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Abstract

In n-player simultaneous-move games, the exponential growth of the search tree is amplified: the
size of the joint action space is the product of the individual action spaces. Even for just a few play-
ers, the size of the action space might impede tree search algorithms from exploring deeper levels
under realistic sample limits. This challenge necessitates striking a balance in-between exploring
all the combinations of the actions and ignoring other players’ moves. One way to mitigate this ex-
ponential growth, applied in Paranoid Search, is assuming specific types of opponent models that
allow for highly e↵ective search tree pruning, even if those models are often incorrect. Another way
to alleviate this rapid growth, utilized in Progressive Widening, is modifying the selection policy
to progressively increase the number of considered actions with the number of visits, enabling the
search tree to explore levels at a greater depth. In this thesis, we combine both methodologies
and present a novel planning algorithm called Attention-Guided Simultaneous-Move Monte Carlo
Tree Search (AG-SM-MCTS). In particular, we build accurate opponent models that estimate
opponents’ influence and leverage them afterward to modify the sampling policy and prune the
search tree. To the best of our knowledge, this is the first work that uses opponent models to
improve both learning and planning in multi-player general-sum simultaneous-move games. We
demonstrate that our method can yield a more skilled player, paving the way to incorporate our
approach into generic meta-training frameworks, such as Expert Iteration.

Keywords: multi-agent reinforcement learning, deep learning, Simultaneous-Move Monte Carlo
Tree Search, multi-player general-sum simultaneous-move games, attention mechanism.
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Chapter 1

Introduction

Planning is a fundamental ability of the human mind, allowing human beings to operate in complex
and dynamic environments. Indeed, many studies, such as [77, 46], suggest that such behaviors
may emerge from building a predictive model that is continuously updated with new experiences
to simulate the response of the environment. Motor planning and goal-oriented driving tasks, to
name a few, are exemplars of such a learning process, where the predictive model is used to plan a
collision-free movement trajectory [46], guided by a reward that assess how an action contributes
to achieving the goal. Moreover, should the environment in which the human operates in contain
other entities, such as other humans, the human brain has to model those di↵erent actors to
behave flexibly. These entities are called opponents, where an opponent does not necessarily hold
malicious intent; rather, it is merely another entity, running in the same environment [11].

1.1 Motivation

One approach to take opponents into account is to presume optimal behavior thereof. Afterward,
one can find a safe strategy to minimize what is defined as a failure and act accordingly. However,
even the most skilled and intelligent human beings, as well as other types of agents, make mistakes
that could be exploited, indicating that modeling other actors in the environment may prove
beneficial. In other words, instead of relying on unrealistic assumptions, such as full opponent
rationality, we build statistical models of opponents based on their observed behavior. This
notion of modeling other entities to exploit their strategies is known as Opponent Modeling (OM).
In short, opponent modeling is an opportunity: the agent’s decision-making process could be
improved should more information about its opponents be provided [11].

Sampling-based planning, the use of statistics obtained via sampling to select the best action at
each timestep, has been proven successful in many sequential-move complex games, such as Poker
[27], Chess, and Go [72]. Opponent models could be incorporated into sampling-based planning
algorithms and built by a wide variety of approaches, including Multi-agent Reinforcement Learn-
ing. Multi-Agent Reinforcement Learning (MARL) o↵ers a way to learn behaviors through trial
and error, guided by a reward based on the goal [31]. Furthermore, the rise of Neural Networks
(NNs), biologically-inspired statistical models, as very powerful universal function approximators
has opened new horizons for many complex MARL tasks. Combining sampling-based planning
methods with Multi-Agent Deep Reinforcement Learning (MADRL) and opponent models holds
considerable promise of solving complicated sequential decision-making problems, as shown in the
first computer program that has beaten the world’s best Go players [4]: AlphaZero [72].

However, little attention has been paid to multi-player general-sum simultaneous-move envir-
onments, leaving much room for improvement. In multi-player general-sum simultaneous-move
environments, the action space grows exponentially with the number of agents, the sum of the
rewards does not necessarily equal zero, and the players choose an action simultaneously at each
timestep. This narrow focus could be potentially explained by the ubiquity of using board games,
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CHAPTER 1. INTRODUCTION

which are primarily sequential-move environments, as testbeds for evaluating planning and learn-
ing algorithms. Moreover, many theoretical guarantees for sampling-based planning methods, such
as converging to a Nash equilibrium, do not hold in multi-player general-sum simultaneous-move
games. In fact, even solving two-player zero-sum simultaneous-move games is quite challenging
[17].

One way to utilize opponent models in multi-player general-sum simultaneous-move environ-
ments is to leverage the attention mechanism to reduce the branching factor. In particular, we
prioritize opponents’ actions based on opponents’ estimated importance. For example, a football
player can decide their next action based on their opponents’ (i.e., their team and the competing
team) possible moves. Concretely, they might advert more attention to closer players and plan
over their actions extensively while paying less attention to farther opponents. The idea of estim-
ating the importance of a component via the attention mechanism has been studied extensively in
many Artificial Intelligence (AI) fields, such as Natural Language Processing (NLP) and Computer
Vision (CV). However, it still has not been completely elucidated in RL.

1.2 Problem statement

Recent works, such as multi-player AlphaZero [61], have been applied to many multi-player se-
quential tasks, such as board games, but did not tackle the problem of having a large number of
opponents whose moves should be explored. This challenge is further amplified when the actions
are simultaneous, as even one lookahead step would require searching a vast action space. For
instance, if the multi-agent system consists of ten agents and the cardinality of the action set for
each agent is ten, then we might need to consider all the possible combinations of those actions,
which amounts to 1010. To put the complexity of such systems into perspective, the average num-
ber of legal moves (i.e., the branching factor) of Chess is approximately 31, which is much smaller
than relatively simple simultaneous-move games such as Pommerman [63], whose branching factor
is 1296. Therefore, our main research question is the following:

Could opponent models be exploited to improve learning and planning performance

in multi-player general-sum simultaneous-move games?

Specifically, we aim to answer the following subquestions:

• Assuming the availability of opponents’ moves during learning, how can we learn opponent
models?

• Given opponent models, whether they were provided or learned, how can they be exploited
to search at a greater depth?

1.3 Related work

The literature on sampling-based planning has been on the rise in recent years to the extent that
even enumerating relevant surveys, such as [18, 93], becomes di�cult. This rapid growth can be
attributed to the rise of computing power and the ubiquity of multi-agent systems, as most real-
world problems are multi-agent by definition. For our purposes, we focus on search tree pruning
methods that either use opponent models or modify the sampling distribution, as we combine both
in our work.

Numerous works build opponent models to (hard) prune the search tree by assuming typically
inaccurate opponent models. For instance, Paranoid Search [75] assumes that opponents form a
coalition, making the game two-player and zero-sum, such that classical pruning techniques, such
as Alpha-Beta pruning [74], can be applied. This assumption does not usually hold in practice
but still allows exploration of deeper levels.

Best Reply Search (BRS) [67] follows the same assumption but restricts the moves of the
coalition to the opponent with the strongest move against the agent [14], alleviating the pessimistic
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CHAPTER 1. INTRODUCTION

supposition. However, such a restriction may result in illegal states. BRS+ [23] fixes this issue
if a move ordering function is provided [14]. In particular, opponents whose moves were not the
strongest against the agent opt for their highest order move. In contrast to these methods, we
assume accurate opponent models that could be learned if not provided.

Other methods (soft) prune the search tree by altering the selection policy. First-Play Urgency
(FPU) [84] assigns a constant c to the upper confidence bound of unexplored actions (instead of1),
yielding a better performance should the constant be adequately selected. Progressive Widening
(PW) [22] progressively increases the number of considered actions with the number of visits;
however, it requires a heuristic function to sort the actions; otherwise, actions will be explored
randomly.

Multi-player AlphaZero [61] leverages a neural network to estimate the action probabilities,
which are used to (soft) prune actions in the short run. The use of the estimated action probabilities
to modify the upper confidence bound is known as PUCT (Predictor + upper confidence bound
applied to trees) [49]. However, opponents’ actions are still equally explored. In contrast, our work
modifies progressive widening to incorporate opponent models and explore opponents’ actions
according to their influence on the agent. Additionally, our model learns a move ordering function
from scratch, whereas most previous works, such as [55], hand-craft it.

1.4 Outline

This thesis is arranged as follows. Chapter 2 provides the necessary background for the devel-
opment of our method, discussing Monte Carlo Tree Search and reinforcement learning, which
play a crucial role in our model. Chapter 3 is the core of this thesis, where we introduce the
proposed model and describe its building blocks, starting from altering Simultaneous-Move Monte
Carlo Tree Search to accommodate the estimated opponents’ importance and ending with present-
ing our main contribution: Attention-Guided Simultaneous-Move Monte Carlo Tree Search (AG-
SM-MCTS). Afterward, in Chapter 4, we benchmark our method against the baseline using the
computer game Pommerman [63], showing a significant increase in the score over the baseline,
even when the baseline is enhanced with several state-of-the-art algorithms. Finally, in the last
chapter, Chapter 5, we summarize our findings and discuss potential research directions that could
be pursued further.

Guiding Simultaneous Move Monte Carlo Tree Search via Opponent Models 3



Chapter 2

Background

In this section, we lay the theoretical ground of our work. First, we introduce Monte Carlo
Tree Search (MCTS) as a prominent sampling-based planning technique that could be combined
with numerous learning algorithms. Then, we present an extension of MCTS that accommodates
simultaneous moves: Simultaneous-Move Monte Carlo Tree Search (SMMCTS). Next, we discuss
Reinforcement Learning (RL) as another approach to solving sequential decision-making problems,
where opponent models can be implicitly learned via self-supervised learning. Afterward, we
introduce Neural Networks (NNs) as universal function approximators that could be leveraged
in RL to estimate action probabilities and value functions. Furthermore, we elaborate on two of
the most commonly used NN architectures in RL: Convolutional Neural Networks (CNNs) and
Long Short Term Memory networks (LSTMs). Finally, we describe the attention mechanism, an
emergent algorithm to selectively concentrate on the components of a deep learning model based
on their importance.

The importance of Game Theory (GT), the mathematical study of interaction among decision-
makers [53], has grown exponentially since the second world war [62]. Such growth could be
explained by the applicability of GT in many scientific fields, such as robotics and economics, as
they involve several agents (or players) that interact and a↵ect each other. However, simulating
these real-world scenarios and evaluating any proposed solution can be risky, as it may entail severe
damage that may even lead to life-threatening situations. For example, two men were killed in
Texas due to a malfunction of the Tesla’s autopilot system [1]. Because computer games are easier
to simulate, pose similar challenges to those of real-world tasks, and can be seen as abstracted
versions of real-world scenarios, they are a useful tool to assess any game theory algorithm [62].

To this end, we formalize the mathematical framework we build on. We define a Markov game
G [70] by a tuple (n, H, S, A, P, R, �), where:

• n is the number of agents.

• H is the horizon, which defines the maximum length of an episode.

• S is the set of the joint states.

• A is the set of the joint actions.

• P: S⇥A⇥ S ! [0, 1] is the transition probability function, which represents the probability
of transitioning from state s to state s

0 by taking the joint action a.

• R: S ⇥ A ! R is the reward function, which denotes the immediate rewards the agents
receive by taking a joint action a.

• � is the discount factor, which determines the relative importance of future rewards compared
to immediate rewards.

The game should also satisfy the Markov property; concretely, the probability of transitioning
to a St and obtaining a reward of Rt depends only on the immediately preceding state St�1

and action At�1 [76]. We define a policy (or a strategy) of player i, ⇡i, as a distribution over
actions ⇡i(S) for each state S. A strategy profile ⇧ is a collection of the strategies of the players
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CHAPTER 2. BACKGROUND

⇧ = {⇡1,⇡2, ..,⇡n}. Finally, we define ⇧�i as the strategies in ⇧ excluding the i-th player’s
strategy, ⇡i [62].

Markov games are characterized by several factors, including the number of players [62]. For
our purposes, we assume that we control one player (called the agent), and denote other players as
opponents (i.e., we do not di↵erentiate between teammates and enemies). Furthermore, we assume
that opponents are independent: they do not form teams (also known as a coalition in GT), where
the correlations between these opponent models may warrant modeling them explicitly. Moreover,
we assume that the game is general-sum: the sum of the reward is not necessarily zero. Despite
these restrictions, many computer games and real-world settings comply with this framework.

Now that we have our theoretical framework established, we can investigate the central question
in GT and sequential decision-making in general:

How do we find a “good“ policy?

The most common way, and one of the fundamental concepts in GT, to find a reasonable
strategy is computing a best-response strategy. A best-response strategy for player i given strategy
profile ⇧ is a strategy that maximizes the i-th player’s expected reward. However, the agent is
oblivious of opponents’ strategies, warranting finding best-response strategies for its own best-
response strategy. In particular, we define an ✏-Nash-Equilibrium (NE) as a strategy profile that
satisfies [62]:

8i 2 {1, 2, .., n} : Ri(⇧) + ✏  max⇡0
i
Ri(⇡

0
i
,⇧�i)

where Ri(⇧) is the reward agent i receives according to the strategy profile ⇧ and Ri(⇡0
i
,⇧�i) is

the reward agent i receives if it follows the strategy ⇡
0
i
and the other agents follow the strategy

profile ⇧�i.
Note that if ✏ = 0 (called an exact Nash equilibrium), no agent needs to change its strategy, as

deviating from a Nash equilibrium decreases the expected reward. A sensible approach, then, is to
compute the Nash equilibrium, as rational opponents will not intentionally decrease their reward.
Yet, computing an exact Nash equilibrium is PPAD-complete [57]; thus, most works instead resort
to approximating a Nash equilibrium (i.e., finding a ✏-Nash-Equilibrium (NE)).

Generally, two types of approaches to finding an approximate Nash equilibrium exist in the lit-
erature: abstracting (i.e., simplifying) the game and utilizing sampling-based planning algorithms.
The former methodology is game-specific and cannot be generalized, but has shown success in nu-
merous games, such as Poker [16, 92], nevertheless. Sampling-based planning approaches, in
contrast, are generic and could be applied to any game. However, most sampling-based plan-
ning methods are not guaranteed to converge to a NE when applied to multi-player general-sum
simultaneous-move games [39], although they may still yield strong players [39]. Moreover, finding
a NE might be sensible if no information about opponents is provided, which might not be the
case in many settings.

Thus, finding a NE is cumbersome, overly pessimistic (i.e., assumes fully rational opponents),
or both. This limitation motivates learning a best-response strategy to opponents’ estimated
strategies, which begs the following question: given opponent models, how can we find a corres-
ponding best-response strategy? Furthermore, if the action space is combinatorial, how can we
e↵ectively search opponents’ moves? To answer these questions, we first need to introduce two
approaches that could be used to find a good strategy in general: planning and reinforcement
learning.

Guiding Simultaneous Move Monte Carlo Tree Search via Opponent Models 5



CHAPTER 2. BACKGROUND

2.1 Planning

Human beings do not consider only immediate rewards; rather, they imagine how opponents and
the environment would react to their actions and modify their strategy accordingly. Tree-based
search algorithms are built upon this idea: at every timestep, the root player imagines what the
opponents could do and builds a tree progressively. However, many games have a large action
space and do not finish in 5 or 6 moves. Thus, computers cannot consider all possible sequences of
actions. One way to mitigate this challenge is to expand the tree to a certain level and then apply
an evaluation function that assesses how good a state is. However, this kind of evaluation function
is game-specific and relies on domain knowledge, impeding the usage of such tree-based methods
for an arbitrary game. While many works, such as [14], utilize such domain-dependant evaluation
functions, it is not trivial to invent such functions in many games. This limitation imposes a new
problem: how can the evaluation function be devised? One way to elude this problem in light of
tree search methods is to rely on randomness instead, which is the premise of Monte Carlo Tree
Search (MCTS).

2.1.1 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) [19] is a sampling-based planning approach that relies on ran-
domness by performing Monte Carlo simulations to evaluate a state. Specifically, a (usually
random) policy is used to sample trajectories until a terminal state is reached, for which the re-
ward is computed. Thus, MCTS could be used out-of-the-box without having to hand-craft an
evaluation function. For this purpose, a visit count ns for the corresponding state, a visit count
for each action ns,a, and a value estimate for each action X̄s,a are maintained in each node. A
vanilla MCTS iteration (see Algorithm 1) consists of four steps [19], as follows:

• Selection: at each node, an action is selected to be explored. Numerous ways to select this
action exist in the literature. A simple and e↵ective way is using Upper Confidence Bound
(UCB) [37] which strikes a balance between exploitation and exploration, controlled by an
exploration parameter C. Concretely, the UCB score is defined as follows:

UCB(s, a) = X̄s,a + C

s
log ns

ns,a

(2.1)

where X̄s,a is the online value estimate for an action a at state s, C is the tunable exploration
parameter, ns is the number of times state s has been visited, and ns,a is the number of
times an action a has been selected from state s, so far. For instance, Figure 2.1 depicts a
chosen path (marked in red).

Figure 2.1: MCTS’s selection step, where the red arrows indicate the chosen path. Image repro-
duced from [18].
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• Expansion: if the reached state does not exist in the tree, a new node will be created and
added as a new leaf. Figure 2.2 shows such a case, where the blue arrow points to the new
node.

Figure 2.2: MCTS’s expansion step, where a new child is added to the selected node. Image
reproduced from [18].

• Rollout: to evaluate the new node, a policy is used to select actions to be performed until
a terminal state is reached. Figure 2.3 illustrates how a Monte Carlo simulation is carried
out starting from the new node.

Figure 2.3: MCTS’s rollout step, where we start rolling out from the new node until we reach a
terminal state. Image reproduced from [18].

• Backpropagation: after the rollout, the estimated value is backpropagated through the
path from which the node was reached. In particular, the reward is added to the online value
estimate X̄s,a, and ns and ns,a are increased by one. Figure 2.4 demonstrates which nodes
are updated for the chosen path (marked in red).
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Figure 2.4: MCTS’s backpropagation step, where the value estimate and visit counts of each node
that lay in the chosen path are updated. Image reproduced from [18].

After a predefined number of iterations m, an action from the root node is chosen for the next
timestep. Several mechanisms to choose that action are present in literature [20]. For instance, the
action associated with the max child (the one whose online-estimated value is the highest) could
be selected. Yet, most recent works opt for choosing the child who has been visited the most, as
this kind of selection is more robust compared to the other approaches (which is the reason this
method is sometimes called robust child) [20].

Algorithm 1 Monte Carlo Tree Search (MCTS)

1: procedure MCTS(S)
2: if is terminal(S) then
3: return reward(S)

4: valid actions = valid actions(S)
5: ucbs = UCB(S, valid actions)
6: a = argmax(ucbs) . Selection step
7: next state = step(S, a) . Compute the next state
8: if a 62 children(S) then
9: v = rollout(next state) . Rollout step

10: add child(S, a, v) . Expansion step
11: else

12: v = MCTS(next state)

13: backpropagate(S, v) . Backpropagation step
14: return v

A fundamental problem of vanilla MCTS is the assumption of non-triviality [84]: the presump-
tion that the number of iterations is reasonably larger than the branching factor. Should this
assumption not hold, the tree will be very shallow and barely hold any meaningful estimations.
One of the simplest methods to tackle this problem is First-Play Urgency (FPU) [84]. If the action
a is not visited yet, the equation 2.1 will yield an infinite value, which forces MCTS to explore all
the actions before exploiting any action, even if some actions were promising (i.e., yielded a win).
A constant c could be used instead for unexplored actions [84]: ns,a = 0 ) UCB(S, a) = c. For
instance, a reasonable value of c is 1

n
, where n is the number of the opponents, as it reflects the

assumption that most game states are balanced in terms of winning probability.
While FPU is an intuitive and straightforward approach, it only slightly alleviates the curse of
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dimensionality by guiding MCTS to more promising actions, as it does not change over search time.
In contrast, Progressive Widening (PW) [22] commences by ordering actions according to a move
ordering function and then restricts the selection step to a small number of actions. Thereafter, it
progressively (hence the name) considers more actions as the number of visits increases. Although
it may be counter-intuitive, Wang et al. [83] showed that PW can still boost MCTS’s performance,
even if the actions were ordered randomly [22]. Algorithm 2 shows the PW algorithm, applied to
a state S, where the widening factor C and the widening exponent ↵ are hyperparameters that
control the growth of the search tree.

Algorithm 2 Progressive Widening (PW)

1: procedure PW(S)
2: n = number of visits(S)
3: k = dCn

↵e
4: actions = valid actions(S)
5: sorted actions = sort(actions, f) . f is a move ordering function
6: selected actions = select first(sorted actions, k)
7: ucbs = UCB(S, selected actions)
8: a = argmax(ucbs)
9: return a

Nevertheless, we are back to square one: instead of finding a way to design a state evaluation
function, which was solved using randomness, we need to devise a move ordering function. Learning
this move ordering function using machine learning might be a reasonable approach, and we will
later introduce opponent models for this purpose. Before introducing opponent modeling and
Reinforcement Learning in general, we need to extend MCTS to accommodate simultaneous-move
games, as sequential-move environments are only a subset of the former. In particular, sequential-
move environments are a special case of simultaneous-move environments, where we assume that
only one agent takes an action and the other agents choose the ”no-operation” action (i.e., stand
still).

2.1.2 Simultaneous-Move Monte Carlo Tree Search

MCTS was originally designed for sequential-move games. However, many real-world tasks are
simultaneous, as agents do not wait for each other’s move. MCTS could be modified to accom-
modate simultaneous-move games by considering joint actions instead of a single-player action at
each node. Simultaneous-Move Monte Carlo Tree Search (SMMCTS) [39] was introduced for this
purpose, where each node holds a payo↵ matrix of m dimension (where m is the number of agents)
that represent the estimated reward when specific indices (actions) are chosen. While a variety of
methods can be used to select actions in SM-MCTS, decoupled UCT is the most straightforward
one [39], where each player selects the best action for itself without considering other players’
moves. The UCB score is then computed for each player individually, as follows:

UCBi(S, a) = X̄
i

s,a
+ Ci

s
log ns

ni
s,a

A search iteration in SM-MCTS is very similar to that of MCTS, with only minor modifications
to handle simultaneous moves [39], as shown in Algorithm 3. SM-MCTS, enhanced with PW for
each player, can produce a strong player, but a heuristic function for each player to sort its actions
is still needed. The following section presents the framework of reinforcement learning, in which
opponent models will be learned.
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Figure 2.5: Simultaneous-Move Monte Carlo tree search (SM-MCTS).

Algorithm 3 Simultaneous-move Monte Carlo Tree Search (SM-MCTS)

1: procedure SMMCTS(S)
2: if is terminal(S) then
3: return rewards(S)

4: actions = []
5: for i 2 [1..number of agents] do
6: actions = valid actionsi(S)
7: ucbs = UCBi(S, selected actions)
8: a = argmax(ucbs)
9: actions.append(a)

10: next state = step(S, actions)
11: if actions 62 children(S) then
12: v = rollout(next state)
13: add child(S, actions, v)
14: else

15: v = SMMCTS(next state)

16: backpropagate(S, v)
17: return v
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2.2 Reinforcement Learning

Reinforcement Learning could be defined as learning what to do to maximize a numerical reward
signal [76]. Specifically, the agent learns to choose actions that yield the largest cumulative reward
by interacting with the environment [76]. Beyond the agent and the environment, one can identify
four main subelements of a reinforcement learning system: a policy, a reward signal, a value
function, and a model of the environment [76]. A policy ⇡ is a map from states to actions, and
it may be deterministic or stochastic (i.e., a probability distribution over actions). A reward R is
the immediate evaluation of an action for the goal the agent aims to achieve. Rewards indicate
what is good in an immediate sense; however, we are usually interested in what is good in the long
run [76]. A value function V⇡(S) measures exactly that, namely the expected accumulated reward
starting from a specific state S and following the policy ⇡. Figure 2.6 depicts the interaction
between the agent and the environment, where the agent takes an action At at a timestep t, and
observes a reward Rt+1 and a new state St+1.

Figure 2.6: The interaction between the agent and the environment.

Formally, maximizing the cumulative reward could be framed as solving a Markov Decision
Process (MDP). An MDP is a single-agent Markov game, which is defined by a quadruple (S, H,
A, R, P, �) [76], where S is the set of states, H is the maximum length of an episode (called the
horizon), A is the set of actions, R is the immediate reward function, P is the transition probability
function, and � is the discount factor. The reward and transition probability condition on the
current state, next state, and the chosen action [76]. In particular, R(s, s0, a) denotes the reward
received by taking an action a and transitioning from state s to state s

0, and P (st+1 = s
0|st =

s, at = a) is the probability of moving from state s to state s0 by taking the action a. Furthermore,
all states should satisfy the Markov property: the probability of each possible value for St and Rt

depends only on the immediately preceding state St�1 and action At�1[76]. The discount factor
� determines the relative importance of future rewards for the agent.

Figure 2.7 shows a simple MDP, where S = {”S1”, ”S2”, ”S3”, ”S4”} and each arrow carries a
tuple that indicates the transition probability and the immediate reward, respectively. Generally,
three types of methods could be used to solve an RL problem: value-based approaches, policy-
based approaches, and actor-critic approaches (the combination of value-based and policy-based
approaches).

Figure 2.7: A simple MDP of four states.
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2.2.1 Value-based methods

Value-based methods estimate the value function V (S) or the action-value function Q(S, a), and
use these estimations to select the most promising action. Concretely, let Q⇡(S, a) denote the
expected reward starting from the state s, taking the action a and following the policy ⇡ afterward,
then the Q-function is [76]:

Q⇡(S, a) =
X

s0,r

p(s0, r|s, a)(r + �V⇡(s
0))

Let Q
⇤(S, a) denote the expected cumulative reward obtained by choosing the action a from

state s and, thereafter, following the optimal policy. In that case, the optimal policy can be
computed by taking the action that yields the largest expected reward in all states (i.e., ⇡⇤(S) =
argmax

a
Q

⇤(S, a)). The Q-value iteration algorithm starts from initial Q-values and iteratively
updates the Q-values using the Bellman equation such that the Q-value function converges to Q

⇤

[76]:

Qk+1(S, a) =
X

s0

p(s0|s, a)(R(s, s0, a) + �maxa0Qk(S
0
, a

0))

This iterative algorithm is called Q-learning. Q-learning cannot scale to a large number of
states and actions due to the curse of dimensionality, as the Q-value for each combination of
states and actions needs to be maintained. Worse, if the action or state space is continuous,
the Q-values cannot be tabulated or enumerated. Heeding this limitation, Deep Q-Learning [50]
utilizes a neural network to approximate Q-values, which helps generalize across seen and unseen
states.

2.2.2 Policy-based methods

Instead of computing the value or Q-value functions as a detour to finding a policy, we can try
to directly compute the policy, which o↵ers two advantages. First, computing argmax

a
Q(s, a)

could be computationally expensive for high dimensional action spaces. Second, the policy could
sometimes be simpler to compute than Q-values [9].

Let U(✓) be the expected sum of rewards using the policy ⇡✓ (i.e., the policy is parameterized
by ✓). Then, we are interested in finding the optimal ✓ that maximizes the expected sum of
rewards [9]:

✓
⇤ = argmax

✓
U(✓) = argmax

✓
ET [R(T )] ⇡ argmax

✓

X

T

P (T )R(T )

where T is a trajectory (i.e., a sequence of states and actions) and R(T ) is the sum of rewards for
T .

To find the optimal ✓, we compute the gradient of U(✓) with respect to ✓ and use gradient
ascent [65] afterward. The gradient r✓U(✓) can be estimated via sampling, as follows:

r✓U(✓) ⇡
P

n

i=1 r✓log(P (Ti))R(Ti)

n

where n is the number of sampled trajectories and Ti is the i-th trajectory. The gradient ascent
algorithm will automatically change ✓ such that the probability of trajectories with larger rewards
increases. However, this means that it will still raise the probabilities of trajectories with small
rewards [9]. Instead, we want to decrease the probabilities of those trajectories, even if rewards
are always positive. One way to achieve this is to subtract a baseline b from the reward, which
makes the right-hand side negative if the trajectory’s reward is small [86]. Moreover, subtracting
a baseline may reduce the variance of the gradient estimator [9]. Algorithms that compute this
baseline are called actor-critic methods.
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2.2.3 Actor-critic methods

One very prominent approach that has been very successful in computing the baseline in recent
years is estimating the value function. This wide usage of the value function as a baseline may be
attributed to having fewer degrees of freedom than the Q-function. To reduce the variance even
further, we drop the rewards of previous actions, as older actions should not be considered for
updating the probability of newer actions [9]. Furthermore, the immediate reward for an action
can be approximated by the Q-function evaluated at that action, which might also decrease the
variance [9]. Finally, the same model can be used to approximate both the Q-value and value
functions, as shown by the Bellman equation [76]:

Q(s, a) = E[r0 + �V (s1)|s0 = s, a0 = a]

where only one lookahead step is used, which can be also varied [9].
The function approximator of the value function is called the critic, whereas what updates

the policy based on the critic is called the actor [51]. The di↵erence between the Q-function and
the value function is called the advantage function A(s, a) = Q(s, a) � V (s), as it indicates the
reward obtained by taking that particular action compared to the expectation (i.e., the value of
the value function at state s). Actor-critic approaches could be perceived as a combination of
value-based and policy-based approaches because learning involves estimating both the value and
policy functions. In conclusion, the gradient of U(✓) is computed as follows:

r✓U(✓) ⇡
P

n

i=1

P
H

t=0 r✓ log(P (Ti))A(si
t
, a

i

t
)

n

While this approach could be used for solving many RL problems, it su↵ers from two drawbacks.
First, it only exploits one part of the state space [51], as only one agent is used to interact
with the environment. Second, the gradient ascent updates are correlated, as, once again, only
one worker collects trajectories. To overcome these limitations, Asynchronous Advantage Actor-
critic (A3C) [51] uses multiple workers for exploring the state space to reduce the correlation
between the updates. Specifically, each agent runs on a separate process, and a shared model is
updated asynchronously. Figure 2.8 illustrates the architecture of A3C, where multiple workers
copy the shared model’s parameters before collecting a trajectory and then interact with their
own environment. Afterward, the gradients, computed by gradient ascent, are used to update the
shared model’s parameters.

A3C employs a neural network with two heads (outputs) to estimate the policy and value
functions, which correspond to the probability of the actions and the expected value of the state,
respectively. In particular, the policy head’s output is an n-dimensional vector, where n is the
number of actions, and the value head’s output is a scalar that indicates the expected cumulative
reward starting from the input. Intuitively, the loss function consists then of two terms: a policy
loss function and a value loss function [51], as follows:

L = Lpolicy + Lvalue

However, the model might overfit its world, which might increase the peakedness of the policy
function ⇡ [87]. Thus, an entropy term is usually added to encourage exploration and hinder
the convergence to deterministic policies [87]. Most of the state-of-art RL algorithms, such as
Proximal Policy Optimization (PPO) [68], incorporate a similar term. Hence, the total A3C loss
is defined as follows [33]:

L = Lpolicy + Lvalue + Lentropy

= ��policyEs⇠⇡[R1:1] + �valueEs⇠⇡[(Rt:t+n + �
n
V

⇡(st+n+1)� V
⇡(st))

2]� �entropyEs⇠⇡[H(⇡(s)]

where n is the number of lookahead steps, H(⇡(s)) is the entropy of the policy function, �policy is
the weighting parameter for the policy loss, �value is the weighting parameter for the value loss,
and Ra:b is the discounted accumulated reward between the timesteps a and b.
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Figure 2.8: The A3C architecture, where only three workers are shown for simplicity.
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The very successful single-agent RL algorithms do not perform well when applied to multi-
agent environments, as treating other agents as part of the environment, even if their policies are
stationary, renders the problem non-stationary [29]. Furthermore, the actions of each agent a↵ect
the behavior of the others, and the agent cannot determine whether its actions serve its goal. This
problem is widely known as the credit assignment problem: the agent’s performance is a↵ected by
the environment and behaviors of other agents. These two challenges, namely the non-stationarity
of the environment and credit assignment, have been well-studied in the literature [91, 58] but still
pose a di�culty for multi-agent RL algorithms.

One way to tackle these problems is opponent modeling. Opponent modeling could be used
to ameliorate the agent’s decision-making reasoning [11]. If we assume that opponents’ strategies
are stationary and use opponent models, then finding a (best-response) policy in a multi-agent
environment could be reduced to solving a standard MDP, where single-agent RL algorithms can be
used [30]. Thus, A3C, endowed with opponent models and when opponents’ policies are stationary,
can be used to solve multi-agent problems. Self-supervised learning is a straightforward method
to learn opponent models, where we assume opponents’ actions can be observed. In particular, we
follow the framework of centralized-training-decentralized-execution (CTDE), where the agent can
observe the actions of the other agents during training. In contrast, in the decentralized-training-
decentralized-execution (DTDE) framework, the agent estimates other agents’ actions using only
its observations, as done in works such as [88].

2.2.4 Self-supervised learning

The term self-supervised learning (SSL) is quite overloaded and has been redefined in several
fields. Nevertheless, the core methodology is the same: the automatic generation of supervisory
signals to shape the features of the main model. Or in other words, SSL is defined as training a
supervised model from signals that could be extracted from the task to facilitate representation
learning. In RL, SSL typically takes the form of sharing a common representation between the
main task, which is finding the optimal policy, and one or more auxiliary tasks.

For instance, in [38], uses a separate neural network that shares the same representation of the
observation with the main model to predict game features, such as the existence of an opponent or a
weapon in the current frame. Similarly, two auxiliary tasks were added in UNREAL [33] to improve
representation learning: predicting the next reward giving the last three frames and learning a
separate policy to change pixels maximally. AMFA3C [30], which serves as the backbone of our
model, treats opponent modeling as an auxiliary classification task, where the ground truth is the
action the opponent took. By minimizing the cross-entropy loss [56], the agent can approximate
the policy of the opponent. These methods share the same idea, namely adding an auxiliary loss
function to the original loss function, as follows:

L = LRL + Lauxiliary

For instance, in AMFA3C, the loss function is:

L = LA3C +
mX

i=1

L
i

CE
= LA3C +

mX

i=1

�i(
1

n

nX

j=1

a
j

i
log(âj

i
)])

where m is the number of opponents, n is the number of actions, and �i is the weighting parameter
for opponent i. The e↵ect of incorporating auxiliary tasks in RL is not well understood and seems
to be quite sensitive to the weighting parameters [71], although it could yield promising results
even if those hyperparameters are not thoroughly tuned [71].

2.2.5 Reward shaping

The beforementioned RL formulation and methods presume that the agent receives a dense reward
at each timestep [76]. The sparsity of rewards (i.e., only receiving a reward at the end of the
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episode) may hinder (and even prevent) learning [76], as winning an episode might require the
agent to be very skilled, especially when faced with skilled opponents. Consequently, incorporating
an intrinsic reward, also known as reward shaping [47], encourages exploration and hence expedites
learning [34]. Reward shaping is a very active research area; however, we only focus on novelty-
based intrinsic rewards for our purposes. Curiosity, a form of novelty-based rewards, is inspired by
human infants’ propensity to explore unencountered states, even if no extrinsic reward is obtained
[34]. In discrete state space environments, a curiosity-based reward can be added to the extrinsic
reward if a new state is encountered. In other words, the agent receives a higher reward when it
encounters frequently-less-visited states [34]. In particular, the Bellman equation is modified to
include a curiosity-based reward:

Q(S, a) =
X

s0

p(s0|s, a)(R(s, s0, a) + �maxa0Q(S0
, a

0) +N(s))

where N(S) is the novelty-based reward. Before discussing our main method and contribution, a
brief introduction to two commonly used neural network architectures in RL is vital to grasp our
model.

2.3 Neural Networks

Representation learning is a crucial component in RL, as extracting features from high-dimensional
spaces is complex and cumbersome. Neural Networks (NNs) overcome this limitation by automat-
ically learning key features using backpropagation [66] in a fully di↵erentiable framework. This
section discusses two relevant NN architectures to our work, namely Convolutional Neural Net-
works (CNNs) and Long Short Term Memory Networks (LSTMs). Furthermore, we describe the
attention mechanism, an e↵ective technique to estimate components’ importance.

2.3.1 Convolutional neural network

Convolutional Neural Networks (CNNs) could be the most widely used NN architecture. They
continue to be an omnipresent component in deep learning, especially in computer vision and RL.
This wide usage may be attributed to the ubiquity of data that exhibits spatial dependencies,
which can be captured by CNNs. In RL, the usage of CNNs in the infamous DQN paper [50]
revolutionized the field, as extracting features from raw pixels is not warranted anymore. Instead,
CNNs can gradually capture these features, starting from basic shapes like triangles and squares
to more domain-based features, as the depth of the network increases. Thus, CNNs are almost
universally used in all deep RL applications and provide learning bias in the network architecture
by imputing it with relevant invariances.

A CNN [40] typically consists of three types of layers: convolutional layers, pooling layers, and
fully connected layers. A convolutional layer, the core component of a CNN, contains n filters
(called kernels) that convolve over the input and produce n maps. The weights of those filters
are learned using backpropagation [66]. Sharing the weights of those filters across all the input
patches serves two purposes. First, the number of parameters is drastically reduced. Second, the
local spatial features are e↵ectively extracted because convolution is translation invariant (i.e.,
yields the same results regardless of the input’s shift in space). The output of a convolutional
layer is usually followed by a nonlinear activation function, which helps in approximating any
(measurable) function.

A pooling layer downsamples the input and applies a nonlinear function to input patches,
which makes CNNs more robust to small shifts in the input. Finally, fully connected layers are
then used to estimate the target. For instance, if a CNN were used to classify images, the output
of the fully connected layers would be the probability of each class. In RL, the output is usually
an estimate of the value function V , the policy ⇡, or both. Figure 2.9 shows a simple CNN, where
only one convolutional layer and one pooling layer are used for simplicity.

16 Guiding Simultaneous Move Monte Carlo Tree Search via Opponent Models



CHAPTER 2. BACKGROUND

Figure 2.9: A simple convolutional neural network that consists of a convolutional layer, a pooling
layer, and several fully connected (FC) layers.

2.3.2 Long short term memory network

Long Short Term Memory Networks (LSTMs) [32] are recurrent models capable of learning de-
pendency in sequential data. Similar to CNNs, LSTMs are typically leveraged to learn the policy
or the value functions, with the benefit of taking into account the dependency between the in-
termediate representation of the states. An LSTM (see Figure 2.10) encapsulates the history by
two vectors: the cell vector and the hidden vector. These two vectors are continuously updated
as new inputs are fed to condense the entire history. To do so, an LSTM employs three gates,
where a gate controls the amount of passed information by applying the sigmoid function � [56]
on the input. The first gate is the forget gate, which selects the variables from the cell vector that
should be updated based on the input. Next, an input gate is used to update the cell vector based
on the input. Finally, an output gate is employed to compute the output, often followed by fully
connected layers with an activation function that depends on the purpose of the LSTM (e.g., a
softmax function if a probability distribution is being modeled).

Since the input is only fed unidirectionally, namely from the past to the present, future ob-
servations will not be used. However, humans do use the future to infer the past: we change our
interpretation of speech after hearing new words [28]. A bidirectional LSTM (see Figure 2.11)
o↵ers this capability by feeding the input bidirectionally (i.e., from the past to the present and
from the future to the present), which preserves the information from both the past and the future.
The output vectors of the forward and backward passes are then concatenated.

Figure 2.10: The architecture of a long short term memory network. Image reproduced from [90].
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Figure 2.11: The architecture of a bidirectional LSTM. Image reproduced from [82].

2.3.3 Attention mechanism

Although LSTMs were built to handle long sequential data, the use of only two vectors to represent
an entire sequence (that may be hundreds of items long) might deter LSTMs from accurately
representing long sequences. Instead, all the intermediate hidden states could be used to predict
the outputs. The attention mechanism [13] (see figure 2.12) was invented to address this issue
by assigning di↵erent weights to the inputs to predict the outputs. As its name alludes to, the
attention mechanism allows putting more attention on the more relevant inputs. The canonical
example of applying the attention mechanism is machine translation. Specifically, we need to
pay more attention to the words that a↵ect the output the most. For instance, if the original
sentence in Dutch was “hij is voetbal aan het spelen“, which means he is playing football, then
the model should focus mostly on the word “spelen“ (which means playing) when it predicts the
word “playing“ in English. The attention mechanism can be generalized to any case where the
output is a↵ected by the main vector y and other vectors x1, x2, .., xm.

In essence, the attention mechanism consists of four steps:

• Computing the alignment score: to quantify the attention value, an alignment score is
computed between y and each xi. Numerous methods were proposed in the literature for
computing this score. For instance, the dot product is one of the most common ways to
compute the attention value [85], as follows:

score(y, xi) = (Wsy)
|
Wtxi

where Ws and Wt are learnable weight matrices.

• Normalizing the alignment scores: the alignment scores are absolute, and should these scores
be left unnormalized, the magnitude of the output will change based on the number of
vectors. Thus, the softmax function [56] is used to normalize the scores and turn them into
a categorical probability distribution:

↵i =
e
score(y,xi)

P
m

k=1 e
score(y,xk)

• Computing the output vector: after computing the attention (normalized alignments), the
output vector is computed as a linear combination of the inputs weighted by their respective
attention, as follows [85]:

o =
mX

k=1

↵kWcxk

where Wc is a learnable embedding matrix
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Multi-head soft attention

To allow the model to attend the input from di↵erent representation subspaces [78] and stabilise the
learning process [79], the same computation is repeated with di↵erent weight matricesWh

s
,W

h

t
,W

h

c

[85]. Afterward, the resulting vectors are either averaged or concatenated; we opt for the former
for our purposes. The output vector is then computed as follows (where H is the number of
attention heads):

o =
1

H

HX

i=1

mX

j=1

↵i,jW
i

c
xj

The aforementioned (soft) attention mechanism assigns non-zero attention to all the inputs
[44]. However, we might want to ignore some components, which could be achieved by setting
a threshold upon which only the relevant components are selected. However, we instead learn
to select only a subset of these components as opposed to soft attention, where we select all the
components with di↵erent weights.

Figure 2.12: The attention mechanism [21].

Hard attention

One way to implement hard attention is to assign a Bernoulli random variable for each input and
estimate the success probability p using a neural network. However, this implementation would
result in a non-di↵erentiable model, as backpropagation cannot be used to compute the derivative
of a stochastic node. Still, we reduced our problem down to sampling from a Bernoulli distribution
(i.e., a categorical distribution with two outcomes), which could be tackled by the Gumbel-softmax
trick [35]. The Gumbel-softmax trick separates the stochastic part from the deterministic part by
computing the class probabilities first and then adding noise drawn from the Gumbel distribution.
This reparameterization trick allows the gradient to flow through the neural network, making the
model fully di↵erentiable and, thereby, trainable using backpropagation.
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Figure 2.13 illustrates the di↵erence between soft and hard attention, where soft attention
selects all the pixels with a varying degree of importance, whereas hard attention drops most of
the pixels and only picks the most relevant ones. The combination of soft and hard attention is
quite powerful and of great importance for our work as it allows the models to choose only relevant
components and then estimate their influence.

(a) Original (b) Soft attention (c) Hard attention

Figure 2.13: Soft versus hard attention, where hard attention picks a subset of pixels. Original
image by Giovanna Durgoni [3].
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Chapter 3

Method

In this chapter, we discuss our approach for integrating opponent models with SM-MCTS. We
start by analyzing Pommerman, a computer game that gives rise to several challenges. Then,
we motivate and demonstrate the benefits of our approach when applied to several Pommerman
configurations. Next, we present our neural network model that can learn to estimate the import-
ance of opponents and the action probabilities thereof to sort actions for PW. Finally, we intro-
duce our main contribution that combines SM-MCTS with opponent models: Attention-Guided
Simultaneous-Move Monte Carlo Tree Search (AG-SM-MCTS).

3.1 Motivation

The previously discussed planning techniques can be used as-is for many sequential tasks. However,
the action space could be too large to explore if the actions are simultaneous. For instance, if
the number of valid actions for an agent is ten on average in a game that contains three agents,
then even exploring three levels would be very computationally expensive. In particular, if we set
the number of levels to 3, we would need to explore 1000 + 10002 + 10003 = 1, 001, 001, 000. We
hypothesize that in many cases, most of these actions are irrelevant for the agent, and, sometimes,
some opponents could be completely omitted if they do not significantly a↵ect the agent.

To illustrate this concept further, we use the game named Pommerman as a testbed. Pom-
merman [63] is a deterministic, multi-player, general-sum, and simultaneous-move game that is
inspired by the Atari game Bomberman. The Pommerman environment is an 11⇥ 11 board that
contains four agents that can choose between six actions: moving left, up, right, or down, staying
put, and planting a bomb. A Pommerman game can last for up to 800 timesteps. Each board’s
cell is either a passage, a wooden wall, or a rigid wall.

A passage is an area the agents could move to, whereas a wooden wall can only be passed
across after bombing it. In contrast, a rigid wall is impassable and cannot be demolished. Each
agent can plant a bomb that explodes after ten timesteps, which kills nearby agents and destroys
nearby wooden walls. The agents are also vulnerable to their own planted bombs and can be killed
by them. When a wooden wall is destroyed, three types of power-ups can be revealed: increasing
the number of the bombs the agent possesses, raising the blast range of bombs, and acquiring the
ability to kick bombs.

When the game ends, the last-standing agent receives a reward of 1, whereas dead agents
receive a reward of -1. If the game ends in a tie (i.e., all the agents are dead or more than one
agent is still alive after 800 timesteps), all the agents receive a reward of -1. Without loss of
generality, we assume that we always control the top-left agent because the board can be flipped
otherwise. Figure 3.1 depicts a Pommerman board, where we, from now on, denote the bottom-
left agent as the first opponent, the bottom-right agent as the second opponent, and the top-right
agent as the third opponent.
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Figure 3.1: Pommerman board.

Although the Pommerman environment might seem simple, it poses a wide variety of chal-
lenges, including but not limited to [26]:

• Combinatorial action space: because the action space is large, even considering one lookahead
step is computationally expensive.

• Sparse and deceptive rewards: the agent only receives a reward when the game ends, which
may hamper learning, as it is more challenging for the agent to assess its actions based only
on the final reward. Furthermore, the rewards are deceptive. In particular, the agent could
win by just letting its opponents commit suicide instead of learning how to play.

• Hard exploration: the agent is encouraged not to explore the environment because suc-
cessfully planting a bomb requires various skills, such as evading the flames and cornering
opponents. Additionally, it is not unlikely for the agent to accidentally commit suicide after
planting a bomb.

The second and third problems could be alleviated by shaping the reward, whereas the first
problem is our main motivation for this research. To motivate our solution, we need to recap how
SM-MCTS operates. Figure 3.2 demonstrates how the branching factor could be reduced in two
ways: by reducing actions and by (soft) pruning players.

Reduction of actions could be achieved using PW. However, we still need a way to order op-
ponents’ actions. Estimating opponents’ action probabilities and sorting them by their likelihood
is one way to learn the move ordering functions from scratch. Thus, we use opponent models to
shape the agent’s features and order opponents’ actions.

Pruning opponents is more complicated, as classical search tree reduction algorithms, such
as FPU and PW, were not invented for entirely omitting an opponent. One method to perform
this type of reduction is estimating opponents’ influence on the agent and guide the tree search
accordingly. In particular, we want to direct more attention to the opponents that matter the
most and reduce the branching factor afterward. One approach to implement this idea is to make
the widening exponent, ↵, of PW state-dependent based on the estimated influence. After that,
opponents who a↵ect the agent more will have a higher ↵ than opponents who are less significant
to the agent.
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We investigate three cases to demonstrate how the second type of reduction could prove be-
neficial. Figure 3.3 depicts a Pommerman setting where the agent does not need to plan over
opponents’ actions, as they are too far away to consider. In contrast, Figure 3.4 shows a case
where only one opponent a↵ects the agent remarkably, necessitating planning over its actions.
Finally, Figure 3.5 illustrates a situation where both opponents could kill the agent, meriting
exploring their actions.

Algorithms 4 and 5 demonstrates how SM-MCTS could be modified to accommodate oppon-
ents’ influence where ↵, which controls the growth of the tree, now depends on the state. These
two algorithms work when a model that can estimate opponents’ influence and action probabil-
ities is provided. However, this is not the case for many games. For instance, the influence of
the opponents on the agent in Pommerman is not trivial to estimate, as it could be a complex
combination of many functions, such as the distance and the number of rigid walls between the
agent and the opponent.

Figure 3.2: SM-MCTS types of reduction: opponents reduction and actions reduction.

Figure 3.3: A Pommerman setting the agent does not need to explore opponents’ actions.
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Figure 3.4: A Pommerman setting where the agent should consider the closer opponent.

Figure 3.5: A Pommerman setting where the agent has to plan over all opponents’ actions.

Algorithm 4 State-dependant Progressive Widening

1: procedure SDPW(S,↵, action probabilities)
2: n = number of visits(S)
3: k = dCn

↵e
4: valid actions = valid actions(S)
5: sorted actions = sort(valid actions, action probabilities)
6: selected actions = select first(sorted actions, k)
7: ucbs = UCB(S, selected actions)
8: a = argmax(ucbs)
9: return a
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Algorithm 5 State-dependant Simultaneous-Move Monte Carlo Tree Search

1: procedure SDSMMCTS(S)
2: if is terminal(S) then
3: return rewards(S)

4: actions = []
5: ↵, action probabilities = estimate influence(S)
6: for i 2 [1..number of agents] do
7: a = SDPW(S,↵i, (action probabilities)i)
8: actions.append(a)

9: next state = step(S, actions)
10: if actions 62 children(S) then
11: v = rollout(next state)
12: add child(S, actions, v)
13: else

14: v = SDSMMCTS(next state)

15: backpropagate(S, v)
16: return v

3.2 Proposed model

To estimate opponents’ action probabilities and influence on the agent, We propose the neural
network model depicted in Figure 3.7, which consists of three modules. First, the features extractor
(a CNN) that extracts key features from raw observations. Second, an agent module that models
the action probabilities and the value function of the agent. Third, an opponent module that
predicts the action probabilities of each opponent. Furthermore, the soft and hard attention block
(see Figure 3.6), which is similar to [44], acts as a bridge between the agent module and the
opponent module and serves two purposes. First, the hard attention filters a subset of opponents
via a bidirectional LSTM followed by a two-neuron Gumbel-softmax layer that determines whether
an opponent should be considered or not. Concretely, the latent variables of the agent and each
opponent are concatenated and then fed into a bidirectional LSTM [44]. Second, the agent’s latent
variables and the selected opponents’ latent variables are fed into a multi-head soft attention layer,
as explained in Chapter 2, to estimate their influence on the agent.

Specifically, the main vector will be the agent’s latent vector y = hagent and the input
vectors will be the agent’s latent vector and the opponents’ latent vector x1 = hagent, x2 =
hopponent 1, .., xm+1 = hopponent m. Note that the agent latent is also considered for computing
the alignment score, as opponent actions’ could be of more importance than the agent’s actions at
some states. Similar to [30], the loss function is the sum of the A3C loss and weighted opponent
losses, as follows (where m is the number of opponents):

L = Lpolicy + Lvalue + Lentropy +
1

m

mX

i=1

�iLi

The loss function for opponent i, Li, is the cross-entropy loss [45] as predicting the action
probabilities of an opponent is simply a classification problem. Note that assuming that the agent
can observe opponents’ actions during training, under the framework of CTDE, simplified the
problem to a classification problem; otherwise, we would have to estimate those actions from local
observations only.
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To summarize, the total loss function is then:

L = Lpolicy + Lvalue + Lentropy +
mX

i=1
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where n is the number of actions, aj
i
is a one-hot encoded vector that represents the action the

i-th opponent took, âj
i
is the predicted action probabilities for the i-th opponent, and �i is the

weight of the i-th opponent.
Note that if the opponent’s attention is zero (i.e., the hard attention does not select that

opponent), only the most likely action will be explored. To incorporate our proposed model into
Algorithm 5, we only need to call our model in the function estimate influence(S). We call our
approach Attention-Guided Simultaneous-Move Monte Carlo Tree Search (AG-SM-MCTS), as the
attention values guide the search tree to spend more search time on opponents that a↵ect the agent
more. To summarize, Figure 3.8 illustrates the full framework, where the learning part is trained
o✏ine to be deployed later by the planning part.

Figure 3.6: The soft hard attention mechanism [44].
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Figure 3.7: The proposed neural network model.
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Figure 3.8: The proposed learning and planning framework.
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Chapter 4

Experiments

In this chapter, we elaborate on the implementation details of our approach and experimentally
compare it to SM-MCTS. We start by describing the setup of the experiments, including the used
software and hardware. Next, we investigate the performance of the learning module, detailing
how the reward was shaped and analyzing the trained agent’s performance. Furthermore, we
analyze the trained opponent models, showing how well they were learned. Finally, we compare
the performance of our approach to SM-MCTS, demonstrating that our approach achieves a
significant performance increase.

4.1 Setup

To simulate experiments, we used Cartesius [2], the Dutch national supercomputer, and utilized 48
CPUs of type “Intel Xeon Processor E5-2697A v4“ [5]. Additionally, since the Pommerman Python
implementation is quite slow, we modified an open-source Pommerman environment [48] where
Cython [15] was used to accelerate simulations. The neural network model was implemented
using PyTorch [60]. Training and testing were carried out against three opponents that use
a stochastic rule-based policy provided by the Pommerman package. These opponents exhibit
stochastic behavior and use Dijkstra’s algorithm at each timestep to find the shortest path [30].
They are also skilled in evading bombs, making them di�cult opponents to model and play against.

4.2 Analysis of the learning module

To show that our learning module provides the planning module with an accurate prior, we
analyzed the following questions:

• How well does our proposed model learn to play against opponents?

• How well does our proposed model learn to model opponents?

Training the proposed model as-is is problematic for two reasons. First, rewards in Pommerman
are sparse, which makes learning more challenging. Second, feeding the raw observation will force
the agent to understand raw pixels, adding a computer vision challenge that is irrelevant for our
work. In the following sections, we discuss how the reward was reshaped and how the input was
encoded to alleviate these two hurdles before examining the previous questions. Additionally, we
describe the architecture of the proposed models, providing the used hyperparameters of each
component and how they were selected.

4.2.1 Reward shaping

Training an agent with the sparse and deceptive rewards of Pommerman could potentially lead
to an agent that does nothing. To win a game, the agent needs to demolish wooden cells, plant a
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bomb near each opponent, and evade the flames produced therefrom to obtain a positive reward.
Thus, the agent might not explore the environment and instead wait for its opponents’ demise.
Additionally, the agent might need to acquire an arsenal of complex and varied skills, including
chasing opponents, planting a bomb, evading flames and bombs, and cornering opponents. Learn-
ing to handle all these situations from scratch merits shaping the reward to expedite learning.
Table 4.1 shows the types and values of the reward shaping approaches that were used to encour-
age the agent to explore and overcome the sparse reward limitations. Most of these reward shaping
methods are inspired by [25, 6]. The agent receives a mobility reward (i.e., a novelty-based reward)
if it moves to a new cell that has not been visited in the last 90 timesteps. While some of these
rewards could be dropped, such as the illegal moves negative reward, they still help accelerate
learning.

Reward type Reward value

Killing an opponent 0.5
Catching an opponent 0.001
Not avoiding flames -0.01
Mobility (novelty-based reward) 0.005
Illegal moves (e.g., moving to a rigid wall) -0.03
Picking a powerup 0.02
Planting a bomb near a wooden wall 0.001

Table 4.1: Types of rewards.

4.2.2 Input semantic encoding

Instead of forcing the agent to learn to see, we chose to represent the board semantically to help
the neural network in extracting useful features. Specifically, we adopted how [64] represented the
board by 17 feature maps. Table 4.2 explicates how each map is computed, where map cells’ value
are set to 0 by default.

Map How it is computed

1 The blast strength of each bomb, placed at the corresponding bomb position
2 The remaining life of each bomb, placed at the corresponding bomb position
3 Setting the cell that correspond to the agent’s position to 1
4 All cells are set to the number of the bombs the agent possess
5 All cells are set to the blast radius of agent’s bombs
6 All cells are set to 1 if the agent can kick bombs
7 Setting the cell that correspond to the first opponent’s position to 1
8 Setting the cell that correspond to the second opponent’s position to 1
9 Setting the cell that correspond to the third opponent’s position to 1
10 Setting the cells that correspond to passages to 1
11 Setting the cells that correspond to wooden walls to 1
12 Setting the cells that correspond to rigid walls to 1
13 Setting the cells that correspond to flames to 1
14 Setting the cells that correspond to extra-bomb power-ups to 1
15 Setting the cells that correspond to increase-blast-strength power-ups to 1
16 Setting the cells that correspond to kicking-ability power-ups to 1
17 All cells are set to current step

total number of steps

Table 4.2: Input feature maps.
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4.2.3 Network architecture

We next describe the architecture of the proposed model (shown in Figure 3.7). Similar to [30],
the CNN module consists of four convolutional layers, with 32 filters of size 3 ⇥ 3 and a stride
of 1 for each, whereas fully connected layers comprise of 128 hidden units each. The embedding
dimension of the attention mechanism was set to 128 (i.e., all the weight matrices W i

s
,W

i

t
,W

i

c
were

of dimension 128 ⇥ 128). Similar to [30], we used the ELU (Exponential Linear Unit) activation
function [56] for all the layers, except the output. Additionally, we set the entropy weight to 0.01,
the value loss weight to 0.5, the policy loss weight to 1, and the discount factor to 0.95. Moreover,
and similar to [30], the Adam optimizer [36] was used with learning rate = 0.005, �1 = 0.9,
�2 = 0.999, ✏ = 10�8, and a weight decay of 10�5. Furthermore, we used five soft attention heads,
and set the dimension of the hidden state of the bi-LSTM to 128. The opponent loss weight
parameters were all set to 0.05. Finally, gradients’ norm were clipped to 0.8 [59].

4.2.4 Analyzing the agent module

To analyze the performance of the trained agent against opponents, we plotted the accumulated
reward over episodes. If the curve exhibits an upward trend, then the agent is learning to increase
its reward. Although the agent’s policy loss and value loss could help debug the model, they
provide no insights to understand model performance as they do not necessarily decrease during
training. This possible rise can be attributed to the increase in the number of steps per episode, as
the agent learns to stay alive longer as the training progresses. Figure 4.1 illustrates the moving
average of the accumulated reward of our approach compared to A3C, averaged over five runs
(shown by the shaded area). Our approach outperforms A3C by a significant margin, showing
that incorporating opponent models and the attention mechanism expedites learning and yields
a more skilled agent. This result matches what was found in [30], though our model uses the
attention mechanism instead of multiplying the latent vectors.

Figure 4.1: The moving average of the accumulated reward over five runs.

The attention values are not trivial to interpret, as they may involve a complex mix of di↵erent
factors, including the distance to a given opponent. However, we drew two insights by investig-
ating the attention values during testing. First, although the attention values should not exactly
resemble a distance function, we still expect a relationship between the attention values and the
distances between the agent and the opponents. In particular, we expect opponents that are fur-
ther away to be less relevant for an agent’s decision. To examine this possibility, we computed
Spearman’s correlation coe�cient [52] between the attention values and opponents’ distances over
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time. Spearman’s correlation [52] measures the strength of the monotonic relationship between
two variables [7].

Thus, we expect a negative Spearman’s correlation coe�cient for all opponents (i.e., when
the distance increases, the attention value decreases). Indeed, Table 4.3 shows the computed
Spearman’s correlations over 10 episodes, where all the Spearman’s correlations were significant
(i.e., p < 0.05). Noticeably, the first opponent’s Spearman’s correlation is considerably larger than
the other two opponents, which could be due to its quick interaction with the agent. In contrast,
the second opponent rarely interacts with the agent on average, potentially explaining why its
corresponding Spearman’s correlation is the smallest.

Opponent Spearman’s correlation p

Bottom-left opponent -0.3646 2.319e-05
Bottom-right opponent -0.1861 2.8839e-10
Top-right opponent -0.2206 2.6770e-15

Table 4.3: Spearman’s correlation coe�cients between the Manhattan distances between the agent
and the opponents, and the attention values.

To obtain more insights, we investigated how the attention value evolves over time, first looking
at two specific episodes and then looking at the average of 30 episodes. Figure 4.2 shows the
attention values changes of the agent, the first opponent, the second opponent, and the third
opponent. On average, self-attention is the largest, followed by the first opponent and the third
opponent. Indeed, we would expect the agent’s actions to a↵ect the agent the most, followed
by the opponent with whom it interacts the most (i.e., the first opponent). In contrast, and as
explained before, the agent rarely interacts with the second opponent, which may justify why its
average attention value is the smallest. Additionally, one can notice that the attention values
in the two shown episodes di↵er significantly, indicating that the attention values depend on the
situation.

Figure 4.2: Top: two example episodes illustrating how the attention values evolve over time.
Bottom: the evolution of attention values on average for 30 episodes.
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4.2.5 Analyzing the opponent module

To study opponent models’ performance, we plotted opponents’ cross-entropy loss over time [56],
as opponent modeling is a classification task in our proposed model. If the cross-entropy loss
declines with the number of episodes and reaches a plateau, then the model learned to model
the categorical distribution of each opponent. Figure 4.3 matches our expectations, where the
opponent loss starts from nearly 0.2 and quickly drops to approximately 0.13. The fluctuations
the curve is showing are not due to overfitting; rather, because the total loss could be decomposed
to the individual opponent loss, adding those curves will show an oscillating behavior.

Figure 4.3: Opponent loss over episodes.

To understand how well the model learned to model opponents, we examined the confusion
matrix of each opponent model. Figure 4.4 illustrates the confusion matrices of opponents. The
model captured opponent behaviors reasonably well, although the stochasticity thereof thwarted
the model from modeling them perfectly. To quantify these opponent models by a score, we com-
puted the F1-score for each model. In particular, we used the weighted multi-class F1-score, as the
data is heavily imbalanced. We found that Fopponent 1

1 = 0.4974,Fopponent 2
1 = 0.5167,Fopponent 3

1 =
0.4937.

Furthermore, we visualized the importance of each cell in the input to explain why opponent
models opt for particular actions. In particular, Gradient-weighted Class Activation Mapping
(GradCAM) [69] was used to produces a heatmap that indicates the important regions that led to
selecting a particular action. Figure 4.5, which was obtained in the first timestep, demonstrates
that the cells that correspond to the agent’s and opponents’ position were the most important.
These cells are essential because the CNN is shared between the agent module and the opponent
module.
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(a) (b)

(c)

Figure 4.4: The confusion matrices of the opponents (left-right-bottom).

(a) First opponent’s heatmap (b) Second opponent’s heatmap (c) Third opponent’s heatmap

Figure 4.5: Regions importance heatmaps, produced by applying GradCAM [69], of each opponent
model (left to right).
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4.3 Comparing AG-SM-MCTS to SM-MCTS

To compare SM-MCTS with AG-SM-MCTS, we need to select a metric (or a score) to base our
comparison on. The win rate is one of the simplest and most straightforward score that could be
used to evaluate and compare various approaches in our setting. The win rate is defined as the
percentage of games the agent wins against its opponents out of all games. However, the tie rate
should also be considered because even if two methods yield the same win rate, the one with the
higher tie rate is better in general. We treat a tie as a quarter win (as only one player can win)
and define score = wins+0.25⇤ties

n
, where n is the number of games. We define a game as a fixed

board, randomly initialized by a seed. First, we generated 200 di↵erent random seeds sampled
uniformly from the range [0, 1000000] to tune the hyperparameters of each method. Afterward,
the best hyperparameters are used to play 500 games to approximate the win rate, the loss rate,
and the tie rate for each approach. For simplicity, we denote SM-MCTS (ignore) as SM-MCTS
when opponent actions are ignored, PW (random) as SM-MCTS endowed with PW with a random
move ordering function, and PW (policy) as SM-MCTS enhanced with PW when actions are sorted
according to the estimated opponent action probabilities.

Due to the computing power needed to run even one experiment, a budget of 750 SM-MCTS
iterations per move was used. We used grid search [42] on 2 or 3 values for each hyperparameter
to select the best hyperparameters. In particular, grid search was performed over the values
{0.4, 0.8,

p
2}, {0.25, 0.5,1}, {0.5, 1, 2}, and {0.25, 0.65} for the exploration parameter, the FPU

value, the widening factor C, and the widening exponent ↵, respectively. We used the same hyper-
parameter value for each agent (e.g., ↵1 = ↵2 = ↵3 = ↵4). Table 4.4 shows the hyperparameters
that yielded the largest score for each method.

Method Exploration coe�cient FPU C ↵

SM-MCTS 0.8 0.5 Not used Not used
SM-MCTS (ignore) 0.8 0.5 Not used Not used

PW (random) 0.8 0.25 2 0.65
PW (policy) 0.4 0.25 1 0.25

AG-SM-MCTS 0.4 0.25 1 Dynamic

Table 4.4: Hyperparameters that yielded the largest score for each approach.

We hypothesize that being more cautious in Pommerman generally increases the score, as
rule-based agents may commit suicide. Thus, evading their bombs diligently might be enough to
lead to their death. A similar observation is also mentioned in [43]. Additionally, it is clear that
larger C and ↵ for PW (random) yielded better results, as sorting actions randomly may result in
“bad“ actions first, which could be mitigated by increasing the values of PW’s hyperparameters.
Furthermore, a progressive widening factor C of 1 resulted in a larger score for PW (policy) and
AG-SM-MCTS. This raise could be attributed to having accurate opponent models such that the
agent does not have to consider most of its opponents’ actions. Should these opponent models be
perfectly accurate, we would expect that a smaller widening factor, such as 0.5, would result in a
higher score.

To conclude, Figure 4.6 depicts the performance of the discussed approaches where, similar to
[14], whiskers indicate the 95% confidence intervals of the estimated score. We decomposed the
score into its two components: the win rate (shown in blue) and the tie rate (shown in orange)
for clarity. The confidence intervals were computed using the Wilson score interval method with
continuity correction [54], as estimating the score could be perceived as estimating the probability
of success p of a Bernoulli experiment. Furthermore, to test whether the di↵erence in score between
two specific approaches is statistically significant, we used the two-proportion z-test [8] for each
pair of methods.
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Figure 4.6: The score of each approach. All the pairwise di↵erences in score were significant,
except the di↵erence between the scores of SM-MCTS (ignore) and PW (random).

The di↵erence in score between SM-MCTS and SM-MCTS (ignore) is significant, potentially
attributed to the small number of iterations compared to the large branching factor. Specifically,
the agent may explore deeper levels if it completely ignores opponents’ actions, which may be better
than only exploring 2-3 levels while focusing equally on its opponents’ moves. This reasoning is
also supported by the attention changes during episodes shown earlier, where self-attention is
larger than opponents’ attention values on average. Although completely overlooking opponents’
actions might be better than considering all of them, selecting some of these actions might improve
performance.

Even with a random ordering function, SM-MCTS with PW was on par with SM-MCTS
(ignore) in terms of performance. This proximity signifies that once SM-MCTS is provided with a
better moves ranking order function, it might outperform SM-MCTS (ignore). The considerable
surge in the score when PW is equipped with the policy function from the trained model indicates
such possibility. Finally, modifying the PW’s widening exponent to be state-dependent using our
model (i.e., AG-SM-MCTS) boosted the score even further, outperforming SM-MCTS endowed
with state-of-the-art enhancements, namely FPU and PW.
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Chapter 5

Conclusion

In this thesis, we proposed a new planning algorithm, called Attention-Guided Simultaneous-Move
Monte Carlo Tree Search (AG-SM-MCTS), which addresses the exponential growth of the search
tree in multi-player general-sum simultaneous-move games. In particular, given opponent models,
the agent can employ a strategy that plans over several future opponents’ moves. If these opponent
models are not provided, we proposed a neural network model that builds these models by playing
against these opponents. These opponent models are then used to reduce the branching factor, as
they provide a reasonable prior for the search tree.

To answer our main research question, we devised two subquestions:

• Assuming the availability of opponents’ moves during learning, how can we learn opponent
models?

• Given opponent models, whether they were provided or learned, how can they be exploited
to search at a greater depth?

The first question was addressed using self-supervised learning by interacting with the envir-
onment and perceiving the actions of the opponents. Afterward, the innate models are updated
to comply with the observed actions. In particular, our model leverages deep neural networks
to represent opponents and condition the agent’s decision on (a compact representation of) their
estimated strategies. Because these models act as a prior to the planning algorithm, our approach
could still work well even if these models do not completely match opponents’ strategies.

The second question was tackled by altering the planning algorithm to incorporate the es-
timated opponents’ importance. Specifically, the search tree is explored according to the relative
importance of each opponent: the more an opponent a↵ects the agent, the more its actions are
explored. Those estimated influences were obtained using the attention mechanism, which serves
as a general technique to prioritize di↵erent parts based on their influence.

In conclusion, this thesis investigated how opponent models could be utilized in multi-player
general-sum simultaneous-move games to outperform classical sampling-based planning algorithms.
Planning in such games is an underdeveloped research area, although they constitute many real-
world scenarios, as most of them are simultaneous. We believe that this work serves as a starting
step in this research direction, which, as hypothesized in [73], could pave the way to Artificial
General Intelligence (AGI) in the future.

Future work

Nonetheless, numerous research directions could be pursued to expand on this work. In particular,
we foresee five avenues to pursue: generalizing our method to non-stationary opponents’ policies,
tackling the policy-bias problem, performing more extensive hyperparameters tuning, investigating
attention values further, and integrating our approach into generic meta-training frameworks.
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First, our approach assumes that opponents’ policies are stationary, as non-stationary policies
(i.e., policies that change over time) cannot be estimated using simple classification. However,
this limitation is di�cult to tackle and might require major changes to our model, as the target
(i.e., the policy of opponents) will continually change. Moreover, if the assumption of stationarity
does not hold, a Markov game cannot be then reduced to an MDP, where single-agent RL can be
used.

Second, SMMCTS’s online value estimates could be refined if estimating opponents’ value
function is added to as an auxiliary task, as it might make these values more accurate. However,
opponents are not aware of the other agents in our proposed model; thus, their estimated value
function might not converge to their true value function, a problem known as policy-bias [10]. This
issue could be addressed by making opponent models aware of the remaining agents, resulting in
a new architecture akin to Graph Attention Networks [79].

Third, due to the computing power and time required for even conducting one experiment,
which might take up to six days, no extensive hyperparameters tuning was performed. Further-
more, the weighting parameters of the opponent loss are empirically found to be quite sensitive
[71]. Therefore, we expect a considerable improvement should these hyperparameters be tuned
appropriately. Most importantly, we recognize that our experiments were limited and may not
generalize as we used grid search on only 2 or 3 values for each hyperparameter. However, scaling
more advanced hyperparameters optimization algorithms, such as Bayesian Optimization [24] and
bandit-based approaches [41], to run on a cluster is a research question on its own that we cannot
tackle in this work.

Fourth, the attention values, as described earlier, did not exactly match our intuition. Spe-
cifically, we expected those values to be more interpreted, as seen in many AI domains, such
as natural language processing and computer vision, as shown in [80, 81, 89]. The di�culty of
comprehending the meaning of these attention values could be ascribed to the complexity and
changing dynamics of most multi-agent environments. Nevertheless, we leave investigating and
interpreting these attention values further for future work.

Finally, our approach only uses SM-MCTS in test-time as opposed to Expert Iteration [72].
In the Expert Iteration framework, SM-MCTS is perceived as the expert, whereas the neural
network is viewed as the apprentice, honing opponent models even further and eliminating the
decoupling between opponent models (used during training) and SM-MCTS (used during testing).
In essence, our model could be leveraged as the apprentice in meta-training frameworks such as
Expert Iteration [12].
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