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Chapter 1 Introduction 

1.1 Introduction 

Ever increasing urge for the comfort and sophistication has always been the utmost priority in the 

evolving world of technology. The increase in number of automobile accidents due to human errors 

has only necessitated and reinforced the need for autonomous driving and the autonomous cars. 

An autonomous car, in essence, is a vehicle customized to carry sensory units on the car that can make 

out its surroundings, navigate through traffic and also park without support from any human driver. 

Autonomous driving consists of an artificial intelligence system that can sense the surroundings, 

process the visual data so as to determine how to avoid collisions, operate car machinery like the 

steering and brake, and make use the Global Positioning System (GPS) to track the car's current 

location and destination. 

Autonomous driving, no doubt, can positively revolutionize the transport industry. Automakers and 

tech companies are competing to be first with such technology. Complete autonomous vehicle still is 

a distant reality. However, quite a few car companies did use available technologies and a few of them 

stand out. The list includes Waymo, GM Cruise and Argo AI. Waymo, under Google’s parent company 

Alphabet Inc., did impress with its autonomous vehicles driving over 5 million miles on public roads 

[20]. 

Cameras are the fundamental sensory units which are used to capture the real-world data that needs 

to be processed. These camera sensors need to be able to produce predictable and reliable images 

that can be used by computer vision. With the increase in the integration of the cameras in both mid 

and luxury vehicles, the camera capabilities allow Advanced Driver Assistance System (ADAS) to be 

employed for vision-based perception tasks, such as object recognition, mapping, and path planning, 

which are Image-Based Control (IBC) tasks that will enable a safer driving experience and bring us one 

step closer to a fully autonomous car. 

 

Figure 1. Advanced Driver Assistant System [17] 
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A traditional Image Signal Processor (ISP) is used to process the RAW image produced by the image 

sensor. The ISP converts the RAW image into a compressed image which can be later used by a 

computer vison application like lane detection. A typical ISP has five stages which include demosaicing, 

denoising, color transformation, gamut mapping, tone mapping and compression. Although, these 

stages are standard in the ISP, they require excessive computational intensity to produce a high-

quality image. Since the computer vision applications do not need a high-quality image, the results 

can be approximated which decreases the computational intensity. 

Approximate computing is a paradigm that will trade the accuracy for a better computation time and 

energy in error resilient applications by building the systems with inexact hardware or software 

components. A key challenge in the approximate computing is to identify the sections that can actually 

be approximated, without having the risk of crashing the application if a critical component is 

approximated. The focal point of this project is determining how to improve the latency of an ISP by 

using the concept of approximations. 
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Chapter 2 Background 

2.1 Digital Image Processing 

Image processing is a technique used to perform some operations on an image either to enhance it or 

extract useful information from it. Processing an image through an algorithm with the help of a 

computer is called digital image processing. For an image to be processed, it first needs to be captured 

by a camera sensor which can output digital values for a pixel.  

All the images can be classified into two types: gray scale image and color image. A typical gray scale 

image has one channel which looks like a black and white image. Each pixel of this image is represented 

only by one value per pixel. On the other hand, to represent a color image, multiple channels are 

required. There are various color models like RGB (red, green, blue), CMYK (cyan, magenta, yellow, 

black) etc. to represent the color image. Among these formats, RGB is the most common type used to 

represent a color image with three values per pixel. As the very name suggest, RGB is made up of three 

different channels of red, green and blue. These colors are considered as the primary colors; as they 

can be added together to produce a broad array of colors. A more comprehensive way of adding colors 

to produce different colors is presented in Figure 2 

 

It is clear from Figure 2 that adding of  

• red and green produce yellow. 

• red and blue produce pink. 

• blue and green produce magenta. 

• red, green and blue together produce white. 

Thus, the combination of these three colors can produce a wide range of different colors which 

represents a color image. Typically each of the channel is represented in decimal numbers ranging 

from 0-255. For the values of R, G and B at 0 it produces the color of pure black, Similarly, for the 

values of R, G and B at 255 it produces pure white. Thus the total number of colors available for an 

image is 16,777,216 (256 x 256 x 256) when all the three channels are combined which covers a wide 

range of color spectrum. 

Figure 2. RGB color model [1] 
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2.2 Camera sensor 

An image/camera sensor is a sensor which detects and conveys the information of the environment 

in the form of an image. The most common image sensors used in battery powered devices are CMOS 

type sensors as they are economical and have a low power consumption when compared to the CCD 

sensors. 

A typical CMOS sensor consists of three components that are presented in Figure 3. 

 

Figure 3. Structure of a Camera Sensor 

The three components of a CMOS camera sensor are:  

• Photo diode; used to capture the voltage of the light 

• Amplifier; used to amplify the captured voltage 

• An Analogue to Digital Convertor (ADC); which is used to convert the captured Analogue in to 

a digital pixel value  

For a color camera sensor, a Color Filter Array (CFA) is placed on top of the sensor which allows only 

certain colors to pass through it. A CFA is a mosaic of tiny color filters placed over the pixel sensors. 

To capture the color information, the most common pattern used for a CFA is the Bayer pattern which 

is of size 2x2 and consists of two green color filters, one blue color filter and one red color filter. An 

example of CFA placed over pixel sensors is shown in Figure 4. 

  

Figure 4. Color Filter Array placed over pixel sensors [2] 
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As the human eye is more sensitive to the green color, the green component filters present are twice 

as many as the red and blue components. The filters only allow their respective colors to pass through 

them giving the following resultant pattern (shown in Figure 5). 

 

 

Figure 5. Raw image pattern [6] 

All the three resulting patterns shown in the above figure make up the raw image which is given to an 

Image Signal Processor (ISP) for further processing. 

2.3 Image Signal Processing Pipeline  

When an image is captured by a camera sensor, it picks up noise from various sources which affect 

the quality of the captured image and this captured image is called raw image [15]. The raw image 

needs to be processed through a set of algorithms at each stage to remove these noises and make it 

visually more appealing to the end user. The combination of these stages which are used to produce 

the desired final image is called an image processing pipeline. 
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Figure 6. Image Signal Processing Pipeline (ISP) 

An image processing pipeline will have multiple stages depending upon the application, the most 

common stages for a color image processing pipeline are shown in Figure 6 and a brief description of 

each of these stages are mentioned below: 

2.3.1 Demosaicing 

The first stage in most of the image processing pipelines is Demosaicing. This stage is used to re-

construct a full colored image from the incomplete color samples created by the sensor. A single 

channeled grayscale raw image is converted into a three channel RGB image by using an  interpolation 

algorithm. Figure 7 illustrates how the raw image looks like post demosaicing. 

 

Figure 7. a) Raw image b) Demosaiced raw image 

2.3.2 Denoising 

The second stage of the pipeline is called denoising. When an image is captured, various noises are 

associated with it. The most common types of noises associated with digital images are gaussian noise 

and, salt and pepper noise. The goal of the denoising stage is to remove these unwanted noises and 

recover the original image. Figure 8 illustrates a clear difference between noisy image and denoised 

image. 
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Figure 8. a) Noisy image, b) Denoised image [22] 

Various denoising algorithms like local means, nonlocal means and median filtering are used to 

remove these noises. A brief explanation on each of the denoising methods is given below: 

Local Mean Filtering: Local mean filtering is a simple smoothing filter which changes the pixel value 

that are unrepresentative of their surroundings [21]. The technique employed in mean filtering is 

taking the average of surrounding pixels including itself and replacing it with the obtained value. 

Depending on the number of surrounding pixels considered the smoothness of the image will be 

changed. 

Non-Local Mean filtering: Unlike the mean filter, the Non-Local Mean (NLM) pixel takes the average 

of the all pixels in the image based on how alike they are with the target pixel and assigns the weight 

for all the pixels to be averaged [21].   

Median filter: Unlike the local mean filter, the median filter sorts all the surrounding pixel in an order 

and finds the median of it and replaces with the target pixel. Median filtering is useful for removing 

the random intensity spike and helps in preserving the edges. 

2.3.3 Color Transformation and White balancing 

In this stage, color balancing of each pixel is done which is the global adjustment of the intensities of 

all the colors in a pixel which is done in two steps. First step is the color transformation, which reduces 

the intensity of green color to match with that of red and blue. The second step is a white balancing 

transformation, which reduces the temperature of each pixel to match that of the lightning in the 

scene. These two transformations can be applied by multiplying each pixel with a matrix of predefined 

weights. These weights are generally decided by the camera manufacturer. Figure 9 illustrates how 

the intensities of the picture are adjusted post color transformation and white balancing. 
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Figure 9. a) Normal image, b) Post Color Transformation [23] 

2.3.4 Gamut Mapping 

Gamut also known as the color space is a subset of colors that can be supported by various physical 

devices like printers and monitors. There are several industrial standards like Adobe RGB, sRGB, CMYK 

etc. for the color spaces. Among these, most of the monitors use the sRGB while the printers use the 

CMYK color space. It can be seen from Figure 10 that the color space of the human eye is the biggest 

of all. It is not possible to replicate the exact color seen by a human eye to a monitor which has a 

smaller sRGB gamut. The gamut of CMYK is much smaller when compare to sRGB as not all the color 

intensities displayed on a monitor can be printed. To map the colors from a bigger color space (sRGB) 

to a smaller (CMYK) a gamut mapping algorithm is required.  

Figure 10. color model of visual 
spectrum, RGB and CMYK [7] 
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2.3.5 Tone Mapping 

Tone mapping is a technique which is used to compress the image’s dynamic range and apply some 

aesthetic effects.  LCD Monitors and projectors all have a limited dynamic range that is not adequate 

to reproduce the full range of light intensities present in natural scene. Tone mapping addresses this 

by making dark areas brighter, at the same time it will not overexpose the brighter areas. Gamma 

compression is one of the most common algorithms used in tone mapping. Figure 11 illustrates how 

the brightness of darker areas are improved by using tone mapping. 

 

Figure 11. a) Before Tone Map, b) After Tone Map [24] 

2.3.6 Image Compression 

After processing an image, a compression algorithm is applied before storing the image to reduce the 

storage costs and communication costs. In essence, an image compression technique involves 

removing or grouping together certain parts of image that look alike to reduce the size of the image. 

Image compression techniques can be classified into two, they are lossy compression and lossless 

compression techniques. As the name suggests, a lossless compression technique maintains the same 

quality of the image as before it was compressed. Some of the image formats that apply lossless 

compression are PNG, RAW and BMP. The compression techniques performed on these formats are 

reversible and can be reverted back to the original image [19]. On the other hand, lossy compression 

discards some parts of the image and reduces the size of the image. However this does not mean that 

compressed image will look bad. JPG also known as JPEG is the most commonly used lossy 

compression technique [19]. 

The main goal of this project is to approximate the ISP by skipping the above-mentioned stages. Since 

the image compression is a mandatory stage to save communication and storage costs, it cannot be 

skipped. Instead, the output from the skipped ISP stages is given to a dedicated image compression 

block.  

2.4 Image Based Control Systems 

IBC loop systems are closed loop control systems which are used typically for applications that use 

visual feedback for motion control. Many modern-day applications like Lane Keep Assist System (LKAS) 

and Advance Driver Assistance System (ADAS) use the concept of IBC to inform the driver when the 

car deviates from the lane. The three tasks that make up a typical IBC system are: 

Sensing task; to process the raw image provided by the camera. 
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Computation task; to implement the control algorithm so as to make a decision based on the 

processed image. 

Actuation task; to send the signal that actuates the respective motor based on the decision from the 

computation task. 

 

As shown in Figure 12, these three tasks are always performed sequentially and periodically with a 

sampling period of h. The total time taken to actuate a task after sensing is called sensor to actuator 

delay (τ). The sampling period is always greater than the sensor to actuator delay to make sure that 

that all the three tasks have been done before doing the next sensing task. 

2.4.1 Lane Keep Assist System (LKAS) 

Lane Keep Assist System (LKAS) is a type of IBC which is a driver assistance system that uses computer 

vision algorithms to notify the driver if he/she departs from the lane. A camera present in the car 

captures the image and processes these images to identify the lane markers present on the road. 

Typically, an edge detection algorithm like Sobel filter is used to perform feature extraction task. Once 

the lane markers were identified on the road, the disposition of the car from the middle of the lane to 

the lane markers are identified and if the deviation is too much, the driver of the car will be 

immediately be notified regarding the lane departure. Prior literature showed that approximation has 

benefits in the closed loop system. In most of the closed loop systems ISP acts as a bottleneck. So a 

runtime reconfigurable variable accuracy ISP accelerator was designed to overcome the bottleneck. 

This project focuses on implementing an ISP accelerator which can be used to study the benefit of 

approximations using a LKAS system. 

2.5 Related Work 

This project is mainly focused on implementing an accuracy configurable ISP on a Field Programmable 

Gate Array (FPGA) with an algorithmic approximation for a better QoC of the IBC system. Although 

there are some end-to-end case studies available on using the approximation for a closed loop system 

on software, these case studies on the hardware for a closed loop system are very limited. This project 

provides an implementation that can be used for a case study of applying three different 

approximations at a subsystem level and evaluating the performance implications in an IBC with a 

Hardware-in-Loop (HiL) setup.   

2.5.1 Applications of Image based control (IBC) 

The compute intensive part of image processing stage of IBC results in a large sampling period because 

of the design time choice. This has a negative impact on the QoC of the underlying system. 

Figure 12. Sensor to Actuation delay 
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Instead of designing the controller for a Worst Case (WC) scenario, [5] proposes an IBC in which the 

sampling period can be dynamically reconfigured based on the workload variations using a scenario 

aware approach. Due to this sampling period of the controller adapts continuously based on the actual 

case scenario. Thereby resulting in the decrease of average sampling period with respect to the WC 

sampling period. However, this approach considers the ISP as a black box and assumes that there is a 

constant delay in the image preprocessing block.   

2.5.2 Applications of Approximate Computing 

Approximate Computing also known as inexact computing is a computing paradigm that will trade the 

computation time and energy for the accuracy of result in error resilient applications. Software 

techniques like bit precision scaling, subsampling, skipping the tasks and hardware techniques like 

decreasing the refresh rate, using the inexact hardware, clock over gating can be used to speed up the 

execution times of the task and at the same time reduce the overall energy consumption [6] [7] [8].  

The three important approximations techniques that are addresses in this thesis are coarse-grain, fine-

grain and subsampling approximations. As the name suggests, in the coarse-grained approximation 

some levels of data processing are skipped from processing. For example, if an image processing 

pipeline contains 10 stages, some of these stages can be skipped so that there is an improvement in 

energy consumption and latency. On the other hand, fine-grained approximation doesn’t skip any 

stages but it reduces the precision of data that will be processed through the mentioned stages. For 

example, instead of using a 32 bit-length variable to hold the pixel value, a 24 bit-length variable can 

be used which reduces the number of clock cycles that is needed to perform any arithmetic 

operations. In subsampling approximation, the number of pixels that needs to be processed will be 

reduced by skipping some rows and columns of pixels in the image which results in better energy 

consumption. All these approximations result in less clock cycles to process at the cost of precision. 

Since [5] considers the image processing block as a black box with a constant delay, [9] proposes an 

IBC system which extends the work of the [5] by taking the performance implication of the image 

processing into consideration. ISP is the main bottleneck in sensing task as the individual stages of ISP 

are computationally intensive. [9] proposed an approximation technique where some of the stages of 

ISP can be skipped during runtime using a scenario aware approach. By approximating ISP during the 

run time, workload of sensing task can be reduced which resulted in decrease of sampling period. A 

Software-in-Loop (SiL) simulator was implemented in [11] to show that QoC of the IBC improved 

because of approximated ISP. However only coarse-grained approximation with stage skipping has 

been considered. A fine-grained approximation with a variable data size could have improved the QoC 

further. 

[10] proposes an end-to-end case study of approximate inference system for a deep neural network 

(DNN) based smart camera system. The impact of approximation and its implication on the 

performance of whole system was studied. This whole system includes four different sublevel 

approximations: approximate sensor, memory, computation and communication.  

This project extends the work of [9] by implementing the ISP on FPGA and studying the performance 

implications of approximations. In addition to the stage skipping (coarse-grain approximation), this 

project enables the fine-grain and subsample approximation. 
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Chapter 3 Problem Statement 

3.1 Motivation 

As explained in Section 2.4, a typical IBC system includes sensing, computation and actuation tasks. It 

can be seen from Figure 13 that sensing task is comprised of processing raw images through an ISP 

and image processing block for lane detection. Due to the heavy workload of ISP when processing the 

images through the traditional ISP stages, the sensing task acts as a major bottleneck. Since the 

sampling period of the system should always be greater than the sensor to actuator delay, the 

increased time of sensing task has a direct impact on the sampling period which results in processing 

of lower number of frames per second (FPS). The low FPS rate results in the degradation of QoC. The 

possible performance gains by approximating the ISP can have a significant impact on sensing task 

which in turn reduces the sampling period and have a positive effect on the QoC. 

 

Since the main bottleneck is from the traditional ISP, this project focuses on implementing various 

algorithmic approximations on the imaging pipeline of an ISP. 

3.2 Research Questions 

This project addresses the following research questions: 

➢ How to generate Hardware IP blocks for the ISP functionality in Vivado HLS tool? 

➢ How the approximation techniques like coarse-grain, fine-grain and subsampling can be 

implemented on the ISP with runtime reconfigurability?  

 

Figure 13. IBC of an LKAS 
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Chapter 4 Tool 

4.1 Vivado HLS Tool 

This project uses Vivado HLS provided by XILINX to implement the ISP functionality on the hardware. 

Vivado HLS can be used to generate the Verilog or VHDL code using high level languages like C, C++ 

and system C. Once the RTL code is synthesized from the high-level language, the functionality of the 

RTL is verified with respect to the algorithmic description. After the verification of RTL functionality, 

Intellectual Property (IP) cores are generated which has the desired functionality of the ISP. These IP 

logic blocks are then ported on to a field programmable logic array (FPGA). 

The main advantages of using a Vivado HLS Tool over a traditional Hardware Description Language 

(HDL’s) are: 

1. Can develop the algorithm at C/C++ level which abstracts the implementation details at the 

Register Transfer Logic (RTL). 

2. Can validate the functional correctness of the design logic much faster than a traditional HDL. 

3. Can use certain directives or optimizations at C level to control the synthesis of the desired 

hardware implementation. 

4. Can create multiple hardware implementations from the same C source code by changing the 

directives which helps in design space exploration. 

In essence, it improves the productivity of the hardware designers as they can work at a higher level 

of abstraction and at the same improves system performance for software designers as they can target 

the FPGAs to accelerate the compute intensive algorithms.  

4.2 Synthesizing the C/C++ to RTL 

Vivado HLS doesn’t allow a typical C implementation to be synthesized into RTL code. For a C 

implementation to be synthesized, it should not have the following: 

1. Recursive functions: Recursive functions cannot be synthesized. 

2. Dynamic memory allocation: Since the hardware implementation must specify the 

requirement before synthesizing, memory can neither be allocated nor released with 

functions like malloc() and free(). 

3. System calls: system calls like printf(), scanf() cannot be synthesized as these function calls 

depends on the operating system (OS) in which the compiler is running. 

4. Pointer casting: Although Vivado HLS allows pointer arrays, it does not allow the array of these 

pointers to point to additional pointers. 

When the Vivado HLS friendly C implementation is given as input to the tool, The C code is synthesized 

as follows.  

4.2.1 Functional Arguments 

When the top-level function is synthesized in Vivado HLS, the functional arguments are synthesized 

into RTL ports. Vivado HLS allows to specify the type of I/O protocol for the functional arguments and 

this process is called interface synthesis [21]. These I/O protocols are used to sequence the data in 

and out of the block after the block has started processing the data. It can be observed that how the 

functional arguments (in1, in2, out 1) in C++ are converted into ports from Figure 14. In addition to 
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the I/O some additional control ports (in1_vld, in2_vld, out_vld) will be added to the design. Figure 14 

illustrates how the top-level function defined in C/C++ is synthesized into ports at RTL level. 

 

Figure 14. Function arguments synthesized into I/O ports [25] 

4.2.2 Functions and Function Hierarchy 

All the C functions are synthesized into RTL modules. If there is a hierarchy of sub-functions the final 

RTL implementation follows this hierarchy unless the sub-functions are inlined to dissolve the 

hierarchy. A typical C/C++ function hierarchy synthesized into RTL modules is shown in the below 

Figure 15. 

 

Figure 15. Function Hierarchy at RTL level [25] 

4.2.3 Arrays 

By default, an array in the C/C++ code is typically implemented as the memory blocks in the RTL. These 

memory blocks are usually Random Access Memories (RAM’s). However if these arrays are 

implemented in the top-level function arguments, they will be implemented as the ports to access a 

BRAM outside the design. Figure 16 illustrates on how an array in C/C++ is synthesized into memory 

blocks. 

Certain directives can be used to partition the given array and map into multiple RAM’s or multiple 

arrays can be merged into one RAM. Depending on the application, an array can also be completely 

partitioned into individual elements and mapped to registers. 
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Figure 16. Arrays synthesized as RAM's [25] 

4.2.4 Loops 

By default, loops in a C function are kept rolled which means that the synthesis creates the logic only 

for one iteration. This means the RTL design executes this logic for each iteration of the loop sequence. 

Having only one instance of the loop body results in all the loop iterations performed sequentially 

which can cause a substantial delay in the execution of the function. Some directives like loop unrolling 

which creates multiple instances or loop pipelining which allows the logic to have an initiation interval 

of II =1 can be used for better latency. More details on how the loops can be optimized using these 

techniques in Section 5.2.  

4.3 Performance Metrics 

Once the design is synthesized to see if the design requirements are met various performance metrics 

can be analyzed from the report generated by Vivado HLS. The following performance metrics can be 

analyzed from the synthesized report. 

1. Latency: The number of clock cycles required for a function to generate all the output values. 

2. Initiation interval (II): Number of clock cycles before a function or a block can accept a new 

set of inputs. 

3. Area: The total amount of resources that are needed to implement the given function. This is 

usually made up of DSP48s, Registers, Look up tables (LUTs) and BRAMs. It gives a utilization 

% of how many resources are available on the FPGA board and how many of these resources 

has been utilized. 

  



16 
Department of electrical engineering, TU/e 

Chapter 5 Design Flow 

5.1 Design Flow 

This specific project uses the Halide implementation provided by Buckler in [11] to implement the C++ 

ISP. The design flow of this project can be viewed from Figure 17. The functionality of the ISP specified 

by the Halide pipeline has been converted to C++ and is given as an input to the Vivado HLS tool to 

synthesize the RTL. The test bench in C++ is created by using the data from the output images of the 

Halide pipeline. 

 

The first step in the design flow is to validate the C++ functionality. This is done to check, if the 

functionality specified by C++ is same as the functionality specified by Halide. This is done using the 

”simulation” option provided by the tool. 

After passing the C++ simulation, the next step is to synthesize the design to generate the RTL code. 

Apart from the ISP functionality of C++, some other directives/pragmas have to be mentioned that 

indicates what type of interface is required or how should the hardware be designed. 

 

The third step in the design flow is to co-simulate the design. As the name suggests, two types of 

simulation happen at this stage. One is C++ simulation and the other is RTL simulation that is used to 

check if the functionality of RTL code is similar to that of C++ code. The C++ simulation at this step is 

used to generate the test vectors for the RTL simulation. If the co-simulation fails, it implies that the 

Figure 17. Design Flow 
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RTL functionality is not similar to that C++ functionality. If the co-simulation passes, the RTL 

functionality has the desired behavior and can be preceded to the next step. 

After the co-simulation, the next step is to export the generated RTL code to be used in Vivado for 

implementation on hardware. In this step, pin planning, placing and routing can be done before 

implementing on the hardware. The latency, utilization reports from this can be used to get an 

accurate number of cycles and the resources required to implement the ISP on an FPGA. 

5.2 Optimization Techniques 

To Improve the performance of the generated RTL in terms of latency, throughput or Area various 

directives can be added to the C code in the HLS tool which can have a direct impact on the RTL. In 

this section a brief explanation of the most commonly use optimization techniques and how they 

improve the performance is explained. 

5.2.1 Pragma Dataflow 

The dataflow optimization is an optimization technique which is used for task level pipelining. In the 

C code given to Vivado HLS let us consider there are three functions func_A(), func_B() and func_A() 

as shown in Figure 18. If the functions A, B and C takes 3,2 and 3 clock cycles to finish respectively and 

since these three functions are performed sequentially the latency is same as the throughput which is 

equal to 8 cycles. When the directive/pragma which specifies dataflow optimization is specified, 

Vivado HLS tries to find the data flow between these sequential tasks (functions or loops) and creates 

channels (like a FIFO) that allows the consumer loop or functions to start before the producer has 

completed. 

 

Figure 18. Dataflow Pipeline [13] 

 

5.2.2 Pragma Pipeline 

As mentioned earlier, dataflow pipelining has a limitation of working at top level functions. For these 

top-level functions to have a better throughput and latency the subfunctions and the loops inside 

these functions should be optimized. Pipelining Is the most common technique used for optimizing 

the loops or subfunctions. A pipelined function or loop can process new inputs every X clock cycles 

where X is the initiation interval (II). A perfectly pipelined loop or function has N=1 which means it can 

accept input every clock cycle. Loop pipelining can be understood better from Figure 19. 
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Figure 19. loop/Function pipeline [13] 

 Pipelining a loop or function allows the operations inside to be executed concurrently. In A it takes 3 

cycles before a new read operation can be done which means the initiation interval (II) is 3 and needs 

8 cycles to write the output. As the loop iteration count increases the latency of that loop increases 

and can get really higher to perform all these operations sequentially. Figure B shows using the loop 

pipelining concept where an initiation interval of II=1 can be achieved with a pipeline depth of 3.  

5.2.3 Pragma Inline 

Inlining a function is usually done when subfunction needs to be dissolved into the function that is 

calling the sub function. By dissolving a subfunction into the calling function, the hierarchy in the RTL 

implementation is completely eliminated. This allows operations within the function to be shared with 

the surrounding operations resulting in a more effective implementation. However, inlinng a function 

cannot be done if the said function is being called by more than one function.  

5.2.4 Pragma Loop Unroll 

As mentioned earlier, the loops in C/C++ are by default kept rolled when it is synthesized for RTL 

implementation which means the RTL logic is created only for one iteration of the loop. If the loop is 

not unrolled all the iterations in the loop will be carried out sequentially which results in high latencies 

for the loop. By using the unroll pragma more copies of the loop body can be produced and the loop 

iterations can be executed concurrently. Loop unrolling can be full unrolling or partial unrolling with a 

factor of N where N is the number of copies of the loop body that is needed in the RTL implementation 

for concurrent execution. This allows an increase in data access and a better throughput. If there is a 

nested loop and the outer loop has pipeline pragma specified, for a better initiation interval the inner 

loops will automatically be unrolled full factor (i.e. the number of loop iterations). 

5.2.5 Pragma Loop flatten 

Loop flatten is a technique that can be used to dissolve the nested loops into a single loop hierarchy. 

RTL implementation requires one clock cycle to move from an outer loop to an inner loop and one 

more clock cycle to move from an inner loop to outer loop. By flattening these nested loops, it allows 

them to be under a single loop and saves the clock cycles that needs to jump between the loops.  
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However, Loop flatten can only be implemented if: 

1. There is no logic specified between the loop statements. 

2. Outer loops should not have a body content. 

3. Inner loops cannot have variable bounds. 

5.2.6 Pragma loop trip count 

In some cases, the number of iterations loops will not be constant. It rather depends on the value 

which is computed previously. When a loop with variable bounds is given to Vivado HLS to synthesize, 

the tool cannot give out the latency needed to compute the loop as there are no fixed bounds which 

specifies how many times the iteration will happen in RTL. To overcome this issue we can use pragma 

“Loop_Trip_count” which specifies what can be the maximum, minimum and the average number of 

times a loop will be executed. This allows the tool to analyze how loop latency contributes to the 

overall latency and performs appropriate optimizations. Using this pragma has no impact on synthesis, 

this is purely used for reporting purposes 

5.2.7 Array optimizations 

All the above-mentioned pragmas or the optimization techniques are used to have a better latency 

and throughput for the loops and functions. However there can be bottlenecks while trying to 

implement these techniques. One of the major bottle necks that does not allow for a better 

throughput are the arrays that are implemented inside these loops or functions. The arrays that are 

defined in the C in Vivado HLS are implemented as memories in the RTL implementation and is typically 

implemented as random access Memory (RAM) if it needs both read and write operations performed 

on it or a read only memory (ROM) if it is required to only read from the array. Some of the most 

frequent used Array optimization techniques are given in the next sections: 

5.2.8 Array partition 

When arrays defined in Vivado HLS are synthesized, they will be mapped into one big memory blocks 

with only two ports for reading and writing. There can be a bottle neck while doing a multiple 

read/write access because of the limited number of ports of the big memory. Array partition can be 

applied on this big array to partition the array into smaller arrays or individual elements. This 

optimization results in RTL with multiple smaller memories or multiple registers instead of one large 

memory. Vivado HLS provides various types of array/memory partition techniques. One of these 

techniques is array partition complete which is used to patriation the entire array into individual 

elements as shown in Figure 20. This improves the throughput of the design as the number of read 

and write ports are increased but increases the area as it needs more memory instances. 

 

Figure 20. Pragma Array partition 
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5.2.9 Array Reshape 

 Array Reshape is a type of technique that can be used in combination with array partition where the 

parallelism of data access can be maintained in by concatenating the elements of smaller arrays. This 

is a vertical type of array mapping where the number of BRAM’s are reduced and at the same time 

provide access to more data in one cycle. The Array Reshape optimization can be done in 3 modes as 

shown in Figure 21. 

 

Figure 21. Array Reshape [13] 

    

5.2.10 HLS Datatypes 

All the native datatypes which are Supported by C are supported by Vivado HLS and can be synthesize 

to generate the RTL implementation. These include: 

1. Signed integer types: signed char, short, int, long. 

2. Unsigned integer types: unsigned char, unsigned int, unsigned long and unsigned short. 

3. Floating point types: float, double, long double. 

4. Bool type. 

Float and double are the only datatypes provided by the native datatypes if high precision is needed. 

But sometimes this precision might not be enough or a datatype with more precision than an int and 

less precision than a float might be needed. To facilitate this Vivado HLS allows the use of arbitrary 

precision datatypes for both C and C++ where bit width of the datatype can be user defined.  

 

In addition to the arbitrary precision types, Vivado HLS allows arbitrary precision fixed point types that 

allows fractional arithmetic to be easily handled. 

Vivado HLS has a library for fixed point types called “ap_fixed.h” and can be used to define a fixed-

point variable as: 

ap_[u]fixed <W, I, Q, O> where 

 

ap_ufixed: unsigned fixed-point type 

ap_fixed: signed fixed point type 
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W: total word length 

I: Integer word length 

Q: Quantization mode 

O: Overflow mode 

Word length is the total number of bits the fixed-point datatype has and Integer word length is the 

number bits that is needed to hold the integer part before the decimal point as shown in Figure 22. 

Quantization modes and Overflow mode arguments are used to define how to store the data in case 

of an overflow or underflow. 

 

Figure 22. Fixed point data type integer and fractional part [25] 
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Chapter 6 Implementation and Experimentation 

6.1 Baseline Implementation 

In order to study the impact of algorithmic approximations in an ISP, a baseline implementation which 

includes all the stages of ISP has been developed. The functionality of ISP in [13] was developed in C++ 

and passed to Vivado HLS. Initially each stage was separately implemented and the IP cores (logic 

blocks which has the functionality of each stage) were developed to check if the functionality 

requirements were met. Once all the functionality requirements were met for each stage, all the 

stages were combined together to generate the complete ISP. 

6.2 Architecture 

The architecture of the proposed ISP that can be implemented on the hardware is given in Figure 23. 

 

Figure 23. Architecture of ISP 

The architecture of the baseline implementation consists of: 

1. Video input, where the raw images of 8 bit per pixel are received from the camera sensor. 
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2. An AXI interconnect which is used to establish the bus connections between all the 

components on the board like external memory, VDMA. 

3. Video dynamic memory access (VDMA) which is a memory map to stream interface and vice 

versa. This is used to send and receive the images as a stream of data. 

4. An accelerator where all the stages are implemented. 

5. Three Block Random Access Memory (BRAM’s) interfaces to store the weights used by color 

6. transformation, gamut mapping and tone mapping stages. 

7. Video output, where the processed images with 24 bits per pixel are sent to the image 

compression block. 

8. An external memory for the raw images to be read and for the compressed images to be 

stored. 

The main focus of this project will be the accelerator where all the ISP stages are implemented. As 

shown in Figure 23, the accelerator for the ISP can be implemented using the Vivado HLS tool and the 

IP thus generated can be used in the Vivado tool to make connections with the other blocks like VDMA 

and external memory.  

The scope of this thesis is limited to Vivado HLS tool where end to end functionality of ISP is verified 

with respect to the RTL implementation, and obtaining the performance metrics like latency and area.  

6.3 Design Choice and Initial Results 

6.3.1 Design Choice 

The floating-point multiplications and divisions are very expensive in terms of area and latency when 

implemented on hardware as one float multiplication requires 3 DSP’s. This results in an increase of 

both clock cycles and utilized hardware resources. Even though it is very expensive, the floating-point 

representation is implemented as the baseline implementation. When optimizing the ISP, the floating-

point representation can be changed to fixed point representation, which will decrease both the 

latency and clock cycles. 

6.3.2 Initial Profiling 

An initial profiling was done on all the stages of ISP to get a rough estimate of the number of hardware 

resources needed to implement the ISP and the amount of clock cycles needed to process the image 

through each stage of ISP. The performance estimates of implementing the ISP on Zynq UltraScale+ 

ZCU106 Evaluation platform with a clock frequency of 100 MHz are shown in Table 1.  



24 
Department of electrical engineering, TU/e 

ISP Stage BRAM’s DSP’s Flip Flop’s LUT’s Latency 
(Clock cycles) 

Latency 
(ms) 

Demosaic (DM) 6 49 4468 9058 5437610 54  

Denoise (DN) 4 0 1047 4142 19005954 190 

Color-
Transformation 

(CT) 

0 24 3728 7765 4456961 44 

    Gamut 
Mapping (GM) 

4 15 3887 5573 777126401 7777 

Tone Mapping 
(TM) 

6 15 2916 5932 436995331 4369 

Total 20 103 20661 31314 1243019257 12430 

  Available 
Resources 

624 1728 460800 230400 -  

Utilization (%) ~ 5 ~8 ~4 ~13 -  
Table 1. initial Profiling 

It can be seen from the above table that resource utilization is very low when compared to the 

resources on the FPGA. Also, for some of the stages clock cycles are too high. The goal of the next 

section is to reduce the number of clock cycles by increasing the resource utilization 

6.4 Optimizing the accurate hardware 

After generating the accurate hardware with the required functionality, the next step was to optimize 

it in an FPGA friendly manner. As it can be seen from the profiling section, the time taken to process 

one raw image through all the stages is too high. An ideal ISP should process images at a faster rate to 

meet the Frames Per Second (FPS) requirement of 20-30. Various optimizations like function 

pipelining, loop unrolling and array partitioning which are explained in Section 5.2 [13] can be done to 

decrease the latency by decreasing total number of clock cycles.  

In this section each ISP stage will be synthesized and various type of RTL implementations will be 

generated for each stage with different set of pragmas and datatypes and a comparison can be made 

among these implementations. A detailed explanation will be done on the synthesis of one of the 

stages (denoising) of the ISP. 

6.5 Optimizing the Denoising Stage 

When an image is captured, there will some noise added to the image. There are various types of 

noises that can be present on the image like gaussian noise or salt and pepper noise. Various denoise 

filters can be used to remove these noises such as mean filter (local and non-local) or a median filter. 

As mentioned in Section 2.3.2, the main advantage of the median filter Is that it preserves the edges 

[26]. Since a Sobel type of filter is used in post processing for the lane extraction and preserving the 

edges in the image helps with lane detection. Hence, this project uses a median filter to denoise the 

image. 

In the median filtering to calculate the output pixel the surrounding pixels of the input pixel are taken 

into consideration and the median of all these pixels is calculated and given as the value for output 

pixel. 
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Figure 24. Median filtering for Denoising 

6.5.1 Optimizing with Line and Window Buffers 

It can be seen from the above Figure 24 that to compute one pixel, a window (3x3) of 9 pixels is needed 

and then only the output pixel can be computed by finding the median. This means that to compute 

one pixel 9 reads has to be done before any computation takes place which results in increased 

latency.  To overcome this issue, the first optimization was the code to be restructured in such a way 

that the concepts of line buffer and window buffer can be used. A line buffer is a 2D array which is 

used to store several rows of input image. The number of rows that will be cached depends on the 

height of the kernel/window. On the other hand, window buffer which is of the same size of window 

is used to cache values in the current window and are used to access these values simultaneously in 

one clock cycle. The C++ code implementation for the use of line and window buffers is given below. 

for (int row = 0; row < Image_height row++) { 

     

    for (int col = 0; col < Image_width; col++) { 

         

        for(int i = 0; i < 3; i++) { 

             

            window[i][0] = window[i][1]; 

            window[i][1] = window[i][2]; 

            } 

        window[0][2] = (line_buffer[0][col]); 

        window[1][2] = (line_buffer[0][col] = line_buffer[1][col]); 

        window[2][2] = (line_buffer[1][col] = pixel_in[row][col]); 

        if (row == 0 || col == 0 || 

        row == (MAX HEIGHT − 1) || 

        col == (MAX WIDTH − 1)) 

        { 

        pixel_out[row][col].r = 0; 

        pixel_out[row][col].g = 0; 

        pixel_out[row][col].b = 0; 

            } 

        else  

        { 
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            pixel_out[row][col] = median_filter(window); 

        } 

    } 

} 

Since the adjacent windows overlap more often while calculating the output of a pixel, it implies a 

high locality of reference. This means that the input pixels can be buffered locally and cached to be 

used multiple times rather than reading the pixel every time which is costly. By rewriting the C++ code 

to read each pixel exactly once and storing in the local memory. A pictorial representation of how the 

line buffer and the window buffer works on an image is shown in below Figure 24Figure 25. It can be 

seen how a portion of the image is stored locally into both the window and line buffers for each 

iteration of the loop.  

In Figure 25, the pixels outlined in black are stored in the line buffer and the pixels outlined in red are 

stored in the window buffer. The input image is read into the line buffer pixel by pixel. Every time, 

when the loop is executed, the window is shifted and filled with one pixel from the input and two 

pixels from the line buffer. In addition to that, the input pixel is also shifted into the line buffer so that 

the process can be repeated on the next line. 

 

Figure 25. using Line and window buffer to process an image [27] 

The performance metrics of denoising stage with the use of line and window buffer is given in the 

below Table 2 

Performance Metrics Denoise with Line Buffer and window 

Buffer (Floating point/Naive) 

Clock frequency (MHz) 100 

Clock Cycles 19005954 

Latency (time in ms) 190 

BRAM’s 4 

DSP’s 0 

LUT’s 4142 

Flipflops 1047 

Table 2. Denoise Naive/Line Buffer Profiling 



27 
Department of electrical engineering, TU/e 

It can be observed from the above table that the DSP’s used are 0. This is because median filter is a 

sorting filter which just compares the pixel values with the other pixel values and gives the output. 

However other stages will have some arithmetic calculations int the functionality where we can see 

the usage of DSP’s. 

6.5.2 Optimizing for an Initiation Interval of II = 1 

The next step was to pipeline the subfunction which calculates the median of the window to achieve 

an initiation interval of II =1. This can be given to the C++ code by simply specifying the pipeline pragma 

as shown below: 

for (int row = 0; row < Image_height row++) { 

     

    for (int col = 0; col < Image_width; col++) { 

        #pragma HLS pipeline II=1 

         
The benefit of using Vivado HLS is when specify a pipelining is that it automatically applies the 

optimizations of loop unrolling or flattening or some other optimizations mentioned in the previous 

sections to get the target initiation interval. All these optimizations that are performed can be seen 

from console window while the RTL is being synthesized as shown in Figure 26. 

 

Figure 26. Automatic Optimizations by Vivado HLS compiler 

If the target initiation interval is not met it will give a warning on why target was not reached, what 

was the bottleneck and what can be done to achieve the target initiation interval as shown below. 

WARNING: [SCHED 204-69] Unable to schedule 'store' operation  

('line_buffer_addr_1_write_ln53', denoise_median/median_core.cpp:53) of 

variable 'window[2]',  

denoise_median/median_core.cpp:53 on array 'line_buffer' due to limited 

memory ports.  

Please consider using a memory core with more ports or partitioning the 

array 'line_buffer'. 

INFO: [SCHED 204-61] Pipelining result : Target II = 1, Final II = 3, 

Depth = 23. 

INFO: [SCHED 204-11] Finished scheduling. 

 

6.5.3 Optimizing by Array Partition 

The initiation interval of II=1 is not achieved because there were more read accesses that was done 

on line buffer than it has ports in one clock cycle. Following the suggestions provided in the console, 

array partition optimization can be applied on the line_buffer so that it can have more read/write 

ports. This can be used by specifying the pragma as 

#pragma HLS ARRAY_PARTITION variable=line_buffer complete dim=1 

 

When the C++ code is synthesized to generate the RTL implementation with mentioned pragmas the 

synthesis results shows that pipelining with the initiation interval of II=1 is successful and the following 

message will be displayed on the console window: 
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INFO: [HLS 200-10] ------------------------------------------------------

---------- 

INFO: [HLS 200-42] -- Implementing module 'median_filter'  

INFO: [HLS 200-10] ------------------------------------------------------

---------- 

INFO: [SCHED 204-11] Starting scheduling ... 

INFO: [SCHED 204-61] Pipelining loop 'L2'. 

INFO: [SCHED 204-61] Pipelining result : Target II = 1, Final II = 1, 

Depth = 22. 

INFO: [SCHED 204-11] Finished scheduling. 

The performance metrics from the new synthesis report are given in the below Table 3. 

Performance Metrics Naïve  

implementation 

Floating point implementation 

with Optimization directives  

Clock frequency (MHz) 100 100 

Clock Cycles 19005954 136962 

Latency (time in ms) 190 1.37 

BRAM’s 4 2 

DSP’s 0 0 

LUT’s 4142 6996 

Flipflops 1047 11448 

Table 3. performance metrics of Naïve vs floating point with optimizations  

6.5.4 Floating to Fixed point conversion 

Since the denoise median filter has no arithmetic calculation, the datatype that can be used to store 

the data can be a char which has a size of 8 bits and range of (0-255) as the pixel values range from 0-

255. However the arithmetic calculations in other stages of ISP are done with fractional precision 

where the pixel values are converted from (0-1) range by dividing each pixel with 256. Instead of 

adding an additional overhead with scaling and descaling which requires multiplication and divisions 

just for the denoise stage, it was found that using the same datatype gives better performance. Hence 

a fixed-point type with a bit size of 18 is used and the performance implications are shown in the 

below Table 4. 
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Performance Metrics Naïve 

Implementation 

(Floating point) 

Floating point + 

optimization 

directives 

 

Fixed point + 

Optimization 

directives  

Clock frequency 

(MHz) 

100 100 100 

Clock Cycles 19005954 136962 134658 

Latency (time in ms) 190 1.37 1.34 

BRAM’s 4 2 2 

DSP’s 0 0 0 

LUT’s 4142 6996 1063 

Flipflops 1047 11448 1164 

Table 4. Performance metrics comparison for the fixed-point implementation 

It can be observed from Table 4 that because of changing the datatype from 32-bit floating-point 

representation to 18-bit fixed point representation the number of LUT’s and FF’s came down by 

6,000 and 10,000 approximately without having a negative impact on clock cycles. There is no 

significant improvement in the clock cycles or latency because the initiation interval of 1 is already 

achieved with floating point implementation. 

6.5.5 Clock Frequency 

The RTL implementations so far synthesized have the default clock period at 100 MHz which means 

each clock cycle takes (1/100Mhz) = 10 nanoseconds (ns). In timing analysis there are two types of 

slack (positive and negative) that are associated with clock frequencies. Positive slack means that the 

signal can traverse through the combinational logic from the start point to end point timing path in 

time and operate correctly. On the other hand Negative slack means the data signal is unable to 

traverse the combinational in time to ensure the correct operation. 

Slack = Target time – Arrival time 

It is important that the slack is always positive to ensure the correct operation of the circuit. For all 

the stages of ISP clock frequency was increased till the slack was positive and it was found that at a 

clock frequency of 250 MHz the slack remains positive and going beyond that is resulting in a negative 

slack for some of the stages. Hence the clock frequency for all the stages was set to 250 MHz as all 

these stages need the same clock and no stage should have a negative slack. By Changing the clock 

frequency to 250 MHz the time required for one clock cycle changed from 10 ns to 4 ns (1/250 MHz). 

Since each clock cycle takes less time, the overall latency decreased from 1.39ms to 0.539ms.  

The comparison of all the above-mentioned implementations including the one with better clock 

frequency is given in below Table 5. 
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Performance 

Metrics 

Naïve 

Implementation 

(Floating point) 

Floating 

point + 

optimization 

directives 

 

Fixed  

point + 

Optimization 

directives  

Fixed  

point + 

optimization 

directives + 

better clock 

Clock 

frequency 

(MHz) 

100 100 100 250 

Clock Cycles 19005954 136962 134658 134568 

Latency (time 

in ms) 

190 1.37 1.34 0.539 

BRAM’s 4 2 2 2 

DSP’s 0 0 0 0 

LUT’s 4142 6996 1063 1063 

Flipflops 1047 11448 1164 1164 

Table 5. Performance metric comparison of various denoise implementations  

6.6 Optimized Results of ISP Stages 

The similar design approaches are used for optimizing the other stages of Demosaicing, Color 

Transformation, Gamut Transform and Tone Mapping. For every stage after getting an accurate result 

the same flow of using the pragma for pipeline with initiation interval of II=1 is used and based on the 

issues that caused the II=1 to not be met, different optimizations mentioned in the Section 5.2 were 

used and at the end every stage had an initiation interval of II=1. The final clock cycles for each stage 

are similar as every stage had the function pipelining with II=1. However the area (BRAM’s, LUT’s, 

DSP’s and FF’s) were different for each stage as some of these stages had some complex arithmetic 

calculations. For the rest of the stages, the naïve implementation was converted into fixed point 

representation and optimization directives were applied with a higher clock frequency. The results of 

naïve implementation and the final optimized implementation for each of these ISP stages are 

tabulated in the following sub sections. 

6.6.1 Demosaic Results 

The results of demosaicing baseline vs optimized implementations are given in the below Table 6. 

Unlike denoise implementation, demosaicing implementation needs DSP’s as it requires some 

arithmetic computations like multiplications and additions.  

Performance metrics Naïve implementation Optimized implementation 

Clock Frequency (MHz) 100 250 

Clock Cycles 4750585 135740 

Latency 47.5 0.543 

BRAM’s 6 2 

DSP’s 22 11 

LUT’s 4252 3526 

FF’s 2658 2562 
Table 6. Performance comparison of naive vs optimized implementation for Demosaic stage 



31 
Department of electrical engineering, TU/e 

For Demosaicing, the latency came down from 47 milli seconds to 0.543 milliseconds after 

optimizations which achieved a speedup of 82x. 

6.6.2 Color Transformation Results 

The results of color transformation baseline (naive) vs optimized (better clock) implementations are 

given in below Table 7. 

Performance metrics Naïve implementation Optimized implementation 

Clock Frequency (MHz) 100 250 

Clock Cycles 4456961 135740 

Latency 44.5 0.553 

BRAM’s 0 2 

DSP’s 24 9 

LUT’s 7765 6751 

FF’s 3728 8576 
Table 7. Performance comparison of naive vs optimized implementation for Color Transformation stage 

 

For color transformation, the latency came down from 44.57ms to 0.55ms after optimization and a 

speedup of 80x was achieved. 

6.6.3 Gamut Mapping result 

The results of color transformation baseline (naive) vs optimized (better clock) implementations are 

given in below Table 8. 

Performance metrics Naïve implementation Optimized implementation 

Clock Frequency (MHz) 100 250 

Clock Cycles 777126423 393354 

Latency (ms) 7771 1.573 

BRAM’s 4 4 

DSP’s 15 62 

LUT’s 8183 62480 

FF’s 4904 92106 
Table 8. Performance comparison of naive vs optimized implementation for Gamut Mapping stage 

For gamut mapping, the latency decreased from 7.7 seconds to 1.5 milli seconds after optimization 

which can be considered as huge speedup. In gamut mapping each pixel is processed through an inner 

most loop with a bound of 3708, before optimization this loop was executed in sequential manner 

which led to a huge increase in latency. 

6.6.4 Tone Mapping Results 

The results of Tone Mapping baseline (naive) vs optimized (better clock) implementations are given 

in below Table 9. 
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Performance metrics Naïve implementation Optimized implementation 

Clock Frequency (MHz) 100 250 

Clock Cycles 436995331 131743 

Latency (ms) 4370 0.527 

BRAM’s 6 4 

DSP’s 33 15 

LUT’s 5932 60994 

FF’s 2916 181869 
Table 9. Performance comparison of naive vs optimized implementation for Tone Mapping stage 

Similarly in tone mapping, the latency speedup is also in range of 1000’s because of more inner loops 

compared to demosaic, denoise and color transformation. After optimization, the Tone mapping takes 

0.527ms. since all the inner loops that were being executed in sequential manner were actually 

comparing the pixel values with predefined weight, to achieve an initiation interval of 1 complete 

array partition is done which resulted in the elements of arrays being synthesized as individual 

registers. This explains the high increase in the LUT’s and FF’s and decrease of BRAM’s. 

The speedups achieved from a naïve implementation to optimized implementation is very high 

because in the naïve implementation the functionality is executed sequentially. By using of the 

pragmas and optimization directives more instance of the logic can be created which allows the 

concurrent execution of the function logic. For gamut mapping and tone mapping, it can be seen that 

the speedup achieved is in terms of 1000’s, this is because of these two stages having inner loops with 

higher trip count compared to the other stages. 

6.7 Approximations 

As mentioned in Section 3.1, IBC can be benefit from approximating the ISP. The total latency of the 

ISP is 3.753ms (0.543 (DM) + 0.539 (DN) + 0.553 (CT) + 1.573 (GM) + 0.527 (TM)). This latency can be 

further reduced with various approximations like coarse-grain, fine-grain and subsampling are used to 

approximate the ISP. Each of these approximations are explained in detail in the following subsections 

6.7.1 Coarse-grain approximation 

The concept of coarse-grained approximation with respect to this project is to skip some stages of ISP 

during the runtime. To implement this functionality, the architecture of the ISP will have some minor 

modifications. 

The new additions to the architecture are: 

1. Configuration bits, which are used to decide which stages can be skipped at the run time. 

2. A pass-through block for each stage which is used to skip stages during run time. 

As the name suggests, the pass-through block allows image data to pass through it. It takes input from 

one of the stages and gives it to the next stage without modifying data. A pass-through block can be a 

FIFO with a depth of 1.  

The architecture of ISP with stage skipping is explained in Figure 27. It can be seen from the figure that 

there is no pass-through block for demosaicing stage. Literature survey showed that skipping 

demosaicing stage cause the LKAS to fail resulting in the vehicular crash [9]. Since the QoC of LKAS will 

be highly sensitive to the demosaicing stage, this stage can never be skipped.  
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Figure 27. Coarse-grain Architecture 

Since there are only four stages that can be skipped, a total of 16 different configurations will be 

implemented in the coarse-grained approximation as presented in Table 10.  
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Version ISP Stages Explanation Configuration 

V0 DM, DN, CT, GM, TM No stages skipped 1111 

V1 DM, DN, CT, GM Skip tone mapping 1110 

V2 DM, DN, CT, TM Skip gamut mapping 1101 

V3 DM, DN, CT Skip gamut and tone 

mapping 

1100 

V4 DM, DN, GM, TM Skip Color transformation 1011 

V5 DM, DN, GM Skip color transformation 

and tone mapping 

1010 

V6 DM, DN, TM Skip color transformation 

and gamut mapping 

1001 

V7 DM, DN Keep Demosaicing and 

denoising 

1000 

V8 DM, CT, GM, TM Skip Denoising 0111 

V9 DM, CT, GM Skip denoising and tone 

mapping 

0110 

V10 DM, CT, TM Skip denoising and gamut 

mapping 

0101 

V11 DM, CT Keep Demosaicing and 

color transformation 

0100 

V12 DM, GM, TM Skip denoising and color 

transformation 

0011 

V13 DM, GM Keep Demosaicing and 

gamut mapping 

0010 

V14 DM, TM Keep Demosaicing and 

tone mapping 

0001 

V15 DM Keep only Demosaicing 0000 

Table 10. Different run time configurations for coarse grained approximation 

The hardware implementation was implemented in such a way that these versions can be dynamically 

reconfigured during the run time. All the stages of ISP in coarse-grain work sequentially, i.e. when the 

raw image is given to the ISP, the latency for each configuration will essentially be sum of the time 

taken for each stage in that configuration. The images produced from each version mentioned in the 

table are given below in Figure 28. 
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Figure 28. Output images of various versions from the coarse-grain pipeline 

The latency for each of these reconfigurable ISP versions is calculated by adding the latency of 

individual stages. For example, for V12 the total latency is 2.643ms (0.543(DM) + 1.573 (GM) + 0.527 

(TM)). The total latency for each of these versions are given in the below Figure 29. 
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Figure 29. latency of the different ISP pipelines with coarse-grain approximation 

The coarse-grain approximation done is similar to that of the software-in-Loop setup in [9]. Since the 

hardware implementation done is not in a closed loop system and it was not possible to evaluate the 

QoC. However, it was made sure that the images produced from the Halide pipeline in [9] which 

satisfied the QoC is identical to the images produced by the hardware. Hence it can be said that doing 

this coarse-grain approximation for the ISP does not have a negative impact on QoC when used in 

LKAS. 

6.7.2 Fine-grain Approximation: 

As mentioned in the design choice, the floating-point representation is very expensive both in terms 

of latency and resources to be implemented on an FPGA. One of the optimizations to address this 

issue is to use fixed point representation. 

Unlike a single precision floating point representation which takes 32 bits (1 for sign, 8 for exponent 

and 23 for fractional part) to store the data, in fixed point representation, we can configure the 

number of bits that can be used represent the data in a finite range. However, if the bit width is too 

small to hold the data (which is not in finite range), it might cause data overflow/underflow issues. 

Various techniques like rounding to the nearest value in the finite range can be used to handle these 

mechanisms.  

The final stage of optimizations for all the stages allowed the fixed-point datatype with a bit width of 

18. The goal of this approximation is to reduce bit width of each pixel in image further more for an 

improved latency. The RTL implementation is generated in such a way that the bit-width of datatypes 

can be reconfigured dynamically at the run time. The results for two different fine-grain approximation 

configurations with a bit width of 16 bits and 14 bits have been tested on one of the stages (Color 

Transformation). The performance comparison between these two fine-grain approximations and the 

accurate implementation are given in the below Table 11. 
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Performance metrics Accurate 
Implementation  

(18 bit) 

Fine-grain 
Implementation 

(16 bit) 

Fine-grain 
Implementation 

(14 bit) 

Clock Frequency (MHz) 250 250 250 

Latency (ms) 0.553 0.546 0.530 

BRAM’s 2 2 2 

DSP’s 9 9 9 

LUT’s 6751 6216 5199 

FF’s 8576 7872 6502 
Table 11. comparison between fine-grain implementations 

It can be seen from the results that the latency decreased slightly and there is a reduction in the LUT’s 

and FF’s. However since this project does not use a closed loop system to evaluate the QoC, it cannot 

be said whether the fine-grain approximation has a negative impact or positive impact. Hence the 

hardware generated can be used in future in closed loop system as a means to evaluate the fine-

grained approximation.  

6.7.3 Subsampling Approximation    

Most modern camera sensors record an image of resolution much higher than required for a computer 

vision application like object detection. By reducing the resolution of the image i.e. the number of 

rows and columns in an image, the latency can be considerably reduced. 

Subsampling is a technique used to reduce the size of an image by selecting a subset of the image. 

Nearest neighbor sub sampling is one of the techniques that can be used where we can skip alternate 

row and column pixels when reading the image to reduce the size of the image. Figure 30 illustrates 

how the nearest neighbor subsampling technique discards the alternate row and columns are done. 

 

Figure 30. (a) original dataset, (b) selected subset 

By using the subsampler technique mentioned above, the image with dimensions of 256 x 512 come 

down to a size of 128 x 256 as shown in the below Figure 31. 
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Figure 31. performing Subsampling on an image 

Figure 31 illustrates how subsampling of the image is done with a factor of 2. Theoretically, using a 

subsampler with a factor of 2 reduced the size of the image by 75% which leads to an increase in 

processing speed of the image up to 300%. The subsampling approximation is applied on one of the 

stages (Color Transformation) and performance comparison between an accurate implementation 

and subsampled approximate implementation is given in below  

Performance metrics Accurate Implementation  
 

Sub sampled approximate 
Implementation 

Clock Frequency (MHz) 250 250 

Clock Cycles 131146 32842 

Latency (ms) 0.553 0.139 

BRAM’s 2 2 

DSP’s 9 9 

LUT’s 6751 6749 

FF’s 8576 8574 
Table 12. performance comparison of accurate implementation vs subsampled approximation 

It can be seen from the results that the latency is decreased from 0.553ms to 0.139ms, so a speedup 

of 3x is achieved by using the subsampling approximation. The sub sampler stage will be implemented 

in a way that it can be either enabled or disabled during the run time similar to that of all the other 

stages of ISP in the coarse-grain approximation. The architecture with subsampling approximation 

included is given in Figure 32. 
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Figure 32. Subsampler Architecture 

As mentioned earlier in the fine-grained approximation, since the Hardware in Loop system to 

evaluate the closed loop system is out of this project’s scope, the QoC cannot be studied for the 

subsampler approximation. However, the hardware is generated in such a way that subsampler 

approximation can enabled or disable at runtime. The generated IP can be used in future to study the 

impact of QoC if a Hardware in Loop System is implemented. 
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Chapter 7 Conclusions 

7.1 Summary 

This work focused on implementing ISP accelerator on an FPGA with run time reconfigurability for a 

better QoC of LKAS system. Firstly, the ISP was written from scratch in C++ implementation. Then this 

C++ implementation was modified in such a way that it is acceptable by Vivado HLS to synthesize the 

RTL. Then the generated RTL was analyzed and optimized to have a better latency and area with the 

use of multiple coding styles and optimization directives. This work focused mainly on improving the 

latency of ISP and chose the biggest FPGA board available by tool as it has a greater number of 

resources and all the optimizations that were done are focused on improving the latency to generate 

the accurate hardware. Once the accurate hardware was generated the architecture was modified to 

include an option of approximating this hardware. Multiple approximation techniques were employed 

on this accurate hardware with an option of runtime reconfigurability.  

7.2 Future Works 

There are several directions in which further research can be carried based on this work. The first one 

is to implement the FPGA based reconfigurable ISP created in this project in a closed loop system and 

test the fine-grain approximation and subsampling approximation against the QoC of the LKAS. If these 

approximations do not have a negative impact on QoC, both of these approximations can be used in 

parallel with the coarse-grain approximation. 

The scope of this project was limited to Vivado HLS tool was limited to performing the approximation 

techniques through C++. Hence, only software type of approximations was implemented. However 

using these algorithmic approximations IP (intellectual property) cores were generated. These IP cores 

can be used further in Vivado tool to perform more hardware type of approximations like decreasing 

the DRAM refresh rate for a better energy efficiency.  

As mentioned in the summary, this project’s main focus was on improving the latency which came at 

the cost of increased area (resources). One more direction in which research can be made is putting a 

constraint on the area for an increase in latency and studying the various approximations in the closed 

loop system and its performance implication on the QoC. 

As the scope of this project is limited to Vivado HLS tool, further research can be continued using the 

IP generated by this tool and connect with the other FPGA parts like external memory, VDMA in Vivado 

tool and generate the bitstream to be implemented on the FPGA. 
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