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Abstract

Customer journey analysis is important for organizations to get to known as much as possi-
ble about the main behaviour of their customers. The customer journey is the sequence of
interactions between a customer and an organization. The result of such customer journey
analysis can be used to improve customer experience within their organisation. Customer
journey analysis often uses customer journey maps which mainly focuses on comparing
expected customer journeys with the main journeys executed by the customers. More
complex investigations need more complex techniques. This thesis aims to fill one of the
gaps by creating a framework that is able to predict the occurrence of a certain activity of
interest in the remainder of the customer journey. The remainder of the customer journey
are the interactions between the customer and the organizations that will take place in
the future. By using process mining techniques the process describing the customer jour-
neys is analyzed. The current process is a starting point in predicting the occurrence of a
certain activity in a customer journey. This thesis provides a framework for high impor-
tance activity prediction at certain moments in the customer journey. This can be used
to predict whether the current customer is expected to interact with a certain activity on
a later moment in its journey. Different prediction models are researched to investigate
which model is most suitable for the task of high importance activity prediction. This
framework combines elements from customer journey analysis, process mining, machine
learning and deep learning. The proposed pipeline is evaluated on a data set of VGZ, a
Dutch health insurer, and the BPI2012 benchmark data set. The data set of VGZ contains
customer journey data on a declaration process. The BPI 2012 challenge data log contains
data of an application process for a personal loan or overdraft. The results highlight the
usefulness of the proposed framework under realistic business settings and that it is gen-
eral enough to be applied to various scenarios. The usefulness is shown as the predictions
are improved over the baseline model. It is applicable to a realistic business setting as the
framework is evaluated with customer journey data recorded during the execution of the
process.

Keywords: customer journey analysis, process mining, process prediction, machine
learning, deep learning
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Chapter 1

Introduction

This chapter introduces the context of this thesis, describes the research problem and
defines the research questions answered in this thesis. Section 1.1 describes the outline of
this thesis.

Nowadays, customer journey analysis is useful for companies trying to understand how
the customer interacts with the company. Next to understanding the customer journey it
can also be used to improve the customer experience [6]. Customers can interact with a
company over multiple channels, such as website visits and phone calls. Not all interactions
provide the same customer experience and influence the customer satisfaction in the same
way [41]. One of the options to investigate in customer journeys is by using customer
journey maps (CJM) [6]. CJM are graphs that show the customer journey over time by
indicating the touchpoints the customer has interacted with to achieve a certain goal. Such
a goal can be to purchase a product or gather information about a certain topic. CJM can
be used to gain insights in the main behaviour of customers interacting with the company.
These insights can be compared with the expected journey. However, more complex
questions to improve the customer journey require more complex techniques. Next to
understanding the current customer journeys, it is also interesting for companies to predict
whether these customers will interact with a certain touchpoint on a later moment in their
journey. Knowing in advance which customer will encounter certain touchpoints, might
provide the option to prevent interactions with touchpoints that are often experienced
bad or might save resources. Such insights cannot be gathered with a CJM but require
more advance techniques. Examples of such techniques are the application of process
mining [1], machine learning [23, 7] and deep learning techniques [16, 33, 15, 12]. Current
research has already shown interest in next event prediction and final outcome prediction
for running customer cases [36, 34, 35, 17]. These methods all focus on predicting the
first next touchpoint in a customer journey or the final outcome. A final outcome can
for instance be whether a customer will purchase a product. Predicting the final outcome
or next event is different from the research in this thesis. In this thesis, the research
conducted will investigate whether the customer will interact with a certain activity in
the remainder of its journey. Therefore, it should not necessarily be the next activity,
even though it might in some cases be the next activity. Neither is it related to the
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CHAPTER 1. INTRODUCTION

final outcome. For example if the final outcome prediction is concerned with predicting
whether a certain product will be purchased in a shop, the prediction of an interesting
activity can be related to whether the customer wants more information about a product.
This thesis provides the first effort to fill the gap in future touchpoint prediction that is
neither the next activity nor final outcome. This is achieved by providing a repeatable
framework for future high importance activity prediction. This thesis has been performed
in collaboration with the Dutch health insurer VGZ. VGZ wants to retrieve insights in
which customers are most likely to call VGZ. Performing a call is often experienced bad;
therefore, it is interesting to prevent such interactions. A first step to prevention is knowing
which customer will call. For this purpose, a data set containing declaration data of the
customer is made available. The goal is to predict at a certain moment in the customer
journey which customers will call VGZ in the remainder of their journey.

The solution proposed in this thesis uses process mining techniques to analyze the
current customer journeys. The insights gathered serve as basis to indicate the decision
moment and potential activity. For customer journeys reached the moment defined as
the ‘decision moment’ it should be predicted whether the current customer will interact
with the ‘potential activity’ in the remainder of its journey. Using the customer journeys,
decision moment and potential activity, machine learning and deep learning models are
trained to perform predictions. The solution provides a repeatable framework to predict
the occurrence of a potential activity in a customer journey. The performance of the dif-
ferent prediction models will be evaluated in different settings. Next, the effect of defining
the training, the validation and the test set to train and test the models is investigated.
For this purpose, the sets are created either time based or randomly to investigate the
difference in the results. A prediction model should stay up to date to recent customer
journeys to be most useful. Therefore, research is conducted in the resources needed to
keep a model up to date with respect to the quality gain. To investigate this, a sliding
window and landmark window are used over the available data. This thesis addresses the
next main research question:

How can future touchpoint occurrence of a certain activity of interest be
predicted in a running customer journey based on process mining techniques?

The next subquestions are defined:

1. How can process mining techniques be exploited in the context of customer journey
analysis?

2. What is the influence of the prediction model on the quality of the future touchpoint
predictions?

3. How is the result of the prediction affected by the creation of the training, the
validation and the test data?

4. How are the model training and prediction quality affected by applying various
windowing techniques?

Predicting the occurrence of an activity in the remainder of the customer journey 2



CHAPTER 1. INTRODUCTION

Answering the research question, the aim of this thesis is twofold:

1. Bridging the gap between process mining and customer journey analysis and using
process mining techniques to improve the customer journey analysis.

2. Defining a repeatable framework for future touchpoint prediction in a customer
journey.

1.1 Outline

This thesis is structured as follows: Chapter 2 provides an overview of related work in
the context of this thesis. Chapter 3 contains notations required to understand the solu-
tion and explains the research problem in more details. Chapter 4 describes the proposed
framework for high importance activity prediction in the customer journey and discusses
the components of the framework in detail. Chapter 5 introduces two data sets, a per-
formance measure to compare different models, a baseline model and evaluates the appli-
cation of the high importance activity prediction framework on the two data sets. This
evaluation entails the comparison of the different prediction models, the comparison of the
time based or randomly generated training, validation and test set and the comparison of
the windowing techniques. Finally, Chapter 6 concludes the research by summarizing the
contributions of this research and proposes future research directions.
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Chapter 2

Related work

This chapter provides pre-existing work that is related to this thesis. First, this chapter
discusses related work from the fields of customer journey analysis in Section 2.1, followed
by the field of process mining in Section 2.2. Section 2.3 discusses machine learning tech-
niques and deep learning architectures that can be useful in the field of process prediction.
This chapter concludes with Section 2.4 where related papers to the research problem are
discussed.

2.1 Customer journey

This section introduces the concept of customer journeys, providing the definition and
characteristics. The customer journey is the sequence of interactions between a customer
and an organisation [25]. The customer journey contains the complete cycle of not yet
being a customer to being a customer and potentially remaining a customer for forever.
All intermediate interactions between a customer and an organisation define the customer
journey. The first time a customer uses a service or purchases a product is the start of
the customer journey. The journey continues as the customer uses/purchases a service or
product [25].

The customer journey can be visualized in a customer journey map, in which each
interaction of a customer with an organisation is defined by a touchpoint [18]. Challenges
faced when visualizing all customer journeys are the large number of possible touchpoints
and the different order over which the customers can encounter the touchpoints during its
journey [6]. Figure 2.1 shows an example of a customer journey map in which the sequence
of activities over time is shown on the horizontal-axis with the associated touchpoints on
the vertical-axis. A single touchpoint represent a single interaction between the customer
and the organisation. The complete path of one customer over time with multiple touch-
points is visualized with a line. The complete map shows all possible journeys taken by
at least one customer. These maps are a systematic approach for organisations to under-
stand the paths taken by customers over the different touchpoints. The visualizations may
also provide insights into the customer experience at each touchpoint and how customers
would like the customer experience to be [25]. The observations may be used to improve
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Figure 2.1: An example of a CJM, source: [6]

the current process such that the experience of customers is enhanced.

Even though customer journey maps can offer an overall view of the customer journey,
they have to be created manually requiring a lot of domain knowledge and time [18].
Therefore, this thesis uses process mining to analyze the customer journey. Process mining
allows modeling of the customer journey with an automated and data driven method,
which speeds up the creation of the models.

2.2 Process mining

Process mining is a research discipline that falls somewhere between machine learning and
data mining on the one hand and process modeling and analysis on the other hand [1].
Process mining seeks the confrontation between event data (i.e., observed behavior) and
process models (hand-made or discovered automatically). The idea of process mining is
to discover, monitor and improve real processes by extracting knowledge from event logs
available in information systems. Process mining allows process owners to gain knowledge
and insights in (business) processes by analyzing the event data stored during execution of
the process by the users of the system [1]. Figure 2.2 shows how process mining establishes
links between real data of actual processes and process models. Additionally, it highlights
in red the three sub-fields of process mining [1] which are described below. Many of the
available process mining techniques can be classified into one of these sub-fields; therefore,
it provides a good characterization of the aspect that process mining aims to analyze.
However, process mining is not limited to these subfields.

• Process discovery: A process model is produced from an event log without the
use of any other information about the process. The model produced shall explain
the behavior recorded in the log. Examples of models are petri nets or causal nets.
In the case that the event log contains additional information about resources, one
can also discover resource-related models. An example of a resource-related model
is a social network, which provides information on how people interact within an
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Figure 2.2: Positioning the sub-fields of process mining, source: [1]

organization.

• Conformance checking: For the purpose of conformance checking both an event
log and a process model of the same process are required. This approach can be
used to check whether the process captured in the model conforms to the behaviour
recorded in the event log and vice versa. Hence, conformance checking may be
used to detect, locate and explain deviations, and to measure the severity of these
deviations.

• Process enhancement: The idea of process enhancement aims at changing or
extending an existing model. To achieve this it needs a model and an event log
from which it uses information about the actual process recorded in the event log.
Two examples of enhancement are repair (modifying to model to better reflect the
process captured in the log) and extension (adding a new perspective to the process
model).

Event logs

The underlying basis for the algorithms of these three perspectives is an event log in which
the real data of the actual processes is recorded. Therefore, proper events logs are required
to apply process mining. The original data may be stored in different data sources, such
as an Excel spreadsheet or a database table. However, the data may be stored over several
data sources and does not have to be well-structured. Consequently, collecting relevant
data may require a great deal of effort [1].

An event log consists of a set of events related to a single process. Each event is related
to a case, with each case associated to an unique identifier. Multiple events may be related
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to the same case. The sequence of events in a case is defined as a trace. Furthermore,
each event is related to an activity, referring to what has happened. A timestamp may
be assigned to the event, indicating at which moment in time an activity has taken place.
This timestamp may be used to order the sequence in the trace. Extra properties may
be associated to an event, these are referred to as attributes. Examples of attributes are
contact channel, status of a request or age.

CJM XES

CJM log
customer journey case

interaction event
touchpoint activity

interaction timestamp event timestamp
interaction attribute event attribute

Table 2.1: Mapping from CJM to XES

The data considered in this thesis is customer journey data; therefore, it is important
that customer journey data can be converted to an event log. Typically, event logs are
stored in XES format. Table 2.1 shows that the components of a CJM can be mapped to
a XES format. The mapping from CJM to XES enable process mining techniques to be
applied to customer journey data.

Process prediction

Predictive business process monitoring is a new evolving technique in process mining [26].
The field of process prediction is less about providing process models, but focuses on single
process instances. For an uncompleted process instance it tries to provide insight in the
remainder of a process at run time. This prediction may be used to predict the next event
of the trace [19, 31, 34], the expected outcome [17] or a suffix [35]. Section 2.4 provides
more details on existing solutions for process prediction. These predictions may be used to
identify unwanted behaviour during execution, preferably as earlier as possible. Expected
unwanted process execution may be signaled and possibly the expected output may be
influenced and improved already during run time.

2.3 Machine learning and deep learning models

This section provides background knowledge on machine learning and on deep learning
methods interesting for the scope of the research in this thesis.

2.3.1 Machine learning

Machine learning provides automated methods for data analysis [23]. This set of auto-
mated methods can detect patterns in data and use these patterns to perform decision
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making under uncertainty. Given past data machine learning methods aim to predict fu-
ture characteristics. Two main types of machine learning are considered. Predictive or
supervised learning and descriptive or unsupervised learning. Supervised learning makes
use of a training set, which contains input and matching outputs. The goal is to learn a
mapping from the input to the output. This mapping can be used to predict the output
for new inputs. Supervised learning is used for classification and regression models. In the
case of classification models we have m classes to which an input can belong. The goals is
it to predict to which of the m classes the current input belongs. In the case of regression
models the variable that needs to be predicted is a continuous variable. The second type,
unsupervised learning only uses a set of inputs. The goal of unsupervised learning is to
find patterns in this input [23].

Next we will consider a machine learning algorithm for classification and regression.

Random Forest

A Random Forest (RF) model can be used for classification and regression and is an
ensemble predictor constructed of a number of decision trees [7]. A decision tree is a
hierarchical model, consisting of internal decision nodes and leaf nodes which contain
the predicted label of an instance. Decision trees uses a divide-and-conquer approach to
decide the correct label of an input instance [24]. Given input features an instance will
be mapped to an associated label. Starting at the root of the tree, each internal decision
recursively checks for a condition to hold and depending on the outcome chooses a branch
to take until a leaf node is reached. The label associated with the reached leaf node is
the prediction for the current input. Figure 2.3 shows an example of a decision tree to
predict the flower species with internal decision nodes visualized with circles and decision
leaf nodes with rectangles. Given the petal length and width, the flower is classified as a
Setosa, Versicolor or Virginica. At the root node a decision is made based on the petal
width. If the width <= 0.6 cm the current instance is classified as Virginica. If the petal
has a width > 0.6 cm, the next internal decision node is reached. At this new node, the
petal length is used for classifying the input as Versicolor if the length <= 4.9 cm and
as Setosa otherwise. Each predictor decision tree in the ensemble model is trained with
a sample of the training data. The RF model predicts the label of an instance based on
its underlying decision trees. The label that has a majority vote over all decision trees
in the ensemble is selected to be the final prediction of the RF. Using the majority vote
improves the prediction performance of the RF model [7].

2.3.2 Deep learning

Deep learning (DL) is a sub-research field of machine learning that focuses on making
accurate data driven-decisions by creating neural network (NN) models [16]. A NN is
often organized into layers, where layers are interconnected and consist of a large number of
computing elements called neurons [33]. Each input to a neuron has an associated weight.
The input of a neuron are the output of the previous neurons together with the weights.
An activation function is applied on the input to provide the output of the current neuron.
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Figure 2.3: Example of a decision tree to predict the specie of flower, source: [9]

The initial input to the NN is the data. The neurons in the network process this input
and modify this input to a desired output. The different weights increases or decreases
the importance of an input variable to a current network cell; therefore, it also affects
the outcome of the network. The optimal values of the weights should be determined by
training the net on training data. A method to achieve optimal parameter setting is back
propagation [39]. Figure 2.4 shows an example of an NN with three input variables and
two outputs. It has one fully connected hidden layer and weights associated with its arcs.

Figure 2.4: A NN with three inputs and two outputs

Next we will consider multiple types of deep learning methods.

Recurrent Neural Networks

Recurrent Neural Networks (RNN) are networks that can process sequential data of vari-
able length [16]. The data points of the sequence are processed one at a time and the model
may produce output at each step and has a memory state at each step. The RNN model
combines information of multiple data points of different times to compute an output. For
this purpose, the RNN model uses an internal hidden state. The result of the hidden state
from the previous data point is used in the computation of the current data point. Figure
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2.5 shows on the left side an overview of a RNN, on the right side the unrolled version
of a RNN is shown. The square in the left figure shows the connection from the previous
data point to the current data point. It is used to determine the value of the current
data point. In the unrolled version, this is shown with arrows pointing from left to right
to the h node one time step later in time. Just as with NN the model has parameters,
such as weights on the arcs which require training to determine optimal values. Training
a RNN is called backpropagation through time. Some of the parameters are shared as
a RNN reuses the hidden state over the complete input sequence. Therefore, during the
backpropagation the gradients are updated proportional over all future time steps. This
may results in the problem of vanishing or exploding gradients. Therefore, it may be hard
for a RNN to learn long-range dependencies in sequential data.

Figure 2.5: A representation of a RNN

Long Short-Term Memory

To overcome the former mentioned problem of the vanishing gradient a RNN is suffering
from, one can use a Long Short-Term Memory (LSTM) network [15]. A LSTM network is a
RNN architecture which is constructed to overcome the problem of not being able to learn
long-term dependencies. For this purpose, a gradient-based algorithm is developed which
enforces constant error flow through internal states. Constant errors mean that gradients
will not explode nor vanish over time. To prevent gradients to vanish or explode gates
are implemented in the hidden cells of the network. These gates are mechanism which
allow a model to decide which information is kept and which information is forgotten. A
LSTM cell contains three of these gates to control and protect the state of the cell, these
gates are the forget gate, input gate and output gate. The forget gates is used to decide
which information should be kept and what should be forgotten of the previous step. This
decision is based on the previous cell state and the current input. The input gate decides
which part of the new information should be remembered for a later state. The output
gate determines the output which is based on the cell state and the input feature. It is
used to decide when to access the information of the current cell to prevent other units
from being perturbed by the output of another cell. Figure 2.6 shows an example of a
LSTM cell with the gates. The left part in the cell represents the forget gate. The input
gate is represented in the middle and the right part represents the output gate.

Predicting the occurrence of an activity in the remainder of the customer journey 10
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Figure 2.6: Representation of a LSTM cell

Generative Adversarial Network

A Generative Adversarial Network (GAN) is a generative model that trains via an ad-
versarial process [12]. The network contains two models, the first one being a generative
model and the second one being a discriminative model. An example of a GAN applied
in the context of a trace suffix prediction is shown in Figure 2.7. In the figure the input
is a trace. A trace is a chronological sequence of events, each event is denoted by ex. The
prefix of the trace are the first events of the trace up to event y. The suffix of the trace are
the events occurring later than the prefix. The generative model captures the data distri-
bution and generates new data that has the same data distribution as the original data.
The discriminative model predicts whether a sample is originated from the original data
or generated by the generator. Together, the generator and discriminator play a 2-player
game in which the generator tries to fool the discriminator. In this 2-player game, the
discriminator tries to maximize assigning the correct label to each data sample while the
generator at the same time tries to minimize this same objective. Training a GAN can be
done with backpropagation. The generator has accomplished its goal if the discriminator
is unable to distinguish real instances from instances generated by the generator.

Figure 2.7: Representation of a GAN structure when applied in the context of a trace
suffix prediction
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2.4 Existing solutions for predictive analysis in process min-
ing

Predicting next events and timestamps in a running trace have been studied before. Several
works are worth to mention here because they are using interesting techniques or have
similar goals. Though none of these works have exactly the same assumptions, data or
goal as this thesis. This section describes several studies that are related to next event,
next time stamp and remaining trace prediction.

The work in [31] and [19] both propose a way to predict a next event within an event se-
quence. The event sequence is the set of previous actions performed by a customer. Both
papers use data of a online grocery shop in which the events are defined by customers
adding products to their shopping basket. For the prediction task the set of products
currently in the basket are considered, but not the order in which the products are added.
Furthermore, the previous orders of the current customer are considered in order to de-
termine which product is most likely the next product to be added. For the prediction
task Rudin et al. [31] use association rule mining where rules are created based on a
minimum confidence and support threshold. Letham et al. [19] access the prediction task
as a supervised ranking problem, where events are ranked according to their likelihood of
being the subsequent event in the sequence. The accuracy of their model is determined
by the position in the list of the real next product. If the product is higher, the accuracy
will also be higher.

These two techniques are not applicable for the research problem of this thesis as
the context of the study is different. In these studies the previous interactions of the
current customer on the current visit are considered as well as the interactions of the same
customer on previous visits. In the context of the current thesis, previous interaction
sequences of all other customers are deemed important. Furthermore, the order of the
past event sequence is not considered. The events are considered as a set in which the
order is not important. For the current research the order as well as the time between
these activities will be considered in the prediction of the next event.

The work by Hassani and Habets [14] focuses on improving the process of current
customers. They analyze whether it is possible to take proactive steps based on the
expected next touchpoint of a customer. The first step to achieve this goal is to use
process mining techniques to analyze the customer journey. The combination of historical
available customer journey data and the insights of the process analysis is used to retrieve
predictions on the next touchpoints. For this purpose of next touchpoint prediction,
logistic regression, random forests, XGboost and LSTM classifiers are compared. In their
research they showed that the random forest underperformed compared to the other three
models. A possible reason for this underperforming provided in the research is that they
did not tune the parameters of the random forest. In the research XGBoost was the best
performing classifier for next touchpoint prediction in the customer journey. XGBoost
also beat the random predictor baseline classifier.

The approach of Hassani and Habets [14] is not applicable in the current research. In
this research the goal is to predict for a customer whether he / she will interact with a
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certain touchpoint in the remainder of its journey. This touchpoint does not need to be
the next touchpoint. Therefore, only gathering information on the next touchpoint does
not answer the research question. The idea of first retrieving an overview of the executed
customer journeys by applying process mining techniques is interesting. Furthermore, if
applying a RFC, the parameters should be tuned, just as with the other classifiers to train
the best model possible.

Terragni and Hassani have proposed a technique to analyze and optimize the customer
journey by applying process mining and sequence-aware recommendations [37, 38]. The
proposed approach uses process mining to discover the process that describes the customer
journeys stored in the customer log. They explain how the customer journey log containing
customer journey data of website visits on a certain website can be converted to an event
log. The event log is used in combination with process mining techniques to discover the
process model explaining the behaviour captured in the log. The discovered process is used
to find insight by comparing the current process and the expected process. Furthermore,
the process of different clusters of customers is compared. Combining the results of this
analysis the goal is to optimize key performance indicators and to improve the customer
journey by providing personalized recommendations. The personalized recommendations
are based on general user behaviour and earlier executed actions / visited website pages
of the current customer that are used as implicit user feedback.

The goal of Terragni and Hassani is to predict what a customer will like. Examples
are recommendations on products that a customer is likely to be interested in or movies
that he / she may like. The goal in the current research is to predict what a customer
will do. More specifically, the goal is to predict whether a customer will encounter an
action that is often experienced badly. Predicting positive recommendations is different
from predicting what actions a customer will perform. Therefore, the second part on
personalized recommendations cannot be used for the current research. The idea on how
customer journey logs are filtered and transformed to process models can be interesting.
The research explains how the customer log is transformed to an event log and how process
mining techniques are used to investigate the current process. Ideas on how to use process
mining techniques in the context of customer journey data might be interesting to consider
in the current research.

Tax et al. [34] proposes a technique based on a RNN with the LSTM architecture
for next event prediction and its associated timestamp. Furthermore it predicts the event
suffix of a running case and remaining time till the end of the trace. The suffix of the trace
is determined by iterative applying the next event prediction, assuming that the prediction
up to the current event in the suffix is correct. Events are encoded to categorical variables
with one-hot vector encoding. The one-hot feature vector is combined with time-based
features to more accurately predict the timestamp. The time-based features considered
are based on the time since the previous event, the time since midnight and the time since
midnight at the start of the week with respect to the current event. Furthermore, the
paper proposes several architectures of the LSTM network, in which layers of the LSTM
network can perform a single-task or may be shared for prediction. Figure 2.8 shows the
three architectures researched. The left network has single-task layers, the middle network
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has shared multi-task layers and the right architecture shows a network with multi-task
and single-task layers. The best results are gained in a model in which one layer is a
shared multi-task layer and one single-task layer for both tasks separate containing 100
neurons per layer.

Figure 2.8: NN architectures research by Tax et al., source: [34]

This approach of Tax et al. encounters problems with traces in which the same event
occurs multiple times as in that case the model predicts overly long sequences of that
event. In the case of a health insurer, some events are expected to reoccur. Therefore, a
solution for this limitation should be implemented to be applicable in the current context.
Another issue that this paper suffers from is that the suffix is generated by iteratively
predicting the next event. However, this approach suffers from propagating an error in a
previous step to the next step. Which may result in a poor suffix quality. Due to these
limitations the solution proposed by Tax et al. is not suitable for the current research.

The work by Taymouri et al. [36] uses a GAN architecture for the prediction of the
next activity and next timestamp in a trace. Figure 2.9 shows the architecture proposed
for next event prediction. In this work, the next timestamp is defined as predicting the
time that will elapse between the current event and the previous event. The network
considered consists of a discriminator and a generator, which both try to maximize its
own outcome and minimize the outcome of the opponent. Both the discriminator and the
generator consist of a LSTM network and feedforward layers. The discriminator has an
extra feedforward layer to assign probabilities on whether the input is a ground-truth or
a generated sequence. At convergence the generator is able to confuse the discriminator.
The network trained using a GAN with LSTM networks will result in a prediction that
is at least a good as predicting only with a RNN with a LSTM architecture. To deal
with categorical activity variables, these are encoded with an one-hot vector encoding.
Furthermore, Taymouri et al. provide predictions on several prefix lengths. The result
shows that a longer prefix results in a prediction with a higher accuracy.
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Figure 2.9: NN architectures of Taymour et al. for next event prediction, source: [36]

Only predicting the next event in a trace is not providing enough information for the
research problem of this thesis. The goal of the current research is to predict whether
an activity will occur in the remainder of the trace predicted on a certain moment in
the trace. However, it should still be predicted that the activity occurs if other activities
take place in between the current activity and the activity which should be predicted.
Therefore, information only on the next activity does not provide enough detail to answer
the research question.

In a later work by Taymouri et al. [35] an encoder-decoder GAN is addressed for suffix
generation and remaining time prediction. The architecture for predicting the suffix and
remaining case time is shown in Figure 2.10. In this case the generator consists of the
encoder-decoder structure where both the encoder and decoder are represented by a LSTM
network and the discriminator is also represented by a LSTM network. The encoder-
decoder structure of the generator allows the creation of variable length suffixes. Based
on the prefix, the generator is trained to model the complete suffix directly instead of only
predicting the next event. Complete ground truth suffixes are used during training to learn
the relationships and orders between activities of the prefixes and suffixes simultaneously.
In the GAN structure the generator provides the suffix and remaining time of a prefix and
the discriminator determines whether it is a realistic suffix and remaining time. As soon
as the discriminator is unable to discriminate real and fake instances, the generator is able
to create accurate suffixes. Next to predicting the most likely suffix, the paper proposes
beam search to generate the k most probable suffixes for a certain prefix.

The technique for suffix prediction of Taymouri et al. is not directly applicable for the
research problem of this thesis. Taymouri et al. create multiple prefixes and suffixes of
one trace. Meaning that they do not consider a specific moment in the trace to predict the
suffix. In this thesis, the goal is to predict at a certain moment in the trace whether an
activity will occur in the suffix. Additionally, the predicted suffixes are always up to the
end of the instance, without considering certain events of greater importance. Examples
of such events could be events that indicate that certain activities of higher interest have
occurred with respect to other activities. The current research wants to predict whether
a certain activity will occur; therefore, we only need to predict the suffix up to the event
indicating that that activity has occurred. Only if the activity of interest does not occur
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Figure 2.10: NN architectures of Taymour et al. for suffix prediction, source: [35]

in the suffix, we should predict the suffix up to the end of the trace. However, the idea
on suffix prediction is very interesting for the goal of this thesis. Therefore, the approach
can serve as a starting point for a solution to the research question of this paper.

Kratsch et al. [17] compare different machine learning and deep learning techniques on
multiple event logs to determine which technique is most suited for outcome prediction.
The machine learning techniques considered are support vector machines (SVM) and RF.
The deep learning techniques considered are DNN and LSTM networks. Parameters of
all four models are tuned with random search-based optimization combined with tenfold
cross-validation. Original traces of the event logs are used to label the traces with the
final outcome. Further preprocessing entailed preserving traces up to a certain event x. In
the research values of 1 to 10 are all tested for x. For the traces the events as well as the
attributes up to that event number in the trace are kept and used for the final outcome
prediction. With the research Kratsch et al. showed that in general DL classifiers outper-
form ML classifiers on the accuracy and the F1-score of the predictions. The difference in
performance decreased if the underlying data set was skewed. In the case of skewed data
the ML classifiers had comparable results to the DL classifiers. Therefore, in the case of
skewed data it might be beneficial to still use ML classification techniques. Because the
gain in performance does not outperform the higher investment in DL techniques. As they
have applied the research on different event log types the result may be considered to hold
for event logs outside their research as well.

Predicting the final outcome of a case is not the same as predicting whether a certain
activity will occur. The occurrence of such an activity does not need to be related to a final
outcome. However, it should be possible to adapt the final outcome to high importance
activity prediction. Additionally, the technique of Kratsch et al. define the decision
moment as the moment that x events have occurred in the trace. In the current research,
a prediction should be provided as soon as a certain proposition hold for that trace. This
proposition might be valid after a different number of events have taken place in the trace;
therefore, it is not possible to define a number of events after which the prediction should

Predicting the occurrence of an activity in the remainder of the customer journey 16



CHAPTER 2. RELATED WORK

be provided. For this reason, the technique of final outcome prediction of Kratsch et al.
is not applicable in the current research, but the technique of preprocessing the data and
considering attributes might be interesting to consider.
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Chapter 3

Problem exposition

This chapter describes the notations needed to understand the framework addressed in
Chapter 4 and describes the research problem in more details. Section 3.1 defines the
notation used in the remainder of the thesis and Section 3.2 explains deeply the problem
addressed by this thesis.

3.1 Preliminaries

This section defines the notation used in the remainder of this thesis. Let

CJ = (cj1, cj2, ..., cjn) (3.1)

be a log containing the customer interactions of all customers with a company. Each row
in the log

cjr = (cuj , t, i, ia1, ..iam) (3.2)

defines a single interaction of one customer. The customer is identified with an unique
customer identifier cuj . The interaction was conducted at time t and the customer per-
formed touchpoint i. The interaction of the customer may have interaction attributes
(ia1, ...iam) defining extra information of the interaction. From CJ the set of all cus-
tomers CU = {cu1, cu2, ...cu|CU |}, the set of all types of touchpoints I = {i1, i2, ..., i|I|}
and the set of all interaction attributes IA = {ia1, ia2, ...ia|IA|} can be extracted. The CJ
will be converted in an event log, as explained in Section 2.2. Let

L = (e1, e2, ...en) (3.3)

be the event log of the customer journey. Each row in the log

er = (ci, t, a, d1, ..dk) (3.4)

defines a single event performed by one case identifier. The case is identified with an unique
case identifier ci and each customer cuj ∈ CJ can be mapped to a ci. The touchpoint of
the interaction of the customer is renamed to an activity a and the activity is performed
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at time t. Each touchpoint i will be mapped to an activity a, but multiple touchpoints
may map to the same activity a. Furthermore, events can have attributes d1, ...dk defining
extra information of the event and these attributes can be extracted from ial ∈ IA. From
L, the set of all activities A = {a1, a2, ..., a|A|}, all case identifiers CI = {c1, c2, ...c|CI|}
and the set of all attributes D = {d1, d2, ..., d|D|} can be extracted. The log L contains all
traces of the customers in CI. Let

σi =< e1, e2, ..., e|σi| > (3.5)

define the trace of case identifier ci. The trace contains the sequence of all events of case
ci ordered chronologically in time. For a trace the α-prefix is defined as the trace up to
and including the first α events. The suffix is defined as event (α+ 1) until the end of the
trace. For the trace σi =< e1, e2, e3, e4, e5 > the 3-prefix =< e1, e2, e3 > and the 3-suffix
=< e4, e5 >.

In the remainder of this thesis, the terms decision moment(s) and potential activity are
used. The decision moment(s) are propositions which could be valid at a certain moment
of the trace. It should be possible to check based on the events in the trace whether
the proposition holds. Therefore, the proposition can exist of activities, elapsed time and
recorded trace attributes. For example a proposition defining a decision moment could
be the first occurrence of activity x ∈ A, as the activities are stored in the event. In the
case that resources are stored as attributes, the proposition might be the first time that
resource y ∈ D was involved at the execution of event x ∈ A. The potential activity is an
activity of the set A.

3.2 Problem formulation

This section explains the problem addressed in this thesis in more details. As already
stated in the introduction, the aim of this thesis is two-fold:

1. Bridging the gap between process mining and customer journey analysis and using
process mining techniques to improve the customer journey analysis.

2. Defining a repeatable framework for future touchpoint prediction in a customer
journey.

The aim of analyzing the customer journey is to use the discovered insights to improve
the customer experience. This can be achieved, for example, by adapting a process, such
that it is more in line with the expectations of a customer. These adaptions can include
the prevention of interacting with touchpoints that are classified as providing a negative
experience or the prevention of long waiting times. Preventing customers to perform an
activity which may provide a negative experience, provides a more satisfied feeling for
the customer. This satisfied feeling, may be beneficial for a company, by the fact that a
customer will stay at the current company and not switch to another company. To prevent
customers having bad experiences, first it should be known which touchpoints contribute
to these experiences. Furthermore, it should be investigated which customer based on
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the customer journey will most likely include this touchpoint in its journey. Additionally,
it should be predicted as early as possible in a customer journey that a customer will
encounter this touchpoint on a later moment in the journey. By knowing this as early
as possible, a company can influence the customer journey, for example, by providing
different information to prevent that the customer will get a negative experience. Next to
improving customer satisfaction, preventing long waiting times may save resources. In the
case that a certain action takes a lot of resources, and it is known early enough whether
this action will be executed, it might be possible to schedule the resources in such a way
that there will be less of a delay. This may again result in a smoother process and a more
satisfied customer.

The first step in improving customer experience is to retrieve insights in the current
customer journeys. To this end, process mining techniques will be applied on the event log
extracted from the customer journey log. This will provide insights in which customers
perform the potential activity and at what moment in their journey. The potential activity,
is the activity of which the company is interested to know whether a customer will interact
with this activity on a later moment in its journey. Next, a decision activities can be chosen
at which it should be predicted whether a customer will in the future perform the potential
activity. It would be beneficial for a company as such decision moment(s) are as early as
possible in the trace. This part of the solution will contribute to the first contribution of
bridging the gap between process mining and customer journey analysis to improve the
analysis of customer journeys.

When the potential activity and decision moment(s) in the trace are defined, the
goal is to predict for future cases whether the customer will interact with the potential
activity as soon as the proposition defined as the decision moment is satisfied. Based
on decision moment x, we know the x-prefix < e1, ...ex > of a customer. The x-prefix
contains information on activities executed by the customer and attributes associated
with these activities. Based on the information in the x-prefix, the goal is to predict
whether potential activity y will occur in the x-suffix of the customer. Where the x-suffix
is < ex+1, ..., e|trace| >. As already stated in Section 2.4 there exists several techniques
for next event [19, 31, 34], final outcome [17] and suffix prediction [35]. These techniques
do not solve the research in this thesis directly. For this reason, this thesis will provide a
framework to predict whether a customer will encounter a high importance activity in the
remainder of its journey. The prediction can be used to retrieve insights in the customers
who eventually will encounter the potential activity. This information might be used to
improve the customer journey. By using machine and deep learning techniques predictions
are made on whether a certain customer will indeed interact with the touchpoint that may
be experience negative or cost a lot of resources. The repeatable framework for the second
contribution for achieving the predictions will be described in Chapter 4.
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High importance activity
prediction framework

This chapter introduces the high importance activity prediction framework (HIAP) to
predict the occurrence of an interesting touchpoint in the remainder of the customer jour-
ney based on the journey up to a specific point in time. The prediction uses information
of the event log prefixes and possible customer information to predict for a specific cus-
tomer whether he/she will have a specific interaction in the future. Figure 4.1 shows
a visual representation of the HIAP. The figure visualizes the steps that are conducted
to retrieve interesting touchpoint predictions. Each step in the framework is numbered

Figure 4.1: Methodology overview
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by the subsection in which it is addressed in the current chapter. For example step ‘1.
Data harmonization’ is discussed in section 4.1. The first step (1) is concerned with data
harmonization, consisting of three sub-steps: cleaning the customer data, transforming
attributes and creating the event log and is described in Section 4.1. The next step (2) is
related to defining the moment up to which the prefix will be available for prediction and
to defining the potential activity. The potential activity is the interesting activity of which
it should be predicted whether this will occur in the remainder of the trace. Defining the
two critical moments can be executed in parallel and will be elaborated in Section 4.2.
When both these steps are completed, the results will be combined to create separate
event logs (3) used for training, validating and testing models to predict the occurrence
of the potential activity in the traces. The creation of a training, a validation and a test
log is described in Section 4.3. Section 4.4 discusses techniques (4) to balance the event
log data. The next step (5) is concerned with finalizing the data for specific models and
training models to predict whether the customer will encounter the interesting interaction
in the future. This step is divided into a RFC, LSTM and GAN model, all three models
are discussed in Section 4.5. Section 4.6 is related to (6) comparing the results of the
prediction models and the ground truth and comparing the results of the different mod-
els. After completing an iteration of the framework, a new iteration (7) can be applied
for more into-depth research, this process is described in Section 4.7. Last, Section 4.8
describes (8) how the preferred model can be used in the future to perform predictions for
new customer journeys.

4.1 Data harmonization

Customer journey data may be stored in different sources. Furthermore, customer data
and event log data almost always contain unnecessary data or missing data. This data may
mislead further analysis and produce low quality results [1]. Therefore, data harmonization
has to be conducted to combine the data of the different sources and adapt the data such
that the quality of the data will improve. The exact data harmonization techniques may
differ for each data set [2]. The goal of this step is to create a preprocessed event log that
can be used for further research. This part of the framework contributes to answering
the first research subquestion on how process mining techniques can be exploited in the
context of customer journey data. It is the case that customer journey data first has to be
transformed to an event log to be able to apply process mining techniques. This section will
explain some options of data harmonization, but different scenarios may require different
techniques to be applied.

The first step of data harmonization is cleaning the data set. Cleaning includes fil-
tering incomplete journeys and filtering unnecessary attributes or touchpoints. For some
customer journeys, it is possible to define touchpoints that define the end of a customer
journey. For example, if the goal of a customer is to buy a product, the current journey
can be defined as finished if the customer has received and paid the items he/she has
purchased. For the customer journeys that do have items in their shopping basket, but
do not have received the items yet, the journey can be defined as a running case. When
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considering the customer journey, the best results will be achieved by only considering
completed cases. Therefore, only cases which end with a touchpoint that defines the end
of the current journey should be considered. Furthermore, it might be the case that some
of the recorded touchpoints and/or attributes are not of interest for the current research.
These touchpoints and/or attributes can cause noise in the research of interest if these will
be left in the customer log. Therefore, these touchpoints and/or attributes should also be
filtered out.

The next step of data harmonization is the transformation of interactions. By trans-
formation new interaction, timestamp and attribute combinations are derived. As infor-
mation may be stored in different tables, it might be needed to combine different elements
to retrieve complete information. For example, assume that one table stores the action
with the timestamps that a customer has received a product. Another table stores the
order in which products are sent to the customer but without timestamp. Combining
this information can introduce one new interaction stating at which time which product is
received by the customer. The transformation of interactions can provide more concrete
interactions, which might be helpful in the remainder of the research conducted.

The last step of data harmonization is the transformation of a customer journey to
an event log. Section 2.2 already explained a possible mapping from a customer journey
log to an event log. Each customer journey should be mapped to a case identifier, each
touchpoint to an activity, each interaction timestamp to an event timestamp and each
interaction attribute to an event attribute. A mapping should exist for each element of
the interaction to the event. Additionally, it is possible to define an element different
from the customer identifier to serve as the new case identifier. Most commonly, the
mapping from customer log to event log is by mapping each customer identifier to a case
identifier. However, it is possible to choose another attribute, on which cases might be
defined. For example, let the customer log contain online purchases of customers to a
shop. Let each touchpoint be associated to a customer identifier and a purchase identifier.
In this case, each trace can be identified by a customer, but it is also possible to define a
trace per purchase of a customer. Both identifiers can be chosen as case identifier for the
event log, but in all cases a mapping should be defined from identifier in the customer log
to the case identifier in the event log. Furthermore, each touchpoint should be mapped
to an activity. This might be a one-to-one mapping, where each activity represent one
touchpoint, but it might also be a many-to-one mapping, where an activity might represent
multiple touchpoints. A one-to-many mapping is impossible, as one touchpoint cannot be
represented by multiple activities to prevent certain touchpoints to occur multiple times.
The same applies for timestamp and attribute mappings.

4.2 Definition of critical moments

As soon as the event log L is extracted from the customer journey log CJ , the process
model captured in the L can be discovered. This model might be used to retrieve insights
of the current customer journeys and to provide a basis for defining the critical moments.
This step of the framework again contributes to the first subquestion on how process
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mining techniques can be exploited in the context of customer journey analysis. As at this
step the process mining techniques are applied to the event log extracted from the customer
journey data. The critical moments in the customer journey are the decision moment and
the activity of interest called the potential activity. To discover the process model different
process mining discovery algorithms can be used. Each discovery algorithm creates it own
output model, examples of visualization are petri nets [4] and directly follow graphs [1].
The models should be able to capture the behaviour seen in the event log, at the same
time, the models should also not generalize the process too much. If a model generalizes
too much, the model allows for much more behaviour than the behaviour captured in the
log. An example of a model that generalizes too much is a flower model [1]. In the case
of overgeneralizing, the created model does not provide a good overview of the current
process captured in the log. Furthermore, the model should also be simple enough to
be comprehensible. Generalization and simplicity provides some trade offs during the
creation of the process models. Next, the definition of the decision moment and potential
activity are discussed.

4.2.1 Decision moment definition

As already discussed in Chapter 3.2, the goal is to predict whether a certain activity will
occur based on a predefined moment in the trace. This specific moment can be defined
either by a specific activity or by a proposition based on the events in the trace that
should hold. For example, the moment can be defined as the first time that activity x
occurs or as soon as activity x and y have occurred. The first time that such an activity
occurs or the proposition holds will be taken as the decision moment of the trace. As the
prediction takes place at a certain moment, only the traces that at some moment satisfy
the condition of a decision moment should be considered.

To determine the activity or proposition to define the decision moment, domain knowl-
edge is of added value. Domain experts know the moment in a trace that is the most inter-
esting point to provide the prediction. When determining the decision moment two criteria
are considered. First, the goal of the prediction is to be able to adjust the remainder of the
trace and prevent the occurrence of a certain activity or to be able to save resources. To
be able to adjust the remainder of the trace or to save resources the prediction should be
early in the process. The earlier it is known that a certain trace will eventually lead to an
activity, the more time is provided to adapt the process. Second, the prediction should be
as accurate as possible. Inaccurate predictions might cause adaptions to processes that do
not need adaption or might cause that a case is not considered, while it will encounter the
activity of interest. In general, more accurate predictions can be provided at the moment
that more information is available about the current process. Therefore, a balance should
be found between choosing an early decision moment and the accuracy of the prediction
[20]. Both criteria on earliness and accuracy should be considered while determining the
decision moment.

An example to show how the traces should be updated after the decision moment
has been defined is provided in Figure 4.2. Figure 4.2a shows three traces of the original
log. The traces are visualized by the activities belonging to the events of the traces. In
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(a) Traces in the original log visualized by the activities of the events

(b) Traces in the log after inserting the decision moment visualized by the activities of
the events

Figure 4.2: Log update to insert the decision moment in the traces visualized by the
activities of the events

this example, assume that the decision moment is defined as the first time that activity c
occurs. Two of the traces in the original log contain activity c, while the third trace does
not. Therefore, the third trace should be removed from the log as it does not contain a
moment on which the prediction should be performed. For traces one and two, the decision
moment activity should be inserted in the event log directly after activity c. Let activity
d be the activity representing the decision moment. The decision moment is added for
easy reference to the moment at which the prediction should take place. This prevents
rechecking at which moment the proposition defining the decision moment holds. This is
useful for proposition that requests multiple requirements to be met. Figure 4.2b shows
the updated traces after defining the decision moment in the traces.

The approach to insert the event defining the decision moment is explained by Algo-
rithm 1. Next do updating the event log, a list is created in which the time of the decision
moment and its associated trace identifier is stored for each trace in which proposition
Z holds at some moment. The algorithm creates a subset of the event log, by iterating
over all traces in the log. For each trace it checks whether the proposition for the decision
moment holds at a certain moment in the trace. If the proposition is true for a trace in
the log, it searches for the first event at which it holds and extracts the timestamp of
that event. The step of checking at which moment in the trace the proposition is valid, is
applied in Lines 4 and 5. Line 6 inserts the decision event in the log and Line 7 insert the
trace identifier and the decision time in DecT . The decision event provides easy access
to the trace attributes that are available during the prediction. As at the prediction only
information of the trace up to the decision moment is available. The available information
can easily be extracted by only using the trace information up to the decision moment. If
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Algorithm 1: Updating event log with decision moment

Input: Event log L, proposition Z defining the decision moment
Output: Updated event log L and list DecT containing the trace identifiers and

decision times
1 DecT = [ ]
2 for trace t ∈ L do
3 if Z holds somewhere in t then
4 x = first event at which Z holds
5 Time time = x.time
6 t.insert(t.traceIdentifier, time+ 1sec, d)
7 DecT.insert(t.traceIdentifier, time+ 1sec)

8 else
9 remove t from L

10 end if

11 end for
12 return L, DecT

the proposition is invalid at all moments in the trace, the trace is removed from the log
at Line 8. Algorithm 1 ends when it has iterated over all traces and returns the updated
event log L and list DecT .

4.2.2 Definition of the potential activity

Next to defining the decision moment, the potential activity (PoAc) has to be defined as
well. Together, these can be used to decide in which traces the PoAc still occurs on a
later moment than the decision moment. Determining the traces that contain the PoAc
on a later moment than the decision moment is explained in Section 4.3. This PoAc is
the activity of interest, about which it is preferred to know whether it will occur in the
current customer journey. Domain knowledge is of added value in defining the PoAc. The
occurrences of the PoAc will be predicted at the decision moment defined in Section 4.2.1.
For example, let the traces in Figure 4.2b be event log L and let activity f be the PoAc.
Let |d|-prefix be the prefix of the trace up to the event defined by activity d. Let |d|-suffix
be the suffix of the trace with respect to the event defined by activity d respectively. In
this case the suffix of trace four contains activity f , while the suffix of trace five does not.

As the occurrence of the PoAc will be predicted at the decision moment, the decision
moment should be a proposition that is met earlier in the trace than that the PoAc occurs.
However, it may be an activity that is occurring at a random moment in the suffix of the
trace with respect to the decision moment. Therefore, it is not necessarily the next event
or the last event of the trace. Since it could be unrelated to the final outcome of a process.
For example, let a log L define the process of people buying a house. This process will
entail researching the internet for available houses, planning a house visit, viewing the
house, making an offer and buying the house. The final outcome of this process will be
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the purchase of a house, but a PoAc to predict might be whether an offer will be made on
the house.

4.3 Splitting event log

Once the decision moment and the PoAc are defined, it is possible to create a set containing
trace identifiers of the traces which contain the PoAc at a later moment than the decision
moment and a set which contains the other trace identifiers. The method to create these
two sets is explained by Algorithm 2. Lines 1 and 2 define two empty sets. Then the
algorithm iterates over all traces in log L. For each trace it determines the |d|-suffix,
being the suffix of the trace with respect to the activity defining the decision moment, and
checks whether the PoAc is an element of the suffix. In Lines 6 and 8, the trace identifier
is added to the set based on the occurrence of the PoAc in the suffix of the trace. The
set defining the traces in which the PoAc occurs in the |d|-suffix and the set defining the
traces in which the PoAc does not occur in the |d|-suffix are returned by the algorithm.

Algorithm 2: Create sets of trace identifiers

Input: Event log L, potential activity p
Output: Two lists idα, idβ storing the identifiers where the suffix contains p and

the identifiers where the suffix does not contain p respectively
1 idα = { }
2 idβ = { }
3 for trace t ∈ L do
4 suffixd = |d|-suffix of trace t
5 if p ∈ suffixd then
6 idα.append(identifier t)
7 else
8 idβ.append(identifier t)
9 end if

10 end for
11 return idα, idβ

The next step is to create a training, a validation and a test set. These sets will
be used for training, validating and testing prediction models later in the process. The
training data set is the sample of the data that will be used to fit a model [30]. These
samples are used to determine model parameters, such as weights in a neural network or
decision variables of decision nodes in a RFC. The model uses the training data to learn
relationships of the data that can be used to determine the classification. The validation
set is the sample of the data that will be used to generate an unbiased evaluation of the
model fitted on the training data set [30]. This set is used during the training phase
to evaluate how well a currently fitted model is performing. This data is not used for
optimizing the parameters values, it is only used to evaluate a model and to decide which
model performs best. The test set is the sample of the data that will be used for an
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unbiased evaluation of the final model [30]. This data is only used after the training of the
model has finished. The model provides a prediction of the instances in the test set based
on the final model. The predictions can be used to evaluate how well the final model is
performing and often is used to compare different models, such as a RFC with a RNN, to
decide which model is most suited in the current setup.

Using a training, a validation and a test set is important to prevent overfitting [23]. In
the case that all data is used to train a model, it might result in the model learning relations
from the data that are not really occurring in the data. If the model is than used on new
data, it might provide incorrect predictions. By using a separate training, validation and
test set, this issue is already spotted while developing the model and parameters may
be tuned to prevent overfitting. In existing literature no general approach on splitting
the data in a training, a validation and a test set exist. Several approaches have been
researched and argued why these splitting methods can be used under realistic scenarios
[22, 28, 32]. In the current research two methods are used to create a training, a validation
and a test set. This step of the framework is related to research subquestion three and
four. The third subquestion investigated how the result of the prediction is affected by
the creation of the training, the validation and the test set. Therefore, creating these sets
based on different methods, will contribute to this subquestion. The fourth subquestion is
related to the effect of the prediction quality by applying various windowing techniques.
One of the methods to create the training, the validation and the test set is related to
windowing techniques. Therefore, this part of the framework also contributed to the fourth
subquestion. The first method splits all available traces in the complete log in three subsets
defining the training, the validation and the test set. In this case, it is common to use 70%
of the data as training data, 10% as validation data and 20% as test data [8]. The training,
the validation and the test set can be created by randomly selecting instances from the
complete data set. If we look at the time that the trace has been executed, randomly
selecting instances for the training, the validation and the test set might result in training
on instances that have taken place on a later moment in time than the instances on which
the model is tested. Training on instances that occur on a later moment might result in
leakage of information and that might provide false insights in the quality of the model
[32]. To prevent this, the sets can be created in a time based manner. Therefore, the
first 70% of the set chronologically seen in time is used as training sample, then next 10%
is the sample of the validation set and the last 20% is the test sample. If the model is
used for predicting on new instances, it will be the case that chronologically seen in time
the traces have taken place later in time, than the traces on which it has been trained.
Therefore, a model that is also tested on the traces that occur on a later moment than
the traces on which it is trained, will provide a more realistic view of the results [22].
The second method uses a window of the complete set and only uses traces executed in
this window to train and test the model. In this case, a start date and end date of the
window is defined. The training and the validation sets are composed the traces that are
completed in this window. The test set is constructed of the set of traces of which the
proposition defining the decision moment is satisfied in this time window, but that are not
yet completed. Using only a window of the data might be useful to investigate whether all
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historical available data should be used to train a model [27]. As time evolves, new data of
the same process will become available. Therefore, it is useful to update a model over time
to the new data to ensure up to date predictions. However, training a model with more
data is more time consuming. It is worth to investigate whether all historical data are
needed or if only the most recent data are sufficient to train a model that provides accurate
predictions. Next, pseudo code for both methods of creating a training, a validation and
a test set is discussed.

Algorithm 3 explains how the training, the validation and the test set are created for
the sets that are created time based. As input it needs the complete event log L and the
list DecT containing the time of the decision moment for each trace and the sizes of the
training, the validation and the test set. The sizes of the three sets should be provided by
a value between 0 and 1 defining the partition of the set with respect to the complete log.
The sizes of the three sets together should sum up to 1, such that each instance of the log
is contained in exactly one of the subsets. First DecT will be sorted, such that the case
identifiers in the list are ordered chronologically in time based on the decision moment of
the traces. Lines 2, 3 and 4 create lists containing the case identifiers for the three sets.
Ltrain contains the first percentage of traces defined by TrS as provided as input, Lval
contains the next part defined by V aS and Ltest contains the last part defined by TeS.
Lines 5, 6 and 7 take the subset of the log L defining the training, the validation and the
test set respectively. On Line 8 the three sets are returned by the algorithm.

Algorithm 3: Create training, validation and test log

Input: Event log L, list DecT , fraction of training set TrS, fraction of validation
set V aS, fraction of test set TeS

Output: Three logs Ltrain, Lval, Ltest defining the training, the validation and
the test log respectively

1 Sort DecT on the chronologically on time.
2 List DecTtrain = DecT [0: TrS * length(DecT )]
3 List DecTval = DecT [TrS * length(DecT ): VaS * length(DecT )]
4 List DecTtest = DecT [(1-TeS) * length(DecT ):]
5 Ltrain = L where case identifier ∈ DecTtrain
6 Lval = L where case identifier ∈ DecTval
7 Ltest = L where case identifier ∈ DecTtest
8 return Ltrain, Lval, Ltest

Algorithm 4 explains how the training, the validation and the test set are created for
a time window. The input to the algorithm is the event log L and the start and end date
and time of the window. First, two empty lists are created. List trainAndValInstances to
store the trace identifiers of the traces that belong to the training or validation set. List
testInstances to store the trace identifiers of the traces that belong to the test set. Then
the algorithm loops over all traces in event log L. If the trace completes within the time
frame provided as input, the trace identifier is added to trainAndValInstances. Else, if
the decision moment of the current trace is within the timeframe, but the trace has not
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yet been completed, the trace identifier is added to testInstances. After looping over all
traces, the final training and validation sets are created by splitting trainAndValInstances
in two sets. The final training, validation and test logs are created by selecting the traces
belonging to the trace identifiers contained in the training, the validation and the test list
respectively. The algorithm completes by returning the training, the validation and the
test sets.

Algorithm 4: Create training, validation and test log using a window

Input: Event log L, start date and time of the window startT ime and the end
date and time of the window endT ime

Output: Three logs Ltrain, Lval, Ltest defining the training, the validation and
the test log respectively

1 List trainAndValInstances = []
2 List testInstances = []
3 for trace t ∈ L do
4 completeTime = time of last event in t
5 decisionTime = time of decision moment in t
6 if startT ime ≤ completeT ime ≤ endT ime then
7 add trace identifier of t to list trainAndValInstances
8 else
9 if startT ime ≤ completeT ime ≤ endT ime then

10 add trace identifier of t to list testInstances
11 end if

12 end if

13 end for
14 List trainInstances = 85% of trace identifiers of trainAndValInstances with first

decision times
15 List valInstances = 15% of trace identifiers of trainAndValInstances with the last

decision times
16 Ltrain = L where case identifier ∈ trainInstances
17 Lval = L where case identifier ∈ valInstances
18 Ltest = L where case identifier ∈ testInstances
19 return Ltrain, Lval, Ltest

4.4 Data balancing

A sample of the data is a subset of the data, of which it is assumed that it represents the
larger group. Sampling might be used to create a balanced data set from an unbalanced
data set [11]. Consider spam detection in an email server. Assume that of the complete
data set only 1% of the emails is spam and the other 99% of the emails are not. In this
case the data is unbalanced, training a classifier model on this data will most likely create
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a biased classifier towards the majority group. Therefore, it is likely that the classifier has
a higher misclassification rate on the minority group. However, it is most interesting to
classify these instances correctly, as the minority group is the severe group to get notified
about. By sampling the training data set it can be adapted to a representative set, such
that the distribution of the emails considered as spam and not spam are 50/50. Such a
sampled data set may be used to train an unbiased classifier. This part of the framework
contributes to the third research subquestion. The third subquestion is about the affect
on the prediction result by the creation of the training, the validation and the test data.
This step provides insights in the effect of creating the training data set, as it considers
undersampling and oversampling techniques. Therefore, it contributes to answering he
third subquestion of this research.

Different techniques exist to sample data. It can be chosen to either undersample the
majority class or oversample the minority class. The method of undersampling the ma-
jority class entails removing observations of the majority class, such that the number of
observations is reduced. This may cause the deletion of important information. Several
sampling techniques exist for undersampling data, examples are random undersampling,
k-means centroid clustering and Tomek links [11]. On the other hand, oversampling the
minority class entails adding copies of existing traces with the minority class outcome.
This method might be used if the data set is small and the number of samples is too
much reduced when using undersampling. Several sampling techniques exist for oversam-
pling, examples are random oversampling and SMOTE [11]. For both sampling techniques
random and non-random methods exist. Random sampling techniques are most easily im-
plemented, as the samples are randomly selected without an underlying heuristic. The
main limitation of random selecting samples is that it might result in an adaption of the
underlying data distribution. Therefore, it might be the case that the data is not repre-
sentative anymore [11]. To overcome the limitations of random sampling, it is advisable
to use a sample technique that is based on a heuristic. One can also choose to use a
combination of oversampling and undersampling to balance the data set.

Data sampling will only be applied on the training data set. The validation and test
sets are not sampled such that these set still contain the original and complete set of
processes as it is executed by customers. If the validation and test set are sampled as well,
the results reported will provide a false representation of the real world [11]. In that case,
the model only provides information on the sampled data and not on future real world
data. If the model will be used for predictions at a later moment, the predictions might
be incorrect in a different number of cases than expected. On the other hand, the training
set may be adapted. By balancing the training set, importance is given to the minority
class and this will result in a model that is more likely to indicate which instances belong
to the minority class.

Algorithm 5 shows how the training set can be undersampled. This method uses the
ratio of the occurrence of certain trace variants. The ratio of the occurrences in the
original log is equal to the ratio in the undersampled log. As input the algorithm needs
the training log Lt that only contains traces of the majority class and the number of traces
numbTraces that should be in the undersampled set. The for loop ranging over Lines 6
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Algorithm 5: Undersample training log

Input: Training event log with only traces of the majority class Lt, integer
numbTraces indicting the number of traces that should be kept

Output: Undersampled training event log Ltu
1 List orgTraces = [], unique trace ids in Lt
2 List traceVar = [][]
3 List traceIDsSample = []
4 Log Ltu = {}
5 for trace t ∈ Lt do
6 if t contained in traceV ar then
7 Add traceID of t to second column of the current variant
8 else
9 Add t to the list with in second column the traceID of t

10 end if

11 end for
12 for variant ∈ traceVar do
13 Add floor(number of traceID for current variant /(orgTraces/numbTraces))

traceIDs to traceIDsSample
14 end for
15 Take length traceIDsSample −numbTraces trace ids of the tracesID that are not

yet taken.
16 for traceID ∈ traceIDsSample do
17 At trace of traceID to Ltu
18 end for
19 return Ltu

until 11 creates a list of all trace variants. Together with the trace variant traceV ar it
records the traceID of the traces that are compliant with that traceV ar. In Line 12 and
13 the algorithm loops over all traceV ar and it selects for each variant a number of trace
identifiers. The ratio of selected identifiers with respect to the size of the undersampled log
is equal to the ratio of the variant in the input event log. This way of selecting traces will
result in selecting less traces than the number of traces that is requested. Therefore, the
remaining number of traces that are needed are added randomly from the trace identifiers
that are not yet selected. The algorithm will return the log containing the traces belonging
to the selected trace identifiers.

4.5 Prediction phase of the potential activity

This section elaborates on different machine and deep learning methods to predict the
occurrence of the activity of interest. Multiple models are considered such that the re-
sult can be compared and it can be researched which model is most suited. The possible
methods for prediction are not limited to the models described in this section; therefore,

Predicting the occurrence of an activity in the remainder of the customer journey 32



CHAPTER 4. HIGH IMPORTANCE ACTIVITY PREDICTION FRAMEWORK

it is also possible to consider another model. As different predictions models are consid-
ered in this step, it contributes to answering the second research question. The second
research subquestion is related to the influence of the prediction model on the quality of
the prediction. By investigation the quality of different models and comparing the results,
it provides results to answer the subquestion. First the RFC model is explained in more
details. Afterwards and LSTM network is described. Last, the GAN with LSTM networks
for suffix prediction is expanded upon.

4.5.1 Random Forest Classifier

In order to train a RFC, the traces first need to be represented as a set of features. These
features consist of a set of independent variables and one dependent variable. This set
of independent variables should be deduced from the data set and entail the information
of the trace that is available at the decision moment. Therefore, the independent vari-
ables should only contain information about the events that have taken place prior to the
decision moment and the general customer details that are available. Examples of inde-
pendent variable are the age of a customer, the gender of a customer, the time since the
start of the trace up to the decision moment and the number of times the customer has
performed a certain activity. All information that can be extracted from the log up to the
decision moment might be used as an independent variable. Domain knowledge is useful
in determining the independent variables that could be interesting to use. The dependent
variable represents the outcome of the activity of interest. It encodes whether the PoAc
will occur in the remainder of the trace. This variable can be encoded as 0 if the PoAc
does not occur and as 1 if the PoAc occurs. As the dependent variable will only consist
of two classes, the decision is a binary decision.

CaseID Indep. var 1 Indep. var 2 ... Indep. var n Dependent var

1 value 1 value 2 ... value n 0

2 value n+1 value n+2 ... value 2n 1

3 value 2n+1 value 2n+2 ... value 3n 0

... ... ... ... ... ...

Table 4.1: Example of feature representation as input for a RFC

Table 4.1 shows an example of the feature representation that can be used as input for
a RFC. Each row in the table identifies one unique case identifier in the event log. Each
trace in the log is translated to the same set of independent variables. Column 2 until
n+1 contain for each trace the value of the independent variable. The dependent variable
represent the occurrence of the PoAc in the suffix of the trace.

Subsequently, the RFC to predict the occurrence of the PoAc can be trained based
on the training data set. RFCs are already discussed in Section 2.3.1. During training
parameters of the model should be tuned [29], examples are the depth of the trees and
the number of decision trees in the forest. The decision nodes are labeled by independent
variables and the decisions are based on the possible values of these variables. Leaf nodes
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contain the class that should be predicted, representing the dependent variable. The
quality of the resulting model can be tested with the test data set. The model will only
be provided with the independent variables of the instances in the test set and should
provide a prediction for each instance. The prediction can be compared with the ground
truth value of the dependent variable of the instance to retrieve performance results.

4.5.2 Long-Short-Term-Memory network

This section describes a prediction model that is inspired on the implementation of Kratsch
et al. [17] for final outcome prediction. Section 2.4 already provides a description of the
work by Kratsch et al. The research by Kratch et al. investigates different ML and DL
models on various event logs to gain insights in the properties of an event log that facilitate
the use of DL models over the use of ML models. In this research the main goal was to
predict the final outcome of running cases. For this purpose, specific preprocessing steps to
convert the event log to feature vectors is discussed. The same preprocessing, as proposed
by Kratsch et al. will be applied to retrieve feature data for the LSTM model introduced
in this section.

The preprocessing applied by Kratsch et al. [17] entailed multiple steps. First, they
defined the number x of events which should be considered while creating the feature
vector. These x events are the first x events belonging to a trace in the event log. The
feature vectors only entail information of the traces that is available up to that moment of
the trace. The traces that did not contain at least x events are removed from the log. For
the traces that contain more than x events, the x-suffix is not considered while creating
feature vectors. For each attribute, on trace level as well as event level, it is checked in
what percentage of the traces and events respectively it is occurring. If a certain attribute
is contained in less than 1% of the traces or events, it is removed from the log. Otherwise,
if a certain trace or event does not contain a certain attribute, but it is occurring in
more than 1% of the traces, the attribute is added to the trace or event with a default
value. The attributes available in the log will be contained in the feature vectors. One-hot
vector encoding is applied to attributes which have categorical values, and the one-hot
vector encoding is used in the feature vector. LSTM networks require the same number of
attributes in the feature vector at each timestep. With the preprocessing executed, each
attribute that is available in at least one event is also available at all other events. Adding
the trace attribute variables at each event in the feature vector, creates feature vectors
with the same number of features at each timestep. Last, the label of the current trace is
assigned to the feature vector. This part of the feature vector is not used while providing
predictions. It is only used to compare the prediction with the ground truth and to train
the parameters of the model. More details on the original preprocessing can be found in
‘Machine Learning in Business Process Monitoring: A Comparison of Deep Learning and
Classical Approaches Used for Outcome Prediction’[17].

This preprocessing is not directly applicable in the current research. The event number
of the decision moment may differ from one trace to another, but for each trace the predic-
tion should be provided at the decision moment. Therefore, an additional preprocessing
step has to be conducted prior to the preprocessing discussed in the previous paragraph.
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For each trace, the number of events prior to the decision moment can be extracted. Fur-
thermore, a number y of events should be defined, which should be used as the preferred
prefix length for each trace. Traces containing more than y events up to the decision
moment, should be shortened. Only the last y events up to the decision moment should
be kept. Traces that have less than y events up to the decision moment should lengthened
with artificial events. These events should be added to the start of the trace, such that
the number of events up to the decision moment in the trace will get equal to y. The
events occurring later than the decision moment, should still be preserved. The suffix of
the trace will be used to determine the dependent variable, which indicates whether the
PoAc occurs in the suffix.

Algorithm 6: Preprocessing event log for LSTM network model

Input: Event log L, length of trace l
Output: Processed event log L

1 for trace t ∈ L do
2 DecE = the event number of the decision moment
3 EventCount = DecE − l
4 if EventCount > 0 then
5 remove first EventCount event(s) from trace t
6 else
7 Add EventCount artificial event(s) to trace t
8 end if

9 end for
10 return L

Algorithm 6 describes the update of the traces, such that each trace has the same
number of events up to the decision moment. As input, the event log L and a preferred
prefix length l are required. The algorithm iterates over each trace contained in the log L.
For each trace it determines DecE the event number that defines the decision moment.
DecE is compared to l. If DecE is larger than l, the first events are removed, such that
the trace prefix gets length l. Otherwise, if l is larger than DecE, artificial events are
added, such that the trace prefix gets length l.

Table 4.2 shows an example of the feature representation after applying both prepro-
cessing steps. Each row in the table identifies one trace of the event log. All columns
except of the last column contain variables representing the trace and event attributes.
The last column contains the dependent variable, containing the information on whether
the suffix based on the decision moment contains the PoAc. If the suffix contains the
PoAc, the value is set to 1, otherwise the value is set to 0.

The feature vectors are used as input to a LSTM network classifier. The classifier
is trained with a two-stage learning strategy. The first stage entails hyper-parameter
optimization. In this stage multiple hyper-parameter settings are tested by a random
parameter search. Random searching for parameters is reasonable, as Bergstra and Bengio
have shown that this lead to similar results as testing with all possible combinations of
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Trace var 1 ... Event var 1 ... Event var n Dependent var

value 1 ... value 2 ... value 3 0

value 4 ... value 5 ... value 6 1

value 7 ... value 8 ... value 9 0

... ... ... ... ... ...

Table 4.2: Example of feature representation for the LSTM model

parameters in a more efficient manner [5]. The best model settings are used with a cross-
validation to train a final prediction model.

4.5.3 Generative Adversarial Network

The model described in this section is an adaption of the model by Taymouri et al. [35].
Section 2.4 already provides a description of the work by Taymouri et al. Taymouri et al.
have developed a GAN with LSTM networks that is used for suffix and remaining time
prediction. The generator of the GAN model consists of an encoder-decoder architecture
to allow for variable length prefixes and suffixes. The original implementation details can
be found in the paper ‘A deep adversarial model for suffix and remaining time prediction
of event sequences’ [35].

First the data preparation phase is explained in more details. The events in the
event log should contain a case identifier, activity and timestamp. The activities should
be encoded in activity numbers and the timestamp should be provided with a date and
time. Next to the original activities, the event log should contain an activity defining the
decision moment. This decision moment activity is needed on a later step to define the
prefix and suffix of each trace. Additionally, some traces should be shortened. The goal
of the current research is to predict whether the PoAc occurs on a later moment than the
first occurrence of decision moment. Therefore, as soon as this PoAc occurs in the suffix,
the remainder of the suffix is not of interest anymore. For traces in which the PoAc does
not occur in the suffix, the complete suffix is of interest. For the traces in which the PoAc
occurs in the suffix, the remainder of the suffix executed on a later moment than the event
showing that the PoAc occurred should be removed from the trace. Table 4.3 shows an
example of the trace representation that could be used as input for suffix creating. For
all traces contained in the event log the next elements are captured in the representation:
the case identifier, each activity and each timestamp. Each row in the table shows one
event captured in the event log.

The implementation described by Taymouri et al. [35] needed some modifications to
be applicable for the current research. These modification are regarding the creation of
the training, the validation and the test set and the number of prefix and suffixes created
for each trace. Taymouri et al. created the training, the validation and the test sets by
randomly selecting instances from the complete log for each set. As described in Section
4.3 the creation of the training, the validation and the test set in this research is not
random. Therefore, the sets should be defined based on the timestamp of the decision
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CaseID Activity Timestamp

1 1 2021-05-07 10:12

1 2 2021-05-07 13:15

1 4 2021-05-08 09:00

2 1 2021-05-07 22:04

2 3 2021-05-07 23:30

... ... ...

Table 4.3: Example of trace representation as input for the GAN network for suffix pre-
diction

moment or based on the timeframe. Secondly, Taymouri et al. create multiple prefixes
and suffixes per trace. For each trace, a prefix-suffix combination is created for each prefix
of length length 2 up to length |trace| − 1. Taymouri et al. provide a general prefix-
suffix prediction model. In the context of the current research, suffix predictions should
only be provided at the decision moment. Therefore, each trace will only consists of one
prefix-suffix combination.

Algorithm 7 shows the process of data reading and suffix generation with the GAN
model. As input the training, the validation and the test data set are needed with the
representation as provided in Table 4.3. For each event, represented by a row, occurring in
the data set, the categorical activity is represented by a binary vector via one-hot vector
encoding, the timestamp is replaced by the time that is elapsed since the previous event
and the current event, defining the duration of the event. This part of the algorithm is
represented by Lines 3 till 9. Lines 10 till 13 splits each trace to the correct prefix and
suffix. The prefix of a trace is the original trace up to the event defined as the decision
moment. The suffix of the trace are the events of the original trace occurring on a later
moment than the decision moment. Line 15 defines the creation of the GAN model M.
This creation entails the definition of the generator and discriminator model. These are
LSTM networks, for which parameters, such as number of layers, and batch size need to be
defined. The next step is to train modelM with the training and the validation data frame
created from Ltrain and Lval respectively. After training modelM, the model can be used
to provide new predictions. These predictions are suffixes created by the generator. The
prefixes of the test data frame are provided as input, the model will predict the suffix for
each prefix. The modelM as well as the predicted suffixes on the test set are returned by
the algorithm. The model can later be used on different data to provide more predictions,
the predicted suffix can be compared with the ground truth suffixes of the test set to
retrieve performance measures.

4.6 Model comparison

In Section 4.5 three different models for PoAc prediction are discussed. All these models
will produce own predictions and the models will provide different predictions for a part
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Algorithm 7: GAN suffix generation

Input: Training event log Ltrain, validation event log Lval, test event log Ltest
Output: GAN model M, suffixes for the test set suffix test

1 Create empty dataframes dataTrain, dataV al, dataTest
2 for data set ∈ [Ltrain, Lval, Ltest] do
3 for trace t ∈ dataset do
4 for event e ∈ trace do
5 Create one-hot vector for e
6 Define duration time of current event
7 Add one-hot vector and duration time to row in dataframe of current

data set
8 end for

9 end for
10 for trace t ∈ dataset do
11 create the prefix of t based on the decision moment
12 create the suffix of t based on the decision moment

13 end for

14 end for
15 Create GAN model M
16 Train M with dataTrain and dataV al data
17 suffix test = predicition of dataTest on M
18 return M, suffix test

of the instances. The next step is to evaluate the performance of each classifier to judge
on the trustworthiness of the classifiers and to compare the different models. Comparing
different predictions models contributes to answering the second research subquestion.
That subquestion is concerned with the influence of the prediction model on the quality
of the prediction. By comparing different models, information is gathered on the influence
of the prediction model on the prediction. To determine the quality of the models, the
predictions should be compared with the ground truth. Afterwards, a comparison between
the models can be performed to decide which model is most preferred to use.

The first step in model comparison is to determine the quality of each model separately.
For each model, the test set is reserved as unseen data to retrieve information on model
quality. For this test set it is known whether the PoAc will occur on a later moment
than the decision moment and the needed representations for each model are available.
Therefore, we can use the generated model together with the test set to retrieve predictions
on the occurrence of the PoAc. The predictions of each model can be compared to the
ground truth to get insight in the trustworthiness of the model. The RFC and LSTM
network provide predictions on the occurrence of the PoAc by default. For the GAN
model, suffixes are provided and it should first be extracted whether the PoAc is occurring
in the suffix, to decide on the quality of the model and to be able to compare the results
to the other two models. The quality of each model will be accessed by the F1-score or the
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recall score. Section 5.2 provides more details on the performance measures. Depending
on the research field and goal of the research, either the F1-score or recall and F1-score
will be most interesting to consider. For research fields at which it is important to detect
all occurrences of the potential activity, the recall score is very important. This can be
the case if we want to detect whether a fraudulent activity is expected to happen. In this
case the recall and F1-score should be considered. However, if it is just as important to
only predict a PoAc to happen when it really happens as selecting all cases of the PoAc,
only the F1-score should be considered.

In addition to deciding the quality of each model separately, models should be com-
pared against each other. This comparison can be conducted with the same F1 and recall
scores. Section 5.2 provides more details on the performance measures. Generally, a higher
score implies that the model is outperforming the other models [1]. This comparison is
meaningful to decide on the model that can best be used in future cases. After training
a model, the goal is to predict for new cases, as soon as the decision moment property
holds, whether the PoAc will occur. Predictions should be as reliable as possible in such
cases; therefore, it is important to generate predictions with the model that is expected
to be most trustworthy.

4.7 Detailing the predictions

After applying HIAP once, the model can be re-iterated to retrieve more detailed pre-
dictions. This is visualized in Figure 4.1 by the arrow labeled with ‘7. Detailing the
predictions’. During a new iteration the same research is applied on a different decision
moment in the process or on a more into depth PoAc. Applying the prediction of the
occurrence of the PoAc on different moments in the trace, might provide new insights
and trade-offs. Predictions conducted early in the process might be interesting, to pro-
vide early insights in the expectation on whether a customer will perform the PoAc and
allows for early adaption of the customer journey. However, later predictions might be
more accurate and prevent unnecessary adaptions of the process. Therefore, it might be
interesting to conduct predictions on multiple decision moments of the same process to re-
trieve more in depth insights. Alternatively, re-iterating can be used for a more into depth
research. For example, the first iteration can predict whether a customer is expected to
request information about a product in the shop, independent of the exact product. A
second iteration could be used to get insight in the type of the product. Thus for the cus-
tomers who are predicted to ask more information about a product, it might be predicted
whether this product will be a mobile phone or a phone accessory. Re-iterating the HIAP
can provide more insight in the process under investigation. During the re-iteration, either
all steps or all steps except the data harmonization step have to be applied again. When
a new decision moments is chosen in the same process, the data harmonization can be
skipped. For the purpose of a more detailed PoAc the data harmonization should again
be conducted. In this case it might be that the research should not contain all completed
cases, but only completed cases in which a certain activity had occurred. Therefore, the
cleaning might remove more customer journeys from the log. The other steps should al-
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ways be re-executed. The decision moment and potential activity should again be defined.
New training validation and test sets should be created and balanced. The different pre-
diction models should be retrained. And the new predictions should again be compared
with the ground truth for model comparison. The performance of the first iteration can
be compared to the performance of the new detailed iteration. For example, if another
decision moment is chosen, insight can be gathered in the trade-of between the earliness
of the prediction and the quality of the prediction by comparing the different iterations of
HIAP.

4.8 Future model use

Section 4.6 discussed how to determine which model was performing best. This model
can be used for future instance predictions. After training a model, the model can be
stored, such that the model can be used for future predictions of the activity of interest.
New customer journeys are journeys executed by the customer on a later moment. At the
moment that the proposition defining the decision moment holds, the new journey can
be represented with the same feature representation as the testing data was represented.
For this purpose, the customer journey up to that moment should be mapped to the
representation as provided in Sections 4.5.1, 4.5.2 and 4.5.3 for the RFC, LSTM and
GAN model respectively. The same mapping to create the features should be used as was
originally used to create the training, the validation and the test data. This ensures that
the same features of the trace are captured in the feature vector. For the new customer
journeys, the log should not be separated in a training, a validation and a test log as
the model has already been trained and will only be used to provide predictions. The
predictions present insights in whether the customer is expected to eventually interact
with the PoAc.
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Experimental evaluation

This chapter describes the application of the HIAP research on two data sets. The first
data set is provided by VGZ, a Dutch health insurer. The second data set is the BPI
2012 benchmark data set of a loan application process attained from the 4TU Centre for
Research data [10]. The BPI 2012 data set is selected to show that the HIAP is not only
applicable to specific domains, but can be applied to a wider range of research. Both
data sets are described in Section 5.1. Next, Section 5.2 describes how the application of
the HIAP can be evaluated. The baseline model to which the results can be compared
is introduced in Section 5.3. Section 5.4 explains how the customer journey can be pre-
processed and analyzed using process mining techniques. Then, Section 5.5 describes how
classification models are implemented for the HIAP and analyzes the quality of the dif-
ferent models. Additionally, Section 5.6 evaluates the effect of creating the training, the
validation and the test set in a time based manner or by a random split. The performance
measures are compared for both methods of creating the training, the validation and the
test set. Section 5.7 discusses methods to retrain the model over time. It discusses the
difference of only using the most recent data to train a model and using all historical
available data to retrain a model. Last, Section 5.8 finishes the experimental evaluation
by summarizing the results of applying HIAP.

5.1 Data sets

To evaluate the performance of the HIAP, it is applied to two data sets. This section
introduces the data sets used for this evaluation. First, the description of the Dutch
health insurer set is provided and then the BPI 2012 data set is introduced.

5.1.1 Health insurer data set

The health insurer data set is a data set provided by the Dutch health insurer VGZ. The
data contains details about the declaration process for customers and has been stored over
different sources. This declaration process starts once a customer has payed an invoice
for a certain care that the customer has used and wants to get the amount paid refunded
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from VGZ. To achieve this the customer submits the invoice to the insurer. This invoice
will be checked by the insurer and a decision including the reason will be sent to the
customer. The declaration process data covers a time period of two months. It consists
of around 90,000 customers who have submitted around 147,000 declarations. Next to
the activities related to the declaration, information of customers visiting the website and
contact VGZ by phone are available. Furthermore, some anonymized customer details
are available. For each touchpoint the interaction, timestamp and customer identifier
are recorded. Touchpoints related to submitting or retrieving results of a declaration are
coupled to a declaration identifier next to the customer identifier. Each touchpoint has
its own attributes included in the data. The attributes of a phone call are the subject
and customer question. A website visit contains the visited url, browser used by the client
and an interaction identifier. Submission of declarations contain channel information over
which the declaration has been submitted. Declaration decisions contain the message for
the client, type of reimbursement and the category of the decision. The category of the
decision is a categorisation of the acceptance and rejection reason.

5.1.2 BPI 2012 challenge data set

The BPI 2012 challenge event log contains data of the application process for a personal
loan or overdraft within a Dutch financial institute. Events belong to a sub-process and the
complete log contains three sub-processes. The application sub-process is concerned with
the handling of the applications. Offer sub-process defining the events belonging to the
offers sent to customers for a certain application. Workflow sub-process describing work
items for certain applications. The event log covers a time period of 6 months and contains
around 13,000 cases and 262,000 events. For each event stored in the event log the event,
the lifecycle of the event, the timestamp, the customer identifier and the requested amount
are stored. The requested amount specifies the amount of loan or overdraft requested by
a customer in the current application. Activities for which an organizational resources is
needed, also specify the organizational resource that executed the activity.

5.2 Performance measures

Performance evaluation is crucial to compare different classification models. The predic-
tion of the classifier should be compared to the ground truth of the same data instance.
If the prediction matches the ground truth, the prediction is referred to as a true predic-
tion (T). Otherwise, if the prediction is different from the ground truth, the prediction
is referred to as a false prediction (F) [1]. In this research, binary decision about the
occurrence of an activity of interest are provided. This allows the results to be presented
in a 2 by 2 matrix defining the classes and number of predictions in such class. Table 5.1
shows a confusion matrix, denoting the classes. The class for which the ground truth is
positive and the prediction is positive defines the truth positives (TP), if the prediction
is negative it defines the false negatives (FN). The class for which the ground truth is
negative and the prediction is positive defines the false positive (FP) and if the prediction
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Predicted value
Negative Positive
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th Negative TN FP

Positive FN TP

Table 5.1: Confusion matrix

is negative it defines the true negatives (TN) [1]. In terms of predicting an activity of
interest, the positive class corresponds to the occurrence of the PoAc and the negative
class to non-occurrence of the PoAc. Several performance measures can be calculated on
the basis of these classes. The most common measure is the accuracy of the predictions
[1].

accuracy =
TP + TN

TP + TN + FP + FN
(5.1)

The accuracy aggregates all predictions in a single measure, however, using the accuracy
measure may provide misleading results. Assume, a test set contains 99 cases with a
negative ground truth value and 1 with a positive value. A classifier predicting the negative
class in all cases will reach a high accuracy of 99%. Nevertheless, in such cases it is
interesting to correctly classify the positive class and if this is never predicted, the classifier
model should not be evaluated as performing well.

Especially for prediction models with imbalanced classes and the minority class being
the class of interest to predict class-wise measures are needed [1]. Such measures are
precision, recall and F1-score. For all three measures, the resulting value will be between
0 and 1, where values closer to 1 indicate that the model is performing good.

Precision =
TP

TP + FP
(5.2)

Recall =
TP

TP + FN
(5.3)

F1-score = 2× precision× recall
precision+ recall

(5.4)

The precision measure (Equation 5.2) indicates how many of the positive predicted
instances are positive based on the ground truth as well [1]. A higher precision implies
that there are fewer cases that are wrongly predicted as positive. The precision measure
might be a good measure in the case that mails should be classified as spam. In the
context of spam detection it is important that no important non-spam email is predicted
to be spam and therefore no FP predictions should occur. In contrast, recall (Equation
5.3) indicates how many of the ground truth positive instances are predicted to be positive
[1]. A higher recall measure implies that more positive classes have been detected. The
recall measure might be a good measure in the case of fraud detection. In the context
of fraud detection it is important that all cases that are fraud are detected and that no
cases are missed. However, recall should not be used as the only performing measure. A
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prediction model that is predicting the positive class for all instances will achieve a recall
of 1, however, this will also provide FP predictions. It can be the case that a classifier
model retrieves a high recall and a low precision, it might also be that a classifier model
retrieves a low recall and a high precision. In the best case, the precision and recall scores
are both high. Recall and precision can also be combined to a single measure [1]. This
measure is the F1-score (Equation 5.4). The F1-score seeks a balance between precision
and recall and is the harmonic mean of the two measures. If either the precision or recall
score is low, then the F1-score is also low. Only if both precision and recall are high, the
F1-score is high as well.

Depending on the purpose that the classifier model has to achieve, the most important
performance measure can be determined. If both recall and precision are important, it
is best to consider the F1-score. If only the precision is of importance, this score can be
used to determine the quality of a model and to compare different models. In the case
that recall is important, as well recall as the F1-score should be considered. Scoring a
recall score of 1 is possible by always predicting the positive class. This will result in a
model that is able to detect all positive classes, but it might not be the case that the
model is performing well. Therefore, the recall scoring should not be used as the only
measure to decide on the performance of a model. However, if recall is important, it can
be considered as one of the measures to determine the quality of a model. In terms of
predicting the occurrence of the PoAc, it is important to predict the occurrence correctly
in the positive ground truth class. This indicates that the recall score is an important
measure to consider. However, this measure should not be used solely; therefore, the F1-
score as well as the recall score should be considered while determining the quality of the
prediction model. During model comparison all four measures will be reported, with the
recall and F1-score being the central performance measure to consider.

5.3 Baseline model

To reason about the quality and added value of the HIAP, a baseline model should be
defined in addition to performance measures. The chosen baseline model is a random
predictor, which may be assumed to be the baseline for prediction performance. It should
be the case that the HIAP is performing better than the baseline model, as it otherwise
would mean that random guessing would provide better predictions.

A random predictor is based on randomness and therefore simple to implement and
explain. The input for a random predictor is the distribution of the traces containing and
not containing the activity of interest in the suffix related to the decision moment. To
test the random predictor an artificial data set is created. The artificial occurrence of the
PoAc will be equal to the distribution in the original data. The random baseline model
does not use any input information of traces to assign predictions to each instance in the
set. The random predictor, assigns a random number between 0 and 1 to each instance in
the artificial data set. The prediction of the random generator is determined by rounding
the random number. Therefore, a random number ≤ 0.5 will be assigned a 0 indicating
that the prediction is equal to no occurrence of the activity of interest. Otherwise, the
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assigned prediction is 1 indicating that it is expected that for this instance the activity
of interest will occur. Table 5.2 shows an example of how a random baseline model could
look. The first column shows the artificial outcome of the occurrence of the activity of
interest. Then for each instance in the artificial data set a random number is generated and
the prediction of the random predictor model is a result of this random prediction. The
performance measures of the model can be calculated by using the values in the column
‘Occurrence of the PoAc’ as ground truth values and the ‘Prediction’ column as predicted
values. This process of randomly generating predictions is repeated 1000 times. For each

Occurrence of the PoAc Random number Prediction

0 0.05 0

0 0.91 1

... ... ...

1 0.79 1

1 0.78 1

Table 5.2: Example of a random predictor result

iteration the accuracy, precision, recall and F1-score is determined. The final performance
of the random predictor is determined by taking the average of each measure over the 1000
iterations. The random prediction are repeated 1000 times as this will result in values that
are normally distributed as proven by the Central Limit Theorem [21]. Using the average
of the values that are normally distributed result in a valid representation of the obtained
results.

The baseline model for the VGZ data set and the BPI 2012 challenge data set will be
discussed in Sections 5.5.1 and 5.5.2 respectively.

5.4 Data set preparation and result of customer journey
analysis

This section presents the results of the data harmonization, definition of critical moments
and the creation of the training, the validation and the test set for the VGZ data set
and BPI 2012 challenge log. Applying those steps on the two data sets demonstrates how
customer journey data can be analyzed by the use of process mining techniques. Using
process mining techniques in the context of customer journeys demonstrates the steps of
the model explained in Sections 4.1 to 4.4. The steps will first be applied on the VGZ
data set in Section 5.4.1 and then on the BPI 2012 challenge log in Section 5.4.2.

5.4.1 Health insurer data set

This section shows the application of the data harmonization (section 4.1), the definition
of the critical moments (section 4.2), the creation of the training, the validation and the
test log (section 4.3) and balancing of the training data (section 4.4) on the health insurer
data set.
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Figure 5.1: Cumulative trace length distribution of the VGZ data set

The first step in applying the methodology described in Chapter 4 is the data har-
monization step. The data harmonization step has been performed in collaboration with
VGZ, as domain knowledge improves the quality of the events entailed in the resulting
event log. Data harmonization involves domain knowledge and is specific for each data set
[2]; therefore, no harmonization details specific to the current data set are provided, but
only the general steps are explained. The first step is the removal of interaction attributes
that are not deemed interesting in the current research. Certain phone calls of which the
subject of the call was not related to the declaration process are also removed. Next,
interactions of the customer log are transformed to events of the event log. The mapping
of touchpoints and touchpoint attributes is constructed with domain knowledge. In the
original customer log, each interaction belonged to a certain customer. For the event log
it is determined that traces are identified by the declarations. To prevent the loss of all
phone calls and website visits, the interactions are transformed to belong to a declaration.
Each phone call or website visit that was performed in a time span within 7 days prior to
the submission of the declaration and 5 days after retrieving the result of the declaration is
mapped to belong to that specific declaration. Using this transformation, also incomplete
customer journeys could be removed from the data. Website visits and phone calls prior
to the declaration might be missing for declaration that are submitted in the first 6 days
of the time frame. Therefore, these customer journey are deemed incomplete and removed
from the log. Customer journeys of which the 5 day time span after retrieving the result
is not completely available in the customer log are also considered as incomplete. After
defining mappings from touchpoints to activities, touchpoint attributes to event attributes
and timestamp to timestamp, the customer log is transformed to an event log.

After applying the data harmonization steps the event log consist of 95,457 traces
accounting for nearly 400,000 events. Figure 5.1 shows the cumulative distribution of the
trace lengths occurring in the event log. It can be observed that most of the traces are
relatively short. 95% of the traces have contain less than 10 events.
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Figure 5.2: Petri net of the traces in the VGZ data set

From the event log process models have been created to retrieve insights in the process.
Figure 5.2 shows an attempt to create a petri net, the result is an unstructured petri net.
The data contains a lot of different events and a lot of different traces are contained in the
event log. Therefore, the resulting petri net is difficult to interpret. To retrieve a more
global overview, the events occurring in the event log have been abstracted and the new
model is shown in Figure 5.3. The model is shown to give a general feeling of the process,
appendix A contains a larger version of the petri net. This petri net shows a lot of tau
transitions, showing that multiple events can be skipped or executed multiple times. The
events describing the activity of a customer calling to VGZ or visiting the website can be
executed at any moment in the trace. As the current process is difficult to examine via a
process model, the next steps are mainly based on domain knowledge.

Formerly, based on domain knowledge and the insight gathered in the data harmo-
nization step the critical moment for the process is determined. The goal for VGZ is
to determine whether a customer will call VGZ as a follow-up to obtaining the result of
the declaration. This activity is often perceived negatively; therefore, VGZ would like to
prevent the occurrence of a call. The first step to prevent the call is to know who will
call. For this reason, the PoAc for VGZ is defined as a call. It is interesting to predict the
call independent of the exact subject. The calls that will be predicted are the calls that
occur on a later moment than that the result of a earlier submitted declaration is received.
Resulting in the decision moment being the moment that the result of a declaration is sent
to the customer. For the events occurring in the trace on a later moment than that the
result is received, it should be determined whether the customer calls at least once. If this
is the case, the PoAc has a positive outcome. Otherwise the PoAc has a negative result of
not occurring in the suffix. In the data harmonization step, only traces that are deemed
complete are left in the event log. Traces are deemed complete only if the customer has
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Figure 5.3: Petri net of the traces in the VGZ data set with abstracted events

had a reaction on its filed declaration. Therefore, Algorithm 1 will not remove any traces
from the log, but will only insert the decision moment at the correct position in the event
log. Figure 5.4 shows the number of traces which contain and do not contain the PoAc
in the suffix with respect to the decision moment. It can be seen that the occurrence of
the to PoAc is unbalanced. Only 3.5% of the traces in the log contain a call event of the
customer on a later moment than receiving the result on a declaration.

Figure 5.4: Distribution of the potential activity in the VGZ event log

The next step is to split the event log in a training, a validation and a test set. These
sets are created by Algorithm 3. The size of the training set is 0.7, the validation set
is 0.1 and the test set is 0.2. Therefore, the first 70% of the traces based on the time
of the decision moment are contained in the training log, the next 10% are contained in
the validation log and the last 20% of the traces define the test log. Figure 5.5 shows
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Figure 5.5: Distribution of the potential activity in the VGZ event log over the training,
the validation and the test set.

the distribution of the PoAc of the three event logs. For all event logs the number of
traces which do not contain an event defining a call is much larger than the number of
traces which contain an call. 3.7%, 3.3% and 2.9% of the traces contain the PoAc for
the training, the validation and the test set respectively. The distribution of the PoAc
is imbalanced. Training data should be balanced prior to training a prediction model.
Based on Algorithm 5 the training set will be undersampled, such that the distribution
of the occurrence of a call in the suffix of the traces with respect to the decision moment
is 50/50. The training set contains 2453 traces in which the customer has called VGZ
after the customer has received the result of the filed declaration. Therefore, the group of
traces which do not contain a call event is reduced to 2453 traces as well. Undersampling
the majority class concludes the preparation of the VGZ event log.

5.4.2 BPI 2012 challenge data set

This section shows the application of the data harmonization (section 4.1), the definition
of the critical moments (section 4.2), the creation of the training, the validation and the
test log (section 4.3) and balancing of the training data (section 4.4) for the BPI 2012
challenge data set.

The initial step to apply on the BPI 2012 challenge data set is the data harmonization
step. The BPI 2012 data set is already provided as an event log and the data is already
provided in one data source. Even though the process is provided as an event log, it
describes the customer journey of customers applying for a loan. The transformation
of elements from customer log to event log could be omitted and only the cleaning step
needs to be executed. Cleaning entails the removal of events and removal of traces that
are deemed unimportant. For the current research, only events with the attribute value of
‘complete’ for the life cycle are considered; therefore, events with the life cycle ‘start’ or
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‘schedule’ are removed from the event log. Additionally, only complete traces are of interest
and traces that are not completed in the available time span should be removed. Traces
are completed as either the application is approved, cancelled or declined. Each trace
that does not contain an activity describing that the application is approved, cancelled or
declined is removed from the log.

Applying the aforementioned cleaning step, the event log contains traces of nearly
12,700 customers, together accounting for over 156,000 events. The cumulative trace

Figure 5.6: Cumulative trace length distribution of the BPI 2012 data set

length of the traces in the cleaned BPI 2012 event log is shown in Figure 5.6. It can
be observed that most traces have a length of at most 9 events or consists of 15 to 24
events, as at these lengths the graph is showing the steepest growth. Figure 5.7 shows
the process model of the traces in the cleaned BPI 2012 event log. This model can be
used to retrieve insights in the customer journeys captured in the event log. The process
starts with a customer submitting an application. This initial application is either pre-
accepted or declined. After an application has been declined, the trace might already be
completed. For not yet completed traces, the next steps are workflow items to retrieve
additional required information. Afterwards, an offer might be created and sent to the
customer. One trace can contain multiple offers; therefore, the creation and sending of
offers can be executed multiple times. After sending an offer, again a workflow item takes
place to call the customer who received an offer. An offer is either cancelled or sent back
indicating that the customer has responded to an offer.

The critical moments for the BPI 2012 challenge log are determined based on the
insights that can be extracted from the process model, since domain experts cannot be
consulted. A new process in the log is initiated if a customer request for a loan, in that
case the Dutch financial institute determines whether an offer will be sent to the cus-
tomer. In order to determine whether an offer will be sent human resources are needed
to complete the application and to create an offer. If it is known early enough whether
an offer will be sent, the resources could be used only for cases in which indeed an offer
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Figure 5.7: Directly follow graph of the traces in the BPI 2012 data set
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will be provided to the customer. Therefore, the PoAc to predict whether it will occur is
the activity ‘O SENT’. At the activities of ‘W Completeren aanvraag’ (Complete applica-
tion) and ‘A PREACCEPTED’ the remainder of the process can still contain the activity
‘O SENT’, but the process might also finish without the activity ‘O SENT’. Accordingly,
two decision moments are defined, the first decision moment being the moment at which
‘A PREACCEPTED’ occurs and the second decision moment being the moment at which
‘W Completeren aanvraag’ occurs. For both decision moments the same PoAc will be pre-
dicted. Thus, at the decision moment it should be predicted whether at a later moment in
the trace than the decision moment the activity ‘O SENT’ will occur. A positive outcome
indicates that it is predicted that an offer will be sent, otherwise the prediction has a nega-
tive outcome of not occurring in the suffix. For the prediction task on the decision moment
of ‘A PREACCEPTED’ only traces in which the activity ‘A PREACCEPTED’ occurs are
considered. By applying Algorithm 1, 5720 traces are removed, such that the returned log
has 6968 traces. Algorithm 1 is also used to create an event log for the decision moment
which is defined by the activity ‘W Completeren aanvraag’. The algorithm again returns
an event log consisting of 6968 traces. The distribution of the occurrence of the PoAc for

Figure 5.8: Distribution of the potential activity in the BPI 2012 challenge log

both sets is shown in Figure 5.8. The left part of the Figure 5.8 shows the distribution of
‘O SENT’ for the log in which the decision moment is defined by ‘A PREACCEPTED’,
while the right part show the distribution for the log of the decision moment defined by
‘W Completeren aanvraag’. More often an offer is sent to the customer in the remainder
of the trace for the log at which the decisions moment is defined by ‘A PREACCEPTED’
than ‘W Completeren aanvraag’. The occurrence of ‘O SENT’ is 67, 2% and 44, 1% for
the log defined by ‘A PREACCEPTED’ and ‘W Completeren aanvraag’ respectively.

The next step in the data set preparation is the creation of the training, the validation
and the test set. This step is performed for both data sets separately. For both data sets
Algorithm 3 is used to create the training, the validation and the test set. The sizes of the
training, the validation and the test set are 0.7, 0.1 and 0.2 respectively. Figure 5.9 shows

Predicting the occurrence of an activity in the remainder of the customer journey 52



CHAPTER 5. EXPERIMENTAL EVALUATION

the distribution of the PoAc over the training, the validation and the test set of the two
data sets. The distribution over the training, the validation and the test set of the occur-
rence of ‘O SENT’ of the data set defined by the decision moment ‘A PREACCEPTED’ is
shown in Figure 5.9a. Figure 5.9b shows the distribution over the training, the validation
and the test set of the occurrence of ‘O SENT’ of the data set defined by the decision mo-
ment ‘W Completeren aanvraag’. For all subsets the distributions of the occurrence of an
offer that has been sent to a customer is almost equal to the distribution in the complete
set. Prior to model training both training sets will be balanced, such that the distribution
of the occurrence of ‘O SENT’ is 50/50 in both sets. The part of the training set in which
the suffix contains the activity ‘O SENT’ indicating that an offer is sent to the customer of
the log defined by ‘A PREACCEPTED’ should be undersampled by Algorithm 5. For the
training set of the event log defined by the decision moment ‘W Completeren aanvraag’
the subset of traces which do not contain the activity ‘O SENT’ should be undersampled
by Algorithm 5.

(a) Decision moment ‘A PREACCEPTED’ (b) Decision moment ‘W Completeren aanvraag’

Figure 5.9: Distribution of the potential activity in the BPI 2012 challenge log over the
training, validation and test set.

5.5 Result of the prediction phase and model comparison

This section presents the results of the prediction phase of the PoAc and the model com-
parison. It demonstrates the influence of the prediction model on the quality of the
predictions. Section 5.5.1 discusses the RFC, LSTM and GAN model implementation on
the VGZ data set. The prediction results are compared with each other and with respect
to the random predictor. Section 5.5.2 describes the implementation and result compari-
son of the RFC, LSTM, GAN model and random predictor on the BPI 2012 challenge log
on decision moment ‘A PREACCEPTED’ and ‘W Completeren aanvraag’.
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5.5.1 Health insurer data set

This section shows how the RFC, LSTM network and GAN model are applied on the
preprocessed VGZ data set. The data is preprocessed as discussed in Section 5.4.1. The
models will be trained to predict whether a customer is expected to call VGZ in the
remainder of its customer journey. The prediction should be provided on the moment
that the customer receives its result on an earlier submitted declaration. Furthermore,
the results of the random predictor are retrieved and the comparison of the different
prediction models is provided.

Random Forest Classifier

Prior to training and testing the RFC, the traces have to be converted to a feature rep-
resentation. The information stored in the independent variables of features may only be
extracted from the trace available up to the decision moment. No information may be
used of events occurring on a later moment. The customer details that are known, may
also be used in the creation of the independent variables. No general feature construction
is available, as the features that can be constructed are dependent on the underlying data
set [8]. Therefore, the exact set of features extracted from the data set is not discussed.
The same set of features should be extracted for the traces in the training set as the
traces in the test set. In this step the dependent variable should also be defined for each
trace. List idα and idβ (retrieved from Algorithm 2) contain the identifiers of the traces
of which the customers have called to VGZ and identifiers of the traces in which no call
occurred respectively. These sets are used to determine the dependent decision variable.
The dependent variable of the traces of which the identifier is contained in idα is equal
to 1, as for these traces the customer has called to VGZ. While the dependent variable of
trace identifiers contained in idβ is equal to 0.

The feature representations are used to train and test a RFC. During training of the
model, the hyper parameters of the model are tuned with a randomized grid search over
possible parameter settings. Afterwards, the RFC is tested with the instances contained
in the test set. The performance of the RFC is determined by comparing the prediction
provided by the RFC with the ground truth. Performance measure results are shown in
Figure 5.11. The blue bars show the performance measures of the RFC. The results will
be discussed at the model comparison section.

Long-Short-Term-Memory network

The input features of the LSTM network contain information on trace attributes and event
attributes. All input features should have the same length; therefore, each trace should
have the same number of events up to the decision moment. The trace length is chosen
such that for most traces no events have to be removed and is set to 5. The updated event
log is retrieved via Algorithm 6. The preprocessing as provided by Kratsch et al. [17] is
used to retrieve the feature representation that can be used as input to a LSTM network.
These feature representations will all have the same length and encode the trace attributes
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and event attributes up to the fifth event in the trace. It will also contain the dependent
variable. The training and the validation data is used for hyper parameter optimization
by a random search over possible hyper parameters. The best hyper parameters are used
to train the final model. After training the LSTM model, the model is used with the
test data set to generate predictions. For the test data set the model predicts whether
the customer is expected to call VGZ. These predictions are compared with the ground
truth of the traces respectively to determine the quality of the model. The orange bars in
Figure 5.11 show the performance measures of the LSTM model. In the model comparison
section the results will be discussed.

Generative Adversarial Network

The GAN model as proposed by Taymouri et al. [35] uses an encoder-decoder structure,
to allow for variable length prefixes and suffixes. Therefore, the prefixes of the traces
defined as the traces up to the decision moment can remain as the original prefixes. The
suffixes of the traces defined as the events in the trace occurring on a later moment than
the decision moment might require some adaptation. For the traces containing an event
indicating that a customer has called VGZ in the suffix, the events up to the first call
activity should be used. The remainder of the suffix should be removed as that part of
the suffix is not of interest for the current research. Each row in the event log stores a
single event describing the activity with the associated time stamp and case identifier.
The activities should be mapped to integers, such that each activity is represented by
an own integer value. The training, the validation and the test event log will be used
as input to Algorithm 7. In this algorithm the training and the validation event log are
used to train a GAN model with LSTM networks. The final model after training will
be used to generate suffixes for the instances in the test set. The ground truth suffixes
of the test set are available as well. The performance of the current model cannot be
determined directly from the suffix. For each ground truth and generated suffix, it should
be determined whether a call is occurring in the suffix. If no call activity takes place in the
suffix, the dependent variable result of the suffix is 0 and otherwise it is 1. After extracting
this information from the suffixes, the result is equal to the binary problem of predicting
whether a call occurs on a later moment than the decision moment. The binary result is
used to determine the performance measures for the GAN model. Figure 5.11 shows with
gray bars the performance result of the GAN model. The results will be discussed at the
model comparison section.

Random predictor

As already mentioned in Section 5.3, a random predictor is used as a baseline model to
reason about the quality of the prediction models. To generate performance measures of
the random predictor, the distribution of the traces containing the PoAc is needed. For
the VGZ data set 3.48% of the traces contain a call on a later moment than that the
customer has received feedback on the declaration as mentioned in Section 5.4.1. Creating
predictions with the random predictor model is repeated 1000 times and for each iteration
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the accuracy, precision, recall and F1-score is calculated. The average over the 1000 runs
is used to determine the performance measures of the random predictor. Figure 5.10 shows
the result of the random predictor. In a random prediction task of a binary problem the
probability of correctly classifying a data point is 50%. Therefore, the resulting accuracy
and recall are expected to be equal to 0.5. Furthermore, the underlying data is imbalanced
and the majority class is the class in which no call occurs. This class is defined as the
negative class. For a random classifier this will result in providing more FP than FN
predictions. Therefore, the resulting precision is expected to have a low score. Resulting
in also a lower F1-score. These expectation are confirmed by the results of the random
classifier shown in Figure 5.10.

Figure 5.10: Performance measures of the random predictor for the VGZ data set

Model comparison

Figure 5.11 shows the performances measure of the RFC, LSTM, GAN and random pre-
dictor model. As can be observed, none of the models is performing best on all four
performance measures. For VGZ it is mainly important to know whether a customer is
likely to call. In consultation with domain experts it is decided that the recall together
with F1-score are the two most important measures to consider. Considering these two
measures the RFC and LSTM model are performing best. The GAN model is especially
performing worse on the recall measure, while the F1-score for the random predictor is
worse than the RFC and LSTM model. Considering the F1-score, the score of the RFC
and LSTM model is doubled with respect to the random predictor. Therefore, the LSTM
model and RFC are outperforming the random classifier. Considering all four performance
measures, the RFC and LSTM model have equal performance; therefore, are expected to
provide predictions with the same quality. Accordingly, considering the performance mea-
sures it cannot be decided which model is the best model to use. LSTM networks usually
require a higher hardware requirement to train and use the model [17]. Furthermore, RFC
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Figure 5.11: Performance measures of the prediction models on the VGZ data set

are easier to understand and explain for humans. Accordingly, the RFC might be selected
as the best model for predicting whether a client will call VGZ after retrieving a result on
the submitted declaration. Figure 5.11 shows a significant improvement for the RFC with
respect to the random predictor. However, given the resulting values, the model still does
not perform very well.

5.5.2 BPI 2012 challenge data set

This section shows how the different prediction models are applied on the preprocessed
BPI 2012 challenge data set. Both decision moments, either defined as the first occur-
rence of ‘A PREACCEPTED’ or the first occurrence of ‘W Completeren aanvraag’ are
discussed. The data is preprocessed as discussed in section 5.4.2. The models will be
trained to predict whether an offer will be sent to the customer in the remainder of its
customer journey. Predictions should either be provided at the first occurrence of the
event ‘A PREACCEPTED’ or ‘W Completeren aanvraag’. Next, the results of the ran-
dom predictor for both decision moments are retrieved. Last, the different models are
compared based on the performance measures.

Random Forest Classifier

To be able to train the RFC, traces should be transformed to features with the same
representation as the example of Table 4.1. The prefix of the trace up to the decision
moment should be used to create independent variables. Independent variables can be
constructed from the events, event attributes and trace attributes available in the event
log. The process of selecting independent variables is non trivial and no general applicable
technique exists [8]. For each trace, the amount of loan or overdraft requested by the
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customer is known and can be converted to an independent variable. Furthermore, the
number of activities, information on the types of activities and time between activities can
be transformed to independent variables. The exact same independent variable should be
extracted for each trace in the event log. The dependent variable can be extracted from
list idα and idβ returned by Algorithm 2. The customer whose case identifier is contained
in idα retrieves an offer and the dependent variable should be set to 1. The customer
whose case identifier is contained in idβ does not retrieve an offer; therefore, the dependent
variable is set to 0. The features of the log based on ‘A PREACCEPTED’ will be different
than the features of the log based on decision moment ‘W Completeren aanvraag’. The
activity ‘W Completeren aanvraag’ is executed on a later moment in the trace; therefore,
the prefix will contain more events and the features will contain more information.

With the features created, a RFC can be trained. Training the model includes pa-
rameter tuning and selecting the best hyper parameters [29]. The best hyper parameters
are determined using a randomized grid search. After the hyper parameters are tuned
and the parameters of the RFC are trained, the model will be used to predict the binary
class of the instance in the test set. The predictions are compared to the ground truth
of the instances in the test set and used to determine the accuracy, precision, recall and
F1-score of the model. The result of decision moment ‘A PREACCEPTED’ are shown in
Figure 5.14 and the result of ‘W Completeren aanvraag’ are shown in Figure 5.15. The
performance measures of both decision moments are visualized with blue bars and will be
discussed at the model comparison section.

Long-Short-Term-Memory network

In order to apply the feature creation as proposed by Kratch et al. [17] the number
of events up to the decision moment should be equal for each trace. In the event log
with decision moment ‘A PREACCEPTED’, 81% of the traces contained in the event
log contain 3 events up to the decision moment. Therefore, the trace length l as input
for Algorithm 6 is set to 3. The updated event log returned by Algorithm 6 is used to
create input features that are used as input to a LSTM model to predict the occurrence
of the ‘O SENT’ in the remainder of the trace. For the traces in the event log with
decision moment ‘W Completeren aanvraag’, the trace length is chosen such that for the
average trace no events have to be removed. On average, the prefix trace length up to
the decision moment is 6 events and input l will be set to 6. Algorithm 6 will provide the
updated event log that is used to create features of the traces that can be used to train a
LSTM model to predict whether an offer will be sent to the customer. In the current data
set, trace attributes are the amount requested and event attributes are the organisational
resource and activity name. A random grid search over possible hyper parameters in
combination with the training and the validation set is used to decide on the best hyper
parameter values. The preferred combination of parameters are the hyper parameters used
for final model training. Hyper parameter tuning will be conducted separate for both input
logs. The test set is provided as input to the final model to provide predictions on the
future occurrence of ‘O SENT’. The ground truth occurrence is compared to the predicted
occurrence to provide insight into the model quality. The performance measures are shown
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with orange bars in Figure 5.14 and Figure 5.15 for decision moment ‘A PREACCEPTED’
and ‘W Completeren aanvraag’ respectively. The results will be discussed at the model
comparison section.

Generative Adversarial Network

The available training, validation and test log capture complete customer journeys. Only
journeys up to the first offer sent to the customer on a later moment than the first occur-
rence of either ‘A PREACCEPTED’ or ‘W Completeren aanvraag’ are required. There-
fore, some of the traces available in the event log should be shortened, such that for each
trace the trace is kept up to the first occurrence of ‘O SENT’ on a later moment than the
decision moment. For traces in which no event defining the activity ‘O SENT’ is recorded
on a later moment than the decision moment, the complete trace is contained in the log.
Each event in the event log has an associated case ID, activity and a timestamp, which can
be used to create the trace representation in the format of Table 4.3. The original activity
names have to be transformed to a numerical representation. The feature representation
is the input for the encoder-decoder GAN as proposed by Taymouri et al. [36]. First the
GAN is trained using the traces available in the training and the validation set. Each trace
is transformed to a prefix and suffix with respect to the decision moment. During training,
the prefix as well as the suffix is available. When model training is completed, the prefixes
of the traces in the test set are provided to the generator. The generator will provide
suffix predictions for the instances in the test set. For each of these instances in the test
set, the ground truth suffix is available as well. For the ground truth suffix as well as the
predicted suffix it should be determined whether the activity ‘O SENT’ is contained in the
suffix, as this will provide information on the occurrence of the PoAc. The occurrences
of the PoAc is used to determine the quality of the model. Performance measures of the
GAN model on the BPI 2012 challenge log with decision moment ‘A PREACCEPTED’
are shown in Figure 5.14 and with decision moment ‘W Completeren aanvraag’ in 5.15 by
the grey bars. The results will be discussed in the model comparison section.

Random predictor

A random predictor, as introduced in Section 5.3, is used a baseline model to compare
quality measures and to reason about the quality of the prediction models. As already
mentioned in Section 5.4.2, for 67, 2% of the customer an offer has been sent to the
customer in the event log with decision moment ‘A PREACCEPTED’. The fact that
67, 2% of the customer received an offer is needed to create the artificial data for the
random predictor. In this case 67, 2% of the instances are assigned to contain the activity
of interest. The final accuracy, precision, recall and F1-score performance score of the
random predictor is the average over 1000 times repeating the random generation of the
predictions. In the current research the prediction task is a binary prediction task. The
probability of classifying a random guess correctly in a binary task is 50% for each guess.
Therefore, the accuracy and recall is expected to be around 0.5. Currently, the positive
outcome occurs in 67.2% of the cases; therefore, the predictions of the random classifier
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are more likely to be FN than FP. Consequently the precision is expected to be greater
than 0.5. As the recall score is expected to be 0.5 and the precision to be greater than 0.5,
the F1-score is also expected to be greater than 0.5. Figure 5.12 shows the performance
measures of the random predictor. The figure indeed shows an accuracy and recall score
around 0.5 and a higher precision and F1-score. Therefore, the performance of the random
predictor is as expected.

Figure 5.12: Performance measures of the random predictor for the BPI 2012 data set
for decision moment ‘A PREACCEPTED’

Figure 5.13: Performance measures of the random predictor for the BPI 2012 data set
for decision moment ‘W Completeren aanvraag’

A random predictor model should also be created as a baseline model for the event log
in which the decision moment is defined as the first occurrence of ‘W Completeren aanvraag’.

Predicting the occurrence of an activity in the remainder of the customer journey 60



CHAPTER 5. EXPERIMENTAL EVALUATION

For this event log in 44.1% of the traces an offer is sent to the customer on a later moment
than the first occurrence of ‘W Completeren aanvraag’ as mentioned in Section 5.4.2. The
performance of the random predictor is determined by providing random predictions 1000
times. For each iteration the accuracy, precision, recall and F1-score performance score
is determined. The final performance of the random predictor model is determined by
taking the average of each score over the 1000 iterations. Predicting whether an offer will
be sent is a binary prediction task. In a binary prediction the probability of a random
guess to be correct is 50%. Therefore, the accuracy and recall is expected to be around 0.5.
Currently, each prediction of the random classifier are more likely to be FP than FN, as
the positive outcome occurs in 44.1% of the cases. Consequently the precision is expected
to be smaller than 0.5. As the recall score is expected to be 0.5 and the precision to be
smaller than 0.5, the F1-score is also expected to be smaller than 0.5. Figure 5.13 shows
the performance measures of the random predictor. The figure indeed shows an accuracy
and recall score around 0.5. The precision is indeed smaller than 0.5 and consequently the
F1-score is also smaller than 0.5. Therefore, the performance of the random predictor is
as expected.

Model comparison

Figure 5.14 shows the performance measures of the RFC, LSTM, GAN and random pre-
dictor for the BPI 2012 challenge log with the first occurrence of ‘A PREACCEPTED’
defined as the decision moment. The random predictor is performing worst on all perfor-
mance measures. Therefore, all three methods are outperforming the random predictor,
especially on the recall and F1-score the machine and deep learning models have a higher

Figure 5.14: Performance measures of the prediction models on the BPI 2012 challenge
log for decision moment ‘A PREACCEPTED’
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Figure 5.15: Performance measures of the prediction models on the BPI 2012 challenge
log for decision moment ‘W Completeren aanvraag’

measure. As can be seen in Figure 5.14, the accuracy and F1-score of the RFC, LSTM
and GAN model are comparable. Furthermore, The LSTM model has the highest per-
formance result on recall. Recall and F1-score are the two most important measures to
consider during model comparison as discussed in Section 5.2. Therefore, in the current
context the LSTM model is performing best to predict whether on a later moment in the
trace an offer will be sent to the customer. The performance measure with respect to the
random predictor have increased significantly.

The performance measures of the RFC, LSTM, GAN and random predictor for the
BPI 2012 challenge log with the first occurrence of ‘W Completeren aanvraag’ defined as
the decision moment are shown in Figure 5.15. The RFC, LSTM and GAN model are
outperforming the random predictor on all four performance measures. The machine and
deep learning models have comparable accuracy values. The RFC and LSTM model score
equal on the F1-score and slightly better than the GAN model. The recall score of the
RFC is outperforming the recall of the LSTM and GAN model. The LSTM model is still
achieving a higher quality score on recall than the GAN model. Section 5.2 explained
that the recall and F1-score are the two most important measures to consider during
model comparison. As the RFC is scoring best on the recall measure, the RFC model
is performing best in the current prediction task. The preferred model to provide future
prediction to decide whether an offer will be sent is the RFC.
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5.6 Results for training, validation and test set created ran-
domly

This section describes the effect of creating the training, the validation and the test set
time based or random. It demonstrates how the prediction results are affected by the
creation of the training, the validation and the test set. In the research conducted up to
this part the training, the validation and the test set have been created in a time based
manner based on the times of the decision moment. If the different sets are created by
randomly selecting instances, it might result in training on instances which are performed
on a later moment than the instances on which the model is tested. In the real life
scenario, it is not possible to train a model on future instances while predicting instances
that are executed on this moment. Therefore, randomly creating a training, a validation
and a test set may cause leakage of information and this may provide false insights in
the quality of the model [32]. While, creating the different sets in a time based manner
prevents the leakage of information. In this section the same research will be conducted
as in Section 5.5, however, it will be conducted on a training, a validation and a test
set that is created randomly instead of time based. The results will be compared to
results discussed in Section 5.5. Section 5.6.1 discusses the result on the VGZ data set
and Section 5.6.2 describes the results on the BPI 2012 challenge data set. For both
data sets, almost all preprocessing steps for the data as well as the steps to create the
models are conducted in the same way as in Section 5.5. Only the creation of the training
validation and test set has been updated to be random instead of time based. On both
data sets, for each model and each split of the data the results of training and testing
the model once are discussed. Retraining a prediction model with the same data might
produce slightly different results. For example, weights of the GAN model are randomly
initialized. Different starting weights in the neural network can result in a different final
model [13]. Therefore, the model can provide other predictions and performance measure
can be different. For the random split of the training, the validation and the test data
another split of the data will also result in different results and performance measures [40].
As in that case the model is trained and tested on a different training, validation and test
set. Due to time constraints, only one random split has been used to retrieve the results
in this section. However, it could be interesting in a future research to provide confidence
intervals of the results and to check the conclusion of the current research.

5.6.1 Health insurer data set

This section discusses the difference in performance of the RFC, LSTM and GAN model
for the VGZ data set based on a time based split and random split to create the training,
the validation and the test sets. Figure 5.16 shows the results for all three models. The
blue, orange and grey bars show the performance of the model based on a time based
split for the RFC, LSTM and GAN model respectively. The results of the random split
are shown in green. Table 5.3 shows the training and inference time of the random split
model. The training and inference times have not been recorded for the time based split,

63 Predicting the occurrence of an activity in the remainder of the customer journey



CHAPTER 5. EXPERIMENTAL EVALUATION

Model Training time in minutes Inference time in seconds

RFC 106,36 2,20

LSTM 275,75 10,92

GAN 459,49 141,5

Table 5.3: Training and inference time of the random split data on the VGZ data

but are expected to be of the same order. It can be concluded that the running time of
the GAN model is much longer than the time of the LSTM model. The LSTM model also
needs a longer time to train the model and to infer results than the RFC model.

Figure 5.16a shows the result of the RFC model. The random split has a higher
precision, recall and F1-score with respect to the time based split. However, the accuracy
of the time based split is slightly higher, although it can be debated whether this difference
is significant. Figure 5.16b shows the result of the LSTM model. Again, the random split
has a higher score for precision, recall and F1-score. The accuracy score of the random
split is again lower than the score of the time based split. The difference in accuracy
is small; therefore, questionable whether the difference is significant. The result of the
GAN model is shown in Figure 5.16c. The result for this model show a significant higher
accuracy score for the time based split, while the recall is significantly higher for the
random split. The performance measure of the precision is equal. For both splits the
F1-score is slightly higher for the random split. All three models for the time based split
are tested on the same test set, the models for the random split are also tested on the same

(a) Result RFC model

Figure 5.16: Performance measures of different training, validation and test set creations
for the VGZ data set
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(b) Result LSTM model

(c) Result GAN model

Figure 5.16: Performance measures of different training, validation and test set creations
for the VGZ data set

set, however, the instance in the test set for the random split are not the same instances
as the instance in the test set for the time based split. The difference of a higher precision,
recall and F1-score which is not reflected to a higher accuracy can be explained by the
distribution of a positive outcome in the test instances. Both test sets contain the same
number of instances, however, the percentage of traces which contain a call in the test set
has changed. For the time based test set 2.9% of the traces contain a call, on the other
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hand 3.6% of the traces in the random test set contain a call. Therefore, it is possible to
retrieve higher results on the precision, recall and F1-score performance measure, while
the general accuracy reduces.

As discussed in Section 5.2 the recall and F1-score are the most important measures to
consider during model comparison. As the RFC, LSTM and GAN model on the random
split score better on these measures, especially on the recall the model based on the random
split would seem to be more promising in providing predictions on whether a customer
will call VGZ. However, using a random split would provide performance measures which
are most likely not representative for future predictions, as this may contain leakage of
future information. The time based split is more representative for future unseen data
and those result are more reliable. This indicates that using a random split might provide
incorrect expectations for the quality of future predictions and should for that reason be
avoided.

5.6.2 BPI 2012 challenge data set

This section discusses the different performance measures of the RFC, LSTM and GAN
model on the BPI 2012 data set on the time based and randomly split training, validation
and test data. The results will be discussed for the event log defined by decision moment
‘A PREACCEPTED’ as well as ‘W Completeren aanvraag’. Figure 5.17 shows the per-
formance results of the three prediction models over the two generated training, validation
and test sets of the BPI 2012 data set defined by decision moment ‘A PREACCEPTED’.
The result of the RFC, LSTM and GAN model on the BPI 2012 data set with decision
moment ‘W Completeren aanvraag’ is shown in Figure 5.18. For both figures, the results
of the random split are shown in green. The blue, orange and grey bars show the per-
formance of the model based on a time based split for the RFC, LSTM and GAN model
respectively. Table 5.4 shows the training and inference times of both decision moments
on all three models trained and tested on the randomly created training, validation and
test set. The training and inference times for the time based split model are expected
to be of the same order, but have not been recorded. For the models on both decision
moments, the RFC model needs least time to train the model and infer results. The GAN
model requires most time to train the model and infer results.

Decision moment Model Training time in minutes Inference time in seconds

‘A PREACCEPTED’ RFC 43,20 0,45

‘A PREACCEPTED’ LSTM 100,40 0,54

‘A PREACCEPTED’ GAN 510,22 61

‘W Completeren aanvraag RFC 63,57 0,05

‘W Completeren aanvraag LSTM 157,58 1,21

‘W Completeren aanvraag GAN 1039,2 75,3

Table 5.4: Training and inference time of the random split data on the BPI 2012
challenge log
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First, the result of the models trained and tested on the data set created with decision
moment ‘A PREACCEPTED’ are discussed. For all three prediction models the accuracy,
precision and F1-score are higher for model trained, validated and tested on the randomly
generated training, validation and test set. In contrast, the recall score for the LSTM
model is lower for the predictor trained on the randomly split training, validations and
test set as shown in Figure 5.17b. The recall measure is equal for both methods for

(a) Result RFC model

(b) Result LSTM model

Figure 5.17: Performance measures of different training, validation and test set creations
for the VGZ data set
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(c) Result GAN model

Figure 5.17: Performance measures of different training, validation and test set creations
for the BPI12A data set with decision moment ‘A PREACCEPTED’

the RFC predictor shown in Figure 5.17a and GAN predictor shown in Figure 5.17c. In
general it is not likely to retrieve a higher accuracy, precision and F1-score, while the

(a) Result RFC model

Figure 5.18: Performance measures of different training, validation and test set creations
for the VGZ data set
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(b) Result LSTM model

(c) Result GAN model

Figure 5.18: Performance measures of different training, validation and test set creations
for the BPI12A data set with decision moment ‘W Completeren aanvraag’

recall is lower. However, it can be explained by the fact that the instances contained in
the test set are different for both methods. In both cases the test set contains the same
number of instances, but the instances are selected differently. Therefore, the number of
positive and negative ground truth instances deviate and this results in a different sum
of (TP+FN) predictions that will be predicted by the prediction model. The sum of
(TP+FP) will be different as well. As the underlying distribution does not match it is
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possible to retrieve the current results. In the case of the RFC and the GAN models
the models trained on the randomly selected training set are performing slightly better
based on the performance measures. However, using a time based split is more reliable
with future predictions as the time based split is better representing the real life scenario.
Therefore, using a random split might provide unrealistic results for future predictions
and it is better to use a training, a validation and a test set that is split in a time based
manner. With the LSTM prediction model it is not possible to decide which model is
performing better based on the performance measures. Due to the fact that the time
based split has a higher recall, whereas the random split has a higher F1-score. In general
the models are retrieving equal scores for all performance measures. Nevertheless, it is
again better to use the time based split when training and test the model. The results of a
such a model will always represent the real life scenario best and provide to most reliable
insights.

Second, the prediction results for the three models on the event log defined by decision
moment ‘W Completeren aanvraag’ are discussed. The results of the RFC model shown in
5.18a show that the accuracy and precision are higher for the model based on the random
split. However, the recall for the model based on the time based split is much higher.
The difference in F1-score in insignificant. Considering only the two most important
performance measures, the time based split would be the preferred model to use. Figure
5.18b shows the performance measures of the LSTM model. The recall and F1-score
difference in insignificant. The accuracy and precision of the time base split are slightly
higher for the model trained and evaluated on the set created in a time based manner. For
this model, again the model based on the time based split shows to be most promising.
The results of the GAN model are shown in Figure 5.18c. For this model, the model
trained on the time based split scores highest on none of the performance measures.
However, the model trained and tested on the set which are randomly created shows
some improvement on the accuracy, precision and F1-score. Comparing the two models
on performance measures, the model based on the random split provides expectations on a
more promising results for future predictions. However, using a random split might cause
leakage of future information and therefore be unrepresentative for future predictions [32].
The models created with the time based split prevents leakage of future information while
training the model. Therefore, a time based split should be used to generate performance
results that are most trustworthy and most reliable to report while discussing the quality
of a model.

5.7 Result of using a sliding window and landmark model

This section discusses the effect of using a sliding window or a landmark model for the
creation of the training, the validation and the test set. Using a sliding window and
landmark model provides insights in the trade off between resources needed to train a
model and the prediction performance achieved by the model. A sliding window model
only trains over the most recent instances, while a landmark model trains on the complete
history of available data. Therefore, it is expected that a landmark model needs more
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resources to train a model. However, it is also expected that the quality of the predictions
will be higher, as the model has more training data available. Section 5.7.1 discussed
the result on the VGZ data set and Section 5.7.2 describes the results on the BPI 2012
challenge data set. For both data sets, almost all preprocessing steps for the data as
well as the steps to create the models are conducted as in Section 5.5. Only the creation
of the training validation and test set has been updated, such that sub windows of the
complete data are used to create the data for the sliding window and landmark model.
For this purpose, Algorithm 4 is used to create the different data set over the different
windows. In the current research, all models are trained on a CPU. In the case that a
GPU would be available the models could benefit from improved parallel computations
[3]. Large models benefit more from a GPU as the architecture of larger models is better
at exploiting the extra parallelism available at a GPU with respect to a CPU [42]. A
GAN and LSTM network are expected to benefit more from a GPU, while the RFC is
expected to be faster on a CPU. However, the result on the running time cannot be known
in advance. Therefore, the conclusions provided later are based on the current results by
only considering a CPU.

5.7.1 Health insurer data set

This section discusses the results for the sliding window and landmark model on the VGZ
data set. The traces as filtered in Section 5.5.1 range over a time frame of 45 days ranging
from May 18th until July 3rd. The data only contains complete traces. For a window
ending at July 3rd, only complete traces will be included. For such a window, no trace
exists in which the decision moment is contained in the time frame, while the trace has
not been completed. Therefore, to ensure that each window has test instances, the last
window considered should be finished just before July 3rd. For the sliding window a
time frame of two weeks is considered and the window shifts with one week for each new
window. For the landmark model, the first window does also contain the first two weeks
of the data. The next windows each increase with the data of one extra week. Therefore,
the third window contains four weeks of data. The results of the training time, inference
time and performance measures are shown in Figure 5.19. The time indications at the
horizontal axis in each graph show the end date of the window. Therefore, the start date
of the window for the sliding window result is two weeks earlier. However, the start date
of the window for the landmark model is May 18th for each end date. Each graph shows
the results of the RFC, LSTM and GAN model on both the sliding window and landmark
data. Results on the training time are shown in minutes and provides information on how
long it takes to train the model on the training and the validation data. Inference time
results are shown in seconds, providing the time it takes to provide predictions on the test
set. The performance measures are provided with a separate graph for each measure.

As can be seen in Figure 5.19 the training time of the landmark model increases
when the window size increases. The windows ending at June 15 or later, show that the
prediction model trained on the data of landmark model needs much more time to train
than the prediction model trained on the data available by the sliding window with the
same end date. Furthermore, considering the same time window, the RFC is faster than
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Figure 5.19: Training time, inference time and performance measures of the sliding
window and landmark model for the VGZ data set
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the LSTM model and the LSTM model is faster than the GAN model in training the
model. Inference time for the RFC model and LSTM model is similar. For all windows
the inference time is less than 30 seconds. However, the inference of the GAN model is
slower.

Next to the training and inference time, the performance of the different models can
also be compared. Performance measures of the three models over both windows are shown
in Figure 5.19. For each prediction model considering the same end date of the time frame,
the precision and F1-score of the landmark model is at least as high as the performance
of the sliding window. For most windows, the landmark model is performing better than
the sliding window. This shows that the landmark model is eager to learn using more
journeys, even if these journeys are already a little older. Considering the recall score,
up to the window ending at June 22, the landmark model is performing better than the
sliding window for each prediction model. This changes for the GAN model and LSTM
model trained on the window ending at June 29. For this window, the recall of the two
models trained over the sliding window has a higher recall score than the two models
trained over the landmark model. The accuracy of the RFC is equal for both the sliding
window and the landmark model. For the other models it switches over time which model
performs better on the accuracy performance measure. One can conclude that the GAN
model is performing best on the accuracy measure for the window later in the time frame.
While the F1-score and recall for the same model is worst at those windows. We can even
notice that in a later frame the accuracy of the GAN model increases, while the recall
drops. This shows that the GAN model is unable to identify the traces in which a call will
occur as time progresses. On later time frames, the preference to predict no call to occur
increases, as the accuracy increases and the recall decreases.

On all four performance measures, the LSTM model on the sliding window and land-
mark model scores higher than the RFC model as of the window ending on June 15.
However, the training time of the RFC model is shorter. For a model to provide pre-
dictions, it is important to regularly update the model to new instances. Updating a
model is easiest if training takes as less time as possible, but the results should not be
affected by the reduction of the training time. The performance of the GAN model is not
outperforming the RFC and LSTM model. The time to train a GAN prediction model
on the data available by the landmark model is much longer and the recall and F1-score
results of the final model are worse. The sliding window model also needs more time to
train than any of the RFC and LSTM models and this model is performing worse on the
recall, F1-score as well as the precision measure. Therefore, the GAN model is not the
best prediction model in the current context. The performance on all four performance
measures is slightly better for the LSTM model than the RFC model for the sliding win-
dow and landmark model. However, the training time of the LSTM model is also longer
than the training time of the RFC model. Especially the time to train the LSTM model
on the landmark model has already a long training time for the last window. Therefore,
the landmark LSTM model is not the most preferred model. The gain in performance for
the LSTM sliding window model is small with respect to the RFC model on the landmark
model. The performance of the RFC model with the sliding window is again slightly
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lower. However, the model with the lowest performance requires the shortest training
time. These three models could be considered to be the best model in the current context.
As the RFC model is easier to understand, the RFC model is the preferred model to use.
The running time of the landmark model of the RFC is not yet too long; therefore, the
landmark model is preferred over the sliding window. However, if more data becomes
available it is likely that the training time increases and that it will take to long to retrain
a model using all historical data. In such a case, it is interesting to again conduct the
sliding window research and investigate the effect of the size of the sliding window. As
from that moment on, it might be interesting to only use the most recent data, but with
a longer time frame. For example, six weeks of data could be used for the window.

5.7.2 BPI 2012 challenge data set

This section discusses the results for the sliding window and landmark model on the BPI
2012 challenge data set for both decision moments. The traces as filtered in Section 5.5.2
ranges from October 1st 2011 until March 14th 2012; therefore, the data contains records
of 153 days. For a window ending at the last day in the time frame (March 14th), only com-
plete traces will be included, as only complete traces are contained in the filtered event log.
For a window ending at the last day of the time frame, no trace exists in which the decision
moment is contained in the time frame, while the trace has not been completed. There-
fore, to ensure that each window has test instances, the last window considered should be
finished just before march 14th. In this research, a window size is chosen such that the
complete frame is split in 5 windows. For the sliding window a time frame of 50 days is
considered and the window shifts with 25 days for each new window. For the landmark
model, the first window does also contain the first 50 days of the data. The next windows
each increase with 25 extra days of data. Therefore, the third window contains 100 days
of data. The results of the training time, inference time and performance measures for
decision moment ‘A PREACCEPTED’ are shown in Figure 5.20. Figure 5.21 shows the
results of the event log defined with decision moment ‘W Completeren aanvraag’. In both
figures, the time indications at the horizontal axis in each graph show the end date of the
window. Therefore, the start date of the window for the sliding window results is 50 days
earlier. However, the start date of the window for the landmark model is the first of Oc-
tober 2011 for each end date. Each graph shows the sliding window and landmark model
results of the RFC, LSTM and GAN model. Results on the training time are shown in
minutes and provides information on how long it takes to train the model on the training
and the validation data. Inference time results are shown in seconds, providing the time
it takes to provide predictions on the test set. The performance measures are provided
with a separate graph for each measure. First, the results of the application on the set
with decision moment ‘A PREACCEPTED’ are discussed. Second,the results of decision
moment ‘W Completeren aanvraag’ are discussed.

Figure 5.20 shows the training time, inference time and performance measures of the
application of the sliding window and landmark model on the BPI 2012 challenge log with
decision moment ‘A PREACCEPTED’. The figure shows that the training time of the
landmark model is longer than the training time of the sliding window of the same model
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Figure 5.20: Training time, inference time and performance measures of the sliding
window and landmark model for decision moment ’A PREACCEPTED’
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Figure 5.21: Training time, inference time and performance measures of the sliding
window and landmark model for decision moment ‘W Completeren aanvraag’
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for all three models. Furthermore, the training time of the sliding window is relatively
consistent over the different windows, while the training time of the landmark model
increases. The landmark model as well as the sliding window model of the GAN model
have a higher training time than the other models for all windows. The training time of
the sliding window model of the LSTM and RFC model and the landmark model of the
RFC model have equal training times. All these models have a training time of less than 50
minutes. The last window of the landmark model for the GAN model has a training time
of about 550 minutes and therefore needs 11 times more time train the model. Next to
the slower training time of the GAN model, the inference also takes longer. The inference
time of the sliding window and landmark model of the GAN model are comparable and
take about one minute. The inference time of all other four models take at most three
seconds. Therefore, these models are much faster in retrieving results on the test set.

Next to training and inference time, also performance measures are visualized. The
GAN model with the sliding window is retrieving poor results for some windows. For
the window ending at January 8th 2012 the recall, F1 and accuracy score drop. The
window ending at February 2nd has even lower results. For this window the precision is
also decreasing. Therefore, the GAN model has difficulties with predicting whether an
offer will be sent to the customer for these windows. For the window ending at January
8th, it mainly has difficulties with predicting that an offer will be sent to the customer
who based on the ground truth received an offer, as the recall performance is dropping.
For this window, it is not yet predicting that an offer will be sent while no offer is sent
too often, as the precision performance measure is not yet decreasing. However, for the
window ending at February 2nd, it also predicts more often that an offer will be sent to a
customer, while no offer is sent based on the ground truth value. A reason why the GAN
model is not providing consistent predictions over the different time windows might be
caused by the goal of the GAN model. The GAN model is trained to provide complete
suffixes of the trace. Therefore, it is learning to provide prediction on the occurrence of
multiple events and not only the event containing the PoAc. The GAN model trained on
the landmark data provides good predictions for all windows. Only the precision is slightly
dropping in the last window. Performance measure for the RFC model are consistent over
all windows for the sliding window and landmark model. Both models have the same
performance. The LSTM model is also consistent over the different windows. Again the
models trained over the data available by the sliding window and landmark model are
performing equal. Comparing the different prediction models, the GAN is worst as it has
very poor results for some of the windows. The RFC and LSTM prediction model are
both performing consistent, but the recall, F1-score and accuracy of the LSTM model is
for most windows higher than the RFC model. The precision of the RFC model is slightly
higher. As the recall and F1-score are the two most important measures to consider. The
LSTM prediction model is performing best for both the sliding window and landmark
models.

For models that need to be retrained often, it is important to consider the training
time. Training time of the LSTM model with a sliding window or the RFC model with
either the sliding window or landmark model needs the shortest training time. Therefore,
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considering the training time one of these three models is preferred. For all three models,
the performance results of the landmark model is not increasing if more training data is
available. Furthermore, for all windows the sliding window and landmark model have equal
performance considering the RFC and LSTM model. Therefore, in the current context,
no more data is needed to train a model that performs better. As a landmark model is
in need of more training time if the window size increases, it is preferred to train a model
using a sliding window. Predictions based on the LSTM model score highest on the recall
and F1-score; therefore, it is best to use a LSTM prediction model with the sliding window
for the current data.

Training time, inference time and performance results of applying the same research on
the BPI 2012 challenge log with decision moment ‘W Completeren aanvraag’ are shown in
Figure 5.21. It is again the case that the GAN model needs much more time to train than
the RFC and LSTM model. The training times for the three prediction models trained
with the sliding window are more or less consistent over the different windows for the same
model. Training time for the landmark model increases as the window size increases and
more data is available. The GAN model trained on the window ranging from October 1st
2011 until February 27th 2012 needs more than 17 hours to train. The RFC model of the
sliding window and landmark model and LSTM model with the sliding window require
much less time to train. For all windows the training time is less than 40 minutes. The
inference time of the sliding window and landmark models for the RFC and LSTM model
are equal. All these four models need less than 3 seconds for inference. However, the GAN
model needs much more time to infer results on the test set. For all windows it needs
between 65 and 120 seconds.

Next to comparing the training and inference time, the performance of the different
models can also be compared. For the window ending at January 8th 2012, the GAN model
has poor performance to predict whether an offer will be sent to the customer. Recall,
F1-score and accuracy are all low for the GAN model, both for the landmark model and
the sliding window model. Therefore, the two most important performance measures
retrieve a low score for this model. The landmark model also has a low precision for this
window. Training and inference of the GAN model includes providing predictions on the
complete suffix of the trace. This suffix is used to decide whether the PoAc. However,
predicting the whole suffix is more difficult than only predicting the occurrence of a certain
event indicating that the PoAc occurred. Therefore, this might be the cause of the worse
performance of the GAN model. On the other hand, the RFC and LSTM model do not
show a drop in performance for the third window. These models are performing equal over
the different windows. The models trained with the landmark model, contain more training
instances at a later window. The performance of the RFC and LSTM prediction model
trained over the landmark data do not show an increase in the performance. Therefore, the
two models are not learning from more data and to retrain a model only the most recent
data is needed instead of the complete historical data. The Recall and F1-score of the
LSTM model trained over the sliding window data is slightly lower than the three other
models. This difference is especially noticeable at the last window for the recall score. The
results of the RFC model with respect to the sliding window and landmark model are really
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consistent. Therefore, it is impossible to indicate which of the two models is performing
better. The difference in result with respect to the LSTM model trained on data available
by the landmark model is also insignificant. Therefore, based on the performance measure
the two RFC models and the LSTM model with the landmark window perform best and
are equally good.

Combining the running times and performance result, it is possible to select the best
model. Due to the drop in performance at the window ending at January 8th, the GAN
model is not the preferred model to use in the current context. Based on the performance
the landmark LSTM, landmark RFC and sliding window RFC have equal performance.
The running time of the landmark LSTM model increases at later window and is larger
than the running times of the two RFC models at the windows ending at February 2nd
and 27th. Therefore, when the model should be kept up to date when new data becomes
available, this LSTM model is less preferred. Up to the current window the running time
of the RFC model trained on the landmark model is still almost equal to the running
time of the sliding window. However, when more data becomes available for the landmark
model, it is expected that the running time will increase. While the running time of the
sliding window will be stable, as it will only consider the 50 most recent days. Since
the performance of both models is similar, the RFC model with the sliding window is
preferred.

5.8 Case study conclusion

In this section, the results of applying HIAP on both data sets will be interpreted. For
both data sets the results of investigating the different applications will be discussed. For
VGZ a recommendation will be provided on using the HIAP. These predictions indicate
whether customers will call VGZ after receiving their result on a declaration.

The declaration customer log of VGZ contained a lot of different customer journeys.
The resulting event log was skewed to the non-occurrence of the PoAc. Nevertheless,
multiple approaches have been applied to predict whether a customer is expected to call
VGZ after receiving a response on an earlier submitted declaration. First, RFC, LSTM
and GAN models are evaluated on the complete data set. The models are applied on a
training, a validation and a test set that are created by splitting the traces time based
over the decision moments or randomly. For all three models the performance measures
of the random based split seem more promising. However, randomly splitting the data
provided a non-representative result, due to the possibility of leakage of information [32].
Therefore, randomly splitting the data should be prevented and splitting time based is
preferred. The results of the time based split showed that the RFC and LSTM model
resulted in the same performance quality. These two models provided better results than
the GAN model. Next, the same data was used to perform research on the effect of using
a sliding window or a landmark model for all three prediction models. The landmark
model provided slightly higher performance measures than the sliding window model. But
the training time to create the models is also higher. If time allows, it is useful to use
the landmark model while training a model. If time is limited and the model should
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be retrained to remain up to date, a sliding window could suffice as well. The small
reduce in performance can be worth the gain in time. Again, the RFC and LSTM models
outperformed the GAN model. As the RFC model is easier to understand for humans,
the RFC model is the preferred model to use.

Furthermore, the HIAP has also been applied on the BPI 2012 challenge data log.
Two decision moments and one PoAc have been defined. The results to predict whether
an offer will be sent to the customer with decision moment ‘A PREACCEPTED’ are dis-
cusses followed by the results of ‘W Completeren aanvraag’. Considering the data set
with decision moment ‘A PREACCEPTED’ and PoAc ‘O SENT’ the RFC, LSTM and
GAN model are used to provide predictions. For the implementation on the complete
data set on which a training, a validation and a test set are created, the LSTM model was
the best model to provide predictions. Considering the research in which the data has
been split in windows to consider a sliding window and landmark model, again the LSTM
model was the best model. In this case the sliding window and landmark model had the
same performance. Since the sliding window takes less time to train a model, the sliding
window LSTM model was preferred. The same research has been conducted on the data
set with decision moment ‘W Completeren aanvraag’. For the research in which the train-
ing, the validation and the test set had been created time wise over the moments of the
decisions, the RFC and LSTM model had the highest performance on the F1 performance
measure. Recall performance was the highest for the RFC model. Therefore, the RFC
models was the best performing model. Investigating into applying a sliding window or
landmark model resulted in three models having the same performance measures. In this
case the RFC on the sliding window and the landmark model together with the LSTM
predictor with the landmark model had the highest performance. As the training time
for the sliding window in combination with the RFC was shortest, this is the preferred
model. Therefore, the RFC model is performing best for both techniques when applied
on the data set created with decision moment ‘W Completeren aanvraag’. Additionally,
the two different decision moments can be compared. The decision moment defined by
‘A PREACCEPTED’ is earlier in the customer journey than ‘W Completeren aanvraag’.
For companies an early prediction is more interesting especially if the quality of the pre-
diction is not lower for an early prediction. The performance measure of the prediction
for the different decision moments are comparable. It is not the case that the performance
of the decision moment of ‘A PREACCEPTED’ is lower. Therefore, the predictions on
whether a customer is expected to retrieve an offer can already be generated at decision
moment ‘A PREACCEPTED’.

The result of both data set show that the main research question is answered. The
future occurrence of an activity of interest can be predicted in a running customer journey
by applying the HIAP. The subquestions mentioned in chapter 1 are also covered by the
research. First the customer journey data is transformed to an event log and process mod-
els are discovered for the purpose of defining the critical moments. This shows a technique
on how process mining techniques can be exploited in the context of customer journey
analysis. Therefore, this contributes to the first subquestion. The second subquestion is
addressed by comparing different prediction models. This shows that the result of the
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prediction is influenced by the prediction model. It even shows that different models can
perform best depending on the context. The investigation of the effect of creating the
training, the validation and the test set time based and randomly contributes to the third
subquestion. As for that question the goal was to investigate whether the result of the
prediction is affected by the creation of the training, the validation and the test set. It
showed that creating the training, the validation and the test set randomly could provide
quality results that most likely are to optimistic for the real scenario. The last subquestion
is answered by applying the sliding window and landmark model. Again the prediction
quality is affected by the windowing techniques. Next to the prediction quality it also
provided insight in the difference in training and inference time of the different models.
No windowing technique performed best in the entire research. Therefore, no general
windowing technique can be advised to be used in general.
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Chapter 6

Conclusion and future work

This chapter concludes this thesis. First, Section 6.1 summarizes the work of this thesis
and discusses the conclusions. Section 6.2 discusses the future work.

6.1 Conclusion

In this thesis the focus was to fulfill two main objectives. First, bridging the gap between
process mining and customer journey analysis, using them to improve the customer journey
analysis. Second, defining a repeatable framework for future touchpoint prediction in a
customer journey. To achieve these objectives HIAP is proposed. HIAP starts with
a customer journey log. It predicts for customer journeys that are completed up to a
defined decision moment whether the current customer is likely to interact with a specified
touchpoint in the remainder of its journey. The customer journeys are converted to an
event log. The potential activity might occur on any moment in the remainder in the
trace, independent whether it is the next or last activity.

The first step in the framework is to convert a customer journey log to an event log.
Steps that should be considered in this process are data cleaning and interaction transfor-
mation. Process mining techniques are applied on the retrieved event log to investigate the
current process contained in the event log. These process models can be used to define the
decision moment and potential activity. This approach bridges the gap between process
mining and customer journey analysis contributing to the first objective. Furthermore,
it exploits process mining techniques in the context of customer journey data. This con-
tributes to the first research subquestion. It shows that customer journey analysis can be
exploited with process mining techniques if the customer journey log is first transformed
to an event log. The event log can be used as input to process mining algorithms to gain
insights in the process recorded in the customer log. Once the decision moment(s) and
potential activity are defined, separate training, validation and test sets can be defined to
train prediction models. A RFC, LSTM and GAN prediction model have been exploited in
this research. To define and compare the performance of the different models, performance
measures are used. In addition to comparing the three models with one another, a random
predictor is also defined as a baseline model. All these steps combined create a repeat-
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able framework for the prediction of future touchpoints which contributes to the second
objective. Furthermore, it also contributes to answering the second research subquestion.
The research has shown that the three different prediction models achieved different per-
formance results. Thus, the model influences the quality of the final predictions. The
context of the data also provided a different model to be most suited. Therefore, one can
conclude that no model can be selected as best model in general. Different models should
be considered to decide which model is best in the context of the research.

HIAP has been applied to two data sets showing that the proposed pipeline is beneficial
for companies dealing with customer journey data. The application has proven to provide
potential activity predictions with a higher performance than the baseline model on the
VGZ and BPI 2012 data set. The application on the VGZ declaration data shows decent
improvements in the results, even though the results are not of the level that would be
preferable for predictions. Additionally, the effect of creating the training, the validation
and the test set time based over the decision moments or randomly has been investigated.
This component contributed to answering the third research subquestion on how prediction
results are affected by the creation of the training, the validation and the test data. For the
different prediction models, most of the times the model created with the randomly selected
instances for the training, the validation and the test set shows most promising results.
However, randomly splitting the instances might create leakage of future information while
training the model. Therefore, these more promising results might not represent the future
model use on new instances correctly. Accordingly, creating the training, the validation
and the test set should be performed on a time wise manner to create results that are most
trustworthy. Furthermore, the effect of training models with a sliding window or landmark
model is investigated. The models are compared quality wise by performance measures
and time wise by the time it takes to train the model and to infer results. This part of
the research contributed to answering the fourth research subquestion. As it examines the
effect of applying various windowing techniques on model training and prediction quality.
For all experiments conducted, the models trained over the data available by the landmark
model had an equal or higher performance than the models trained with the data of the
sliding window. However, it did not always show a performance gain, showing that not all
models where able to provide better predictions if more data is available during training.
The time to train a model always increased for the landmark model with respect to the
sliding window. The sliding window training and inference time was more or less equal
over all windows. The inference time for the landmark model was also comparable over
the different windows. However, the training time increased over the later windows. As
the gain in performance was small and in some cases insignificant for the landmark model,
but the training time increased, the sliding window was preferred model option to use in
some of the cases.
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6.2 Future work

The research conducted leads to future interesting research. The HIAP has been applied
to two data sets. It would be interesting to conduct the same kind of research on more
data sets of different types of companies. This will provide insights in the fact whether the
approach is indeed context independent and generic in the quality of the framework. In
combination with applying the same research on multiple data sets, it is also interesting to
investigate the effect of training models on the same data set multiple times. This might,
due to some randomization in the models, create different results. This could be used to
provide confidence intervals on the results obtained.

In the case study on the VGZ data set the results of the predictions show a low
precision performance measure. A low precision indicates that it is predicted to often that
a customer will call VGZ. In a future study, it would be interesting to provide certainty
ranges together with the predictions. Meaning that it would not only be predicted that
a customer will call, but that a prediction is provided that a customer will call with a
x% certainty. This could provide insights in how likely it is that a customer will call and
might result in distinct adaptions of the process for different customers.

During the case study predictions are provided about the occurrence of the activity
of interest. As discussed it is preferable to retain activity predictions as early as possible
in the process. Because early prediction provides more options to adapt the process to
prevent the occurrence of the activity of interest. Next to early predictions, it might also
be interesting to know at what moment the activity is expected to take place. Thus in
a future study, next to predicting whether the activity of interest will occur, it could be
worth investigating the possibility of predicting the time at which it would occur. This
would provide information on the time that is left to adapt the process.
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Appendix A

Process model VGZ

This appendix contains the enlarged picture of the process model of the VGZ data set. In
the main text, the image was not well-readable due to space limitations.
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Figure A.1: Petri net of the trace in the VGZ data set with abstracted events
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