
 Eindhoven University of Technology

MASTER

Accuracy Configurable ISP Accelerator for an Image-based Control System

Ravattu, Anoop Krishna

Award date:
2021

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/7e410aa0-2cb7-41f0-af3b-3e085c7dd110

Department of Electrical Engineering, TU/e

Department of Electrical Engineering

Electronic Systems Research Group

Accuracy Configurable ISP Accelerator for an
Image-based Control System

Master Thesis Report

Anoop Krishna Ravattu

Student ID: 1336444

Supervisors:

Assistant Professor: Dr. Dip Goswami

Ph.D. Student: M.Sc. Sayandip De

Eindhoven, October 2021

Table of Contents

List of Figures ……

List of Tables ……..

Chapter 1 Introduction ... 1

1.1 Introduction .. 1

Chapter 2 Background .. 3

2.1 Digital Image Processing ... 3

2.2 Camera sensor .. 4

2.3 Image Signal Processing Pipeline .. 5

2.3.1 Demosaicing ... 6

2.3.2 Denoising.. 6

2.3.3 Color Transformation and White balancing ... 7

2.3.4 Gamut Mapping ... 8

2.3.5 Tone Mapping .. 9

2.3.6 Image Compression.. 9

2.4 Image Based Control Systems ... 9

2.4.1 Lane Keep Assist System (LKAS) ... 10

2.5 Related Work .. 10

2.5.1 Applications of Image based control (IBC) ... 10

2.5.2 Applications of Approximate Computing ... 11

Chapter 3 Problem Statement .. 12

3.1 Motivation ... 12

3.2 Research Questions .. 12

Chapter 4 Tool ... 13

4.1 Vivado HLS Tool ... 13

4.2 Synthesizing the C/C++ to RTL .. 13

4.2.1 Functional Arguments .. 13

4.2.2 Functions and Function Hierarchy ... 14

4.2.3 Arrays ... 14

4.2.4 Loops .. 15

4.3 Performance Metrics .. 15

Chapter 5 Design Flow .. 16

5.1 Design Flow ... 16

5.2 Optimization Techniques .. 17

5.2.1 Pragma Dataflow .. 17

5.2.2 Pragma Pipeline ... 17

5.2.3 Pragma Inline ... 18

5.2.4 Pragma Loop Unroll ... 18

5.2.5 Pragma Loop flatten ... 18

5.2.6 Pragma loop trip count .. 19

5.2.7 Array optimizations .. 19

5.2.8 Array partition .. 19

5.2.9 Array Reshape .. 20

5.2.10 HLS Datatypes .. 20

Chapter 6 Implementation and Experimentation ... 22

6.1 Baseline Implementation .. 22

6.2 Architecture .. 22

6.3 Design Choice and Initial Results .. 23

6.3.1 Design Choice ... 23

6.3.2 Initial Profiling .. 23

6.4 Optimizing the accurate hardware ... 24

6.5 Optimizing the Denoising Stage .. 24

6.5.1 Optimizing with Line and Window Buffers .. 25

6.5.2 Optimizing for an Initiation Interval of II = 1 .. 27

6.5.3 Optimizing by Array Partition... 27

6.5.4 Floating to Fixed point conversion ... 28

6.5.5 Clock Frequency ... 29

6.6 Optimized Results of ISP Stages .. 30

6.6.1 Demosaic Results ... 30

6.6.2 Color Transformation Results .. 31

6.6.3 Gamut Mapping result ... 31

6.6.4 Tone Mapping Results .. 31

6.7 Approximations ... 32

6.7.1 Coarse-grain approximation .. 32

6.7.2 Fine-grain Approximation: ... 36

6.7.3 Subsampling Approximation .. 37

Chapter 7 Conclusions .. 40

7.1 Summary ... 40

7.2 Future Works .. 40

Chapter 8 Bibliography ... 41

List of Figures

Figure 1. Advanced Driver Assistant System [17] ... 1
Figure 2. RGB color model [1] ... 3
Figure 3. Structure of a Camera Sensor .. 4
Figure 4. Color Filter Array placed over pixel sensors [2] .. 4
Figure 5. Raw image pattern [6] ... 5
Figure 6. Image Signal Processing Pipeline (ISP) ... 6
Figure 7. a) Raw image b) Demosaiced raw image .. 6
Figure 8. a) Noisy image, b) Denoised image [22] .. 7
Figure 9. a) Normal image, b) Post Color Transformation [23] .. 8
Figure 10. color model of visual spectrum, RGB and CMYK [7] ... 8
Figure 11. a) Before Tone Map, b) After Tone Map [24] ... 9
Figure 12. Sensor to Actuation delay .. 10
Figure 13. IBC of an LKAS .. 12
Figure 14. Function arguments synthesized into I/O ports [25] .. 14
Figure 15. Function Hierarchy at RTL level [25] .. 14
Figure 16. Arrays synthesized as RAM's [25] .. 15
Figure 17. Design Flow .. 16
Figure 18. Dataflow Pipeline [13] ... 17
Figure 19. loop/Function pipeline [13] .. 18
Figure 20. Pragma Array partition .. 19
Figure 21. Array Reshape [13] .. 20
Figure 22. Fixed point data type integer and fractional part [25] .. 21
Figure 23. Architecture of ISP ... 22
Figure 24. Median filtering for Denoising ... 25
Figure 25. using Line and window buffer to process an image [27] ... 26
Figure 26. Automatic Optimizations by Vivado HLS compiler ... 27
Figure 27. Coarse-grain Architecture .. 33
Figure 28. Output images of various versions from the coarse-grain pipeline ... 35
Figure 29. latency of the different ISP pipelines with coarse-grain approximation .. 36
Figure 30. (a) original dataset, (b) selected subset ... 37
Figure 31. performing Subsampling on an image ... 38
Figure 32. Subsampler Architecture .. 39

file:///C:/Users/vydik/Desktop/thesis/reort/Thesis_revised_draft_AK_RAVATTU_1336444.pdf.docx%23_Toc85616306
file:///C:/Users/vydik/Desktop/thesis/reort/Thesis_revised_draft_AK_RAVATTU_1336444.pdf.docx%23_Toc85616308
file:///C:/Users/vydik/Desktop/thesis/reort/Thesis_revised_draft_AK_RAVATTU_1336444.pdf.docx%23_Toc85616314
file:///C:/Users/vydik/Desktop/thesis/reort/Thesis_revised_draft_AK_RAVATTU_1336444.pdf.docx%23_Toc85616316
file:///C:/Users/vydik/Desktop/thesis/reort/Thesis_revised_draft_AK_RAVATTU_1336444.pdf.docx%23_Toc85616317
file:///C:/Users/vydik/Desktop/thesis/reort/Thesis_revised_draft_AK_RAVATTU_1336444.pdf.docx%23_Toc85616321

List of tables

Table 1. initial Profiling ... 24
Table 2. Denoise Naive/Line Buffer Profiling .. 26
Table 3. performance metrics of Naïve vs floating point with optimizations ... 28
Table 4. Performance metrics comparison for the fixed-point implementation ... 29
Table 5. Performance metric comparison of various denoise implementations ... 30
Table 6. Performance comparison of naive vs optimized implementation for Demosaic stage 30
Table 7. Performance comparison of naive vs optimized implementation for Color Transformation stage 31
Table 8. Performance comparison of naive vs optimized implementation for Gamut Mapping stage 31
Table 9. Performance comparison of naive vs optimized implementation for Tone Mapping stage 32
Table 10. Different run time configurations for coarse grained approximation ... 34
Table 11. comparison between fine-grain implementations .. 37
Table 12. performance comparison of accurate implementation vs subsampled approximation 38

Department of Electrical Engineering, TU/e

Chapter 1 Introduction

1.1 Introduction

Ever increasing urge for the comfort and sophistication has always been the utmost priority in the

evolving world of technology. The increase in number of automobile accidents due to human errors

has only necessitated and reinforced the need for autonomous driving and the autonomous cars.

An autonomous car, in essence, is a vehicle customized to carry sensory units on the car that can make

out its surroundings, navigate through traffic and also park without support from any human driver.

Autonomous driving consists of an artificial intelligence system that can sense the surroundings,

process the visual data so as to determine how to avoid collisions, operate car machinery like the

steering and brake, and make use the Global Positioning System (GPS) to track the car's current

location and destination.

Autonomous driving, no doubt, can positively revolutionize the transport industry. Automakers and

tech companies are competing to be first with such technology. Complete autonomous vehicle still is

a distant reality. However, quite a few car companies did use available technologies and a few of them

stand out. The list includes Waymo, GM Cruise and Argo AI. Waymo, under Google’s parent company

Alphabet Inc., did impress with its autonomous vehicles driving over 5 million miles on public roads

[20].

Cameras are the fundamental sensory units which are used to capture the real-world data that needs

to be processed. These camera sensors need to be able to produce predictable and reliable images

that can be used by computer vision. With the increase in the integration of the cameras in both mid

and luxury vehicles, the camera capabilities allow Advanced Driver Assistance System (ADAS) to be

employed for vision-based perception tasks, such as object recognition, mapping, and path planning,

which are Image-Based Control (IBC) tasks that will enable a safer driving experience and bring us one

step closer to a fully autonomous car.

Figure 1. Advanced Driver Assistant System [17]

2
Department of electrical engineering, TU/e

A traditional Image Signal Processor (ISP) is used to process the RAW image produced by the image

sensor. The ISP converts the RAW image into a compressed image which can be later used by a

computer vison application like lane detection. A typical ISP has five stages which include demosaicing,

denoising, color transformation, gamut mapping, tone mapping and compression. Although, these

stages are standard in the ISP, they require excessive computational intensity to produce a high-

quality image. Since the computer vision applications do not need a high-quality image, the results

can be approximated which decreases the computational intensity.

Approximate computing is a paradigm that will trade the accuracy for a better computation time and

energy in error resilient applications by building the systems with inexact hardware or software

components. A key challenge in the approximate computing is to identify the sections that can actually

be approximated, without having the risk of crashing the application if a critical component is

approximated. The focal point of this project is determining how to improve the latency of an ISP by

using the concept of approximations.

3
Department of electrical engineering, TU/e

Chapter 2 Background

2.1 Digital Image Processing

Image processing is a technique used to perform some operations on an image either to enhance it or

extract useful information from it. Processing an image through an algorithm with the help of a

computer is called digital image processing. For an image to be processed, it first needs to be captured

by a camera sensor which can output digital values for a pixel.

All the images can be classified into two types: gray scale image and color image. A typical gray scale

image has one channel which looks like a black and white image. Each pixel of this image is represented

only by one value per pixel. On the other hand, to represent a color image, multiple channels are

required. There are various color models like RGB (red, green, blue), CMYK (cyan, magenta, yellow,

black) etc. to represent the color image. Among these formats, RGB is the most common type used to

represent a color image with three values per pixel. As the very name suggest, RGB is made up of three

different channels of red, green and blue. These colors are considered as the primary colors; as they

can be added together to produce a broad array of colors. A more comprehensive way of adding colors

to produce different colors is presented in Figure 2

It is clear from Figure 2 that adding of

• red and green produce yellow.

• red and blue produce pink.

• blue and green produce magenta.

• red, green and blue together produce white.

Thus, the combination of these three colors can produce a wide range of different colors which

represents a color image. Typically each of the channel is represented in decimal numbers ranging

from 0-255. For the values of R, G and B at 0 it produces the color of pure black, Similarly, for the

values of R, G and B at 255 it produces pure white. Thus the total number of colors available for an

image is 16,777,216 (256 x 256 x 256) when all the three channels are combined which covers a wide

range of color spectrum.

Figure 2. RGB color model [1]

4
Department of electrical engineering, TU/e

2.2 Camera sensor

An image/camera sensor is a sensor which detects and conveys the information of the environment

in the form of an image. The most common image sensors used in battery powered devices are CMOS

type sensors as they are economical and have a low power consumption when compared to the CCD

sensors.

A typical CMOS sensor consists of three components that are presented in Figure 3.

Figure 3. Structure of a Camera Sensor

The three components of a CMOS camera sensor are:

• Photo diode; used to capture the voltage of the light

• Amplifier; used to amplify the captured voltage

• An Analogue to Digital Convertor (ADC); which is used to convert the captured Analogue in to

a digital pixel value

For a color camera sensor, a Color Filter Array (CFA) is placed on top of the sensor which allows only

certain colors to pass through it. A CFA is a mosaic of tiny color filters placed over the pixel sensors.

To capture the color information, the most common pattern used for a CFA is the Bayer pattern which

is of size 2x2 and consists of two green color filters, one blue color filter and one red color filter. An

example of CFA placed over pixel sensors is shown in Figure 4.

Figure 4. Color Filter Array placed over pixel sensors [2]

5
Department of electrical engineering, TU/e

As the human eye is more sensitive to the green color, the green component filters present are twice

as many as the red and blue components. The filters only allow their respective colors to pass through

them giving the following resultant pattern (shown in Figure 5).

Figure 5. Raw image pattern [6]

All the three resulting patterns shown in the above figure make up the raw image which is given to an

Image Signal Processor (ISP) for further processing.

2.3 Image Signal Processing Pipeline

When an image is captured by a camera sensor, it picks up noise from various sources which affect

the quality of the captured image and this captured image is called raw image [15]. The raw image

needs to be processed through a set of algorithms at each stage to remove these noises and make it

visually more appealing to the end user. The combination of these stages which are used to produce

the desired final image is called an image processing pipeline.

6
Department of electrical engineering, TU/e

Figure 6. Image Signal Processing Pipeline (ISP)

An image processing pipeline will have multiple stages depending upon the application, the most

common stages for a color image processing pipeline are shown in Figure 6 and a brief description of

each of these stages are mentioned below:

2.3.1 Demosaicing

The first stage in most of the image processing pipelines is Demosaicing. This stage is used to re-

construct a full colored image from the incomplete color samples created by the sensor. A single

channeled grayscale raw image is converted into a three channel RGB image by using an interpolation

algorithm. Figure 7 illustrates how the raw image looks like post demosaicing.

Figure 7. a) Raw image b) Demosaiced raw image

2.3.2 Denoising

The second stage of the pipeline is called denoising. When an image is captured, various noises are

associated with it. The most common types of noises associated with digital images are gaussian noise

and, salt and pepper noise. The goal of the denoising stage is to remove these unwanted noises and

recover the original image. Figure 8 illustrates a clear difference between noisy image and denoised

image.

7
Department of electrical engineering, TU/e

Figure 8. a) Noisy image, b) Denoised image [22]

Various denoising algorithms like local means, nonlocal means and median filtering are used to

remove these noises. A brief explanation on each of the denoising methods is given below:

Local Mean Filtering: Local mean filtering is a simple smoothing filter which changes the pixel value

that are unrepresentative of their surroundings [21]. The technique employed in mean filtering is

taking the average of surrounding pixels including itself and replacing it with the obtained value.

Depending on the number of surrounding pixels considered the smoothness of the image will be

changed.

Non-Local Mean filtering: Unlike the mean filter, the Non-Local Mean (NLM) pixel takes the average

of the all pixels in the image based on how alike they are with the target pixel and assigns the weight

for all the pixels to be averaged [21].

Median filter: Unlike the local mean filter, the median filter sorts all the surrounding pixel in an order

and finds the median of it and replaces with the target pixel. Median filtering is useful for removing

the random intensity spike and helps in preserving the edges.

2.3.3 Color Transformation and White balancing

In this stage, color balancing of each pixel is done which is the global adjustment of the intensities of

all the colors in a pixel which is done in two steps. First step is the color transformation, which reduces

the intensity of green color to match with that of red and blue. The second step is a white balancing

transformation, which reduces the temperature of each pixel to match that of the lightning in the

scene. These two transformations can be applied by multiplying each pixel with a matrix of predefined

weights. These weights are generally decided by the camera manufacturer. Figure 9 illustrates how

the intensities of the picture are adjusted post color transformation and white balancing.

8
Department of electrical engineering, TU/e

Figure 9. a) Normal image, b) Post Color Transformation [23]

2.3.4 Gamut Mapping

Gamut also known as the color space is a subset of colors that can be supported by various physical

devices like printers and monitors. There are several industrial standards like Adobe RGB, sRGB, CMYK

etc. for the color spaces. Among these, most of the monitors use the sRGB while the printers use the

CMYK color space. It can be seen from Figure 10 that the color space of the human eye is the biggest

of all. It is not possible to replicate the exact color seen by a human eye to a monitor which has a

smaller sRGB gamut. The gamut of CMYK is much smaller when compare to sRGB as not all the color

intensities displayed on a monitor can be printed. To map the colors from a bigger color space (sRGB)

to a smaller (CMYK) a gamut mapping algorithm is required.

Figure 10. color model of visual
spectrum, RGB and CMYK [7]

9
Department of electrical engineering, TU/e

2.3.5 Tone Mapping

Tone mapping is a technique which is used to compress the image’s dynamic range and apply some

aesthetic effects. LCD Monitors and projectors all have a limited dynamic range that is not adequate

to reproduce the full range of light intensities present in natural scene. Tone mapping addresses this

by making dark areas brighter, at the same time it will not overexpose the brighter areas. Gamma

compression is one of the most common algorithms used in tone mapping. Figure 11 illustrates how

the brightness of darker areas are improved by using tone mapping.

Figure 11. a) Before Tone Map, b) After Tone Map [24]

2.3.6 Image Compression

After processing an image, a compression algorithm is applied before storing the image to reduce the

storage costs and communication costs. In essence, an image compression technique involves

removing or grouping together certain parts of image that look alike to reduce the size of the image.

Image compression techniques can be classified into two, they are lossy compression and lossless

compression techniques. As the name suggests, a lossless compression technique maintains the same

quality of the image as before it was compressed. Some of the image formats that apply lossless

compression are PNG, RAW and BMP. The compression techniques performed on these formats are

reversible and can be reverted back to the original image [19]. On the other hand, lossy compression

discards some parts of the image and reduces the size of the image. However this does not mean that

compressed image will look bad. JPG also known as JPEG is the most commonly used lossy

compression technique [19].

The main goal of this project is to approximate the ISP by skipping the above-mentioned stages. Since

the image compression is a mandatory stage to save communication and storage costs, it cannot be

skipped. Instead, the output from the skipped ISP stages is given to a dedicated image compression

block.

2.4 Image Based Control Systems

IBC loop systems are closed loop control systems which are used typically for applications that use

visual feedback for motion control. Many modern-day applications like Lane Keep Assist System (LKAS)

and Advance Driver Assistance System (ADAS) use the concept of IBC to inform the driver when the

car deviates from the lane. The three tasks that make up a typical IBC system are:

Sensing task; to process the raw image provided by the camera.

10
Department of electrical engineering, TU/e

Computation task; to implement the control algorithm so as to make a decision based on the

processed image.

Actuation task; to send the signal that actuates the respective motor based on the decision from the

computation task.

As shown in Figure 12, these three tasks are always performed sequentially and periodically with a

sampling period of h. The total time taken to actuate a task after sensing is called sensor to actuator

delay (τ). The sampling period is always greater than the sensor to actuator delay to make sure that

that all the three tasks have been done before doing the next sensing task.

2.4.1 Lane Keep Assist System (LKAS)

Lane Keep Assist System (LKAS) is a type of IBC which is a driver assistance system that uses computer

vision algorithms to notify the driver if he/she departs from the lane. A camera present in the car

captures the image and processes these images to identify the lane markers present on the road.

Typically, an edge detection algorithm like Sobel filter is used to perform feature extraction task. Once

the lane markers were identified on the road, the disposition of the car from the middle of the lane to

the lane markers are identified and if the deviation is too much, the driver of the car will be

immediately be notified regarding the lane departure. Prior literature showed that approximation has

benefits in the closed loop system. In most of the closed loop systems ISP acts as a bottleneck. So a

runtime reconfigurable variable accuracy ISP accelerator was designed to overcome the bottleneck.

This project focuses on implementing an ISP accelerator which can be used to study the benefit of

approximations using a LKAS system.

2.5 Related Work

This project is mainly focused on implementing an accuracy configurable ISP on a Field Programmable

Gate Array (FPGA) with an algorithmic approximation for a better QoC of the IBC system. Although

there are some end-to-end case studies available on using the approximation for a closed loop system

on software, these case studies on the hardware for a closed loop system are very limited. This project

provides an implementation that can be used for a case study of applying three different

approximations at a subsystem level and evaluating the performance implications in an IBC with a

Hardware-in-Loop (HiL) setup.

2.5.1 Applications of Image based control (IBC)

The compute intensive part of image processing stage of IBC results in a large sampling period because

of the design time choice. This has a negative impact on the QoC of the underlying system.

Figure 12. Sensor to Actuation delay

11
Department of electrical engineering, TU/e

Instead of designing the controller for a Worst Case (WC) scenario, [5] proposes an IBC in which the

sampling period can be dynamically reconfigured based on the workload variations using a scenario

aware approach. Due to this sampling period of the controller adapts continuously based on the actual

case scenario. Thereby resulting in the decrease of average sampling period with respect to the WC

sampling period. However, this approach considers the ISP as a black box and assumes that there is a

constant delay in the image preprocessing block.

2.5.2 Applications of Approximate Computing

Approximate Computing also known as inexact computing is a computing paradigm that will trade the

computation time and energy for the accuracy of result in error resilient applications. Software

techniques like bit precision scaling, subsampling, skipping the tasks and hardware techniques like

decreasing the refresh rate, using the inexact hardware, clock over gating can be used to speed up the

execution times of the task and at the same time reduce the overall energy consumption [6] [7] [8].

The three important approximations techniques that are addresses in this thesis are coarse-grain, fine-

grain and subsampling approximations. As the name suggests, in the coarse-grained approximation

some levels of data processing are skipped from processing. For example, if an image processing

pipeline contains 10 stages, some of these stages can be skipped so that there is an improvement in

energy consumption and latency. On the other hand, fine-grained approximation doesn’t skip any

stages but it reduces the precision of data that will be processed through the mentioned stages. For

example, instead of using a 32 bit-length variable to hold the pixel value, a 24 bit-length variable can

be used which reduces the number of clock cycles that is needed to perform any arithmetic

operations. In subsampling approximation, the number of pixels that needs to be processed will be

reduced by skipping some rows and columns of pixels in the image which results in better energy

consumption. All these approximations result in less clock cycles to process at the cost of precision.

Since [5] considers the image processing block as a black box with a constant delay, [9] proposes an

IBC system which extends the work of the [5] by taking the performance implication of the image

processing into consideration. ISP is the main bottleneck in sensing task as the individual stages of ISP

are computationally intensive. [9] proposed an approximation technique where some of the stages of

ISP can be skipped during runtime using a scenario aware approach. By approximating ISP during the

run time, workload of sensing task can be reduced which resulted in decrease of sampling period. A

Software-in-Loop (SiL) simulator was implemented in [11] to show that QoC of the IBC improved

because of approximated ISP. However only coarse-grained approximation with stage skipping has

been considered. A fine-grained approximation with a variable data size could have improved the QoC

further.

[10] proposes an end-to-end case study of approximate inference system for a deep neural network

(DNN) based smart camera system. The impact of approximation and its implication on the

performance of whole system was studied. This whole system includes four different sublevel

approximations: approximate sensor, memory, computation and communication.

This project extends the work of [9] by implementing the ISP on FPGA and studying the performance

implications of approximations. In addition to the stage skipping (coarse-grain approximation), this

project enables the fine-grain and subsample approximation.

12
Department of electrical engineering, TU/e

Chapter 3 Problem Statement

3.1 Motivation

As explained in Section 2.4, a typical IBC system includes sensing, computation and actuation tasks. It

can be seen from Figure 13 that sensing task is comprised of processing raw images through an ISP

and image processing block for lane detection. Due to the heavy workload of ISP when processing the

images through the traditional ISP stages, the sensing task acts as a major bottleneck. Since the

sampling period of the system should always be greater than the sensor to actuator delay, the

increased time of sensing task has a direct impact on the sampling period which results in processing

of lower number of frames per second (FPS). The low FPS rate results in the degradation of QoC. The

possible performance gains by approximating the ISP can have a significant impact on sensing task

which in turn reduces the sampling period and have a positive effect on the QoC.

Since the main bottleneck is from the traditional ISP, this project focuses on implementing various

algorithmic approximations on the imaging pipeline of an ISP.

3.2 Research Questions

This project addresses the following research questions:

➢ How to generate Hardware IP blocks for the ISP functionality in Vivado HLS tool?

➢ How the approximation techniques like coarse-grain, fine-grain and subsampling can be

implemented on the ISP with runtime reconfigurability?

Figure 13. IBC of an LKAS

13
Department of electrical engineering, TU/e

Chapter 4 Tool

4.1 Vivado HLS Tool

This project uses Vivado HLS provided by XILINX to implement the ISP functionality on the hardware.

Vivado HLS can be used to generate the Verilog or VHDL code using high level languages like C, C++

and system C. Once the RTL code is synthesized from the high-level language, the functionality of the

RTL is verified with respect to the algorithmic description. After the verification of RTL functionality,

Intellectual Property (IP) cores are generated which has the desired functionality of the ISP. These IP

logic blocks are then ported on to a field programmable logic array (FPGA).

The main advantages of using a Vivado HLS Tool over a traditional Hardware Description Language

(HDL’s) are:

1. Can develop the algorithm at C/C++ level which abstracts the implementation details at the

Register Transfer Logic (RTL).

2. Can validate the functional correctness of the design logic much faster than a traditional HDL.

3. Can use certain directives or optimizations at C level to control the synthesis of the desired

hardware implementation.

4. Can create multiple hardware implementations from the same C source code by changing the

directives which helps in design space exploration.

In essence, it improves the productivity of the hardware designers as they can work at a higher level

of abstraction and at the same improves system performance for software designers as they can target

the FPGAs to accelerate the compute intensive algorithms.

4.2 Synthesizing the C/C++ to RTL

Vivado HLS doesn’t allow a typical C implementation to be synthesized into RTL code. For a C

implementation to be synthesized, it should not have the following:

1. Recursive functions: Recursive functions cannot be synthesized.

2. Dynamic memory allocation: Since the hardware implementation must specify the

requirement before synthesizing, memory can neither be allocated nor released with

functions like malloc() and free().

3. System calls: system calls like printf(), scanf() cannot be synthesized as these function calls

depends on the operating system (OS) in which the compiler is running.

4. Pointer casting: Although Vivado HLS allows pointer arrays, it does not allow the array of these

pointers to point to additional pointers.

When the Vivado HLS friendly C implementation is given as input to the tool, The C code is synthesized

as follows.

4.2.1 Functional Arguments

When the top-level function is synthesized in Vivado HLS, the functional arguments are synthesized

into RTL ports. Vivado HLS allows to specify the type of I/O protocol for the functional arguments and

this process is called interface synthesis [21]. These I/O protocols are used to sequence the data in

and out of the block after the block has started processing the data. It can be observed that how the

functional arguments (in1, in2, out 1) in C++ are converted into ports from Figure 14. In addition to

14
Department of electrical engineering, TU/e

the I/O some additional control ports (in1_vld, in2_vld, out_vld) will be added to the design. Figure 14

illustrates how the top-level function defined in C/C++ is synthesized into ports at RTL level.

Figure 14. Function arguments synthesized into I/O ports [25]

4.2.2 Functions and Function Hierarchy

All the C functions are synthesized into RTL modules. If there is a hierarchy of sub-functions the final

RTL implementation follows this hierarchy unless the sub-functions are inlined to dissolve the

hierarchy. A typical C/C++ function hierarchy synthesized into RTL modules is shown in the below

Figure 15.

Figure 15. Function Hierarchy at RTL level [25]

4.2.3 Arrays

By default, an array in the C/C++ code is typically implemented as the memory blocks in the RTL. These

memory blocks are usually Random Access Memories (RAM’s). However if these arrays are

implemented in the top-level function arguments, they will be implemented as the ports to access a

BRAM outside the design. Figure 16 illustrates on how an array in C/C++ is synthesized into memory

blocks.

Certain directives can be used to partition the given array and map into multiple RAM’s or multiple

arrays can be merged into one RAM. Depending on the application, an array can also be completely

partitioned into individual elements and mapped to registers.

15
Department of electrical engineering, TU/e

Figure 16. Arrays synthesized as RAM's [25]

4.2.4 Loops

By default, loops in a C function are kept rolled which means that the synthesis creates the logic only

for one iteration. This means the RTL design executes this logic for each iteration of the loop sequence.

Having only one instance of the loop body results in all the loop iterations performed sequentially

which can cause a substantial delay in the execution of the function. Some directives like loop unrolling

which creates multiple instances or loop pipelining which allows the logic to have an initiation interval

of II =1 can be used for better latency. More details on how the loops can be optimized using these

techniques in Section 5.2.

4.3 Performance Metrics

Once the design is synthesized to see if the design requirements are met various performance metrics

can be analyzed from the report generated by Vivado HLS. The following performance metrics can be

analyzed from the synthesized report.

1. Latency: The number of clock cycles required for a function to generate all the output values.

2. Initiation interval (II): Number of clock cycles before a function or a block can accept a new

set of inputs.

3. Area: The total amount of resources that are needed to implement the given function. This is

usually made up of DSP48s, Registers, Look up tables (LUTs) and BRAMs. It gives a utilization

% of how many resources are available on the FPGA board and how many of these resources

has been utilized.

16
Department of electrical engineering, TU/e

Chapter 5 Design Flow

5.1 Design Flow

This specific project uses the Halide implementation provided by Buckler in [11] to implement the C++

ISP. The design flow of this project can be viewed from Figure 17. The functionality of the ISP specified

by the Halide pipeline has been converted to C++ and is given as an input to the Vivado HLS tool to

synthesize the RTL. The test bench in C++ is created by using the data from the output images of the

Halide pipeline.

The first step in the design flow is to validate the C++ functionality. This is done to check, if the

functionality specified by C++ is same as the functionality specified by Halide. This is done using the

”simulation” option provided by the tool.

After passing the C++ simulation, the next step is to synthesize the design to generate the RTL code.

Apart from the ISP functionality of C++, some other directives/pragmas have to be mentioned that

indicates what type of interface is required or how should the hardware be designed.

The third step in the design flow is to co-simulate the design. As the name suggests, two types of

simulation happen at this stage. One is C++ simulation and the other is RTL simulation that is used to

check if the functionality of RTL code is similar to that of C++ code. The C++ simulation at this step is

used to generate the test vectors for the RTL simulation. If the co-simulation fails, it implies that the

Figure 17. Design Flow

17
Department of electrical engineering, TU/e

RTL functionality is not similar to that C++ functionality. If the co-simulation passes, the RTL

functionality has the desired behavior and can be preceded to the next step.

After the co-simulation, the next step is to export the generated RTL code to be used in Vivado for

implementation on hardware. In this step, pin planning, placing and routing can be done before

implementing on the hardware. The latency, utilization reports from this can be used to get an

accurate number of cycles and the resources required to implement the ISP on an FPGA.

5.2 Optimization Techniques

To Improve the performance of the generated RTL in terms of latency, throughput or Area various

directives can be added to the C code in the HLS tool which can have a direct impact on the RTL. In

this section a brief explanation of the most commonly use optimization techniques and how they

improve the performance is explained.

5.2.1 Pragma Dataflow

The dataflow optimization is an optimization technique which is used for task level pipelining. In the

C code given to Vivado HLS let us consider there are three functions func_A(), func_B() and func_A()

as shown in Figure 18. If the functions A, B and C takes 3,2 and 3 clock cycles to finish respectively and

since these three functions are performed sequentially the latency is same as the throughput which is

equal to 8 cycles. When the directive/pragma which specifies dataflow optimization is specified,

Vivado HLS tries to find the data flow between these sequential tasks (functions or loops) and creates

channels (like a FIFO) that allows the consumer loop or functions to start before the producer has

completed.

Figure 18. Dataflow Pipeline [13]

5.2.2 Pragma Pipeline

As mentioned earlier, dataflow pipelining has a limitation of working at top level functions. For these

top-level functions to have a better throughput and latency the subfunctions and the loops inside

these functions should be optimized. Pipelining Is the most common technique used for optimizing

the loops or subfunctions. A pipelined function or loop can process new inputs every X clock cycles

where X is the initiation interval (II). A perfectly pipelined loop or function has N=1 which means it can

accept input every clock cycle. Loop pipelining can be understood better from Figure 19.

18
Department of electrical engineering, TU/e

Figure 19. loop/Function pipeline [13]

 Pipelining a loop or function allows the operations inside to be executed concurrently. In A it takes 3

cycles before a new read operation can be done which means the initiation interval (II) is 3 and needs

8 cycles to write the output. As the loop iteration count increases the latency of that loop increases

and can get really higher to perform all these operations sequentially. Figure B shows using the loop

pipelining concept where an initiation interval of II=1 can be achieved with a pipeline depth of 3.

5.2.3 Pragma Inline

Inlining a function is usually done when subfunction needs to be dissolved into the function that is

calling the sub function. By dissolving a subfunction into the calling function, the hierarchy in the RTL

implementation is completely eliminated. This allows operations within the function to be shared with

the surrounding operations resulting in a more effective implementation. However, inlinng a function

cannot be done if the said function is being called by more than one function.

5.2.4 Pragma Loop Unroll

As mentioned earlier, the loops in C/C++ are by default kept rolled when it is synthesized for RTL

implementation which means the RTL logic is created only for one iteration of the loop. If the loop is

not unrolled all the iterations in the loop will be carried out sequentially which results in high latencies

for the loop. By using the unroll pragma more copies of the loop body can be produced and the loop

iterations can be executed concurrently. Loop unrolling can be full unrolling or partial unrolling with a

factor of N where N is the number of copies of the loop body that is needed in the RTL implementation

for concurrent execution. This allows an increase in data access and a better throughput. If there is a

nested loop and the outer loop has pipeline pragma specified, for a better initiation interval the inner

loops will automatically be unrolled full factor (i.e. the number of loop iterations).

5.2.5 Pragma Loop flatten

Loop flatten is a technique that can be used to dissolve the nested loops into a single loop hierarchy.

RTL implementation requires one clock cycle to move from an outer loop to an inner loop and one

more clock cycle to move from an inner loop to outer loop. By flattening these nested loops, it allows

them to be under a single loop and saves the clock cycles that needs to jump between the loops.

19
Department of electrical engineering, TU/e

However, Loop flatten can only be implemented if:

1. There is no logic specified between the loop statements.

2. Outer loops should not have a body content.

3. Inner loops cannot have variable bounds.

5.2.6 Pragma loop trip count

In some cases, the number of iterations loops will not be constant. It rather depends on the value

which is computed previously. When a loop with variable bounds is given to Vivado HLS to synthesize,

the tool cannot give out the latency needed to compute the loop as there are no fixed bounds which

specifies how many times the iteration will happen in RTL. To overcome this issue we can use pragma

“Loop_Trip_count” which specifies what can be the maximum, minimum and the average number of

times a loop will be executed. This allows the tool to analyze how loop latency contributes to the

overall latency and performs appropriate optimizations. Using this pragma has no impact on synthesis,

this is purely used for reporting purposes

5.2.7 Array optimizations

All the above-mentioned pragmas or the optimization techniques are used to have a better latency

and throughput for the loops and functions. However there can be bottlenecks while trying to

implement these techniques. One of the major bottle necks that does not allow for a better

throughput are the arrays that are implemented inside these loops or functions. The arrays that are

defined in the C in Vivado HLS are implemented as memories in the RTL implementation and is typically

implemented as random access Memory (RAM) if it needs both read and write operations performed

on it or a read only memory (ROM) if it is required to only read from the array. Some of the most

frequent used Array optimization techniques are given in the next sections:

5.2.8 Array partition

When arrays defined in Vivado HLS are synthesized, they will be mapped into one big memory blocks

with only two ports for reading and writing. There can be a bottle neck while doing a multiple

read/write access because of the limited number of ports of the big memory. Array partition can be

applied on this big array to partition the array into smaller arrays or individual elements. This

optimization results in RTL with multiple smaller memories or multiple registers instead of one large

memory. Vivado HLS provides various types of array/memory partition techniques. One of these

techniques is array partition complete which is used to patriation the entire array into individual

elements as shown in Figure 20. This improves the throughput of the design as the number of read

and write ports are increased but increases the area as it needs more memory instances.

Figure 20. Pragma Array partition

20
Department of electrical engineering, TU/e

5.2.9 Array Reshape

 Array Reshape is a type of technique that can be used in combination with array partition where the

parallelism of data access can be maintained in by concatenating the elements of smaller arrays. This

is a vertical type of array mapping where the number of BRAM’s are reduced and at the same time

provide access to more data in one cycle. The Array Reshape optimization can be done in 3 modes as

shown in Figure 21.

Figure 21. Array Reshape [13]

5.2.10 HLS Datatypes

All the native datatypes which are Supported by C are supported by Vivado HLS and can be synthesize

to generate the RTL implementation. These include:

1. Signed integer types: signed char, short, int, long.

2. Unsigned integer types: unsigned char, unsigned int, unsigned long and unsigned short.

3. Floating point types: float, double, long double.

4. Bool type.

Float and double are the only datatypes provided by the native datatypes if high precision is needed.

But sometimes this precision might not be enough or a datatype with more precision than an int and

less precision than a float might be needed. To facilitate this Vivado HLS allows the use of arbitrary

precision datatypes for both C and C++ where bit width of the datatype can be user defined.

In addition to the arbitrary precision types, Vivado HLS allows arbitrary precision fixed point types that

allows fractional arithmetic to be easily handled.

Vivado HLS has a library for fixed point types called “ap_fixed.h” and can be used to define a fixed-

point variable as:

ap_[u]fixed <W, I, Q, O> where

ap_ufixed: unsigned fixed-point type

ap_fixed: signed fixed point type

21
Department of electrical engineering, TU/e

W: total word length

I: Integer word length

Q: Quantization mode

O: Overflow mode

Word length is the total number of bits the fixed-point datatype has and Integer word length is the

number bits that is needed to hold the integer part before the decimal point as shown in Figure 22.

Quantization modes and Overflow mode arguments are used to define how to store the data in case

of an overflow or underflow.

Figure 22. Fixed point data type integer and fractional part [25]

22
Department of electrical engineering, TU/e

Chapter 6 Implementation and Experimentation

6.1 Baseline Implementation

In order to study the impact of algorithmic approximations in an ISP, a baseline implementation which

includes all the stages of ISP has been developed. The functionality of ISP in [13] was developed in C++

and passed to Vivado HLS. Initially each stage was separately implemented and the IP cores (logic

blocks which has the functionality of each stage) were developed to check if the functionality

requirements were met. Once all the functionality requirements were met for each stage, all the

stages were combined together to generate the complete ISP.

6.2 Architecture

The architecture of the proposed ISP that can be implemented on the hardware is given in Figure 23.

Figure 23. Architecture of ISP

The architecture of the baseline implementation consists of:

1. Video input, where the raw images of 8 bit per pixel are received from the camera sensor.

23
Department of electrical engineering, TU/e

2. An AXI interconnect which is used to establish the bus connections between all the

components on the board like external memory, VDMA.

3. Video dynamic memory access (VDMA) which is a memory map to stream interface and vice

versa. This is used to send and receive the images as a stream of data.

4. An accelerator where all the stages are implemented.

5. Three Block Random Access Memory (BRAM’s) interfaces to store the weights used by color

6. transformation, gamut mapping and tone mapping stages.

7. Video output, where the processed images with 24 bits per pixel are sent to the image

compression block.

8. An external memory for the raw images to be read and for the compressed images to be

stored.

The main focus of this project will be the accelerator where all the ISP stages are implemented. As

shown in Figure 23, the accelerator for the ISP can be implemented using the Vivado HLS tool and the

IP thus generated can be used in the Vivado tool to make connections with the other blocks like VDMA

and external memory.

The scope of this thesis is limited to Vivado HLS tool where end to end functionality of ISP is verified

with respect to the RTL implementation, and obtaining the performance metrics like latency and area.

6.3 Design Choice and Initial Results

6.3.1 Design Choice

The floating-point multiplications and divisions are very expensive in terms of area and latency when

implemented on hardware as one float multiplication requires 3 DSP’s. This results in an increase of

both clock cycles and utilized hardware resources. Even though it is very expensive, the floating-point

representation is implemented as the baseline implementation. When optimizing the ISP, the floating-

point representation can be changed to fixed point representation, which will decrease both the

latency and clock cycles.

6.3.2 Initial Profiling

An initial profiling was done on all the stages of ISP to get a rough estimate of the number of hardware

resources needed to implement the ISP and the amount of clock cycles needed to process the image

through each stage of ISP. The performance estimates of implementing the ISP on Zynq UltraScale+

ZCU106 Evaluation platform with a clock frequency of 100 MHz are shown in Table 1.

24
Department of electrical engineering, TU/e

ISP Stage BRAM’s DSP’s Flip Flop’s LUT’s Latency
(Clock cycles)

Latency
(ms)

Demosaic (DM) 6 49 4468 9058 5437610 54

Denoise (DN) 4 0 1047 4142 19005954 190

Color-
Transformation

(CT)

0 24 3728 7765 4456961 44

 Gamut
Mapping (GM)

4 15 3887 5573 777126401 7777

Tone Mapping
(TM)

6 15 2916 5932 436995331 4369

Total 20 103 20661 31314 1243019257 12430

 Available
Resources

624 1728 460800 230400 -

Utilization (%) ~ 5 ~8 ~4 ~13 -
Table 1. initial Profiling

It can be seen from the above table that resource utilization is very low when compared to the

resources on the FPGA. Also, for some of the stages clock cycles are too high. The goal of the next

section is to reduce the number of clock cycles by increasing the resource utilization

6.4 Optimizing the accurate hardware

After generating the accurate hardware with the required functionality, the next step was to optimize

it in an FPGA friendly manner. As it can be seen from the profiling section, the time taken to process

one raw image through all the stages is too high. An ideal ISP should process images at a faster rate to

meet the Frames Per Second (FPS) requirement of 20-30. Various optimizations like function

pipelining, loop unrolling and array partitioning which are explained in Section 5.2 [13] can be done to

decrease the latency by decreasing total number of clock cycles.

In this section each ISP stage will be synthesized and various type of RTL implementations will be

generated for each stage with different set of pragmas and datatypes and a comparison can be made

among these implementations. A detailed explanation will be done on the synthesis of one of the

stages (denoising) of the ISP.

6.5 Optimizing the Denoising Stage

When an image is captured, there will some noise added to the image. There are various types of

noises that can be present on the image like gaussian noise or salt and pepper noise. Various denoise

filters can be used to remove these noises such as mean filter (local and non-local) or a median filter.

As mentioned in Section 2.3.2, the main advantage of the median filter Is that it preserves the edges

[26]. Since a Sobel type of filter is used in post processing for the lane extraction and preserving the

edges in the image helps with lane detection. Hence, this project uses a median filter to denoise the

image.

In the median filtering to calculate the output pixel the surrounding pixels of the input pixel are taken

into consideration and the median of all these pixels is calculated and given as the value for output

pixel.

25
Department of electrical engineering, TU/e

Figure 24. Median filtering for Denoising

6.5.1 Optimizing with Line and Window Buffers

It can be seen from the above Figure 24 that to compute one pixel, a window (3x3) of 9 pixels is needed

and then only the output pixel can be computed by finding the median. This means that to compute

one pixel 9 reads has to be done before any computation takes place which results in increased

latency. To overcome this issue, the first optimization was the code to be restructured in such a way

that the concepts of line buffer and window buffer can be used. A line buffer is a 2D array which is

used to store several rows of input image. The number of rows that will be cached depends on the

height of the kernel/window. On the other hand, window buffer which is of the same size of window

is used to cache values in the current window and are used to access these values simultaneously in

one clock cycle. The C++ code implementation for the use of line and window buffers is given below.

for (int row = 0; row < Image_height row++) {

 for (int col = 0; col < Image_width; col++) {

 for(int i = 0; i < 3; i++) {

 window[i][0] = window[i][1];

 window[i][1] = window[i][2];

 }

 window[0][2] = (line_buffer[0][col]);

 window[1][2] = (line_buffer[0][col] = line_buffer[1][col]);

 window[2][2] = (line_buffer[1][col] = pixel_in[row][col]);

 if (row == 0 || col == 0 ||

 row == (MAX HEIGHT − 1) ||

 col == (MAX WIDTH − 1))

 {

 pixel_out[row][col].r = 0;

 pixel_out[row][col].g = 0;

 pixel_out[row][col].b = 0;

 }

 else

 {

26
Department of electrical engineering, TU/e

 pixel_out[row][col] = median_filter(window);

 }

 }

}

Since the adjacent windows overlap more often while calculating the output of a pixel, it implies a

high locality of reference. This means that the input pixels can be buffered locally and cached to be

used multiple times rather than reading the pixel every time which is costly. By rewriting the C++ code

to read each pixel exactly once and storing in the local memory. A pictorial representation of how the

line buffer and the window buffer works on an image is shown in below Figure 24Figure 25. It can be

seen how a portion of the image is stored locally into both the window and line buffers for each

iteration of the loop.

In Figure 25, the pixels outlined in black are stored in the line buffer and the pixels outlined in red are

stored in the window buffer. The input image is read into the line buffer pixel by pixel. Every time,

when the loop is executed, the window is shifted and filled with one pixel from the input and two

pixels from the line buffer. In addition to that, the input pixel is also shifted into the line buffer so that

the process can be repeated on the next line.

Figure 25. using Line and window buffer to process an image [27]

The performance metrics of denoising stage with the use of line and window buffer is given in the

below Table 2

Performance Metrics Denoise with Line Buffer and window

Buffer (Floating point/Naive)

Clock frequency (MHz) 100

Clock Cycles 19005954

Latency (time in ms) 190

BRAM’s 4

DSP’s 0

LUT’s 4142

Flipflops 1047

Table 2. Denoise Naive/Line Buffer Profiling

27
Department of electrical engineering, TU/e

It can be observed from the above table that the DSP’s used are 0. This is because median filter is a

sorting filter which just compares the pixel values with the other pixel values and gives the output.

However other stages will have some arithmetic calculations int the functionality where we can see

the usage of DSP’s.

6.5.2 Optimizing for an Initiation Interval of II = 1

The next step was to pipeline the subfunction which calculates the median of the window to achieve

an initiation interval of II =1. This can be given to the C++ code by simply specifying the pipeline pragma

as shown below:

for (int row = 0; row < Image_height row++) {

 for (int col = 0; col < Image_width; col++) {

 #pragma HLS pipeline II=1

The benefit of using Vivado HLS is when specify a pipelining is that it automatically applies the

optimizations of loop unrolling or flattening or some other optimizations mentioned in the previous

sections to get the target initiation interval. All these optimizations that are performed can be seen

from console window while the RTL is being synthesized as shown in Figure 26.

Figure 26. Automatic Optimizations by Vivado HLS compiler

If the target initiation interval is not met it will give a warning on why target was not reached, what

was the bottleneck and what can be done to achieve the target initiation interval as shown below.

WARNING: [SCHED 204-69] Unable to schedule 'store' operation

('line_buffer_addr_1_write_ln53', denoise_median/median_core.cpp:53) of

variable 'window[2]',

denoise_median/median_core.cpp:53 on array 'line_buffer' due to limited

memory ports.

Please consider using a memory core with more ports or partitioning the

array 'line_buffer'.

INFO: [SCHED 204-61] Pipelining result : Target II = 1, Final II = 3,

Depth = 23.

INFO: [SCHED 204-11] Finished scheduling.

6.5.3 Optimizing by Array Partition

The initiation interval of II=1 is not achieved because there were more read accesses that was done

on line buffer than it has ports in one clock cycle. Following the suggestions provided in the console,

array partition optimization can be applied on the line_buffer so that it can have more read/write

ports. This can be used by specifying the pragma as

#pragma HLS ARRAY_PARTITION variable=line_buffer complete dim=1

When the C++ code is synthesized to generate the RTL implementation with mentioned pragmas the

synthesis results shows that pipelining with the initiation interval of II=1 is successful and the following

message will be displayed on the console window:

28
Department of electrical engineering, TU/e

INFO: [HLS 200-10] --

INFO: [HLS 200-42] -- Implementing module 'median_filter'

INFO: [HLS 200-10] --

INFO: [SCHED 204-11] Starting scheduling ...

INFO: [SCHED 204-61] Pipelining loop 'L2'.

INFO: [SCHED 204-61] Pipelining result : Target II = 1, Final II = 1,

Depth = 22.

INFO: [SCHED 204-11] Finished scheduling.

The performance metrics from the new synthesis report are given in the below Table 3.

Performance Metrics Naïve

implementation

Floating point implementation

with Optimization directives

Clock frequency (MHz) 100 100

Clock Cycles 19005954 136962

Latency (time in ms) 190 1.37

BRAM’s 4 2

DSP’s 0 0

LUT’s 4142 6996

Flipflops 1047 11448

Table 3. performance metrics of Naïve vs floating point with optimizations

6.5.4 Floating to Fixed point conversion

Since the denoise median filter has no arithmetic calculation, the datatype that can be used to store

the data can be a char which has a size of 8 bits and range of (0-255) as the pixel values range from 0-

255. However the arithmetic calculations in other stages of ISP are done with fractional precision

where the pixel values are converted from (0-1) range by dividing each pixel with 256. Instead of

adding an additional overhead with scaling and descaling which requires multiplication and divisions

just for the denoise stage, it was found that using the same datatype gives better performance. Hence

a fixed-point type with a bit size of 18 is used and the performance implications are shown in the

below Table 4.

29
Department of electrical engineering, TU/e

Performance Metrics Naïve

Implementation

(Floating point)

Floating point +

optimization

directives

Fixed point +

Optimization

directives

Clock frequency

(MHz)

100 100 100

Clock Cycles 19005954 136962 134658

Latency (time in ms) 190 1.37 1.34

BRAM’s 4 2 2

DSP’s 0 0 0

LUT’s 4142 6996 1063

Flipflops 1047 11448 1164

Table 4. Performance metrics comparison for the fixed-point implementation

It can be observed from Table 4 that because of changing the datatype from 32-bit floating-point

representation to 18-bit fixed point representation the number of LUT’s and FF’s came down by

6,000 and 10,000 approximately without having a negative impact on clock cycles. There is no

significant improvement in the clock cycles or latency because the initiation interval of 1 is already

achieved with floating point implementation.

6.5.5 Clock Frequency

The RTL implementations so far synthesized have the default clock period at 100 MHz which means

each clock cycle takes (1/100Mhz) = 10 nanoseconds (ns). In timing analysis there are two types of

slack (positive and negative) that are associated with clock frequencies. Positive slack means that the

signal can traverse through the combinational logic from the start point to end point timing path in

time and operate correctly. On the other hand Negative slack means the data signal is unable to

traverse the combinational in time to ensure the correct operation.

Slack = Target time – Arrival time

It is important that the slack is always positive to ensure the correct operation of the circuit. For all

the stages of ISP clock frequency was increased till the slack was positive and it was found that at a

clock frequency of 250 MHz the slack remains positive and going beyond that is resulting in a negative

slack for some of the stages. Hence the clock frequency for all the stages was set to 250 MHz as all

these stages need the same clock and no stage should have a negative slack. By Changing the clock

frequency to 250 MHz the time required for one clock cycle changed from 10 ns to 4 ns (1/250 MHz).

Since each clock cycle takes less time, the overall latency decreased from 1.39ms to 0.539ms.

The comparison of all the above-mentioned implementations including the one with better clock

frequency is given in below Table 5.

30
Department of electrical engineering, TU/e

Performance

Metrics

Naïve

Implementation

(Floating point)

Floating

point +

optimization

directives

Fixed

point +

Optimization

directives

Fixed

point +

optimization

directives +

better clock

Clock

frequency

(MHz)

100 100 100 250

Clock Cycles 19005954 136962 134658 134568

Latency (time

in ms)

190 1.37 1.34 0.539

BRAM’s 4 2 2 2

DSP’s 0 0 0 0

LUT’s 4142 6996 1063 1063

Flipflops 1047 11448 1164 1164

Table 5. Performance metric comparison of various denoise implementations

6.6 Optimized Results of ISP Stages

The similar design approaches are used for optimizing the other stages of Demosaicing, Color

Transformation, Gamut Transform and Tone Mapping. For every stage after getting an accurate result

the same flow of using the pragma for pipeline with initiation interval of II=1 is used and based on the

issues that caused the II=1 to not be met, different optimizations mentioned in the Section 5.2 were

used and at the end every stage had an initiation interval of II=1. The final clock cycles for each stage

are similar as every stage had the function pipelining with II=1. However the area (BRAM’s, LUT’s,

DSP’s and FF’s) were different for each stage as some of these stages had some complex arithmetic

calculations. For the rest of the stages, the naïve implementation was converted into fixed point

representation and optimization directives were applied with a higher clock frequency. The results of

naïve implementation and the final optimized implementation for each of these ISP stages are

tabulated in the following sub sections.

6.6.1 Demosaic Results

The results of demosaicing baseline vs optimized implementations are given in the below Table 6.

Unlike denoise implementation, demosaicing implementation needs DSP’s as it requires some

arithmetic computations like multiplications and additions.

Performance metrics Naïve implementation Optimized implementation

Clock Frequency (MHz) 100 250

Clock Cycles 4750585 135740

Latency 47.5 0.543

BRAM’s 6 2

DSP’s 22 11

LUT’s 4252 3526

FF’s 2658 2562
Table 6. Performance comparison of naive vs optimized implementation for Demosaic stage

31
Department of electrical engineering, TU/e

For Demosaicing, the latency came down from 47 milli seconds to 0.543 milliseconds after

optimizations which achieved a speedup of 82x.

6.6.2 Color Transformation Results

The results of color transformation baseline (naive) vs optimized (better clock) implementations are

given in below Table 7.

Performance metrics Naïve implementation Optimized implementation

Clock Frequency (MHz) 100 250

Clock Cycles 4456961 135740

Latency 44.5 0.553

BRAM’s 0 2

DSP’s 24 9

LUT’s 7765 6751

FF’s 3728 8576
Table 7. Performance comparison of naive vs optimized implementation for Color Transformation stage

For color transformation, the latency came down from 44.57ms to 0.55ms after optimization and a

speedup of 80x was achieved.

6.6.3 Gamut Mapping result

The results of color transformation baseline (naive) vs optimized (better clock) implementations are

given in below Table 8.

Performance metrics Naïve implementation Optimized implementation

Clock Frequency (MHz) 100 250

Clock Cycles 777126423 393354

Latency (ms) 7771 1.573

BRAM’s 4 4

DSP’s 15 62

LUT’s 8183 62480

FF’s 4904 92106
Table 8. Performance comparison of naive vs optimized implementation for Gamut Mapping stage

For gamut mapping, the latency decreased from 7.7 seconds to 1.5 milli seconds after optimization

which can be considered as huge speedup. In gamut mapping each pixel is processed through an inner

most loop with a bound of 3708, before optimization this loop was executed in sequential manner

which led to a huge increase in latency.

6.6.4 Tone Mapping Results

The results of Tone Mapping baseline (naive) vs optimized (better clock) implementations are given

in below Table 9.

32
Department of electrical engineering, TU/e

Performance metrics Naïve implementation Optimized implementation

Clock Frequency (MHz) 100 250

Clock Cycles 436995331 131743

Latency (ms) 4370 0.527

BRAM’s 6 4

DSP’s 33 15

LUT’s 5932 60994

FF’s 2916 181869
Table 9. Performance comparison of naive vs optimized implementation for Tone Mapping stage

Similarly in tone mapping, the latency speedup is also in range of 1000’s because of more inner loops

compared to demosaic, denoise and color transformation. After optimization, the Tone mapping takes

0.527ms. since all the inner loops that were being executed in sequential manner were actually

comparing the pixel values with predefined weight, to achieve an initiation interval of 1 complete

array partition is done which resulted in the elements of arrays being synthesized as individual

registers. This explains the high increase in the LUT’s and FF’s and decrease of BRAM’s.

The speedups achieved from a naïve implementation to optimized implementation is very high

because in the naïve implementation the functionality is executed sequentially. By using of the

pragmas and optimization directives more instance of the logic can be created which allows the

concurrent execution of the function logic. For gamut mapping and tone mapping, it can be seen that

the speedup achieved is in terms of 1000’s, this is because of these two stages having inner loops with

higher trip count compared to the other stages.

6.7 Approximations

As mentioned in Section 3.1, IBC can be benefit from approximating the ISP. The total latency of the

ISP is 3.753ms (0.543 (DM) + 0.539 (DN) + 0.553 (CT) + 1.573 (GM) + 0.527 (TM)). This latency can be

further reduced with various approximations like coarse-grain, fine-grain and subsampling are used to

approximate the ISP. Each of these approximations are explained in detail in the following subsections

6.7.1 Coarse-grain approximation

The concept of coarse-grained approximation with respect to this project is to skip some stages of ISP

during the runtime. To implement this functionality, the architecture of the ISP will have some minor

modifications.

The new additions to the architecture are:

1. Configuration bits, which are used to decide which stages can be skipped at the run time.

2. A pass-through block for each stage which is used to skip stages during run time.

As the name suggests, the pass-through block allows image data to pass through it. It takes input from

one of the stages and gives it to the next stage without modifying data. A pass-through block can be a

FIFO with a depth of 1.

The architecture of ISP with stage skipping is explained in Figure 27. It can be seen from the figure that

there is no pass-through block for demosaicing stage. Literature survey showed that skipping

demosaicing stage cause the LKAS to fail resulting in the vehicular crash [9]. Since the QoC of LKAS will

be highly sensitive to the demosaicing stage, this stage can never be skipped.

33
Department of electrical engineering, TU/e

Figure 27. Coarse-grain Architecture

Since there are only four stages that can be skipped, a total of 16 different configurations will be

implemented in the coarse-grained approximation as presented in Table 10.

34
Department of electrical engineering, TU/e

Version ISP Stages Explanation Configuration

V0 DM, DN, CT, GM, TM No stages skipped 1111

V1 DM, DN, CT, GM Skip tone mapping 1110

V2 DM, DN, CT, TM Skip gamut mapping 1101

V3 DM, DN, CT Skip gamut and tone

mapping

1100

V4 DM, DN, GM, TM Skip Color transformation 1011

V5 DM, DN, GM Skip color transformation

and tone mapping

1010

V6 DM, DN, TM Skip color transformation

and gamut mapping

1001

V7 DM, DN Keep Demosaicing and

denoising

1000

V8 DM, CT, GM, TM Skip Denoising 0111

V9 DM, CT, GM Skip denoising and tone

mapping

0110

V10 DM, CT, TM Skip denoising and gamut

mapping

0101

V11 DM, CT Keep Demosaicing and

color transformation

0100

V12 DM, GM, TM Skip denoising and color

transformation

0011

V13 DM, GM Keep Demosaicing and

gamut mapping

0010

V14 DM, TM Keep Demosaicing and

tone mapping

0001

V15 DM Keep only Demosaicing 0000

Table 10. Different run time configurations for coarse grained approximation

The hardware implementation was implemented in such a way that these versions can be dynamically

reconfigured during the run time. All the stages of ISP in coarse-grain work sequentially, i.e. when the

raw image is given to the ISP, the latency for each configuration will essentially be sum of the time

taken for each stage in that configuration. The images produced from each version mentioned in the

table are given below in Figure 28.

35
Department of electrical engineering, TU/e

Figure 28. Output images of various versions from the coarse-grain pipeline

The latency for each of these reconfigurable ISP versions is calculated by adding the latency of

individual stages. For example, for V12 the total latency is 2.643ms (0.543(DM) + 1.573 (GM) + 0.527

(TM)). The total latency for each of these versions are given in the below Figure 29.

36
Department of electrical engineering, TU/e

Figure 29. latency of the different ISP pipelines with coarse-grain approximation

The coarse-grain approximation done is similar to that of the software-in-Loop setup in [9]. Since the

hardware implementation done is not in a closed loop system and it was not possible to evaluate the

QoC. However, it was made sure that the images produced from the Halide pipeline in [9] which

satisfied the QoC is identical to the images produced by the hardware. Hence it can be said that doing

this coarse-grain approximation for the ISP does not have a negative impact on QoC when used in

LKAS.

6.7.2 Fine-grain Approximation:

As mentioned in the design choice, the floating-point representation is very expensive both in terms

of latency and resources to be implemented on an FPGA. One of the optimizations to address this

issue is to use fixed point representation.

Unlike a single precision floating point representation which takes 32 bits (1 for sign, 8 for exponent

and 23 for fractional part) to store the data, in fixed point representation, we can configure the

number of bits that can be used represent the data in a finite range. However, if the bit width is too

small to hold the data (which is not in finite range), it might cause data overflow/underflow issues.

Various techniques like rounding to the nearest value in the finite range can be used to handle these

mechanisms.

The final stage of optimizations for all the stages allowed the fixed-point datatype with a bit width of

18. The goal of this approximation is to reduce bit width of each pixel in image further more for an

improved latency. The RTL implementation is generated in such a way that the bit-width of datatypes

can be reconfigured dynamically at the run time. The results for two different fine-grain approximation

configurations with a bit width of 16 bits and 14 bits have been tested on one of the stages (Color

Transformation). The performance comparison between these two fine-grain approximations and the

accurate implementation are given in the below Table 11.

37
Department of electrical engineering, TU/e

Performance metrics Accurate
Implementation

(18 bit)

Fine-grain
Implementation

(16 bit)

Fine-grain
Implementation

(14 bit)

Clock Frequency (MHz) 250 250 250

Latency (ms) 0.553 0.546 0.530

BRAM’s 2 2 2

DSP’s 9 9 9

LUT’s 6751 6216 5199

FF’s 8576 7872 6502
Table 11. comparison between fine-grain implementations

It can be seen from the results that the latency decreased slightly and there is a reduction in the LUT’s

and FF’s. However since this project does not use a closed loop system to evaluate the QoC, it cannot

be said whether the fine-grain approximation has a negative impact or positive impact. Hence the

hardware generated can be used in future in closed loop system as a means to evaluate the fine-

grained approximation.

6.7.3 Subsampling Approximation

Most modern camera sensors record an image of resolution much higher than required for a computer

vision application like object detection. By reducing the resolution of the image i.e. the number of

rows and columns in an image, the latency can be considerably reduced.

Subsampling is a technique used to reduce the size of an image by selecting a subset of the image.

Nearest neighbor sub sampling is one of the techniques that can be used where we can skip alternate

row and column pixels when reading the image to reduce the size of the image. Figure 30 illustrates

how the nearest neighbor subsampling technique discards the alternate row and columns are done.

Figure 30. (a) original dataset, (b) selected subset

By using the subsampler technique mentioned above, the image with dimensions of 256 x 512 come

down to a size of 128 x 256 as shown in the below Figure 31.

38
Department of electrical engineering, TU/e

Figure 31. performing Subsampling on an image

Figure 31 illustrates how subsampling of the image is done with a factor of 2. Theoretically, using a

subsampler with a factor of 2 reduced the size of the image by 75% which leads to an increase in

processing speed of the image up to 300%. The subsampling approximation is applied on one of the

stages (Color Transformation) and performance comparison between an accurate implementation

and subsampled approximate implementation is given in below

Performance metrics Accurate Implementation

Sub sampled approximate
Implementation

Clock Frequency (MHz) 250 250

Clock Cycles 131146 32842

Latency (ms) 0.553 0.139

BRAM’s 2 2

DSP’s 9 9

LUT’s 6751 6749

FF’s 8576 8574
Table 12. performance comparison of accurate implementation vs subsampled approximation

It can be seen from the results that the latency is decreased from 0.553ms to 0.139ms, so a speedup

of 3x is achieved by using the subsampling approximation. The sub sampler stage will be implemented

in a way that it can be either enabled or disabled during the run time similar to that of all the other

stages of ISP in the coarse-grain approximation. The architecture with subsampling approximation

included is given in Figure 32.

39
Department of electrical engineering, TU/e

Figure 32. Subsampler Architecture

As mentioned earlier in the fine-grained approximation, since the Hardware in Loop system to

evaluate the closed loop system is out of this project’s scope, the QoC cannot be studied for the

subsampler approximation. However, the hardware is generated in such a way that subsampler

approximation can enabled or disable at runtime. The generated IP can be used in future to study the

impact of QoC if a Hardware in Loop System is implemented.

40
Department of electrical engineering, TU/e

Chapter 7 Conclusions

7.1 Summary

This work focused on implementing ISP accelerator on an FPGA with run time reconfigurability for a

better QoC of LKAS system. Firstly, the ISP was written from scratch in C++ implementation. Then this

C++ implementation was modified in such a way that it is acceptable by Vivado HLS to synthesize the

RTL. Then the generated RTL was analyzed and optimized to have a better latency and area with the

use of multiple coding styles and optimization directives. This work focused mainly on improving the

latency of ISP and chose the biggest FPGA board available by tool as it has a greater number of

resources and all the optimizations that were done are focused on improving the latency to generate

the accurate hardware. Once the accurate hardware was generated the architecture was modified to

include an option of approximating this hardware. Multiple approximation techniques were employed

on this accurate hardware with an option of runtime reconfigurability.

7.2 Future Works

There are several directions in which further research can be carried based on this work. The first one

is to implement the FPGA based reconfigurable ISP created in this project in a closed loop system and

test the fine-grain approximation and subsampling approximation against the QoC of the LKAS. If these

approximations do not have a negative impact on QoC, both of these approximations can be used in

parallel with the coarse-grain approximation.

The scope of this project was limited to Vivado HLS tool was limited to performing the approximation

techniques through C++. Hence, only software type of approximations was implemented. However

using these algorithmic approximations IP (intellectual property) cores were generated. These IP cores

can be used further in Vivado tool to perform more hardware type of approximations like decreasing

the DRAM refresh rate for a better energy efficiency.

As mentioned in the summary, this project’s main focus was on improving the latency which came at

the cost of increased area (resources). One more direction in which research can be made is putting a

constraint on the area for an increase in latency and studying the various approximations in the closed

loop system and its performance implication on the QoC.

As the scope of this project is limited to Vivado HLS tool, further research can be continued using the

IP generated by this tool and connect with the other FPGA parts like external memory, VDMA in Vivado

tool and generate the bitstream to be implemented on the FPGA.

41
Department of electrical engineering, TU/e

Chapter 8 Bibliography

[1] “File:AdditiveColor.svg,” Wikipedia. [Online]. Available:

https://en.wikipedia.org/wiki/File:AdditiveColor.svg. [Accessed: 16-Oct-2020].

[2] “File:Bayer pattern on sensor.svg,” Wikipedia. [Online]. Available:

https://en.wikipedia.org/wiki/File:Bayer_pattern_on_sensor.svg. [Accessed: 16-Oct-2020].

[3] “Bayer filter,” Wikipedia, 08-Sep-2020. [Online]. Available:

https://en.wikipedia.org/wiki/Bayer_filter. [Accessed: 16-Oct-2020].

[4] T. Kinden, John, K. M. O. 23, and K. Muessig, “Color Management 101 - Color Spaces,” Alder Color

Solutions, 17-Jan-2019. [Online]. Available: https://aldertech.com/color-101-color-spaces/.

[Accessed: 16-Oct-2020].

[5] S. De, S. Mohamed, D. Goswami and H. Corporaal, "Approximation-Aware Design of an Image-

Based Control System," in IEEE Access, vol. 8, pp. 174568-174586, 2020, doi:

10.1109/ACCESS.2020.3023047.

[6] L. Anghel, M. Benabdenbi, A. Bosio, and E. I. Vatajelu, “Test and reliability in approximate

computing,” 2017 International Mixed Signals Testing Workshop (IMSTW), 2017.

[7] S. Mittal, “A Survey of Techniques for Approximate Computing,” ACM Computing Surveys, vol.

48, no. 4, pp. 1–33, 2016.

[8] A. Agrawal, Z. Sura, J. Choi, K. Gopalakrishnan, S. Gupta, R. Nair, J. Oh, D. A. Prener, S. Shukla, and

V. Srinivasan, “Approximate computing: Challenges and opportunities,” 2016 IEEE International

Conference on Rebooting Computing (ICRC), 2016.

[9] S. De, S. Mohamed, K. Bimpisidis, D. Goswami, T. Basten and H. Corporaal, "Approximation Trade

Offs in an Image-Based Control System," 2020 Design, Automation & Test in Europe Conference &

Exhibition (DATE), Grenoble, France, 2020, pp. 1680-1685, doi: 10.23919/DATE48585.2020.9116552.

[10] S. K. Ghosh, A. Raha, and V. Raghunathan, “Approximate inference systems (AxIS),” Proceedings

of the ACM/IEEE International Symposium on Low Power Electronics and Design, 2020.

[11] M. Buckler, S. Jayasuriya, and A. Sampson, “Reconfiguring the Imaging Pipeline for Computer

Vision,” 2017 IEEE International Conference on Computer Vision (ICCV), 2017.

[12] J. Ragan-Kelley, A. Adams, and D. Sharlet, “An introduction to halide,” ACM SIGGRAPH 2015

Courses on - SIGGRAPH '15, 2015.

[13] Xilinx.com, “Vivado HLS Optimization Methodology Guide,” 20-Dec-2017. [Online]. Available:

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug1270-vivado-hls-opt-

methodology-guide.pdf. [Accessed: 18-Oct-2020].

[14] D. Bagni, “Median Filter and Sorting Network for Video Processing with Vivado HLS,” tudelft.

[Online]. Available: https://cas.tudelft.nl/Education/courses/et4351/Median.pdf. [Accessed: 18-Oct-

2020].

[15] "Camera Tuning: Understanding the Image Signal Processor and ISP Tuning -

PathPartnerTech", PathPartnerTech, 2021. [Online]. Available:

42
Department of electrical engineering, TU/e

https://www.pathpartnertech.com/camera-tuning-understanding-the-image-signal-processor-and-

isp-tuning/. [Accessed: 06- Oct- 2021].

[16] Tspace.library.utoronto.ca, 2021. [Online]. Available:

https://tspace.library.utoronto.ca/bitstream/1807/89598/3/DiCecco_Roberto_201806_MAS_thesis.

pdf. [Accessed: 06- Oct- 2021].

[17] "Advanced Driver Assistance Systems (ADAS) - Rijschool Mirrer Purmerend", Rijschool Mirrer

Purmerend, 2021. [Online]. Available: https://mirrer.nl/advanced-driver-assistance-systems-adas/.

[Accessed: 06- Oct- 2021].

[18] "https://ars.els-cdn.com/content/image/1-s2.0-S0305748812000266-gr1.jpg", Seenthis.net,

2021. [Online]. Available: https://seenthis.net/sites/1699683. [Accessed: 06- Oct- 2021].

[19] "What Is Image Compression? - KeyCDN Support", KeyCDN, 2021. [Online]. Available:

https://www.keycdn.com/support/what-is-image-compression. [Accessed: 06- Oct- 2021].

[20] M. Bayern, "The top 3 companies in autonomous vehicles and self-driving cars | ZDNet", ZDNet,

2021. [Online]. Available: https://www.zdnet.com/article/the-top-3-companies-in-autonomous-

vehicles-and-self-driving-cars/. [Accessed: 06- Oct- 2021].

[21] Xilinx.com, 2021. [Online]. Available:

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug902-vivado-high-

level-synthesis.pdf. [Accessed: 06- Oct- 2021].

[22] researchgate.net, 2021. [Online]. Available:

https://www.researchgate.net/publication/268190682_Image_denoising_using_balanced_multiwav

elets_and_scale_mixtures_of_Gaussians. [Accessed: 06- Oct- 2021].

[23] "Talk:Color balance - Wikipedia", En.wikipedia.org, 2021. [Online]. Available:

https://en.wikipedia.org/wiki/Talk:Color_balance. [Accessed: 06- Oct- 2021].

[24] "Tone Mapping - RawPedia", Rawpedia.rawtherapee.com, 2021. [Online]. Available:

https://rawpedia.rawtherapee.com/Tone_Mapping. [Accessed: 06- Oct- 2021].

[25] Csl.cornell.edu, 2021. [Online]. Available:

https://www.csl.cornell.edu/courses/ece5775/pdf/lecture02.pdf. [Accessed: 06- Oct- 2021].

[26] 2021. [Online]. Available: https://www.theobjects.com/dragonfly/dfhelp/3-

5/Content/05_Image%20Processing/Smoothing%20Filters.htm. [Accessed: 10- Oct- 2021].

[27] R. Kastner, J. Matai and S. Neuendorffer, "Parallel Programming for FPGAs", arXiv.org, 2021.

[Online]. Available: https://arxiv.org/abs/1805.03648v1. [Accessed: 10- Oct- 2021].

[28] Xilinx.com. 2021. [online] Available at:

<https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug902-vivado-high-

level-synthesis.pdf> [Accessed 19 October 2021].

