
 Eindhoven University of Technology

MASTER

Deep Learning for SQL Query Operators

Siksma, Casper S.

Award date:
2021

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/a075d954-6884-43d0-ba45-49cff3b7ca26

Department of Mathematics and Computer Science
Database Research Group

Deep Learning for SQL Query
Operators

Casper S. Siksma

A thesis presented for the degree of
Master of Science

Supervisors:
dr. O. Papapetrou
dr. V. Menkovski

Committee:
dr. O. Papapetrou
dr. V. Menkovski
dr. N. Sidorova

version 3.2

October 19, 2021

Abstract

Despite recent advancements in database optimization, working with huge amounts of data remains a
fundamental challenge. As a result, machine learning techniques are increasingly used for prediction
problems and data-driven optimization when dealing with highly-dimensional data on a large scale.
Where most approaches focus on improving some integral part of a database management system,
such as query optimization or cost estimation, little research is known to exist on the prediction of
future queries or their operators. In fact, the way that data is queried often corresponds to some user,
application, or system behavior responsible for the queries. The goal of this work is to exploit this
dependency to provide opportunities for optimization in a database management system.

This work proposes the concept of query execution plan fingerprinting, a novel encoding scheme
for the feature engineering of SQL query data that aims to represent the intermediate results of
a query in a lower dimension. Consequently, these features can be used by caching systems and
predictive models to improve query performance. In addition, we present a deep neural architecture
that enables the prediction of these features for subsequent future queries. This is done by formulating
the prediction of encoded queries as a sequential sets to sequential sets learning problem.

For our experiments, themodel architecture was implemented and trained on the historic query log
of two distinct real-world databases. We test the effect of certain components and evaluate the model
with a variety of methods and metrics. Our results reveal that good performance and generalization
can be achieved for both databases. For one of the databases, the model outperforms the best
performance of other methods with respect to recall by 46.8%-51.9%. However, in the other database,
the model only outperforms other methods by 2.2-3.7% with respect to recall. Additionally, results
show that increasing the number of elements that are predicted at each subsequent set negatively
affects the precision of the model, highlighting a limitation of the model compared to other methods.

Further analysis examines the usefulness of the model in a practical setting. In particular, experi-
ments were performed with a small fixed-size cache and a sequence of queries previously unseen by
the model. Results demonstrate that Least-Recently-Used (LRU) and First-In-First-Out (FIFO) caching
policies for the encoded query elements can be used to improve query answering time, resulting in
speedups of up to 2.09x. In addition, the model can be used to improve upon these caching policies by
keeping predictions cached, increasing query answering speed by up to 2.67x. Lastly, if the predictions
of the model could be pre-computed before query arrival, speedups of up to 14.90x could be achieved.

Preface

First of all, I am grateful for the guidance I received from my supervisors, Odysseas Papapetrou and
Vlado Menkovski. It was a difficult time for everyone due to the COVID-19 situation; staying at
home for months on end and not being able to meet with friends and family made it difficult to stay
motivated. Nevertheless, well-organized and frequent video meetings with my supervisors allowed
me to discuss ideas, results and ask questions. I appreciate how easily I could approach either of them
and receive help in a timely manner. After working together for over 6 months, it feels crazy to say
that we have never met in person.

This thesis marks the end of my 7 year-long journey at TU/e. After completing my Bachelor’s
degree, I wasn’t sure if I wanted to continue for another two years. Luckily, I was convinced to
continue, and I don’t regret it at all. The master’s program in Data Science and Engineering has
provided me with many great experiences, new knowledge, and a strong academic background for
my future professional career.

Casper Sebastiaan Siksma
Eindhoven, The Netherlands
October 19, 2021

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research Problem . 3

1.2.1 SQL Query Encoding . 3
1.2.2 Prediction Model . 4

1.3 Contributions . 5
1.4 Outline . 5

2 Preliminaries 6
2.1 Database Management Systems (DBMS) . 6

2.1.1 Query Execution Plans (QEP) . 8
2.2 The Feature Engineering of SQL Query Data . 8
2.3 Machine Learning . 10

2.3.1 The Learning Problem . 11
2.3.2 Neural Networks . 13
2.3.3 Sequential Models . 15

3 SQL Query Encoding 21
3.1 Deconstructing Query Execution Plans . 21

3.1.1 Partial Query Execution Plans . 21
3.1.2 Reducing Dimensionality . 24

3.2 Query Execution Plan Fingerprinting . 28
3.2.1 Overview . 28
3.2.2 Rationale . 28
3.2.3 An Illustrative Example . 29

4 Prediction with Deep Learning 32
4.1 Model Architecture . 32

4.1.1 Set Embedding . 33
4.1.2 Set-based Attention . 34
4.1.3 Modeling Repeated Elements . 35

4.2 Model Inference . 35

5 Experiments 37
5.1 Collected Data . 37

5.1.1 Internet of Things (IoT) . 38
5.1.2 PhoneLabs . 38
5.1.3 Data Cleaning . 38

5.2 SQL Query Encoding . 39
5.2.1 Framework . 39
5.2.2 Frequency Analysis . 40
5.2.3 Cross-Validation . 41

5.3 Model Implementation . 43
5.4 Model Evaluation . 44

5.4.1 Evaluation Methods . 44
5.4.2 Evaluation Metrics . 45

5.5 A Practical Setting . 47
5.5.1 Cost Estimation . 47
5.5.2 Optimization Methods . 48
5.5.3 Simulation . 49

6 Results & Discussion 50
6.1 Model Performance . 50
6.2 Effect of the Dependency Graph . 58
6.3 Effect of the Repeated Element Component . 59
6.4 Effect of the Sequence Lengths . 59
6.5 Effect of the Partial QEP Size . 59
6.6 The Model in a Practical Setting . 60
6.7 Computation Time . 62

7 Conclusion 64
7.1 Overview . 64
7.2 Limitations . 65
7.3 Future Work . 66

References 68

A Source Code 73
A.1 Pre-Processing IoT data . 73
A.2 Pre-Processing PhoneLabs data . 73
A.3 Encoding Framework . 73
A.4 Encoder-Decoder Model . 73
A.5 Simulation . 73

B Results 74
B.1 Model Evaluation of Different Methods for output sequence lengths ; = 3 and ; = 5 74
B.2 Model Evaluation of Different Methods for input sequence lengths : = 30 and : = 40 . 77
B.3 Model Evaluation of Different Methods by use of the Dependency Graph Component . 78
B.4 Model Evaluation of Different Methods by use of the Repeated Element Component . 81
B.5 Model Evaluation of Different Methods by Partial QEP Size 81

List of Figures

1.1 A sequence diagram for an example query pattern 2
1.2 Google’s distributed database system data center locations [13] 3
1.3 Google’s distributed database system edge node locations [13] 3

2.1 Query Processing Pipeline . 7
2.2 A QEP for the example SQL query in Algorithm 1 . 8
2.3 Query level encoding [4] . 9
2.4 Plan level encoding [4] . 10
2.5 Select images of cats and dogs [27] . 11
2.6 Artificial Neuron . 13
2.7 Gradient descent optimization for finding a local optimum [30] 14
2.8 Example of an MLP with a single hidden layer . 15
2.9 Example of an MLP with two hidden layers . 16
2.10 Backpropagation in an MLP with two input neurons, three hidden neurons, and one

output neuron (biases are omitted for brevity) . 17
2.11 RNN architecture, where the square connection indicates a delay. 17
2.12 RNN architecture displayed in an unrolled way . 17
2.13 Vanilla RNN cell (biases are omitted for brevity) . 18
2.14 Backpropagation through time of an RNN . 18
2.15 LSTM cell (biases are omitted for brevity) . 19
2.16 GRU cell (biases are omitted for brevity) . 19

3.1 An example QEP for the query of Algorithm 2 . 22
3.2 The partial QEP >′ and the intermediate results of its operators 23
3.3 Identified partial QEPs of the QEP in Figure 3.1 . 23
3.4 The example QEP of Figure 3.1 altered to account for filter parameters 25
3.5 A QEP for the example SQL query in Algorithm 1 . 26
3.6 An alternative QEP for the example SQL query in Algorithm 1 26
3.7 Dependency graph where the presence of >′1 implies the presence of >′2 27
3.8 Indexed partial QEPs of the example QEP in Figure 3.1 30
3.9 Indexed partial QEPs of another query . 30
3.10 Dependency Graph . 30

4.1 Model architecture of the encoder-decoder RNN framework. 33
4.2 Set embedding layer for embedding input sets into a lower dimension and forwarding

to an RNN unit. 34

5.1 Query Execution Pipeline of Apache Spark [43] . 40
5.2 Distribution of top-100 most frequent partial QEPs in the IoT data set 42
5.3 Distribution of top-100 most frequent partial QEPs in the PhoneLabs data set 42
5.4 Set size distribution of the encoded queries in the IoT data set 42
5.5 Set size distribution of the encoded queries in the PhoneLabs data set 42
5.6 Creating training, validation and testing splits from the encoded query log 43

5.7 Example dependency graph where nodes have an associated cost 48

6.1 Recall scores of IoT data set by use of dependency graph and 9 54
6.2 Recall scores of PhoneLabs data set by use of dependency graph and 9 54
6.3 Precision scores of IoT data set by use of dependency graph and 9 54
6.4 Precision scores of PhoneLabs data set by use of dependency graph and 9 54
6.5 NDCG scores of IoT data set by use of dependency graph and 9 54
6.6 NDCG scores of PhoneLabs data set by use of dependency graph and 9 54
6.7 HR scores of IoT data set by use of dependency graph and 9 54
6.8 HR scores of PhoneLabs data set by use of dependency graph and 9 54
6.9 Recall scores of IoT data set by use of repeated element component W and 9 55
6.10 Recall scores of PhoneLabs data set by use of repeated element component W and 9 . 55
6.11 Precision scores of IoT data set by use of repeated element component W and 9 55
6.12 Precision scores of PhoneLabs data set by use of repeated element component W and 9 55
6.13 NDCG scores of IoT data set by use of repeated element component W and 9 55
6.14 NDCG scores of PhoneLabs data set by use of repeated element component W and 9 . 55
6.15 HR scores of IoT data set by use of repeated element component W and 9 55
6.16 HR scores of PhoneLabs data set by use of repeated element component W and 9 . . . 55
6.17 Recall scores by data set and ;, with : = 20 and 9 = 5 56
6.18 Recall scores by data set and :, with ; = 2 and 9 = 5 56
6.19 Precision scores by data set and ;, with : = 20 and 9 = 5 56
6.20 Precision scores by data set and :, with ; = 2 and 9 = 5 56
6.21 NDCG scores by data set and ;, with : = 20 and 9 = 5 56
6.22 NDCG scores by data set and :, with ; = 2 and 9 = 5 56
6.23 HR scores by data set and ;, with : = 20 and 9 = 5 56
6.24 HR scores by data set and :, with ; = 2 and 9 = 5 56
6.25 Recall scores of IoT data set by partial QEP size and method, with 9 = 5 57
6.26 Recall scores of IoT data set by partial QEP size and method, with 9 = 10 57
6.27 Recall scores of IoT data set by partial QEP size and method, with 9 = 15 57
6.28 Recall scores of IoT data set by partial QEP size and method, with 9 = 20 57
6.29 Recall scores of PhoneLabs data set by partial QEP size and method, with 9 = 5 . . . 57
6.30 Recall scores of PhoneLabs data set by partial QEP size and method, with 9 = 10 . . 57
6.31 Recall scores of PhoneLabs data set by partial QEP size and method, with 9 = 15 . . 57
6.32 Recall scores of PhoneLabs data set by partial QEP size and method, with 9 = 20 . . 57
6.33 Average query answering time with different methods by cache size for the IoT data set 62

List of Tables

2.1 Order . 6
2.2 Venue . 6

5.1 Raw data sets . 39
5.2 Encoded data sets . 40
5.3 Partial QEP frequency analysis of the encoded data sets 41
5.4 Confusion Matrix . 45

6.1 Evaluation of different methods on the IoT data set 52
6.2 Evaluation of different methods on the PhoneLabs data set 52
6.3 �V-scores for different methods and different values of V on the IoT data set 53
6.4 �V-scores for different methods and different values of V on the PhoneLabs data set . 53
6.5 Query answering time with different methods for the IoT data set 61

B.1 Evaluation of different methods on the IoT data set with graph, ; = 3 74
B.2 Evaluation of different methods on the IoT data set with graph, ; = 5 75
B.3 Evaluation of different methods on the PhoneLabs data set with graph, ; = 3 75
B.4 Evaluation of different methods on the PhoneLabs data set with graph, ; = 5 76
B.5 Evaluation of different methods on the IoT data set with graph, : = 30 77
B.6 Evaluation of different methods on the PhoneLabs data set with graph, : = 30 77
B.7 Evaluation of different methods on the IoT data set with graph, : = 40 78
B.8 Evaluation of different methods on the PhoneLabs data set with graph, : = 40 78
B.9 Evaluation of different methods on the IoT data set without graph, ; = 2 79
B.10 Evaluation of different methods on the PhoneLabs data set without graph, ; = 2 . . 79
B.11 Evaluation of different methods on the IoT data set with graph incorporated in the model 80
B.12 Evaluation of different methods on the PhoneLabs data set with graph incorporated

in the model . 80
B.13 Evaluation of different methods on the IoT data set with graph, without repeated

element component W . 81
B.14 Evaluation of different methods on the PhoneLabs data set with graph, without re-

peated element component W . 81
B.15 Recall of different methods on the IoT data set by Partial QEP size 82
B.16 Recall of different methods on the PhoneLabs data set by Partial QEP size 82

List of Abbreviations

DBMS Database Management System

SQL Structured Query Language

CRUD Create, Read, Update, Delete

I/O Input/Output

QEP Query Execution Plan

LRU Least-Recently-Used

FIFO First-In-First-Out

SGD Stochastic Gradient Descent

MLP Multi-Layer Perceptron

RNN Recurrent Neural Network

BPTT Backpropagation Through Time

LSTM Long Short-Term Memory

GRU Gated Recurrent Unit

IoT Internet of Things

ORM Object-Relational Mapping

MSE Mean Squared Error

BCE Binary Cross-Entropy

NLL Negative Log-Likelihood

WMSE Weighted Mean Square Error

NDCG Normalized Discounted Cumulative Gain

HR Hit Rate

CPU Central Processing Unit

GPU Graphics Processing Unit

CNN Convolutional Neural Network

Chapter 1

Introduction

As our ability to generate and capture data continues to explode, the size of the data landscape keeps
growing. Not only does this data need to be stored, it also needs to be usable. However, making
huge amounts of data usable gives rise to new challenges that require more efficient solutions. As
a result, machine learning techniques are increasingly used for prediction problems and data-driven
optimization when dealing with highly-dimensional data on a large scale. One such opportunity lies
in query optimization in database systems. In particular, if it was possible to accurately predict future
queries or components thereof, it would provide an opportunity to prepare for them. Consequently,
query efficiency could be improved.

The optimization of database systems has been a prevalent topic in data and computer science
research since their inception. However, the use of machine learning techniques in this domain has
been a relatively recent topic of interest, with most research having been published in the past few
years. Applications of machine learning in database systems range from query optimization [1]–[6]
to query performance estimation [7] and learning query state representations [8]. Despite database
optimization being a common theme, surprisingly little research exists on the prediction of queries
or query operators [5]. This work will address the prediction of query operators with deep neural
networks to provide a means of improving query efficiency in database systems.

The outline of this chapter is as follows. First, a short motivation is presented, followed by
a summary of the research problem, the objectives of this thesis, and formulation of the research
questions. Subsequently, the scientific contributions are highlighted and an outline for the rest of this
work is given.

1.1 Motivation

The size of the worldwide data landscape is projected to be over 175 zettabytes1 by 2025 and doubling
in size approximately every two years thereafter [9]. As a result, databases are growing too large to
be trivially handled with today’s computers, this is commonly referred to as data deluge. To store and
work with these massive amounts of data, distributed database systems have become an increasingly
necessary solution [10]. However, it remains a challenge to keep up with the ever-increasing volume
of data. As opposed to further vertical or horizontal scaling by upgrading hardware and using more
servers, one could also try to optimize the ways that these systems store and handle data.

One such opportunity lies with the querying of database systems. In particular, the way that data
is queried often corresponds to some user, application, or system behavior responsible for the queries.
It is this dependency that could potentially be exploited to provide opportunities for optimization.
Database query logs often exhibit these patterns, where one query gives some indication of the next
query [5], [11]. For example, a common pattern might be querying a product’s ID using the product’s

1A zettabyte is 1021 bytes

1.1. MOTIVATION CHAPTER 1. INTRODUCTION

name, followed by querying the number of products in inventory using that product’s ID. A query for
the latest social media posts may also want to request information of the authors, so reading of a
‘posts’ and a ‘users’ tables could frequently co-occur in the same query. An inventory management
system for a restaurant chain may also frequently query the stock of products that are related to each
other, such as hamburgers and buns for a particular venue.

If future queries could be predicted, a database management system (DBMS) could prepare for
them in advance. For instance, a DBMS could preemptively build an index, compute a synopsis,
pre-execute a join, or keep something cached in memory. Then, when a new query arrives that
was expected, the result is already (partially) in memory and the query can quickly be answered.
Most, if not all, of the computation for the query could already be finished before the query arrives.
Furthermore, accessing the file system, which is generally orders of a magnitude slower than accessing
memory [12], could be done preemptively or made entirely redundant by caching (intermediate)
results from a previous query. The sequence diagram for the example of a restaurant chain is shown
in Figure 1.1. If it was known that the second query was very likely to follow the first, it could make
sense to keep the product_stock table, filtered on city=‘eindhoven’, in memory, as opposed to
reading it from disk again.

Figure 1.1: A sequence diagram for an example query pattern

Consider also the case of large distributed systems, where latency cost between data centers and
edge-nodes is a significant factor. Edge-nodes are servers that are geographically close to the source
of the query and may be a long distance away from the data centers that store the required data. Take
for example the distributed system maintained by Google, see Figures 1.2 and 1.3. Not only are there
many more edge nodes than data centers, but edge nodes could be a long distance away from data
centers [13]. Preparing for incoming queries on edge nodes would thus eliminate the latency cost
of sending the query and the result over the network for a particular query. A predictive model for
queries would enable this form of edge computing, where computation and data storage are brought
closer to the source of the query to improve response times and save bandwidth.

2

1.2. RESEARCH PROBLEM CHAPTER 1. INTRODUCTION

Figure 1.2: Google’s distributed database sys-
tem data center locations [13]

Figure 1.3: Google’s distributed database sys-
tem edge node locations [13]

1.2 Research Problem

The rest of this study will investigate deep learning as a means of enabling database optimizations
by creating a predictive model for future queries based on historic query data. A distinction is made
between two sub-problems, the feature engineering of Structured Query Language (SQL) query data
and the conception of a predictive model.

1.2.1 SQL Query Encoding

The first problem revolves around the feature engineering of SQL queries. Queries need to be encoded
such that predictions can be meaningful. The queries in the log of a database system are sequential,
and recurrent neural networks are especially applicable to sequential data to create predictive models
[14]–[17]. However, the use of neural networks requires the input to be vectorized, so an encoding
of SQL queries is needed. Ideally, we would be able to predict the query in its entirety. But, the
high dimensionality of SQL queries would result in too many parameters to train a model efficiently.
Nevertheless, queries also include information on the tables, attributes, and parameters involved.
Hence, being able to accurately predict these would already enable preparing for future queries in a
variety of ways. Therefore, the first challenge is determining how to encode (vectorize) SQL queries,
such that machine learning techniques can be used, and a (partially) correct prediction can be used
for query preparation. In addition, given a query log and the database schema, we should be able to
encode this query log into a sequence of encoded queries.

Objectives

Consequently, we identify the following objectives in addressing this first research problem.

• Design an encoding scheme for encoding queries. The goal is to encode each query into a
low-dimensional representation that captures as much information as possible in order to make
meaningful predictions. A prediction is considered meaningful if it could be used to improve
query efficiency and/or performance by reducing computational costs, latency, bandwidth usage
or I/O operations.

• Pre-process the query log by extracting the raw SQL queries, altering the queries based on SQL
dialect such that they can be run by our processor, and filtering non-SELECT queries from
the log. Missing information and placeholders should be replaced and problematic or corrupt
queries should be removed.

• Develop an encoding framework that implements the designed encoding scheme. The encoding
framework should be able to load the schema and corresponding query log of a database, and

3

1.2. RESEARCH PROBLEM CHAPTER 1. INTRODUCTION

subsequently encode every query. The framework should be able to handle different databases
with different schemas and SQL dialects. In addition, the encoding framework will be used
for analytics and it should support exporting the encoded queries to disk as a usable data set,
which in turn can be used as input for machine learning frameworks such as PyTorch.

Research Question 1

Based on the above we present the first research question:

How could SQL queries be encoded into lower dimensional features such that feature predictions of future
SQL queries would enable optimizations in database management systems?

1.2.2 Prediction Model

The second problem is predicting the query operators of future queries based on the encoded his-
toric data. Given a sequence of encoded queries, we would like to predict the next sequence of
encoded queries or components thereof. It follows that we need to induce a sequence to sequence
model based on the encoded query log. To formalize this problem, given a sequence of encoded
queries {F1, F2, . . . , F:}, we would like to have a model of the joint distribution of the next sequence
{G1, G2, . . . , G;}, as is shown in Equation 1.1. Consequently, given an input sequence of encoded
queries {F1, F2, . . . , F:}, we could use the model to find the most likely sequence of encoded queries
{G1, G2, . . . , G;} to succeed it, see Equation 1.2.

ℙ[{G1, G2, . . . , G;} | {F1, F2, . . . , F:}] (1.1)

arg max
G1,G2,...,G;

ℙ[{G1, G2, . . . , G;} | {F1, F2, . . . , F:}] (1.2)

Objectives

To address the second research problem, the following objectives were identified.

• Design and implement a model architecture to model the joint conditional probability of the
output sequence. Parameters such as input sequence length, output sequence length and
dictionary size should be adjustable by the user in order to support different databases and
optimization goals.

• Training and optimization of the model using the historic query data to obtain a performant
model. Appropriate training, validation and test sets need to be created from the encoded query
log to measure the model’s capability to generalize to data outside the training set. Additionally:

– A loss function needs to be determined to quantify predictions.

– Class imbalance needs to be addressed to avoid low predictive accuracy of infrequent
classes.

– Hyperparameter tuning of optimizer algorithms, learning rate, embedding size, number of
epochs etc. to improve model performance

– Regularization should be used in an attempt to improve model performance and avoid
overfitting.

• Implementation of an inference algorithm to obtain the most likely sequence of encoded queries
given a sequence of encoded queries. Inference should not be too computationally expensive
to provide predictions in a timely manner.

• Evaluation of the model using suitable metrics and comparison with other prediction methods.

4

1.3. CONTRIBUTIONS CHAPTER 1. INTRODUCTION

• Investigate the model’s usefulness by placing the model in a practical setting and measuring its
effect on query answering time, i.e. the time needed to answer a query.

Research Question 2

This leads us to the second research question:

How could a deep learning based framework be used to build a predictive model for SQL query data?

1.3 Contributions

The scientific contributions of this thesis are two-fold.
First, the current state of the literature is limited regarding the prediction of database queries

or components thereof, and typically use SQL (text) based approaches. This work presents a novel
approach for the feature engineering of SQL queries for machine learning. Namely, by generating
the corresponding query execution plan and splitting it into a set of reusable components, the query
operators, we enable predictions that are partially correct. Thereby, this work presents a method of
encoding these query operators into vectors of dimensions suitable for neural networks and possibly
other predictive methods.

Second, while machine learning has been used to create query optimizers or estimate query
execution time, little research exists on machine learning as a means of creating a predictivemodel for
database queries. This thesis demonstrates a predictive model based on a deep learning framework
for query operators, by which the operators of future queries can be predicted given the operators
corresponding to queries in the past. In turn, the predictions could be used by a database management
system to prepare for future queries and improve overall query efficiency.

1.4 Outline

The remainder of this work is organized as follows. For the ease of the reader, background information
and related work on database management systems and machine learning is discussed first in Chapter
2. Subsequently, Chapter 3 presents the proposed method for encoding SQL queries into vectors.
Afterward, Chapter 4 describes the conception of the machine learning model with a deep learning
framework. This includes the architecture of the model and how it can be used for inference. Chapter
5 presents the experimental setup and includes information on what data sets were used, how the
data was prepared, and how the model was trained and evaluated. Chapter 6 presents and discusses
the obtained results. Finally, the work is concluded in Chapter 7 together with the known limitations
and suggestions for future work.

5

Chapter 2

Preliminaries

This chapter introduces background information and related work on database management systems
and machine learning to aid in understanding the contributions of this work. First, the reader is
presented with a brief introduction to database management systems with a special focus on query
execution plans. Subsequently, we present the reader with existing literature relevant to the feature
engineering of SQL queries. Afterward, we introduce the field of machine learning and how it could
be applied to our problem; what constitutes a learning problem, and how we formalize the process
of learning. Then, we briefly describe (deep) neural networks as a class of prediction rules and focus
on a specific type of neural networks for sequential data.

2.1 Database Management Systems (DBMS)

A database management system (DBMS) is software for creating and maintaining databases and
enables end-users to perform create, read, update, and delete (CRUD) actions on data in the database.
DBMSs generally offer support for one particular database model, such as relational (e.g. PostgreSQL),
document (e.g. MongoDB), and key-value (e.g. Redis) databases. From the existing database models,
relational databases are by far the most common [18]. Recently, big data platforms such as Apache
Spark also added support for working with relational data [19], [20]. Relational databases were first
introduced in the 1970s [21] and later popularized in the 1980s by providing a convenient way of
modeling data as rows and columns in a set of tables. The relational aspect comes from the way
that these tables are interconnected. For example, a restaurant chain may have multiple venues,
and customer orders are associated with one of the venues at which they were placed. A relational
database models this relation by associating rows in one table with rows of another. An example is
given in Tables 2.1 and 2.2, where orders have an associated venue_id.

id items price venue_id

1 {cola: 2, beer: 7} 21.0 1
2 {coffee: 1} 2.5 4
3 {fries: 2, beer: 2} 14.0 2
4 {nachos: 1, wine: 6} 29.0 2

Table 2.1: Order

id name city

1 Eindhoven Eindhoven
2 Eindhoven Strijp Eindhoven
3 Eindhoven Station Eindhoven
4 Veldhoven Noord Veldhoven

Table 2.2: Venue

To perform CRUD actions, queries are generally formulated in the Structured Query Language
(SQL), the de facto standard of query languages in relational databases. These queries are evaluated
by the query processor to obtain the desired result. For example, one could retrieve all the venues
located in Eindhoven using SELECT * FROM venue WHERE city=‘Eindhoven’ or retrieve the ordered

2.1. DATABASE MANAGEMENT SYSTEMS (DBMS) CHAPTER 2. PRELIMINARIES

items from orders that have a total price over 25 euros with SELECT * order WHERE price>25.
Obtaining the results of these queries is relatively simple by scanning over each row in the table and
comparing the query parameter with the row attribute values. However, SQL allows for more complex
operations, such as joining multiple tables together. Consider the following query in Algorithm 1,
whose goal is to obtain the order IDs from all the orders placed at the venue named ‘Eindhoven’ with
a price greater than or equal to 20 euros.

Algorithm 1: Example SQL Query
1: SELECT order.id
2: FROM order, venue
3: WHERE order.venue_id = venue.id
4: AND venue.name = ‘Eindhoven’
5: AND order.price ≥ 20

In this case, the order of operations is not immediately clear. One option is to find the venue ID
of the venue named ‘Eindhoven’ first, and then all orders associated with that venue ID and a price
greater or equal to 20 euros. Another option is to filter all the orders whose price is less than 20
euros first, and then for each order check if the associated venue ID corresponds to a venue named
‘Eindhoven’. This problem becomes worse the more tables are involved in the query. To illustrate,
determining the join order of a join over 10 tables already results in 3,628,800 possible join orders,
as there are <! possible combinations of join orders for a join over < tables [22]. Naturally, some
orders of operations are much more efficient than others. Therefore, most DBMSs implement a query
processing pipeline that aims to optimize this process by finding the most efficient order of steps to
take to answer the query. Such a query processing pipeline is outlined in Figure 2.1.

Figure 2.1: Query Processing Pipeline

In particular, the query optimizer is responsible for finding the optimal sequence of evaluating
the operators and accessing tables for a given SQL query. The result is what is known as the query
execution plan (QEP).

7

2.2. THE FEATURE ENGINEERING OF SQL QUERY DATA CHAPTER 2. PRELIMINARIES

2.1.1 Query Execution Plans (QEP)

For a given SQL query, the query execution plan (QEP) can be defined as the sequence of steps
performed by the DBMS that are required to evaluate the query. For the example query in Algorithm
1, Figure 2.2 shows a corresponding QEP. A DBMS might generate multiple QEPs for a query and
execute only the one with the lowest cost estimate. This particular QEP was determined to be the
most optimal by PostgreSQL, a popular open-source relational database management system, when
executing the query on the database. As can be seen in Figure 2.2, the optimal (as estimated by the
query optimizer) way of evaluating this query is by first reading the order and venues table separately,
and filtering them based on order price and venue name respectively. Subsequently, the venue IDs
are matched between orders and venues. Lastly, the result is projected on the order ID attribute to
only obtain a list of order IDs.

Figure 2.2: A QEP for the example SQL query in Algorithm 1

For a given SQL query ? let us now formally define the QEP. Let > be the QEP of ?, which is a tree
where each non-leaf node is an operator from a set of operatorsA. For example, a nested loop-join is
denoted by ⊲⊳NL and a union is denoted by ∪. In addition, let each leaf node of > be a base table access
operator, either a table scan or an index scan which we denote by T and I respectively. Thereby, the
example QEP in Figure 2.2 could be represented as follows, where parentheses indicate the operator
hierarchy: (

forder_price≥20
(
T(=@34@A)

)
⊲⊳NL fvenue_name=‘Eindhoven’

(
T(D4<C4A)

))
Throughout this thesis, we will use the commonly used relational algebra symbols to denote certain
operators, such as ‘Π’ for projections. However, there is not a one-to-one relation between QEPs and
relational algebra, as the QEP may include operators that are undefined in relational algebra, such as
operators for ORDER BY and LIMIT clauses [23]. This is also the reason we define additional operators
T and I, as no distinction is made between table and index scans in relational algebra.

2.2 The Feature Engineering of SQL Query Data

Unfortunately, research on the feature engineering of SQL queries for the purpose of creating a
predictive model is limited. Perhaps the only research similar to the problem domain is research
introducing Apollo, a learning system of query correlations for predictive caching in geo-distributed
systems [5]. They propose the use of query templates aggregated into a frequency-based Markov
graph to define dependency relationships between queries. Query templates are constructed from a
query by replacing the parameters with a placeholder such that if two queries are identical except
for their parameters, they correspond to the same query template. For example, the query ‘SELECT

8

2.2. THE FEATURE ENGINEERING OF SQL QUERY DATA CHAPTER 2. PRELIMINARIES

* FROM students WHERE id=197283’ becomes ‘SELECT * FROM students WHERE id=?’. While
this addresses the complexity of query parameters by focusing only on the structure of the query, the
problem with this approach is that a small change in the query still results in a completely different
template. For example, by adding an ORDER BY clause to the query, its template changes despite only
the ordering of the results being different. This also means that a predictive model needs to predict
a query in its entirety to have a prediction that is both valid and useful, i.e. there are no partially
correct predictions. Thus, using the SQL query templates as features greatly limits the potential of
any predictive model.

Therefore, we can instead look towards using the query execution plan (QEP) of a query as input of
our encoding scheme. The QEP includes all the query details while providing a hierarchical structure.
Several methods to encode QEPs have been demonstrated in previous research, albeit for different
purposes. These purposes include, among others, query optimization and query cost estimation [4],
[6], [7]. For example, Neo and Bao are query optimizers that leverage reinforcement learning [4],
[6]. Regardless of the application, using QEPs in neural networks requires vectorization, so we could
draw inspiration from these publications.

One approach of encoding QEPs is to use two different encodings: a query encoding for the query
details independent of the QEP, and a plan encoding for the operations of the QEP [4]. In the model,
these two encodings can be concatenated to obtain their joined representation. An example of such
an encoding can be seen in Figure 2.3, where an adjacency matrix for the joins as well as a vector
indicating the presence of a column are combined into a single query level encoding. While this

Figure 2.3: Query level encoding [4]

query level encoding conveys information on what tables are joined and what column predicates are
involved, it fails to convey information on the query operators. That is, this encoding does not include
information on the operators except for what tables are joined. It fails to capture information on the
type of join, the order of operations, and neglects other operators, such as projections and filters.

Another option is to encode each node of the QEP tree into a vector [4], [6]. Constructing these
vectors is done based on the existence of a certain operator, table, or index and yields a tree of vectors.
Figure 2.4 demonstrates such an encoding. One benefit of keeping the tree structure intact is that tree
operations (e.g. tree convolutions) could be used in the model [4], [6]. Alternatively, the tree could
be flattened into a single vector as was also demonstrated in other works [1], [24]. However, while
this encoding includes information on the operators, it loses the information on the table attributes,
such as the attributes used in joins, filters, and projections. Using a machine learning-based predictive
model gives rise to another problem with this approach. In particular, this type of encoding scheme
is susceptible to ‘grammar’ errors as the QEPs are predicted based on probability. For example, an
incorrect prediction might indicate joins on tables that can not be joined, index scans of tables for
which no index exists, and leaf nodes not corresponding to table/index scans etc. Including table

9

2.3. MACHINE LEARNING CHAPTER 2. PRELIMINARIES

attributes in this encoding scheme would make predictions even more susceptible to errors. Previous
research also assumed that QEP trees were strictly binary, while this need not always be the case [6].
For instance, operators for sorting only have one child node, and union operators can have more than
two child nodes.

Figure 2.4: Plan level encoding [4]

One could also look at research in other domains where the encoding of graph data played a key
role. A notable example is the application of neural networks on molecular structures [25]. In their
paper, they introduce an algorithm that uses a hashing approach to encode an atom and its neighbors
into an integer index. This allows them to encode the highly dimensional structure of molecules into
a relatively small integer representation that is suitable for use in neural networks and end-to-end
prediction pipelines.

2.3 Machine Learning

Machine learning is part of the broader field of artificial intelligence. Specifically, machine learning
focuses on the research and development of algorithms that allow computers to perform certain
tasks by learning from data without being programmed how to do those tasks explicitly [26]. One
particular class of algorithms is that of neural networks, which vaguely mimic human brain activity by
connecting artificial neurons to recognize relationships between large amounts of data. Deep learning
is a subset of machine learning, where the ‘deep’ refers to the use of multiple layers in these networks
resulting in deeper model architectures. Ultimately, deep learning is one of many techniques that can
be used to address the problem of learning.

However, what constitutes a learning problem? Many of the systems that are developed today are
intended to optimize processes and enable automation. Building these solutions requires defining a
set of rules such that the guaranteed outcome satisfies some kind of goal. In addition, these solutions
can become arbitrarily complex as the set of rules grows and the goals become more ambitious.
Consider the process of building a skyscraper as an example. Building a skyscraper requires careful
planning, calculations, heavy machinery and is labor-intensive. The set of rules that would guarantee
that the outcome of the process is the skyscraper as per the design is tremendous. Regardless of how
complex the process of building a skyscraper may seem, this does not constitute a learning problem as
there is sufficient understanding to meet the desired goal. In other words, any algorithm that learns
from observation would not outperform the existing solution.

On the other hand, many problems that are easy for humans are hard to solve algorithmically.
Imagine the scenario of detecting cats or dogs in an image, for which some examples are shown in
Figure 2.5. This is trivial for any human, yet very complex for any algorithm when you consider the
number of ways in which combinations of pixel values determine whether a picture contains a cat or
a dog. In this case, the set of rules is too large to fully express the solution to our problem. However,

10

2.3. MACHINE LEARNING CHAPTER 2. PRELIMINARIES

Figure 2.5: Select images of cats and dogs [27]

we might be able to use the distribution of pixel values to determine whether the image is more likely
to portray a cat or dog, as will be further elaborated on in the next section. Comparing this example
to the previous example of building a skyscraper, the distinction can be made between writing a set
of rules and learning a set of rules.

2.3.1 The Learning Problem

To formalize a learning problem we use concepts from statistical learning theory [28], [29]. Let us
again consider the problem of classifying pictures of cats and dogs. The goal would be to construct
a model that can predict whether the images contain either a cat or a dog. Specifically, assume
the images have a resolution of 256 × 256 pixels and when one of these images is given as input
to our model, it should return either ‘cat’ or ‘dog’. In supervised machine learning, models are
constructed automatically by feeding it a subset of the images and the accompanying ground-truth
label, the training data set. Equally important, the model should generalize well to pictures outside
the training data set, i.e. images not seen before by the model, which is evaluated using a validation
and testing set. Thus, the model should be able to learn from the data that it receives and make
decisions based on the learned information. It should be able to apply what it has learned to data
it has never seen before. In unsupervised machine learning, the labels are incomplete or missing in
their entirety, and finding structure in the data according to the features is also left up to the model,
this is also known as clustering.

For any prediction task, it is necessary to learn from the data space, which is defined as

X = Feature Space

Y = Label Space

The feature space specifies all possible values of the data, while the label space specifies all possible
labels of the instances in the feature space. The label space accompanies the feature space such that
for each F ∈ X there is a G ∈ Y denoting the label of F. Consider the example of classifying pictures of
cats and dogs. Assuming the images are grayscale and each pixel has an intensity between 0 and 255,
the feature space would then be X = [0, 255]256×256, and the label space would beY = {‘cat’, ‘dog’}.
For a prediction task, we typically observe an instance of the feature space and try to predict its label
in the label space. More formally, we want to determine a mapping 5 : X → Y that predicts G ∈ Y
for any given input F ∈ X as well as possible. However, defining what is a good prediction and what
is not depends on the problem and the available data.

Empirical Risk Minimization

To evaluate a prediction we use what is called a loss function. Suppose there is an instance F ∈ X
with an accompanying label G ∈ Y. Now let Ĝ ∈ Y be the predicted label after processing F. The

11

2.3. MACHINE LEARNING CHAPTER 2. PRELIMINARIES

loss function is then defined as a mapping � : Y × Y → ℝ. Generally, the loss function that is used
depends on the relevant learning problem. A simple example of a loss function is the 0/1-loss, given
in Equation 2.1, where the only distinction being made is between a correct and incorrect prediction.

�(Ĝ, G) =
{
1, if Ĝ ≠ G

0, otherwise
(2.1)

Using the statistical learning framework, we assume that the combinations of features and labels
are samples from a joint probability distribution on X × Y, denoted by D. Accordingly, let (-, .) ∈
X ×Y denote a pair of random variables distributed according toD. Even though every combination
of feature and label (-, .) is possible in theory, there are some combinations that are more likely than
others. For instance, the pictures of cats and dogs will almost never look like a uniform gray color.
Hence, some combinations of pixel values are more likely than others. The objective is then to learn
a function 5 : X → Y that minimizes the expected loss, also known as the statistical risk:

'(5) = E
[
�(5 (-), .))

]
(2.2)

The statistical risk '(5) → ℝ indicates how a mapping 5 : X → Y performs with respect to
the loss function �. However, choosing 5 such that the risk is minimized is not trivial. To compute
the risk, we need to know the joint distribution D, but D is unknown. Therefore, it is possible to
use the available data based on the assumption that they contain representative samples from D. In
particular, let � = {-7, .7}<7=1 denote the available data. Consequently, the risk can be minimized over
the data � to find a mapping 5 whose risk approximates the risk over D. This is defined as empirical
risk minimization, where the empirical risk is given by:

'̂<(5) =
1
<

<∑
7=1

�(5 (-7), .7) (2.3)

In other words, the empirical risk is the average loss for all the samples in our data set for a rule
5 . It follows that we would like to choose a prediction rule based on minimizing the empirical risk.
Hence, given a class of functions F we can define the empirical risk minimizer

5̂< = arg min
5 ∈F

'̂<(5).

Even though this is the best we can hope to do without making assumptions about the joint
distributionD, there is a danger to this approach. Consider the case where the collection of candidate
prediction rules F is extremely large, possibly infinite. A large F would mean that we can always
make

inf
5 ∈F

'̂<(5)

small, given that we are increasing the number of ways to fit the data. Thereby, one could choose
a rule 5̂< ∈ F such that '̂<(5) is small, or 0 even if the rule perfectly fits the data. Unfortunately,
this does not mean that this prediction rule performs well for instances outside of the data set. This
problem fits the description of overfitting. However, the real problem is the model not being able to
generalize outside the data set, as there could exist rules that generalize well despite overfitting the
training data1. In an attempt to address this problem, we split the data set � into three disjoint data
sets: a training set �train, a validation set �val, and a test set �test. �val is used to evaluate 5 during
training, and �test is used to evaluate 5 after training completes. This way, we can estimate how well
5 generalizes to data outside �, i.e. previously unseen data.

11-Nearest Neighbor or some deep neural networks are sometimes able to fit the data perfectly while still generalizing well
outside the training data [28]

12

2.3. MACHINE LEARNING CHAPTER 2. PRELIMINARIES

2.3.2 Neural Networks

Thework in this thesis focuses on the use of deep learning as ameans of addressing a learning problem.
Therefore, the class of models F that will be considered is that of neural networks. The concept of
neural networks will be briefly described for those unfamiliar with this class of prediction rules. First,
we will focus on the elementary units of neural networks, the artificial neuron. Subsequently, we will
demonstrate how these neurons can be used to learn from data and how they can be connected to
create networks and learn more complex representations. Lastly, a specific class of neural networks
that are particularly suitable for our problem will be discussed.

The Artificial Neuron

Inspired by biological neurons found in the brain, the artificial neuron receives one or more (weighted)
inputs and produces one output by means of some ‘activation’ function to the weighted sum. A visual
representation of an example artificial neuron can be seen in Figure 2.6.

Figure 2.6: Artificial Neuron

More formally, this particular neuron takes 5 inputs which are given by F0, F1, F2, F3, F4, also
denoted as input vector x. The edges between the nodes are parametrized by the weights vector w
and a bias term 1. The weights and bias together form the parameters of the neuron, denoted as \.
When the neuron ‘activates’, some function q is applied to the weighted sum of the inputs offset by
the bias. For any artificial neuron we can denote its output1 =\(F) by

=\(F) = q
(∑

7

E7F7 + 1
)
= q

(
w>x + 1

)
.

Observe that the artificial neuron becomes a linear regression model when we use a linear activa-
tion function:

=\(F) = w>x + 1
Recall how we cast the learning problem in the framework of statistical learning theory, and let

our class of models F be defined as the set of neural networks with only one neuron that takes exactly
5 inputs. In this case, we would like to choose parameters \ such that the empirical risk is minimized.
Let \̂ denote the empirical risk minimizer, then we have

\̂ = arg min
\

'̂<(=\) = arg min
\

1
<

<∑
7=1

�(=\(x7), G7). (2.4)

Thus, to find a neuron that best fits the data, we choose the parameters \ such that the empirical
risk is minimized. However, the problem of choosing these parameters still remains.

1In matrix notation w>x denotes the dot product of vectors w and x

13

2.3. MACHINE LEARNING CHAPTER 2. PRELIMINARIES

Gradient Descent

Theminimization in Equation 2.4 needs to be implemented explicitly using an algorithm. A commonly
used optimization algorithm is gradient descent, which allows us to optimize parameters for models
that far surpass the complexity of linear regression models. The concept of gradient descent is not
difficult to understand. Consider any continuously differentiable function 5 : ℝ2 → ℝ, which when
plotted looks like a hilly landscape. If we start at any point on this landscape, the logical step to take
is in the direction with the biggest decline, i.e. in the direction of the gradient of 5 . This process is
repeated until a local minimum is reached and the loss function does not decrease any further. A
visual representation of this process is given in Figure 2.7.

Figure 2.7: Gradient descent optimization for finding a local optimum [30]

Inmachine learning applications, we consider the empirical risk as a function of the parameters and
step in the direction where the empirical risk declines the most. The gradient of the loss is computed
with respect to all parameters in the model (weights and bias) and the parameters are updated to
‘take a step’. In practice, it is common to use a stochastic approximation of gradient descent, called
stochastic gradient descent (SGD), which estimates the gradient rather than computing it to reduce
the computational burden.

Classification

In many cases, we would like to assign a discrete output to our inputs. To predict a discrete value from
a fixed set of classes, rather than predicting a continuous value, we can use an activation function
whose output has the same properties1 as a probability distribution over a discrete set of elements.
Two notable examples are the logistic sigmoid function for binary classification and softmax function
for multiclass classification. For the example neuron in Figure 2.6 and the sigmoid function we can
compute the output as follows:

=\(F) = sigmoid(E0F0 + E1F1 + E2F2 + E3F3 + E4F4 + 1)
= sigmoid(w>x + 1)

=
1

1 + 4−(w>x+1)
.

For binary classification, such as in our example of classifying images containing a cat or dog, we
can then simply define the probability of the input belonging to either output label as

ℙ(G = ‘cat’ | x) = =cat = =\(x) = sigmoid(w>x + 1)

and
ℙ(G = ‘dog’ | x) = =dog = 1 − =cat.

1Takes values between 0 and 1, its components are positive, and in the case of the sigmoid function also sum to 1.

14

2.3. MACHINE LEARNING CHAPTER 2. PRELIMINARIES

Multi-Layer Perceptron (MLP)

So far, we have shown how a single neuron can learn from data by updating the weights of the inputs
with respect to the loss function. Additionally, we have shown how the output of a neuron can be
used to classify instances of the data. However, there is a limitation to the artificial neuron. Namely,
a single neuron develops a linear combination of the weights which describes a decision (hyperplane)
boundary that partitions the input space into two regions corresponding to the two labels. This
limitation prevents us from modeling more complex and non-linear mappings between the input and
output. To address this, we can combine neurons by using the output of one neuron as the input of
another. Furthermore, by stacking neurons we can form hidden layers between the input and output
layers. The result is the so-called Multi-Layer Perceptron (MLP), an artificial neural network, of which
an example is given in Figure 2.8 below.

Figure 2.8: Example of an MLP with a single hidden layer

Observe that each neuron receives the same input values and the output of the hidden layer
becomes the input of the next layer (in this case the output layer consisting of a single neuron).
The neurons in the same layer typically have the same non-linear activation functions. Perhaps
not surprisingly, we can also stack multiple layers to create deeper networks, which enables us to
decompose decision boundaries into a set of simpler decision boundaries. An example of an MLP
with two hidden layers is given in Figure 2.9.

To fit multi-layer neural networks with gradient methods we also need to compute the gradient of
the loss. Rather than computing the gradient with respect to each weight individually, a backpropa-
gation algorithm computes this efficiently by calculating the gradient per layer going backward from
the last layer to the first [31], demonstrated in Figure 2.10. The computed gradients of one layer are
reused for the computation of the previous layer to improve learning efficiency.

2.3.3 Sequential Models

Data can also be subject to temporal correlations. Temporal correlations in natural language, for
example, show that some words tend to precede other words. The word suggestions on modern
smartphone keyboards are a demonstration of this fact. Some other examples of domains with
sequential data are electrocardiograms, DNA sequencing, speech recognition, and financial markets.

The main challenge is being able to detect (long) signals in the data. Any kind of model should
ideally not need to see the whole signal to produce the output. Using a sliding window approach,
where the contents inside the window form the input of the neural network, one could use a window
size roughly equal to the size of the signal to perform this task. However, this quickly becomes

15

2.3. MACHINE LEARNING CHAPTER 2. PRELIMINARIES

Figure 2.9: Example of an MLP with two hidden layers

impractical due to the vast number of ways data can be arranged inside the window, as signals
can be very long. Alternatively, one could try using a small sliding window that can detect key
points of the signal, such as the start and end. Unfortunately, this is not possible due to the fact
that our neural network now needs memory. In particular, the start of the signal, when detected,
should be memorized until the end of the signal is detected to identify the signal in its entirety. The
neural networks as they have been presented thus far are incapable of storing information between
consecutive inputs. Consequently, the recurrent neural network (RNN) was introduced in the 1980s
[32].

Recurrent Neural Networks (RNN)

Recurrent neural networks (RNN) are a type of network that can also learn to model the temporal
relation between inputs [32]. In other words, RNNs have a temporal dimension. Additionally, RNNs
can process variable-length sequences of data points at one time while producing an output at each
step. The temporal dimension is captured in the form of a memory state at each step. Thereby, RNNs
are well suited for data that exhibit temporal correlations and can be used for (aligned) sequence
classification, sequence generation, sequence to sequence modeling, and more.

The RNN architecture is similar to that of the MLP but introduces an internal hidden state with
links and a delay, illustrated in Figure 2.11. We can unfold the RNN in time to show the distinct
time-steps B, demonstrated in Figure 2.12. Weight matrices ,, * and + maintain input-to-hidden,
hidden-to-hidden and hidden-to-output weights respectively. The hidden states are high-dimensional
vectors and create a recurrence by being connected to each other. Thereby, the output of the hidden
state ℎB of one time-step is used as input of the next time step, such that

ℎB = 5ℎ(FB, ℎB−1).

Furthermore, we have that the output GB of one time-step is defined as a function of the hidden state:

GB = 5G (ℎB).

More formally, we can define the RNN cell as shown in Figure 2.13. Let weight matrices ,, *, +
and biases 1, 2 be parameters of the model, and q1, q2 to be activation functions. With q1 = tanh

16

2.3. MACHINE LEARNING CHAPTER 2. PRELIMINARIES

Figure 2.10: Backpropagation in an MLP with two input neurons, three hidden neurons, and one
output neuron (biases are omitted for brevity)

Figure 2.11: RNN architecture, where the
square connection indicates a delay.

Figure 2.12: RNN architecture displayed in an
unrolled way

and q2 = 73 we can denote the complete RNN cell by

0B =,ℎB−1 + *FB + 1,
ℎB = tanh 0B,

GB = +ℎB + 2.

Similar to MLPs, RNNs also require backpropagation of the loss to update weights and minimize
the empirical risk. In RNNs however, the output of one time-step depends on the previous ones.
So the loss is backpropagated through time (BPTT) from the last time-step B to the first time-step,
illustrated in Figure 2.14. In vanilla1 RNNs, the hidden units only perform the non-linear activation
with functions q1 and q2. However, the published literature on RNNs spawned several variations,
such as the Long Short-TermMemory (LSTM) and the Gated Recurrent Unit (GRU) that performmore
complex computations per hidden unit. Previous research has shown impressive performance for the
classification and prediction of sequential data [33], [34].

1Not customized from its original form

17

2.3. MACHINE LEARNING CHAPTER 2. PRELIMINARIES

Figure 2.13: Vanilla RNN cell (biases are omitted for brevity)

Figure 2.14: Backpropagation through time of an RNN

Long Short-Term Memory (LSTM)

Firstly, Long Short-TermMemory (LSTM) networks were introduced in 1997 and designed to overcome
error back-flow problems in vanilla RNNs, such as vanishing and exploding gradients [33]. LSTMs
are especially performant when the goal is to learn long-term dependencies in the data. In contrast
to vanilla RNN cells, the LSTM cells have a more complex internal structure that includes a memory
cell 2B with various gates to regulate the flow of information. In specific, the LSTM cell includes an
input gate 7B, output gate =B, and forget gate 5B while the memory cell can flow freely to the next
hidden unit. A visual representation of the LSTM cell is given in Figure 2.15, where weight matrices
, 5 ,,7,,2, and,= maintain the weights for each gate separately. The f symbol denotes the logistic
sigmoid function in the following two diagrams.

LSTMs use the hidden state ℎB as the output of the unit. To compute the output of the cell, the first
step is to compute the output of the forget gate. The forget gate determines which past information
is kept and which is forgotten by multiplying each value in the previous cell state 2B−1 with vector
values in the range [0, 1].

5B = sigmoid(, 5 [ℎB−1, FB] + 1 5)

Then, the add gate determines which new information should be memorized in the cell state.

2′B = tanh(,2 [ℎB−1, FB] + 12)
7B = sigmoid(,7 [ℎB−1, FB] + 17)

18

2.3. MACHINE LEARNING CHAPTER 2. PRELIMINARIES

Figure 2.15: LSTM cell (biases are omitted for brevity)

Using this, the previous cell state is updated by

2B = 5B · 2B−1 + 7B · 2′B .

Finally, the output gate is used to calculate the next hidden state by

=B = sigmoid(,= [ℎB−1, FB] + 1=)
ℎB = =B · tanh (2B)

Figure 2.16: GRU cell (biases are omitted for brevity)

Gated Recurrent Unit (GRU)

Since the inception of LSTMs, other variations have been proposed. Arguably the most notable is
the Gated Recurrent Unit (GRU). GRUs simplify the original LSTM cell by replacing the add, forget,
and output gates with a reset @B and update HB gate [34]. With fewer parameters to train, GRUs

19

2.3. MACHINE LEARNING CHAPTER 2. PRELIMINARIES

are computationally more efficient while achieving similar performance as LSTMs. The GRU cell is
visualized in Figure 2.16, with weight matrices for each gate given by,@,,C, and,2.
Computing the next hidden state is done as follows, which also serves as the output of the cell. First,
the output of the gates are computed by

HB = sigmoid(,CℎB−1 + *CFB + 1C),
@B = sigmoid(,@ℎB−1 + *@FB + 1C),

allowing us to compute the proposed update through

ℎ̃ = tanh(,2 (@B · ℎB1) + *2FB + 12).

Lastly, the new value for the hidden state is calculated as

ℎB = HB · ℎB−1 + ℎ̃B · (1 − HB).

Both LSTMs and GRUs have been successfully applied to tasks involving sequential data, ranging
from language translation to image captioning [14]–[17].

For sequence to sequence modeling, an important advancement in deep learning has been the
introduction of encoder-decoder RNN models [35], [36]. The encoder-decoder framework consists
of a separate encoder and decoder, where the encoder is responsible for encoding an input sequence
into a fixed-length vector and the decoder produces an output sequence from the encoded vector.
Both the encoder and decoder are trained simultaneously on a data set to learn a mapping between
input and output sequences.

20

Chapter 3

SQL Query Encoding

This chapter addresses the first research question and is concerned with the so-called feature engi-
neering for machine learning of SQL queries. Feature engineering is the process of extracting features
from raw data using domain knowledge, such that the features can be used by a predictive model. In
our case, for any given SQL query we would like to extract its features such that the prediction of these
features is meaningful. Within the context of relational databases, a meaningful prediction would
mean that a correct prediction can be used to optimize some internal process and ultimately improve
query efficiency and/or performance. Additionally, we also require the features to be of usable di-
mensions, such that they can be encoded into vectors and we avoid having too many parameters for
our model.

The outline for this chapter is as follows. First, we discuss how parts of the query execution plans
(QEP) represent intermediate results of the query. Then, we will discuss how the dimensionality
of QEPs can be reduced using various heuristics. Subsequently, we introduce the concept of QEP
fingerprinting, an encoding scheme that aims to capture the reusable elements of a query. The
encoding scheme will then be formalized and presented together with with a motivation and an
illustrative example. Lastly, algorithms will be presented for encoding raw SQL queries into vectors
by means of QEP fingerprinting.

3.1 Deconstructing Query Execution Plans

Raw SQL queries, essentially strings of text, are highly dimensional and hard to represent in lower
dimensions. Where current approaches rely on query templates as features for their predictive
models, this work presents a novel method of encoding SQL queries based on the corresponding
QEP. In contrast to raw SQL queries, the QEP provides a hierarchical structure (tree) representing the
query without sacrificing information about the query. Additionally, compared to query templates, the
encoding is more robust against small changes in the query and allows for partially correct predictions.
As explained in Chapter 2, the QEP is defined by its operators, nodes that perform an action on their
descendants. One can look at these operators in isolation and deduce (incomplete) information about
the query, such as what tables are joined and what attributes are specified. Therefore, we propose to
use the operators of QEPs as features, which leads us to introduce the concept of partial QEPs.

3.1.1 Partial Query Execution Plans

The notion of a partial QEP was first introduced by Marcus et al. [4] and used it to denote a forest of
trees representing a QEP that is still being built. We take a slightly different approach, and consider
a partial QEP to be any sub-tree of a QEP. Recall that the QEP represents the query as a sequence
of steps to perform on the database to obtain the desired result. Furthermore, we have that for any
sub-tree of the QEP, evaluating its defining operator — the root node of this sub-tree — depends

3.1. DECONSTRUCTING QUERY EXECUTION PLANS CHAPTER 3. SQL QUERY ENCODING

solely on its child nodes and their descendants; i.e. changes in one branch of the query plan cannot
affect any node outside of their ancestors. This implies that for any operation in the sequence of steps
performed by the database management system (DBMS), the result of the operation depends only on
the results from previous operations in the sequence. It follows that these operators can be considered
independently and when evaluated yield some intermediate result of the query. In other words, any
sub-tree of a valid QEP is also a valid QEP, which can be evaluated on the database to obtain some
result. We define a partial QEP to be any sub-tree of a valid QEP. To demonstrate, consider the query
in Algorithm 2, which aims to retrieve all the poster images of movies that are currently airing in
cinemas.

Algorithm 2: Example SQL Query for poster images of movies currently airing in cinemas.
1: SELECT posters.image
2: FROM posters, movies
3: WHERE posters.movie_id = movies.id
4: AND movies.in_cinemas = true

Let > denote the QEP for this query, presented in Figure 3.1. One could write this QEP with notation1
as

> = Π>=AB4@_7;064

(
Π>=AB4@_7;064,>=AB4@_;=D74_73

(
T(>=AB4@A)

)
⊲⊳NL Π;=D74_73

(
f;=D74_7<_27<4;0A=B@C4

(
T(;=D74A)

))
.

Figure 3.1: An example QEP for the query of Algorithm 2

The relation Π;=D74_73
(
f;=D74_7<_27<4;0A=B@C4

(
T(;=D74A)

)
is a sub-tree of the QEP, and thus a partial QEP

of > which can be evaluated independently. Let >′ denote this partial QEP of > such that

>′ = Π;=D74_73
(
f;=D74_7<_27<4;0A=B@C4

(
T(;=D74A)

)
.

Naturally, we can represent the full QEP by substituting >′ for this relation to obtain

> = Π>=AB4@_7;064

(
Π>=AB4@_7;064,>=AB4@_;=D74_73

(
T(>=AB4@A)

)
⊲⊳NL >

′
)
.

The notion of >′ represents a relation that corresponds to an intermediate result of the query.
Namely, >′ represents the IDs of movies that are currently airing in cinemas. This relation can be

1Join attributes are omitted for brevity and T represents a table scan.

22

3.1. DECONSTRUCTING QUERY EXECUTION PLANS CHAPTER 3. SQL QUERY ENCODING

used as a substitute for the partial QEP >′. Hence, if this intermediate result was cached in memory,
it could be used directly for evaluating >, without needing to re-evaluate >′. Naturally, it could be
used for other queries that have >′ as one of its partial QEPs, and the same can be said for every other
partial QEP. Each operator in >′ also corresponds to some intermediate result of the query. Figure 3.2
highlights >′ in blue and shows the intermediate results of each operator in >′.

Figure 3.2: The partial QEP >′ and the intermediate results of its operators

So, we can split any QEP corresponding to a query into a set of partial QEPs. These partial QEPs
form a set of reusable elements that make up the QEP and can also re-occur in QEPs corresponding
to other queries. For the example QEP in Figure 3.1, we identify the partial QEPs with a blue outline
in Figure 3.3. In this case, we find that there are exactly 7 unique partial QEPs in the QEP.

Figure 3.3: Identified partial QEPs of the QEP in Figure 3.1

More formally, we let S(>) = {>′1, >′2, . . . , >′<} be the set of all < partial QEPs for a QEP >, with

23

3.1. DECONSTRUCTING QUERY EXECUTION PLANS CHAPTER 3. SQL QUERY ENCODING

< ∈ ℕ+. I.e. we define a mapping
5 : >→ S(>) (3.1)

that maps a QEP > to its set of partial QEPs S(>). The elements of S for the QEP in 3.1 could then be
specified as

S(>) =
{
T(;=D74A),

T(>=AB4@A),
f;=D74_7<_27<4;0A=B@C4

(
T(;=D74A)

)
,

Π>=AB4@_7;064,>=AB4@_;=D74_73
(
T(>=AB4@A)

)
Π;=D74_73

(
f;=D74_7<_27<4;0A=B@C4

(
T(;=D74A)

)
,

Π>=AB4@_7;064,>=AB4@_;=D74_73
(
T(>=AB4@A)

)
⊲⊳NL Π;=D74_73

(
f;=D74_7<_27<4;0A=B@C4

(
T(;=D74A)

)
,

Π>=AB4@_7;064

(
Π>=AB4@_7;064,>=AB4@_;=D74_73

(
T(>=AB4@A)

)
⊲⊳NL

Π;=D74_73
(
f;=D74_7<_27<4;0A=B@C4

(
T(;=D74A)

))}
(3.2)

3.1.2 Reducing Dimensionality

We have established the definition of a partial QEP to be any sub-tree of the QEP which represents
some intermediate result of the query. The hierarchical structure of the QEP tells us that the result
from evaluating a partial QEP can be used as a surrogate for that partial QEP. It is this dependency
that allows us to dismantle a query into a set of partial QEPs, such that a correct prediction of a
partial QEP can be used to optimize queries whose QEP includes the same partial QEP. However,
the dimensionality of (partial) QEPs is still extremely large with a complexity of at least <! where
< is the number of tables in the database. This makes it difficult to vectorize QEPs without using
some heuristics for reducing the dimensionality, especially if we consider sets of partial QEPs. To
further reduce the dimensionality of the resulting vectors, we present several heuristics based on our
observations.

Query Templates

Queries can be transformed into query templates before generating the QEP, similar to the approach
taken for Apollo [5]. The main reason for this is that query parameters are represented by basic types,
such as integers, floats or strings. Encoding these types is not practical given the size of their respective
universes. For example, the simple query SELECT * FROM cities WHERE name=‘Eindhoven’ already
has infinitely many possibilities for the parameter name, given that it is a string. Hence, we transform
queries into a query template by replacing all parameters with a placeholder. Thereby, the previous
query would be transformed into SELECT * FROM cities WHERE name=‘?’ and the queries SELECT
* FROM cities WHERE name=‘Eindhoven’ and SELECT * FROM cities WHERE name=‘Rotterdam’

would both result in the same query template. The underlying structure of the query template is the
same and still conveys information on what tables are accessed, which attributes are important, and
what the result should look like.

Furthermore, observe that in some cases, filters can still be applied to the result of the query tem-
plate. For example, the result from SELECT * FROM cities could still be filtered on name=‘Eindhoven’
to obtain the result of the original query. These filter operations aremuch less costly to evaluate ($(<))
compared to compound operators such as joins ($(<2)). Only when the result is projected on at-
tributes not including the filter attribute, retroactive filtering becomes impossible without altering
the QEP. Even then, altering the QEP to include the filter attributes in the projected attributes is
trivial. To demonstrate, consider the example SQL query in Algorithm 2 with the corresponding QEP
in Figure 3.1. Imagine the case where the filter for movies.in_cinemas = true was changed to

24

3.1. DECONSTRUCTING QUERY EXECUTION PLANS CHAPTER 3. SQL QUERY ENCODING

movies.in_cinemas = false instead. Clearly, the intermediate results of partial QEP >′ and its
ascendant operators now differ as well, as it represents the movie IDs of movies not airing in cinemas.
When queries are transformed into query templates, this differentiation is lost. However, all that is
required is to slightly alter the QEP, by removing the filter operator, and including the filter attribute
in any projection that is its ascendant node. Figure 3.4 shows how the QEP in Figure 3.1 could be
altered to enable retroactive filtering for the movies.in_cinemas attribute.

Figure 3.4: The example QEP of Figure 3.1 altered to account for filter parameters

Moreover, the use of query templates improves the robustness of encodings against small changes.
Queries whose results are highly similar but differ in their parameters would result in the same
encoding. For example, consider two queries for products with price > 100 and price > 120.
These queries only differ in their result by items with a price between 100 and 120. Without this filter,
the queries would yield the same result, and we could still obtain the result of the queries respectively
by applying the filters afterward.

Operator Commutativity

An important thing to mention is that operators with more than one child node are not strictly
commutative, such as antijoins1, while others are, such as unions and inner joins. In the case of
antijoins, a distinction can be made between the ‘left’ and ‘right’ tables of the join, and swapping
these tables results in a different result. This implies that we cannot consider some arbitrary relation
T(02B=@A) B T(;=D74A) to be equivalent to T(;=D74A) B T(02B=@A), and a distinction is also needed in
the encoding.

Ideally, we would be able to capture the (non-)commutativity of operators in the encoding,
such that changing the position of child nodes results in a different encoding for non-commutative
operators while yielding the same encoding for commutative ones. However, we argue that assuming
every internal operator to be strictly non-commutative has little impact on the dimensionality of
the encoding. This is because the query optimizer is responsible for determining the optimal way
of executing the query, so an inner join on the ‘movies’ and ‘actors’ tables will always result in the
‘movies’ table being the ‘left’ table for instance. The query optimizer is consistent in these delegations
unless the contents of the subject tables change significantly.

Join Constraints

Also, note that only tables that share a key can be joined. For any two tables in a database, one
or more shared keys is a prerequisite for being able to join the two tables. Therefore, instead of
considering every unique combination of tables, we only have to consider the combinations that could

1The commonly used symbol for antijoins in relational algebra is B

25

3.1. DECONSTRUCTING QUERY EXECUTION PLANS CHAPTER 3. SQL QUERY ENCODING

Figure 3.5: A QEP for the example SQL query in
Algorithm 1

Figure 3.6: An alternative QEP for the example
SQL query in Algorithm 1

actually be encountered, and reduce the dimensionality without any loss of information. This implies
that considering all <! join orders in the encoding of a QEP is not needed, where < is the number of
tables in the database, and we only have to consider those that are valid for the subject database.

Top-9 Frequent Partial QEPs

After transforming each query into its corresponding query template, it is sensible to assume that
the number of unique partial QEPs is drastically reduced. Experiments, that will be discussed later
in Chapter 5, show that this assumption is very reasonable. However, in the case that the number
of unique partial QEPs is still too high, we could only consider the e.g. top-5000 or top-10000 most
frequent partial QEPs in our data set to encode. Even though the information could be lost on the
less frequent partial QEPs, the dimensionality of the vectors will be directly limited by the chosen
dictionary size.

Extension to Multiple QEPs

Recall that, for any given query ?, the query optimizer of a DBMS might generate multiple QEPs, of
which only the one with the lowest cost is eventually executed. For instance, for the SQL query in
Algorithm 1 it was determined that the QEP in Figure 3.5 had the lowest cost, and would thus be the
most optimal QEP to execute. However, an alternative QEP for this query is the one given in Figure
3.6. The query optimizer of a DBMS would have estimated its cost to be higher than the QEP in Figure
3.5, and as such it would not be executed. Nevertheless, it may be the case that the result of the
partial QEP corresponding to T(=@34@) ⊲⊳NL T(D4<C4) was cached in memory. This is can happen if a
previous, but different query was executed where this partial QEP was part of its most optimal QEP.
Observe that in this case, executing the QEP in Figure 3.6 makes more sense, as the cached partial
QEP can be used directly. In other words, the real cost of the QEP in Figure 3.6 is actually lower than
that of Figure 3.5 when we account for cached partial QEPs. Hence, accounting for different QEPs
per query could have a significant impact on the performance of any predictive model, and the extent
to which a DBMS could be optimized.

To account for this, the encoding could include the top-9QEPs as estimated by the query optimizer.
Consider an existing database and associated query log, a list of previously executed queries. This
query log is an ordered sequence of queries and can be defined as L? = {?1, ?2, ...?<}, where < is the
number of queries. Let P9 (?) denote the set of top-9 most efficient QEPs for a query ? with 9 ∈ ℕ+,
e.g. P5(?) corresponds to the set of the top 5 most efficient QEPs generated for a query ?. Thereby,
we can define a mapping from ? to > as

5 : ?→ > ∈ P9 (?).

26

3.1. DECONSTRUCTING QUERY EXECUTION PLANS CHAPTER 3. SQL QUERY ENCODING

It follows that the query log L? can be transformed into a sequence of sets of QEPs by mapping each
query ? to the set P(?), yielding L>

L% =
{
>11 , >12 , . . . , >19

}
,
{
>21 , >22 , . . . , >29

}
, . . .

{
><1 , ><2 , . . . , ><9

}
,

where < is the number of queries in the log and 9 is the number of QEPs considered per query.
Also, recall that each QEP > can be mapped to a set S(>) of its partial QEPs (sub-trees). Hence,

mapping each > ∈ P9 (?) to its corresponding S(>) for each P9 (?) ∈ L? would result in a sequence
of sets of sets. This structure is rather complex and no literature is known to exist that uses this
structure in applied machine learning. Therefore, we propose two methods to flatten the sets of sets
so the overall structure is simplified into a sequence of sets.

The first option is to consider all partial QEPs of each > ∈ P9 (?) as one set, i.e. take the union
over all S(>) ⋃

>∈P9 (?)
S(>)

Note that in this case, we would still be modeling the temporal correlation between queries, as each
QEP in P9 (?) yields the same result. In addition, the partial QEPs of every QEP in P9 (?) correspond
to a valid QEP that can be executed. Therefore, predictions for the partial QEPs in subsequent queries
remain valid, i.e. can be executed to obtain some intermediate result of the query. The downside is
that the cardinality of the set S of a query could become much larger, up to 9 times as large, as we
include many different partial QEPs.

Another approach is to consider only the most frequent partial QEPs for each > ∈ P9 (?). However,
this would mean that the partial QEPs corresponding to the full QEP for each QEP in P9 (?) are rarely
included in the encoding, given that these only occur once by definition. Since it would prevent
predicting the QEP in full, it has a serious limitation.

Unfortunately, we were only able to obtain the top-1 QEP for queries during experiments. Hence,
only one QEP will be considered per query in our experiments in Chapter 5. Experiments with
multiple QEPs per query and comparing both possible approaches of handling them are left for future
work.

Conditional Label Dependence

Lastly, there is a conditional label dependence between partial QEPs. In particular, some partial
QEPs always imply the presence of other partial QEPs. For the query in Algorithm 2, and its set of
partial QEPs in Equation 3.2, observe that the presence of Π;=D74_73

(
f;=D74_7<_27<4;0A=B@C4

(
T(;=D74A)

)
also implies the presence of f;=D74_7<_27<4;0A=B@C4

(
T(;=D74A)

)
in the QEP. Analogously, the presence of

f;=D74_7<_27<4;0A=B@C4
(
T(;=D74A)

)
implies the presence of T(;=D74A). In other words, for any given QEP,

all its partial QEPs with more than one node imply the presence of other partial QEPs with one of its
child nodes as its defining operator.

This dependency relation can be captured using a dependency graph, where nodes represent
partial QEPs. However, instead of using edges to denote the dependence of one node on another, we
use edges to denote which nodes are implied from other nodes. Hence, an edge from some node >′1
to some node >′2 means that when >′1 is present, >′2 must also be present in the set of partial QEPs.
Figure 3.10 shows the graph of this toy example. Self-loops are implied, given that the presence of >′1
always implies the presence of >′1.

Figure 3.7: Dependency graph where the presence of >′1 implies the presence of >′2

Now assume we have some predictive model that predicts a set of partial QEPs S corresponding
to a future query. Additionally, assume that f;=D74_7<_27<4;0A=B@C4

(
T(;=D74A)

)
∈ S and T(;=D74A) ∉ S.

27

3.2. QUERY EXECUTION PLAN FINGERPRINTING CHAPTER 3. SQL QUERY ENCODING

From theory, we can deduce that if f;=D74_7<_27<4;0A=B@C4
(
T(;=D74A)

)
is present, then T(;=D74A) must

also be present, so we know for certain that the model failed to predict one of the two partial QEPs.
Since the model includes a measure of confidence in its predictions, i.e. it predicts the elements with
the highest probabilities, the dependency graph can be used to deduce the implied elements from the
model’s top predictions. The inference of this graph can be done either as a post-processing step or
built directly into the model. Chapter 5 will explain how both approaches work and compare their
performance.

3.2 Query Execution Plan Fingerprinting

3.2.1 Overview

Based on the above, an encoding scheme was devised to transform a query log into a data set,
QEP fingerprinting. Firstly, each query is transformed into a query template by replacing all filter
parameters with a placeholder. Then, the query templates are executed on a dummy database that
has an identical schema as the database that the query was originally executed on. Executing the
queries allows us to obtain the QEP of the query. Subsequently, the QEP is recursively split into the
set of distinct partial QEPs. Each partial QEP is then hashed with a hash function1 to combine the
information of the operators and the structure of the partial QEP into a single representation, i.e. a
fingerprint. Any change in the partial QEP, such as an alternate join order, would result in a different
hash. Changes in filter parameters do not result in a different hash, since they were replaced with
placeholders in the QEP as per Section 3.1.2. Thereby, the set of partial QEPs is transformed into a set
of hashes. Afterward, each hash of the top-# most frequent partial QEPs is assigned a unique integer
index from the set {1, . . . , #}, where # denotes the dictionary size to be used. The dictionary size
can be equal to the number of unique partial QEPs, so as to consider every partial QEP. Alternatively,
it can be limited to a fixed number, such as 5000, as was described in Section 3.1.2. During the
process, we build the dependency graph to maintain a mapping between the partial QEPs and the
partial QEPs it implies. Lastly, each set of hashes is transformed into a set of indices, where hashes
of partial QEPs not in the top-# most frequent partial QEPs are discarded. The indices are used to
write a 1 to the output vector at the corresponding index to indicate the presence of a partial QEP.
In simpler terms, we assign a unique index to each unique partial QEP we encounter in the log after
transforming queries into query templates.

3.2.2 Rationale

This section briefly outlines the reasoning for the proposed encoding scheme.
First of all, every partial QEP can be evaluated independently and substituted with the result of

that partial QEP, making partial QEPs meaningful to predict. The prediction of partial QEPs enables
several forms of optimization, such as selective caching, where predictions can be used to decide
which results of one or more partial QEPs should remain in memory. The cached results could be
used directly in evaluating QEPs that contain the same partial QEPs and makes re-evaluating these
partial QEPs unnecessary. Alternatively, if the model predicts some partial QEPs to occur in the next
sequence of queries, a DBMS could pre-compute these partial QEPs and keep their results cached.
Either case would improve query efficiency by reducing computation time and I/O operations, as
some intermediate results of the query are already in memory. In distributed systems, the results of
partial QEPs could also be sent to edge nodes. Consider a QEP with a join on two arbitrary relations
for example. If one of the relations was predicted and its result sent to an edge node of the network,
it would only have to send the other relation at the time of the query. This would reduce the amount
of data to be sent over the network at the time of the query and consequently improve query speed.

1The type of hash function is irrelevant as long as collisions are avoided. In experiments, we use the default hash function
of Scala’s hash table implementation. However, alternative hash functions can also be used.

28

3.2. QUERY EXECUTION PLAN FINGERPRINTING CHAPTER 3. SQL QUERY ENCODING

In addition, hashing captures all the information of a partial QEP into a small integer representation
and has several benefits. Firstly, the hash represents the intermediate result of the partial QEP. Any
change of the partial QEP that alters the result also alters its associated hash value. The dependency
relation between partial QEPs is also captured as a dependency relation between their encoded
integer representations. As such, a dependency graph can be used to efficiently model the implied
partial QEPs for any given partial QEP. Secondly, since only partial QEPs that were previously seen
are considered, all predictions correspond to valid partial QEPs that can be executed. For example,
the model can only predict join operators on tables that share a key and can actually be joined. This
also alleviates the need to explicitly determine which joins to consider in the encoding as per Section
3.1.2. But, it comes at the cost of not being able to predict partial QEPs that were previously unseen.
Thirdly, the dimensionality of the encoding is reduced to the number of unique partial QEPs present
in the training data. If needed, the number of considered partial QEPs could be limited to only the
top-most frequent partial QEPs.

Furthermore, encoding a query into a set of re-usable elements gives us the ability to make
predictions that are useful even when only partially correct. For example, if a model only manages
to predict some elements of S(>) correctly for some future query, these predictions can still be used
to improve query performance. So, instead of predicting each subsequent query (in)correctly in its
entirety, the model can predict each subsequent query to the best of its ability. This also means that
we can directly model the relationship between partial QEPs occurring in the past and those occurring
in the future. Take for instance a sequence of 10 distinct queries. Even though the queries are distinct,
they may all access the same particular table, such that their set representations all include the same
partial QEP.

Also, the representation is robust against changes that affect higher-level operators, the root node
of the QEP, and the nodes close to it. For example, adding an ORDER BY clause to the query only
alters the order of the results. Generally, this only results in the addition of an ordering operator as
the root node of the QEP. If we break this QEP into the set of its partial QEPs, we find that the set
representation remains the same except for one additional partial QEP corresponding to the full QEP.
Hence, most of the representation remains the same.

Moreover, the representation is flexible in a way that certain attributes can be included or excluded
from the encoding for the level of detail that is required given the dimensionality constraints. On
one hand, if it was known that there are only a small number of different filter parameters, the step
of transforming queries into query templates could be skipped such that the filter parameters are
included in the representation. In this case, a different filter parameter would result in a different
hash value, and thus a different integer representation. For instance, the queries SELECT * FROM

cities WHERE name=‘eindhoven’ and SELECT * FROM cities WHERE name=‘rotterdam’ would
have a different encoding. On the other hand, if the goal was to only predict the tables and indices
involved in the query, one could only consider leaf nodes of the QEP in the set of partial QEPs S.

Lastly, it would integrate well with existing query optimizers in DBMSes. When a DBMS tries to
determine the optimal QEP for a query, it might generate multiple plans with an associated cost of
which only the QEP with the lowest cost is eventually executed. However, the query optimizer could
now ignore the cost of the partial QEPs that were predicted and cached in memory, and determine
the most optimal QEP taking that into account. In theory, it could generate QEPs such that the use of
the predicted relations is maximized.

3.2.3 An Illustrative Example

We demonstrate the encoding scheme using the example QEP in Figure 3.1. First, the QEP is split into
the set of partial QEPs S as specified in Equation 3.2 and Figure 3.3. Each partial QEP in S is hashed
to obtain a set of hashes, which are then assigned to a unique index. The indexed partial QEPs are
shown in Figure 3.8. Thereby, the set of indices resulting from the encoding of this QEP is given by
{1, 2, 3, 4, 5, 6, 7}. Note that every index corresponds to the hash of a partial QEP.

29

3.2. QUERY EXECUTION PLAN FINGERPRINTING CHAPTER 3. SQL QUERY ENCODING

Figure 3.8: Indexed partial QEPs of the example
QEP in Figure 3.1

Figure 3.9: Indexed partial QEPs of another
query

If we now consider a similar, but different query that drops the requirement for themovies currently
airing in cinemas, we could obtain the plan shown in Figure 3.9. The set of indices from encoding this
plan is given by {5, 6, 7, 8, 9, 10}. Observe that three unique partial QEPs occur in both plans, and
the encoding captures this information by including the indices 5, 6, and 7 in both encodings. Also
observe that the higher level QEPs have different indices because the filter for movie_in_cinemas is
not present in the QEP of figure 3.9. Since the filter is not present, the intermediate result of partial
QEP 10 is different1 from 3. The same can be said for plans 2 and 9, and 1 and 8. Thus, a change in a
lower level of the QEP results in a different index for all higher-level partial QEPs, due to the change
in hash.

We build the dependency graph for these encoded plans to obtain the graph in Figure 3.10. For
each indexed partial QEP, we create a node corresponding to its index. Subsequently, we add directed
edges between the nodes to model the relation between partial QEPs. Using this graph, we can find
all the partial QEPs that are implied for any partial QEP. For example, it can be seen that the partial
QEP indexed at 9 always implies the presence of partial QEPs 6 and 10, which in turn imply the
presence of 5 and 7.

Figure 3.10: Dependency Graph

The algorithm for the encoding scheme is presented in Algorithm 3. The subroutine getPartialQEPs,
which corresponds to the mapping in Equation 3.1, is listed in Algorithm 4.

1The root operator of partial QEP 3 is a projection on movie_id so applying the filter of partial QEP 4 afterward is not
possible, hence why this operator is positioned here.

30

3.2. QUERY EXECUTION PLAN FINGERPRINTING CHAPTER 3. SQL QUERY ENCODING

Algorithm 3: Query Encoding
1: Input: query log L, database schema (, dictionary size #
2: Initialize: dummy database � with schema (, encoded queries - ← [],

dependency graph � ← {}
3: for each query ? in L do
4: v← [0, 0, . . . , 0]# ; // Binary vector of encoded query
5: ?′← template(?) ; // Transform into query template
6: >∗ ← QEP(?′, �) ; // Evaluate query template to obtain QEP
7: S ← getPartialQEPs(>∗) ; // Recursively get partial QEPs of a QEP
8: for each partial QEP > in S do
9: �[7] ← getPartialQEPs(>) ; // Add edge to implicit elements
10: ℎ> ← hash(>) ; // Hash function
11: 7← mod(ℎ>, #) ; // Convert to index
12: v[7] ← 1 ; // Write 1 at index
13: end for
14: - .append(v)
15: end for
16: return encoded queries -

Algorithm 4: getPartialQEPs
1: Input: a query execution plan >

2: Initialize: set of partial query execution plans S ← {}
3: S.add(>)
4: if >.children ≠ {} then
5: for each child >′ in >.children do
6: S ← S ∪ getPartialQEPs(>′) ; // Recursive call
7: end for
8: end if
9: return set of partial QEPs S

31

Chapter 4

Prediction with Deep Learning

This chapter addresses the second research question and is concerned with creating a deep learning
model for the encoded query data. The previous chapter introduced an encoding scheme that
transforms the query log into a sequence of sets. Therefore, given a sequence of sets, we require a
model of the joint distribution of the next sequence of sets.

This chapter introduces a model architecture suitable for sequence to sequence modeling based on
research of a similar problem. Subsequently, the model architecture is described and key components
of the model are addressed. Lastly, it is explained how the model can be used to make predictions,
and algorithms for inference are presented.

4.1 Model Architecture

As the SQL queries have been encoded as described in the previous chapter, the resulting data structure
is a sequence of sets. However, vanilla RNNs only directly define the probability for sequences, and
machine learning research that caters to sets is limited. Previous research investigated the use of sets
as if they were sequences, such that each individual element of the set is fed into a corresponding RNN
unit. They showed that the order in which the elements are read has an impact on the performance,
despite there being no ordinal relation between them [37]. Unfortunately, their work focuses on sets
to sets modeling and does not address working with sequential sets.

Perhaps most applicable to our problem is research published on solving the sequential sets to
sequential sets learning problem [38]. One could draw parallels between our problem and theirs:
Given the past orders of customers, can we predict the items that are likely to be bought in the
future? To this end, they propose their own encoder-decoder framework. The encoder is responsible
for encoding each sequential set into a lower dimension, this is done by learning a set embedding
jointly with the input to output sequence mapping. Furthermore, they leverage a set-based attention
mechanism to model the set-element interactions (from past set to future element), and explicitly
model the element-element relation (from past element to future element) with an auxiliary vector
W that maintains the probabilities of elements appearing in the past sets. The decoder is responsible
for decoding the sequence as well as the elements in each set. As their method seems applicable to
our problem, it will serve as the foundation of our approach.

Since our problem revolves around finding correlations in temporal sets, we base our implementa-
tion on the encoder-decoder framework with an attention mechanism and its extension to sequential
sets [16], [38]. Let us formalize the problem: given a sequence of sets of partial query execution
plans (QEPs) {v1, v2, . . . , v:}, where : denotes the length of the input sequence and v7 the vector
containing the partial QEPs appearing in the 7-th query, predict the subsequent ; sets of partial QEPs
{v̂:+1, v̂:+2, . . . , v̂:+;}.

A visual representation of the proposed framework can be seen in Figure 4.1. First, each set of

4.1. MODEL ARCHITECTURE CHAPTER 4. PREDICTION WITH DEEP LEARNING

partial QEPs {v1, v2, . . . , v:} is embedded into a lower dimension, as will be described in more detail
later. The embedded sets {F1, F2, . . . , F:} are fed into their corresponding RNN units to obtain the
hidden state vector ℎ by

ℎB = 5 (FB, ℎB−1)
where 5 is the combination of a GRU and an embedding function and B indicates the time step.

The hidden state of the last GRU ℎ: in the encoder is used as the first hidden state A0 of the decoder.
The decoder also consists of RNN units, that take as input the previous hidden state AB−1, the previous
output GB−1, and a context vector 2B which is obtained from the attention mechanism that will be
explained later. The next hidden state in the decoder is given by

AB = 6(GB−1, AB−1, 2B),

where 6 is also the combination of a GRU and an embedding function, and GB−1 is the set embedding
of v̂B−1. Finally, we can compute the output using a softmax function

=(v̂B) = softmax(,=AB) (4.1)

where the hidden state is projected back to the space of elements with weight matrix,=.

Figure 4.1: Model architecture of the encoder-decoder RNN framework.

4.1.1 Set Embedding

From the encoding scheme, we know there are # possible partial QEP in our encoding. As a result,
the encoded queries have a dimension of #, where a 1 indicates the presence of some partial QEP
in the set. These vectors are sparse, which makes models hard to train due to the large number of
parameters that need to be learned. Hence, an embedding layer is used to compress the input feature
vectors into vectors of a smaller dimension. This is done using an embedding matrix that is trained in
the model directly. A detailed diagram of the set embedding layer that is also visible in Figure 4.1 is
shown in Figure 4.2. First, the input sets are transformed into one-hot encoded vectors corresponding
to each element in the set. Subsequently, an element matrix is used to map the one-hot encoded

33

4.1. MODEL ARCHITECTURE CHAPTER 4. PREDICTION WITH DEEP LEARNING

element to the corresponding dense representation. These element embeddings are then aggregated
by average to obtain the final set embedding, which is then forwarded to the corresponding RNN
unit. In a sense, the set embeddings are a low-dimensional representation of the query.

Figure 4.2: Set embedding layer for embedding input sets into a lower dimension and forwarding to
an RNN unit.

4.1.2 Set-based Attention

It has been argued that sequence to sequence modeling can be difficult with encoder-decoder archi-
tectures [16]. As the entire sequence is compressed into a single vector, performance suffers especially
in the case of longer sequences. To address this potential issue, we use an attention mechanism to use
the input sequence as a context and allow the decoder to look back in time by giving it access to the
input data [16].

At each time step B, the context vector 2B is provided as input to the GRU cells in the decoder. As
a result, the decoder has access to the encoded sequence as well as the individual elements of the
input. This allows the model to be more efficient and ideally also better at modeling the conditional
probability ℙ(G1, . . . , G; | F1, . . . , F:). The attention vector U, indexed by the time step B, is used to
attend to different input elements with different weights at each time step B. The context vector 2B is
computed as follows. First, the logits1 4B 8 are computed from the alignment model 0 such that

4B 8 = 0(AB−1, ℎ 8).

The alignment model holds the weights for scoring the match between inputs around position 8 and
the output at time step B. Scores are calculated from the hidden state AB−1 and the 8-th hidden state ℎ 8
of the input sequence [16]. This alignment model is implemented as an MLP which is jointly trained
with the rest of the model. The attention vector is calculated for each hidden state ℎ 8 by

UB 8 =
exp(4B 8)∑
9

exp(4B9)
.

1The vector of non-normalized outputs of a predictive model, generally they form an input to the softmax function to
obtain a vector of normalized probabilities.

34

4.2. MODEL INFERENCE CHAPTER 4. PREDICTION WITH DEEP LEARNING

Lastly, we compute the context vector 2B with the weighted sum of all the hidden states

2B =
∑
8

UB, 8ℎ 8.

In summary, we are able to model the conditional probability through the output of the GRU with
Equation 4.2, where x = {v1, v2, . . . , v:}.

=(v̂B) = softmax(,=AB) = ℙ(GB | {G1, . . . , GB−1}, x) (4.2)

Using the chain rule, we can now model the probability over the output sequence as

ℙ(y | x) =
;∏
B=1

ℙ(GB | {G1, . . . , GB−1}, x),

where x = {v1, v2, . . . , v:} and y = {v:+1, v:+2, . . . , v:+;}. The application of the chain rule makes this
approach of modelling the joint conditional probability assumption free [37].

4.1.3 Modeling Repeated Elements

Research by Hu and He also include a method to specifically model the finer grain past element to
future element relation [38]. In particular, they argue that elements occurring in the past are more
likely to occur in the future. In our case, it is sensible to assume that partial QEPs frequently occurring
in past queries are also likely to reoccur in future queries. Experiments in Chapter 5 will test the
effect of this component and determine if this assumption holds.

Hence, they introduce a vector W which contains the probability of the corresponding item appear-
ing in the past set. Vector W can also be seen in the model architecture in Figure 4.1. We implement
vector W to contain the probability of a partial QEP appearing in the past training data. Consequently,
we change Equation 4.1 to

=(v̂B) = softmax(,=AB ◦ (1 − V ◦w) + W ◦w) (4.3)

with ◦ denoting the Hadamard product, vector V a binary vector maintaining the non-zero entries of
W, and a weight vector w to balance contributions from AB and W. Vector w is calculated as

w = sigmoid(,WW + z),

with weight matrix ,W and a vector z learned from the data. The purpose of V is to only have
contributions from vector W for partial QEPs which have appeared in the past.

4.2 Model Inference

Using the trained model we also need to make predictions. When provided with an input sequence
of length :, it outputs the probabilities of the next sequences with length ;. The sequence with the
highest probability is selected as a prediction such that

arg max
G1,G2,...,G;

ℙ[{G1, G2, . . . , G;} | {F1, F2, . . . , F:}].

To determine the elements in each set we use a greedy algorithm that incorporates the conditional
label dependency between elements described in Section 3.1.2. Algorithm 5 predicts the elements
with the top-9 highest probability for each set. The output vector of size 9 is then created by setting
the values in =(v̂B) that are the top-9 most likely to 1 and the rest to 0. Furthermore, for each of
these items, we know that their presence indicates the presence of other elements, which may not be

35

4.2. MODEL INFERENCE CHAPTER 4. PREDICTION WITH DEEP LEARNING

directly predicted. Thus, we can use the dependency graph to exploit the label dependency and also
set the implicit elements in =(v̂B) to 1.

There are two possible ways of using the dependency graph. The first option is to essentially
use the dependency graph as a post-processing step, and not during model training, i.e. don’t feed
the implied elements into the next recurrent unit. The reason for this is that when predicting the
next sets recurrently, the dependency graph could introduce more errors into the input of the next
time-step. As there are always errors in each prediction, the dependency graph could compound on
these errors which could affect the training of the model. However, the dependency graph could also
be incorporated directly into the model, such that the elements implied by the dependency graph are
combined with the predictions to form the input of the next recurrent unit. Experiments in Chapter
5 compare both these methods of using the dependency graph.

The algorithm for greedily decoding the next ; sets is given in Algorithm 5. To incorporate the
dependency graph into the model, line 12 can be moved after line 16, such that the decoder input
includes the implicit elements found through the dependency graph.

Algorithm 5: Greedily decoding the next ; sets
1: Input: input sequence x, number of set elements 9, length of output sequence ;, dependency

graph �, �<2=34@, �42=34@
2: y← [] with length ; ; // Output sequence
3: ℎ← �<2=34@.initHidden() ; // Hidden state of the Encoder
4: for each input set v in x do
5: encoder_outputs, ℎ← �<2=34@(v, ℎ)
6: end for
7: decoder_input← last set of x
8: A← ℎ ; // Hidden state of the Decoder
9: for each step B = 1 to ; do
10: decoder_output, A← �42=34@(decoder_input, encoder_outputs, A)
11: v̂B ← decoder_output.getTopK(9) ; // Top-9 highest probability
12: decoder_input← v̂B
13: for each element > in v̂B do
14: implicit_elements← getImplicitElements(�, >)
15: v̂B ← v̂B ∪ implicit_elements
16: end for
17: y.append(v̂B)
18: end for
19: return y

36

Chapter 5

Experiments

Chapter 3 introduced an encoding scheme for the feature engineering of SQL query data and Chapter
4 introduced a deep learning architecture for creating a predictive model for this type of data.
This chapter builds upon the theoretical work in these chapters by implementing both the encoding
framework and predictive model. The goal of these experiments is to measure the performance of
the model and the effect of several of its components, such as the dependency graph. In addition,
experiments are performed with the model in a more practical setting to get an indication of the
model’s usefulness in a database management system (DBMS). What follows is a series of experiments
on the query logs of two subject databases. First, the raw SQL query logs were encoded using the
encoding framework and a frequency analysis clarifies the underlying distribution of the data sets.
Subsequently, the model was trained using different parameter settings and evaluated using several
methods and metrics. Lastly, the computation time of the encoding framework, model training, and
model inference are briefly addressed.

5.1 Collected Data

For our experiments, we require a database query log with an accompanying database schema. Since
the goal is to exploit query patterns, it is crucial that we don’t use synthetic data sets, but work with
real data instead. Most public database benchmarks are intended tomeasure the internal performance
of a DBMS [39]. As such, they are artificially generated to provide a synthetic workload sampled from
known distributions. Additionally, their order and frequency of execution can be defined by the user.
Some notable examples are TPC-H for analytical workloads and TPC-C for transactional ones [40].
Unfortunately, the amount of publicly available query logs is also limited. This is likely because query
logs tend to contain sensitive information and publicizing them poses a security risk. The same can
be said for the database schema. So, there is little incentive for people to share this information. To
our knowledge, there is one publicly available data set of non-synthetic queries spanning a reasonable
time frame1. This is the PhoneLabs data set published in 2016 [42], which recorded the embedded
database of Android smartphones and anonymized the query logs before publication. In addition,
we created our own data set by logging the SQL statements of a database supporting an Internet of
Things (IoT) platform. Thus, both data sets are based on real-world data and have a sequential order
of queries that is correct.

1We are aware of the SDSS SkyServer public database [41], which is not a published data set but has publicly accessible
query logs. However, many queries could not be run in our experiments due to schema, function and view definitions specific
only to their database. As a result, too many queries could not be encoded and it was deemed impractical to use.

5.1. COLLECTED DATA CHAPTER 5. EXPERIMENTS

5.1.1 Internet of Things (IoT)

The IoT data set was created through a partner company by logging the SQL statements of a Post-
greSQL database serving as the DBMS of a medium-sized IoT platform. The platform is used by
500+ active users and allows users to manage and track IoT devices. It includes support for user
management, device registration, device (fleet) management, over-the-air firmware updates, live
sensor readouts, eSIM management, mobile data plans, and more. The backend of the platform uses
the object-relational mapping (ORM) software Sequelize to generate SQL statements from a Node.js
javascript runtime.

The data set consists of a two-month-long trace of all SQL statements executed on the PostgreSQL
instance from April 15th through June 15th, 2021. In total, we collected 169689 queries, performing
CRUD operations on exactly 20 tables. The schema was unchanged for the duration of the data
collection. Logging was enabled by passing the logging_collector=on and log_statement=all

command-line arguments to the PostgreSQL instance.

5.1.2 PhoneLabs

The second data set that we use for our experiments is the PhoneLabs dataset [42]. Smartphones
running the Android operating system have a persisting embedded database to share private data
between system operations and apps. In Android 4.4.4 (KitKat), this embedded database uses SQLite
internally and provides various interfaces for processes to use. For a handful of subject smartphones,
all device activity was recorded for 30 days while the phone was in normal use. The PhoneLabs dataset
also includes the query log of the embedded SQLite databases and provides the full one-month trace
of SQLite activity on a per phone basis. To protect the users’ privacy, the query log was anonymized
before publication by replacing query parameters with placeholders, similar to the process of creating
query templates.

In contrast to the IoT dataset, the embedded database in mobile phones is subject to queries that
are generated by an operating system rather than a single application. The operating system is host
to a variety of applications, which each have its own use cases. Applications can access tables and
even create their own tables in this database. This results in a very high amount of tables inside
the database, with many of them being unused. Experiments will focus on one randomly selected
subject smartphone, the device with the ID 2747d54967a32fc95945671b930d57c1d5a9ac02. For
this smartphone, we found 808 unique schema-defining messages in the database log. This data set
also experienced a much higher volume of queries than the IoT data set, so for practical reasons we
only use a subset of the first 5 days worth of data, which corresponds to 705668 recorded queries.

5.1.3 Data Cleaning

Several steps were performed to transform the raw data into a usable data set. For our experiments,
we will only focus on SELECT queries, which aim to retrieve data from the database.

IoT

For the IoT query log, the raw data contains all logging statements written by the PostgreSQL instance.
Therefore, we filter the raw data by excluding logmessages not containing database query statements.
Given that we only focus on SELECT queries, we exclude the queries not containing a SELECT query
statement as well. Additionally, we exclude queries for the tables prefixed by ‘pg’, which correspond
to tables used internally by PostgreSQL of which the schema is unknown. From the raw data, we
extracted a total of 169689 queries, of which there were 127958 SELECT queries. The full frequency
distribution of query types can be seen in Table 5.1.

38

5.2. SQL QUERY ENCODING CHAPTER 5. EXPERIMENTS

Query parameters contain sensitive information such as names, addresses, and payment details.
Thus, to preserve the privacy of the platform users1, query parameters had to be replaced with
placeholders. We created a script for replacing query parameters with placeholders based on a series
of regular expressions. These regular expressions were used to target a number of clauses containing
query parameters that we identified in order to replace them with placeholders. These clauses are
listed below:

• Elements following a boolean operator, e.g. =?, <?, >?, <=?, >=?

• Elements within brackets following an IN keyword, e.g. IN (?, ?, ?, ?)

• Elements denoting a range following a BETWEEN keyword and surrounding an AND keyword, e.g.
BETWEEN ? AND ?

Note that the anonymization of query logs is analogous to the creation of query templates as described
in Section 3.1.2. The full schema of the database was obtained from the PostgreSQL instance and
exported in CSV format. The source code for all pre-processing of the IoT data, including the
anonymization of query parameters, can be found in Appendix A.1.

PhoneLabs

Unlike the IoT query log, the PhoneLabs logs are already anonymized. However, we still needed to
filter for database query statements and exclude all non-SELECT queries. Similarly, we also exclude
queries for the tables used internally by SQLite, those prefixed by ‘sqlite’ in this case. The frequency
distribution of query types can also be seen in Table 5.1.

The schema of the database was not provided with the publication of the data set. However, the
system would periodically emit statements that indicate the schema of one particular table. The logs
were scraped to collect all these schema entries and filtered for uniqueness. Therefore, it is possible
that there were more tables for which no schema-defining messages were found in the log, causing
some queries to be invalid during execution. The resulting schema was exported in CSV format. The
source code for all pre-processing of the PhoneLabs data can be found in Appendix A.2.

Data Set #Tables #Queries #SELECT #INSERT #UPDATE #DELETE #REPLACE

IoT 20 169689 127958 2933 19346 19741 209
PhoneLabs 808 705668 557776 85439 31064 9185 0

Table 5.1: Raw data sets

5.2 SQL Query Encoding

5.2.1 Framework

The encoding scheme as described in Chapter 3 was implemented in Apache Spark using the Scala
API, as it provides an excellent interface for working with query execution plans (QEPs) and supports
various SQL dialects. Apache Spark implements a query execution pipeline which is depicted in
Figure 5.1. This pipeline generates executable QEPs from a given SQL query. First, we load the
schema corresponding to either one of the IoT and PhoneLabs data sets. Subsequently, every SQL
query in the log is processed and evaluated on the database to obtain a logical plan. The logical
plan is optimized by the logical optimizer to obtain multiple logical plans of which the one with the

1No sensitive data ever left the company server, and the collection and anonymization of the data was approved and
overseen by the company’s CEO.

39

5.2. SQL QUERY ENCODING CHAPTER 5. EXPERIMENTS

lowest estimated execution cost is considered as the optimized logical plan. This optimization process
includes, among many other steps, pushing projections down the QEP tree to reduce the cardinality of
join operations. Finally, a planner takes this optimized plan and produces a physical plan, describing
how to execute the plan on the cluster, which is then also optimized by a physical optimizer.

Figure 5.1: Query Execution Pipeline of Apache Spark [43]

For our purpose, the logical plan is used, which corresponds to the optimized QEP of the SQL query.
The reason for this is that it allows our results to generalize to databases other than Apache Spark,
such as regular centralized relational databases. However, using physical plans could potentially
enable more optimizations in the case of Spark, as features would include more specific details of how
queries should be executed, such as how data should be retrieved and what algorithms should be used.
Obtaining multiple QEPs for a query was not yet supported, so only the most optimal logical plan
was used. This logical plan would sometimes contain sub-query aliasing nodes, resulting in different
partial QEPs with the same result. These were removed from the QEPs using an additional call to the
built-in EliminateSubqueryAliases function, which is also called internally at the beginning of the
optimization phase of the optimizer.

Since some of the queries resulted in SQL errors when generating the QEP, not all queries could
be encoded. Upon inspection, this was usually due to incorrect aliasing, SQL dialect-specific clauses
not supported by Spark, or corrupt queries. For the IoT data set, approximately 99 percent of the
queries could be encoded. For the PhoneLabs data set, this was a little under 92 percent. The specific
numbers are presented in Table 5.2.

Data Set #Queries #Processed Queries % Encoded

IoT 111087 109619 98.67
PhoneLabs 553751 507809 91.70

Table 5.2: Encoded data sets

5.2.2 Frequency Analysis

Frequency analysis of the encoded data sets reveals some interesting details which are presented in
Table 5.3 and Figures 5.2, 5.3, 5.4, and 5.5. Firstly, the number of unique partial QEPs in the IoT

40

5.2. SQL QUERY ENCODING CHAPTER 5. EXPERIMENTS

and PhoneLabs dataset are 5801 and 4729 respectively. Surprisingly, this number is much lower than
our <! estimate from before and confirms the assumption made in Section 3.1.2, which assumed how
the use of query templates would reduce the number of unique partial QEPs significantly. Based on
this, it was deemed unnecessary to limit the dictionary size to the top-9 frequent partial QEPs and all
encountered partial QEPs were encoded.

Data Set #Unique Partial QEPs #One-Time Partial QEPs Avg. Set Size Max. Set Size

IoT 5801 5634 3.78 21
PhoneLabs 4729 3548 3.02 19

Table 5.3: Partial QEP frequency analysis of the encoded data sets

Furthermore, most of the unique partial QEPs were encountered only once. As can be seen in
Figures 5.2 and 5.3, the frequency distribution of partial QEPs is extremely skewed, with 5634 out
of 5801 unique partial QEPs occurring only once for the IoT data set, and 3548 out of 4729 for
the PhoneLabs data set. Label imbalance is a well-known problem in multi-label classification and
could cause sub-optimal performance [44]. Therefore, it was decided to perform experiments with a
weighted loss function to balance the contributions of partial QEPs with different frequencies [38].

Moreover, the number of elements in each set varies, i.e the number of operators in each QEP.
Encoding complex queries with bigger QEPs results in higher cardinality sets compared to simpler
queries. For the IoT dataset, approximately 19% of the queries includes one join, and 3% of the
queries performs two or more joins. In contrast, only 2% of the queries in the PhoneLabs perform one
join, with less than 1% including two or more joins. Hence, to determine the number of elements
that should be predicted at each subsequent set, the set size distributions of the encoded queries were
plotted in Figures 5.4 and 5.5. The average set size was found to be 3.78 for the IoT data set and 3.02
for the PhoneLabs data set. Consequently, we mainly focus on predicting 5 elements per subsequent
set in our experiments. Nevertheless, the maximum encountered set size was 21, with many sets
having more than 5 elements, especially in the IoT data set. This implies that when predicting only
5 elements per set, the model could never predict many of the encoded queries correctly. Hence, we
also run experiments with more predicted elements per set: 10, 15, and 20 predicted elements.

5.2.3 Cross-Validation

After encoding the query logs, we obtain a sequence of 109619 and 507809 encoded queries for the IoT
and PhoneLabs data set respectively. Ideally, we would use all the available data to train our model,
but this results in extremely long running times that are unpractical for experiments. Additionally,
sequences of this magnitude could face the problem of vanishing and exploding gradients as back-
propagation through time becomes more difficult the longer sequences get [45]. Recall that encoder-
decoder models compress the entire input sequence into a single code, so the longer the sequences
are, the more difficult they become to train. Hence, sub-sequences of queries were sampled from
part of the full sequence to address this problem and obtain sequences of usable lengths, while still
generalizing to the entire query log and data outside the training set. In particular, we randomly
sampled query sequences, i.e. windows, of length : +; from the sequence of encoded queries. Here,
: denotes the input sequence length and ; denotes the output sequence length of the model. Each
sampled window was transformed into an input-output pair x and y to train the model in an ’offline’
manner. Consequently, after seeing : queries, the model can be used to make predictions about the
next ; queries.

Experiments were run with input sequence lengths : of 20, 30, and 40, as is typical in sequence
to sequence models [14], [37], [38], [46]. In addition, we expect that these sequence lengths are
likely to account for most multi-query tasks performed in a DBMS. In other words, when we predict
the partial QEPs of future queries, we expect the partial QEPs from the past 20/30/40 queries to have

41

5.2. SQL QUERY ENCODING CHAPTER 5. EXPERIMENTS

Figure 5.2: Distribution of top-100 most frequent
partial QEPs in the IoT data set

Figure 5.3: Distribution of top-100 most frequent
partial QEPs in the PhoneLabs data set

Figure 5.4: Set size distribution of the encoded
queries in the IoT data set

Figure 5.5: Set size distribution of the encoded
queries in the PhoneLabs data set

a bigger effect than those from queries before it. Using longer sequences also becomes increasingly
computationally intensive due to backpropagation of the loss through every recurrent unit in the
sequence [45].

A known limitation of RNN sequence to sequence models is that recurrently predicting the next
time steps brings errors into the input for the next time-step because there could always be errors
at each predicted time-step [38]. Therefore, the more queries we consider into the future, i.e. the
higher we set output sequence length ;, the worse we can expect performance to be. Thus, we
focus on predicting the set of partial QEPs for two queries into the future and also run experiments
with slightly longer output sequence lengths of 3 and 5. Given that the predictive task revolves
around predicting sequences of sets, evaluation should take into account the order of predicted sets.
Therefore, evaluation metrics will compare the ground-truth and predicted partial QEPs on a per-set
basis.

Since the model should be able to generalize to data outside the training data, i.e. previously
unseen data, we use cross-validation, also known as out-of-sample testing. The idea of cross-validation
is to reserve part of the data for evaluation of the model. In the case of sequences, it is important
that we respect the temporal order of the data. Hence, we split the full sequence at a certain point
in time, such that we train on the data before that point, i.e. the past, and evaluate on data after
that point, i.e. the future. A disjoint training set and validation/test set were created by sampling
training pairs from the first 4/5th of the sequence, and sampling validation/testing pairs from the last
1/5th of the sequence (see Figure 5.6). The 4-1 split was chosen such that we avoid unrepresentative
validation/testing sets as much as possible. This way, the validation/test fold corresponds to at least
one full day of query data in both data sets, rather than only the last few hours of the day for instance.

42

5.3. MODEL IMPLEMENTATION CHAPTER 5. EXPERIMENTS

The database could experience a very different load in the last few hours of the day than during peak
hours. As such, we train on 4 days of query data and evaluate on the 5th day for the PhoneLabs data
set, and we train on the first 6.5 weeks of query data while evaluating on the last 1.5 weeks for the
IoT data set.

Validation and testing pairs were sampled from the same split as the validation set was only used
to measure performance during training while the test set was used to monitor the performance of
the model after training, neither had an effect on the model during training. Experiments were run
with training set sizes of 20000 and validation/test set sizes of 5000. More samples could not show
enough performance increase while significantly increasing the training and evaluation time.

Figure 5.6: Creating training, validation and testing splits from the encoded query log

5.3 Model Implementation

The model was implemented as a Jupyter notebook and uses PyTorch, an open-source machine
learning library for Python, based on code provided by Hu and He [38]. For our model, we use Gated
Recurrent Unit (GRU) cells and define their parameters input size, hidden size, and the number of
layers. In specific, the input size is set to the length of the input sequence :, the hidden size is set
to 32 and denotes the number of features in the hidden state ℎ, and the number of layers is set to 1
which defines the number of recurrent layers1. Since our dictionary size # is roughly 5000 for both
datasets, we use 32-dimensional embeddings.

Loss Function

To address the label imbalance we use aWeightedMean Square Error (WMSE) based on the frequency
of partial QEPs in the training data. First, let < be the number of training pairs in the training set, i.e.
pairs of input sequences of length : and output sequences of length ;. Then, let % denote the set of
distinct encoded partial QEPs, note that |% | = #. The WMSE is then first defined for a ground truth
set v7 and the output of the decoder at the 7-th set =(v̂7) as

,"(�(v7, =(v̂7)) =
∑
9

E(9) (29 − =(2̂9))2,

where 29 is the 9-th entry of v7, and =(2̂9) is the 9-th entry of =(v̂7). Additionally, the weight E is
calculated by

E(9) =
max
>∈%

5 @4?(>)

5 @4?(9) ,

1Choosing 2 layers would mean stacking two GRUs to form a stacked GRU, such that the second GRU takes as input the
outputs of the first GRU

43

5.4. MODEL EVALUATION CHAPTER 5. EXPERIMENTS

where 5 @4?(9) denotes the frequency of partial QEP 9 in the training data. So, less frequent partial
QEPs contribute more to the loss than more frequent ones. Subsequently, we take the sum over every
set in the sequence ; to calculate the loss

�({v1, v2, . . . , v;}, {=(v̂1), =(v̂2), . . . , =(v̂;)}) =
;∑
7=1

,"(�(v7, =(v̂7)).

Consequently, we can define the empirical risk minimizer as Equation 5.1 below.

\̂ = arg min
\

1
<

<∑
7=1

;∑
7=1

∑
9

E(9) (29 − =(2̂9))2. (5.1)

Experimentation was also performed with the Mean Squared Error (MSE), Binary Cross-Entropy
(BCE), and Negative Log-Likelihood (NLL) loss functions but they could not show better performance
than the WMSE.

Optimization

For optimization of the model, the Adam optimizer for stochastic optimization [47] was used, as it
performed better than SGD, Adadelta, and RMSprop optimization. Hyperparameters were tuned with
grid search, where the learning rate of 0.001 resulted in the best performance and fastest convergence
in combination with beta coefficients set to 0.9, 0.99 and epsilon set to 10−11. The model was trained
for 10 epochs and weights were updated after every input-output training pair.

Regularization

Some experimentation with weight decay (L2 regularization) and dropout (5 %, 10%, and 20%) was
performed but could not show better performance.

Use of the Dependency Graph

As was mentioned before, the dependency graph could be used in two pre-defined ways. First, the
dependency graph could be used at each recurrent unit to include the implicit elements of the top-9
predictions in the output. This output is then recurrently fed as input into the next recurrent unit and
repeated for every encoded query in the sequence. Consequently, the dependency graph will affect
the training and optimization of the model. This is perhaps reminiscent of the concept of teacher
forcing, where during training the ground truth is used as input of a time-step, rather than the model
output from a prior time step. However, instead of using the ground truth elements, we use the
ground truth relation between elements to add partial QEPs to the predicted set. As such, incorrect
predictions also introduce more errors in the input of the next unit. In contrast to teacher forcing,
there is no obvious discrepancy between training and inference as the ground truth relation between
elements remains known and unchanged during inference.

Alternatively, the dependency graph can be used only as a post-processing step to improve the
completeness of predictions. In this case, the model’s architecture is unaltered, and it is and trained
independently of the dependency graph. During inference, the top-9 predictions are used to consult
the dependency graph and include the missing elements in the final prediction. Experiments were
run to test the effectiveness of both approaches.

5.4 Model Evaluation

5.4.1 Evaluation Methods

To evaluate the results of our predictive model we compare its performance with three other methods.
These methods are outlined below:

44

5.4. MODEL EVALUATION CHAPTER 5. EXPERIMENTS

• RandomSet predicts 9 random distinct partial QEPs for each subsequent set by randomly
selecting 9 distinct indices from {1, 2, . . . , #}. In other words, it randomly guesses the set of
partial QEPs at each subsequent query.

• TopKFrequent predicts the 9 most frequent partial QEPs for all subsequent sets.

• ExpectRepeat predicts the most recently seen set of partial QEPs for all subsequent sets, irre-
spective of 9.

5.4.2 Evaluation Metrics

We also use several measurements to evaluate the performance of our predictivemodel. The prediction
for each subsequent set can be considered as multi-class classification, for which there are some
commonly used metrics. Perhaps the most common ones are Recall and Precision [48], [49], which
are calculated from the confusion matrix. The confusion matrix summarizes the performance of the
model by comparing the predicted class with the real class for each instance of the data. A labeled
confusion matrix is presented in Table 5.4. In our case, we can define the true positives as the partial
QEPs in the predicted set which also occur in the ground truth set. Similarly, the true negatives
include the partial QEPs which were not predicted and don’t occur in the ground truth set. False
positives denote the set of partial QEPs which were wrongly predicted, meaning that they were not
present in the set of partial QEPs corresponding to the future query. False negatives describe the
partial QEPs of the future query which we failed to predict.

Real
Class

Predicted Class

True
Positive

False
Negative

False
Positive

True
Negative

Table 5.4: Confusion Matrix

Recall & Precision

Recall is the fraction of true positives over all predictions. In other words, the percentage of total
relevant results correctly classified. As such, recall can be interpreted as the fraction of partial QEPs
in the next query that was correctly predicted.

Recall =
true positives

true positives + false negatives

Precision is the fraction of true positives over all positives, i.e. the percentage of results that are
relevant. Therefore, precision can be interpreted as the fraction of predicted partial QEPs occurring
in the next query.

Precision =
true positives

true positives + false positives
Generally, there is a trade-off between precision and recall. One can optimize a model for recall

by making more predictions, and thus increasing the fraction of true positives over all predictions, at

45

5.4. MODEL EVALUATION CHAPTER 5. EXPERIMENTS

the cost of more false positives and lower precision. To this end, we compare recall and precision for
the same number of predictions.

F-score

�-score is another metric for measuring the model’s performance. It is calculated from the recall and
precision, and there exists both a balanced variant and a weighted variant. The balanced variant,
also called the �1-score, is the harmonic mean of the recall and precision, such that both are valued
equally in the calculation. It is calculated from the recall and precision as

�1 = 2 · precision · recall
precision + recall .

When presented together with the recall and precision, it conveys little additional information, as
higher values result in a higher �1-score and lower values in a lower �1 score. However, the weighted
variant allows us to place more importance on either recall or precision through a parameter V. This
�V-score is calculated as

�V = (1 + V2) ·
precision · recall

(V2 · precision) + recall ,

where V denotes how many times recall should be considered more important as precision. Note that
when V = 1, it is equivalent to the �1-score.

Normalized Discounted Cumulative Gain (NDCG)

TheNormalized Discounted Cumulative Gain (NDCG) is ametric for ranking the quality of a prediction
while taking the order of predictions into account [50]. It is often used to assess the relevance of
search engine results. While recall and precision only consider binary relevance, i.e. a partial QEP
is correctly predicted or it is not, NDCG allows for varying degrees of relevancy and incorporates
a discount function over the rank. It allows us to measure the ability of our inference algorithm,
Algorithm 5, to predict relevant partial QEPs before irrelevant ones. The NDCG is calculated using
the discounted cumulative gain (DCG) and the ideal discounted cumulative gain (IDCG). These are
specified by

���> =

>∑
7=1

@4:7

log2(7 + 1)
,

and

����> =

|'�!> |∑
7=1

2@4:7 − 1
log2(7 + 1)

,

where > denotes the position in the list and '�!> is a list of all relevant predictions in the dictionary
up to position >. Subsequently, the NDCG is computed by

#���> =
���>

����>

,

to obtain a normalized value between 0 and 1. We calculate the NDCG with a relevance score of 1
if the predicted item is present in the ground truth and 0 if not. Thus, the more correctly predicted
partial QEPs are higher in the top-9 predicted elements of our inference algorithm, the higher the
NDCG score.

Hit Rate (HR)

Lastly, we use a variant of Hit Rate (HR) to measure the performance. HR represents the ratio of
testing instances for which we are able to correctly predict at least one element in each subsequent

46

5.5. A PRACTICAL SETTING CHAPTER 5. EXPERIMENTS

set [51]. HR is defined as

�' =
#ℎ7BA
<

,

where a hit is counted if at least one element is correctly predicted in all subsequent sets of the output
sequence and < denotes the number of testing samples. Unlike recall, HR conveys information on
how often the model is able to make at least some partially correct predictions for future queries.

5.5 A Practical Setting

While the previously described evaluation methods and metrics of the model could be used as an
indication of themodels’ usefulness, it doesn’t fully convey how themodel would perform in a practice.
In particular, recall and precision make no distinction other than the correctness of predicted partial
QEPs. A high recall would indicate that most of the relevant partial QEPs were predicted. However,
what if most predictions correspond to base table operators? It would suggest to simply keep some
particular tables cached, despite the possibility of them being too large to fit in memory. Consider
also partial QEPs that are costly to compute. If these are rarely predicted, deploying the model in
practice would only result in a marginal increase in query performance. Similarly, a lower precision
means that more irrelevant partial QEPs are predicted. Caching irrelevant partial QEPs comes at the
cost of occupying memory space and could prevent relevant partial QEPs from being cached at the
time of query arrival. Therefore, some experiments were performed to determine the usefulness of
the model in a practical setting.

Even though there are many ways that a DBMS could exploit the model’s predictions, we will
focus on the case of data caching. As such, we investigate the query answering time when the model
is used to make an ‘intelligent’ decision on what data should remain in memory or pre-computed.
Subsequently, the cached data can be used as a surrogate for certain query operations such that
queries can be answered more rapidly. In our experiments, the testing data set is used as a simulated
query workload for which we compare the effectiveness of several optimization methods.

5.5.1 Cost Estimation

Since every partial QEP corresponds to some intermediate result of the query, every partial QEP has
an associated cost: the computation time and size in bytes of its intermediate result. However, recall
that queries were transformed into query templates before being encoded into a set of partial QEPs.
As such, partial QEPs don’t include the filter parameters, e.g. a query SELECT * FROM cities WHERE

name=‘Eindhoven’ was transformed into SELECT * FROM cities WHERE name=‘?’, and this is
reflected in the partial QEPs of a query. Therefore, the computation time and byte sizes of a partial
QEP don’t correspond to that of the query exactly. Nevertheless, for larger tables, the type of operator
would have a bigger impact on the cost than the filter parameters. For instance, join operations have
a known time complexity of $(<2), and will require more computation time for larger values of <
than filter operations that have a time complexity of $(<), where < is the number of rows in the table.
Naturally, the computation time is also dependent on the host machine, faster computers will achieve
faster computation times. Hence, to obtain estimates of the cost values of the query and its partial
QEPs, we need to simulate the query by replacing the query filter placeholders with some value.

The cost values were estimated by creating a dummy database with the corresponding schema,
and subsequently entering 100,000 dummy rows into each table1. The dummy rows also follow the
schema definition to create a database that closely represents the real database. A form of randomness
was introduced in the row attributes to create distinct rows, while also ensuring that there would be
some shared keys between tables, so that join operations don’t match either zero or all rows. Thereby,
rows were generated with values randomly selected between 1 and 100,000, cast into their respective

1More than 100,000 rows resulted in memory problems on the testing machine

47

5.5. A PRACTICAL SETTING CHAPTER 5. EXPERIMENTS

types, while ensuring that at least 10 rows would include only the 1 or ‘1’ values. Subsequently, the
placeholders in the query templates were replaced with a numeric 1 or string ‘1’ depending on the
data type. For example, the query template SELECT * FROM cities WHERE name=‘?’ would become
SELECT * FROM cities WHERE name=‘1’, and it would match at least 10 rows in the ‘cities’ table.
Due to the extreme number of tables in the PhoneLabs database, it was deemed unpractical for this
experiment and only the IoT data set was considered.

Subsequently, every unique partial QEP in the encoded query log of the IoT data set was executed
on the dummy database to measure the computation time in milliseconds and size in bytes of the
resulting table. Consequently, we were able to associate every partial QEP with a computation time
and size of its result in bytes. For these experiments, we used a desktop PC with a 3.5 GHz Quad-Core
64-bit CPU architecture, 16 GB of RAM, and with the database stored on an SSD that supports 94.000
I/O operations per second.

Figure 5.7: Example dependency graph where nodes have an associated cost

The associated cost values were added to each node in the dependency graph, an example of this
is given in Figure 5.7. As can be seen in Figure 5.7, two queries are encoded to S1 = {6, 84, 86}
and S2 = {6, 17, 18} and every node has an associated cost. Recall that edges of the graph imply
the presence of partial QEPs. For example, the partial QEP with index 84 implies the presence of
the partial QEP with index 86. Furthermore, the query template encoded to S1 requires 200 ms to
compute and its result is 560 bytes. This corresponds to executing the partial QEP that is not implied
by other partial QEPs in S1, the one with index 84. The difference between the partial QEP with index
84 and 86 is only 1 ms, while the difference between 86 and 6 is 6 ms. From this, we can deduce that
the partial QEP corresponding to index 6 contributes the most to the query execution time. In fact, it
corresponds to a table scan which takes considerable time due to reading from disk. Consequently,
if the table corresponding to partial QEP with index 6 was cached in memory, it would have a large
impact on both queries’ answering time. However, possibly more optimization could be achieved if
the results partial QEPs 18 and 84 were in memory, reducing the computation time to zero, excluding
the additional time needed to infer the model and account for the filter parameters in the original
queries.

One can also observe a relation between the computation time of connected nodes. Nodes without
incoming edge represent the full QEP and have the highest computation time, and every node in the
directed chain has a computation time less than or equal to that of the previous node. The reverse is
not the case for byte size, as join operations might increase the number of rows.

5.5.2 Optimization Methods

The experimental performance of the model was assessed by implementing several optimization
methods, including two commonly used caching strategies. Namely, the Least-Recently-Used (LRU)
and First-in-First-Out (FIFO) replacement policies, which are also used in database environments
[52]. Additionally, we use the model predictions in an attempt to improve upon these two caching
policies by selectively keeping items cached. Lastly, we use the model in a setting where we assume

48

5.5. A PRACTICAL SETTING CHAPTER 5. EXPERIMENTS

that the predicted partial QEPs can be pre-computed before the arrival of the query. All the considered
methods are summarized in the following list:

• None, serves as baseline

• Least-Recently-Used (LRU), a cache that evicts the least recently used partial QEPs from the
cache

• First-In-First-Out (FIFO), a cache that evicts the partial QEPs in order of arrival from the cache

• Least-Recently-Used (LRU) with model, a cache that evicts the least recently used partial
QEPs from the cache that are not predicted for the next ; queries

• First-In-First-Out (FIFO) with model, a cache that evicts the partial QEPs in order of arrival
from the cache that are not predicted for the next ; queries

• Model, pre-compute the predicted partial QEPs of the next ; queries and cache the results

5.5.3 Simulation

The methods in Section 5.5.2 were implemented in a simulation framework written in Python, which
can be found in Appendix A.5. This framework considers the testing data set as an input sequence
of queries (21898 queries for the IoT data set) and uses either one of the methods in an attempt to
optimize the process by reducing the computation time. The cache capacity is fixed and given as a
parameter of the simulation. The memory capacity of the cache is an important parameter, as setting
it too high would allow any method to keep everything cached in memory. It was observed that tables
with 100,000 dummy rows were approximately 25 MB, which is trivial to cache with today’s available
memory sizes. However, database tables can contain millions or even billions of rows of data, which
are less realistic to keep in memory. Furthermore, the sum over every unique partial QEP’s size in
bytes amounted to approximately 2 GB. As such, a cache capacity of 2GB would already enable every
encountered partial QEP to be cached. Therefore, to create a more realistic scenario, experiments
were run with cache sizes of 25, 50, 75, and 100 MB to allow the caching of approximately 1 through
4 tables respectively.

For the simulation, every encoded query in the testing data set is considered sequentially. At
every query arrival, partial QEPs were added to the cache and evicted from the cache based on the
selected strategy, the associated byte size of the partial QEP, and the memory capacity of the cache.
Only partial QEPs with sizes less or equal to the cache capacity were be added to the cache. The
optimization of query answering was simulated by checking if any partial QEP in the query was found
in cache, and subtracting the computation time from that of the full query. Since multiple partial
QEPs of a query could be in cache, only the highest level partial QEPs, i.e. the partial QEPs in the
query not implied by other partial QEPs in the cache, were subtracted from the computation time
of the query. In other words, we use the cached partial QEPs that give the biggest performance
increase. Implicatively, we assume the cost of accessing the cache to be zero. This assumption is
sensible as accessing memory is approximately 100,000 times faster than accessing data on disk [12].
Therefore, accessing the cache has negligible cost compared to computing the result of a partial QEP
and performing the necessary I/O operations.

49

Chapter 6

Results & Discussion

Next, the most important results from experiments described in the previous chapter are presented
and discussed. First, we will address the model performance and compare it with the prediction
methods described in Section 5.4.1. Afterward, the effect of the dependency graph, repeated element
component, sequence lengths, and partial query execution plan (QEP) size will be discussed. Lastly,
the results of placing the model in a practical setting will be addressed. For each experiment, the
model checkpoint at the epoch with the best performance was used for evaluation. In addition, all
experiments were performed on the testing set, with data never seen before by the model. Detailed
tables for all the experiments can be found in Appendix B.

6.1 Model Performance

The results of the model’s best performance on the Internet of Things (IoT) and PhoneLabs data sets
are presented in Tables 6.1 through 6.4. Several observations can be made from the results. First of
all, for the IoT data set, the model achieves significantly higher recall than other methods. As can
be seen in Table 6.1, when we predict 5 partial QEPs per set, and then use the dependency graph to
include the implicit partial QEPs, we find that we are able to correctly predict over 82% of the partial
QEPs of the future queries. Precision, normalized discounted cumulative gain (NDCG), and hit rate
(HR) are also significantly better than other methods for 9 = 5. As expected, precision decreases
and recall increases when the value of 9 is increased. However, recall improves only slightly to 87%
while precision drops to as low as 13% for 9 = 20. For values of 9 = 10 or higher, TopKFrequent
and ExpectRepeat outperform the model in terms of precision and HR. The HR of the TopKFrequent
method reveals that in roughly 92% of the testing instances, every subsequent set has at least one
element from the top-9 most frequent partial QEPs. As for NDCG, it can be seen that the model
outperforms other methods for all values of 9, indicating that it is better at predicting relevant
items before irrelevant ones. The model, TopKFrequent and ExpectRepeat all outperform RandomSet
significantly in every metric. In summary, the model outperforms other methods significantly for all
values of 9 when the goal is to predict as many of the ground truth partial QEPs as possible.

For the PhoneLabs data set, a much smaller difference between the prediction methods can be
observed. Looking at Table 6.2, it may seem that the model achieves really good performance, but
ExpectRepeat and TopKFrequent achieve almost the same performance. In addition, ExpectRepeat
significantly outperforms the model in terms of precision, because it predicts the same number of
elements as were observed in the previous query irrespective of 9. These results indicate that the
PhoneLabs data set is subject to an extremely high amount of repeated encoded queries, given that
predicting a repeated encoded query is correct approximately 93% of the time. In other words, the
PhoneLabs data set is not just subject to simple queries, but also subject to simple query patterns that
are easily exploited by simple methods. Still, the model achieves between 2 - 4% higher recall, HR,

6.1. MODEL PERFORMANCE CHAPTER 6. RESULTS & DISCUSSION

and NDCG compared to other methods, so if maximizing these metrics is a priority, the model is still
the best prediction method. However, one can ask whether or not it is worth the overhead of using
the model compared to the other, relatively simple prediction methods in this case.

The �V-score for different values of V was also examined, i.e. how does the model perform when
recall and precision have different levels of importance. The V parameter denotes how many times
recall should be considered more important than precision. Results for V ∈ {0.5, 1.0, 1.5, 2.0} and
9 ∈ {5, 10, 15, 20} are summarized in Tables 6.3 and 6.4. As can be seen in Table 6.3, the model
outperforms all other methods on the IoT data set for all values of V when 9 = 5. For higher values
of 9, a higher value of V is needed to outperform the other methods. Since increasing the value of 9
positively affects recall, and negatively affects precision, this was expected. For the PhoneLabs data
set, the model outperforms the RandomSet and TopKFrequent methods for all values of V and 9,
except for 9 = 20. However, the ExpectRepeat method achieves significantly higher precision, so for
all values of V it is better than the model. Not only do these results show that the PhoneLabs data set
is subject to a very high amount of repeated query templates, but also that precision is difficult for the
model to achieve. On the other hand, results show that the rather primitive method of ExpectRepeat
in combination with our encoding scheme could be very powerful in some databases.

The recall and precision trade-off still remains to be discussed. One could argue that recall is more
important than precision. As the goal is to increase query performance, predicting as many relevant
partial QEPs as possible implies that a database management system (DBMS) could optimize for more
queries, and to a greater extent. As was also demonstrated in Tables 6.1 and 6.2, the model achieves
recall scores of over 80% for all values of 9 in both data sets. In other words, the model predicts over
80% of the partial QEPs correctly for each subsequent query on average. Thereby, many details of
future queries are revealed to the DBMS before their arrival. However, these details are accompanied
by irrelevant information, that cannot be distinguished from relevant information until the arrival of
future queries. This is why precision is also important, which conveys the fraction of relevant details
that are predicted. For both data sets, this number is generally lower than 50%, reaching as low
as 13% when 9 = 20. The problem with recall and precision metrics, as well as �V-score, is that it
considers every prediction to be equally valuable; a partial QEP is correctly predicted or it is not. In
reality, every predicted element corresponds to a partial QEP, which has an associated size in bytes
and computation time of its result. Therefore, whether a DBMS could optimize for every prediction,
with the possibility of up to 87% being futile, depends on the available memory and computation
capacity. With enough memory and computation capacity, a DBMS could prepare for future queries
at the cost of many useless memory allocations and pre-emptive calculations. But, some partial QEPs
may correspond to extremely large relations, which could realistically not fit into memory at all. In
summary, it is difficult to determine the actual usefulness of the model based on only these metrics.
Experiments of the model in a practical setting will study the extent to which the recall-precision
trade-off affects the model’s usefulness.

51

6.1. MODEL PERFORMANCE CHAPTER 6. RESULTS & DISCUSSION

IoT # = 5801, : = 20, ; = 2

9 = 5 9 = 10

Method Recall Precision NDCG HR Recall Precision NDCG HR

RandomSet 0.0009 0.0007 0.0015 0.0000 0.0023 0.0008 0.0033 0.0000
TopKFrequent0.3049 0.1526 0.2606 0.2200 0.5132 0.1396 0.3463 0.8438
ExpectRepeat 0.3539 0.3591 0.3762 0.3368 0.3539 0.3591 0.3695 0.3368

Model 0.8216 0.4323 0.6997 0.7556 0.8286, 0.2474 0.6671 0.7720

9 = 15 9 = 20

Recall Precision NDCG HR Recall Precision NDCG HR

RandomSet 0.0026 0.0006 0.0037 0.0000 0.0036 0.0007 0.0052 0.0002
TopKFrequent 0.5721 0.1122 0.3709 0.9246 0.6175 0.1001 0.3915 0.9246
ExpectRepeat 0.3539 0.3591 0.3687 0.3368 0.3539 0.3591 0.3687 0.3368

Model 0.8521 0.1705 0.6345 0.8224 0.8727 0.1320 0.6300 0.8302

Table 6.1: Evaluation of different methods on the IoT data set

PhoneLabs # = 4729, : = 20, ; = 2

9 = 5 9 = 10

Method Recall Precision NDCG HR Recall Precision NDCG HR

RandomSet 0.0010 0.0006 0.0014 0.0000 0.0022 0.0007 0.0031 0.0000
TopKFrequent 0.8918 0.5351 0.8752 0.8984 0.9182 0.2755 0.8877 0.9164
ExpectRepeat 0.9268 0.9271 0.9276 0.9088 0.9268 0.9271 0.9276 0.9088

Model 0.9487 0.5604 0.9426 0.9350 0.9560 0.2809 0.9454 0.9444

9 = 15 9 = 20

Recall Precision NDCG HR Recall Precision NDCG HR

RandomSet 0.0036 0.0007 0.0050 0.0002 0.0044 0.0007 0.0062 0.0000
TopKFrequent0.9388 0.1875 0.8953 0.9282 0.9447 0.1414 0.8972 0.9362
ExpectRepeat 0.9268 0.9271 0.9276 0.9088 0.9268 0.9271 0.9276 0.9088

Model 0.9601 0.1901 0.9466 0.9522 0.9640 0.1386 0.9483 0.9580

Table 6.2: Evaluation of different methods on the PhoneLabs data set

52

6.1. MODEL PERFORMANCE CHAPTER 6. RESULTS & DISCUSSION

IoT # = 5801, : = 20, ; = 2

9 = 5 9 = 10

Method V = 0.5 V = 1.0 V = 1.5 V = 2.0 V = 0.5 V = 1.0 V = 1.5 V = 2.0

RandomSet 0.0007 0.0008 0.0008 0.0009 0.0009 0.0012 0.0015 0.0017
TopKFrequent 0.1695 0.2034 0.2333 0.2542 0.1634 0.2195 0.2814 0.3343
ExpectRepeat 0.3580 0.3565 0.3555 0.3549 0.3580 0.3565 0.3555 0.3549

Model 0.4776 0.5665 0.6433 0.6962 0.2878 0.3810 0.4809 0.5637

9 = 15 9 = 20

V = 0.5 V = 1.0 V = 1.5 V = 2.0 V = 0.5 V = 1.0 V = 1.5 V = 2.0

RandomSet 0.0007 0.0010 0.0013 0.0016 0.0008 0.0012 0.0016 0.0020
TopKFrequent 0.1337 0.1876 0.2530 0.3144 0.1203 0.1723 0.2384 0.3036
ExpectRepeat 0.3580 0.3565 0.3555 0.3549 0.3580 0.3565 0.3555 0.3549

Model 0.2030 0.2841 0.3821 0.4735 0.1590 0.2293 0.3201 0.4112

Table 6.3: �V-scores for different methods and different values of V on the IoT data set

PhoneLabs # = 4729, : = 20, ; = 2

9 = 5 9 = 10

Method V = 0.5 V = 1.0 V = 1.5 V = 2.0 V = 0.5 V = 1.0 V = 1.5 V = 2.0

RandomSet 0.0007 0.0008 0.0008 0.0009 0.0008 0.0011 0.0013 0.0015
TopKFrequent 0.5816 0.6689 0.7400 0.7869 0.3203 0.4238 0.5345 0.6261
ExpectRepeat 0.9270 0.9269 0.9269 0.9269 0.9270 0.9269 0.9269 0.9269

Model 0.6104 0.7046 0.7820 0.8332 0.3271 0.4342 0.5496 0.6457

9 = 15 9 = 20

V = 0.5 V = 1.0 V = 1.5 V = 2.0 V = 0.5 V = 1.0 V = 1.5 V = 2.0

RandomSet 0.0008 0.0012 0.0016 0.002 0.0008 0.0012 0.0017 0.0021
TopKFrequent 0.2232 0.3126 0.4204 0.5212 0.1704 0.246 0.3438 0.4422
ExpectRepeat 0.9270 0.9269 0.9269 0.9269 0.9270 0.9269 0.9269 0.9269

Model 0.2264 0.3174 0.4274 0.5304 0.1672 0.2424 0.3403 0.4400

Table 6.4: �V-scores for different methods and different values of V on the PhoneLabs data set

53

6.1. MODEL PERFORMANCE CHAPTER 6. RESULTS & DISCUSSION

Figure 6.1: Recall scores of IoT data set by
use of dependency graph and 9

Figure 6.2: Recall scores of PhoneLabs data
set by use of dependency graph and 9

Figure 6.3: Precision scores of IoT data set by
use of dependency graph and 9

Figure 6.4: Precision scores of PhoneLabs
data set by use of dependency graph and 9

Figure 6.5: NDCG scores of IoT data set by
use of dependency graph and 9

Figure 6.6: NDCG scores of PhoneLabs data
set by use of dependency graph and 9

Figure 6.7: HR scores of IoT data set by use
of dependency graph and 9

Figure 6.8: HR scores of PhoneLabs data set
by use of dependency graph and 9

54

6.1. MODEL PERFORMANCE CHAPTER 6. RESULTS & DISCUSSION

Figure 6.9: Recall scores of IoT data set by
use of repeated element component W and 9

Figure 6.10: Recall scores of PhoneLabs data
set by use of repeated element component W
and 9

Figure 6.11: Precision scores of IoT data set
by use of repeated element component W and
9

Figure 6.12: Precision scores of PhoneLabs
data set by use of repeated element compo-
nent W and 9

Figure 6.13: NDCG scores of IoT data set by
use of repeated element component W and 9

Figure 6.14: NDCG scores of PhoneLabs data
set by use of repeated element component W
and 9

Figure 6.15: HR scores of IoT data set by use
of repeated element component W and 9

Figure 6.16: HR scores of PhoneLabs data set
by use of repeated element component W and
955

6.1. MODEL PERFORMANCE CHAPTER 6. RESULTS & DISCUSSION

Figure 6.17: Recall scores by data set and ;,
with : = 20 and 9 = 5

Figure 6.18: Recall scores by data set and :,
with ; = 2 and 9 = 5

Figure 6.19: Precision scores by data set and
;, with : = 20 and 9 = 5

Figure 6.20: Precision scores by data set and
:, with ; = 2 and 9 = 5

Figure 6.21: NDCG scores by data set and ;,
with : = 20 and 9 = 5

Figure 6.22: NDCG scores by data set and :,
with ; = 2 and 9 = 5

Figure 6.23: HR scores by data set and ;,
with : = 20 and 9 = 5

Figure 6.24: HR scores by data set and :, with
; = 2 and 9 = 5

56

6.1. MODEL PERFORMANCE CHAPTER 6. RESULTS & DISCUSSION

Figure 6.25: Recall scores of IoT data set by
partial QEP size and method, with 9 = 5

Figure 6.26: Recall scores of IoT data set by
partial QEP size and method, with 9 = 10

Figure 6.27: Recall scores of IoT data set by
partial QEP size and method, with 9 = 15

Figure 6.28: Recall scores of IoT data set by
partial QEP size and method, with 9 = 20

Figure 6.29: Recall scores of PhoneLabs data
set by partial QEP size andmethod, with 9 = 5

Figure 6.30: Recall scores of PhoneLabs data
set by partial QEP size and method, with 9 =

10

Figure 6.31: Recall scores of PhoneLabs data
set by partial QEP size and method, with 9 =

15

Figure 6.32: Recall scores of PhoneLabs data
set by partial QEP size and method, with 9 =

20

57

6.2. EFFECT OF THE DEPENDENCY GRAPH CHAPTER 6. RESULTS & DISCUSSION

6.2 Effect of the Dependency Graph

Figures 6.1-6.8 showcase the effect of the dependency graph on model performance. Experiments
were performed using input sequences of length : = 20 and output sequence lengths of ; = 2.
Detailed results can be seen in Tables 6.1, 6.2, and Appendix B.

For the IoT data set, incorporating the dependency graph significantly improves recall compared
to the unaltered model architecture. The improvements in recall can be seen for all values of 9.
Unfortunately, this also comes at the cost of lower precision. For 9 = 5 the difference in precision is
most notable and gradually decreases for higher values of 9. Since the dependency graph increases
the number of elements in the predicted set by including the implicit elements for each of the 9

elements, the drop in precision is expected. The increasingly smaller drop in precision for larger
values of 9 indicates that the error introduced by the dependency graph has a smaller effect for larger
values of 9. NDCG and HR are also significantly worse for all values of 9, being 5-10% less on average.

When the dependency graph is used as a post-processing step instead of incorporating it in the
model, an even bigger improvement in recall can be seen. As can be seen in Figures 6.1 and 6.3,
recall increases from approximately 64% to 82% with a minimal decrease in precision for the IoT
data set. A similar improvement in recall can be seen for higher values of 9. However, the drop in
precision is surprisingly small given the significant boost in recall performance, and much better than
incorporating the dependency graph in the model directly. In addition, HR and NDCG improve when
using the dependency graph during inference, indicating that the dependency graph has a positive
effect on predicting relevant elements before irrelevant ones and predicting at least one element
correctly in all 9 subsequent sets. The difference in HR also demonstrates that there are cases where
the model predicts a set of partial QEPs of which none are correct, but at least one of the implicit
partial QEPs is correct, resulting in a ‘hit’ when the dependency graph is inferred.

Experiments with the PhoneLabs data set demonstrate a very small increase in recall when the
model incorporates the dependency graph. Similar effects can be seen for NDCG and HR. However,
for 9 = 5, a significant decrease in precision can be observed, while values higher than 9 = 10
show a much smaller decrease in precision. Using the dependency graph as a post-processing step
has a similar effect, with a minimal increase in recall, NDCG and HR, and a comparable drop in
precision. Interestingly, for 9 = 5 the drop in precision is smaller than when the dependency graph is
incorporated in the model.

For the IoT data set, it can be seen that the use of the dependency graph has a significant effect
on model performance. Large improvements can be seen in recall when using the dependency graph,
at the cost of slightly lower precision. Using the dependency graph as a post-processing step tends to
have a less negative impact on precision, NDCG and HR compared to incorporating it in the model
directly. The PhoneLabs dataset is less affected by the use of the dependency graph, indicating that
predictions tend to be rather ‘complete’, as not many (ir)relevant elements are added to the prediction
and metrics remain similar. Thus, the effect of the dependency graph differs between data sets, but
could potentially have a significant positive effect on model performance for some databases.

The difference between incorporating the dependency graph directly into themodel and using it as
a post-processing step is notable. It can be observed that incorporating the dependency graph directly
into the model has a negative impact on precision and that using the graph only as a post-processing
step is arguably more effective in terms of recall, NDCG, and HR than not using the dependency
graph for all values of 9. The reason for this is that when predicting the next sets recurrently, the
dependency graph being incorporated in the model could introduce more errors into the input of
the next time-step. As there are always errors in each prediction, the dependency graph compounds
these errors which could affect the performance of the model.

58

6.3. EFFECT OF THE REPEATED ELEMENT COMPONENT CHAPTER 6. RESULTS & DISCUSSION

6.3 Effect of the Repeated Element Component

Experiments were also performed to determine the effect of the repeated element component W, as
described in Section 4.1.3. We compare the performance of the model with this component, i.e.

=(v̂B) = softmax(,=AB ◦ (1 − V ◦w) + W ◦w),

to that without it, i.e.
=(v̂B) = softmax(,=AB).

Both implementations of the model make use of the dependency graph as a post-processing step
and use input sequences of length : = 20, and output sequence lengths of ; = 2. Figures 6.9-6.16
show how this component affects the recall, precision, NDCG, and HR scores. For more detailed
results, the reader is referred to Appendix B.4. As can be seen in Figures 6.9-6.16, the repeated
element component W improves recall, precision, and HR scores for all values of 9 in both the IoT and
PhoneLabs data sets. In the PhoneLabs data set, NDCG is slightly better for all values of 9, but for the
IoT data sets 9 = 15 and 9 = 20 slightly worsen. Overall, it can be said that the repeated element
component improves the model performance, and confirms our assumption that this component can
aid in modeling the relation between partial QEPs occurring in the past and those occurring in the
future.

6.4 Effect of the Sequence Lengths

The effect of longer input and output sequence lengths was examined by comparing model perfor-
mance with ; = 2 and values : ∈ {20, 30, 40}, and that with : = 20 and values ; ∈ {2, 3, 5}. Figures
6.17-6.24 summarize the findings.

As can be seen in Figures 6.18, 6.20, 6.22 and 6.24, input sequence lengths of : = 30 and : = 40
perform significantly worse than : = 20 for all metrics and the IoT data set. These results lead us
to believe that the model has difficulties modeling the temporal relation of longer input sequences.
However, the difference between : = 20 and : = 30 is smaller than the difference between : = 30
and : = 40. In addition, NDCG is slightly better for : = 40 than : = 30. Hence, it is difficult to say
what the actual effect of input sequence length is, and more experiments should be performed with
a wider range of sequence lengths. For the PhoneLabs data set, no notable difference was observed.
Thus, the effect of input sequence lengths differs between data sets. This indicates that potentially
larger input sequences could be exploited to model longer temporal relations in some data sets.

Experiments were also performed when predicting ; = 3 and ; = 5 subsequent sets into the
future. Predicting the future sets recurrently can always introduce errors at each time step. When
that happens, the temporal correlation between sets is also affected. Therefore, it is expected that
the performance of the model degrades the more sets are predicted into the future. Nevertheless, the
usefulness of the model could be improved the more sets into the future can reliably be predicted.
Figures 6.17, 6.19, 6.21 and 6.23 show the different metrics for both data sets for different values of
;. It can be observed that all metrics decrease for both the IoT and PhoneLabs data sets when the
number of subsequent sets to predict is increased. However, for the PhoneLabs data set, the decrease
is less prominent. Hence, it depends on the data set whether predicting more queries into the future
is worth the lesser performance, and the parameter ; can best be determined by the user of the
model.

6.5 Effect of the Partial QEP Size

Until know, we have only studied the model’s performance in terms of an average metric across the ;
predicted sets. That is, the predicted sets were considered in its entirety without making a distinction

59

6.6. THE MODEL IN A PRACTICAL SETTING CHAPTER 6. RESULTS & DISCUSSION

based on the type of elements in those sets. However, a clear categorization of partial QEPs exists
based on their size, which corresponds to the number of operators/nodes in its tree. Only being able
to predict partial QEPs with a single operator is analogous to predicting which tables and indexes are
queried. While this could be considered a feat in itself, as accurately predicting which table(s) will
be queried next is not trivial, the opportunities for optimization are limited. Since it fails to predict
computationally expensive operators, such as joins, its main use would be in reducing disk I/Os.
Therefore, we also investigate the model’s performance based on the size of the predicted partial
QEPs.

The previous experiments used various metrics to measure performance. However, precision, HR,
and NDCG are arguably less meaningful when we focus on only a subset of the partial QEPs in the
ground-truth and predicted sets. Thereby, we will focus on recall for this experiment, and investigate
the fraction of partial QEPs of each size present in the ground-truth set that the model is able to
correctly predict. Note that we only calculate recall when a particular QEP size is actually present in
the ground-truth set, to avoid skewing the results based on frequency.

Figures 6.25 through 6.32 visualize the recall scores by data set, partial QEP size, evaluation
method, and the number of predicted elements per set 9. For more detailed results, the reader
is again referred to Appendix B.5. Looking at Figures 6.25-6.28, the performance of all methods
decreases for larger partial QEP sizes in the IoT data set. This implies that as the complexity of
a partial QEP increases, it becomes more difficult to predict. Furthermore, limitations of the other
methods become apparent when compared to the model. Where the model is able to achieve recall
values around 25% for partial QEP with up to four operators, the other methods degrade more quickly
and fail to make accurate predictions for partial QEPs with more than two operators. In particular,
the model’s recall is more than double that of other methods for all partial QEP sizes larger than two.

Predicting more elements for each subsequent set has little effect on the recall relative to the
partial QEP size except for one particular case. When looking at the TopKFrequent method, one can
observe double the recall score for partial QEPs with a single operator when 9 = 10 compared to 9 = 5.
Additionally, it outperforms the model for partial QEPs with a single operator for all 9 ∈ {10, 15, 20},
indicating that it is actually better than the model for predicting the tables or indexes involved in a
query. One explanation for this is that the partial QEPs with a single operator are also among the most
frequent, and at least one of which is present in every query. As such, the TopKFrequent method,
which predicts the most frequent partial QEPs, is able to obtain a high recall score.

For the PhoneLabs data set, Figures 6.29-6.32 visualize the results. As can be seen, the graphs
are similar across methods and values of 9. This indicates that all predictive methods have difficulty
predicting partial QEPs with more than two operators. A logical explanation for this would be the
lack of larger size QEPs in the data set.

6.6 The Model in a Practical Setting

Each method described in Section 5.5.2 was run in a simulation with different cache capacities and
compared to the ‘none’ method where no caching mechanism is used. This none method serves as a
baseline for our evaluation and simply computes the result of every query template in the testing set as
they arrive, so cache capacity has no effect on its performance. The test set of the IoT data set consists
of exactly 21898 queries, and computing all the queries took a total of 164774 ms, approximately 36
minutes. As such, the average time to evaluate a query was found to be 98.86 ms. The results of the
model’s experimental performance are summarized in Table 6.5 and Figure 6.33.

As can be seen in Table 6.5 and Figure 6.33, the use of an LRU cache with 25 MB of capacity
reduces the absolute time to process all queries to 1807033 ms, roughly 30 minutes. Consequently,
the average time per query is reduced to 82.43 ms, resulting in a total speedup of 1.20x. When the
cache capacity is increased, the results of more partial QEPs can remain in cache and we expect the
number of cache hits to increase. The results demonstrate this, as doubling the cache capacity to

60

6.6. THE MODEL IN A PRACTICAL SETTING CHAPTER 6. RESULTS & DISCUSSION

IoT < = 21898, # = 5801, : = 20, 9 = 5, ; = 2, with graph

25 MB 50 MB

Method Time (ms) Avg. Time (ms) Speedup Time (ms) Avg. Time (ms) Speedup

None 2164774 98.86 1.00 2164774 98.86 1.00
LRU 1807033 82.43 1.20 1441648 65.76 1.50
FIFO 1807013 82.43 1.20 1312225 59.86 1.65

LRU + m 1790051 81.74 1.21 1275738 58.26 1.70
FIFO + m 1791935 81.83 1.21 1271156 58.05 1.70

Model 189606 8.66 11.42 175791 8.03 12.31

75 MB 100 MB

Time (ms) Avg. Time (ms) Speedup Time (ms) Avg. Time (ms) Speedup

None 2164774 98.86 1.00 2164774 98.86 1.00
LRU 1123194 51.23 1.93 1058300 48.27 2.05
FIFO 1110006 50.63 1.95 1036973 47.30 2.09

LRU + m 931942 42.56 2.32 892023 40.74 2.43
FIFO + m 910689 41.59 2.38 810671 37.02 2.67

Model 157596 7.20 13.74 145250 6.63 14.90

Table 6.5: Query answering time with different methods for the IoT data set

50 MB results a 1.5x speedup of query answering time. Analogously, increasing the cache capacity
to 75 and 100 MB yields speedups of 1.93x and 2.05x respectively. Similar results can be seen for
the FIFO caching policy, except that it slightly outperforms the LRU cache when the capacity is 50
MB or higher. The reason for the FIFO policy outperforming LRU is suspected to be due to frequent
partial QEP corresponding to the base table operators, such as table scans. The results of these partial
QEP are among the biggest in byte size, and thus occupy large amounts of memory with relatively
little computation time saved when used from cache. Since the FIFO policy makes no distinction
between elements based on cache hits, a slight performance increase can be seen. Overall, the results
demonstrate that query speed can be improved by 20% up to 100% using relatively simple caching
policies, a reasonable cache size, and the encoding scheme presented in Chapter 3.

Unfortunately, a selective caching strategy based on model predictions suffers from the fact that
partial QEPs need to remain in memory before deciding what can be evicted. Therefore, the potential
gain in reduced memory size by only caching what is predicted is limited. Nevertheless, the eviction
of partial QEP results before they are needed can be avoided in some cases by forcing the results of
predicted partial QEPs to remain cached until the arrival of the corresponding query. Hence, we also
considered an alteration to the LRU and FIFO caching policies, making them ‘smarter’ by use of the
model. For this we assume that there is enough time in between query arrivals to infer the model for
the next ; queries. In particular, the model was used to selectively avoid the eviction of results of
predicted partial QEPs. The LRU/FIFO with model (+ m) strategies test the extent to which this can
be used to improve query performance. The results of the LRU/FIFO with model strategies can also
be seen in Table 6.5 and Figure 6.33. As can be seen, the performance is almost the same for a cache
size of 25 MB. But, when the cache capacity is increased, the difference becomes apparent. For cache
sizes of 50 MB or higher, selectively keeping the results of partial QEPs cached based on the model’s
predictions yields a significant improvement in query answering time. Specifically, combining the
model with LRU and FIFO caching policies results in speedups ranging from 1.20 - 2.67x depending
on the cache capacity. In general, the results show that the model can be used to improve upon LRU
and FIFO caching policies to improve query answering time.

61

6.7. COMPUTATION TIME CHAPTER 6. RESULTS & DISCUSSION

Figure 6.33: Average query answering time with different methods by cache size for the IoT data set

Lastly, the model was tested autonomously. For this we also assume that there is enough time
in between query arrivals to infer the model for the next ; queries, and subsequently compute the
result preemptively and cache it in memory. In other words, this strategy aims to measure to what
extent a DBMS could be optimized if the model was used to its fullest potential. The results in Table
6.5 and Figure 6.33 demonstrate that the average time to answer a query can be reduced from 98.86
ms down to 8.66 ms. As such, the total answering time of evaluating the 21898 queries is reduced
from approximately 36 minutes to a mere 3 minutes. This corresponds to a vast speedup of 11.30x.
In addition, this indicates that a smaller cache is needed to achieve high performance, unlike LRU
and FIFO methods (both with or without model usage), which are significantly more dependent on
the cache capacity. Even better performance can be observed for larger cache sizes, with the average
query answering time reaching as low as 6.63 ms, a speedup of 14.90x. However, it must be noted that
these results hold only under the assumption that predictions and pre-computation can be performed
before the query arrivals. In database systems, queries can also arrive in rapid succession, such that
they can’t benefit from the model’s predictions. Therefore, these results are only representative of
queries that arrive with a delay big enough for model inference and pre-computation.

6.7 Computation Time

Query Encoding

A distinction can be made between creating a usable data set, and only encoding a QEP with an
established encoding scheme. The prior includes the parsing, pre-processing, optimization and
encoding of the queries. On the other hand, the latter corresponds to only the additional overhead
that is caused by using the encoding scheme, given that the other steps need to be performed
regardless of using the encoding scheme. The query encoding was performed on the same machine
as the cost calculation, a desktop PC with a 3.5 GHz Quad-Core 64-bit CPU architecture, 16 GB of
RAM and with the data stored on an SSD that supports 94.000 I/O operations per second.

For the IoT data set, encoding the 111087 queries into a data set, as per the encoding scheme out-

62

6.7. COMPUTATION TIME CHAPTER 6. RESULTS & DISCUSSION

lined in Chapter 3, took approximately 31 minutes. The PhoneLabs data set took significantly longer
because of the larger number of queries. In total, encoding the 553751 queries took approximately
271 minutes, or 4.5 hours.

However, with an established mapping between partial QEPs and indices, encoding a query takes
approximately 1 ms on average for both data sets. Hence, if the model was to be used in practice,
queries would have to be encoded as they arrive. This results in an additional overhead of 1 ms in
processing time per query.

Model Training

Training of the model was performed on a ‘Standard_NC6_Promo‘ virtual machine on the Microsoft
Azure platform because of its GPU support. This virtual machine utilizes a 6-core CPU, 56 GB of
RAM, and an Nvidia Tesla K80 GPU with 24GB of memory. The model was implemented to use Nvidia
CUDA for parallel computing. Training the model from a fresh start for 10 epochs took approximately
6 hours, so about 35 minutes per epoch. However, since the model would converge fast — the
best performance was generally observed within the first 5 epochs — training the model for best
performance can be achieved in about 3 hours. Since the training and test sets were the same size for
both the IoT and the PhoneLabs data set, no notable difference in training or test speed was observed.

Model Inference

Given that the main motivation for this work is to provide a means of improving query performance,
we require inference to be fast. Depending on the database, queries can rapidly arrive in succession
during bursty workloads. Especially queries that are automatically generated by some process may
arrive within less than a thousandth of a millisecond from one another.

For inference, we used the same virtual machine as used during training. With the model loaded in
memory and utilizing the dependency graph, we observed that inference takes approximately 32ms on
average. The minimum and maximum inference time we observed were 24 and 157 ms respectively.
Without the dependency graph, inference takes approximately 29 milliseconds on average, with
extremes being 22 and 153 ms. Thus, the effect of the dependency graph on the inference time is
small and the input sequence has the biggest impact on inference time.

Note that inference time can be reduced significantly with better hardware. Upgrading the GPU
in the virtual machine to an Nvidia Tesla T4 reduces inference time to approximately 21 ms.

63

Chapter 7

Conclusion

7.1 Overview

First of all, this work addressed the feature engineering of SQL queries. In particular, we investigated
how the dimensionality of SQL queries could be reduced such that query patterns could be exploited
and meaningful predictions could be made. To this end, the concept of query execution plan (QEP)
fingerprinting was introduced. This encoding scheme is based on the QEP of a query in order
to capture the reusable elements, i.e. the intermediate results, of a query in a low-dimensional
representation. In addition, transforming each query into a set of elements accommodates partially
correct predictions, which could increase a predictive model’s potential. Consequently, predictions of
these intermediate query results can be used to optimize a database management system (DBMS)
through caching, pre-emptive computation andmore. Thus, a framework implementing this encoding
scheme was developed. This framework was used to transform two real-world query logs into data
sets that are suitable for machine learning techniques and other predictive methods.

Secondly, a deep neural architecture was presented to model the joint distribution between en-
coded sequences of queries. This model architecture enables the prediction of partial QEPs included
in future queries based on the most recently seen sequence of queries. Furthermore, this model was
fitted with several components to improve its performance, such as a dependency graph of the partial
QEPs, and a repeated element component to explicitly model the past element to future element
temporal relation. In addition, we demonstrate how a greedy inference algorithm could be used to
infer the model in approximately 30ms or less.

Subsequently, experiments studied the performance of the model and the effect of the individual
components on two data sets. First, the model was evaluated with a set of commonly used metrics
and compared to several other prediction methods. The results demonstrate that good performance
and generalization can be achieved for both databases. For the Internet of Things data set, the model
outperforms the best performance of other methods with respect to recall by 46.8%-51.9%. However,
in the PhoneLabs data set, the model only outperforms other methods by 2.2-3.7% with respect to
recall. Additionally, results show that increasing the number of elements that are predicted at each
subsequent set negatively affects the precision of the model, demonstrating a limitation of the model
compared to other methods.

Further analysis examined the effect of the dependency graph. Results show that incorporating
the dependency graph in the model directly improves recall scores at the cost of lower precision,
normalized discounted cumulative gain (NDCG) and hit rate (HR). On the other hand, using the
dependency graph as a post-processing step has a net-positive effect on the predictive performance.
In addition to the higher recall, higher NDCG and HR scores could be observed with only slightly
lower precision scores. Furthermore, the effect of the repeated element component W was examined,
by comparing two distinct output functions of the Gated Recurrent Unit (GRU) cell. In general, the
effect is positive, with slightly higher scores across all metrics and the number of predicted elements

7.2. LIMITATIONS CHAPTER 7. CONCLUSION

for each subsequent set 9, with the exception of NDCG scores for 9 = 15 and 9 = 20. Moreover,
increasing the number of subsequent queries ; for which to predict the set of partial QEPs has a
negative effect on all metrics for both data sets. Similar performance degradation can be seen when
the input sequence length : is increased.

The usefulness of the model was further examined by placing it in a practical setting. In particular,
a simulation was created where the encoded queries would arrive sequentially and a cache of fixed
memory size was available. The results show that simple caching strategies such as LRU and FIFO,
and relatively small cache sizes can be used to improve the answering time of queries encoded with
QEP fingerprinting by up to 2.09x. When using the model’s predictions to improve upon these caching
policies enables speedups of up to 2.67x were observed. Additionally, in the scenario that queries can
be pre-computed based on the model’s predictions, speedups of up to 14.90x could be achieved.

In summary, this work proposes a novel method to encode queries into vectors of usable dimensions
that can be used to model the temporal correlations between queries in a DBMS. The proposed
encoding scheme makes it suitable for use in different DBMSs with different schemas and query
workloads, and enables optimization of query processing through caching or prediction. In addition,
experiments demonstrate how a deep learning framework can be used with our encoding scheme to
build a predictive model for SQL query data and exploit query patterns and consequently optimize
query processing in a DBMS.

7.2 Limitations

The first limitation to be addressed is that the encoding scheme and model are not schema-agnostic.
Especially in less mature databases, schema changes can happen frequently. As a consequence,
queries result in different plans, so also in different query encodings. Not only could this invalidate
query encodings generated prior to a schema change, but encoding future queries could result in
partial QEPs that were never seen before by the model. Even though the model could still be used in
this case, the modeled temporal correlation between past and future queries becomes less effective.
Furthermore, predictions of partial QEPs could now be invalid, i.e. correspond to plans that can’t be
executed on the database. Thus, it would be necessary to re-encode the training set and re-train the
model for every schema change, which is computationally intensive and unpractical for databases
with frequent schematic updates. Thus, the practicality of a deep learning framework for query
optimization is limited to databases with infrequent schema changes.

Furthermore, while the use of query templates reduces the dimensionality of the encoded vectors,
predictions are less useful as filter parameters are not accounted for. Therefore, the results of partial
QEPs that were correctly predicted don’t correspond to the results of the query exactly, and more
post-processing is needed. Even though the results demonstrate that a high amount of optimization
could be achieved, it is unknown to what extent this optimization will be affected by the additional
post-processing. More experimentation is needed to determine the difference between evaluating
a QEP generated from a query, and one generated from a query template, where post-processing is
performed to obtain the query result in the latter. However, as was argued prior in Section 3.1.2, we
expect this effect to be small. Given that the inclusion of additional table attributes in projections and
applying filters retroactively would likely not have a high overhead compared to the overall processing
time of the QEP.

Moreover, using fixed input and output sequence lengths as training samples makes it difficult
to model long-term patterns. For instance, a database may experience a similar query load daily at
a specific time, or at the end of the month. An example would be scheduled cron1 jobs that run
automated tasks such as sanity tests and batch operations periodically at a specified time. By fixing
the sequence length to :, we can only model short-term patterns that don’t span more than : queries,
and these types of scheduled query loads cannot be modeled reliably. Even though parameters : and

1cron is a time-based task scheduler commonly used in Unix-based systems

65

7.3. FUTURE WORK CHAPTER 7. CONCLUSION

; can be chosen by the user such that the desired patterns can be modeled, very large values of : are
not practical. The reason for this is that the loss needs to be backpropagated through every recurrent
unit in the sequence, so training times become restrictive. As a result, encoder-decoder RNN models
are hard to scale to very long sequences [33], [45].

Finally, inference time could be considered problematic. With an experimental inference time of
21 ms, queries arriving with less than that in between are unable to benefit from the model, even
without accounting for the cost of pre-computing the predictions. Yet, many DBMSs experience heavy
loads with queries arriving in rapid succession, with often only a fraction of a millisecond in between
arrivals. In this case, the usefulness of the model is limited, as predictions can’t be made fast enough
to enable any kind of optimization. Therefore, the model is best suited for applications where queries
arrive somewhere in the range of 50ms or more between each other, and enough time is available to
infer the model and pre-compute a set of partial QEPs. However, the 21 ms corresponds to inference
with an Nvidia Tesla T4 GPU. Potentially much smaller inference times can be achieved with the
commonly used state-of-the-art Nvidia Tesla V100 GPU, but this was not available to us for testing.
Alternatively, systems with heavy loads could implement a delayed start feature, where the model
would only be inferred when a certain amount of time has passed since the last query arrival.

7.3 Future Work

First of all, more experimentation could be performed using the presented encoding scheme and deep
learning-based model. For instance, different data sets, different input/output sequence lengths,
and altered model architectures could reveal interesting results and potentially improve predictive
performance. Since we only performed experiments with the top-1 QEP of a query, as was generated
by the query optimizer, experimentation with multiple QEPs per query could also be conducted. For
example, experiments could investigate the effect of considering multiple QEPs as input, and compare
the different methods of handling these, such as considering the top-k frequent partial QEPs or taking
the union over each set of partial QEPs. In turn, this could enable the optimization of future queries
to a greater extent.

Results indicate that the model could be used to optimize LRU/FIFO caching policies and vastly
reduce query answering times by pre-computing predicted partial QEPs. However, the partial QEPs
correspond to the QEPs of query templates. Thereby, filter parameters were replaced with placehold-
ers and predictions don’t always correspond to the results of the query exactly. Therefore, future
work could perform experiments without transforming queries into query templates. Alternatively,
QEPs could be altered in the encoding such that filter attributes are included in projections and that
filtering can still be applied retroactively to obtain the query result. Unfortunately, query parameters
tend to contain sensitive information so obtaining a data set that includes filter parameters is difficult.
As such, the cost of altering QEPs for this purpose and retroactively filtering the predictions was not
included in the cost model that was presented in Chapter 5, so future experiments could investigate
the extent to which this overhead affects the optimization potential. Perhaps more interesting is fully
integrating the model with a query optimizer. For instance, a query optimizer could be extended such
that the use of predicted partial QEPs is maximized. It could subtract the cost of cached partial QEPs
from the QEP candidates of a query and select the best QEP based on the new cost estimates.

Future work could further examine the exploitation of query patterns in database systems based on
QEP fingerprinting. Previous research demonstrates how deep reinforcement learning can be applied
to query optimization [1]–[6] and query performance estimation [7], but no research addresses the
exploitation of query patterns with deep reinforcement learning. Even though we have shown how
deep learning can be used to induce a predictive model for SQL query data, approaches purely
based on deep learning models have certain limitations. For instance, deep reinforcement learning
could address the problem of schema dependence and alleviate the need of training a model before
deployment. With its schema-agnostic and ‘on-line’ learning properties, it could potentially provide

66

7.3. FUTURE WORK CHAPTER 7. CONCLUSION

a solution that requires less setup time and is more adaptive to changes than deep learning methods.
Furthermore, the research presented in this work focused on database query patterns. Future work

could investigate user-specific or location-specific query patterns by associating queries to a source.
For example, this work was based on the idea that a database experiences query patterns associated
with an application, system or user and that the query log of the said database could exhibit these
patterns. However, a database could also be subject to queries from multiple applications, systems,
or users that each exhibit their own respective patterns. Even though it may be more difficult to
model, and multiple instances of a model might be needed, temporal correlations between queries
could be more significant. It might also be interesting to investigate databases with queries manually
written by end-users, such as SDSS’s SkyServer [41]. Moreover, models could be deployed on edge
nodes in distributed database systems, where only the patterns of queries going through a particular
edge node are exploited. Experiments in distributed database systems could also study the potential
gain when query results are prepared for on an edge node and don’t have to be retrieved from a data
center.

Finally, future work could investigate themodeling of longer-term relations. Unfortunately, scaling
sequence to sequence model to very long sequences is difficult using backpropagation through time
(BPTT). In addition, gradient descent becomes increasingly inefficient when the temporal span of the
dependencies increases [53]. However, various approaches exist for modeling longer sequences. First,
Trinh et al. [45] propose the use of an unsupervised auxiliary loss to enable learning with only a few
BPTT steps from the supervised loss. In addition, they argue that it is applicable to online learning
systems or those that process very long sequences. It would be interesting to investigate whether
such an auxiliary loss could be incorporated in our model and potentially enable the modeling of
longer sequences. Alternatively, different architectures could be considered that better scale to longer
sequences. In particular Convolutional Neural Networks (CNN) have been proposed as an alternative
to encoder-decoder models for sequence to sequence prediction [54], [55]. They achieve impressive
results with a conceptually simpler model that has fewer parameters to train and does not use BPTT,
potentially allowing it to scale better to longer sequences.

67

References

[1] S. Krishnan, Z. Yang, K. Goldberg, J. M. Hellerstein, and I. Stoica, “Learning to optimize join
queries with deep reinforcement learning,” CoRR, vol. abs/1808.03196, 2018. arXiv: 1808.
03196. [Online]. Available: http://arxiv.org/abs/1808.03196.

[2] M. Stillger, G. M. Lohman, V. Markl, and M. Kandil, “LEO - db2’s learning optimizer,” in
VLDB 2001, Proceedings of 27th International Conference on Very Large Data Bases, September
11-14, 2001, Roma, Italy, P. M. G. Apers, P. Atzeni, S. Ceri, S. Paraboschi, K. Ramamohanarao,
and R. T. Snodgrass, Eds., Morgan Kaufmann, 2001, pp. 19–28. [Online]. Available: http:
//www.vldb.org/conf/2001/P019.pdf.

[3] J. Heitz and K. Stockinger, “Join query optimization with deep reinforcement learning al-
gorithms,” CoRR, vol. abs/1911.11689, 2019. arXiv: 1911.11689. [Online]. Available: http:
//arxiv.org/abs/1911.11689.

[4] R. C. Marcus, P. Negi, H. Mao, C. Zhang, M. Alizadeh, T. Kraska, O. Papaemmanouil, and N.
Tatbul, “Neo: A learned query optimizer,” Proc. VLDB Endow., vol. 12, no. 11, pp. 1705–1718,
2019. doi: 10.14778/3342263.3342644. [Online]. Available: http://www.vldb.org/pvldb/
vol12/p1705-marcus.pdf.

[5] B. Glasbergen, M. Abebe, K. Daudjee, S. Foggo, and A. Pacaci, “Apollo: Learning query cor-
relations for predictive caching in geo-distributed systems,” in Proceedings of the 21st Interna-
tional Conference on Extending Database Technology, EDBT 2018, Vienna, Austria, March 26-29,
2018, M. H. Böhlen, R. Pichler, N. May, E. Rahm, S.-H. Wu, and K. Hose, Eds., OpenPro-
ceedings.org, 2018, pp. 253–264. doi: 10.5441/002/edbt.2018.23. [Online]. Available:
https://doi.org/10.5441/002/edbt.2018.23.

[6] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska, “Bao: Learning to steer
query optimizers,” CoRR, vol. abs/2004.03814, 2020. arXiv: 2004.03814. [Online]. Available:
https://arxiv.org/abs/2004.03814.

[7] R. C. Marcus and O. Papaemmanouil, “Plan-structured deep neural network models for query
performance prediction,” Proc. VLDB Endow., vol. 12, no. 11, pp. 1733–1746, 2019. doi: 10.
14778/3342263.3342646. [Online]. Available: http://www.vldb.org/pvldb/vol12/p1733-
marcus.pdf.

[8] J. Ortiz, M. Balazinska, J. Gehrke, and S. S. Keerthi, “Learning state representations for query
optimization with deep reinforcement learning,” in Proceedings of the Second Workshop on
Data Management for End-To-End Machine Learning, DEEM@SIGMOD 2018, Houston, TX, USA,
June 15, 2018, S. Schelter, S. Seufert, and A. Kumar, Eds., ACM, 2018, 4:1–4:4. doi: 10.1145/
3209889.3209890. [Online]. Available: https://doi.org/10.1145/3209889.3209890.

[9] J. R. David Reinsel John Gantz, “Data age 2025, the digitization of the world from edge to
core,” International Data Corporation, Tech. Rep., 2018.

[10] D. Bell, Distributed database systems. Addison-Wesley Longman Publishing Co., Inc., 1992.

https://arxiv.org/abs/1808.03196
https://arxiv.org/abs/1808.03196
http://arxiv.org/abs/1808.03196
http://www.vldb.org/conf/2001/P019.pdf
http://www.vldb.org/conf/2001/P019.pdf
https://arxiv.org/abs/1911.11689
http://arxiv.org/abs/1911.11689
http://arxiv.org/abs/1911.11689
https://doi.org/10.14778/3342263.3342644
http://www.vldb.org/pvldb/vol12/p1705-marcus.pdf
http://www.vldb.org/pvldb/vol12/p1705-marcus.pdf
https://doi.org/10.5441/002/edbt.2018.23
https://doi.org/10.5441/002/edbt.2018.23
https://arxiv.org/abs/2004.03814
https://arxiv.org/abs/2004.03814
https://doi.org/10.14778/3342263.3342646
https://doi.org/10.14778/3342263.3342646
http://www.vldb.org/pvldb/vol12/p1733-marcus.pdf
http://www.vldb.org/pvldb/vol12/p1733-marcus.pdf
https://doi.org/10.1145/3209889.3209890
https://doi.org/10.1145/3209889.3209890
https://doi.org/10.1145/3209889.3209890

REFERENCES REFERENCES

[11] I. T. Bowman and K. Salem, “Semantic prefetching of correlated query sequences,” in Proceed-
ings of the 23rd International Conference on Data Engineering, ICDE 2007, The Marmara Hotel,
Istanbul, Turkey, April 15-20, 2007, R. Chirkova, A. Dogac, M. T. Özsu, and T. K. Sellis, Eds.,
IEEE Computer Society, 2007, pp. 1284–1288. doi: 10.1109/ICDE.2007.368994. [Online].
Available: https://doi.org/10.1109/ICDE.2007.368994.

[12] M. Casciaro, Node.js design patterns : get the best out of Node.js by mastering a series of pat-
terns and techniques to create modular, scalable, and efficient applications. Birmingham: Packt
Publishing, 2016, isbn: 9781785885587.

[13] Google. (2017). “Google’s edge network,” [Online]. Available: https://peering.google.
com/infrastructure.

[14] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural networks,”
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, Eds., pp. 3104–
3112, 2014. [Online]. Available: https://proceedings.neurips.cc/paper/2014/hash/
a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html.

[15] W. Chan, N. Jaitly, Q. V. Le, and O. Vinyals, “Listen, attend and spell: A neural network for large
vocabulary conversational speech recognition,” pp. 4960–4964, 2016. doi: 10.1109/ICASSP.
2016.7472621. [Online]. Available: https://doi.org/10.1109/ICASSP.2016.7472621.

[16] D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brakel, and Y. Bengio, “End-to-end attention-based
large vocabulary speech recognition,” in 2016 IEEE International Conference on Acoustics, Speech
and Signal Processing, ICASSP 2016, Shanghai, China, March 20-25, 2016, IEEE, 2016, pp. 4945–
4949. doi: 10.1109/ICASSP.2016.7472618. [Online]. Available: https://doi.org/10.
1109/ICASSP.2016.7472618.

[17] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning to align
and translate,” in 3rd International Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds.,
2015. [Online]. Available: http://arxiv.org/abs/1409.0473.

[18] Engines ranking, Jul. 2021. [Online]. Available: https://db-engines.com/en/ranking.

[19] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng, J. Rosen, S. Venkatara-
man, M. J. Franklin, A. Ghodsi, J. Gonzalez, S. Shenker, and I. Stoica, “Apache spark: A uni-
fied engine for big data processing,” Commun. ACM, vol. 59, no. 11, pp. 56–65, 2016. doi:
10.1145/2934664. [Online]. Available: http://doi.acm.org/10.1145/2934664.

[20] T. A. S. Foundation, Apache spark sql. [Online]. Available: https://spark.apache.org/sql.

[21] E. F. Codd, “A relational model of data for large shared data banks,” Commun. ACM, vol. 13,
no. 6, pp. 377–387, 1970. doi: 10.1145/362384.362685. [Online]. Available: http://doi.
acm.org/10.1145/362384.362685.

[22] B. Schwartz,High performanceMySQL. Sebastopol, Calif: O’ReillyMedia, 2008, isbn: 9780596101718.

[23] C. Li, K. C.-C. Chang, I. F. Ilyas, and S. Song, “Ranksql: Query algebra and optimization for
relational top-k queries,” F. Özcan, Ed., pp. 131–142, 2005. doi: 10.1145/1066157.1066173.
[Online]. Available: https://doi.org/10.1145/1066157.1066173.

[24] R. Marcus and O. Papaemmanouil, “Deep reinforcement learning for join order enumeration,”
in Proceedings of the First International Workshop on Exploiting Artificial Intelligence Techniques
for Data Management, aiDM@SIGMOD 2018, Houston, TX, USA, June 10, 2018, R. Bordawekar
and O. Shmueli, Eds., ACM, 2018, 3:1–3:4. doi: 10.1145/3211954.3211957. [Online]. Avail-
able: https://doi.org/10.1145/3211954.3211957.

69

https://doi.org/10.1109/ICDE.2007.368994
https://doi.org/10.1109/ICDE.2007.368994
https://peering.google.com/infrastructure
https://peering.google.com/infrastructure
https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://doi.org/10.1109/ICASSP.2016.7472621
https://doi.org/10.1109/ICASSP.2016.7472621
https://doi.org/10.1109/ICASSP.2016.7472621
https://doi.org/10.1109/ICASSP.2016.7472618
https://doi.org/10.1109/ICASSP.2016.7472618
https://doi.org/10.1109/ICASSP.2016.7472618
http://arxiv.org/abs/1409.0473
https://db-engines.com/en/ranking
https://doi.org/10.1145/2934664
http://doi.acm.org/10.1145/2934664
https://spark.apache.org/sql
https://doi.org/10.1145/362384.362685
http://doi.acm.org/10.1145/362384.362685
http://doi.acm.org/10.1145/362384.362685
https://doi.org/10.1145/1066157.1066173
https://doi.org/10.1145/1066157.1066173
https://doi.org/10.1145/3211954.3211957
https://doi.org/10.1145/3211954.3211957

REFERENCES REFERENCES

[25] D. Duvenaud, D. Maclaurin, J. Aguilera-Iparraguirre, R. Gómez-Bombarelli, T. Hirzel, A.
Aspuru-Guzik, and R. P. Adams, “Convolutional networks on graphs for learning molecu-
lar fingerprints,” in Advances in Neural Information Processing Systems 28: Annual Confer-
ence on Neural Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec,
Canada, C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, Eds., 2015,
pp. 2224–2232. [Online]. Available: https://proceedings.neurips.cc/paper/2015/hash/
f9be311e65d81a9ad8150a60844bb94c-Abstract.html.

[26] C. Bishop, Pattern recognition and machine learning. New York: Springer, 2006, isbn: 978-0-
387-31073-2.

[27] F. Chollet, Building powerful image classification models using very little data, Jun. 2016. [On-
line]. Available: https://blog.keras.io/building-powerful-image-classification-
models-using-very-little-data.html.

[28] R. M. Castro and R. D. Nowak, Statistical Learning Theory, A Gentle Primer. 2019, Early draft.

[29] V. N. Vapnik, The Nature of Statistical Learning Theory. Springer New York, 2000. doi: 10.1007/
978-1-4757-3264-1. [Online]. Available: https://doi.org/10.1007/978-1-4757-3264-1.

[30] A. Amini, A. Soleimany, S. Karaman, and D. Rus, “Spatial uncertainty sampling for end-to-
end control,” CoRR, vol. abs/1805.04829, 2018. arXiv: 1805.04829. [Online]. Available: http:
//arxiv.org/abs/1805.04829.

[31] D. E. Rumelhart, G. E. Hinton, and R. J.Williams, “Learning representations by back-propagating
errors,” in Neurocomputing: Foundations of Research. Cambridge, MA, USA: MIT Press, 1988,
pp. 696–699, isbn: 0262010976.

[32] M. I. Jordan, “Chapter 25 - serial order: A parallel distributed processing approach,” in Neural-
Network Models of Cognition, ser. Advances in Psychology, J. W. Donahoe and V. Packard Dorsel,
Eds., vol. 121, North-Holland, 1997, pp. 471–495. doi: https://doi.org/10.1016/S0166-
4115(97) 80111 - 2. [Online]. Available: https : / / www . sciencedirect . com / science /
article/pii/S0166411597801112.

[33] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9,
pp. 1735–80, Dec. 1997. doi: 10.1162/neco.1997.9.8.1735.

[34] K. Cho, B. van Merrienboer, Ç. Gülçehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y.
Bengio, “Learning phrase representations using RNN encoder-decoder for statistical machine
translation,” in Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest
Group of the ACL, A. Moschitti, B. Pang, and W. Daelemans, Eds., ACL, 2014, pp. 1724–1734.
doi: 10.3115/v1/d14-1179. [Online]. Available: https://doi.org/10.3115/v1/d14-1179.

[35] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural networks,”
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, Eds., pp. 3104–
3112, 2014. [Online]. Available: https://proceedings.neurips.cc/paper/2014/hash/
a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html.

[36] K. Cho, B. van Merrienboer, Ç. Gülçehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y.
Bengio, “Learning phrase representations using RNN encoder-decoder for statistical machine
translation,” in Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest
Group of the ACL, A. Moschitti, B. Pang, and W. Daelemans, Eds., ACL, 2014, pp. 1724–1734.
doi: 10.3115/v1/d14-1179. [Online]. Available: https://doi.org/10.3115/v1/d14-1179.

[37] O. Vinyals, S. Bengio, and M. Kudlur, “Order matters: Sequence to sequence for sets,” in 4th
International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May
2-4, 2016, Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2016. [Online]. Available:
http://arxiv.org/abs/1511.06391.

70

https://proceedings.neurips.cc/paper/2015/hash/f9be311e65d81a9ad8150a60844bb94c-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/f9be311e65d81a9ad8150a60844bb94c-Abstract.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://doi.org/10.1007/978-1-4757-3264-1
https://doi.org/10.1007/978-1-4757-3264-1
https://doi.org/10.1007/978-1-4757-3264-1
https://arxiv.org/abs/1805.04829
http://arxiv.org/abs/1805.04829
http://arxiv.org/abs/1805.04829
https://doi.org/https://doi.org/10.1016/S0166-4115(97)80111-2
https://doi.org/https://doi.org/10.1016/S0166-4115(97)80111-2
https://www.sciencedirect.com/science/article/pii/S0166411597801112
https://www.sciencedirect.com/science/article/pii/S0166411597801112
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.3115/v1/d14-1179
https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.3115/v1/d14-1179
http://arxiv.org/abs/1511.06391

REFERENCES REFERENCES

[38] H. Hu and X. He, “Sets2sets: Learning from sequential sets with neural networks,” in Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD
2019, Anchorage, AK, USA, August 4-8, 2019, A. Teredesai, V. Kumar, Y. Li, R. Rosales, E. Terzi,
and G. Karypis, Eds., ACM, 2019, pp. 1491–1499. doi: 10.1145/3292500.3330979. [Online].
Available: https://doi.org/10.1145/3292500.3330979.

[39] A. Vogelsgesang, M. Haubenschild, J. Finis, A. Kemper, V. Leis, T. Mühlbauer, T. Neumann, and
M. Then, “Get real: How benchmarks fail to represent the real world,” in Proceedings of the 7th
International Workshop on Testing Database Systems, DBTest@SIGMOD 2018, Houston, TX, USA,
June 15, 2018, A. Böhm and T. Rabl, Eds., ACM, 2018, 1:1–1:6. doi: 10.1145/3209950.3209952.
[Online]. Available: https://doi.org/10.1145/3209950.3209952.

[40] P. A. Boncz, T. Neumann, and O. Erling, “TPC-H analyzed: Hidden messages and lessons
learned from an influential benchmark,” in Performance Characterization and Benchmarking
- 5th TPC Technology Conference, TPCTC 2013, Trento, Italy, August 26, 2013, Revised Selected
Papers, R. Nambiar and M. Poess, Eds., ser. Lecture Notes in Computer Science, vol. 8391,
Springer, 2013, pp. 61–76. doi: 10.1007/978- 3- 319- 04936- 6_5. [Online]. Available:
https://doi.org/10.1007/978-3-319-04936-6%5C_5.

[41] What is the sloan digital sky survey? [Online]. Available: http://skyserver.sdss.org/dr16/
en/sdss/sdsshome.aspx.

[42] O. Kennedy, J. A. Ajay, G. Challen, and L. Ziarek, “Pocket data: The need for TPC-MOBILE,”
in Performance Evaluation and Benchmarking: Traditional to Big Data to Internet of Things -
7th TPC Technology Conference, TPCTC 2015, Kohala Coast, HI, USA, August 31 - September 4,
2015. Revised Selected Papers, R. Nambiar and M. Poess, Eds., ser. Lecture Notes in Computer
Science, vol. 9508, Springer, 2015, pp. 8–25. doi: 10.1007/978-3-319-31409-9_2. [Online].
Available: https://doi.org/10.1007/978-3-319-31409-9%5C_2.

[43] J. Laskowski. (2020). “The internals of spark sql (apache spark 2.4.5),” [Online]. Available:
https://jaceklaskowski.gitbooks.io/mastering-spark-sql/content/.

[44] N. V. Chawla, N. Japkowicz, and A. Kotcz, “Editorial: Special issue on learning from imbalanced
data sets,” SIGKDD Explor., vol. 6, no. 1, pp. 1–6, 2004. doi: 10.1145/1007730.1007733.
[Online]. Available: https://doi.org/10.1145/1007730.1007733.

[45] T. H. Trinh, A. M. Dai, T. Luong, and Q. V. Le, “Learning longer-term dependencies in rnns
with auxiliary losses,” Proceedings of Machine Learning Research, vol. 80, J. G. Dy and A.
Krause, Eds., pp. 4972–4981, 2018. [Online]. Available: http://proceedings.mlr.press/
v80/trinh18a.html.

[46] M. Chancán and M. Milford, “Deepseqslam: A trainable CNN+RNN for joint global description
and sequence-based place recognition,” CoRR, vol. abs/2011.08518, 2020. arXiv: 2011.08518.
[Online]. Available: https://arxiv.org/abs/2011.08518.

[47] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Con-
ference Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2015. [Online]. Available: http :
//arxiv.org/abs/1412.6980.

[48] M. Grandini, E. Bagli, and G. Visani, “Metrics for multi-class classification: An overview,” CoRR,
vol. abs/2008.05756, 2020. arXiv: 2008.05756. [Online]. Available: https://arxiv.org/abs/
2008.05756.

[49] M.-L. Zhang and Z.-H. Zhou, “A review on multi-label learning algorithms,” IEEE Trans. Knowl.
Data Eng., vol. 26, no. 8, pp. 1819–1837, 2014. doi: 10.1109/TKDE.2013.39. [Online]. Available:
https://doi.org/10.1109/TKDE.2013.39.

71

https://doi.org/10.1145/3292500.3330979
https://doi.org/10.1145/3292500.3330979
https://doi.org/10.1145/3209950.3209952
https://doi.org/10.1145/3209950.3209952
https://doi.org/10.1007/978-3-319-04936-6_5
https://doi.org/10.1007/978-3-319-04936-6%5C_5
http://skyserver.sdss.org/dr16/en/sdss/sdsshome.aspx
http://skyserver.sdss.org/dr16/en/sdss/sdsshome.aspx
https://doi.org/10.1007/978-3-319-31409-9_2
https://doi.org/10.1007/978-3-319-31409-9%5C_2
https://jaceklaskowski.gitbooks.io/mastering-spark-sql/content/
https://doi.org/10.1145/1007730.1007733
https://doi.org/10.1145/1007730.1007733
http://proceedings.mlr.press/v80/trinh18a.html
http://proceedings.mlr.press/v80/trinh18a.html
https://arxiv.org/abs/2011.08518
https://arxiv.org/abs/2011.08518
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2008.05756
https://arxiv.org/abs/2008.05756
https://arxiv.org/abs/2008.05756
https://doi.org/10.1109/TKDE.2013.39
https://doi.org/10.1109/TKDE.2013.39

REFERENCES REFERENCES

[50] Y. Wang, L. Wang, Y. Li, D. He, and T.-Y. Liu, “A theoretical analysis of NDCG type ranking
measures,” in COLT 2013 - The 26th Annual Conference on Learning Theory, June 12-14, 2013,
Princeton University, NJ, USA, S. Shalev-Shwartz and I. Steinwart, Eds., ser. JMLR Workshop
and Conference Proceedings, vol. 30, JMLR.org, 2013, pp. 25–54. [Online]. Available: http:
//proceedings.mlr.press/v30/Wang13.html.

[51] E. Christakopoulou and G. Karypis, “Local latent space models for top-n recommendation,” in
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, KDD 2018, London, UK, August 19-23, 2018, Y. Guo and F. Farooq, Eds., ACM, 2018,
pp. 1235–1243. doi: 10.1145/3219819.3220112. [Online]. Available: https://doi.org/10.
1145/3219819.3220112.

[52] A. Dan and D. F. Towsley, “An approximate analysis of the LRU and FIFO buffer replacement
schemes,” in Proceedings of the 1990 ACM SIGMETRICS conference on Measurement and modeling
of computer systems, University of Colorado, Boulder, Colorado, USA, May 22-25, 1990, G. J.
Nutt, Ed., ACM, 1990, pp. 143–152. doi: 10.1145/98457.98525. [Online]. Available: https:
//doi.org/10.1145/98457.98525.

[53] Y. Bengio, P. Y. Simard, and P. Frasconi, “Learning long-term dependencies with gradient
descent is difficult,” IEEE Trans. Neural Networks, vol. 5, no. 2, pp. 157–166, 1994. doi: 10.
1109/72.279181. [Online]. Available: https://doi.org/10.1109/72.279181.

[54] M. Elbayad, L. Besacier, and J. Verbeek, “Pervasive attention: 2d convolutional neural networks
for sequence-to-sequence prediction,” in Proceedings of the 22nd Conference on Computational
Natural Language Learning, CoNLL 2018, Brussels, Belgium, October 31 - November 1, 2018, A.
Korhonen and I. Titov, Eds., Association for Computational Linguistics, 2018, pp. 97–107. doi:
10.18653/v1/k18-1010. [Online]. Available: https://doi.org/10.18653/v1/k18-1010.

[55] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic convolutional and
recurrent networks for sequence modeling,” CoRR, vol. abs/1803.01271, 2018. arXiv: 1803.
01271. [Online]. Available: http://arxiv.org/abs/1803.01271.

72

http://proceedings.mlr.press/v30/Wang13.html
http://proceedings.mlr.press/v30/Wang13.html
https://doi.org/10.1145/3219819.3220112
https://doi.org/10.1145/3219819.3220112
https://doi.org/10.1145/3219819.3220112
https://doi.org/10.1145/98457.98525
https://doi.org/10.1145/98457.98525
https://doi.org/10.1145/98457.98525
https://doi.org/10.1109/72.279181
https://doi.org/10.1109/72.279181
https://doi.org/10.1109/72.279181
https://doi.org/10.18653/v1/k18-1010
https://doi.org/10.18653/v1/k18-1010
https://arxiv.org/abs/1803.01271
https://arxiv.org/abs/1803.01271
http://arxiv.org/abs/1803.01271

Appendix A

Source Code

All source code used is collected in one repository and can be found at: https://github.com/792x/
Deep-Learning-For-SQL-Operators

A.1 Pre-Processing IoT data

The source code for preprocessing and anonimizing the IoT data can be found in the Datasets/IoT sub-
folder of the repository: https://github.com/792x/Deep-Learning-For-SQL-Operators/blob/

master/Datasets/IoT

A.2 Pre-Processing PhoneLabs data

The source code for preprocessing the PhoneLabs data can be found in the Datasets/PhoneLabs sub-
folder of the repository: https://github.com/792x/Deep-Learning-For-SQL-Operators/blob/

master/Datasets/PhoneLabs

A.3 Encoding Framework

The source code for the encoding framework written for Apache Spark with the Scala API can be
found in Framework sub-folder of the repository:
https://github.com/792x/Deep-Learning-For-SQL-Operators/blob/master/Framework

A.4 Encoder-Decoder Model

The source code for the Jupyter notebook implementing the encoder-decoder model in PyTorch can
be found in the Model sub-folder of the repository:
https://github.com/792x/Deep-Learning-For-SQL-Operators/blob/master/Model

A.5 Simulation

The source code for the Jupyter notebook implementing the simulation can be found in the Simulation
sub-folder of the repository:
https://github.com/792x/Deep-Learning-For-SQL-Operators/blob/master/Simulation

https://github.com/792x/Deep-Learning-For-SQL-Operators
https://github.com/792x/Deep-Learning-For-SQL-Operators
https://github.com/792x/Deep-Learning-For-SQL-Operators/blob/master/Datasets/IoT
https://github.com/792x/Deep-Learning-For-SQL-Operators/blob/master/Datasets/IoT
https://github.com/792x/Deep-Learning-For-SQL-Operators/blob/master/Datasets/PhoneLabs
https://github.com/792x/Deep-Learning-For-SQL-Operators/blob/master/Datasets/PhoneLabs
https://github.com/792x/Deep-Learning-For-SQL-Operators/blob/master/Framework
https://github.com/792x/Deep-Learning-For-SQL-Operators/blob/master/Model
https://github.com/792x/Deep-Learning-For-SQL-Operators/blob/master/Simulation

Appendix B

Results

B.1 Model Evaluation of Different Methods for output sequence
lengths ; = 3 and ; = 5

IoT # = 5801, : = 20, ; = 3, with graph

9 = 5 9 = 10

Method Recall Precision NDCG HR Recall Precision NDCG HR

RandomSet 0.0007 0.0005 0.0011 0.0000 0.0018 0.0007 0.0026 0.0000
TopKFrequent 0.3061 0.1522 0.2607 0.1548 0.5156 0.1396 0.3470 0.7772
ExpectRepeat 0.3459 0.3483 0.3654 0.2838 0.3459 0.3483 0.3601 0.2838

Model 0.7487 0.3816 0.6141 0.5654 0.7688 0.2126 0.5764 0.6084

9 = 15 9 = 20

Recall Precision NDCG HR Recall Precision NDCG HR

RandomSet 0.0026 0.0006 0.0034 0.0000 0.0037 0.0007 0.0053 0.0000
TopKFrequent 0.5733 0.1117 0.3711 0.8856 0.6174 0.0992 0.3910 0.8856
ExpectRepeat 0.3459 0.3483 0.3594 0.2838 0.3459 0.3483 0.3594 0.2838

Model 0.7677 0.1443 0.5336 0.5496 0.8076 0.1176 0.5259 0.6264

Table B.1: Evaluation of different methods on the IoT data set with graph, ; = 3

B.1. MODEL EVALUATION OF DIFFERENT METHODS FOR OUTPUT SEQUENCE LENGTHS " = 3
AND " = 5 APPENDIX B. RESULTS

IoT # = 5801, : = 20, ; = 5, with graph

9 = 5 9 = 10

Method Recall Precision NDCG HR Recall Precision NDCG HR

RandomSet 0.0008 0.0006 0.0013 0.0000 0.0016 0.0006 0.0022 0.0000
TopKFrequent0.3086 0.1534 0.2625 0.0846 0.5155 0.1394 0.3476 0.6960
ExpectRepeat 0.3675 0.3683 0.38452 0.2406 0.3670 0.3683 0.3801 0.2406

Model 0.5765 0.2959 0.4540 0.2654 0.5689 0.1670 0.3799 0.1910

9 = 15 9 = 20

Recall Precision NDCG HR Recall Precision NDCG HR

RandomSet 0.0026 0.0007 0.0038 0.0000 0.0036 0.0007 0.005 0.0000
TopKFrequent 0.5739 0.1117 0.3719 0.8342 0.6165 0.09866 0.3912 0.8342
ExpectRepeat 0.3671 0.3683 0.3796 0.2406 0.3671 0.3683 0.3796 0.2406

Model 0.6316 0.1322 0.3955 0.1800 0.6852 0.1058 0.4013 0.2662

Table B.2: Evaluation of different methods on the IoT data set with graph, ; = 5

PhoneLabs # = 4729, : = 20, ; = 3, with graph

9 = 5 9 = 10

Method Recall Precision NDCG HR Recall Precision NDCG HR

RandomSet 0.0010 0.0006 0.0015 0.0000 0.0022 0.0006 0.0029 0.0000
TopKFrequent0.8980 0.5388 0.8812 0.8936 0.9238 0.2771 0.8936 0.9084
ExpectRepeat 0.9274 0.9277 0.9282 0.8988 0.9274 0.9277 0.9281 0.8988

Model 0.9481 0.5550 0.9411 0.9244 0.9574 0.2832 0.9448 0.9362

9 = 15 9 = 20

Recall Precision NDCG HR Recall Precision NDCG HR

RandomSet 0.0028 0.0006 0.0038 0.0000 0.0038 0.0006 0.0053 0.0000
TopKFrequent 0.9429 0.1883 0.9005 0.9196 0.9485 0.1419 0.9023 0.9268
ExpectRepeat 0.9274 0.9277 0.9281 0.8988 0.9274 0.9277 0.9281 0.8988

Model 0.9632 0.1896 0.9451 0.9450 0.9663 0.1429 0.9469 0.9480

Table B.3: Evaluation of different methods on the PhoneLabs data set with graph, ; = 3

75

B.1. MODEL EVALUATION OF DIFFERENT METHODS FOR OUTPUT SEQUENCE LENGTHS " = 3
AND " = 5 APPENDIX B. RESULTS

PhoneLabs # = 4729, : = 20, ; = 5, with graph

9 = 5 9 = 10

Method Recall Precision NDCG HR Recall Precision NDCG HR

RandomSet 0.0011 0.0007 0.0016 0.0000 0.0020 0.0006 0.0028 0.0000
TopKFrequent 0.8916 0.5350 0.8757 0.8660 0.9180 0.2754 0.8882 0.8802
ExpectRepeat 0.9139 0.9142 0.9145 0.8646 0.9139 0.9141 0.9145 0.8646

Model 0.9370 0.5431 0.9265 0.8892 0.9488 0.9060 0.9010 0.2643

9 = 15 9 = 20

Recall Precision NDCG HR Recall Precision NDCG HR

RandomSet 0.00328 0.0007 0.0046 0.0000 0.0044 0.0007 0.006 0.0000
TopKFrequent 0.9403 0.1877 0.8964 0.8938 0.9465 0.1415 0.8983 0.9028
ExpectRepeat 0.9139 0.9142 0.9145 0.8646 0.9138 0.9142 0.9145 0.8646

Model 0.9556 0.1810 0.9060 0.9138 0.9612 0.9199 0.9252 0.1416

Table B.4: Evaluation of different methods on the PhoneLabs data set with graph, ; = 5

76

B.2. MODEL EVALUATION OF DIFFERENT METHODS FOR INPUT SEQUENCE LENGTHS ! = 30
AND ! = 40 APPENDIX B. RESULTS

B.2 Model Evaluation of Different Methods for input sequence
lengths : = 30 and : = 40

IoT # = 5801, : = 30, ; = 2, with graph

9 = 5 9 = 10

Method Recall Precision NDCG HR Recall Precision NDCG HR

RandomSet 0.0007 0.0005 0.0011 0.0000 0.0021 0.0009 0.0031 0.0002
TopKFrequent 0.3123 0.1559 0.2659 0.232 0.516 0.1405 0.3496 0.8434
ExpectRepeat 0.3538 0.3591 0.3757 0.3428 0.3538 0.3591 0.3691 0.3428

Model 0.7863 0.3672 0.6021 0.7418 0.8121 0.2175 0.5845 0.7604

9 = 15 9 = 20

Recall Precision NDCG HR Recall Precision NDCG HR

RandomSet 0.0021 0.0006 0.0031 0.0002 0.0036 0.0007 0.0052 0.0000
TopKFrequent 0.5743 0.1128 0.374 0.9180 0.6214 0.101 0.3953 0.9180
ExpectRepeat 0.3538 0.3591 0.3683 0.3428 0.3538 0.3591 0.3682 0.3428

Model 0.8363 0.1564 0.5968 0.7890 0.8654 0.1223 0.6066 0.8294

Table B.5: Evaluation of different methods on the IoT data set with graph, : = 30

PhoneLabs # = 4729, : = 30, ; = 2, with graph

9 = 5 9 = 10

Method Recall Precision NDCG HR Recall Precision NDCG HR

RandomSet 0.001 0.0006 0.0014 0.0000 0.0022 0.0007 0.0031 0.0002
TopKFrequent 0.8952 0.5371 0.8784 0.9022 0.9214 0.2764 0.891 0.9182
ExpectRepeat 0.9278 0.9281 0.9286 0.9104 0.9278 0.9281 0.9286 0.9104

Model 0.945 0.5568 0.9376 0.9328 0.9556 0.2827 0.9411 0.9428

9 = 15 9 = 20

Recall Precision NDCG HR Recall Precision NDCG HR

RandomSet 0.0031 0.0006 0.0043 0.0002 0.0042 0.0006 0.0059 0.0000
TopKFrequent0.9396 0.1877 0.8977 0.9258 0.9454 0.1415 0.8995 0.9320
ExpectRepeat 0.9278 0.9281 0.9286 0.9104 0.9278 0.9281 0.9286 0.9104

Model 0.9619 0.1845 0.9427 0.9534 0.9652 0.1369 0.9445 0.9566

Table B.6: Evaluation of different methods on the PhoneLabs data set with graph, : = 30

77

B.3. MODEL EVALUATION OF DIFFERENT METHODS BY USE OF THE DEPENDENCY GRAPH
COMPONENT APPENDIX B. RESULTS

IoT # = 5801, : = 40, ; = 2, with graph

9 = 5 9 = 10

Method Recall Precision NDCG HR Recall Precision NDCG HR

RandomSet 0.0009 0.0006 0.0013 0.0000 0.0017 0.0007 0.0026 0.0000
TopKFrequent 0.3162 0.156 0.2679 0.2312 0.5232 0.1406 0.3530 0.8410
ExpectRepeat 0.3603 0.3651 0.3822 0.3472 0.3603 0.3651 0.3758 0.3472

Model 0.7632 0.3627 0.6075 0.6832 0.8158 0.2145 0.5894 0.7656

9 = 15 9 = 20

Recall Precision NDCG HR Recall Precision NDCG HR

RandomSet 0.0022 0.0006 0.0032 0.0002 0.0031 0.0006 0.0047 0.0002
TopKFrequent 0.5823 0.1126 0.3777 0.9226 0.6248 0.0993 0.3969 0.9226
ExpectRepeat 0.3603 0.3651 0.375 0.3472 0.3603 0.3651 0.375 0.3472

Model 0.8542 0.1559 0.6030 0.8082 0.8689 0.1205 0.6030 0.8460

Table B.7: Evaluation of different methods on the IoT data set with graph, : = 40

PhoneLabs # = 4729, : = 40, ; = 2, with graph

9 = 5 9 = 10

Method Recall Precision NDCG HR Recall Precision NDCG HR

RandomSet 0.0013 0.0008 0.0018 0.0000 0.0023 0.0007 0.0032 0.0000
TopKFrequent 0.8957 0.5374 0.8774 0.906 0.9238 0.2771 0.8909 0.9236
ExpectRepeat 0.9324 0.9326 0.9332 0.9170 0.9324 0.9326 0.9331 0.9170

Model 0.9505 0.5581 0.9444 0.9392 0.9602 0.2842 0.9426 0.9512

9 = 15 9 = 20

Recall Precision NDCG HR Recall Precision NDCG HR

RandomSet 0.0034 0.0007 0.0047 0.0000 0.0039 0.0006 0.0054 0.0002
TopKFrequent 0.9447 0.1886 0.8985 0.9346 0.9506 0.1422 0.9004 0.9410
ExpectRepeat 0.9324 0.9326 0.9331 0.9170 0.9324 0.9326 0.9331 0.9170

Model 0.9639 0.1886 0.9474 0.9550 0.9666 0.1394 0.9457 0.9586

Table B.8: Evaluation of different methods on the PhoneLabs data set with graph, : = 40

B.3 Model Evaluation of Different Methods by use of the Depen-
dency Graph Component

78

B.3. MODEL EVALUATION OF DIFFERENT METHODS BY USE OF THE DEPENDENCY GRAPH
COMPONENT APPENDIX B. RESULTS

IoT # = 5801, : = 20, ; = 2, without graph

9 = 5 9 = 10

Method Recall Precision NDCG HR Recall Precision NDCG HR

RandomSet 0.0009 0.0007 0.0015 0.0000 0.0016 0.0006 0.0024 0.0000
TopKFrequent 0.3129 0.1546 0.2655 0.2332 0.5152 0.1393 0.3489 0.8430
ExpectRepeat 0.3578 0.3624 0.3792 0.3444 0.3578 0.3625 0.3729 0.3444

Model 0.6487 0.4472 0.6803 0.7168 0.7048 0.2546 0.6699 0.7588

9 = 15 9 = 20

Recall Precision NDCG HR Recall Precision NDCG HR

RandomSet 0.0019 0.0006 0.0030 0.0006 0.0033 0.0007 0.0048 0.0000
TopKFrequent0.5743 0.1119 0.3736 0.9264 0.6202 0.1000 0.3945 0.9264
ExpectRepeat 0.3577 0.3624 0.3720 0.3444 0.3578 0.3624 0.3720 0.3444

Model 0.7215 0.1735 0.6226 0.7734 0.7393 0.1344 0.6190 0.8048

Table B.9: Evaluation of different methods on the IoT data set without graph, ; = 2

PhoneLabs # = 4729, : = 20, ; = 2, without graph

9 = 5 9 = 10

Method Recall Precision NDCG HR Recall Precision NDCG HR

RandomSet 0.0008 0.0005 0.0011 0.0000 0.0019 0.0006 0.0027 0.0000
TopKFrequent 0.8954 0.5372 0.8803 0.8992 0.9198 0.2759 0.8919 0.9174
ExpectRepeat 0.9280 0.9276 0.9289 0.9102 0.9280 0.9276 0.9289 0.9102

Model 0.9440 0.5651 0.9411 0.9348 0.9551 0.2858 0.9451 0.9476

9 = 15 9 = 20

Recall Precision NDCG HR Recall Precision NDCG HR

RandomSet 0.0036 0.0007 0.0049 0.0000 0.0049 0.0007 0.0068 0.0002
TopKFrequent0.9394 0.1876 0.8992 0.9286 0.9449 0.1414 0.9009 0.9346
ExpectRepeat 0.9280 0.9276 0.9289 0.9102 0.9281 0.9276 0.9289 0.9102

Model 0.9601 0.1916 0.9452 0.9538 0.9646 0.1444 0.9481 0.9580

Table B.10: Evaluation of different methods on the PhoneLabs data set without graph, ; = 2

79

B.3. MODEL EVALUATION OF DIFFERENT METHODS BY USE OF THE DEPENDENCY GRAPH
COMPONENT APPENDIX B. RESULTS

IoT # = 5801, : = 20, ; = 2, with graph

9 = 5 9 = 10

Method Recall Precision NDCG HR Recall Precision NDCG HR

RandomSet 0.0006 0.0004 0.0009 0.0000 0.0018 0.0007 0.0025 0.0000
TopKFrequent 0.3122 0.153 0.2626 0.229 0.5188 0.1397 0.3482 0.849
ExpectRepeat 0.3633 0.3677 0.3846 0.3526 0.3633 0.3677 0.3781 0.3526

Model 0.7622 0.3598 0.6499 0.6592 0.7587 0.2054 0.5938 0.6098

9 = 15 9 = 20

Recall Precision NDCG HR Recall Precision NDCG HR

RandomSet 0.0026 0.0007 0.0037 0.0000 0.0029 0.0006 0.0043 0.0004
TopKFrequent 0.5756 0.1117 0.372 0.9256 0.6222 0.1001 0.3931 0.9256
ExpectRepeat 0.3633 0.3677 0.3773 0.3526 0.3633 0.3677 0.3773 0.3526

Model 0.8078 0.1498 0.5890 0.6908 0.8164 0.1183 0.5869 0.7074

Table B.11: Evaluation of different methods on the IoT data set with graph incorporated in the model

PhoneLabs # = 4729, : = 20, ; = 2, with graph

9 = 5 9 = 10

Method Recall Precision NDCG HR Recall Precision NDCG HR

RandomSet 0.0013 0.0008 0.0018 0.0000 0.002 0.0006 0.0029 0.0002
TopKFrequent 0.9022 0.5413 0.8871 0.907 0.9252 0.2775 0.8981 0.9208
ExpectRepeat 0.9310 0.9310 0.9317 0.9128 0.931 0.931 0.9316 0.9128

Model 0.9503 0.5236 0.9437 0.9376 0.9592 0.2814 0.9473 0.9506

9 = 15 9 = 20

Recall Precision NDCG HR Recall Precision NDCG HR

RandomSet 0.0033 0.0007 0.0046 0.0002 0.0045 0.0007 0.0062 0.0002
TopKFrequent 0.943 0.1883 0.9046 0.9326 0.9498 0.1421 0.9067 0.9400
ExpectRepeat 0.931 0.9310 0.9316 0.9128 0.9310 0.9310 0.9316 0.9128

Model 0.9638 0.1900 0.9499 0.9574 0.9672 0.1427 0.9510 0.9638

Table B.12: Evaluation of different methods on the PhoneLabs data set with graph incorporated in
the model

80

B.4. MODEL EVALUATION OF DIFFERENT METHODS BY USE OF THE REPEATED ELEMENT
COMPONENT APPENDIX B. RESULTS

B.4 Model Evaluation of Different Methods by use of the Re-
peated Element Component

IoT # = 5801, : = 20, ; = 2, with graph

9 = 5 9 = 10

Method Recall Precision NDCG HR Recall Precision NDCG HR

RandomSet 0.0008 0.0006 0.0013 0.0000 0.0018 0.0007 0.0026 0.0000
TopKFrequent 0.3105 0.1537 0.2639 0.2238 0.5184 0.1401 0.35 0.8466
ExpectRepeat 0.3634 0.3675 0.385 0.3494 0.3634 0.3675 0.3788 0.3494

Model 0.7817 0.4176 0.6673 0.7048 0.8040 0.2318 0.6487 0.7034

9 = 15 9 = 20

Recall Precision NDCG HR Recall Precision NDCG HR

RandomSet 0.0024 0.0007 0.0036 0.0004 0.0028 0.0006 0.004 0.0002
TopKFrequent 0.5769 0.1123 0.373 0.9256 0.6224 0.1002 0.3949 0.9278
ExpectRepeat 0.3536 0.357 0.3674 0.3392 0.3617 0.3673 0.3759 0.3464

Model 0.8364 0.1707 0.6402 0.7662 0.8742 0.1322 0.6426 0.8228

Table B.13: Evaluation of different methods on the IoT data set with graph, without repeated element
component W

PhoneLabs # = 4729, : = 20, ; = 2, with graph

9 = 5 9 = 10

Method Recall Precision NDCG HR Recall Precision NDCG HR

RandomSet 0.0014 0.0008 0.0019 0.0000 0.0015 0.0004 0.0021 0.0002
TopKFrequent0.8985 0.5391 0.8826 0.9024 0.9235 0.277 0.8945 0.9186
ExpectRepeat 0.9326 0.9328 0.9332 0.9146 0.9326 0.9328 0.9332 0.9146

Model 0.9431 0.5580 0.9411 0.9252 0.9493 0.2606 0.9424 0.9362

9 = 15 9 = 20

Recall Precision NDCG HR Recall Precision NDCG HR

RandomSet 0.0031 0.0006 0.0044 0.0000 0.0042 0.0006 0.0057 0.0006
TopKFrequent 0.9425 0.1882 0.9015 0.9288 0.9493 0.142 0.9036 0.939
ExpectRepeat 0.9326 0.9328 0.9332 0.9146 0.9326 0.9328 0.9332 0.9146

Model 0.9532 0.1713 0.9428 0.9390 0.9549 0.1386 0.9436 0.9424

Table B.14: Evaluation of different methods on the PhoneLabs data set with graph, without repeated
element component W

B.5 Model Evaluation of Different Methods by Partial QEP Size

81

B.5. MODEL EVALUATION OF DIFFERENT METHODS BY PARTIAL QEP SIZEAPPENDIX B. RESULTS

IoT # = 5801, : = 20, ; = 2, with graph

Recall, 9 = 5

Method 1 2 3 4 5 6 7 8 9 10

RandomSet 0.0011 0.0006 0.0004 0.0005 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000
TopKFrequent 0.3823 0.3103 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ExpectRepeat 0.4040 0.3471 0.1359 0.0905 0.0040 0.0038 0.0019 0.0000 0.0000 0.0000

Model 0.8024 0.7250 0.3274 0.2293 0.0878 0.1126 0.0390 0.0042 0.0170 0.0132

Recall, 9 = 10

Method 1 2 3 4 5 6 7 8 9 10

RandomSet 0.0019 0.0014 0.0009 0.0006 0.0002 0.0000 0.0002 0.0000 0.0000 0.0000
TopKFrequent 0.8350 0.4050 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ExpectRepeat 0.4040 0.3471 0.1359 0.0905 0.0040 0.0038 0.0019 0.0000 0.0000 0.0000

Model 0.8857 0.8003 0.3462 0.2355 0.0999 0.1247 0.0610 0.0047 0.0180 0.0108

Recall, 9 = 15

Method 1 2 3 4 5 6 7 8 9 10

RandomSet 0.0031 0.0028 0.0017 0.0004 0.0004 0.0000 0.0003 0.0000 0.0000 0.0000
TopKFrequent 0.9499 0.4383 0.0522 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ExpectRepeat 0.4040 0.3471 0.1359 0.0905 0.0040 0.0038 0.0019 0.0000 0.0000 0.0000

Model 0.9217 0.8395 0.3586 0.2474 0.1201 0.1479 0.0707 0.0051 0.0120 0.0109

Recall, 9 = 20

Method 1 2 3 4 5 6 7 8 9 10

RandomSet 0.0030 0.0039 0.0021 0.0015 0.0006 0.0006 0.0004 0.0001 0.0000 0.0000
TopKFrequent 0.9499 0.5035 0.1174 0.0652 0.0000 0.0652 0.0000 0.0000 0.0000 0.0000
ExpectRepeat 0.4040 0.3471 0.1359 0.0905 0.0040 0.0038 0.0019 0.0000 0.0000 0.0000

Model 0.9389 0.8528 0.3688 0.2528 0.1224 0.1475 0.0714 0.0051 0.0117 0.0109

Table B.15: Recall of different methods on the IoT data set by Partial QEP size

PhoneLabs # = 4729, : = 20, ; = 2, with graph

Recall, 9 = 5

Method 1 2 3 4 5 6 7 8 9 10

RandomSet 0.0013 0.0014 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
TopKFrequent 0.8852 0.9143 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ExpectRepeat 0.9162 0.9184 0.0130 0.0069 0.0028 0.0020 0.0018 0.0008 0.0000 0.0000

Model 0.9346 0.9363 0.0229 0.0082 0.0016 0.0026 0.0009 0.0003 0.0000 0.0004

Recall, 9 = 10

Method 1 2 3 4 5 6 7 8 9 10

RandomSet 0.0019 0.0021 0.0002 0.0001 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000
TopKFrequent 0.9303 0.9143 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ExpectRepeat 0.9162 0.9184 0.0130 0.0069 0.0028 0.0020 0.0018 0.0008 0.0000 0.0000

Model 0.9400 0.9418 0.0248 0.0114 0.0033 0.0026 0.0011 0.0003 0.0000 0.0004

Recall, 9 = 15

Method 1 2 3 4 5 6 7 8 9 10

RandomSet 0.0034 0.0041 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001
TopKFrequent 0.9377 0.9303 0.0160 0.0042 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ExpectRepeat 0.9162 0.9184 0.0130 0.0069 0.0028 0.0020 0.0018 0.0008 0.0000 0.0000

Model 0.9405 0.9437 0.0270 0.0139 0.0040 0.0027 0.0018 0.0003 0.0001 0.0005

Recall, 9 = 20

Method 1 2 3 4 5 6 7 8 9 10

RandomSet 0.0041 0.0051 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
TopKFrequent 0.9377 0.9349 0.0194 0.0042 0.0042 0.0013 0.0000 0.0000 0.0000 0.0000
ExpectRepeat 0.9162 0.9184 0.0130 0.0069 0.0028 0.0020 0.0018 0.0008 0.0000 0.0000

Model 0.9414 0.9465 0.0276 0.0161 0.0066 0.0031 0.0022 0.0003 0.0001 0.0005

Table B.16: Recall of different methods on the PhoneLabs data set by Partial QEP size

82

	Introduction
	Motivation
	Research Problem
	SQL Query Encoding
	Prediction Model

	Contributions
	Outline

	Preliminaries
	Database Management Systems (DBMS)
	Query Execution Plans (QEP)

	The Feature Engineering of SQL Query Data
	Machine Learning
	The Learning Problem
	Neural Networks
	Sequential Models

	SQL Query Encoding
	Deconstructing Query Execution Plans
	Partial Query Execution Plans
	Reducing Dimensionality

	Query Execution Plan Fingerprinting
	Overview
	Rationale
	An Illustrative Example

	Prediction with Deep Learning
	Model Architecture
	Set Embedding
	Set-based Attention
	Modeling Repeated Elements

	Model Inference

	Experiments
	Collected Data
	Internet of Things (IoT)
	PhoneLabs
	Data Cleaning

	SQL Query Encoding
	Framework
	Frequency Analysis
	Cross-Validation

	Model Implementation
	Model Evaluation
	Evaluation Methods
	Evaluation Metrics

	A Practical Setting
	Cost Estimation
	Optimization Methods
	Simulation

	Results & Discussion
	Model Performance
	Effect of the Dependency Graph
	Effect of the Repeated Element Component
	Effect of the Sequence Lengths
	Effect of the Partial QEP Size
	The Model in a Practical Setting
	Computation Time

	Conclusion
	Overview
	Limitations
	Future Work

	References
	Source Code
	Pre-Processing IoT data
	Pre-Processing PhoneLabs data
	Encoding Framework
	Encoder-Decoder Model
	Simulation

	Results
	Model Evaluation of Different Methods for output sequence lengths m=3 and m=5
	Model Evaluation of Different Methods for input sequence lengths l=30 and l=40
	Model Evaluation of Different Methods by use of the Dependency Graph Component
	Model Evaluation of Different Methods by use of the Repeated Element Component
	Model Evaluation of Different Methods by Partial QEP Size

