the removal of the obstacle.

Figure 39: TruckLab TBT Obstacle Detection

4.4.3 Magnetic Field Mapping

The last service offered in this project which was successfully scaled up to be accommodated
into the TruckLab environment is the magnetic field mapping of the environment. However, due
to the limitations of magnetometer calibration and the disturbances caused by the device the
magnetometer is placed on, as explained in paragraph 3.3.1.1, the TB3 was the device used to
collect the magnetic field data along the 3 axis. The results of this data collection is shown in
Figure 40. As can be seen the data is collected only along a fixed orientation of the magnetometer,
while the TB3 is moving in a straight direction. As mentioned previously this affects the fields
generated for the X and Y axis, however does not affect the Z axis fields. However, the Z axis
training data was also limited for this implementation, due to a shortage of computation resources.
The data collected in all possible exceeded 22,000 data points. When these data points were
attempted to be fit into a GP, the amount of memory required exceeded the maximum available
memory. As a result the maps generated here, are not the most accurate representation which
would be available. However, this can be considered a stepping stone to generating the magnetic
field map of the TruckLab environment in a future project with access to remote cloud services.

38

Digital Twin of an Indoor Navigation System

0 1 2 3 4 5 6
X (in m)

0

1

2

3

4

5

6

Y
(in

 m
)

X axis

20

15

10

5

0

5

10

15

 T

0 1 2 3 4 5 6
X (in m)

0

1

2

3

4

5

6

Y
(in

 m
)

Y axis

30

25

20

15

10

5

0

5

 T

0 1 2 3 4 5 6
X (in m)

0

1

2

3

4

5

6

Y
(in

 m
)

Z axis

5

10

15

20

25

30

35

 T

Magnetic Data collected: train individual axis

Figure 40: Magnetic Field Data Collected

0 1 2 3 4 5 6
X (in m)

0

1

2

3

4

5

6

Y
(in

 m
)

30

20

10

0

10

20

 TX Field

(a) X Field

0 1 2 3 4 5 6
X (in m)

0

1

2

3

4

5

6

Y
(in

 m
)

20

10

0

10

 TY Field

(b) Y Field

0 1 2 3 4 5 6
X (in m)

0

1

2

3

4

5

6

Y
(in

 m
)

0

10

20

30

40

50
 TZ Field

(c) Z Field

Figure 41: TruckLab Predicted Magnetic Field on Map using Individual Axis Model

0 1 2 3 4 5 6
X (in m)

0

1

2

3

4

5

6

Y
(in

 m
)

20

10

0

10

20
 TX Field

(a) X Field

0 1 2 3 4 5 6
X (in m)

0

1

2

3

4

5

6

Y
(in

 m
)

25

20

15

10

5

0

5
 TY Field

(b) Y Field

0 1 2 3 4 5 6
X (in m)

0

1

2

3

4

5

6

Y
(in

 m
)

0

10

20

30

40

 TZ Field

(c) Z Field

Figure 42: TruckLab Predicted Magnetic Field on Map using Joint Axis Model

All code listings and individual components of the DT developed in this project are provided in a
github repository at the following link: https://github.com/SaharshB/ThesisF.

39

https://github.com/SaharshB/ThesisF

Digital Twin of an Indoor Navigation System

5 Evaluation

Having completed the development of the various aspects of the project and observed the results,
the next step is to evaluate the performance of the various aspects. Doing so not only helps find the
feasibility of the proposed solution, but will also help in answering the research questions proposed
in this project.

5.1 Evaluation of path planning

The first aspect to be evaluated is the implemented path planning module. Evaluation for this is
important as it helps understand the physical requirements that these algorithms impose on the
device(SBC) that they are deployed on. Additionally we also try to evaluate the time that it takes
each of the implemented algorithms as getting a prompt path is also an important requirement.

All the data presented in this subsection is presented as an average of 10 repeatability tests
performed on the same experiment. This was done to try to remove any outliers in data which
may have been caused by certain unexpected occurrences such as a lag in the processing of the
utilized computing device.

5.1.1 Memory Requirement

The first parameter to be evaluated is the amount of memory required to calculate the path.
However, measuring the amount of memory(storage space and RAM) is not easy as Matlab does
not have a method to accurately measure memory usage during a function execution. As a result
a compromise evaluation has to be performed. This will be done by measuring the amount of
available memory at the start of the function execution and the amount of available memory at the
end of the function execution. Doing so gives an approximate on the amount of memory consumed
during the function. It however, does not account for any memory used and released during
the execution of the function. Even so, measuring the memory usage in this case gives a crude
understanding about the storage requirements for the execution of the algorithms. In addition
to this in order to understand the computation requirements for the algorithms, a comparable
approximation could be made from observing the number of nodes explored by each algorithm
before the optimal path is returned. Although the number of nodes explored is not a reasonable
indicator of comparative memory consumption, as some algorithms may have other memory storage
requirements other than maintaining the stack of explored nodes. For example, the A* algorithm
needs to keep track of the cost value of each node(both g and h), which the BFS does not have to,
which leads to more memory being consumed by A* compared to BFS. However, if a comparative
relationship between the amount of memory consumed and the number of nodes explored can be
found for each algorithm, it can be used to have an approximate understanding of the memory
requirement in a different scenario. This helps in getting an understanding of the scalability of the
algorithms which is extremely important should it be deployed on a SBC, with extremely limited
available memory.

41

Digital Twin of an Indoor Navigation System

1 2 3 4
Distance from start node (in m)

0

1000

2000

3000

4000

5000

No
 o

f n
od

es
 e

xp
lo

re
d

BFS
Dijkstra
A* Euclidian
A* Manhattan

(a) Trend of explored nodes over distance

BFS Dijkstra A* Manhattan A* Euclidian
0

500

1000

1500

2000

2500

3000

3500

No
 o

f e
xp

lo
re

d
no

de
s

2994.0 2995.0 2961.0

1532.0

(b) Average number of explored nodes

Figure 43: Number of explored nodes in Path Finding Algorithms

Figure 43 shows the number of nodes explored by each algorithm before a path was determined.
Looking at Figure 43a we can see that BFS and Dijkstra behave in nearly the same manner in this
respect. This is the expected outcome as in a graph with unweighted edges Dijkstra is essentially
the same as the BFS algorithm. However, the main change in number of explored nodes can be
seen in the A* algorithm. While the manhattan heuristic does not change the explored nodes
number by a lot, implementing the euclidian heuristic reduces the number of nodes explored by
nearly half. This general response can be verified from the data presented in Figure 43b. This can
be attributed to that the euclidian considers the shortest straight line distance, whereas manhattan
considers the shortest distance by measuring the distance along both axis. Given that the straight
line distance is shorter than the distance calculated by considering both axes’ separately, it is an
acceptable result that the Euclidian heuristic needs to explore fewer nodes than the Manhattan
heuristic.

This assumption is however not supported by the data represented in Figure 44. It shows that
the amount of memory used remains comparable across the 2 heuristics implemented for the A*
algorithm. Additionally the amount of memory used by BFS and Dijkstra seem comparable and
seem to hold the same trend as well, which was an expected outcome due to reasons mentioned
earlier. Figure 45, shows the average amount of memory used by each of the implemented
algorithms. Using that we can see that the amount of memory used by both BFS and Dijkstra is
nearly comparable, but it is less than half of that utilized by the A* algorithms. This could be
attributed to the requirement of the A* algorithm to calculate the heurestics. The heuristic is
effectively an array containing the cost to the destination from the current path. The amount of
memory consumed by the A* algorithm would be subject to the size of the heurestic array which
in turn is dependant on the number of size of the grid being used3. The memory consumption of
the A* algorithm can therefore be considered to be scalable in O(n), but it would still be more
than the amount of memory consumed by the BFS and Dijkstra algorithms due to their lack of
any such heuristic matrix.

3In the experiments run in this project the size of the grid is 103×117

42

Digital Twin of an Indoor Navigation System

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Distance from start node (in m)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Am
ou

nt
 o

f m
em

or
y

ta
ke

n
(in

 M
b)

BFS
Dijkstra

(a) BFS and Dijkstra

1 2 3 4 5
Distance from start node (in m)

0

1

2

3

4

5

6

Am
ou

nt
 o

f m
em

or
y

ta
ke

n
(in

 M
b)

A* Euclidian
A* Manhattan

(b) A* Algorithms

Figure 44: Memory Consumption for path planning algorithms

BFS Dijkstra
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Av
er

ag
e

M
em

or
y

us
ag

e
(in

 M
b)

0.7579
0.7906

(a) BFS and Dijkstra

A* Euclidian A* Manhattan
0.0

0.5

1.0

1.5

2.0

Av
er

ag
e

M
em

or
y

us
ag

e
(in

 M
b)

1.86611

2.36617

(b) A* Algorithms

Figure 45: Average memory consumption per algorithm

5.1.2 Timing Characteristics

Having considered the memory requirements of the path planning algorithms we now consider their
timing characteristics. It will help evaluate the response times and determine the fastest potential
algorithm to get a solution.
Figure 46 shows the general trend of time consumption for each implemented algorithm. The
time mentioned in the figure is in seconds. Here we see that both BFS and Dijkstra are multiple
time faster than the A* algorithms. There could be multitude of reasons for this. The first being
that each time the A* algorithm is run, a new heuristic array needs to be computed. This is
done, because the heuristic matrix depends on the destination node. Given that the destination
would most likely change at every iteration a new heuristic matrix needs to be calculated every
time the algorithm is run. After running separate experiments to estimate the time taken to
calculate the heuristics, it was found that the average time taken to calculate the heuristic matrix
is approximately 2 ms. This itself seems to be the same amount of time taken to calculate the
entire path using either BFS or Dijkstra. The next reason which is in all probability the more
dominant reason is the inefficiency of the written code. The comparisons here are made between
an inbuilt function(shortestpath) to find the BFS and Dijkstra paths, whereas a custom code was
written for the A* algorithm. This custom code upon reflection was not optimized for timing
performance rather, it was written for the accuracy of the solution. The current implementation of
the A* algorithm works in a sequential manner on the occupancy grid of the region. Each element
of the grid is then represented as a structure which keeps track if the vertex is explored, the score
to reach the vertex and the cost from the current vertex to the destination. Additionally, there
are certain redundancy checks at stages to ensure that a path even exists. All these factors could
potentially contribute in slowing the result than what the actual algorithm would take.
The data in Figure 47, shows that the average time taken by both BFS and Dijkstra is comparable
and extremely low. Whereas the time taken by the 2 A* implementations are comparable to
each other. Additionally we can see that the heuristic used has quite an effect on the time taken.

43

Digital Twin of an Indoor Navigation System

1 2 3 4 5
Distance from start node (in m)

0.0000

0.0005

0.0010

0.0015

0.0020

Ti
m

e
Ta

ke
n

to
 fi

nd
 p

at
h

BFS
Dijkstra

(a) BFS and Dijkstra

1 2 3 4 5
Distance from start node (in m)

0.05

0.00

0.05

0.10

0.15

0.20

0.25

Ti
m

e
Ta

ke
n

to
 fi

nd
 p

at
h

A* Euclidian
A* Manhattan

(b) A* Algorithms

Figure 46: Time taken for path finding

Between the Manhattan and the Euclidian heuristics we can see an almost 20% improvement in
timing performance of the latter.

BFS Dijkstra
0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

Ti
m

e
(in

 s)

0.00057

0.00111

(a) BFS and Dijkstra

A* Euclidian A* Manhattan
0.00

0.01

0.02

0.03

0.04

0.05

0.06

Ti
m

e
(in

 s)
0.0479753125

0.0600178125

(b) A* Algorithms

Figure 47: Average Time taken for path finding

From the results as seen in Figure 46, it can be seen that as the amount of distance in-
creases(causing an increase in the number of explored nodes), each algorithm scales differently with
respect to the amount of time taken. BFS scales at a rate of approximately 2.5, whereas Dijkstra
scales at a rate of nearly 3. The A* algorithms scale at a rate of ≈ 5. This indicates that BFS is
the fastest algorithm in this situation, where the graph considered is unweighted.

5.2 Evaluation of magnetic field extrapolation

Having presented the results of the evaluation of the path planning algorithms, the next step is
to evaluate the results magnetic field extrapolation methods as seen in Section 4.3. The data
presented in this subsection is presented as an average of 5 repeated tests performed on the same
experiment similar to the manner of the previous section.
In this section we evaluate the performance of both the individual axis models as well as the joint
axis model developed, as shown in paragraph 3.4.2.2. In order to evaluate the performances of the
developed models, we use the MSE(mean squared error)metric. The MSE score tells us about the
accuracy of the fit of the model. It accounts for any outliers in the data and reports accordingly.
Doing so helps us put a quantitaive perspective on the accuracy of the models developed.

5.2.1 Individual Axis Model

The first models evaluated are the ones developed individually for each axis separately. Figure 48,
shows the results of the repeatability experiments performed on the models for individual field
regression for varying training sizes. Looking at the range of MSE scores we see that the X and Y

44

Digital Twin of an Indoor Navigation System

field scores lie in the range of 0.2 to 0.5. The Z field score lies in the range of 2 to 3. The range of
values predicted(the magnetic field values) is ±50 µT. Considering this range of values the MSE
scores obtained are fairly well and can be considered to be a good result.

1100 1200 1300 1400 1500 1600 1700
No of training data points

0.0

0.2

0.4

0.6

0.8

1.0

1.2

MS
E S

cor
e

X Field

1100 1200 1300 1400 1500 1600 1700
No of training data points

0.0

0.2

0.4

0.6

0.8

1.0

1.2

MS
E S

cor
e

Y Field

2600 2800 3000 3200 3400 3600 3800 4000 4200
No of training data points

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

MS
E S

cor
e

Z Field

MSE score evaluation for Individual Models for each axis

Figure 48: MSE Score for Individual Axis Model

Additionally observing the trend of the score we can see that increasing the number of training
points does increase the performance of the models by reducing the MSE score.

5.2.2 Joint Model

We now move onto evaluating the mode developed for all the 3 axes together. The results are
depicted in Figure 49. Similar to the results of the previous model, the MSE scores lie in a range
which represents a positive result considering the range of values which it is predicting. Additionally
the results are slightly better than that of the individual axis models for the Y axis, whereas for
the Z axis it is much better. However this could be attributed to the fewer train/test points.

1000 1200 1400 1600 1800 2000 2200
No of training data points

0.0

0.2

0.4

0.6

0.8

1.0

1.2

MS
E S

cor
e

X Field

1000 1200 1400 1600 1800 2000 2200
No of training data points

0.0

0.2

0.4

0.6

0.8

1.0

1.2

MS
E S

cor
e

Y Field

1000 1200 1400 1600 1800 2000 2200
No of training data points

0.0

0.2

0.4

0.6

0.8

1.0

1.2

MS
E S

cor
e

Z Field

MSE score evaluation for Joint Model for all axis

Figure 49: MSE Score for joint Model

5.3 Assessment of magnetic field extrapolation

In this section we evaluate the system requirements of the magnetic field regression models.
Considering this data will help determine the possibility of deploying this solution on a low resource
device such as the on-board raspberry pi SBC of the TB3.
The first parameter measured is the amount of memory taken to train the model. The results
of the tests can be seen in Figure 50. From the figure a clear relationship can be seen between
the number of training data points and the amount of memory taken. It is a relatively linear
relationship, which seems to hae a scalability of O(n), with n being the number of training data

45

Digital Twin of an Indoor Navigation System

points. Further conclusions about the feasibility of implementing this solution will be discussed in
Section 6

1200 1400 1600
No of training data points

200

250

300

350

400

450

500

RAM
(in

Mb)

X Field Model

1200 1400 1600
No of training data points

200

250

300

350

400

450

500

Y Field Model

3000 3500 4000
No of training data points

1250

1500

1750

2000

2250

2500

2750

3000
Z Field Model

1000 1500 2000
No of training data points

200

300

400

500

600

700

800

900

Joint Model

Peak RAM Usage for training models

Figure 50: Peak RAM taken to fit Gaussian Regression Model

46

Digital Twin of an Indoor Navigation System

6 Discussion
Having developed the project and presented its results, a brief reflection upon the project as a whole
and the answers to the proposed research questions is the next step. The assumptions/limitations
made during this project are also considered along with mentioning the potential for any future
development on the project.

6.1 Research Questions

In this section, the proposed research questions are considered and answered based upon the
findings made during the development and evaluation of this project.

6.1.1 RQ1 How to map magnetic fields of a region on a low resource device?

Performing the magnetic field extrapolation in this project is done based on the predictions from
a Gaussian Regression Model. Therefore the deciding factor on determining the feasability of
magnetic field mapping on any device would be dependent on the feasibility of forming the regression
model and training it on the training data points on said device. The factors in consideration is
primarily the amount of RAM used over the course of the fitting of the model. From the results
seen in Figure 50, the amount of memory consumed is dependent on the number of training data
points. As can be seen a relatively small space, which has an area of around 20 m2, there can be
more than a 2000 training points. Given the range of RAM usage which can be seen, especially
in the Z field model, which is more than 3Gb, it will be difficult to replicate this solution on a
device like the RaspberryPi, which itself has a maximum of 1Gb RAM available, it would not be
advisable to export this solution to the onboard SBC. This can be additionally verified with the
results of extrapolating the field for the TruckLab environment. In that scenario, the number of
training data points is approximately 10,000 and the peak RAM usage was around 13Gb.
Based on the results observed in this project the optimal solution for mapping the magnetic field
of a region would be the method employed here, i.e. collect the necessary data and export it to a
external device with more memory and computation capabilities to perform the map extrapolation.
Once the map is formed the results can be transferred to the device back in the form of a map/array
which can then be used to identify locations which can subsequently be used for the path planning.

6.1.2 RQ2 Which navigation algorithm is optimal in an indoor environment?

SRQ2_1 Which algorithm has the least mean error in directing to target location?
The method in which the path is calculated is modelling the entire space as a grid, wherein each cell
in the grid is representative of a certain cross section in the area. The resolution of the grid is an
important aspect here(the area of each cell in the grid). Having a grid with cells having too large
of an area will lead to a slower solution as it increases the number of searchable nodes, however
it can also lead to a more exact and accurate path to exact desired point. However, keeping the
resolution of the grid constant the accuracy of finding the destination, should a viable path exist
to it from the current location, is relatively constant across all considered algorithms. Therefore
for this point all considered algorithms have relatively the same performance.

SRQ2_2 Which algorithm yields the path in shortest amount of time?
Section 5.1.2 discusses the results of the experiments to determine the timing characteristics of the
path finding algorithms. It also briefly tries to explain any shortcomings of the implementation
of the A* algorithms. Taking these findings in consideration it can be clearly seen that BFS is
the algorithm which yields the path in the shortest amount of time. Additionally looking at the
trend that the data takes, it can also be concluded that BFS scales most optimally(least amount of
increase in time, with an increase in distance). However, it should be noted that these results are
subject to the algorithms being implemented on an unweighted graph. Should a different mapping
technique be employed, which yields a weighted edges graph, the results of this project would not

47

Digital Twin of an Indoor Navigation System

hold in that scenario and new tests would need to be performed.

SRQ2_3 Which algorithm utilizes the least resources to find the solution?
The main resources we concern ourselves with, to answer this question are the RAM usage and the
amount of memory used. Concerning the RAM the test results of the test performed to measure
the RAM as shown in Section 4. The amount of RAM used remains rather the same across all
the algorithms. The results of the test for memory usage are depicted in Figure 44. As can be
seen the amount of memory used is highest in A* Manhattan. Similar to the results of the timing
characteristics, we see that the amount of memory usage is the least for BFS, despite it being the
algorithm which explores the most number of nodes.

Considering the 3 parameters taken into account when evaluating the different path finding
algorithms, it can be seen that BFS, appears to be the most efficient algorithm in terms of both
time required and memory taken. However, it should be noted again that these findings are
subject to an unweighted graph. With respect to the accuracy of the algorithms, all have a similar
performance with respect to the accuracy of the solution, although is it mainly dependant on the
accuracy of the mapping technique rather than the algorithm itself. It can therefore be concluded
that the optimal algorithm for path finding in an indoor environment is BFS.

6.1.3 RQ3 How feasible is it to use both magnetic fields and LIDAR for indoor
navigation?

Having developed the magnetic field map of the region on all 3 axis and generated the physical
obstacle map using the LIDAR, we can now assess if using the data from these 2 maps in conjunction
is a reasonable combination for path planning and navigation. As reported by Gozick et al. [11], the
magnetic field in an indoor environment remains relatively stable across a time period of atleast 6
months. Considering this we can take that the map formed for the magnetic fields will be constant
and this satisfies the assumption that the data in the extrapolated magnetic field map will remain
accurate at a later time. Hence using the magnetic field map as a source of identifying target
locations is possible. Generating the magnetic field map, as seen in paragraph 3.4.2.2 requires a
map of the physical region as well. The coordinate data from the physical map is used to predict the
results of the Gaussian model trained on the magnetic field data collected. This physical coordinate
map is provided by the data from the LIDAR scans of the region. This further demonstrates the
feasability of using the magnetometer and the LIDAR in conjunction with each other. However,
using the magnetic field map, we are unable to visualize the physical obstacles in the path. This
would be an integral part when considering the movement of the bot from the source to destination.
This detection can be performed using the LIDAR scan data in real time, as shown in Section 3.4.4.
Seeing the results of this project it can be concluded that using a conjunction of both the data
from the magnetometer and the physical map generated using the LIDAR, a system for controlling
the navigation in an indoor environment can be developed. The extrapolated magnetic field map,
provides a magnetic field value for each axis at every point in the physical space. These values can
be used to identify the coordinates of a destination based on the characteristics of the magnetic
field values. With the coordinates for the destination identified the data from the LIDAR can be
used in real time for avoiding collisions with physical obstacles which may be on the calculated
path. It can therefore be concluded that using both magnetic fields and a live scan of the LIDAR,
is a viable combination of data for indoor navigation.
The accuracy of the developed map is a concern while answering this question. For this project
it is assumed that the map generated during a previous time is still relevant at the time of path
planning, and is not inaccurate due to any external disturbances.

6.2 Project Constraints

While we have displayed the results of the projects and derived our conclusions from it, we now
discuss the constraints of this project.

48

Digital Twin of an Indoor Navigation System

Firstly the movement control of the path planning section of the project is dependant on the
values read from the /odom topic. While paragraph 3.4.3.1, covers the positional localization
of the bot and its accuracy, it does not touch upon the rotational accuracy of the TB3. The
rotational values are calculated from the orientation quaternion in the odom topic. The values
in the topic are provided by the onboard IMU, gyroscope. Thus making it susceptible to IMU
drift errors. This leads to potential errors in rotation angle calculation if the bot is moved at high
speeds(experimentally it was observed speeds > 0.08m/s). The alternative solution of the amcl
method as discussed earlier has a data rate too low to be of any viable use.
Another limitation concerns the magnetic field data collection. As mentioned in paragraph 3.4.2.1,
the X and Y field magnetic field values are dependant on the orientation of the sensor. As a result,
the solution employed in this project was to read the magnetic field values for the X and Y axis
only along a specified orientation. This limits the amount of training data points available for
those axes’. In addition to this the model is also limited in detecting any patterns along the axis
perpendicular to the direction in which the values were recorded. To address this issue, a system
was implemented to shift the magnetic field values from the current orientation to the expected
orientation. However, rotating the bot has a separate problem of its own. The movement of the
TB3 is controlled from the front end of the bot, whereas the magnetometer is placed at the back
end of the bot. The distance between the wheel and the magnetometer is approximately 225mm.
Whereas the distance from the magnetometer to the centre of the bot is approximately 100mm.
Due to this offset in position, rotating the bot, causes the X-Y position of the magnetometer to
also change. Therefore, while rotating the magnetic field values using the angle of rotation(yaw
angle), leads to an accurate field reading in the expected orientation, the position of the sensor
is offset from the reading reported by the odom topic. This makes reading data of the X and Y
magnetic fields when the TB3 is rotated from its expected orientation, not feasible presently.

49

Digital Twin of an Indoor Navigation System

7 Conclusions
Digital Twin technology helps us visualise, understand, simulate and develop complex behaviour of
products or services. Therefore, having a Digital Twin of an indoor navigation system, allows a
platform to test various algorithms, and validate their accuracy. In addition to this developing
each service as individual models allows translating them to other projects such as the one being
developed by Ayush Maheshwari.

The first aspect of this project was the conceptual model of the digital twin. As discussed earlier
the model used in this digital twin is the 5 component architecture as explained in Section 2. Using
this model allows for more flexibility and abstraction about the development of various aspects of
the project. Doing it so, also aids in the portability of the individual features to different projects
or systems. While the portability is an important feature of the abstraction followed here, it also
plays a key role in maintainability and scalability of this project.

The purpose of this project was to demonstrate a system which can be scaled up to any other
device with minor changes, such as a new map of the region or adjusting the speed of the bot as per
requirement. In this project we were able to successfully map a region and visualize the magnetic
field map of the region at the same time. In addition to this the system also controls the motion of
a robot(TB3 in this case), and accurately navigate it to a desired location. For the purpose of the
navigation and path planning, we treat the TB3 as a point model which can freely move about in
a 2D space, and is not limited by multi-body dynamics thereby freely allowing it to make even the
sharpest of movements(a complete 360◦ rotation about its base link axis). Doing so allows the
TB3 to follow the paths determined by the algorithms used in this project as shown in Section 3.4.3.

The magnetic field mapping developed in this project was able to successfully develop an accurate
magnetic field map of the concerned indoor region. However, this mapping technique is subject to
the accuracy of not only the field data, but also on the accuracy of the positional and rotational
data of the magnetometer. As discussed above, for the path planning part of this project we treat
the TB3 as a point model. However, for the data collection for the magnetic field mapping, the
point model may lead to data spillage as there is an offset in the position of the magnetometer
to the point whose position is returned using the localization method. Therefore the positional
translation becomes imperative.
While this project covers a wide range of topics, it is by no means the end. There are various
features and services which could be added.
Firstly the main focus of this project was to develop the Ss of the proposed digital twin model.
There can be plenty of features which can be added to the VE model. An accurate physical model
of the TB3, with proper physics engines which accurately predict the movement of not just the
robot itself, but also accommodate various geographical and physical features could be developed.
This would introduce a new source of data form the VE and not be reliant on just the PE, which
would allow for proper simulations to take place. Adding these models to the VE, would further
help validate the performance and data received from the sensors in the PE.

This project can be extended to accommodate for various additional features. Some of which
are listed below.

• Adding physical models of the actuators and sensors to the VE. Causing the VE to not be
limited to being a mirror of the data generated from the PE. It would also allow to testing
any new algorithms or services purely on the VE. This would help save many resources in the
future, as the simulations on the VE, could be sped up and we could obtain faster results.
Additionally it would also bypass the need of any physical devices, thereby making testing in
any environment much easier without access to any of the actual components.

• Implement a magnetic field extrapolation method which learns the field in real time as the
bot moves around in the environment, rather than collecting the data and then performing

51

Digital Twin of an Indoor Navigation System

post-processing on it at a later time, as is done in this project.

• A more efficient localization method which is not susceptible to IMU drift which may cause
errors in determining the rotation angles. A system such as the OptiTrack mechanism which
is currently setup in the TruckLab environment at TU/e. This would ensure accurate location
and orientation values of the bot, and would also overcome the shortcoming of having the
location being reset to (0,0) every time the bot is rebooted.

• While this project provides a path planning mechanism in the provided space, the path
yielded, consists of only straight lines with right angle turns. Another potential avenue of
future work would be to implement a more efficient path planning algorithm which accounts
for turning the bot in a circular motion, like an actual car, whenever the direction of motion
needs to be changed. This would lead to the bot reaching its destination faster, not because
a shorter path was established, but because now the bot does not have to stop and rotate. It
can simply make the appropriate circular turn.

• Additional sensors such as a camera can be integrated onto the bot, which can be used to
form a visual map of the region. A camera could also be used to detect and identify certain
objects, which could then be scaled up to a object tracking system.

52

Digital Twin of an Indoor Navigation System

Bibliography
[1] Mag658 Magnetometer. URL https://www.bartington.com/mag658/.

[2] SYSMOD. URL https://mbse4u.com/sysmod/.

[3] TRIZ 40 Principles. URL https://triz.org/triz/principles.

[4] TurtleBot3 Waffle Pi, . URL https://emanual.robotis.com/docs/en/platform/
turtlebot3/overview/.

[5] TurtleBot Navigation, . URL https://emanual.robotis.com/docs/en/platform/
turtlebot3/navigation/#run-navigation-nodes.

[6] WHO Magnetic Field Health Effects. URL https://www.who.int/peh-emf/publications/
facts/fs299/en/#:~:text=HEALTHEFFECTS&text=Staticmagneticfieldsexertforces,
impedetheflowofblood.

[7] M. Angermann, M. Frassl, M. Doniec, B. J. Julian, and P. Robertson. Characterization of
the indoor magnetic field for applications in Localization and Mapping. 2012 International
Conference on Indoor Positioning and Indoor Navigation, IPIN 2012 - Conference Proceedings,
(November):13–15, 2012. doi: 10.1109/IPIN.2012.6418864.

[8] R. F. Brena, J. P. García-Vázquez, C. E. Galván-Tejada, D. Muñoz-Rodriguez, C. Vargas-
Rosales, and J. Fangmeyer. Evolution of Indoor Positioning Technologies: A Survey. Journal
of Sensors, 2017, 2017. ISSN 16877268. doi: 10.1155/2017/2630413.

[9] R. P. Busch. Developing a Digital Twin of ’TurtleBot3 Waffle Pi’ Robot in Unity Game Engine
With Integration and Visualisation of RM3100 Geomagnetic Sensor. (October), 2020.

[10] N. I. o. P. H. Environment and the. Comparison of International Policies on Electromagnetic
Fields. URL https://rivm.openrepository.com/handle/10029/623629.

[11] B. Gozick, K. P. Subbu, R. Dantu, and T. Maeshiro. Magnetic maps for indoor navigation.
IEEE Transactions on Instrumentation and Measurement, 60(12):3883–3891, 2011. ISSN
00189456. doi: 10.1109/TIM.2011.2147690.

[12] B. Gozick, K. P. Subbu, R. Dantu, and T. Maeshiro. Magnetic maps for indoor navigation.
IEEE Transactions on Instrumentation and Measurement, 60(12):3883–3891, 2011. ISSN
00189456. doi: 10.1109/TIM.2011.2147690.

[13] L. Kheifets, M. Repacholi, R. Saunders, and E. Van Deventer. The sensitivity of children to
electromagnetic fields. Pediatrics, 116(2), 2005. ISSN 00314005. doi: 10.1542/peds.2004-2541.

[14] D. Laparra. Pathfinding Algorithms in Graphs and Applications. 2019. URL http://hdl.
handle.net/2445/140466.

[15] H. Li and L. Zhijian. The study and implementation of mobile GPS navigation system based
on Google Maps. Proceedings of ICCIA 2010 - 2010 International Conference on Computer
and Information Application, pages 87–90, 2010. doi: 10.1109/ICCIA.2010.6141544.

[16] K. Malarvizhi, S. V. Kumar, and P. Porchelvan. Use of High Resolution Google Earth
Satellite Imagery in Landuse Map Preparation for Urban Related Applications. Procedia
Technology, 24:1835–1842, 2016. ISSN 22120173. doi: 10.1016/j.protcy.2016.05.231. URL
http://dx.doi.org/10.1016/j.protcy.2016.05.231.

[17] NIST CPS PWG. Framework for Cyber-Physical Systems - v1.0. (May), 2016.

[18] RIVM. National precautionary policies on magnetic fields from power lines in. 2017. doi:
10.21945/RIVM-2017-0118R.

53

https://www.bartington.com/mag658/
https://mbse4u.com/sysmod/
https://triz.org/triz/principles
https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
https://emanual.robotis.com/docs/en/platform/turtlebot3/navigation/#run-navigation-nodes
https://emanual.robotis.com/docs/en/platform/turtlebot3/navigation/#run-navigation-nodes
https://www.who.int/peh-emf/publications/facts/fs299/en/#:~:text=HEALTH EFFECTS&text=Static magnetic fields exert forces,impede the flow of blood.
https://www.who.int/peh-emf/publications/facts/fs299/en/#:~:text=HEALTH EFFECTS&text=Static magnetic fields exert forces,impede the flow of blood.
https://www.who.int/peh-emf/publications/facts/fs299/en/#:~:text=HEALTH EFFECTS&text=Static magnetic fields exert forces,impede the flow of blood.
https://rivm.openrepository.com/handle/10029/623629
http://hdl.handle.net/2445/140466
http://hdl.handle.net/2445/140466
http://dx.doi.org/10.1016/j.protcy.2016.05.231

Digital Twin of an Indoor Navigation System

[19] A. Solin, M. Kok, N. Wahlstrom, T. B. Schon, and S. Sarkka. Modeling and Interpolation of
the Ambient Magnetic Field by Gaussian Processes. IEEE Transactions on Robotics, 34(4):
1112–1127, 2018. ISSN 15523098. doi: 10.1109/TRO.2018.2830326.

[20] Y. Stein and I. G. Udasin. Electromagnetic hypersensitivity (EHS, microwave syndrome)
– Review of mechanisms. Environmental Research, 186(August 2018):109445, 2020. ISSN
10960953. doi: 10.1016/j.envres.2020.109445. URL https://doi.org/10.1016/j.envres.
2020.109445.

[21] S. Ueno. Biological Effects of Magnetic Fields. IEEE Translation Journal on Magnetics in
Japan, 7(7):580–585, 1992. ISSN 08824959. doi: 10.1109/TJMJ.1992.4565451.

[22] N. Wahlstrom, M. Kok, T. B. Schon, and F. Gustafsson. Modeling magnetic fields using
Gaussian processes. ICASSP, IEEE International Conference on Acoustics, Speech and Signal
Processing - Proceedings, pages 3522–3526, 2013. ISSN 15206149. doi: 10.1109/ICASSP.2013.
6638313.

[23] C. Wu, Y. Zhou, M. V. Pereia Pessôa, Q. Peng, and R. Tan. Conceptual digital twin
modeling based on an integrated five-dimensional framework and TRIZ function model.
Journal of Manufacturing Systems, 58(October 2019):79–93, 2021. ISSN 02786125. doi:
10.1016/j.jmsy.2020.07.006. URL https://doi.org/10.1016/j.jmsy.2020.07.006.

[24] S. C. Yeh, W. H. Hsu, W. Y. Lin, and Y. F. Wu. Study on an Indoor Positioning System
Using Earth’s Magnetic Field. IEEE Transactions on Instrumentation and Measurement, 69
(3):865–872, 2020. ISSN 15579662. doi: 10.1109/TIM.2019.2905750.

54

https://doi.org/10.1016/j.envres.2020.109445
https://doi.org/10.1016/j.envres.2020.109445
https://doi.org/10.1016/j.jmsy.2020.07.006

Digital Twin of an Indoor Navigation System

A SYSMOD Steps

A.1 Requirements Analysis

Display Requirements

ID Name Description

DS Display requirements The system should be able to display the required data
in an interpretable manner

DS1 Functional Requirements The system should be able to display functional data

DS11 Display Magnetic Map The system should be able to display the extrapolated
magnetic field map of the region

DS12 Display Physical Map The system should be able to display the 2D top view
physical obstacle map of the region

DS2 Extra Requirements The system should be able to display interesting
features in a fun manner

DS21 Display Predicted Path The system should be able to display the path to be
taken by the bot

DS3 Assessment Requirements The system should be able to display data which helps
in the assessment of the system

DS31 Display Path Calc Mem The system should be able to display the amount of
memory taken to calculate the path

DS32 Display Path Calc Time The system should be able to display the amount of time
taken to calculate the path

Table 5: Requirements Table: Display

req [Package] DisplayReqs [DSGeneralReqsDiag]

Display requirements
«Requirement»

ID = DS

The system should
be able to display
the required data in
an interpretable

Assessment Requirements
«Requirement»

ID = DS3

The system should be
able to display data which
helps in the assessment

Extra Requirements
«Requirement»

ID = DS2

The system should
be able to display

Functional Requirements
«Requirement»

ID = DS1

The system should be
able to display
functional data

Display Path Calc Mem
«Requirement»

ID = DS31

The system should be
able to display the
amount of memory
taken to calculate the

Display Path Calc Time
«Requirement»

ID = DS32

The system should be
able to display the
amount of time taken
to calculate the path

Display Magnetic Map
«Requirement»

ID = DS11

The system should be
able to display the
extrapolated
magnetic field map of

Display Physical Map
«Requirement»

ID = DS12

The system should
be able to display
the 2D top view
physical obstacle
map of the region

Display Predicted Path
«Requirement»

ID = DS21

The system should be
able to display the
path to be taken by
the TurtleBot

DSGeneralReqsDiag

Page 1 of 1

Figure 51: Requirement Diagram: Display

55

Digital Twin of an Indoor Navigation System

Magnetic Mapping Requirements

ID Name Description

MM Magnetic Map Requirements The system should be able to estimate the magnetic
field of the region

MM1 Functional Requirements The system should be able to accurately extrapolate
the magnetic field of the region

MM11 Extrapolate Mag Field Joint Model The system should be able to extrapolate the
field of the region using a single, joint model

MM12 Extrapolate Mag Field X-axis The system should be able to extrapolate the magnetic
field of the region along the x-axis using individual model

MM13 Extrapolate Mag Field Y-axis The system should be able to extrapolate the magnetic
field of the region along the y-axis using individual model

MM14 Extrapolate Mag Field Z-axis The system should be able to extrapolate the magnetic
field of the region along the z-axis using individual model

MM2 Verification Requirements The system should be able to verify the extrapolated
magnetic field

MM21 Inst Mag Field The system should be able to read the instantaneous
magnetic field values at the current position

Table 6: Requirements Table: Magnetic Mapping

req [Package] MagMapReqs [MMGeneralReqsDiag]

MagMap Requirements
«Requirement»

ID = MM

The system should be able to
estimate the magnetic field of the
region

Functional Requirements
«Requirement»

ID = MM1

The system should be able
to accurately extrapolate
the magnetic field of the

Verification Requirements
«Requirement»

ID = MM2

The system should be
able to verify the

Extrapolate Mag Field Joint Model
«Requirement»

ID = MM11

The system should be able to
extrapolate the overall magnetic

Extrapolate Mag Field X-axis
«Requirement»

ID = MM12

The system should be able
to extrapolate the magnetic
field of the region along the

Extrapolate Mag Field Y-axis
«Requirement»

ID = MM13

The system should be
able to extrapolate the

Extrapolate Mag Field Z-axis
«Requirement»

ID = MM14

The system should be
able to extrapolate the

Inst Mag Field
«Requirement»

ID = MM21

The system should be
able to read the
instantaneous magnetic
field values at the

Page 1 of 1

Figure 52: Requirement Diagram: Magnetic Mapping

56

Digital Twin of an Indoor Navigation System

Movement Requirements

ID Name Description

MV Movement Requirements The system should be able to control the movements
of the bot

MV1 Functional Requirements The system should be able to control the individual
aspects of motion of the bot upon command

MV11 Change Direction The system should be able to change the direction in
which the bot is moving along a 360 degree axis

MV12 Decrease Speed The system should be able to decrease the speed of
the bot

MV13 Increase Speed The system should be able to increase the speed of
the bot

MV14 Move Straight The system should be able to get the bot to move in
a straight direction

MV15 Stop The system should be able to stop the motion of the
bot

MV16 Turn Axis The system should be able to rotate the bot around
its central axis

Table 7: Requirements Table: Movement

req [Package] MovementReqs [MVGeneralReqsDiag]

Movement Requirements
«Requirement»

ID = MV

The system should be able to
control the movements of the
TurtleBot

Directional Requirements
«Requirement»

ID = MV2

The system shoule be able
to control the direction in
which the TurtleBot moves

Functional Requirements
«Requirement»

ID = MV1

The system should be able to
control the indicidual aspects of
motion of the TurtleBot upon
command

Move Target
«Requirement»

ID = MV21

The system should
be able to direct the
TurtleBot along a
predefined path to
a destination

Change Direction
«Requirement»

ID = MV11

The system should
be able to change
the direction in
which the TurtleBot
is moving along a

Decrease Speed
«Requirement»

ID = MV12

The system should
be able to decrease
the speed of the
TurtleBot

Increase Speed
«Requirement»

ID = MV13

The system should
be able to increase
the speed of the
TurtleBot

Move Straight
«Requirement»

ID = MV14

The system should
be able to get the
TurtleBot to move in
a straight direction

Stop
«Requirement»

ID = MV15

The system should
be able to stop the
motion of the
TurtleBot

Turn Axis
«Requirement»

ID = MV16

The system should be
able to rotate the
TurtleBot around its
central axis

Page 1 of 1

Figure 53: Requirement Diagram: Movement

57

Digital Twin of an Indoor Navigation System

Path Planning Requirements

ID Name Description

PC Path Calculation Requirements The system should be able to calculate a
path for the bot to follow

PC1 Functional Requirements The system should be able to calculate
paths using various algorithms

PC11 Calculate Path Ast The system should be able to calculate
the path using A* algorithm

PC12 Calculate Path Djk The system should be able to calculate
the path using Dijkstra algorithm

PC13 Calculate Path BFS The system should be able to calculate
the path using BFS algorithm

PC14 Identify Destination The system should be ale to identify the
coordinates of the final destination.

PC15 Identify Location The system should be able to identify
coordinates of its current position

PC2 Directional Requirements The system should be able to control the
direction in which the bot moves

PC21 Move Target The system should be able to direct the bot
along a predefined path to a destination

Table 8: Requirements Table: Path Planning

req [Package] PathCalcReqs [PCGeneralReqsDiag]

Path Calculation Requirements
«Requirement»

ID = PC

The system should be able to
calculate a path for the TurtleBot
to follow

Functional Requirements
«Requirement»

ID = PC1

The system should be
able to calculate paths
using various algorithms

Calculate Path Ast
«Requirement»

ID = PC11

The system should
be able to calculate
the path using A*
algorithm

Calculate Path Djk
«Requirement»

ID = PC12

The system should
be able to calculate
the path using
Dijkstra algorithm

Calculate Path BFS
«Requirement»

ID = PC13

The system should
be able to calculate
the path using BFS
algorithm

Identify Destination
«Requirement»

ID = PC14

The system should
be ale to identify
the coordinates of
the final destination.

Identify Location
«Requirement»

ID = PC15

The system should
be able to identify
coordinates of its
current position

PCGeneralReqsDiag

Page 1 of 1

Figure 54: Requirement Diagram: Path Planning

58

Digital Twin of an Indoor Navigation System

A.2 Use Cases

uc [Package] UseCaseAnalysisPkg [DisplayUCDiag]

Display Use Case Diagram

DisplayUC::DispPa
thFutr

DisplayUC::DispMag
Map

User

ServicesUI

veUI

DisplayUCDiag

Page 1 of 1

(a) Display UC
uc [Package] UseCaseAnalysisPkg [MagMapUCDiag]

Magnetic Map Use Case Diagram

MagMapUC::Ex
trpWhole

MagMapUC::Ext
rpX

MagMapUC::ExtrpZ

MagMapUC::Extrp
Y

User

Sensors

Services

MagMapUCDiag

Page 1 of 1

(b) Magnetic Mapping UC

(c) Movement UC
uc [Package] UseCaseAnalysisPkg [PathCalcUCDiag]

System Boundary Box

PathCalcUC::CalcPat
hAst

PathCalcUC::CalcPat
hBFS

PathCalcUC::CalcPat
hDFS

PathCalcUC::CalcPat
hDjk

PathCalcUC::Identify
Destination

PathCalcUC::Identify
Location

PathCalcUC::GoToDe
st

Services

Sensors

User

Page 1 of 1

(d) Path Planning UC

Figure 55: Use Case Diagrams

59

Digital Twin of an Indoor Navigation System

A.3 Behaviour Diagrams

stm [Block] BotMov_UC [statechart_9]

Idle

SetDirection

Reactions

BotDir();

SetBotState

Reactions

StateBot = BotMo...

evSetDir

SetSpeed

Reactions

MoveSpeed();

statechart_9

Page 1 of 1

(a) Movement State Chart
stm [Block] Display_UC [statechart_4]

Idle

DispMap

Reactions

DisplayMap();

evDisplayMap

statechart_4

Page 1 of 1

(b) Display State Chart
stm [Block] MagCalc_UC [statechart_6]

Idle

MagExtrpMethod

Reactions

CurrentMagVal();

GetCurrentVal

Reactions

MagValExtrpMetho...

statechart_6

Page 1 of 1

(c) Magnetic Mapping State Chart

Figure 56: Behaviour State Chart Diagrams

61

Digital Twin of an Indoor Navigation System

B Code Listings

B.1 Listings for the PE

B.1.1 Magnetometer Connections

Magnetometer
Pin Description Magnetometer

Pin Description

SCK RPi GPIO 2 (SDA) SDA RPi GPIO 3 (SCL)
SC GND SSN GND
AVSS GND DVSS GND
AVDD +5V DVDD +5V
I2CEN +5V

Table 9: RM3100 Pinout

B.1.2 Code to read RM3100 Magnetometer readings

1 import rospy
2 from std_msgs.msg import String
3 from sensor_msgs.msg import MagneticField
4 from rm3100read import read_rm3100
5 import smbus , struct
6 from math import atan2 , pi
7

8 def recast24to32(byte0 ,byte1 ,byte2):
9 # pack 24 bits (3 bytes) into 32 bits byte -type

10 b24 = struct.pack(’xBBB’,byte0 ,byte1 ,byte2)
11

12 # unpack to unsigned long integer
13 uL = struct.unpack(’>L’,b24)[0]
14

15 # this is for 2’s complement signed numbers -
16 # if negative assign sign bits for 32 bit case
17 if (uL & 0x00800000):
18 uL = uL | 0xFF000000
19

20 # repack as 32 bit unsigned long byte -type
21 packed = struct.pack(’>L’, uL)
22 # unpack as 32 bit signed long integer
23 unpacked = struct.unpack(’>l’, packed)[0]
24

25 return unpacked
26

27 def read_rm3100 ():
28 bus = smbus.SMBus (1)
29 address = 0x20
30 rm3100_POLL = 0x00
31 rm3100_CMM = 0x01
32

33 rm3100_Mx2w = 0x24
34

35 bus.write_byte_data(address , rm3100_POLL , 0x00)
36

37 bus.write_byte_data(address , rm3100_CMM , 0b01111001)
38

39 x=[]
40 y=[]
41 z=[]
42

63

Digital Twin of an Indoor Navigation System

43 x_coeff =[-14.45, 2219.57]
44 y_coeff =[-14.20, 7147.13]
45 z_coeff =[14.02 , -20454.22]
46

47 for j in range (100):
48 raw=bus.read_i2c_block_data(address , rm3100_Mx2w , 9)
49 values =[]
50 for i in range(0, 9, 3):
51 data = float(recast24to32(raw[i],raw[i+1],raw[i+2]))
52 values.append(data)
53 x.append(values [0])
54 y.append(values [1])
55 z.append(values [2])
56 x_sum=0
57 y_sum=0
58 z_sum=0
59

60 for i in range (100):
61 x_sum=x_sum+x[i]
62 y_sum=y_sum+y[i]
63 z_sum=z_sum+z[i]
64 x_sum=x_sum /100
65 y_sum=y_sum /100
66 z_sum=z_sum /100
67

68 values =[(x_sum*x_coeff [0] + x_coeff [1]), (y_sum*y_coeff [0] + y_coeff [1]),
69 (z_sum*z_coeff [0] + z_coeff [1])]
70

71 return values
72

73 def mag_vals ():
74 mag_msg=MagneticField ()
75 pub = rospy.Publisher(’magnetic_vals ’, MagneticField , queue_size =10)
76 rospy.init_node(’mag_vals ’, anonymous=True)
77 rate = rospy.Rate (200) # 10hz
78 while not rospy.is_shutdown ():
79 values=read_rm3100 ()
80 mag_msg.magnetic_field.x=values [0]*(10** -9)
81 mag_msg.magnetic_field.y=values [1]*(10** -9)
82 mag_msg.magnetic_field.z=values [2]*(10** -9)
83 heading=atan2(values [0], values [1]) *180/ pi
84 pub.publish(mag_msg)
85 rate.sleep()
86

87 if __name__ == ’__main__ ’:
88 try:
89 mag_vals ()
90 except rospy.ROSInterruptException:
91 pass

64

Digital Twin of an Indoor Navigation System

B.2 Listings for the VE

B.2.1 Unity Listing for Displaying Predicted Path

1 using System.Collections;
2 using System.Collections.Generic;
3 using System.Threading;
4 using System.Net.Sockets;
5 using UnityEngine;
6 using System;
7 using System.Net;
8 using UnityEngine.UI;
9 using System.Text;

10 using UnityEngine.SceneManagement;
11

12

13 namespace RosSharp.RosBridgeClient
14 {
15 public class MyPathSubscriber : UnitySubscriber <MessageTypes.Std.

Int32MultiArray >
16 {
17 public TcpListener server;
18 private LineRenderer line;
19 private Vector3 mousePos;
20 public Material material;
21 private int currLines = 0;
22 private double xc , yc , xp , yp;
23 private bool isMessageReceived = false;
24 private int x, y;
25 private int[] dest;
26 private int[] dest_t = new int [1];
27 string host = "127.0.0.1";
28 int portPathstatus = 52063;
29 float pathstatusfromServer;
30

31 Thread tcpListenerThread;
32

33 protected override void Start ()
34 {
35 base.Start();
36 line = new GameObject("PathLine").AddComponent <LineRenderer >();
37 tcpListenerThread = new Thread (() => ListenForMessages ());
38 tcpListenerThread.Start();
39 }
40

41 private void Update ()
42 {
43 Debug.Log("pathstatus: " + pathstatusfromServer);
44 if (isMessageReceived == true)
45 {
46 ShowLine ();
47 }
48 if (pathstatusfromServer != 1)
49 {
50 line.enabled = false;
51 }
52 if (pathstatusfromServer == 1)
53 {
54 line.enabled = true;
55 }
56 }
57

58 public void ListenForMessages ()
59 {
60

61 try
62 {

65

Digital Twin of an Indoor Navigation System

63 // Set the TcpListener on port 13000.
64 IPAddress localAddr = IPAddress.Parse(host);
65

66 // TcpListener server = new TcpListener(port);
67 server = new TcpListener(localAddr , portPathstatus);
68

69 // Start listening for client requests.
70 server.Start ();
71

72

73 Byte[] bytes = new Byte [1024]; //The byte array containing the
sequence of bytes to decode.

74 String data = null;
75

76 while (true)
77 {
78 using (TcpClient client = server.AcceptTcpClient ())
79 {
80 data = null;
81

82 // Get a stream object for reading and writing
83 NetworkStream stream = client.GetStream ();
84

85 int i; //The number of bytes to decode
86

87 while ((i = stream.Read(bytes , 0, bytes.Length)) != 0)
88 {
89 data = System.Text.Encoding.ASCII.GetString(bytes , 0, i

); // 0 is The index of the first byte to decode.
90 float pathstatusfromRhapsody = (float)Convert.ToDouble(

data);
91

92 pathstatusfromServer = pathstatusfromRhapsody;
93 data = data.ToUpper ();
94

95 byte[] msg = System.Text.Encoding.ASCII.GetBytes(data);
96

97 stream.Write(msg , 0, msg.Length);
98 }
99 // client.Close ();

100 }
101 }
102 }
103 catch (SocketException e)
104 {
105 Debug.LogError(String.Format("SocketException: {0}", e));
106 }
107 finally
108 {
109 server.Stop();
110 }
111 }
112

113 protected override void ReceiveMessage(MessageTypes.Std.Int32MultiArray
message)

114 {
115 Debug.Log("Hello from path");
116 GetPosition(message);//.Ros2Unity ();
117 isMessageReceived = true;
118 }
119

120 private void GetPosition(MessageTypes.Std.Int32MultiArray message)
121 {
122 Debug.Log("Received data " + message.data.Length);
123 dest = message.data;
124 if (dest == dest_t)
125 {

66

Digital Twin of an Indoor Navigation System

126 isMessageReceived = false;
127 }
128 else
129 {
130 dest_t = dest;
131 isMessageReceived = true;
132 }
133

134 }
135

136 void ShowLine ()
137 {
138 createLine(dest.Length);
139 line.SetPosition (0, new Vector3(0, 0.1f, 0));
140 for (int i = 0; i < dest.Length; i++)
141 {
142 x = dest[i] / 117 + 1;
143 y = dest[i] % 117;
144 xc = (float)y / 20 - 1.05;
145 yc = 1.7 - (float)x / 20;
146 Debug.Log("Coordinates for " + i + " are: " + x + " " + y);
147

148 line.SetPosition(i + 1, new Vector3(-(float)yc, 0.1f, (float)xc));
149 }
150 }
151

152 void createLine(int vertices)
153 {
154 line.material = material;
155 line.positionCount = vertices + 1;
156 line.startWidth = 0.05f;
157 line.endWidth = 0.05f;
158 line.useWorldSpace = false;
159 line.numCapVertices = 50;
160 }
161 }
162 }

67

Digital Twin of an Indoor Navigation System

B.3 Listings for the Ss

B.3.1 Listing for Ss: MATLAB

B.3.1.1 Matlab:Rhapsody Interface

1 function [] = rhapsodyInterface(grph ,grd)
2

3 curr=rossubscriber ("/ odom");
4 magn=rossubscriber ("/ magnetic_vals ");
5 [path_pub , path_msg]= rospublisher ("/ path","std_msgs/Int32MultiArray ");
6 [mov_pub , mov_msg]= rospublisher ("/ cmd_vel ");
7

8 dest_x =[-0.04, 1.87, -0.54, 1.26, 2.1, 2.52, 0.52, 1.87, 2.54, 1.87];
9 dest_y =[0.84 , -1.82, 0.94, 0.97, 1.35, 0.89, -1.977, -1.82, -1.023, -1.97];

10 path =[];
11

12 g=grph;
13 A=grd;
14

15 while 1
16 dest=str2double(python(’serv.py’,’52060 ’)) -48;
17 goto=str2double(python(’serv.py’,’52068 ’)) -48;
18 movd=str2double(python(’serv.py’,’52059 ’)) -48;
19 p_algo=str2double(python(’serv.py’,’52056’)) -48;
20 sped=str2double(python(’serv.py’,’52058 ’)) -48;
21 stbt=str2double(python(’serv.py’,’52066 ’)) -48;
22 locz=[curr.LatestMessage.Pose.Pose.Position.X, curr.LatestMessage.Pose.Pose.

Position.Y];
23 if dest
24 sprintf (" Destination is %d", dest)
25 end
26 if p_algo
27 sprintf (" p_algo is %d", p_algo)
28 end
29 if goto
30 sprintf ("Go to dest is %d", goto)
31 end
32 if movd
33 sprintf ("Move Direction is %d", movd)
34 end
35 if sped
36 sped =0.26* sped /5;
37 sprintf (" Speed is %d", sped)
38 end
39 if stbt
40 sprintf (" State of bot is %d", stbt)
41 end
42

43 if dest & p_algo
44 destn=[dest_x(dest), dest_y(dest)];
45 path=planning(g,A,p_algo ,locz ,destn);
46 path_msg.Data=path;
47 send(path_pub ,path_msg);
48 end
49

50 if goto == 1
51 GoToDest(path ,destn);
52 disp("Going to dest");
53 end
54

55 if stbt == 1
56 if sped
57 if movd == 1
58 mov_msg.Linear.X=sped;
59 send(mov_pub ,mov_msg);
60 disp("Move fwd");

68

Digital Twin of an Indoor Navigation System

61 elseif movd == 4
62 mov_msg.Linear.X=-sped;
63 send(mov_pub ,mov_msg);
64 disp("Move bck");
65 end
66 else
67 mov_msg.Linear.X=0;
68 send(mov_pub ,mov_msg);
69 disp("No speed");
70 end
71 if movd == 2
72 mov_msg.Angular.Z=0.1;
73 send(mov_pub ,mov_msg);
74 disp(" Rotate left");
75 elseif movd == 3
76 mov_msg.Angular.Z=-0.1;
77 send(mov_pub ,mov_msg);
78 disp(" Rotate right");
79 end
80

81 else
82 mov_msg.Linear.X=0;
83 mov_msg.Angular.Z=0;
84 send(mov_pub ,mov_msg);
85 disp("Stop");
86 end
87

88 if getmag == 1
89 disp(" Magnetic Field Values: X: %f Y: Z: ",magn.LatestMessage.

MagneticField_.X,magn.LatestMessage.MagneticField_.Y,magn.LatestMessage.
MagneticField_.Z)

90 end
91

92 pause (0.5);
93 end
94

95 end

Python Code: serv.py

1 import socket
2 import sys
3

4 HOST = ’127.0.0.1 ’ # Standard loopback interface address (localhost)
5

6 def get_data(port):
7 with socket.socket(socket.AF_INET , socket.SOCK_STREAM) as s:
8 s.bind((HOST , port))
9 s.listen ()

10 conn , addr = s.accept ()
11 with conn:
12 data = conn.recv (1024)
13 return data [0]
14

15 if __name__ == ’__main__ ’:
16 prt = float(sys.argv [1])
17 x=str(get_data(int(prt)))
18 sys.stdout.write(x)

B.3.1.2 Path Planning

1 function [new_path] = planning(graph ,grd ,algo ,currp ,dest)

69

Digital Twin of an Indoor Navigation System

2

3 nav_algo=algo;
4

5 c_loc=currp;
6 d_loc = dest;
7

8 y_w_limits =[-3.4, 1.7];
9 x_w_limits =[-1.05 ,4.75];

10 res =20;
11 pth =[];
12 c_pos=[round (((y_w_limits (2)-c_loc (2))*res)) round (((c_loc (1)-x_w_limits (1))*res))

];
13 d_pos=[round (((y_w_limits (2)-d_loc (2))*res)) round (((d_loc (1)-x_w_limits (1))*res))

];
14

15 c_p=(c_pos (1) -1)*117+ c_pos (2);
16 d_p=(d_pos (1) -1)*117+ d_pos (2);
17

18 if nav_algo == 1
19 path = shortestpath(graph ,c_p ,d_p ,’Method ’,’unweighted ’); %BFS
20 elseif nav_algo == 2
21 path = shortestpath(graph ,c_p ,d_p ,’Method ’,’positive ’); %Dijkstra
22 elseif nav_algo == 3
23 pth = AStar(1,c_pos ,d_pos ,grd);
24 path=flip(pth);
25 elseif nav_algo == 4
26 pth = AStar(2,c_pos ,d_pos ,grd);
27 path=flip(pth);
28 end
29

30 path1=path;
31 curp=path1 (1);
32

33 new_path=curp;
34

35 for i=path1
36 a = [(floor(curp /117) +1) mod(curp ,117)];
37 b = [(floor(i/117) +1) mod(i,117)];
38

39 if (a(1) == b(1)) || (a(2) == b(2))
40

41 else
42 curp=path1(find(path1==i) -1);
43 new_path =[new_path curp];
44 end
45 end
46 new_path =[new_path path1(end)];
47 end

B.3.1.3 A* Code

1 function [path] = AStar(heur ,start , dest , Grid)
2 % clc; clear all;
3 % clear classes;
4 cost =1;
5 Found=false;
6 Resign=false;
7 grid=Grid;
8 init=start;
9 goal=dest;

10 path =[];
11 if heur ==1
12 Heuristic=CalculateEuclidian(grid ,goal); %Calculate the Heuristic
13 elseif heur ==2
14 Heuristic=CalculateManhattan(grid ,goal); %Calculate the Heuristic
15 end
16

70

Digital Twin of an Indoor Navigation System

17 ExpansionGrid (1: size(grid ,1) ,1:size(grid ,2)) = -1; % to show the path of expansion
18 ActionTaken=zeros(size(grid)); %Matrix to store the action taken to reach that

particular cell
19 %how to move in the grid
20 delta = [-1, 0; % go up
21 0, -1; % go left
22 1, 0; %go down
23 0, 1]; % go right
24

25

26 for i=1: size(grid ,1)
27 for j=1: size(grid ,2)
28 gridCell=search ();
29 if(grid(i,j) >5)
30 gridCell=gridCell.Set(i,j,1,Heuristic(i,j));
31 else
32 gridCell=gridCell.Set(i,j,0,Heuristic(i,j));
33 end
34 GRID(i,j)=gridCell;
35 clear gridCell;
36 end
37 end
38 Start=search ();
39 Start=Start.Set(init (1),init (2),grid(init (1),init (2)),Heuristic(init (1),init (2)));
40 Start.isChecked =1;
41 GRID(Start.currX ,Start.currY).isChecked =1;
42 Goal=search ();
43 Goal=Goal.Set(goal (1),goal (2),grid(goal (1),goal (2)) ,0);
44

45 OpenList =[Start];
46 ExpansionGrid(Start.currX ,Start.currY)=0;
47 small=Start.gValue+Start.hValue;
48 count =0;
49 while(Found==false || Resign == false)
50 small=OpenList (1).gValue+OpenList (1).hValue+cost;
51 for i=1: size(OpenList ,2)
52 fValue=OpenList(i).gValue+OpenList(i).hValue;
53 if(fValue <=small)
54 small=fValue;
55 ExpandNode=OpenList(i);
56 OpenListIndex=i;
57 end
58 end
59 OpenList(OpenListIndex)=[];
60 ExpansionGrid(ExpandNode.currX ,ExpandNode.currY)=count;
61 count=count +1;
62

63 for i=1: size(delta ,1)
64 direction=delta(i,:);
65 if(ExpandNode.currX+ direction (1) <1 || ExpandNode.currX+direction (1)>size(

grid ,1)|| ExpandNode.currY+ direction (2) <1 || ExpandNode.currY+direction (2)>
size(grid ,2))

66 continue;
67 else
68 NewCell=GRID(ExpandNode.currX+direction (1),ExpandNode.currY+direction

(2));
69

70 if(NewCell.isChecked ~=1 && NewCell.isEmpty ~=1)
71 GRID(NewCell.currX ,NewCell.currY).gValue=GRID(ExpandNode.currX ,

ExpandNode.currY).gValue+cost;
72 GRID(NewCell.currX ,NewCell.currY).isChecked =1; %modified line from

the v1
73 OpenList =[OpenList ,GRID(NewCell.currX ,NewCell.currY)];
74 ActionTaken(NewCell.currX ,NewCell.currY)=i;
75 end
76

77 if(NewCell.currX==Goal.currX && NewCell.currY==Goal.currY && NewCell.

71

Digital Twin of an Indoor Navigation System

isEmpty ~=1)
78 Found=true;
79 Resign=true;
80 disp(’Search Successful ’);
81 GRID(NewCell.currX ,NewCell.currY).isChecked =1;
82 ExpansionGrid(NewCell.currX ,NewCell.currY)=count;
83 GRID(NewCell.currX ,NewCell.currY)
84 break;
85 end
86 end
87 end
88 if(isempty(OpenList) && Found== false)
89 return;
90 end
91 end
92

93 X=goal (1);Y=goal (2);
94

95 while(X~=init (1)|| Y~=init (2))
96 x2=X-delta(ActionTaken(X,Y) ,1);
97 y2=Y-delta(ActionTaken(X,Y) ,2);
98 path(end +1)=(x2 -1)*size(grid ,2)+y2;
99 X=x2;

100 Y=y2;
101 end
102

103 end

1 classdef search
2

3 properties
4 gValue;
5 currX;
6 currY;
7 isEmpty;
8 isChecked;
9 hValue;

10 end
11

12 methods
13 function obj=search ()
14 obj.currX =0;
15 obj.currY =0;
16 obj.gValue =0;
17 obj.isEmpty =0;
18 obj.isChecked =0;
19 obj.hValue =0;
20 end
21

22 function obj=Set(obj ,X,Y,EmptyStatus ,heuristic)
23 obj.currX=X;
24 obj.currY=Y;
25 obj.isEmpty=EmptyStatus;
26 obj.hValue=heuristic;
27 end
28

29 end
30 end

Euclidian Distance

1 function [Heuristic]= CalculateEuclidian(grd ,goal)
2 Heuristic=zeros(size(grd));
3 for i=1: size(grd ,1)
4 for j=1: size(grd ,2)
5 Heuristic(i,j)=sqrt((i-goal (1))^2+(j-goal (2))^2);
6 end

72

Digital Twin of an Indoor Navigation System

7 end
8 end

Manhattan Distance

1 function [Heuristic]= CalculateManhattan(grd ,goal)
2 Heuristic=zeros(size(grd));
3 for i=1: size(grd ,1)
4 for j=1: size(grd ,2)
5 Heuristic(i,j)=(i-goal (1))+(j-goal (2));
6 end
7 end
8 end

B.3.1.4 Motion Control of TB3

1 function [] = GoToDest(path ,d_loc)
2

3 subscriber.loc=rossubscriber ("/ odom");
4 subscriber.scan=rossubscriber ("/ scan");
5 publisher.mov=rospublisher ("/ cmd_vel ");
6 [path_pub , path_msg]= rospublisher ("/ path","std_msgs/Int32MultiArray ");
7 path_msg.Data=path;
8 send(path_pub ,path_msg);
9 yahaan=subscriber.loc.LatestMessage.Pose.Pose;

10 mov_msg=rosmessage(publisher.mov);
11 x_w_limits =[-1.05 ,4.75];
12 y_w_limits =[-3.4 ,1.7];
13 res =20;
14 y_coor =[round(yahaan.Position.X*100) /100 round(yahaan.Position.Y*100) /100];
15 y_c=[round (((y_w_limits (2)-y_coor (2))*res)) round (((y_coor (1)-x_w_limits (1))*res))

];
16 res =20;
17 pos =1;
18 req_pos =1;
19 new_path=path (2:end);
20 i=new_path (2);
21 while (y_coor < 0.95* d_loc) | (y_coor > 1.05* d_loc)
22 for i=new_path
23 pause (1)
24 scan=subscriber.scan.LatestMessage.Ranges;
25 yahaan=subscriber.loc.LatestMessage.Pose.Pose;
26 y_coor =[round(yahaan.Position.X*100) /100 round(yahaan.Position.Y*100) /100];
27 y_c=[round (((y_w_limits (2)-y_coor (2))*res)) round (((y_coor (1)-x_w_limits (1)

)*res))];
28

29 dest_coor =[(floor(i/117) +1) mod(i,117)];
30

31 if dest_coor (1) > y_c(1)
32 req_pos =3;
33 elseif dest_coor (1) < y_c(1)
34 req_pos =2;
35 elseif dest_coor (2) > y_c(2)
36 req_pos =1;
37 elseif dest_coor (2) < y_c(2)
38 req_pos =4;
39 end
40 theta=atan2(yahaan.Orientation.X*yahaan.Orientation.Y+yahaan.Orientation.W*

yahaan.Orientation.Z,0.5- yahaan.Orientation.Y^2-yahaan.Orientation.Z^2) *180/ pi;
41

42 if theta >-1 && theta <1
43 pos =1;
44 elseif theta >89 && theta <91
45 pos =2;
46 elseif theta >-91 && theta <-89
47 pos =3;
48 elseif theta >179 && theta <180 && theta >-180 && theta <-179

73

Digital Twin of an Indoor Navigation System

49 pos =4;
50 end
51

52 poses =[0 89 -91 179];
53 if pos~= req_pos
54 while round(theta) ~= poses(req_pos)
55 mov_msg.Angular.Z=0.08;
56 send(publisher.mov ,mov_msg);
57 yahaan=subscriber.loc.LatestMessage.Pose.Pose;
58 theta=atan2(yahaan.Orientation.X*yahaan.Orientation.Y+yahaan.

Orientation.W*yahaan.Orientation.Z,0.5- yahaan.Orientation.Y^2-yahaan.
Orientation.Z^2) *180/ pi;

59 end
60 mov_msg.Angular.Z=0.0;
61 send(publisher.mov ,mov_msg);
62 end
63

64 if y_c (1)~= dest_coor (1)
65 temp_d = 1;
66 elseif y_c(2)~= dest_coor (2)
67 temp_d = 2;
68 end
69

70 while (y_c(temp_d)~= dest_coor(temp_d))
71 yahaan=subscriber.loc.LatestMessage.Pose.Pose;
72 scan=subscriber.scan.LatestMessage.Ranges;
73 y_coor =[round(yahaan.Position.X*100) /100 round(yahaan.Position.Y*100)

/100];
74 y_c=[round (((y_w_limits (2)-y_coor (2))*res)) round (((y_coor (1)-

x_w_limits (1))*res))];
75 while lidarstop(scan)==1
76 scan=subscriber.scan.LatestMessage.Ranges;
77 mov_msg.Linear.X=0.00;
78 send(publisher.mov ,mov_msg);
79 end
80 %%start movement
81 if dest_coor(temp_d) ~= y_c(temp_d)
82 mov_msg.Linear.X=0.05;
83 send(publisher.mov ,mov_msg);
84 end
85 end
86 mov_msg.Linear.X=0.0;
87 send(publisher.mov ,mov_msg);
88 end
89 end
90 mov_msg.Linear.X=0.0;
91 send(publisher.mov ,mov_msg);
92 end

74

Digital Twin of an Indoor Navigation System

B.3.2 Listing for Ss: Python

B.3.2.1 Gaussian Regression Code

1 import scipy.io
2 import numpy as np
3 import pandas as pd
4 import matplotlib.pyplot as plt
5 from mpl_toolkits.axes_grid1 import make_axes_locatable
6 from IPython.display import display , clear_output
7 import GPy
8 from server1 import serv_mag , serv_disp
9

10 mat = scipy.io.loadmat(’Data/data_04_06b.mat’)
11

12 def intersection(lst1 , lst2):
13 lst3 = [value for value in lst1 if value in lst2]
14 return lst3
15

16

17 # Assign the data from mat file
18 magnetic_field=mat[’mag’]
19 xz_train=mat[’xz_m’][0]
20 yz_train=mat[’yz_m’][0]
21 x_train=mat[’x_m’][0]
22 y_train=mat[’y_m’][0]
23 x_test=mat[’x_test_m ’][0]
24 y_test=mat[’y_test_m ’][0]
25

26 train_mag_x=np.zeros(len(x_test))
27 train_mag_y=np.zeros(len(x_test))
28 train_mag_z=np.zeros(len(x_test))
29

30 mag_x=magnetic_field [0][0][0][0]*10**6
31 mag_y=magnetic_field [0][0][1][0]*10**6
32 mag_z=magnetic_field [0][0][2][0]*10**6
33 magz =[]
34

35 data_locz ={’X’: xz_train , ’Y’: yz_train ,’Mag_z’: mag_z}
36 data_locx ={’X’: x_train , ’Y’: y_train ,’Mag_x’: mag_x}
37 data_locy ={’X’: x_train , ’Y’: y_train ,’Mag_y’: mag_y}
38 Xx_train=pd.DataFrame(data=data_locx)
39 Xy_train=pd.DataFrame(data=data_locy)
40 Xz_train=pd.DataFrame(data=data_locz)
41

42 # Create training dataframes
43 X_train_z=Xz_train.groupby ([’X’,’Y’]).mean()
44 X_train_z=X_train_z.reset_index ()
45 X_train_x=Xx_train.groupby ([’X’,’Y’]).mean()
46 X_train_x=X_train_x.reset_index ()
47 X_train_y=Xy_train.groupby ([’X’,’Y’]).mean()
48 X_train_y=X_train_y.reset_index ()
49

50 for i in range(len(X_train_x)):
51 index=intersection(X_train_z.index[X_train_z[’X’]== X_train_x[’X’][i]]. tolist (),

X_train_z.index[X_train_z[’Y’]== X_train_x[’Y’][i]]. tolist ())[0]
52 magz.append(X_train_z[’Mag_z ’][index])
53

54 data_loc ={’X’: X_train_x[’X’], ’Y’: X_train_x[’Y’],’Mag_x ’: X_train_x[’Mag_x ’],’
Mag_y ’: X_train_y[’Mag_y’],’Mag_z ’: magz}

55 data_locz ={’X’: X_train_x[’X’], ’Y’: X_train_x[’Y’], ’Mag_z’: magz}
56 X_train=pd.DataFrame(data=data_loc)
57 x_train_z=pd.DataFrame(data=data_locz)
58

59

60 # Create test data frame
61 data_test ={’X’: x_test , ’Y’:y_test}

75

Digital Twin of an Indoor Navigation System

62 X_test=pd.DataFrame(data=data_test)
63

64 # Individual Axes
65

66 # X Axis
67 kern_x = GPy.kern.RBF(input_dim =2, variance =3., lengthscale =1.) + GPy.kern.Bias (1)
68 gpr_x = GPy.models.GPRegression(X_train_x [[’X’,’Y’]]. to_numpy (),X_train_x [[’Mag_x ’

]]. to_numpy (),kern_x)
69

70 gpr_x.optimize ()
71

72 # Y Axis
73 kern_y = GPy.kern.RBF(input_dim =2, variance =0.8, lengthscale =1.) + GPy.kern.Bias (1)
74 gpr_y = GPy.models.GPRegression(X_train_y [[’X’,’Y’]]. to_numpy (),X_train_y [[’Mag_y ’

]]. to_numpy (),kern_y)
75

76 gpr_y.optimize ()
77

78 # Z Axis
79 kern_z = GPy.kern.RBF(input_dim =2, variance =5., lengthscale =1.) + GPy.kern.Bias (1)
80 gpr_z = GPy.models.GPRegression(Xz_train [[’X’,’Y’]]. to_numpy (),Xz_train [[’Mag_z’]].

to_numpy (),kern_z)
81

82 gpr_z.optimize ()
83

84 # Joint Axis Models
85 kern = GPy.kern.RBF(input_dim=2, variance =3., lengthscale =0.2) + GPy.kern.Bias (1)
86 gpr_t = GPy.models.GPRegression(Xt_train [[’X’,’Y’]]. to_numpy (),yt_train [[’Mag_x’,’

Mag_y ’,’Mag_z ’]]. to_numpy (),kern)
87

88 gpr_t.optimize ()
89

90 # Predict the data
91 predict_x=gpr_x.predict(X_test.to_numpy ())
92 predict_y=gpr_y.predict(X_test.to_numpy ())
93 predict_z=gpr_z.predict(X_test.to_numpy ())
94 predict = gpr_t.predict(X_test.to_numpy ())
95

96 xpred =[]
97 ypred =[]
98 zpred =[]
99 for i in range(len(predict [:][0])):

100 xpred.append(predict [0][i][0])
101 ypred.append(predict [0][i][1])
102 zpred.append(predict [0][i][2])
103

104 fig1 , (ax1 , ax2) =plt.subplots (1,2, gridspec_kw ={’width_ratios ’: [1 ,2]})
105 cb_x=ax1.scatter(X_train_x[’X’],X_train_x[’Y’],c=X_train_x[’Mag_x’],cmap=’RdYlGn ’)
106 ax1.set_xlabel("X (in m)")
107 ax1.set_ylabel("Y (in m)")
108 ax2.scatter(x_test ,y_test ,c=list(predict_x)[0],cmap=’RdYlGn ’)
109 ax2.set_xlabel("X (in m)")
110 ax2.set_ylabel("Y (in m)")
111 cbx=fig1.colorbar(cb_x)
112 cbx.ax.set_title("\u03BC T")
113 fig1.set_figheight (5)
114 fig1.set_figwidth (15)
115 ax1.set_title("Data Collected")
116 ax2.set_title("Extrapolated Field")
117 fig1.suptitle("X Field",fontsize =20)
118

119 fig2 , (ax3 , ax4) =plt.subplots (1,2, gridspec_kw ={’width_ratios ’: [1 ,2]})
120 cb_y=ax3.scatter(X_train_y[’X’],X_train_y[’Y’],c=X_train_y[’Mag_y’],cmap=’RdYlGn ’)
121 ax3.set_xlabel("X (in m)")
122 ax3.set_ylabel("Y (in m)")
123 ax4.scatter(x_test ,y_test ,c=list(predict_y)[0],cmap=’RdYlGn ’)
124 ax4.set_xlabel("X (in m)")

76

Digital Twin of an Indoor Navigation System

125 ax4.set_ylabel("Y (in m)")
126 cby=fig2.colorbar(cb_y)
127 cby.ax.set_title("\u03BC T")
128 fig2.set_figheight (5)
129 fig2.set_figwidth (15)
130 ax3.set_title("Data Collected")
131 ax4.set_title("Extrapolated Field")
132 fig2.suptitle("Y Field",fontsize =20)
133

134 fig3 , (ax5 , ax6) =plt.subplots (1,2, gridspec_kw ={’width_ratios ’: [1 ,2]})
135 cb_z=ax5.scatter(X_train_z[’X’],X_train_z[’Y’],c=X_train_z[’Mag_z’],cmap=’RdYlGn ’)
136 ax5.set_xlabel("X (in m)")
137 ax5.set_ylabel("Y (in m)")
138 ax6.scatter(x_test ,y_test ,c=list(predict_z)[0],cmap=’RdYlGn ’)
139 ax6.set_xlabel("X (in m)")
140 ax6.set_ylabel("Y (in m)")
141 cbz=fig3.colorbar(cb_z)
142 cbz.ax.set_title("\u03BC T")
143 fig3.set_figheight (5)
144 fig3.set_figwidth (15)
145 ax5.set_title("Data Collected")
146 ax6.set_title("Extrapolated Field")
147 fig3.suptitle("Z Field",fontsize =20)
148

149 fig4 , (ax11 , ax12) =plt.subplots (1,2, gridspec_kw ={’width_ratios ’: [1 ,2]})
150 cb_x=ax11.scatter(X_train[’X’],X_train[’Y’],c=X_train[’Mag_x ’],cmap=’RdYlGn ’)
151 ax11.set_xlabel("X (in m)")
152 ax11.set_ylabel("Y (in m)")
153 ax12.scatter(x_test ,y_test ,c=xpred ,cmap=’RdYlGn ’)
154 ax12.set_xlabel("X (in m)")
155 ax12.set_ylabel("Y (in m)")
156 cbx=fig4.colorbar(cb_x)
157 cbx.ax.set_title("\u03BC T")
158 fig4.set_figheight (5)
159 fig4.set_figwidth (15)
160 ax11.set_title("Data Collected")
161 ax12.set_title("Extrapolated Field")
162 fig4.suptitle("X Field",fontsize =20)
163

164 fig5 , (ax13 , ax14) =plt.subplots (1,2, gridspec_kw ={’width_ratios ’: [1 ,2]})
165 cb_y=ax13.scatter(X_train[’X’],X_train[’Y’],c=X_train[’Mag_y ’],cmap=’RdYlGn ’)
166 ax13.set_xlabel("X (in m)")
167 ax13.set_ylabel("Y (in m)")
168 ax14.scatter(x_test ,y_test ,c=ypred ,cmap=’RdYlGn ’)
169 ax14.set_xlabel("X (in m)")
170 ax14.set_ylabel("Y (in m)")
171 cby=fig5.colorbar(cb_y)
172 cby.ax.set_title("\u03BC T")
173 fig5.set_figheight (5)
174 fig5.set_figwidth (15)
175 ax13.set_title("Data Collected")
176 ax14.set_title("Extrapolated Field")
177 fig5.suptitle("Y Field",fontsize =20)
178

179 fig6 , (ax15 , ax16) =plt.subplots (1,2, gridspec_kw ={’width_ratios ’: [1 ,2]})
180 ax15.scatter(X_train[’X’],X_train[’Y’],c=X_train[’Mag_z ’],cmap=’RdYlGn ’)
181 ax15.set_xlabel("X (in m)")
182 ax15.set_ylabel("Y (in m)")
183 cb_z=ax16.scatter(x_test ,y_test ,c=zpred ,cmap=’RdYlGn ’)
184 ax16.set_xlabel("X (in m)")
185 ax16.set_ylabel("Y (in m)")
186 cbz=fig6.colorbar(cb_z)
187 cbz.ax.set_title("\u03BC T")
188 fig6.set_figheight (5)
189 fig6.set_figwidth (15)
190 ax15.set_title("Data Collected")
191 ax16.set_title("Extrapolated Field")

77

Digital Twin of an Indoor Navigation System

192 fig6.suptitle("Z Field",fontsize =20)
193

194

195 method=serv_mag () -48
196 show_map=serv_disp () -48
197

198 if method ==1:
199 if show_map ==2:
200 display(fig1)
201 if show_map ==3:
202 display(fig2)
203 if show_map ==4:
204 display(fig3)
205 if method ==2:
206 if show_map ==2:
207 display(fig4)
208 if show_map ==3:
209 display(fig5)
210 if show_map ==4:
211 display(fig6)

B.3.2.2 Server Codes for interaction with Rhapsody

1 import socket
2

3 def serv_mag ():
4 HOST = ’127.0.0.1 ’ # Local Address
5 PORT = 52064 # Port to listen on for magnetic extrapolation method
6 with socket.socket(socket.AF_INET , socket.SOCK_STREAM) as s:
7 s.bind((HOST , PORT))
8 s.listen ()
9 conn , addr = s.accept ()

10 with conn:
11 data = conn.recv (1024)
12 return data [0]
13

14 def serv_disp ():
15 HOST = ’127.0.0.1 ’ # Local Address
16 PORT = 52063 # Port to listen on for display
17 with socket.socket(socket.AF_INET , socket.SOCK_STREAM) as s:
18 s.bind((HOST , PORT))
19 s.listen ()
20 conn , addr = s.accept ()
21 with conn:
22 data = conn.recv (1024)
23 return data [0]

78

	Abstract
	List of Abbreviations
	List of Figures
	List of Tables
	Introduction
	Digital Twin(dt) and cps
	Problem Definition and Goal
	Scope of the project
	Research Questions
	System Context
	Digital Twin using mdse approach

	Background Information
	Digital Twin model
	Magnetic Field Mapping
	Path Finding Algorithms
	Equipment/Tools Used
	pe Equipment
	ve Tools
	ss Tools
	cn Tools

	Methodology
	SYSMOD
	triz Analysis
	Requirements Analysis
	TRIZ contradictions and solutions
	System Context
	Use Cases
	Architecture of the system
	Behaviour diagrams
	Functional Analysis
	Conceptual Models of Individual Components

	ve Component
	Forming the virtual replication of the indoor region
	Displaying the planned path

	pe Component
	Integrating RM3100 with the TurtleBot

	ss Component
	Physical Map
	Magnetic Field Mapping
	Planning the path
	Move to destination

	Implementation
	Rhapsody GUI
	Path Planning
	Visualizing Path on ve

	Magnetic Field Mapping
	Individual Axis
	Joint Model

	TruckLab Implementation
	Path Planning
	Obstacle Detection
	Magnetic Field Mapping

	Evaluation
	Evaluation of path planning
	Memory Requirement
	Timing Characteristics

	Evaluation of magnetic field extrapolation
	Individual Axis Model
	Joint Model

	Assessment of magnetic field extrapolation

	Discussion
	Research Questions
	RQ1 How to map magnetic fields of a region on a low resource device?
	RQ2 Which navigation algorithm is optimal in an indoor environment?
	RQ3 How feasible is it to use both magnetic fields and LIDAR for indoor navigation?

	Project Constraints

	Conclusions
	Bibliography
	Appendix SYSMOD Steps
	Requirements Analysis
	Use Cases
	Behaviour Diagrams

	Appendix Code Listings
	Listings for the pe
	Magnetometer Connections
	Code to read RM3100 Magnetometer readings

	Listings for the ve
	Unity Listing for Displaying Predicted Path

	Listings for the ss
	Listing for ss: MATLAB
	Listing for ss: Python

