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Abstract
Studying the behavior of living cells in response to the topography of a material’s surface is a sig-
nificant part of biomaterials research. High-throughput screening experiments, in which cells are
exposed to a large collection of surface topographies, accumulate a wealth of data on individual-
level cell-topography interactions, presenting a challenge to unravel the underlying relationship
with the end goal to improve surface topography design. A number of existing approaches to the
analysis of screening data use machine learning to model the relationship between surface topo-
graphy properties and cell response characteristics in either a regression or a classification setting.
These approaches, however, do not account for uncertainty, intrinsic to biological experiments.
Furthermore, they mostly target a limited number of distinct well-predicted cell features, while a
cell response as a whole belongs to a high-dimensional space, hence cannot be predicted by a plain
regression model.

In this thesis, we consider the task of modeling the cell-surface topography relationship from the
perspective of the generative approach in machine learning. The observed cell response is regarded
as an outcome of a generative process, subject to the experiment input conditions, represented by
the surface topography. We investigate whether the generative modeling approach can be used
to derive a data-driven simulation model of the experiment, such that experiment outcomes are
generated conditioned on a given topography. The task of topography design is considered inverse
to experiment simulation, where topographies that are likely to result in a given (desired) cell
response need to be generated. We develop a deep generative simulation model for the case when
a cell response is represented by individual cell images, and an image representation of topographies
is used. The proposed model serves simultaneously as a simulation model, i.e. allows to generate
cell images conditioned on a given topography image, and as a tool for topography design, allowing
to generate topography images for a given cell image. The latent space of the proposed model is
assumed to be composed of independent latent subspaces, corresponding to specific cell features,
which provides for interpretability of the learned representation and allows for cell feature value-
conditioned topography design.

We evaluate our model on two datasets, including a synthetic and a real-world dataset. In
both cases, a disentangled interpretable latent space is derived for cell images, which allows to
generate new cell images with predefined cell properties. Furthermore, the experimental results
on the synthetic dataset show that the model is able to learn the embedded relationship between
topographies and cells in a probabilistic manner using the disentangled latent space, and based
only on the image training data. As a result, the synthetic-case model performs as intended
in both application scenarios, generating reliable topography-conditioned cell images and cell-
conditioned topography images. The proposed approach exposed a number of limitations due
to the assumptions made, however, it provided a valuable example of application of generative
modeling in biomaterials research.
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Chapter 1

Introduction

Biomaterials engineering

The field of biomaterials engineering is concerned with development of materials that are able to
interact with living tissue in a useful and predictable way. Applications of biomaterials vary from
hip or dental implants, to heart valves, stents and sutures [50]. Depending on the application,
the purpose of a biomaterial is to be compatible with the surrounding tissue, to induce certain
behavior of the tissue and to facilitate integration of a medical device into the body. For example,
to build bone implants, biomaterials that stimulate integration of an implant into bone tissue are
chosen. Hence, for each application, biomaterials inducing specific cell response are sought.

To design biomaterials that are able to induce certain biological response of living cells, the field
of biomaterials engineering studies cell behavior in response to different materials. A special case of
that research direction is investigating how cells, e.g. mesenchymal stromal cells (MSCs), behave
upon exposure to different surfaces produced using the same material. The question investigated
is how a ’surface topography’, i.e. a surface pattern, impacts the cell response of interest, such as
certain biomarker expression or cell shape characteristics.

The goal of such studies is to explore the existing cell behavior-surface topography relationship
and, ultimately, to find the optimal surface topography for a given application requiring specific
cell response. To solve this task, physical experiments are conducted, in which living cells are
exposed to a large collection of different surface topographies. The collected data is subsequently
analyzed to reveal the cell-surface topography relationship, which enables one to select or design
new surface topographies stimulating the desired cell behavior.

Problem statement

In fact, the task of finding an optimal surface topography given an application consists of two
challenges: 1. Data analysis to find the "hit" [50] surface topographies which have led to
the desired cell response, and to explore the cell response-surface topography relationship; 2.
Topography design, which involves either selecting perspective topographies from an already
existing library or designing new topographies based on the analysis.

Notably, these challenges may be considered as steps in a loop of experiments aiming to con-
verge to the optimal surface topography for a given application. In [52] the authors discuss the
concept of an autonomous system for biomaterials discovery, which would be able to analyze
the data obtained from physical experiments and to design new materials in silico, in an auto-
mated fashion, using machine learning (ML) techniques. In this concept, the process of finding
the optimal surface topography given an application can be viewed in the from of the following
algorithm:

1: Create an initial library of surface topographies
2: while cells with desired properties are not found do
3: Run physical experiments with cells
4: Analyze the screening data
5: Design new topographies
6: ...
7: end while

Hence, the research problem is formulated as: Can we leverage machine learning to improve
and automate 1. the analysis of the accumulated screening data and 2. the design of new surface
topographies, expected to enhance the desired cell response in the next series of experiments?

Simulation of biomaterials research experiments with generative models 1



CHAPTER 1. INTRODUCTION

Machine learning perspective

A number of existing approaches use machine learning to model the relationship between topo-
graphies and cells, as further discussed in Chapter 2. Essentially, the modeling approach aims to
discover the relationship between two high-dimensional spaces based on the screening data: the
space P of parameters defining a surface topography and the space X of cell responses, as shown
in Figure 1.1; the screening data is then a collection of pairs {pi, xi}ni=1. The space X can be, for
instance, represented by the space of cell images, however, it may also be regarded in a broader
sense and include any observed measures of biological outcome, such as gene expression profiles
or other measurements, not captured by cell images.

Figure 1.1: P - input parameters space (topography design); X - outcome space (cell response).

From this perspective, modeling of the cell-surface topography interaction is the task to model
the mapping P → X, that is, what cell response x ∈ X can be observed given a surface topography
p ∈ P . Whereas the task of topography design is an inverse one, where the mapping X → P is
needed: given a desired cell response x, which surface topographies p could lead to it. Hence, the
research problem is reduced to finding a way to model the twofold relationship between the spaces
P and X given screening data.

The current approaches to modeling of the cell-surface topography interaction usually involve
either regression or classification models that predict some measures of a cell response, such as
nucleus form factor or cell orientation [21], based on topography properties. In other words, given
some parameter representation of a topography, p = (p1, p2, ..., pn) [53], and the available training
data {pi, xi}ni=1, machine learning models are trained to predict the cell features of interest fi(x),
instead of directly predicting x, as illustrated in Figure 1.2. Then to optimize the cell response
fi(x) in the next iteration of physical experiments, certain topography properties pj need to be
adjusted in a way that suggests improvement of fi(x) according to the model.

Figure 1.2: Modeling cell-surface topography interaction: current approaches.

The implications of the current approach are that, firstly, such models are point estimate mod-
els, which means that they predict a single (expected) value of the cell feature fi in response to a
topography p. Secondly, in the current approach machine learning is essentially used as a tool to
analyze data and learn correlations. As a result, only some evident dependencies between topo-
graphy design parameters and distinct cell features are captured in several independent models.

2 Simulation of biomaterials research experiments with generative models
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This observation raises a question of whether it is possible to leverage the advances in machine
learning to overcome these limitations and to develop a model capable of learning the complex
cell response-surface topography relationship, prone to a high level of uncertainty.

Research questions

As opposed to developing point estimate models, the question investigated in the present work is
whether machine learning, and specifically deep generative models (2.2), can be used to develop
a data-driven simulation model of the cell-surface topography experiment, i.e. a model able to
mimic the mapping P → X based on screening data. Importantly, such a model should be able
to generate a variety of possible cell outcomes x in response to a given topography p, similarly to
a real experiment. An illustration is provided in Figure 1.3.

Figure 1.3: In silico experiment model

Furthermore, this work investigates whether deep generative models could be also used as tool
for biomaterials discovery, i.e. for in silico topography design. In this scenario, a model should
generate a variety of surface topographies p that could lead to a given cell response x, as shown
in Figure 1.4. Desirably, either an observation x ∈ X could be provided as an input to the model
in this scenario, or a value of a cell property of interest fi(x), corresponding to an observation x.

Figure 1.4: In silico topography design model

A simulation model of the cell-surface topography experiment could be useful in biomaterials
research for several reasons. Firstly, it could be beneficial for an analyst to observe a full cell
response x as an output of the model instead of observing a number of predictions of distinct
cell features fi(x). Secondly, only a fraction of the topography design space P can be covered
by physical experiments in reasonable time, while an in silico experiment model, once trained,
can be run multiple times consecutively. As a result, a simulation model of the experiment could
help accelerate biomaterials discovery. Furthermore, a simulation model, as formulated above,
accounts for uncertainty intrinsic to physical experiments, when a topography leads to a variety
of cell responses, and an observed cell response could originate from a variety of topographies.

In the scope of the present work only the case when the outcome space X is represented by
the space of individual cell images is considered, thereby excluding visually unobserved measures
of a cell response. Similarly, an image representation of topographies is used. This decision is
motivated by the fact that a visual representation of the outcomes enables one to judge how realistic
the generated samples are, and whether they respect the real-world constraints. In the general
case, however, an extended cell response representation can be considered, which includes other
important measures of cell behavior. Accordingly, alternative topography space representations
can be used, such as numerical parameterizations.

Simulation of biomaterials research experiments with generative models 3
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The idea behind investigating the applicability of the generative approach to simulation of the
experiment is that, firstly, deep generative models are known to be suitable for tasks on high-
dimensional datasets, and, most importantly, they allow to incorporate uncertainty. Instead of
predicting point estimates of the expected value of cell features, or predicting a single ’typical’
cell image in response to a topography, a generative model could be formulated to output a
probability distribution p(x|p) of cell images x conditioned on a topography p. Vice versa, a
cell image x depicting a cell with certain visual characteristics could potentially originate from a
probability distribution p(p|x) of topographies given x. Hence, having a deep generative model for
the cell-surface topography relationship allows to reduce the tasks of experiment simulation and
of in silico topography design to simple queries, where cell or topography images are generated
by sampling from the respective distributions p(x|p) and p(p|x).

The research questions of the present work are:

1. Can generative models be used to simulate the cell-surface topography experiment?1 (in
silico experiment model)

In silico experiment query: generate different cell images x given a surface topography p.

2. Can generative models be used for in silico cell response-conditioned topography design?

In silico topography design query: generate different topographies p that could lead to a
given cell image x.

Proposed approach

In the present work a deep generative model is proposed that is aimed to simultaneously serve as a
simulation model of the cell-surface topography experiment and as a tool for in silico topography
design. The model is designed to generate individual cell images for a given topography image to
mimic the physical experiment. Furthermore, the model could be used for topography design by
generating topography images for a given cell image, possibly with desired cell properties, or for
a given value of the cell feature of interest.

The proposed model is built upon a Variational Autoencoder (VAE) [29] architecture and ex-
ploits several techniques to derive a disentangled, or factorized, latent space, particularly inspired
by Domain-Invariant Variational Autoencoder (DIVA) [22]. The latent space of cell images is
divided into independent latent subspaces, corresponding to cell features of interest, and an addi-
tional noise space, corresponding to residual variation in cell images, not explained by these cell
features. The key idea behind the proposed approach is to model the twofold cell response-surface
topography relationship P ↔ X in the latent spaces instead of the original spaces. The connection
between the two datasets is implemented via shared latent subspaces. The latent subspaces of the
cell model corresponding to cell features are assumed to also be part of the latent space in the
topography model, with the difference that in the topography model these subspaces represent
the factors of variation in topographies that influence the respective cell features. Hence, the pro-
posed model constitutes a two-sided VAE for two related datasets that allows for cross-conditional
generation: cell images given a topography image and topography images given a cell image.

Contributions

The contributions of the present work are as follows:

• We introduced a generative modeling perspective on biomaterials research experiments,
which addresses the outlined challenges of 1. high dimensionality of the input and out-
put data spaces and 2. high uncertainty of the underlying relationship, inherent to such
experiments.

1The question of whether machine learning can be used to simulate cell response is in particular mentioned in
[53] as an outstanding question in biomaterials research.
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• We proposed a deep generative simulation model of the cell-surface topography experiment
for the case where both the cell response and the surface topography have an image repres-
entation. The model is capable to simulate cell images in response to a given topography
image and to simulate topography images in response to a given cell image or a cell feature
value.

• We test the proposed architecture on two datasets, including a synthetic and a real-world
dataset. In both cases, a factorized and interpretable latent representation of the cell image
dataset was derived. Furthermore, the experimental results on the synthetic dataset show
that the model is capable to unravel the existing relationship between topographies and cells
using the training image data.

• The proposed model constitutes a two-sided variational autoencoder that connects two dif-
ferent datasets, with possibly existing relationship between them, using the concept of a
shared latent space, which, to the best of our knowledge, has not been previously considered
in the literature.

Thesis outline

In Chapter 2 the current framework of cell-surface topography interaction studies is described,
and the current approaches to screening data analysis and to topography design are overviewed.
Furthermore, in Chapter 2 theoretical foundations of generative modeling and approaches to de-
riving disentangled latent representations in generative models are discussed. In Chapter 3 the
proposed approach for simulation of the experiment and for in silico topography design is de-
scribed in detail. In Chapter 4 the two datasets used to verify the proposed model are described,
and the experimental results for these datasets are provided in Chapter 5. Finally, in Chapter 6
the limitations of the proposed approach and directions for future work are discussed.
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Chapter 2

Background

2.1 Studies on cell-surface topography interaction

The idea of surface topographies impacting cell behavior has been verified in the literature with
different cell types and with a wide range of cell responses of interest. A number of studies
have shown that the topography of the surface in contact with human mesenchymal stem cells
(hMSCs) influences cell morphology [50], [20], [35], [3], [21], [4]; expression of certain biomarkers
[50], [20], [41], [54], [34]; cell proliferation [50], [41], [4]; metabolic activity [3], [4]. Particularly,
it has been demonstrated that certain surface topographies can stimulate differentiation of bone
marrow-derived mesenchymal stromal cells (bmMSCs) into bone tissue [20]. Furthermore, surface
topography determined secretion levels of different components (cytokines) by bmMSCs and by
kidney perivascular mesenchymal stromal cells (kPSCs), thereby controlling their function [35].

2.1.1 Experimental framework
To study the cell-surface topography relationship at scale, the following experimental framework
is adopted [50] [21]:

• Surface topography designs are generated by placing random combinations of primitive geo-
metric shapes (topographical features, e.g. displayed in Figure 2.1), in a grid, which consti-
tutes a single topography, examples of which are shown in Figure 2.2;

• The generated surface topographies are produced on a chip, TopoChip [50] (or a plate,
TopoWellPlate [3]), using the same material. A single TopoChip contains 2176 unique surface
topographies;

• A chip with surface topographies is populated with the cell material and is later stained with
fluorescent dyes to highlight the components of interest (cell nucleus, cytoskeleton etc.);

• Finally, the chip undergoes a screening, yielding images that capture the resulting cell re-
sponse on different topographies. Additionally, properties of individual cells or aggregated
cell properties per topography are calculated using special software, CellProfiler [50].

Figure 2.1: Topographical features [50]: examples.

Figure 2.2: Surface topographies [50]: examples.
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CHAPTER 2. BACKGROUND2.1. STUDIES ON CELL-SURFACE TOPOGRAPHY INTERACTION

The outlined procedure provides a collection of observations, where a surface topography de-
scription is paired with a corresponding image of cells on top of that topography. Such data
captures the relationship between the surface topography properties and the resulting cell prop-
erties, which enables one to perform analysis and to search for correlations.

2.1.2 Approaches to screening data analysis and topography design
The challenges of screening data analysis and topography design, outlined in Introduction 1,
have been addressed in the literature and multiple approaches were proposed to find correlations
between the properties of surface topographies and various cell responses. In [50] the authors
identified the topography properties associated with high cell proliferation ratio in a classification
setting, where the class of a surface topography was assigned according to the average share of pro-
liferating cells on that topography across a series of experiments. Similarly, in [41] the topography
properties associated with cell proliferation and pluripotency biomarker expression were selected,
and a logistic regression model was developed to predict the probability of observing pluripotent
cells on a topography 24 hours after seeding. In [54] a classification model was developed to predict
the level of ICAM-1 biomarker expression based on a topography description. Furthermore, in
[3] binary classifiers were trained to predict the assignment of the observed individual cells to five
visually identified cell morphology classes based on topography properties.

Whereas in [21] the authors modeled the relationship between the surface topography properties
and the resulting cell morphology properties in a regression setting. Cell morphology properties
for each topography were calculated as the median value over values for individual cells on the
respective topography. Separate models were developed to predict the value of each of the mor-
phological properties, such as nucleus "roundness", cell solidity and others, based on topography
properties. Conversely, in [34] a specific topography was predicted based on the resulting morpho-
logical properties of cells placed on it. The idea was to identify the topography that could lead
to a certain cell morphology, which in turn is associated with expression of particular biomarkers
of interest. Furthermore, to visualize the relationship between the surface topographies and the
cell response, hierarchical clustering method was used in [34] to group topographies either on the
basis of the induced cell morphological features, or according to the gene expression profiles.

In fact, the mentioned papers studying the cell-surface topography relationship share in com-
mon that they aim to develop a model of that relationship while analyzing the screening data.
The interaction is modeled in either a regression or in a classification setting, where classes or
values of the desired cell response are predicted based on topography properties. Such perspective
implies that to design new topographies for the next experiment, specific topography properties
need to be adjusted in a way that stimulates the desired cell behavior according to the model.

On the other hand, the authors of [51] consider a different perspective where no model of the
cell-surface topography relationship is created. At the analysis step, only the best-hit surface
topographies are selected. These topographies are subsequently processed with an evolutionary
algorithm to produce next-generation topographies. As a result, optimization of the cell response
happens by crossover and mutation of the most ’successful’ topographies taken as a whole, rather
than by combining ’successful’ values of specific topography properties.

Hence, the design of improved surface topographies is the end goal of both approaches, however,
in the first approach topography design is regarded as an inverse task to modeling the influence
of topographies on cell behavior based on experimental data. The modeling approach is further
considered throughout this paper, as it particularly aims to unravel the underlying cell-surface
topography relationship, apart from providing the end result.
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2.2 Generative models in machine learning

Generative modeling approach in machine learning is usually defined on the contrast with a more
prevalent discriminative approach. Considering a regression or a classification task with an ob-
servation variable x and a target variable y, a discriminative model aims to predict either a
conditional probability distribution p(y|x) of the target variable y given an observation x or just
a point estimate of y [39]. In other words, a discriminative model only learns to discriminate
between the observations to accurately determine the corresponding values or labels of the target
variable, ignoring the underlying distribution of the data.

By contrast, a generative model aims to approximate the joint probability distribution p(x, y)
of the data and target variables, which allows to infer the data distribution p(x|y) conditioned on
a certain class label or on a value. In fact, generative models can also be used to estimate p(y|x) to
perform classification or regression tasks like discriminative models. Unlike discriminative models,
however, generative models allow to generate new data samples, similar to those in the dataset,
and to estimate the likelihood of a given observation. These properties of generative models make
them a very popular tool in a variety of problems with high-dimensional structured data such as
sequences, images, audio recordings and others. Notably, generative models are often used in an
unsupervised setting, when modeling of the probability distribution of the data p(x) or the ability
to generate new data samples is the goal itself [46].

To approximate the probability distribution of observations p(x) from some high-dimensional
space X, such as a space of images, generative models often assume that there exists a lower-
dimensional representation of the data, a latent representation z with some simple probability
distribution in the latent space ZX . In practice, the goal of training a generative model is to train
a decoder, or generator, which is a mapping dX : ZX → X. A decoder allows to sample from a
high-dimensional and complex distribution p(x) by sampling from a low-dimensional and simple
distribution p(z) [46], as shown in Figure 2.3.

Figure 2.3: A decoder dX : ZX → X

The key challenge in training a generative model is to ensure that the distribution of the
generated samples g(z) indeed corresponds to the distribution of the data p(x) [46] [12]. The two
main approaches in generative modeling, variational autoencoders (VAEs) [29] [43] and generative
adversarial networks (GANs) [17], differ in the way they address this challenge. A VAE attempts
to invert the decoder with a separate encoder network that maps a sample x from the space X
to an approximate posterior distribution q(z|x) in the latent space. Subsequently, a sample from
q(z|x) is mapped back to the space X by the decoder, thereby reconstructing the original sample
x. Hence, the generated samples in the VAE framework are reconstructions of the original data
samples, which is exploited by the training objective to match the distributions g(z) and p(x).

By contrast, a GAN does not use the latent space to match the two distributions [46]. In-
stead, it employs an auxiliary discriminator network that learns to discern between the generated
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samples and the original samples. In turn, the goal of the decoder, or generator, is to mislead
the discriminator and generate samples dX(z) as similar to the original samples as possible, which
stimulates the distributions g(z) and p(x) to be close as well.

In the present work the VAE approach will be taken as a basis for a simulation model of the
cell-surface topography experiment and will be considered below in more detail. The main feature
that makes the VAE approach more applicable in modeling the distribution of the cell response is
that it guarantees that each observation x is represented by some region q(z|x) in the latent space.
A GAN, however, is known to be susceptible to the mode collapse problem [39] [46], when certain
classes of the observed data are not represented in the latent space and thus cannot be generated.
Furthermore, owing to the training objective of the VAE, similar cell images are expected to be
close in the latent space, while close points in the latent space are expected to represent similar
images.

2.2.1 Variational autoencoder
A variational autoencoder (VAE) [29] [43] is a generative model that employs a latent variable
model to represent the data distribution. This implies that the distribution of observations p(x)
from the original high-dimensional space X can be expressed (2.1) in terms of some latent factor
z with a simple distribution in a lower dimensional space ZX . In (2.1) the probability distribution
pθ(x|z) is usually parameterized with a neural network with weights θ, which serves as a decoder,
for example, pθ(x|z) = N(g(z, θ), s2I) [12] is a normal distribution, where g is the decoder neural
network, s is a hyperparameter [39] and I is an identity matrix; p(z) is the prior distribution of
the latent variable z and is usually assumed to be multivariate normal, i.e. p(z) = N(0, I) [12].

pθ(x) =

∫
ZX

pθ(x|z) p(z) dz (2.1)

As mentioned above, a VAE has an encoder-decoder architecture, shown in Figure 2.4, where
the decoder generates data samples based on the values of the latent variable z, and the encoder
embeds data samples x into the latent space.

Figure 2.4: An encoder-decoder architecture of a VAE.

The encoder is needed to infer the posterior distribution pθ(z|x), which can be expressed as
(2.2) by the Bayes’ rule. However, the integral in the denominator corresponding to pθ(x) (2.1)
is intractable [39], and therefore the posterior cannot be calculated directly. Instead, the encoder
neural network serves as an approximate posterior qϕ(z|x) ≈ pθ(z|x), such that it outputs the
distribution parameters of qϕ(z|x), where ϕ are the weights of the encoder. For example, the
approximate posterior can be formulated as qϕ(z|x) = N(µϕ(x), σ

2
ϕ(x)I) [12], where the encoder

outputs both parameters µ and σ2 of the normal distribution for a given x.

pθ(z|x) =
pθ(x|z) p(z)

pθ(x)
(2.2)
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The goal in training of a VAE is to maximize the log-likelihood of the training data
∑

x log pθ(x)
given the assumed model (2.1), which is equivalent from the training perspective [39] to maximizing
the expected log-likelihood E [log pθ(x)] for an observation, coming from the true data distribution.
However, due to intractability of the integral (2.1), training is done by maximizing a lower bound
on the log-likelihood, which can be derived as shown below. Notably, the Jensen’s inequality is
applied since log is a concave function, qϕ(z|x) ≥ 0 and

∫
qϕ(z|x) dz = 1.

log p(x) = log

∫
pθ(x|z) p(z) dz

= log

∫
qϕ(z|x)

pθ(x|z) p(z)
qϕ(z|x)

dz

≥
∫

qϕ(z|x) log
pθ(x|z) p(z)
qϕ(z|x)

dz (by the Jensen’s inequality)

=

∫
qϕ(z|x) log pθ(x|z) dz −

∫
qϕ(z|x) log

qϕ(z|x)
p(z)

dz

= Eqϕ(z|x) log pθ(x|z) − KL
(
qϕ(z|x) || p(z)

)
The derived lower bound (2.3) on the log-likelihood of the data is called the evidence lower

bound (ELBO). The first term can be seen as the reconstruction error; it reflects the ability of
the model to recover an observation x after being passed through the bottleneck of the latent
space. Whereas the second term can be seen as a regularization that forces individual approx-
imate posteriors qϕ(z|x) for different data samples x to be non-deterministic by penalizing them
for diverging from the prior distribution p(z) [46]. As a result, the overall "inferred prior" dis-
tribution q(z) [32], or "aggregated posterior" [38], combining the individual posteriors resembles
the assumed prior p(z) [1], which makes the points in the latent space that correspond to data
samples concentrate densely.

ELBO = Ex

[
−
(
Eqϕ(z|x) [− log pθ(x|z)]︸ ︷︷ ︸

Reconstruction error

+ KL
(
qϕ(z|x) || p(z)

)︸ ︷︷ ︸
Regularization

)]
(2.3)

The VAE is trained by maximizing the expected ELBO or, equivalently, minimizing the negative
expected ELBO, approximated by Monte-Carlo sampling, and using the gradient descent algorithm
with backpropagation [39]. One of the challenges in training the VAE is propagating the gradients
with respect to parameters ϕ through the approximate posterior qϕ(z|x) in the reconstruction
term, which cannot be computed directly:

∇ϕ

∑
i

Eqϕ(z|x(i)) log pθ(x|z) =
∑
i

∑
j

∇ϕ qϕ(z
(ij)|x(i)) log pθ(x

(i)|z(ij)) (2.4)

To address this, the "reparameterization trick" is used, where the samples z from the posterior
qϕ(z|x) are represented by a deterministic function of the encoder’s output, which depends on
ϕ. For example, when the encoder outputs parameters of the normal distribution qϕ(z|x) =
N(µ(x, ϕ), σ2(x, ϕ)I), the latent variable z is reparameterized as z = µ(x, ϕ) + σ2(x, ϕ) ∗ ε =
gϕ(ε, x), where ε ∼ N(0, I) = p(ε), and gϕ(ε, x) is differentiable with respect to ϕ. Then, the
gradients could propagate through p(ε) since it does not depend on ϕ:

∑
i

∑
j

∇ϕ qϕ(z
(ij)|x(i)) log pθ(x

(i)|z(ij)) =
∑
i

∑
j

∇ϕ p(ε
(ij)) log pθ(x

(i)|gϕ(ε(ij), x(i)))

=
∑
i

∑
j

p(ε(ij))∇ϕ log pθ(x
(i)|gϕ(ε(ij), x(i)))

(2.5)
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2.2.2 Disentangled representation in latent spaces
A distinct attention in generative modeling-related research is given to learning disentangled latent
representations of the data. Originally studied in the field of representation learning, a disentangled
representation is defined as a representation of the data by a number of features corresponding
to distinct observed sources of variation, such that a single feature is invariant to changes in the
data related to other features [44]. As opposed to extracting features of the data that are relevant
for a specific task, learning a disentangled representation is aimed at characterizing the data inde-
pendently of the current task and is generally considered more expressive, reliable, interpretable,
robust to variation peculiar to natural data, and useful for transfer learning [5] [44].

In the context of generative modeling, the idea of learning a disentangled representation is to
derive a latent space, where different dimensions or different latent variables correspond to differ-
ent factors of variation in the the data. Informally, in a disentangled latent space varying only one
latent variable with the rest fixed should result in variation in a single concept in the generated
images [10]. To learn a disentangled latent representation, a number of approaches have been
proposed which could be divided at a high level into supervised and unsupervised. Unsupervised
approaches for disentangled representation learning exploit assumptions about statistical inde-
pendence of different latent variables, as well as assumptions about invariance of certain factors to
specific changes in the input [44]. Whereas supervised approaches employ additional information
characterizing observations, which could help the model separate different factors of variation.

Unsupervised disentanglement

In one of the first papers on unsupervised disentanglement in generative models the InfoGAN [10]
model was proposed, where the mutual information between latent variables and observations is
maximized in addition to a regular GAN objective. The idea of InfoGAN is that information about
latent variables corresponding to meaningful factors of variation should improve the knowledge of
which images should be generated, and thus a mutual information objective should stimulate the
model to learn these factors in an unsupervised manner. Another prominent work [19] proposes
a VAE-based unsupervised disentanglement approach, where the KL-divergence term from the
regular VAE objective (2.3) is multiplied by a hyperparameter β, as shown in (2.6), which is
aimed at constraining the capacity of the latent space, when β > 1, at a cost of some reduction
in reconstruction quality. In turn, the increased penalty on the divergence of the approximate
posterior qϕ(z|x) from the factorized prior p(z) forces the model to split existing independent
sources of variation in the data and assign them to separate dimensions of the latent space.

Eqϕ(z|x) log pθ(x|z) − β KL
(
qϕ(z|x) || p(z)

)
(2.6)

In another VAE-based approach [32] two models sharing the same idea were introduced, DIP-
VAE-I and DIP-VAE-II, where instead of balancing the two terms of the VAE objective, as pro-
posed in β-VAE, an additional regularization term for the "inferred prior", or combined posterior,
qθ(z) =

∫
qθ(z|x) p(x) dx is suggested, which forces qθ(z) to not diverge from the assumed prior

p(z). The authors argue that penalizing the discrepancy between individual qϕ(z|x) and p(z) does
not guarantee disentanglement for the combined posterior q(z).

Furthermore, a number of works suggest to improve the β-VAE approach. In the β-TCVAE
model [9] the authors propose a decomposition of the KL divergence term that appears in the
β-VAE training objective (2.6), splitting it into three terms. They argue that the ability of β-VAE
to disentangle factors of variation is mainly explained by a single term in the decomposition, which
is the penalty imposed on the total correlation between latent dimensions βTC KL(q(z)|

∏
i q(zi)),

where q(z) is the combined posterior. The authors provided an estimator of q(z) and q(zi) and
suggested that fine-tuning of the weight βTC instead of β could yield better disentanglement for
the same reconstruction quality. A similar approach to β-TCVAE is used in the FactorVAE [26]
model, however, the authors introduce an additional discriminator network that approximates the
total correlation term.
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The JointVAE [13] model adapts β-VAE to also include discrete factors of variation and models
the latent space as a joint distribution of continuous and discrete latent variables. Additionally,
in [8] the objective of β-VAE is modified to introduce separate hyperparameters: C that reflects
the "capacity" of the latent space the model ought to use, and γ being the penalty for diverging
from that capacity (2.7). The authors propose to gradually increase C during training from zero,
while keeping a high and constant γ, making the model prioritise the factors of variation to be
learned on the basis of their contribution to the log-likelihood of the data. As a result, it helps
achieve a refined balance between disentanglement and reconstruction quality.

Eqϕ(z|x) log pθ(x|z) − γ
∣∣KL

(
qϕ(z|x) || p(z)

)
− C

∣∣ (2.7)

Several works addressed disentangling of image transformation in an unsupervised manner.
For example, in the unsupervised version of Guided VAE [11] a subset of latent variables was
directed to learn the parameters of the affine transformation of an image via an auxiliary decoder,
while the content of the image was represented by the rest of the latent variables. A similar goal
was pursued in Spatial VAE [6] with the difference that disentanglement of the latent variables
corresponding to rotation and translation was integrated in the training process of a VAE.

Notably, it was demonstrated in [36] that learning of disentangled representations in a fully
unsupervised fashion is impossible. Therefore, to derive meaningful and factorized latent space,
supervision in some form or assumptions about the latent space are warranted.

Supervised disentanglement

Supervised approaches utilize labeling of the data, which can be either fully or partly available,
constraints on the latent space, or prior knowledge about the sources of variation in the data
to derive a disentangled representation. For example, the supervised version of Guided VAE
[11] enforces distinct latent variables to be informative for predicting specific attributes, while
simultaneously forcing the rest of the latent variables to be uninformative for the same attributes,
via an auxiliary classification objective. In contrast, in [25] the authors propose a semi-supervised
approach, where supervision is introduced implicitly, in the form of a collection of triplets that
establish similarity between observations in terms of some observed factor, provided for a part of
the observations in the data set.

In [31] the authors propose a VAE-based supervised disentanglement approach which forces
specific units of the learned representation to encode the desired factors of variation in the images.
However, instead of labels for the attributes of interest, as in Guided VAE [11], disentanglement
is achieved by training a model on batches that include samples varying only in a single or in few
selected factors at a time, while the inferred latent variables corresponding to not selected factors
are averaged over a batch before being passed to the decoder. Hence, the approach exploits
supervision in the form of grouping of images on the basis of which factors remain constant or
vary in that group. A similar group-based supervision is used in ML-VAE [7], where the "content"
of images, different between groups, and "style", different within a group, are separated. Whereas
in [56] consecutive images in a video are paired, and the encoder is prompted to develop a compact
representation of transition-related factors of variation, disentangling them from static features of
images, which are encoded in separate dimensions.

Another perspective in disentanglement learning is presented in [49], where to derive a dis-
entangled latent space the authors propose to combine probabilistic graphical models with deep
generative models by defining the relationship between some latent variables and observations.
Whereas the rest of variation in the data is captured by residual, using deep neural networks. For
example, a latent variable corresponding to class labels can be directly included in the probabilistic
model. Similarly, in [28] a latent variable for class label is explicitly included in the generative
model to provide for semi-supervised classification.

DIVA [22] approach considers disentangled representation learning in the task of "domain
generalization", where a representation is desired, which is invariant to domain-related variation.
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The idea behind domain invariance is that the data of the same nature could originate from
different sources, or domains, and thus can be susceptible to insignificant domain-related artefacts,
such as background color. Therefore, in order utilize data from different and probably new domains
in downstream tasks, such as regression or classification, the model should disentangle domain-
related variation in the latent space. In their model, the authors propose to represent the latent
space by three independent latent variables, all inferred with separate encoders with unshared
parameters: zy for class label, as in [49] [28], zd for domain, and zε for residual variation in the
data. Furthermore, disentanglement is stimulated by adding classifiers qωy

(y|zy) and qωd
(d|zd) into

the VAE training objective that are aimed to predict class and domain labels based on respective
latent variables.

KL
(
qϕy

(zy|x) || p(zy|y)
)

(2.8)

Notably, in contrast to a regular VAE, in DIVA [22] conditional priors p(zd|d) and p(zy|y) are
used for the class and domain latent variables, while at the same time using a conventional uncon-
ditional prior p(zε) for residual variation. Such formulation allows for conditional generation of
images for a given class and domain and leads to a less restricted grouping of points corresponding
to observations with different labels in the latent space, since the KL-term (2.8) does not force
conditional priors to be concentrated around a single origin. Furthermore, the idea of conditional
prior was also used in the case with a continuous attribute in [59], where a VAE-based model for
regression was developed. In this model, a prior distribution conditioned on the target feature
p(z|c) helps to shape and order the latent distribution according to its values.

To conclude, supervised approaches allow to derive meaningful and factorized latent represent-
ations when there is a notion of which factors of variation need to be separated in the latent space,
and when the labels or values of these factors, or another supervisory information, are fully or in
part available. Furthermore, by introducing a conditional prior distribution which is conditioned
on class labels or attribute values, a latent space or subspace with useful structure can be learned.

Disentanglement metrics

Multiple metrics were proposed to measure the level of disentanglement in the latent space reached
by different models, some of which are listed in [36]. In β-VAE [19] a classifier-based metric was
proposed, where a classifier is trained to predict which factor was fixed in pairs of images based on
the observed difference between latent vectors corresponding to these images, and accuracy serves
as a measure of disentanglement. The metric proposed in FactorVAE [26] is an improvement of
the above mentioned metric. A a majority-vote classifier is trained to predict which factor was
fixed based on indices of the lowest-variance latent dimension, collected for different batches.

In the work on β-TCVAE [9] the metric Mutual Information Gap (MIG) was considered, where,
firstly, mutual information as a measure of informativeness of a latent dimension for a given factor
is calculated for each latent dimension, and, secondly, the difference between two most informative
latent dimensions is calculated and is considered be the measure of disentanglement. A low MIG
implies that there are at least two latent dimensions, similar in terms of informativeness for a given
factor, and thus a representation is poorly disentangled. The SAP score metric [32] takes the most
informative latent dimensions per factor, takes the difference between the prediction scores of
these dimensions, and finally the average difference is calculated. Other metrics, including DCI
[14] and Modularity [45], have been discussed in the literature as well.

However, the level of disentanglement in different models is frequently assessed using qual-
itative judgement. One of the approaches is latent space traversals [26], when a single latent
varible or a latent dimension is manipulated while keeping the rest fixed. Resulting generated
images demonstrate whether a single or multiple factors of variation are changing, which gives an
impression of whether a certain latent representation is disentangled.
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2.3 Related work on simulations in biomaterials research

The idea of a simulation model of biomaterials research experiments is considered in [53], where
the authors discuss the concept of a ’hypothesis-driven’ mathematical simulation model, which is
built upon prior knowledge about the underlying biological mechanisms that govern cell behavior
and does not use data. As opposed to the mathematical modeling perspective, this work considers
the concept of a purely data-driven simulation model, based on the generative modeling approach,
hence no information about biological mechanisms is embedded in the model. A literature review
in search for similar applications of generative models, or data-driven simulation approaches in
biomaterials research, however, yielded little results.

At the same time, generative models are frequently used in related biomedical applications,
particularly in applications involving screening data and cell images. For instance, in order to
perform dimensionality reduction [58], data augmentation [2], to learn useful representation of
the cell image data [16] [48] [24] [57]. Furthermore, generative models, mostly GANs, are used
in the task of cell image synthesis [40] [30]. However, the task to synthesize cell images, or other
measures of a cell response, based on the input conditions of an experiment is poorly covered in
the literature as of today.
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Chapter 3

Method
In this chapter, a novel generative model is described that is aimed to serve as 1. a simulation
model of the cell-surface topography experiment, and 2. as a tool for in silico topography design.
Notably, it the present work it is assumed that 1. the space X is the space of individual cell images,
and 2. P is a space of images of topographies, which can be either an image of a topographical
feature (Figure 2.1), or an image of a full topography (Figure 2.2), i.e. a grid of topographical
features. A detailed description of the data used in experiments is provided in Chapter 4.

3.1 Motivation

A major challenge in development of a model that is able to mimic the mappings P → X and
X → P between two image spaces in a probabilistic way is the dimensionality and sparsity of
the data. For instance, considering the space X, a 128 ∗ 128 pixels cell image with a single color
channel is a point in the space [0, 255]16384. Directly modeling the probability distribution p(x) is
unlikely to yield satisfactory results, since, firstly, a 16384-dimensional probability distribution is
hard to represent and learn, and, secondly, the probability mass of the subspace that corresponds
to images of cells in the space of all possible 128 ∗ 128 images is negligible. Furthermore, the
variation in the observed cell images is likely to be explained by a small number of factors: cell
elongation, area, orientation, etc., which makes modeling the probability distribution over pixel
values impractical. The task to model the probability distribution of two high-dimensional datasets
and the relationship between them is even harder.

To address this challenge, generative models (2.2) employ various techniques to represent prob-
ability distributions in high-dimensional spaces and, particularly, latent variable models. This
idea implies that both spaces X and P can be represented in lower-dimensional latent spaces ZX

and LP , respectively. Accordingly, to sample new images of topographies or cells, the decoders
dX : ZX → X and dP : LP → P are trained. By extension, the key idea exploited in the
present work is to attempt to model the twofold relationship P ↔ X between topography and
cell images in the latent spaces, instead of the original spaces, as illustrated in Figure 3.1. The
remaining part of this section is organized as follows: firstly, an overview of the proposed model is
provided; secondly, a formal description of the proposed model and the training procedure details
are provided; finally, the application scenarios are discussed.

Figure 3.1: Modeling the relationship P ↔ X in latent spaces.
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3.2 Model concept

An assumption made in the proposed model is that topographies could affect cell response, ex-
pressed as images, only through some visually discernible, measurable, and independent cell prop-
erties, which are of interest for a particular task, e.g. nucleus FormFactor, Perimeter, Solidity [21],
and for which all values are available per each cell image. Accordingly, a cell image x is assumed
to originate from a combination of these cell properties fi and residual variation ε, as shown in
Figure 3.2. It is also assumed that the noise component ε is not influenced by topographies and
is irrelevant for the analysis of the cell-surface topography relationship.

Figure 3.2: Assume p influences x through features f .

Given the assumptions mentioned above, the first component of the proposed approach is a
disentangled latent space of the cell image dataset X. It is proposed to learn a fully factorized
latent space ZX = Zf1 × Zf2 × . . . × Zfn × Zε, where n is the number of cell features, such
that each latent subspace Zfi encodes the variation in cell images explained only by the feature
fi. While the subspace Zε of the latent space ZX captures the residual variation in cell images
that is not explained by the features fi. An illustration of a factorized latent space with three
cell features is provided in Figure 3.3. To generate new cell images a decoder dX is trained
that is able to map a combination of points zf1 ∼ Zf1 , . . . , zfn ∼ Zfn , zε ∼ Zε to a distribution
p(x|z) = p(x|zf1 , . . . , zf2 , zε).

Figure 3.3: Learn a factorized latent space ZX .

The second core component of the model is the latent space LP for the dataset P of topograph-
ies. The key idea of the present work is that instead of learning a fully independent latent space
of topographies and subsequently modeling the relationship between LP and ZX , it is proposed
to use a shared latent space to represent the cell-surface topography relationship. The idea is to
reuse the latent subspaces Zf1 , . . . , Zfn , jointly referred to as Zf , as part of the latent space LP .
The remaining part of the latent space LP is represented by an additional subspace Lε. Notably,
the latent subspace Zfi , being considered as part of LP , changes its interpretation and now rep-
resents the influence of topographies on the cell feature fi. In turn, the latent subspace Lε is
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introduced to capture the variation in topographies that is not related to their influence on cells.
An illustration of the latent space LP with a shared subspace Zf is provided below in Figure 3.4.

Figure 3.4: Reuse the latent subspaces Zfi as part of LP .

Such a formulation implies that the latent space LP = Zf1 × . . .× Zfn × Lε is also factorized,
which suggests two strong assumptions. Firstly, each factor of variation in topographies that
to some extent impacts one of the cell features should be encoded in one of the subspaces Zfi ,
while not being captured in the residual subspace Lε. Secondly, a single factor of variation in
topographies can influence only a single cell feature fi by design and should be encoded in the
corresponding subspace Zfi in that case. Arguably, while not being generally justified, these
assumptions do not constrain the ability of such a model to be used in the desired applications,
as it is shown in Chapter 5.

3.3 Model description

Figure 3.5: Graphical model for the cell image dataset (cell model).

The first component of the full simulation model is a generative model for the cell image dataset
X, referred to as the cell model. The proposed generative model, as illustrated in Figure 3.5, is
based on the VAE [29] (2.2.1) and is inspired by the DIVA [22] approach. Since it is assumed
that the latent space is factorized, it is represented by independent latent variables zf1 , . . . , zfn , zε
with separate encoders qϕf1

(zf1 |x), . . . , qϕfn
(zfn |x), qϕε

(zε|x) (3.1). To simplify notation, f rep-
resents either a single or multiple cell features f1, . . . , fn chosen to characterize a cell image x,
and, accordingly, zf corresponds to either a single or multiple latent variables. The respective
parameters ϕf , ϕε of the encoders are not shared, as suggested by [22]. The latent variable zf has
a conditional prior distribution pθf (zf |f) with parameters θf , while zε has an independent prior
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distribution p(zε) (3.2). A single decoder pθ(x|zε, zf ) with parameters θ is used to generate cell
images. The joint distribution of all variables is provided in (3.3).

qϕf
(zf |x) = N(µϕf

(x), σ2
ϕf
(x)I) qϕε(zε|x) = N(µϕε(x), σ

2
ϕε
(x)I) (3.1)

pθf (zf |f) = N(µθf (f), σ
2
θf
(f)I) p(zε) = N(0, I) (3.2)

p(x, zε, zf , f) = pθ(x|zε, zf )p(zε)pθf (zf |f)p(f) (3.3)

To support disentanglement of the latent variables zf , zε, the supervised disentanglement
DIVA approach proposed in [22] is used. Auxiliary regressors or classifiers qωf

(f |zf ), depending
on whether a particular cell feature f is continuous or categorical, are introduced that aim to
predict the values or labels of the corresponding cell features f based on latent representations zf
of cell images x. The KL-terms from the VAE training objective for both posterior distributions
are multiplied by hyperparameters βf , βε, as proposed in [19], which would allow to control the
capacity of the latent subspaces [8]. The training objective of the described model according to
DIVA approach [22] would be as provided in (3.4). It is defined for a pair of a cell image x and a
vector f of cell features and needs to be maximized. The last term in F1(x, f) corresponds to the
performance of an auxiliary regressor or classifier qωf

(f |zf ), whose importance is regulated by the
hyperparameter αf .

F1(x, f) = Eqϕε (zε|x)qϕf
(zf |x) log pθ(x|zε, zf ) − βf KL

(
qϕf

(zf |x) || pθf (zf |f)
)

− βε KL
(
qϕε

(zε|x) || p(zε)
)

+ αf Eqϕf
(zf |x) log qωf

(f |zf )
(3.4)

However, it is further proposed to introduce an auxiliary parameterized normal prior pθpr (zf )
(3.6), referred to as the full prior, for conditional prior distributions pθf (zf |f). It is implemented
by augmenting the original training objective of the cell model (3.4) with another KL-term, as
shown in the final cell-model objective (3.7). The full prior has a zero mean, while the parameters
representing the variance by dimensions are made trainable with the condition that their sum
equals one. The idea behind the full prior is that 1. it imposes a normal distribution on the
marginal distribution pθf (zf ) (3.5), the shape of which is otherwise uncontrolled; 2. it approxim-
ates the marginal distribution by learning the variance parameters instead of calculating it directly
(3.5), and hence the full prior with learned variance parameters pθ∗

f
(zf ) can be used as a substitute

for the marginal distribution. Furthermore, the trainable relative variance of the full prior allows
for an elongated shape of the marginal distribution pθf (zf ), i.e. it allows the marginal distribution
to be stretched along one axis more, than along another. An elongated shape is assumed to be
beneficial, since the means of the posterior distributions qϕf

(zf |x) are encouraged to be arranged
in the zf space according to values of f by the conditional prior in the first KL-term (3.4).

pθf (zf ) =

∫
pθf (zf |f)p(f)df (3.5)

pθpr (zf ) = N(0, σ2
θprI), such that

∑
i

(σθpr )
2
i = 1 (3.6)

F pr
1 (x, f) = F1(x, f)− βpr KL

(
pθf (zf |f) || pθpr (zf )

)
(3.7)

The second component of the proposed method is a generative model for topographies, referred
to as the topography model, that aims both to learn the distribution of topography images in the
latent space and to unravel the relationship between the datasets. As mentioned above, it is
proposed that the latent spaces of topographies and images have a shared latent subspace Zf .
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This subspace is represented by the latent variable zf and is intended to encode the influence
of topographies on the feature f . Whereas an additional independent latent variable lε captures
the variation in topographies that is uninformative for cell response prediction. The topography
model is illustrated in Figure 3.6, and the combined model is illustrated in Figure 3.7.

Figure 3.6: Graphical model for the topography im-
age dataset (topography model).

Figure 3.7: Combined model with a
shared latent variable zf .

Similarly to the cell model, the latent variables zf , lε in the topography model have distinct
encoders qφf

(zf |p), qφε
(lε|p) (3.8) with unshared parameters, and a single decoder pϑ(p|lε, zf )

maps samples from the factorized latent space to the original space of topographies. The latent
variable lε has an independent standard normal prior p(lε) = N(0, I), identical to p(zε) (3.2),
while for the latent variable zf the full prior distribution from the cell model pθ∗

pr
(zf ) is taken as

a prior distribution (3.9). The variance parameters of the full prior are learned during training of
the cell model (3.7) and are fixed in the topography model, which is denoted by ∗ sign. The joint
distribution of all topography-related variables is given by (3.10). Accordingly, a DIVA approach-
based training objective for the topography model, taken separately from the combined model,
would be as formulated in (3.11), where the hyperparameters βpf , βl control the capacity of the
latent subspaces zf , lε respectively. The difference from the cell-model objective is that the latent
variable zf is not supervised by an auxiliary regression or classification objective, and that an
independent (unconditional) prior is used for zf .

qφf
(zf |p) = N(µφf

(p), σ2
φf

(p)I) qφε
(lε|p) = N(µφε

(p), σ2
φε
(p)I) (3.8)

ptopmodel(zf ) ≡ pθ∗
pr
(zf ) ≈ pθf (zf ) (3.9)

p(p, lε, zf ) = pϑ(p|lε, zf )p(lε)pθ∗
pr
(zf ) (3.10)

F2(p) = Eqφl
(lε|p)qφf

(zf |p) log pϑ(p|lε, zf ) − βpf KL
(
qφf

(zf |p) || pθ∗
pr
(zf )

)
− βl KL

(
qφl

(lε|p) || p(lε)
) (3.11)

However, it should be noted that jointly or consecutively maximizing the cell-model objective
F pr
1 (x, f) (3.7) and the (draft) topography-model objective F2(p) (3.11) is not sufficient to learn

the cell-surface topography relationship. In fact, training both objectives would result in two
independent models with unrelated latent variables denoted as zf , since there is no component
that binds topographies and cells from the training pairs (pi, xi) in the combined architecture.
Therefore, the question remains, how to enforce zf to represent the same latent variable both for
cells and topographies, as shown in Figure 3.8.
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Figure 3.8: The task of enforcing zf to be the same latent variable for x and p.

To address the outlined issue, a three-step training procedure for the combined model and two
auxiliary objective terms in the topography-model are proposed. In the first step, it is proposed
that the cell model is trained independently of the topography model, since the latent variables
zf and zε in the cell model are intended to solely capture the variation in cell images, and the
model aims to learn a disentangled latent representation of the cell image dataset. The cell model
model is trained by maximizing the formulated above objective F pr

1 (x, f) (3.7), or equivalently by
minimizing the negative F pr

1 (x, f), with respect to all parameters involved. Later the weights of
the encoders, decoder, conditional prior, regressor, and of the full prior (3.12) are fixed, which is
denoted by ∗, and are not influenced by the subsequent training procedure.

qϕ∗
f
(zf |x) qϕ∗

ε
(zε|x) pθ∗(x|zε, zf ) pθ∗

f
(zf |f) qω∗

f
(f |zf ) pθ∗

pr
(zf ) (3.12)

In the second step of the proposed training procedure, only the encoders of the topography
model are trained that relate to the zf latent variables, i.e. qφf

(zf |p). The goal of these encoders is
to capture the influence of topographies on respective cell features through zf , and the encoders are
subsequently used in the task of topography-conditioned cell image generation, i.e. to simulate the
experiment. The pursued behavior of the model is as follows: given a topography p, the encoder
produces a posterior distribution qφf

(zf |p); then, samples zf ∼ qφf
(zf |p) from the posterior,

coupled with arbitrary samples zε ∼ p(zε) from the prior in the residual subspace, are passed to
the cell-model decoder pθ∗(x|zε, zf ); and the decoder produces cell images with the topography-
induced values of the cell feature f .

To train the encoders qφf
(zf |p), an auxiliary likelihood-based term 2Ax (3.13) is introduced in

the training objective; it is discussed in more detail in a later section. The idea behind this term is
that cell images x̂i ∼ pθ∗(x|zε, zf ) generated based on a topography pi as described above should
be similar to the original cell image xi from a given training pair (pi, xi). Notably, the proposed
term (3.13) suggests that zε ∼ qϕ∗

ε
(zε|x) is sampled from the cell-model posterior during training,

as opposed to the actual experiment simulation scenario when zε is sampled from the prior. It
is hypothesized that sampling zε from the posterior should benefit the training process, since it
would increase the likelihood of generated cell images. The auxiliary term 2Ax is maximized in
combination with the negative KL regularization term KL

(
qφf

(zf |p) || pθ∗
pr
(zf )

)
from the draft

topography-model objective (3.11). In this way, the posterior is forced to match the full prior
by default, allowing for all values of f in generated cell images during simulation. However,
the posterior would diverge from the full prior to cover only certain regions of the zf space,
corresponding to the induced cell feature values f , if the influence of topographies on this feature
is detected. Hence, the resulting training objective of the second step is formulated as (3.14).

max
φf

Eqϕ∗
ε
(zε|x)qφf

(zf |p) log pθ∗(x|zε, zf ) (3.13)
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F2Ax(x, p) = Eqϕ∗
ε
(zε|x)qφf

(zf |p) log pθ∗(x|zε, zf ) − βpf KL
(
qφf

(zf |p) || pθ∗
pr
(zf )

)
(3.14)

In the third step of the training procedure, the remaining components of the topography
model are trained: the encoder qφl

(lε|p) and the decoder pϑ(p|lε, zf ), while the weights of the
previously mentioned encoder qφ∗

f
(zf |p) are fixed. In this step, the topography model is trained

both for the task of topography reconstruction, to serve as a VAE for topographies, and for the task
of cell-conditioned topography design, which is the second main application of the combined model.
In the latter application, the pursued behavior of the model is inverse to experiment simulation:
given a cell image x, the cell-model encoder produces a posterior distribution qϕ∗

f
(zf |x), samples

from which are passed to the topography-model decoder pϑ(p|lε, zf ) along with arbitrary lε ∼ p(lε);
and the decoder produces topography images that could result in the given cell image.

The topography reconstruction objective is secured by the likelihood term in the initial object-
ive (3.11). Whereas to achieve the desired behavior with respect to cell-conditioned topography
generation, another likelihood-based auxiliary objective is introduced, 2B (3.15). Similarly to the
previous step, it is based on the idea that topographies generated based on a given cell image
should be similar to those from the training pairs. However, in contrast to the auxiliary term
2Ax, the residual latent variable of the topography model lε ∼ p(lε) is sampled from the prior
distribution during training; the motivation for that is discussed in a later section. Finally, the KL
term pertaining to the residual space lε from (3.11) is added in this step. The resulting training
objective is formulated in (3.16), where η regulates the importance of the auxiliary term.

max
ϑ

Ep(lε)qϕ∗
f
(zf |x) log pϑ(p|lε, zf ) (3.15)

Forig,2B(x, p) = Eqφl
(lε|p)qφ∗

f
(zf |p) log pϑ(p|lε, zf ) + η Ep(lε)qϕ∗

f
(zf |x) log pϑ(p|lε, zf )

− βl KL
(
qφl

(lε|p) || p(lε)
) (3.16)

3.3.1 Training procedure summary
The training procedure of the full model is formulated as follows:

1. All the components of the cell model are trained in the first step. It is done by maximizing
the objective F pr

1 (x, f) (3.17) with respect to all involved parameters: ϕε, ϕf , θ, θf , θpr. The
hyperparameters include βε, βf , βpr, αf . Subsequently, the weights of all the components of
the cell model are fixed (3.18), which is denoted by ∗ sign.

F pr
1 (x, f) = Eqϕε (zε|x)qϕf

(zf |x) log pθ(x|zε, zf ) − βε KL
(
qϕε

(zε|x) || p(zε)
)

− βf KL
(
qϕf

(zf |x) || pθf (zf |f)
)

− βpr KL
(
pθf (zf |f) || pθpr (zf )

)
+ αf Eqϕf

(zf |x) log qωf
(f |zf )

(3.17)

qϕ∗
f
(zf |x) qϕ∗

ε
(zε|x) pθ∗(x|zε, zf ) pθ∗

f
(zf |f) qω∗

f
(f |zf ) pθ∗

pr
(zf ) (3.18)

2. In the second step, the topography-model encoder qφf
(zf |p) corresponding to the shared

latent variable zf is trained by maximizing the objective F2Ax(x, p) (3.19) with respect to
parameters φf . The only hyperparameter in this step is βpf . Subsequently, the weights of
the encoder are fixed: qφ∗

f
(zf |p).

F2Ax(x, p) = Eqϕ∗
ε
(zε|x)qφf

(zf |p) log pθ∗(x|zε, zf ) − βpf KL
(
qφf

(zf |p) || pθ∗
pr
(zf )

)
(3.19)
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3. Finally, the remaining components of the topography model qφl
(lε|p), pϑ(p|lε, zf ) are trained

by maximizing the objective Forig,2B(x, p) (3.20) with respect to parameters φl, ϑ. The
hyperparameters include η, βl.

Forig,2B(x, p) = Eqφl
(lε|p)qφ∗

f
(zf |p) log pϑ(p|lε, zf ) + η Ep(lε)qϕ∗

f
(zf |x) log pϑ(p|lε, zf )

− βl KL
(
qφl

(lε|p) || p(lε)
) (3.20)

3.4 Reasoning behind the training objectives

Choosing a prior distribution for zf in the topography model

A conditional prior pθf (zf |f) in the cell model was used to help the model spread the means of
the posterior distributions in the latent space according to the values of the cell feature f , such
that distant regions of the latent space would correspond to high and low values of f respectively.
If, alternatively, a standard normal prior p(zf ) = N(0, I) was used, all zf points would be forced
to concentrate around a single origin (zero), which is unnecessary. However, using a conditional
prior in the topography model might not be as reasonable. The values of features f are defined
for cells, but not for topographies, and a single topography may correspond to cell images with
drastically different values of a given cell feature f in case there is no influence of topographies on
this feature. Consequently, minimization of a KL-divergence with a conditional prior (3.21) would
encourage the posterior qφf

(zf |p) to cover the whole latent space, which could include regions with
no support, if the shape of the marginal distribution pθf (zf ) is not controlled, as in the initial
cell-model objective (3.4), i.e. before the introduction of the full prior.

KL
(
qφf

(zf |p) || pθf (zf |f)
)

(3.21)

To illustrate the problem, consider the training data {pi, xi}ni=1 and suppose that some factor
of variation in topographies influences the cell feature f . Notably, a single topography pi may
correspond to a number of cells xi

j with the cell feature values f i
j . Suppose that the topography

pi from the training data is paired with a range of cells having high values f i
j . Then minimizing

the KL-divergence (3.21) will encourage the posterior qφf
(zf |pi) to cover all of the individual

conditional priors pθf (zf |f i
j) lying in the part of the latent space that corresponds to high values

of f . An illustration of this situation is provided in Figure 3.9. However, in the opposite case,
when there is no influence of topographies on the cell feature f , a full range of f values could be
observed for a single topography p, for instance, both high and low values of f . Then the encoder
would be prompted to produce a posterior distribution that covers distant regions of the marginal
distribution pθf (zf ), in which different conditional priors lie. As a result, since no constraints are
imposed on the marginal distribution pθf (zf ) in the current example, the posterior could overlap
with no-support regions of the latent space, as shown in Figure 3.10.

Figure 3.9: Minimizing (3.21) when p influ-
ences f .

Figure 3.10: Minimizing (3.21) when p does
not influence f .
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Hence, using a conditional prior pθf (zf |f) in the topography model is undesirable in case the
marginal distribution of zf is unknown and uncontrolled. In other words, either the marginal
distribution should be shaped to have a ’convex’ support to allow for the use of a conditional
prior in the topography model, or an alternative prior should be used, for example, the marginal
distribution pθf (zf ) itself. However, to use the marginal distribution pθf (zf ) itself as the prior
in the topography model, it needs to be at least calculated, as shown in (3.5), which involves
integrating over f values. To circumvent this, it was proposed to use the full prior distribution
pθpr (zf ) (3.6) in the cell-model training objective (3.7): as discussed above, the full prior pθpr (zf )
with learned variance parameters approximates the marginal distribution pθf (zf ) without calcu-
lating it directly and thus can be used as a prior distribution of zf in the topography model.
Furthermore, after imposing the full prior in the cell model, the marginal distribution pθf (zf ) is
expected to have a ’convex’ support of a normal distribution, which would eliminate the problem
of a conditional prior in the topography model outlined above. Now a posterior qφf

(zf |p) covering
any combination of conditional priors pθf (zf |f) as a result of minimizing (3.21) is expected to
stay inside the marginal distribution. Hence, once the full prior is introduced in the cell model, a
conditional prior pθf (zf |f) can also be used in the topography model. In this paper the decision
is to use the full prior pθpr (zf ) as the prior distribution for zf in the topography model, while the
term (3.21) is considered later from a different angle, as a distance-based auxiliary objective.

Enforcing a shared latent space

As mentioned above, it is important to ensure that zf represents the same latent variable in the
cell model and in the topography model, which can only be achieved with an auxiliary objective
or objectives that use the training pairs (pi, xi). Arguably, an auxiliary objective needs to be
determined based on the desired behavior of the model. Considering the first goal to encode the
influence of topographies on cells, the desired behavior is as follows: if topographies influence
the cell feature f , the topography encoder qφf

(zf |p) should map a topography pi inducing high
values of the cell feature f to a posterior distribution covering the region of the latent space zf
that corresponds to high values of f , and vice versa, as shown in Figure 3.11. In other words,
the posterior distribution qφf

(zf |pi) should overlap with the posterior distribution qϕ∗
f
(zf |xi) and

with a conditional prior pθ∗
f
(zf |f i), where (pi, xi) is a training pair, and f i is the cell feature

value for xi. As a result, by sampling zf ∼ qφf
(zf |pi) from the topography-model posterior and

zε ∼ p(zε) from the cell-model prior, the cell-model decoder pθ∗(x|zε, zf ) would be able to generate
cell images with high values of the cell feature f .

In the opposite case, when topographies do not influence the cell feature f , the model should
reflect the fact that all feature values are possible for a given topography. In terms of the latent
representation, the posterior distribution qφf

(zf |pi) for a given topography pi should match the
marginal distribution of zf , which is approximated by pθ∗

pr
(zf ) (3.9). Accordingly, by sampling

zf ∼ qφf
(zf |pi) ≈ pθ∗

pr
(zf ) and zε ∼ p(zε), the cell-model decoder would be able to generate cell

images with any value of f . An illustration for this case is provided in Figure 3.12.

Figure 3.11: Desired behavior: p influences f . Figure 3.12: Desired behavior: p does not in-
fluence f .
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The second goal is to capture the irrelevant for the cell response factors of variation by the
latent variable lε. The problem arises from the fact that both encoders qφε(lε|p) and qφf

(zf |p) are
not supervised in capturing the "informative" or the "residual" factors of variation in the initial
objective (3.11). Furthermore, the decoder pϑ(p|lε, zf ) has no mechanism to discern between
the two latent variables zf , lε. A disentangled latent representation of topographies is important,
however, since the task of reconstructing a topography image given a topography image, as pursued
by the training objective F2(p) (3.11), is not of primary concern for the topography model. Rather,
its main application is to generate topographies that could lead to a given a cell image, which is
relevant for in silico topography design (3.5). Consider the desired behavior of the model with
respect to topography image generation. In the case when topographies influence the cell feature
f , the informative and uninformative for the cell feature f factors of variation in topographies
are encoded by zf and lε respectively. Suppose a cell image xi with a high value f i is given.
Consequently, by sampling zf ∼ qϕ∗

f
(zf |xi) from the cell-model posterior, or zf ∼ pθ∗

f
(zf |f i) from

the cell-model conditional prior, and by sampling lε ∼ p(lε) from the topography-model prior,
the topography-model decoder pϑ(p|lε, zf ) should be able to generate different topography images
that share in common the factor that leads to high values of f .

Conversely, in the case when topographies do not influence the cell feature f , the latent variable
lε should encode all factors of variation in topographies, such that by sampling zf ∼ qϕ∗

f
(zf |xi), or

zf ∼ pθ∗
f
(zf |f i), and lε ∼ p(lε) the topography-model decoder is able to generate topographies that

vary in all factors of variation observed in topography images. Notably, in the task of topography
generation given a cell image, irrespective of whether topographies influence cell behavior, it is not
expected that qϕ∗

f
(zf |xi) ≈ pθ∗

pr
(zf ), since the cell model is trained in advance independently of the

topography model, and its weights are fixed. The distribution of zf is likely to be highly structured
according to values of f , and the posteriors qϕ∗

f
(zf |xi) are expected to deviate significantly from

the marginal distribution, as shown in both Figures 3.11, 3.12. Therefore, it is the task of the
topography-model decoder pϑ(p|lε, zf ) to learn to ignore the latent variable zf in case of no
influence of topographies on f .

In fact, the first goal of encoding the influence of topographies on cells pertains only to training
of the encoder qφf

(zf |p). Whereas the second goal of learning to generate topographies conditioned
on cell images is only affected by the decoder pϑ(p|lε, zf ) and by the second encoder qφε(lε|p), which
should learn the residual variation in topographies that is deemed uninformative for cell response
f by the first encoder qφf

(zf |p). Clearly, different auxiliary objectives are needed to invoke the
desired behavior of the model with respect to these goals.

Distance-based auxiliary objectives

Two perspectives on forcing the qφf
(zf |p) to learn the influence of topographies on cells can be

considered. The first perspective is to minimize some distance measure D, e.g. KL-divergence,
between the two posteriors, qφf

(zf |p) and qϕ∗
f
(zf |x) (3.22) with respect to parameters of the

former, which can be implemented by including the negative D term in the original training
objective F2(p) (3.11). An illustration of the idea behind this approach is provided in Figure 3.13.
This perspective is directly motivated by the desired behavior of the model, described above: the
encoder qφf

(zf |p) would be forced to discern between topographies on the basis of their impact
on f , if the topographies in fact influence cells based on data. Similarly, the distance between the
topography-model posterior qφf

(zf |p) and the cell-model conditional prior pθ∗
f
(zf |f) (3.23) can be

minimized, which has the same motivation, as shown in Figure 3.14. Incidentally, an example of
the latter objective is using a conditional prior in the topography model (3.21) instead of the full
prior, as discussed previously, where the KL-divergence is used as a measure of distance between
two distributions.

qφf
(zf |p) ≈ qϕ∗

f
(zf |x) → min

φf

D(qφf
(zf |p), qϕ∗

f
(zf |x)) (3.22)
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qφf
(zf |p) ≈ pθ∗

f
(zf |f) → min

φf

D(qφf
(zf |p), pθ∗

f
(zf |f)) (3.23)

Figure 3.13: Distance-based auxiliary object-
ive (1A).

Figure 3.14: Distance-based auxiliary object-
ive (1B).

Although intuitive, both auxiliary objectives (3.22) (3.23) could have a negative implication for
the training process. The original training objective (3.11) of the topography model includes the
term KL

(
qφf

(zf |p) || pθ∗
pr
(zf )

)
that forces the posterior to be close to the full prior, which is an

approximate marginal distribution of zf learned during training of the cell model. The KL-term
would be in conflict with any of the proposed above auxiliary objectives, since together, original
and auxiliary, they would restrict the same posterior distribution qφf

(zf |p) in a contradictory way.
At the same time, if the KL-term is substituted with one of the auxiliary objectives, the model
would no longer be instructed explicitly that by default all cell feature values f are possible for a
given topography, unless the correlation between topographies and the cell feature f is found. In
other words, the posterior distribution qφf

(zf |p) should by default match the full prior pθ∗
pr
(zf ), as

shown in Figure 3.12, unless the influence of topographies on f is detected. An auxiliary objective
KL

(
qφf

(zf |p) || qϕ∗
f
(zf |x)

)
(3.22) or KL

(
qφf

(zf |p) || pθ∗
f
(zf |f)

)
(3.23) used as a substitute would

transfer the same idea to the model in an implicit way: if the distance between distributions cannot
be minimized, the posterior qφf

(zf |p) is likely to be wide, as shown in Figure 3.15. However, the
posterior would not be instructed explicitly to match the full prior pθ∗

pr
(zf ) in that case. As a

result, the cell-model decoder pθ∗(x|zε, zf ) would potentially be unable to generate cells with a
full range of f values by sampling zf ∼ qφf

(zf |p).

Figure 3.15: Distance-based auxiliary objective (1A): no influence case.

Likelihood-based auxiliary objectives

Suppose that KL
(
qφf

(zf |p) || pθ∗
pr
(zf )

)
term in the original training objective of the topography

model (3.11) remains to enforce the full prior pθ∗
pr
(zf ) as the default output of the encoder. How-

ever, it is still necessary to encourage the encoder qφf
(zf |p) to capture the influence of topographies

on cells. An alternative view on the problem is that the encoder should operate in a way that
maximizes the likelihood of the cell images from the dataset. The idea is that a cell image x̂i

generated by the cell-model decoder pθ∗(x|zε, zf ) when provided with a sample zf ∼ qφf
(zf |pi)

from the topography-conditioned posterior should be similar to the original cell image xi from a
training pair (pi, xi) with respect to affected cell features f . An illustration of that perspective is
shown in Figure 3.16. Maximizing this auxiliary objective (3.24) in combination with the negative
KL-term in (3.11) encourages exactly the desired behavior of the topography-model encoder: the
KL-term forces the posterior qφf

(zf |p) to match the full prior pθ∗
pr
(zf ) by default, however, the
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posterior is allowed to deviate from the full prior in a way that increases the likelihood of the
simulated cell images.

max
φf

Ep(zε)qφf
(zf |p) log pθ∗(x|zε, zf ) (3.24)

Figure 3.16: Likelihood-based auxiliary ob-
jective (2A).

Figure 3.17: Likelihood-based auxiliary ob-
jective (2B).

A similar likelihood-based auxiliary objective can be derived to address the second challenge of
disentanglement of the topography-model latent space, as illustrated in Figure 3.17 and formulated
in (3.25). The idea of this objective is inverse to (3.24): by sampling zf ∼ qϕ∗

f
(zf |xi) from the

cell-model posterior corresponding to a cell image xi, the topography model decoder pϑ(p|lε, zf )
aims improve the similarity of generated topographies to the topography pi from the training pair
(pi, xi) with respect to those factors of variation in topographies that led to the cell response f .
To do that, the topography-model decoder pϑ(p|lε, zf ) aims to utilize the information about the
inferred cell response encoded in zf ∼ qϕ∗

f
(zf |xi), while at the same time combining zf with an

arbitrary sample lε ∼ p(lε) from the prior, since the goal is to generate different topographies that
could have led to a given cell image, which share in common only the factors that invoked certain
cell response f . It should be mentioned that the conditional prior pθ∗

f
(zf |f) can be used instead

of the posterior qϕ∗
f
(zf |x) in the auxiliary objective 2B (3.25) with a similar motivation, however

it does not provide any hypothetical benefits as compared with the proposed auxiliary objective.

max
ϑ

Ep(lε)qϕ∗
f
(zf |x) log pϑ(p|lε, zf ) (3.25)

Noteworthy, the likelihood term from the original training objective (3.11), provided below
in (3.26), and both likelihood-based auxiliary objectives (3.24) (3.25) are not mutually exclusive
or redundant. The goal of the term from the original objective (3.26) is to train both encoders
qφl

(lε|p), qφf
(zf |p) and the decoder pϑ(p|lε, zf ) to reconstruct a topography image irregardless of

the connection between the datasets P and X, i.e. it makes no distinction between the latent
variables zf and lε. The auxiliary objective 2A (3.24) aims to train only the encoder qφf

(zf |p),
since the weights of the cell-model decoder pθ∗(x|zε, zf ) are fixed. Its goal is to force the encoder
to learn the influence of topographies on cell images via the latent variable zf corresponding to
a cell feature f . Whereas the auxiliary objective 2B (3.25) aims to train the decoder pϑ(p|lε, zf );
it forces the decoder to extract information from the latent variable zf , sampled from the cell-
model posterior qϕ∗

f
(zf |x), that can be useful in generating topographies associated with a given

cell response. Furthermore, the combination of the two auxiliary objectives 2A (3.24), 2B (3.25)
cannot substitute the original likelihood-term (3.26), since only in it the residual encoder qφl

(lε|p)
is trained.

max
φf ,φl,ϑ

Eqφl
(lε|p)qφf

(zf |p) log pϑ(p|lε, zf ) (3.26)

26 Simulation of biomaterials research experiments with generative models



CHAPTER 3. METHOD 3.4. REASONING BEHIND THE TRAINING OBJECTIVES

Alternative training schemes for the likelihood-based auxiliary objectives

Once all the training objectives are defined, the training procedure of the topography model is
to be discussed, a summary of which is provided in the section (3.3.1). It is proposed to train
the encoder qφf

(zf |p) prior to training of the other two components of the topography model:
the encoder qφl

(lε|p), and the decoder pϑ(p|lε, zf ). The idea behind this decision is that the goal
of the encoder qφf

(zf |p) is to only capture the information about topographies pi that improves
the knowledge of which cell images xi could be observed in response. Whereas the uninformative
for cell response f variation in topographies, but necessary for topography generation, should be
captured by the latent variable lε as a residual. It is not desired to train the encoder qφf

(zf |p) in the
tasks of topography reconstruction (3.26) and topography generation for a given cell image (3.25).
In fact, qφf

(zf |p) is only intended to be trained in the task of cell image generation conditioned on
a topography, i.e. simulation of the experiment. To enforce the desired behavior of the encoder,
the following maximization objective is formulated (3.27). Importantly, the KL-term from the
original objective (3.11) imposing the full prior pθ∗

pr
(zf ) as the ’default’ posterior distribution is

introduced specifically in this step, since it only affects the encoder under consideration.

F2A(x, p) = Ep(zε)qφf
(zf |p) log pθ∗(x|zε, zf ) − βpf KL

(
qφf

(zf |p) || pθ∗
pr
(zf )

)
(3.27)

It should be mentioned that training of the encoder qφf
(zf |p) using the proposed objective

(3.27) involves a decision that has not been discussed. In the current setting the prior distribution
p(zε) is used to sample zε for cell image generation. However, an alternative approach would be
to sample zε ∼ qϕ∗

ε
(zε|x) from the cell-model posterior. The two alternative training schemes are

illustrated in Figures 3.18, 3.19, where the trained encoder is shown in red.

Figure 3.18: Conditional cell image generation
objective (2A): sample from p(zε).

Figure 3.19: Conditional cell image generation
objective (2Ax): sample from qϕ∗

ε
(zε|x).

Arguably, since the weights of the cell-model encoder qϕ∗
ε
(zε|x) and of the cell-model decoder

pθ∗(x|zε, zf ) are fixed, sampling from the posterior qϕ∗
ε
(zε|x) would not affect the flow of gradients

of the objective with respect to the weights of the target encoder qφf
(zf |p) and, thus, cannot

compromise the training process. At the same time sampling zε ∼ qϕ∗
ε
(zε|x) from the posterior

would increase the likelihood of the generated cell images, since the latent variable zε encodes
additional "noise" variation in cell images. For instance, zε could encode information about cell
orientation. Then, the generated samples would have the same orientation as the cell image from
the training pair (pi, xi). On the contrary, when sampling from the prior p(zε) the cell-model
decoder would generate cell images with arbitrary orientation, which would negatively affect the
likelihood of such images, even if the encoder qφf

(zf |p) transfers the information about the induced
cell feature value f through zf successfully. Therefore, the previously proposed objective (3.27)
is modified, such that the prior distribution p(zε) is substituted for qϕ∗

ε
(zε|x), as shown in (3.28).

After optimization of the current objective, the weights of the encoder are fixed: qφ∗
f
(zf |p).
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F2Ax(x, p) = Eqϕ∗
ε
(zε|x)qφf

(zf |p) log pθ∗(x|zε, zf ) − βpf KL
(
qφf

(zf |p) || pθ∗
pr
(zf )

)
(3.28)

Further, given that the encoder qφ∗
f
(zf |p) is trained as a result of maximizing the objective

(3.28) and its weights are fixed, it remains to train the second encoder qφl
(lε|p) and the decoder

pϑ(p|lε, zf ) using the two previously introduced objectives: original (3.26), and auxiliary 2B (3.25).
As discussed above, the original objective (3.26) pertains to the task of topography reconstruction
and aims to train both the encoder qφl

(lε|p) and the decoder pϑ(p|lε, zf ). Whereas the auxiliary
objective 2B (3.25) addresses the task of topography generation for a given cell image and, in the
provided formulation, aims to train only the decoder. However, the objective 2B can be potentially
modified similarly to the objective 2A (3.25), such that lε would be sampled from the posterior
qφl

(lε|p) instead of the prior p(lε). As a result, both pϑ(p|lε, zf ) and qφl
(lε|p) would be involved in

the training process. Therefore, the remaining questions are 1. whether the two objectives (3.26),
2B (3.25) should be trained in combination or consecutively, and 2. whether lε in the auxiliary
objective should be sampled from p(lε) (2B, Figure 3.20), or from qφl

(lε|p) (2Bp, Figure 3.21).
These issues are discussed in the following paragraph.

Figure 3.20: Conditional topography genera-
tion objective (2B): lε ∼ p(lε).

Figure 3.21: Conditional topography genera-
tion objective (2Bp): lε ∼ qφl

(lε|p).

Consider the case when the two objectives (3.26), 2B (3.25) are trained consecutively with the
intention to fix the weights of either the encoder qφl

(lε|p) or the decoder pϑ(p|lε, zf ) after the first
step. Suppose that the original objective (3.26) is trained first and consider its training scheme,
as shown in Figure 3.22. In this case the task is only to maximize the reconstruction quality for
a given topography. Since the fixed encoder qφ∗

f
(zf |p) captures only the information related to

cell response, the second encoder qφl
(lε|p) is likely to learn to extract all the information about

a given topography in order to increase the likelihood, unless lε is heavily restricted in capacity.
Accordingly, the decoder is likely to ignore the latent variable zf , while paying attention only to
lε, which would result in a plain VAE model. Alternatively, suppose that 2B (3.25) is trained first
and consider its training scheme, as shown in Figure 3.20. This objective is aimed to only train
the decoder pϑ(p|lε, zf ) with the intention to fix its weights later. Since lε is sampled from the
prior p(lε), it would not carry any information about topographies, and the decoder is likely to
ignore it. Therefore, it would be impossible to subsequently train the encoder qφl

(lε|p) with the
fixed decoder. Hence, the training the objectives (3.26), 2B (3.25) consecutively in any order is
not expected to result in the desired behavior of the model.
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Figure 3.22: Topography reconstruction objective with fixed weights of the encoder qφ∗
f
(zf |p).

To circumvent the problem that only the decoder is trained by the auxiliary objective 2B
(3.25), the modified objective 2Bp can be considered, where lε is sampled from the posterior
qφl

(lε|p) instead of the prior p(lε), as reflected by the training scheme in Figure 3.21. Suppose
that the modified objective 2Bp is trained first. Then the situation would be equivalent from
the training perspective to optimizing the original objective, as shown in Figure 3.22, and would
again result in a plain VAE with lε capturing all the information about topographies. Hence, it is
concluded that 1. the objectives (3.26) and 2B (or 2Bp) should not be trained consecutively, and
2. sampling from the posterior qφl

(lε|p) (2Bp) distribution instead of the prior p(lε) (2B) devalues
the utility of the auxiliary objective.

Based on the provided reasoning, it is proposed to train the model for the tasks of topography
reconstruction (Figure 3.22) and conditional topography generation (Figure 3.20) in a single train-
ing objective, as formulated in (3.29) below, simultaneously training the decoder pϑ(p|lε, zf ) and
the encoder qφl

(lε|p). The goal of the model at this step is to find a balance between the quality
of topography reconstruction and the ability to capture the cell-topography relationship. The first
term aims only to reconstruct a given topography image based on its latent representation (lε, zf ),
while the second term forces the decoder to utilize the information about the induced cell feature
values, captured by zf . Thereby, the second term can be seen as a regularization that restricts
the model from developing a plain VAE model, in case topographies influence the cell response
based on data. To control the balance between the terms, the hyperparameter η is introduced.
Furthermore, the KL-term related to the latent variable lε from the original objective (3.11) is
added at this step.

Forig,2B(x, p) =

Topography reconstruction︷ ︸︸ ︷
Eqφl

(lε|p)qφ∗
f
(zf |p) log pϑ(p|lε, zf ) + η

Conditional topography generation︷ ︸︸ ︷
Ep(lε)qϕ∗

f
(zf |x) log pϑ(p|lε, zf )

− βl KL
(
qφl

(lε|p) || p(lε)
) (3.29)

3.5 Application scenarios

The key application scenarios of the introduced model include 1. simulation of the cell-surface
topography experiment (in silico experiment) and 2. in silico topography design. Simulation of
the experiment implies generating different cell images x that could be observed according to the
model on a given surface topography p, represented by an image. Whereas in silico topography
design is the inverse task, when different topographies p should be generated that could potentially
lead to a given (desired) cell response. In the second scenario, the cell response can be expressed
either as a cell image x, or as a value of the cell feature of interest f .
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1. In silico experiment.

To generate cell images x for a given topography p, the topography is firstly processed with the
topography-model encoder qφ∗

f
(zf |p), which outputs the parameters of the posterior distribution in

the Zf latent subspace. Secondly, samples zf ∼ qφ∗
f
(zf |p) from the posterior and zε ∼ p(zε) from

the cell-model prior are passed on to the cell-model decoder pθ∗(x|zε, zf ), which maps them to a
distribution, or a ’region’, in the space of cell images p(x|z), as shown in Figure 3.23. Typically,
a single cell image is generated from the decoder’s output. In order to generate visually different
cell images, which share in common the characteristics induced by a given topography, additional
samples zf , zε should be taken and processed with the decoder.

2.1. In silico topography design.

To generate topography images p for a given cell image x, the model is exploited in the opposite
direction, as demonstrated in Figure 3.24. The cell image x is mapped by the encoder qϕ∗

f
(zf |x)

to a posterior distribution of zf . Subsequently, samples zf ∼ qϕ∗
f
(zf |x) from the posterior and

lε ∼ p(lε) from the topography-model prior are used by the topography-model decoder pϑ∗(p|lε, zf )
to produce a topography image. Similarly to the first application scenario, to obtain visually
different topographies that could lead to a given cell response, different samples zf , lε are taken.

2.2. In silico topography design based on a cell feature value.

As an extension to the previous application scenario, the model can take a value of the cell feature
f , as a representation of the cell response (Figure 3.25). In this case, samples zf ∼ pθ∗

f
(zf |f) from

the conditional prior are used by the decoder. Notably, in the presence of multiple cell features,
zf for irrelevant cell features is sampled from the full prior distribution pθ∗

pr
(zf ).

(*) Predicting cell feature distribution based on a topography.

It should be noted that the proposed model also allows for the base application scenario, considered
in the literature, where the value of a cell feature is predicted based on a topography. To achieve
this, samples zf ∼ qφ∗

f
(zf |p) from the posterior distribution, corresponding to a given topography

p, are passed to the auxiliary regressor (or classifier) qωf
(f |zf ). Furthermore, by sampling zf

many times, it is possible to derive a distribution over f values, which allows to evaluate the level
of uncertainty of the model regarding the predicted (expected) f value for a given topography p.

Figure 3.23: Model: in silico experiment.
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Figure 3.24: Model: in silico topography design.

Figure 3.25: Model: in silico topography design given f .

Simulation of biomaterials research experiments with generative models 31



Chapter 4

Data
In this chapter two datasets are described, on which the proposed approach was tested. The first
dataset, ToyCell, is a synthetic dataset created as part of the present work. It consists of arti-
ficial cell-resembling images and artificial topography-resembling images, all with 128*128 pixel
resolution and three color channels. The ALP screening dataset [20] [55] is a real-world data-
set containing images of human mesenchymal stem cells (hMSCs) and images of algorithmically
generated topographies, produced on a TopoChip [50], to which the cells were exposed. The pre-
processed images of both topographies and individual cells in the ALP screening dataset have
64*64 pixel resolution and three color channels.

4.1 ToyCell synthetic dataset

The ToyCell dataset comprises 50,000 synthetic images of cells and 50,000 synthetic images of
topographies. Examples of cell and topography images are provided in Figures 4.1, 4.2 respectively.

Figure 4.1: ToyCell dataset: cell image examples

Figure 4.2: ToyCell dataset: topography image examples

A synthetic cell image contains an outer blue shape intended to represent a cell cytoskeleton,
and an inner orange shape that represents cell nucleus. A cell image is defined by four features:
roundness (f1), elongation (f2), nucleus size (f3) and rotation angle (f4). The contour of the
cytoskeleton is defined by the formula (4.1), and the cell nucleus is a circle defined using the
formula (4.2). A cell image generated for given values of f1, f2, f3 is rotated counterclock-wise
from the vertical position by f4 degrees. At creation all features were randomly drawn from the
respective uniform distributions with ranges as shown in Table 4.1. Notably, the parameter k in
the nucleus size range approximately equals the maximum possible radius of the nucleus circle,
such that it remains inside the cytoskeleton shape and depends on the minimum roundness value1.

y = ± f2
∣∣1− xf1

∣∣1/f1 , x ∈ [−1, 1] (4.1)

y = ±
(
f3

2 − x2
)1/2

, x ∈ [−f3, f3], f3 < 1 (4.2)

1kmax = max
x

√
2x2 s.t. (2xf1 )1/f1 ≤ 1 ⇒ kmax = 2

1
2
− 1

f1 ≈ 0.354 for f1 = 0.5
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Variable Range
Roundness (f1) [0.5, 2]
Elongation (f2) [1, 5]
Nucleus size (f3) [0.4k, 0.9k], k=0.35
Rotation angle (f4) [0, 179] degrees

Table 4.1: ToyCell dataset: ranges of the cell image design parameters.

According to the proposed approach described in Chapter 3 a cell image originates from a com-
bination of visually discernable, measurable and independent cell features and residual variation,
and topographies may influence cells through these features. For the synthetic dataset the first
three features f1, f2, f3 are chosen to be the cell features of interest, while the rotation angle f4
is assumed to be an irrelevant noise feature. Furthermore, at creation of the dataset the colors of
the cytoskeleton, nucleus and the background color are slightly randomized and a Gaussian filter
(σ = 0.6) is applied to images to add noise variation. The contribution of each of the features to
the resulting cell image is visualized in Figure 4.3, such that each feature is increased from the
minimum to the maximum value from left to right in the corresponding row, while the rest of the
features are taken at random.

Figure 4.3: ToyCell dataset: cells

A topography image contains nine identical shapes placed in a grid, and only two parameters
define a singe topography image: roundness (g1) and radius (g2), which are implemented in a sim-
ilar way to cell images. The contribution of topography features g1, g2 to the resulting topography
image is visualized in Figure 4.4.

Figure 4.4: ToyCell dataset: topographies
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The ranges of the uniform distributions used to generate feature values of the topography
images are presented in Table 4.2. Similarly to cell images, the background color and the color
of the topography shape are slightly randomized, and a Gaussian filter (σ = 0.6) is applied to
images.

Variable Range
Roundness (g1) [0.5, 2]
Radius (g2) [0.2, 0.9]

Table 4.2: ToyCell dataset: ranges of the topography image design parameters.

4.1.1 Artificial relationship between topographies and cells.

Both cell and topography images, generated as described above, are initially not related. Therefore,
to verify the proposed approach it is necessary to establish some artificial relationship between
topography images and cell images and subsequently unravel this relationship using the model.
Importantly, to be compatible with the proposed approach, an artificial relationship should imply
that topographies influence one or several of the cell features of interest: roundness (f1), elongation
(f2) and nucleus size (f3). Accordingly, in this paper it is assumed that the radius of a topography
(g2) positively influences the elongation of a cell (f2).

In order to create artificial training pairs (topography image, cell image) with positive correla-
tion between g2 and f2, the following procedure is used. Firstly, the topography image data table
is sorted by g2 in ascending order, and the cell image data table is sorted by f2 in ascending order;
both tables have size 50,000, equal to the number of images in each dataset. Secondly, a sliding
window having width2 w = 1000 and step 1 is propagated through both tables in parallel. At each
position, a single row index inside the sliding window is taken at random independently for each
of the tables, and the two selected rows form a training pair. An illustration of this procedure is
provided in Figure 4.5. As a result, the training data table consists of 50,000 rows, where each
row contains values of all features f1, f2, f3, f4, g1, g2 and image file names. Examples of training
pairs are shown in Figure 4.6.

Figure 4.5: Creating artificial training pairs
{pi, xi}.

Figure 4.6: Artificial relationship: examples
of training pairs.

Additionally, a control-case training data table was created by randomly matching images of
topographies and cells. The relationship between g2 and f2 in the main and control training data
tables is shown in Figures 4.7, 4.8 respectively.

2The width w of the sliding window regulates the variance of the dependency.
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Figure 4.7: Relationship between g2 and f2 in
the main training data table.

Figure 4.8: Relationship between g2 and f2 in
the control training data table.

4.2 ALP screening real dataset

The ALP screening dataset [20] [55] contains images of individual human mesenchymal stem cells
(hMSCs) exposed to a library of surface topographies produced on a TopoChip [50] and images of
topographical features (Figure 2.1) corresponding to these topographies (Figure 2.2). The dataset
comprises 38,051 unique cell images captured on 2147 unique topographies out of 2177 in the initial
library. The discrepancy in the size of the cell and topography image datasets is explained by the
fact that a single topography is duplicated on a chip, and a single instance of a surface topography
on a chip yields a median number of 8 cell images. Notably, only the cytoskeleton layer of cell
images was used in the present work, i.e. cropped cell images have single color channel (intensity).
Examples of cell images taken as a basis in further preprocessing are provided in Figure 4.9.

Figure 4.9: Original cropped cell images: examples.

The original cropped cell images have different size, however the relative size is preserved. To
preprocess the data, cell images were centered in a square with side length equal to the longest
dimension of a cell image in the dataset. Subsequently, single-channel cell images were colored
for visualization purposes. Notably, two variants of cell image representation were considered:
intensity information-preserving and binary, as shown in Figure 4.10; the binary version was
chosen as less complex for a model. Finally, the images were resized to 64*64 pixels.

Figure 4.10: ALP screening dataset after preprocessing: cell images examples. Top row: centered
and colored with intensity information preserved. Bottom row: centered, converted to binary
images and colored (chosen).
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Cell images are described by a set of numerical features extracted by CellProfiler [50] software
from raw screening images. These include Area, Eccentricity, Solidity, Perimeter, Compactness,
Euler Number, Extent, Form Factor, Orientation, Major Axis Length, Minor Axis Length and
other features, all defined in [21]. Notably, these features are correlated, therefore they cannot be
used all at the same time to represent independent zf subspaces. A visualization of the dataset
with respect to several evident features is provided below in Figure 4.11. In the present work only
the Area feature is considered to be a cell feature of interest, hence a single zf latent variable
corresponds to Area, while all the residual variation is to be captured by zε.

Figure 4.11: ALP screening dataset: cell images by features.

Topography images were created based on the images of topographical features. Topographical
features have three size categories: 100*100 µm (micrometers), 200*200 µm and 280*280 µm. A
single surface topography has a size of 2800*2800 µm and is formed by repetition of topographical
features in a grid: 28 by 28 for features of size 100*100 µm, 14 by 14 for features of size 200*200
µm, and 10 by 10 for features of size 280*280 µm. Since quarters of a full topography image
are identical, they can be used to represent topography images instead of full topography images.
Examples of quarter-topography images for different size categories are provided in Figure 4.12 in
the bottom row using the same color scheme as for cell images.

Figure 4.12: Creating topography images: ex-
amples for different size categories of topo-
graphical features.

Figure 4.13: Topography representation vari-
ants: 1-corner (by the largest-size topograph-
ical feature), 4-corner, 1-center, etc.
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In comparison to the synthetic dataset, individual topographical features are poorly visible in
an image representing a quarter of a single topography, and especially this holds for the smallest-
size 100*100 µm features. To emphasize the design properties of topographical features defining
a topography it could be useful to zoom in the topography images. However, the information
about the space forming on a topography between the repeated instances of a topographical
feature might be useful for the model as well, and therefore images with only one instance of a
topographical feature (middle row in Figure 4.12) are likely not suitable. A number of alternative
representations can be considered, such as those shown in Figure 4.13. Importantly, the relative
size of topographical features should be preserved in order for a model to distinguish between the
size categories. Therefore, different number of topographical feature instances for different size
categories would be seen in any relative size-preserving representation, and possibly non-integer
quantity. For example, in "4-corner" representation (middle row in Figure 4.13), the left upper
corner of a topography, corresponding to 560*560 µm is taken, such that only four largest-size
topographical features are visible, while more topographical feature instances of other sizes are
seen on a same-size part of a topography, some of which are seen partially. In the present work,
the "4-corner" representation is chosen as the default one.

Topographies are described by a set of numerical features, which are defined in [21] along
with cell features. A total number of 38 features are available in the ALP screening dataset.
Many of these features are poorly interpretable visually, however, a few can be visualized in the
same manner as cell images above. In Figure 4.14 7 features describe the variation in topography
images. ’FeatSize’ corresponds to the size category of a topographical feature. The features ’LA’,
’CA’, ’TA’ represent the total area occupied by line, circle and triangle primitive shapes relative
to the total area of a topographical feature, respectively. Similarly, the features ’DL’, ’DC’, ’DT’
represent the number of such primitive shapes relative to the total area of a topographical feature.

Figure 4.14: ALP screening dataset: topography images by features.

Simulation of biomaterials research experiments with generative models 37



Chapter 5

Experiments and results
In this chapter the experimental results on both datasets are reported. All three steps of the
proposed approach, as described in the training procedure summary 3.3.1, are followed successively,
and the respective results are provided. Furthermore, the model is tested in application scenarios,
as described in 3.5. The architectural choices for both models and the details of the training
procedure are provided in Appendix A.

5.1 Experiments on the ToyCell dataset

In the first step, the goal is to derive a disentangled latent representation of cell images, such
that three independent latent subspaces zfi correspond to the cell features of interest: zf1 for
roundness (f1), zf2 for elongation (f2) and zf3 for nucleus size (f3), while the noise subspace zε
should capture the residual variation in cell images, mostly explained by rotation angle (f4). In the
second step, the goal is to train the topography-model encoders qφf

(zf |p), which should unravel
the artificial positive relationship between the topography radius (g2) feature and cell elongation
(f2). Finally, in the third step the goal is to learn the remaining components of the topography
model to allow for topography reconstruction and for conditional topography generation given a
cell image.

5.1.1 Disentangled latent representation of synthetic cell images

In the synthetic case the number and the dimensionality of the true generative factors of synthetic
cell images are known exactly: cell images are explained by four 1-dimensional generative factors
f1, f2, f3, f4 and some negligible variation in colors. Given that fact, the dimensionality of the
latent subspaces was chosen a priori and set to 2 for each of the subspaces zf1 , zf2 , zf3 , zε. The
motivation for such a choice is as follows. For the residual latent subspace zε the dimensionality of
at least 2 is necessary since cell images cannot be ordered linearly by the values of the rotation angle
feature f4

1. The problem arises from the fact that a cell image rotated by 90◦ differs more from
the original vertically-aligned cell image (0◦ rotation angle), than a cell rotated by 179◦, which,
conversely, almost matches the original image. Therefore, the model needs at least one additional
dimension to create a non-linear manifold in the latent space, where similarly rotated cell images
are close. Regarding the main latent subspaces zfi the dimensionality of 1 would suffice to represent
variation of 1-dimensional features, however dim(zfi) = 2 was chosen for visualization convenience.
It is expected, however, that the model would use only a single dimension to order the centers of the
inferred distribution qϕf

(zf |x), pθf (zf |f). Hence, dim(zf1) = dim(zf2) = dim(zf3) = dim(zε) = 2.

The hyperparameters in the first step include βε, βfi , βpr,i, αfi (i = 1, 2, 3), all of which except
for βε pertain to the cell features of interest f1, f2, f3 and their respective latent subspaces zfi .
The values of these hyperparameters were selected based on the quantitative and qualitative
properties of the latent subspaces zf1 , zf2 , zf3 , inferred as a result of optimization of a part of the
first-step objective F pr

1 (x, f) (3.17) that relates to the cell features-related components: qϕf
(zf |x),

pθf (zf |f), pθpr (zf ), qωf
(f |zf ). The maximization objective used, separate for each cell feature, is

provided below in (5.1). In fact, it is a regression objective aiming to predict f based on a sample
zf ∼ qϕf

(zf |x) from the posterior distribution for a cell image x, but with a regularization forcing,
firstly, the posterior to be close to the conditional prior qϕf

(zf |x) ≈ pθf (zf |f) and, secondly,
the combined posterior to have a normal distribution pθpr (zf ) with a trainable relative variance,
i.e.

∑
j(σθpr )

2
j = 1. Notably, the first term in (5.1) stands for regression performance and is

1This problem is referred to as "manifold mismatch" in [42]
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implemented as the mean squared error (MSE) between the actual and predicted f values, hence
it is minimized.

αf Eqϕf
(zf |x) log qωf

(f |zf )− βf KL
(
qϕf

(zf |x) || pθf (zf |f)
)

− βpr KL
(
pθf (zf |f) || pθpr (zf )

) (5.1)

The results for different combinations of βf , βpr, αf on the validation set are provided be-
low in Table 5.1 for a single feature - roundness (f1). In the table KL stands for the average
KL

(
qϕf

(zf |x) || pθf (zf |f)
)
, and KLfull stands for the average KL

(
pθf (zf |f) || pθpr (zf )

)
. The

regression performance is denoted by MSEqzf , while MSEpzf stands for performance of an auxil-
iary regression, where zf ∼ pθf (zf |f) is sampled from the conditional prior. The latter regression
is not directly optimized, however the discrepancy in performance between the main MSEqzf and
auxiliary MSEpzf regression objectives reflects how weak the level of pressure imposed by βf is.
Furthermore, MSEpzf characterizes how well the latent space is structured by the values of f ,
i.e. how far apart the conditional priors for different f values lie in the latent space, which is
important for diversity of generated cell images for different given f values. The combinations of
hyperparameters were compared after 40 epochs of training with the learning rate 0.01.

Feature βfβfβf βprβprβpr αfαfαf Epoch KL KLfull MSEqzf (MSEpzf )
f1 1 1 10K 40 0.929 0.458 5.569 * 10−5 72.72 * 10−5

f1 1 1 100K 40 1.938 0.556 0.923 * 10−5 59.79 * 10−5

f1 5 1 100K 40 0.451 1.770 2.760 * 10−5 9.684 * 10−5

f1 10 1 100K 40 0.218 1.953 4.308 * 10−5 8.324 * 10−5

f1 20 1 100K 40 0.114 2.052 5.713 * 10−5 7.830 * 10−5

Table 5.1: Selection of the hyperparameters βf , βpr, αf for the cell feature f1 (roundness).

The hyperparameter βpr is fixed at 1 with the rest varied, since imposing a normal "full prior"
distribution pθpr (zf ) on the marginal distribution pθf (zf ) (3.5) is a side goal, mostly relevant for
the topography model. It can be seen that the regression performance MSEqzf improves when
αf is increased. Whereas increasing βf improves KL and reduces the regression performance
MSEqzf , while also reducing the discrepancy between MSEqzf and MSEpzf . In Figures 5.1,
5.2 the inferred latent subspace is visualized for βf = 1 and 10, respectively; bold dots represent
centers of the respective distributions qϕf

(zf |x), pθf (zf |f) for a set of observations. In Figure 5.1
(βf = 1, αf = 100000) a significant mismatch between the posterior qϕf

(zf |x) and the conditional
prior pθf (zf |f) for a given observation (x, f1(x)) is seen, which is reflected by high KL in Table
5.1. Whereas in Figure 5.2 (βf = 10, αf = 100000), the respective distributions are relatively
close. Increasing βf further is deemed unnecessary, since it negatively influences the regression
performance MSEqzf . The following values of hyperparameters were selected for all three cell
features f1, f2, f3: βf = 10, βpr = 1, αf = 100000. The respective objectives for different cell
features were trained until convergence with the learning rate 0.001. The results on the validation
set are provided in Table 5.2. The trained components qϕf

(zf |x), pθf (zf |f), pθpr (zf ), qωf
(f |zf )

for all three features were used as initialization of the respective components in the full cell model.
Notably, the zf latent subspaces are not correlated, as shown in Figure 5.3.

Feature βfβfβf βprβprβpr αfαfαf Epoch KL KLfull MSEqzf (MSEpzf )
f1 10 1 100K 77 0.195 2.020 3.995 * 10−5 7.540 * 10−5

f2 10 1 100K 56 0.182 2.048 3.754 * 10−5 7.177 * 10−5

f3 10 1 100K 67 0.191 2.018 3.891 * 10−5 7.391 * 10−5

Table 5.2: Selected βf , βpr, αf for f1, f2, f3.
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Figure 5.1: Visualization of the zf1 latent subspace (βf = 1, βpr = 1, αf = 100000).

Figure 5.2: Visualization of the zf1 latent subspace (βf = 10, βpr = 1, αf = 100000)
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Figure 5.3: Visualization of aggregated posteriors zfi colored by the respective cell features.

A challenging part in training of the cell model is to select a suitable capacity of the residual
latent subspace zε. The challenge originates from the fact that all three cell features-linked latent
variables zf are heavily constrained by a regression objective with a high αfi and a heavy KL-
regularization with a high βfi . The idea of these constraints is that the model is allowed to use zf
variables to only encode the variation in cell images explained by the features fi. On the contrary,
the residual latent variable zε, the capacity of which is controlled by the single coefficient βε, is
not constrained by an auxiliary regression objective and can potentially be used by the model to
encode any factors of variation in the data. Therefore, the challenge is to restrict the capacity
of zε sufficiently, such that the model only uses it to encode the residual factors of variation, i.e.
the rotation angle f4 in the case of the synthetic dataset. If βε is too low, the model would use
zε to encode as much variation as possible, thus ignoring some or all of the zf latent variables.
This situation is undesired even if the model achieves a better reconstruction quality, since the key
idea is to derive a disentangled latent representation of cell images. If βε is too high, the model
would not be able to encode the rotation angle factor. Notably, the dimensionality of zε is another
leverage to control the capacity of the residual subspace, however, the smallest reasonable latent
space dimensionality of 2 was already chosen for zε based on prior knowledge, as explained above.

Another complication is that βε should be chosen for given values of βfi , βpr,i, αfi (i = 1, 2, 3)
for all cell features. If βε is too high with respect to the chosen values of zf -related hyperparameters
for some feature f , then the auxiliary regression objective would become a too weak constraint
on that zf subspace, and the model would use zf to encode the residual factors apart from f .
Simultaneous adjustment of all cell-model hyperparameters could be tedious with multiple cell
features. To simplify the training process, the zf -related components trained during optimization
of the objective (5.1), as described above, were fixed during training of the residual components.
Hence, the cell model objective (3.17) was trained with respect to the weights of pθ(x|zε, zf ),
qϕε

(zε|x), while the weights of qϕ∗
f
(zf |x), pθ∗

f
(zf |f), qω∗

f
(f |zf ), pθ∗

pr
(zf ) were fixed.

To fine-tune βε, the following factors were taken into account: the value of KLε, which denotes
the average KL

(
qϕε

(zε|x) || p(zε)
)
, the shape of the aggregated posterior distribution qϕ∗

ε
(zε|x)

and the quality of cell image reconstruction, including the reconstruction error numerical score.
Furthermore, the fact of whether the space zε was structured by the cell features f1, f2, f3 was
considered: by design the space zε should be structured only according to the residual rotation
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angle f4 feature; otherwise, the capacity of zε might be excessive. All models were trained based on
a single pre-trained baseline model2 for 15 epochs with the learning rate 0.001. The quantitative
results on the validation set are presented below in Table 5.3.

βεβεβε KLε Reconstruction error
100 7.566 115302.2
200 5.674 114926.9
300 4.827 114334.1
390 4.335 114345.5
400 1.156 133709.5
500 0.779 133906.7
1000 0.005 134594.6

Table 5.3: Selection of the hyperparameter βε.

It was found that the drop in reconstruction error at βε < 400 is coupled with reduction in the
quality of disentanglement and with the space zε becoming less structured by the rotation angle
f4 feature. At the same time, the values of βε > 500 compress the space zε excessively, which
results both in worse visual reconstruction quality and worse disentanglement. The inferred latent
subspaces for βε ∈ {300, 400, 500} are visualized in Figures 5.4, 5.5, 5.6, colored by sin(f4); bold
dots represent centers of the posterior distributions for a set of cell images. Hence, βε = 400 was
selected as the default value.

Figure 5.4: zε space: βε = 300 Figure 5.5: zε space: βε = 400 Figure 5.6: zε space: βε = 500

Subsequently, the model was trained until convergence involving a few techniques, such as
training alternately the decoder pθ(x|zε, zf ) except for the first fully connected layer (with the
encoder’s weights fixed) and then the encoder qϕε

(zε|x) with the first fully connected layer of
the decoder (with the rest decoder’s weights fixed). During training of the encoder separately,
an alternative method to control the capacity of the latent subspace zε was used (2.7) with γ =
300, C = 2. The resulting subspace zε is visualized in Figure 5.7. It can be seen that the subspace is
primarily structured according to rotation angle f4, however the points are also ordered according
to elongation f2, which could imply that the latent representation is not perfectly disentangled.

2The baseline model was trained from initialization of the model for approximately 20 epochs with the learning
rate decreased from 0.01 to 0.001 after first 3 epochs. Different values of βε were used, starting from βε = 1.
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Figure 5.7: Visualization of the zε space: aggregated posterior colored by f1, f2, f3, f4, sin(f4);
posterior qϕε(zε|x) example in green; prior p(zε) in blue.

A qualitative latent space traversal approach is used to evaluate the level of disentanglement in
the latent space. In Figure 5.8 the zf subspaces corresponding to cell features are traversed using
the trained conditional priors pθf (zf |f). Each (scaled) feature is changed from 0 to 1, and for
each given value of a cell feature f a sample zf ∼ pθf (zf |f) is passed to the decoder to generate a
cell image, while the rest zf samples are fixed; leftmost images correspond to zero values of fi. It
can be seen that the features elongation f2 and nucleus size f3 are well captured and disentangled
by the model in the zf subspaces, since only the respective properties of the cell image change.
Whereas the space zf1 , corresponding to roundness, is moderately correlated with elongation, i.e.
not fully disentangled.

Figure 5.8: Latent space traversal: zf1 , zf2 , zf3 .

To evaluate whether zε was able to encode the residual variation in cell images, i.e. the rotation
angle f4 feature, a sampling approach was used. A given cell image is firstly reconstructed; then,
different samples zε ∼ p(zε) are taken while the zf variables are fixed at the means of the posterior
distributions qϕf

(zf |x). In Figure 5.9 it is shown that sampling from prior results in rotation of
approximately the same generated cell image. Therefore, it can be concluded that zε captures the
rotation angle f4 feature.
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Figure 5.9: Sampling from p(zε).

Overall, the model is able to reconstruct given cell images using a disentangled latent space, as
shown in Figure 5.10. However, it was noted that the model has difficulty learning and reproducing
the concept of roundness f1, especially with regard to low-elongation cells.

Figure 5.10: Cell image reconstruction.

5.1.2 Modeling the influence of topographies on cells for experiment
simulation

In the second step of training (3.19) the goal is to model the possible influence of topographies on
cells by training the topography-model encoders for each zf subspace. The only hyperparameters
at this step are βpf,i (i = 1, 2, 3), which control the penalty on the posteriors qφf

(zf |p) for
diverging from the full prior distributions pθ∗

pr
(zf ), learned in the previous step. The artificial

relationship between the topography dataset and the cell dataset, introduced in Chapter 4, implies
that radius of topographies g2 is positively correlated with elongation of cells f2. Therefore, the
hyperparameters βpf are selected in such a way that the posteriors in the subspaces zf1 , zf3
approximately match the respective full priors pθ∗

pr,1
(zf1), pθ∗

pr,3
(zf3), while in the subspace zf2 ,

corresponding to cell elongation, the posteriors are spread according to the radius g2 of the input
topography. To fine-tune the hyperparameters, several models with different βpf values were
trained for 6-11 epochs, depending on the validation loss value decline, with the learning rate
0.01. Notably, the same value of βpf for all three zf subspaces is taken in each model, since in the
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general case the relationship between topographies and cells in unknown. The results are provided
in Table 5.4, where KLi stands for the average KL

(
qφfi

(zfi |p) || pθ∗
pr,i

(zfi)
)
.

βpfβpfβpf Relationship Epoch KL1 KL2 KL3 Reconstruction error (cells)
100 g2 → f2 11 0.652 1.480 0.539 134685.5
200 g2 → f2 7 0.323 1.057 0.088 134864.0
300 g2 → f2 8 0.204 0.843 0.020 134970.0
400 g2 → f2 8 0.140 0.695 0.008 135032.0
500 g2 → f2 8 0.109 0.589 0.006 135095.6
1000 g2 → f2 10 0.055 0.304 0.005 135346.0
1000 control case 6 0.005 0.006 0.005 136226.0

Table 5.4: Selection of the hyperparameters βpf,i.

It can be seen from Table 5.4 that an increase in βpf leads to lower KLi values in the dataset
with artificial relationship, which is expected, since the penalty on posteriors in all three zf spaces
is increased. Furthermore, the value of KL2, corresponding to the cell elongation subspace zf2 ,
is significantly larger than KL1,KL2 in all cases except for the control case with no relationship.
This observation implies that the model is able to discern between topographies on the basis of
what cell elongation value they induce. Notably, KL1 is significantly larger than KL3 in all cases
with g2 → f2 relationship embedded in the dataset, however there was no intended relationship
between g2 and f1. This observation is attributed to the fact that the roundness latent variable
zf1 was not perfectly disentangled, as reported above, and captured elongation-related variance as
well. Furthermore, it can be seen that in the control case with random training pairs the model
is, as expected, unable to maximize the likelihood of the cell images, which is reflected by a larger
reconstruction error as compared with the main case with the same βpf = 1000 value, and by
equally small values of KLi.

Figure 5.11: Visualization of aggregated posteriors in the topography-model zfi subspaces, colored
by topography radius g2. Relationship case (left); Control case (right).
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The value of βpf = 400 was chosen as the default value based on the fact that the KL3 value
is close to that of the control case, while KL2 is large enough to spread the topography-model
posteriors in the zf2 space to express the induced variation of cell elongation. The resulting zf
subspaces are visualized in Figure 5.11 for the main and control cases. Posteriors diverging from
the full prior are also seen in the zf1 subspace, which is undesired, but is caused by the correlation
between zf1 and zf2 .

In silico experiment

Once the topography-model encoders qφ∗
f
(zf |p), corresponding to cell features-related subspaces

zf , are trained, the model can be used to simulate the experiment. In the proposed framework,
simulation of the experiment implies conditional generation of cell images given a topography
image, as described in the Application scenarios 3.5 section. In Figure 5.12 it is shown that a
high-radius input topography results in different cell images sharing in common only the property
of high elongation. Similarly, a single low-radius input topography leads to a variety of low-
elongation cells, which are at the same different in other properties, such as the nucleus size.

Figure 5.12: Simulation of the experiment: generating cell images conditioned on a topography
image.

5.1.3 Modeling the inverse mapping for cell-conditioned topography
design

In the last step of training (3.20) the goal is to train the remaining components: the encoder
qφl

(lε|p) for residual variation in topographies, not related to their influence on cells, and the
topography-model decoder pϑ(p|lε, zf ). The dimensionality of the subspace lε was chosen as 2
based on the fact that exactly two true generative factors define a topography image: roundness g1
and radius g2. It is desired, however, that the decoder will use lε only to extract information about
the residual variation in topographies, i.e. roundness g1, since radius g2 is assumed to influence
cell elongation f2 and is already captured by the zf2 latent variable, as described in the previous
section. The hyperparameters of the last step are η and βl, where βl controls the capacity of the lε
latent subspace, and η controls the balance between the objectives of topography reconstruction
and cell-conditioned topography generation. Specifically, η determines the relative importance
of the latter objective. In the case when η = 0, the model only maximizes the reconstruction
objective, similar to a VAE. It would likely ignore the zfi latent variables and would try to encode
all the variation in topography images using the lε subspace. Alternatively, when η is too large,
the model would only focus on expressing the cell-topography relationship, while sacrificing the
reconstruction quality.

46 Simulation of biomaterials research experiments with generative models



CHAPTER 5. EXPERIMENTS AND RESULTS5.1. EXPERIMENTS ON THE TOYCELL DATASET

Balancing the two objectives simultaneously with fine-tuning the capacity of the lε space was
found particularly challenging and, therefore, a two-phase training strategy was used. During the
first phase of training η was set to 0, thereby allowing the model to only pursue the reconstruction
quality and to use lε to encode both factors of variation in the topography image dataset. The
capacity of the lε subspace was fine-tuned during this phase as well. Noteworthy, instead of
adjusting βl an alternative method (2.7) to control the capacity of a latent space was used, where
the parameter γ controls the penalty imposed on the posterior qφl

(lε|p) for diverging from the prior
p(lε) more than by a margin C; hence, C represents the allowed capacity. In the second phase,
the weights of the encoder qφ∗

l
(lε|p) were fixed and η was increased to stimulate the decoder to

use information captured by the zf latent variables during topography generation. Specifically,
the idea is that the decoder should learn to extract information about topography radius g2 from
the zf2 subspace.

First phase of training

Similarly to the training procedure of the cell model, the space capacity-related hyperparameters
γ, C were chosen based on the following factors: the quality of topography image reconstruction,
the average value of KL

(
qφl

(lε|p) || p(lε)
)

on the validation set and the shape of the aggregated
posterior. The latter factor is important for conditional topography generation, since lε is sampled
from the prior p(lε) in this application scenario, and it is desirable to generate diverse topographies.
The resulting subspace lε is visualized in Figure 5.13, where the chosen values are γ = 200, C = 3;
bold dots represent centers of the posterior distributions qφl

(lε|p) for a set of observations. The
corresponding model was trained for 48 epochs with the learning rate 0.001. It can be seen that
the space is structured by both roundness g1 and radius g2 features.

Figure 5.13: Visualization of the lε space: aggregated posterior colored by g1, g2; posterior qφl
(lε|p)

example in green; prior p(lε) in blue.

Figure 5.14 demonstrates the achieved topography reconstruction quality, which can be char-
acterized as decent. At the same time, since η = 0 in the first phase, the model is yet unable
to perform cell-conditioned topography generation, which is shown in Figure 5.15: given a high-
elongation cell image, the model generates topographies with arbitrary radius.

Figure 5.14: Topography image reconstruction (after the first phase of training).
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Figure 5.15: Cell-conditioned topography design (after the first phase of training).

Second phase of training

In the second phase the weights of the encoder were fixed qφ∗
l
(lε|p), and different values of η were

tested. In general, when η > 0, the topography reconstruction error increases, while the cell-
conditioned topography generation objective decreases. The goal is therefore to find η that allows
the model to express the existing relationship between topographies and cells, without sacrificing
much of the reconstruction quality. The model was trained from the 49th to the 99th epoch with
the chosen value η = 0.05 and the learning rate 0.001. In Figure 5.16 the results for the task of
topography image reconstruction are shown, where one can see that the quality of reconstruction
moderately decreased.

Figure 5.16: Topography image reconstruction (after the second phase of training).

Figure 5.17, on the other hand, demonstrates that the model learned the cell-topography
artificial relationship, embedded in the dataset: a high-elongation input cell image results in high-
radius topographies and vice versa. An evident problem, however, is that of poor diversity in the
generated topography samples. The generated shapes possess the needed radius, however, they
poorly resemble the topographies from the dataset with respect to roundness. To address this
problem, it is proposed to augment the training process with a GAN objective, which is discussed
below.

Figure 5.17: Cell-conditioned topography design (after the second phase of training).
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Adding a GAN objective

The problem of poor diversity in generated cell-conditioned topography samples arises, arguably,
from the fact that in the original last-step training objective (3.20) the second term aims to
minimize the distance between a true topography from a (topography, cell) training pair and a
topography generated as a result of sampling zf ∼ qϕ∗

f
(zf |x) from the posterior and lε ∼ p(lε) from

the prior. This implies that, for a given cell image, the second term in the objective stimulates
the model to generate a topography as close to a particular true topography as possible, but using
only the information encoded in the zf subspaces. In other words, given a high-elongation cell,
the model is forced to generate a particular high-radius topography using no information about its
roundness. Such setting encourages the model to generate topography images with a correct radius
g1, but averaged by the residual roundness g2 property in order to achieve low reconstruction error
on average. However, the original intention behind the objective (3.20) was in fact to stimulate the
model to generate any realistic topography, i.e. with arbitrary but concrete roundness, and with
a radius corresponding to the elongation of the input cell: a topography with a correct radius but
with arbitrary roundness should be deemed equally good in the ideal case. Hence, the similarity
metric used has failed to express this intention.

In [33] the authors discuss the limitations of pixel-wise similarity metrics for images and propose
the VAE/GAN approach, where a VAE architecture is enriched with a discriminator model, which
learns a measure of similarity between images instead of formally defining it. The proposed
approach is exploited in the present work: an auxiliary discriminator network is introduced, which
aims to discern between true and generated topographies, by maximizing the objective (5.2). The
discriminator outputs D(p), which is the probability that a given topography p originates from
the dataset P , i.e. is not generated.

FD(x, p) = Ep∼P log D(p) − Ep(lε)qϕ∗
f
(zf |x) log

(
1−D(pG)

)
pG ∼ pϑ(p|lε, zf ) (5.2)

At the same time, the base model, with all components frozen except for the decoder pϑ(p|lε, zf ),
is treated as a generator. Apart from the main objective, it aims to mislead the discriminator and
to generate topography samples that resemble true topographies. Notably, only the topography
samples generated in the task of cell-conditioned topography design are used in the auxiliary
GAN-objective term, while for the task of topography reconstruction the original likelihood term
is used. The maximization objective is formulated below (5.3).

FV AE/GAN (x, p) = Eqφ∗
l
(lε|p)qφ∗

f
(zf |p) log pϑ(p|lε, zf ) + η Ep(lε)qϕ∗

f
(zf |x) log pϑ(p|lε, zf )

+ ξ Ep(lε)qϕ∗
f
(zf |x) log D(pG) pG ∼ pϑ(p|lε, zf )

(5.3)

Joint optimization of both objectives was performed alternately, such that on a given batch
the weights of the discriminator were first updated, and subsequently the weights of the generator
(decoder pϑ(p|lε, zf )) were updated. Furthermore, it was found that the discriminator model was
learning relatively faster, which hindered the training process of the main model. Therefore, the
weights of the discriminator were updated every 10 batches, while the weights of the generator
were updated on each batch. The models were trained for 26 epochs with the learning rate 0.001
and η increased to 2; ξ, which controls the importance of the auxiliary objective, was set to 106.

Figure 5.18: Topography image reconstruction (adding a GAN objective).
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As a result, the model learned to generate diverse topography images in the task of cell-
conditioned topography design with the radius feature g2 corresponding to elongation of the re-
spective cell, as shown in Figure 5.19. The quality of topography reconstruction decreased further,
which was expected due to introduction of an auxiliary objective; the results are shown in Figure
5.18.

Figure 5.19: Cell-conditioned topography design (adding a GAN objective).

Finally, the model is tested in the third application scenario: in silico topography design based
on a cell feature value. Figure 5.20 shows different generated topographies for a series of increasing
values of cell elongation f2, taken as input to the model. It can be seen that the radius g2 of the
generated topographies increases, while the residual feature, roundness g1, varies.

Figure 5.20: Feature value-conditioned topography design (based on cell elongation f2 value).

5.2 Experiments on the ALP screening dataset

In the first step, the goal is to derive a disentangled latent representation of cell images, where only
cell area f is taken as the cell feature of interest. Therefore, a single zf subspace should correspond
to cell area, while zε should encode all the residual variation in cell images and, ideally, should be
invariant to cell area. In the second step, a single topography-model encoder qφf

(zf |p) is trained
with the goal to identify the influence of topographies on cells, and in the last step, the inverse
cell-topography mapping is learned to allow for cell-conditioned topography design.

5.2.1 Disentangled latent representation of real cell images

The dimensionality of the latent subspace zf is selected as 2, as in the synthetic case. Regarding
the residual space zε, since the number of true generative factors of real cell images is unknown,
the dimensionality dim(zε) is chosen experimentally. Notably, images of real cells seem to have
arbitrary shapes and occupy any parts of a square (Figure 4.10, 4.11) while being centered initially.
Therefore, it is hypothesized that the dimensionality of a latent manifold representing cell images
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should be of the same order as the number of pixels: 64 ∗ 64 = 4096. The following values were
tested: dim(zε) ∈ {1024, 4096}. To chose the dimensionality of zε, plain VAE models were trained
for approximately 500 epochs with the learning rate decreasing from 0.01 to 0.0001; βε was set
to 0.0001. The achieved quality of cell image reconstruction is illustrated in Figure 5.21, which
shows that more dimensions allow for a more detailed reconstruction.

Figure 5.21: VAE: cell image reconstruction, dim(zε) ∈ {1024, 4096}.

The hyperparameters in the first step include βε, βf , βpr, αf , among which the last three pertain
to the latent variable zf . Their values were taken as in the synthetic case: βf = 10, βpr = 1,
αf = 100000. As opposed to the synthetic case, however, all the components of the cell model were
trained in a single objective (3.17), as described in 3.3.1. To fine-tune βε, the following strategy
was used. At first βε is set to a high value (βε = 10), which severely limits the capacity of the
residual latent subspace and stimulates the model to use the latent variable zf to encode cell area-
related information. Gradually, βε is reduced to relax pressure on zε, thereby allowing the model
to capture more factors of variation in the data. However, if βε is too low, the capacity of residual
latent space is large enough for the model to ignore zf and use only zε. It was found that for
βε < 0.2 the model starts to ignore zf , and visual quality of disentanglement decreases. Therefore,
βε = 0.2 is taken in the final model. To facilitate training, the decoder of the model (except for
the first fully connected layer) was initialized from the respective VAE with dim(zε) = 4096. The
model was trained for 322 epochs with the learning rate decreasing from 0.001 to 0.0001. The
results on the validation set are provided in Table 5.5.

Epoch βεβεβε KLε Reconstruction error
11 10 94.7 7826.4
19 5 105.0 6650.2
41 2 95.6 5498.2
160 1 96.9 4745.6
184 0.5 107.1 4715.6
249 0.5 120.3 4679.5
262 0.2 168.0 4657.9
322 0.2 178.7 4635.0

Table 5.5: Fine-tuning βε.

The resulting zf space is visualized in Figure 5.22. It can be seen that the learned full prior
excludes a region of the aggregated posterior corresponding to high cell area. That is explained by
the fact that the distribution of the cell area feature f is highly skewed: Figure 5.23. The residual
latent subspace zε is visualized in Figure 5.24 using a 2D Principal component analysis (PCA)
projection; bold dots represent centers of the posterior distributions for a set of cell images.
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Figure 5.22: Visualization of the zf latent subspace (βf = 1, βpr = 1, αf = 100000).

Figure 5.23: Histogram of the cell area distribu-
tion. Values > 88000 (99.9% quantile) are ex-
cluded. Figure 5.24: Visualization of the zε space:

aggregated posterior colored by cell area
value; prior p(zε) in blue.

To evaluate disentanglement in the latent space, a qualitative latent space traversal approach
is used. The (scaled) feature f corresponding to cell area is changed from 0 to 1 and is passed
to the conditional prior pθf (zf |f), while zε is kept fixed at the mean of the posterior distribution
qϕf

(zf |x) for a given cell image. Figure 5.25 shows that traversing the zf space yields a change
in the area of generated cells, while their shape is mostly preserved. To evaluate whether zε
captures the residual variation in cell images except for area and whether it is invariant to cell
area, different samples from the prior distribution p(zε) are taken, while zf is kept fixed at the
mean of the posterior distribution for a given cell image. Figure 5.26 shows that as a result of this
procedure, the model generates a variety of cell images with area similar to the input image.
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Figure 5.25: Latent space traversal: zf (cell area).

Figure 5.26: Sampling from p(zε).

Figure 5.27: Cell image reconstruction.
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The quality of cell image reconstruction is notably worse with a disentangled latent space in
comparison with a VAE, as shown in Figure 5.27. However, the model is still able to capture main
visual properties and shape.

5.2.2 Modeling the influence of topographies on cells for experiment
simulation

In the second step, the encoder qφf
(zf |p) should learn the possible influence of topographies on

cells, and specifically on cell area, by maximizing the objective (3.19). The only hyperparameter
to fine-tune is βpf . A control-case dataset was created by pairing topographies and cells randomly.
Several models with different βpf values were trained for 10-12 epochs with the learning rate 0.001.
The validation results are provided in Table 5.6, where KL stands for KL

(
qφf

(zf |p) || pθ∗
pr
(zf )

)
.

βpfβpfβpf Relationship Epoch KL Reconstruction error
10 main case 10 1.207 4728.3
10 control case 10 1.213 4736.7
50 main case 10 0.465 4746.1
50 control case 12 0.472 4749.7
100 main case 11 0.284 4759.8
100 control case 12 0.238 4764.9
200 main case 10 0.158 4780.4
200 control case 10 0.147 4782.7
400 main case 12 0.056 4799.6
400 control case 12 0.072 4799.9

Table 5.6: Selection of the hyperparameter βpf .

It can be seen that increasing βpf leads to lower KL and higher reconstruction error. However,
no significant difference in reconstruction error between the main and control cases is observed at
any level of βpf . That implies the model has not identified any influence of topographies on cell
area. Consequently, according to the model, any cell image is possible on any given topography.

Figure 5.28: Simulation of the experiment: generating cell images conditioned on a topography
image. No influence on cell area.

Since no influence of topographies on cell area has been identified, it is expected that in
topography-conditioned cell image generation any single topography would result in a variety of
cell images with arbitrary area. This is indeed observed, as demonstrated in Figure 5.28. Notably,
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however, that mostly small- or middle-sized cells are generated, which is due to the fact that the
full prior pθpr (zf ) (Figure 5.22) does not cover the high-area region of the aggregated posterior
distribution, as discussed above.

5.2.3 Modeling the inverse mapping for cell-conditioned topography
design

In the last step of training (3.20) the goal is to model the inverse cell-topography relationship,
which is achieved by forcing the model to use information captured by zf , currently representing
cell area, for topography reconstruction. However, since cell area was found to be unaffected by
topographies, the latent variable zf would not contribute in cell-conditioned topography design.
Therefore, as compared with the synthetic-data case, only the first phase of training is followed,
where η = 0 and only the reconstruction quality is pursued. Since η = 0, the model constitutes
a plain VAE with a single hyperparameter βl that controls the capacity of the latent space lε.
The model was trained for approximately 500 epochs with the learning rate 0.001 and with βl

decreasing from 10 to 0.1. In Figure 5.29 the performance of the model in the task of topography
image reconstruction is presented. It can be seen that the model is able to decently capture the
details of topographies in all three size categories.

Figure 5.29: Topography image reconstruction.

Experimental results show that, indeed, setting η > 0 in the second phase does not improve
the likelihood of the generated topographies conditioned on cells. However, even though the
topography model is a VAE, and any cell area is possible on any given topography according to
the model, it can still be used for unconditional topography design. Figure 5.30 shows a number
of generated topographies as a result of sampling from the prior p(lε). It can be seen that the
model is able to generate topographies from specific size categories of the original data (top row).
These are probably close to concrete topographies from the dataset. However, the model is also
capable of generating out-of-domain topography samples with unseen patterns (bottow row).

Figure 5.30: Unconditional topography generation: sampling from p(lε).

Simulation of biomaterials research experiments with generative models 55



Chapter 6

Conclusions
In this thesis we investigated whether the generative approach in machine learning can be used
to simulate biomaterials research experiments in a data-driven fashion, in particular considering
the experiments on cell-surface topography interaction. With the generative approach we aimed
to address the key challenges inherent to such experiments: 1. the high dimensionality of both
the input (topography design) space and the output (cell response) space, and 2. a high level of
uncertainty and potential complexity of the relationship between these spaces.

We formulated a generative modeling perspective on the cell-surface topography experiment,
according to which the observed cell response is regarded as an outcome of a generative process,
subject to the experiment input conditions, represented by the surface topography. Specifically, the
cell response is assumed to originate from a set of latent variables linked to particular measurable
cell properties, and a residual noise latent variable. In turn, the surface topography is considered a
factor affecting the probability distributions of the cell features-linked latent variables. We further
proposed a deep generative simulation model that fits into the outlined perspective and derived
an implementation for a special case, where both the cell response and the surface topography
have an image representation. The proposed model acts as a simulation model of the physical
experiment by generating cell images conditioned on a given surface topography. Furthermore, it
acts as a tool for topography design, which can generate topographies associated with a given cell
image based on data.

The proposed model was tested on two datasets, including a synthetic and a real-world dataset.
In both cases a disentangled latent representation of cell images was derived, in which particular
latent variables captured the data variation pertaining to particular cell features, while being
disentangled from the residual variation in the data. The experimental results on the synthetic
dataset showed that the model is capable to learn the embedded relationship between topographies
and cells based on the provided image training data, which allowed to simulate cell images with
accurately expressed topography-dependent characteristics in response to a given topography.
Furthermore, the synthetic-case model accurately synthesized topography images that are likely
to result in a given cell image according to the training data.

6.1 Limitations and future work

The proposed framework has a number of limitations. Firstly, in its current form, the model is
limited to visual attributes of the cell response. Whereas other measures of the cell response, such
as gene expression profiles or biomarker expression information may be of value for a researcher
in certain applications. Hence, the challenge for future work is to find a way to learn latent rep-
resentations of a combined-modality cell response, which could include both image and numerical
data. Furthermore, numerical parameterizations of the topography design space could be more
useful in topography production, since a generated topography image could be hard to translate
to a production-compatible form.

Secondly, the model relies on the assumption that a cell response, represented by an image, is
composed of a set of independent cell features, while the actual cell features, as evidenced by the
ALP screening dataset, are to varying degrees correlated. Accordingly, learning a disentangled lat-
ent representation with independent latent variables linked to specific cell features may succeed in
a limited number of cases, where independent cell features of interest are either carefully selected
or artificially created. Hence, such an approach is neither salable, nor useful to automate screening
data analysis and topography design in the general case. This observation suggests a future re-
search direction aimed to drop the independence assumption and to develop latent representations
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of the cell response that allow for correlated cell features, yet preserve interpretability at the same
time. For instance, the model should desirably allow for cell feature value-conditioned generation
of cell and topography images, which is not possible in a plain VAE model. One way to address
this problem could be to consider a single latent variable z, which is, however, weakly stimulated
to disentangle cell features-related factors of variation to the extent possible by encoding them in
different latent dimensions. Hypothetically, this can be achieved by using a (multi-)conditional
prior distribution pθf (z|f1, .., fn), where a combination of all cell features serves as the condition.
Additionally, a number of auxiliary regressors or classifiers qωfi

(fi|z) for all cell features of interest
fi can be used to further encourage disentanglement without directly splitting the latent space
into independent subspaces. An example of a training objective for this perspective is provided
below in (6.1).

Eqϕ(z|x) log pθ(x|z) − β KL
(
qϕf

(z|x) || pθf (z|f1, .., fn)
)
+

∑
i

αfi Eqϕ(z|x) log qωfi
(fi|z) (6.1)

Thirdly, the model proposed in this thesis uses a particularly strong an generally unjustified
assumption that those factors of variation in topographies that influence certain cell features are
1. mutually independent and 2. are independent from the residual variation in topographies.
Clearly, however, a single topography feature can influence multiple cell features, and a combina-
tion of topography features can influence a single or multiple cell features. Moreover, topography
features can influence cell features only to a small extent. Hence, by forcing the residual latent
variable lε of the topography model to ignore such topography features would result in the loss
of information encoded by the topography-model latent space. Furthermore, topographies may in
principle influence the residual variation in cell images, which is not currently of interest for the
user, but the present model does not allow for such relationship, since the encoder q(zε|p) is not
included in the architecture.

Overall, it can be concluded that despite the idea to learn the relationship between two data-
sets in latent spaces is indeed warranted for cases with high dimensionality of the data and high
uncertainty of the relationship, specifically the concept of a shared latent space as a means to
achieve that has a limited applicability and can be useful only in cases with naturally factorized
data. In future work, alternative ways to learn the relationship between the latent spaces of two
distinct datasets could be considered. For instance, the relationship can be learned using auxili-
ary components q(zcell|ztopography), q(ztopography|zcell), representing the (probabilistic) mappings
between the latent spaces of both datasets.

Finally, the current perspective on the relationship between datasets modeled in the latent
space is limited in the type of relationship that can be learned. The current framework implies
that a topography maps to a connected region in the zf subspace. Whereas the situation when
a topography could result in either low or high (but not intermediate) value of a cell feature f
is not possible in the current model. To circumvent this problem, kernel-based methods could be
embedded in the training process to allow for disjoint posterior distributions in the affected space.
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Cees Van Kooten, Ton J Rabelink, and Jan De Boer. The cytokine secretion profile of mes-
enchymal stromal cells is determined by surface structure of the microenvironment. Scientific
reports, 8(1):1–9, 2018. 6

[36] Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly, Bernhard
Schölkopf, and Olivier Bachem. Challenging common assumptions in the unsupervised learn-
ing of disentangled representations. In international conference on machine learning, pages
4114–4124. PMLR, 2019. 12, 13

[37] Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. Rectifier nonlinearities improve neural
network acoustic models. In Proc. icml, volume 30, page 3. Citeseer, 2013. 62

[38] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Brendan Frey.
Adversarial autoencoders. arXiv preprint arXiv:1511.05644, 2015. 10

[39] Vlado Menkovski and Simon Koop. TU/e Deep Learning (2IMM10) course. Lecture notes:
Generative models., 2020. 8, 9, 10

[40] Anton Osokin, Anatole Chessel, Rafael E Carazo Salas, and Federico Vaggi. Gans for bio-
logical image synthesis. In Proceedings of the IEEE International Conference on Computer
Vision, pages 2233–2242, 2017. 14

[41] Andreas Reimer, Aliaksei Vasilevich, Frits Hulshof, Priya Viswanathan, Clemens Blitterswijk,
Jan Boer, and Fiona Watt. Scalable topographies to support proliferation and oct4 expression
by human induced pluripotent stem cells. Scientific Reports, 6:18948, 01 2016. 6, 7
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Appendix A

Implementation details

A.1 Training procedure details

The selection of hyperparameters for each of the two datasets, discussed in Chapter 5, is done
using a hold-out validation dataset consisting of approximately 20% of the available data. For
both datasets and in each step of the training procedure (3.3.1), the batch size is set to 50, and
Adam optimizer [27] is used. The (starting) learning rate used by the optimizer is gradually
reduced from 0.01 to 0.0001 based on the observed quantitative performance of the model on the
validation set, and based on the qualitative visual performance of the model with respect to image
reconstruction, latent space disentanglement and conditional image generation. The number of
training epochs is adjusted accordingly.

Specifically for the case of real data (ALP screening dataset), a data augmentation technique
proposed in [22] was used during training of the variational autoencoders for cell and topography
images, as well as during training of the disentangled cell model. An input image is randomly
flipped, horizontally and vertically, and is randomly rotated (by a multiple of 90 degrees) before
being passed to the model. Notably, this technique is not applied during the second step of the
training procedure (3.3.1) and during the third step (when η > 0) in order to preserve the actual
relationship between topography and cell images. Furthermore, this technique is not used for the
synthetic dataset, since rotation angle is assumed to be a cell feature of interest, and thus should
not be randomly changed.

A.2 Model architecture

The architecture of the proposed model is conceptually the same for both considered datasets,
as shown below, and is based on the architecture of Domain-Invariant Variational Autoencoder
[22]. Furthermore, the authors’ implementation [22] of ResNet [18] convolutional and transpose-
convolutional blocks is used, referred to as ’ResidualConv2d’ and ’ResidualConvTranspose2d’,
respectively. The output of both decoders pθ(x|zε, zf ), pϑ(p|lε, zf ) constitutes a probability dis-
tribution over pixel values encoded in 100-dimensional vectors. The distribution is modeled using
the logistic mixture technique, proposed in PixelCNN++ [47] and also used in DIVA [22]. Ac-
cordingly, the decoders produce tensors having shapes (batch size, 100, 128, 128) or (batch size,
100, 64, 64) for the synthetic-data and real-data cases respectively, which are directly used in the
loss function, and are also used to sample individual 3-channel images. All fully connected and
convolutional layers, except for the output layers, are followed by a batch normalization layer [23].
Leaky ReLU [37] is used as the activation function, and Xavier uniform initialization [15] is used
for all weights of the model.

The tables A.1, A.2, A.3, A.4 describe the architectures of all components of the model for the
synthetic (ToyCell) dataset, and the tables A.5, A.6, A.7, A.8 provide the same information for
the real (ALP screening) dataset. In the tables, bs stands for batch size; the unnamed parameters
in brackets show: the number of output features for linear layers, the number of output channels
and kernel size for convolutional layers. The architectures of the decoders and encoders of the
trained variational autoencoders, mentioned in Chapter 5, match the provided decoder/encoder
architectures of the full model.
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APPENDIX A. IMPLEMENTATION DETAILS A.2. MODEL ARCHITECTURE

Details Output shape
1 Linear(1024), BatchNorm1d, LeakyReLU, Reshape(64, 4, 4) (bs, 64, 4, 4)
2 ResidualConvTranspose2d(64, 3), LeakyReLU (bs, 64, 4, 4)
3 Upsample(8) (bs, 64, 8, 8)
4 ResidualConvTranspose2d(64, 3), LeakyReLU (bs, 64, 8, 8)
5 Upsample(16) (bs, 64, 16, 16)
6 ResidualConvTranspose2d(64, 3), LeakyReLU (bs, 64, 16, 16)
7 Upsample(32) (bs, 64, 32, 32)
8 ResidualConvTranspose2d(64, 3), LeakyReLU (bs, 64, 32, 32)
9 Upsample(64) (bs, 64, 64, 64)
10 ResidualConvTranspose2d(64, 3), LeakyReLU (bs, 64, 64, 64)
11 Upsample(128) (bs, 64, 128, 128)
12 Conv2d(100, 3, stride=1, padding=1) (bs, 100, 128, 128)
13 Conv2d(100, 1, stride=1, padding=0) (bs, 100, 128, 128)

Table A.1: ToyCell dataset: Architecture of the decoders pθ(x|zε, zf ), pϑ(p|lε, zf ).

Details Output shape
1 Conv2d(32, 3, stride=1, padding=1), BatchNorm2d, LeakyReLU (bs, 32, 128, 128)
2 ResidualConv2d(32, 3) (resize), LeakyReLU (bs, 32, 64, 64)
3 ResidualConv2d(32, 3) (identity), LeakyReLU (bs, 32, 64, 64)
4 ResidualConv2d(64, 3) (resize), LeakyReLU (bs, 64, 32, 32)
5 ResidualConv2d(64, 3) (identity), LeakyReLU (bs, 64, 32, 32)
6 ResidualConv2d(64, 3) (resize), LeakyReLU (bs, 64, 16, 16)
7 ResidualConv2d(64, 3) (identity), LeakyReLU (bs, 64, 16, 16)
8 ResidualConv2d(64, 3) (resize), LeakyReLU (bs, 64, 8, 8)
9 ResidualConv2d(64, 3) (identity), LeakyReLU (bs, 64, 8, 8)
10 ResidualConv2d(64, 3) (resize), LeakyReLU, Reshape(1024) (bs, 1024)
11.1 (µ) Linear(dim(z)) (bs, dim(z))
11.2 (σ) Linear(dim(z)), Softplus (bs, dim(z))

Table A.2: ToyCell dataset: Architecture of the encoders qϕε
(zε|x), qϕf

(zf |x), qφl
(lε|p), qφf

(zf |p).

Details Output shape
1 Linear(dim(zf )), BatchNorm1d, LeakyReLU (bs, dim(zf ))
2.1 (µ) Linear(dim(zf )) (bs, dim(zf ))
2.2 (σ) Linear(dim(zf )), Softplus (bs, dim(zf ))

Table A.3: ToyCell dataset: Architecture of the conditional prior pθf (zf |f).

Details Output shape
1 LeakyReLU, Linear(1) (bs, 1)

Table A.4: ToyCell dataset: Architecture of the auxiliary regressor qωf
(f |zf ).
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A.2. MODEL ARCHITECTURE APPENDIX A. IMPLEMENTATION DETAILS

Details Output shape
1 Linear(4096), BatchNorm1d, LeakyReLU, Reshape(256, 4, 4) (bs, 256, 4, 4)
2 ResidualConvTranspose2d(256, 3), LeakyReLU (bs, 256, 4, 4)
3 Upsample(8) (bs, 256, 8, 8)
4 ResidualConvTranspose2d(256, 3), LeakyReLU (bs, 256, 8, 8)
5 Upsample(16) (bs, 256, 16, 16)
6 ResidualConvTranspose2d(256, 3), LeakyReLU (bs, 256, 16, 16)
7 Upsample(32) (bs, 256, 32, 32)
8 ResidualConvTranspose2d(256, 3), LeakyReLU (bs, 256, 32, 32)
9 Upsample(64) (bs, 256, 64, 64)
10 Conv2d(100, 3, stride=1, padding=1) (bs, 100, 64, 64)
11 Conv2d(100, 1, stride=1, padding=0) (bs, 100, 64, 64)

Table A.5: ALP dataset: Architecture of the decoders pθ(x|zε, zf ), pϑ(p|lε, zf ).

Details Output shape
1 Conv2d(32, 3, stride=1, padding=1), BatchNorm2d, LeakyReLU (bs, 32, 64, 64)
2 ResidualConv2d(32, 3) (resize), LeakyReLU (bs, 32, 32, 32)
3 ResidualConv2d(32, 3) (identity), LeakyReLU (bs, 32, 32, 32)
4 ResidualConv2d(64, 3) (resize), LeakyReLU (bs, 64, 16, 16)
5 ResidualConv2d(64, 3) (identity), LeakyReLU (bs, 64, 16, 16)
6 ResidualConv2d(128, 3) (resize), LeakyReLU (bs, 128, 8, 8)
7 ResidualConv2d(128, 3) (identity), LeakyReLU (bs, 128, 8, 8)
8 ResidualConv2d(256, 3) (resize), LeakyReLU, Reshape(4096) (bs, 256, 4, 4)
11.1 (µ) Linear(dim(z)) (bs, dim(z))
11.2 (σ) Linear(dim(z)), Softplus (bs, dim(z))

Table A.6: ALP dataset: Architecture of the encoders qϕε(zε|x), qϕf
(zf |x), qφl

(lε|p), qφf
(zf |p).

Details Output shape
1 Linear(dim(zf )), BatchNorm1d, LeakyReLU (bs, dim(zf ))
2.1 (µ) Linear(dim(zf )) (bs, dim(zf ))
2.2 (σ) Linear(dim(zf )), Softplus (bs, dim(zf ))

Table A.7: ALP dataset: Architecture of the conditional prior pθf (zf |f).

Details Output shape
1 LeakyReLU, Linear(1) (bs, 1)

Table A.8: ALP dataset: Architecture of the auxiliary regressor qωf
(f |zf ).

64 Simulation of biomaterials research experiments with generative models


	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Studies on cell-surface topography interaction
	Experimental framework
	Approaches to screening data analysis and topography design

	Generative models in machine learning
	Variational autoencoder
	Disentangled representation in latent spaces

	Related work on simulations in biomaterials research

	Method
	Motivation
	Model concept
	Model description
	Training procedure summary

	Reasoning behind the training objectives
	Application scenarios

	Data
	ToyCell synthetic dataset
	Artificial relationship between topographies and cells.

	ALP screening real dataset

	Experiments and results
	Experiments on the ToyCell dataset
	Disentangled latent representation of synthetic cell images
	Modeling the influence of topographies on cells for experiment simulation
	Modeling the inverse mapping for cell-conditioned topography design

	Experiments on the ALP screening dataset
	Disentangled latent representation of real cell images
	Modeling the influence of topographies on cells for experiment simulation
	Modeling the inverse mapping for cell-conditioned topography design


	Conclusions
	Limitations and future work

	Bibliography
	Appendix
	Implementation details
	Training procedure details
	Model architecture


