EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

On the Relations Between Community Patterns and Smells in Open-Source

A Taxonomic and Empirical Analysis

van Meijel, Jari

Award date:
2021

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/b532d90f-f5c5-47b7-9199-b0edc5bd1986

EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

Department of Mathematics and Computer Science
Master Computer Science and Engineering
Software Engineering and Technology

On the Relations Between Community
Patterns and Smells in Open-Source: A
Taxonomic and Empirical Analysis

Master Thesis

Jari van Meijel
1004630

Supervisors:

Prof. Dr. A. Serebrenik
Dr. F. Palomba
Dr. G. Catolino

Dr. D.A. Tamburri

Assessment Committee:

Prof. Dr. A. Serebrenik Graduation supervisor from chair SET/SSE
Dr. Ir. T. Verhoeff Voting member from chair SET
Dr. S.P. Luttik Additional member from FSE
Dr. D.A. Tamburri Advisor (non voting member)

Second version
Date Final Presentation: 15 October 2021
30 ECTS

Eindhoven, October 2021

Public Information

Carried out in accordance with the rules of the TU/e Code of Scientific Integrity

Acknowledgments

This thesis is the result of my graduation project in the master program Computer
Science and Engineering at the Eindhoven University of Technology within the
Software Engineering and Technology group of the Department of Mathematics and
Computer Science.

First and foremost, I would like to express my sincerest gratitude to my supervisors,
Prof. Dr. Alexander Serebrenik, Dr. Gemma Catolino, Dr. Fabio Palomba, and
Dr. Damian Tamburri, for their continued guidance and feedback throughout this
research project.

Furthermore, I would like to thank the assessment committee members Dr. Ir. Tom
Verhoeff and Dr. Bas Luttik for their feedback after the interim presentation. Likewise,
I would like to thank the anonymous students who reviewed and provided feedback
on the survey instrument, as well as the data steward who helped me in assessing
the risks of conducting a survey.

Moreover, I would like to thank Dr. Carlos Paradis for his support in analyzing
community smells with the tool KATAULU.

Lastly, I would like to thank Prof. Dr. Mark van den Brand for his assistance in
selecting a graduation project.

Abstract

Recent studies concerning open-source community failure show that there is an
increasing need for (semi-)automated support for measuring social, organizational,
and socio-technical characteristics of open-source communities. Software engineer-
ing success is becoming increasingly dependent on the well-being of development
communities. Our aim in this research was to identify relations between community
patterns, i.e., sets of organizational and social structure types with measurable core
attributes, and community smells, i.e., suboptimal organizational and social patterns
in a community that can be detrimental and cause additional project cost.

We performed our study along two directions. In the first part, we performed
a taxonomic analysis to create an overview of state-of-the-art knowledge regarding
community patterns and smells. As a result, we have created a context model that
organizes related concepts into categories and describes their relations.

In the second part, we aimed to analyze the frequent relations between community
patterns and smells empirically. To observe community patterns, we implemented
Y 0sHI 2, a tool capable of mapping open-source GitHub communities onto community
patterns. YOSHI 2 is based on Y0sHI (Yielding Open-Source Health Information)
which has become inoperable due to outdated and discontinued APIs. This mapping
allows for further research into community health based on organizational and social
structure types, and diagnosis of organizational antipatterns specific to open-source,
if any. We evaluate YOSHI 2 empirically by qualitatively comparing it to YOSHI
and by means of a survey. In the survey, we also evaluated KAIAULU, an automated
approach able to identify three community smell types that we contributed to in our
research. Unfortunately, due to a low response rate, we were unable to prove the
accuracy of YOsHI 2 and KATIAULU, and therefore were not able to apply association
rule mining to analyze the relations between community patterns and smells.

i

Contents

Acknowledgments

Abstract

Contents

List of Figures

List of Tables

List of Algorithms

List of Listings

1

2

Introduction

Related Work

2.1 Software Community Health and Related Research
2.2 Community Types and Related Research
2.3 Community Smells and Related Research
2.4 Splicing Community Patterns and Smells
2.5 Summary and Motivationso

Taxonomic Analysis

Context Model

3.1 Methodology

3.1.1 Literature Collection
3.1.2 Domain Specification

3.1.3 Core ConceptS.
3.1.4 Related Concepts
3.1.5 Categorization of Subdomains
3.1.6 Adequacy Analysis
3.1.7 Selected Inquiry
3.2 TheModel
3.3 Threats to Validity
3.4 Discussion and Conclusion

Concluding Remarks

il

ii

iii

vii

ix

xiii

xiv

10
11
11
11
13
14
14
14
24
25

27

IT Empirical Analysis

4 Context and Theoretical Framework

4.1 Community Types and Their Detection

4.2 Community Smells and Their Detection

5 Yoshi 2 - Yielding Open-Source Health Information Version 2

5.1 Research Solution: A General Overview
5.2 Algorithmic Representation
5.2.1 Community Structure
5.2.2 Community Geodispersion
5.2.3 Community Formality
5.2.4 Community Engagement
5.2.5 Community Longevity
5.3 Architecture
5.4 Modifications to YOSHI’'s Solution Design
5.5 General Tool Limitations . . .
6 Consistency Analysis Yoshi and Yoshi 2
6.1 Introduction
6.2 Methodology
6.3 Results.
6.4 Discussion
6.5 Threats to Validity
6.6 Conclusion
7 Survey Evaluation of Yoshi 2 and Kaiaulu
7.1 Introduction
7.2 Methodology
7.2.1 Data Collection
7.2.2 Data Analysis
73 Results.
7.4 Discussion
7.5 'Threats to Validity
7.6 Conclusion.
8 Relations Between Patterns and Smells
8.1 Introduction
8.2 Methodology
8.2.1 Data Collection

8.2.2 Data Analysis
Threats to Validity
Conclusion

8.3
8.4

Concluding Remarks

v

28

29
31
33

36
36
37
40
42
45
47
49
50
o1
54

56
56
57
o8
66
66
67

68
68
68
69
73
74
75
84
86

88
88
88
88
89
90
91

92

IIT Final Remarks

9 Conclusion

Bibliography

9.1 Conclusions
9.2 Future Work

Bibliography Context Model

Appendices

A Adequacy Analysis: Identifying Missed Relations

B

Q =2 &# O

Yoshi 2: Technical Details
B.1 Dependencies
B.2 [Installation and Configuration Guide

B.3

B.4

B.2.1
B.2.2

Installation
How to Use

Metric Computations

B.3.1
B.3.2
B.3.3
B.3.4
B.3.5
B.3.6

Members
Structure
Geodispersion
Formality
Engagement
Longevity

Architecture,

B4.1
B.4.2
B.4.3
B.44
B.4.5
B.4.6

STC L
./src/CommunityData
./src/CommunityData/MetricData
./src/DataRetriever
./src/DataRetriever/Geocoding
./src/CharacteristicProcessor

Code: Yoshi 2

C.1
C.2
C.3
C4
C.5
C.6

./src

./src/CommunityData
./src/CommunityData/MetricData
./src/DataRetriever
./src/DataRetriever/Geocoding
./src/CharacteristicProcessor

Hofstede Comparison: Detailed Results

Code: Hofstede Comparison

Code: Extract Statistics

Yoshi 2: Input

106

109

109

128
129
149
153
155
183
187

211

216

239

252

H Yoshi 2: Detailed Results 254
H.1 YosHt 2’s Results in Our Comparison Between YOSHI and YOSHI 2 254
H.2 YosHar 2’s Results in Our Survey Study 258

I Kaiaulu: Configuration Files 266

J Kaiaulu: Issues and Bugs 308
J.1 Issues ..o 308

J.1.1 Unable to Run Perceval on Windows 308
J.1.2 data.AuthorDate Set to NA in parse_gitlog() 308
J.1.3 Clustering Issue 309
J.2 Bugs . .. 309
J.2.1 Missing Leading Zeros in mod_mbox_downloader 309
J.2.2 Hardcoded Parameter Overwrites Window Size Specified in
Configuration Files 310
J.2.3 Timestamps of Committers Assigned to Authors 310
J.2.4 Incorrect Commit Hash Affects Reported Analysis Window
and LOC Metrics 310
J.2.5 Alphabetically Ordered project_git and project_mbox Should
Be Ordered Temporally 311
J.2.6 Only Half the Edge List Was Mapped to a Numeric ID 312
J.2.7 Churn Metrics Always Reporting Zero 312

K Kaiaulu: Git Diff 313

L Code: Extract Emails 319

M Survey Instrument and Recruitment Email 334
M.1 Survey Instrument 334
M.2 Mapping Names to Descriptions 341

M.2.1 Mapping Community Types to Descriptions 341

M.2.2 Mapping Community Smells to Descriptions 341

M.3 Recruitment Email L 342

N Kaiaulu: Detailed Results 343
O Code: Generate Histograms 349

vi

List of Figures

1.1
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

3.9

4.1

5.1

5.2

5.3

5.4

Overview of the research methodology. 3

The methodology used to create a formal context model in plain steps. 9

The UML relations that we considered for the context model. 10
Context Model: Part 1 of the main model containing concepts related
to community patterns. 16
Context Model: Part 2 of the main model containing concepts related
to community smells. Lo 17
Context Model: Currently reported community smells in literature
and which are detectable by what tools and models. 18
Context Model: Relations between the Lone Wolf- and the Organiza-
tional Silo Effect Smells and socio-technical metrics. 19
Context Model: Relations between the rest of the smells and socio-
technical metrics. Lo 20
Context Model: Relations between community types grouped in
metatypes. e 21

Context Model: Relations between community types and smells. Blue
arrows denote the relation “frequently co-occur [P8]”. Red arrows

denote the relation “likely occurs in [P2)”. 22
Overview of the research methodology for the empirical analysis. . . . 31
The decision tree for organizational structures [31], adjusted to show

what has been implemented in YOSHI 2. Note that this is not a
decision tree in the classical sense of the word, since a community
might have multiple organizational structures. Green characteristics
have been operationalized in YOSHI 2, dotted community types are

not currently implemented in YOSHI 2. 38
An example taken from the case study by Tamburri et al. [81] in which
the decision tree was traversed to identify a Formal Network. 39

Timeline comparing the unidirectional follow relation between Alice
and Bob (green) vs. the 3-month analysis period (blue). This relation
is not detected by YOSHI 2, even though there was a follower /following
connection in the 3-month analysis period (marked by x), since the
snapshot is taken at the end of the analysis period. 41
The high-level architecture of YOSHI 2. 51

vil

7.1

7.2

7.3

7.4
B.1

B.2

B.3

B.4

Histograms and KDE plots showing the distributions and thresholds of
characteristics computed by YOSHI 2 for the 25 analyzed communities.
The Python script that was used to generate these figures is included in
Appendix O. L
Dispersion distribution comparing the old threshold (Tp;q = 4926 km) vs.
a potential new threshold (Tne,=1378 km).
Formality distribution where M MT is computed using 0 for collaborators
and LT using the creation dates of the first and last milestones (77 = 0.1
and To =20). Lo
Engagement distribution excluding outliers (7'=3.5)

ReSharper-generated type dependencies diagram grouped by project
structure from the ./src/ directory.
ReSharper-generated type dependencies diagram grouped by project
structure from the ./src/CommunityData/ directory.
ReSharper-generated type dependencies diagram grouped by project
structure from the ./src/DataRetriever/ directory.
ReSharper-generated type dependencies diagram grouped by project
structure from the ./src/CharacteristicProcessor/ directory.

viil

List of Tables

3.1
3.2

3.3
4.1

4.2

0.1

5.2

2.3

6.1

6.2

6.3

6.4

6.5

Our initial set of literature for our taxonomic analysis. 10
An overview of socio-technical metrics that have been proven to be
highly correlated to the occurrence of community smells, but were not
linked to a specific instance. L. 23
An overview of community smells excluded from the Context Model. . 23

An overview of the community types as described by Tamburri et

al. [$0], limited to the community types identifiable by Yosn1 2. . . . 31
An overview of the community smells as described by Tamburri et
al. [83], limited to the community types identifiable by KAIAULU [68]. 34
The thresholds per community type in YOSHI [30], limited to the
community types identifiable by Yosur 2. L. 38
An overview of the modifications in detection strategies between
YosHI [86] and YOSHI 2. 52
Comparison between geodispersion for communities using the old
Hofstede indices [30] and the new Hofstede indices [12]. More details
regarding the results can be found in Appendix D. The code that was
used to derive these results can be found in Appendix E. 53

Characteristics of the software projects used to evaluate YOSHI [30],
which were extracted from GitHub in April 2017. The domain taxon-

omy was tailored from literature [13]. 58
Communities that were used to evaluate YOSHI [30] (bold) vs. repos-
itories analyzed in YOSHI's GitHub repository [26]. Green cells are

within 15% margin of the bold cells, whereas red are not. The code
that was used to extract these statistics is included in Appendix F. . 60

A mapping from the communities used to evaluate YOSHI [30] to a
repository with similar characteristics mentioned in Y0osHI's GitHub
TepoSItOTY. L 62

Reasons why certain GitHub communities could not be analyzed
within the time window between January 31, 2017 and April 30, 2017

by YOSHI 2. 63
Community patterns inferred by YosHI and YOsHI 2 for the consid-
ered communities [36]. Every analyzed community is considered a SN,

and therefore SN has not been included in the table. YOSHI 2’s input
can be found in Appendix G. More details for YOSHI 2’s results, i.e.,
values for the individual metrics and characteristics, can be found in
Appendix H.1. o oo 64

1X

6.6

7.1

7.2

7.3

7.4

7.5

7.6

7.7
Al

D.1

D.2

D.3

D4

Community patterns inferred by YOsHI [$6] and how they contradict
the reported empirical thresholds (Table 5.1). Red patterns contradict
thresholds, green patterns donot.

Characteristics of the communities considered in this study listed by
the owner and name of their GitHub repository, as extracted from
GitHub on July 21, 2021. The code that was used to extract these
statistics is included in Appendix F.
Community patterns inferred by YOSHI 2 for the considered commu-
nities. More detailed results, including the computed metrics, can be
found in Appendix H.2. Lo
Community smells inferred by KAIAULU for the considered communi-
ties. More detailed results, including the computed metrics, can be
found in Appendix N..
Geodispersion computed as two separate metrics [75] used in YOSHI's
source code [36]. A community is highly dispersed when the average
distance between members exceeds 4000 km or the average cultural
distance exceeds 15 [70]. oo
Formality where M MT" is computed using 0 for collaborators and LT
is computed using the creation dates of the first and last milestones
instead of the first and last commit dates.
YosHI 2’s results related to community engagement, including engage-
ment metrics. Note that all metrics are medians and all distributions
are monthly distributions. Metrics exceeding 1 are highlighted red, as
well as the affected engagement values.
Normalized community smells inferred by KAtAvrLu.

The search terms used per concept while scanning for missed relations.
Note that some search term(s) are cut short to allow for multiple
variations of the same word (e.g., the search term for Cohesion is
“Cohesi”, which shows results for both cohesion and cohesive).

Location statistics regarding the communities analyzed in Chapter 7.
The number of locations, the number of locations that are in countries
included in the old Hofstede indices [36], and the number of locations
that are in countries included in the new Hofstede indices [12].
Variance of the Hofstede dimensions using the old Hofstede indices [30]
and the new Hofstede indices [12], regarding the communities analyzed
in Chapter 7.
Comparison between geodispersion for communities using the old
Hofstede indices [30] and the new Hofstede indices [12].
Geodispersion computed using separate values for the average ge-
ographical distance and the average cultural distance, including a
comparison for the average cultural distance using the old Hofstede
indices [20] and the new Hofstede indices [12].

5

. 109

H.1 YosHI 2’s results related to the analysis period in our comparison
between YOSHI and YOSHI 2. The commit hashes represent the first
and last commit analyzed in the analysis period. Start- and end times
are taken from these commits.

H.2 YosHr 2’s results related to community structure in our comparison
between YOSHI and YOSHI 2, including structure metrics.

H.3 YosHI 2’s results related to community dispersion in our comparison
between YOSHI and YOSHI 2, including dispersion statistics and
metrics. # Loc. stands for the number of known locations. # HLoc.
is the number of locations in countries for which we had Hofstede
indices. Additional columns added for the alternative geodispersion
measures in which average geographical and average cultural distance
were used. L L L

H.4 YosHI 2’s results related to community formality in our comparison
between YOSHI and YOSHI 2, including formality statistics and met-
rics. # Contr. and # Collab. are the number of contributors and
collaborators, respectively. MMT stands for the Mean Membership
Type. Additional column added to compute MMT using the bug
present in YOSHI. v e

H.5 YosHI 2’s results related to community engagement in our comparison
between YOsHI and YOSHI 2, including engagement metrics. Note that

256

all metrics are medians and all distributions are monthly distributions.257

H.6 YosHI 2’s results related to community longevity in our comparison
between YOsHI and YOSHI 2. Note that only the mean committer
longevity is used to determine longevity.

H.7 An overview of the community characteristics and patterns computed
by YosHI 2 for the communities considered the comparison between
YosHI and YOSHI 2. e

H.8 YosHI 2’s results related to the analysis period in our survey study.
The commit hashes represent the first and last commit analyzed in

the analysis period. Start- and end times are taken from these commits.259

H.9 YosHI 2’s results related to community structure in our survey study,
including structure metrics. L

H.10 YosHI 2’s results related to community dispersion in our survey study;,
including dispersion statistics and metrics. # Loc. stands for the
number of known locations. # HLoc. is the number of locations
in countries for which we had Hofstede indices. Additional columns
added for the alternative geodispersion measures in which average
geographical and average cultural distance were used. Note that an
even more detailed breakdown for the variance of cultural distance is
included in Appendix D.

H.11 YosHI 2’s results related to community formality in our survey study,
including formality statistics and metrics. # Contr. and # Collab.
are the number of contributors and collaborators, respectively. MMT
stands for the Mean Membership Type. Additional columns added to
compute bugged metrics present in YOSHI’s source code [36].

x1

H.12 YosHI 2’s results related to community engagement in our survey
study, including engagement metrics. Note that all metrics are medians

and all distributions are monthly distributions.

H.13 YosHI 2’s results related to community longevity in our survey study.
Note that only the mean committer longevity is used to determine

longevity.

H.14 An overview of the community characteristics and patterns computed

by YosHI 2 for the communities considered in our survey study. . . .

N.1 KAIAULU’s results related to the analysis period in our survey study.
The commit interval shows the first and lasts commits in the analysis
window. start_date and end_date are derived from these commits.

N.2 KAIAULU’s community smells results for the communities considered

inour survey study.o

N.3 KAIAULU’s social networks metrics results for the communities con-

sidered in our survey study.

N.4 KAIAULU’s line metrics results for the communities considered in our

survey study.

x1i

List of Algorithms

1 YosHI 2’s algorithm for community type detection using the thresholds
from YOSHI [S0].

xiil

List of Listings

C.1 YosHI 2:
C.2 YosHI 2:
C.3 YosHI 2:
C.4 YOSHI 2:
C.5 YOSHI 2:
C.6 YOSHI 2:
C.7 YosHI 2:
C.8 YOosHI 2:
C.9 YosHI 2:
C.10 YOosHI 2:
C.11 YOosHI 2:
C.12 YosHI 2:
C.13 YOosHI 2:
C.14 YOosHI 2:
C.15 YOSsHI 2:
C.16 YOSHI 2:
C.17 YOSHI 2:
C.18 YosHI 2:
C.19 YosHI 2:
C.20 YOSHI 2:
C.21 YOSHI 2:
C.22 YOSHI 2:
C.23 YOsHI 2:

Programclass.o oo 129
IOModule class. 132
PatternProcessor class. 137
Hl class. 139
Statistics class. 143
Graphclass. 145
Community class. L. 149
Dataclass. 150
Metrics class. 151
Characteristics class. 152
Pattern class. 152
Structure class. 153
Dispersion class. 153
Formality class. L. 153
Engagement class. 0oL 154
Longevity class. oo 154
Cohesion class. 155
DataRetriever class. 155
Filters class. 166
GitHubRateLimitHandler class. 175
InvalidRepositoryException class. 183
GeoService class. 183
GeocoderRateLimitException class. 186

C.24 YosHI 2: CharacteristicProcessor class (CharacteristicProcessor.cs).
Note that the CharacteristicProcessor class is a partial class, i.e., its

functionality is implemented over multiple files. 187
C.25 YosHI 2: CharacteristicProcessor class (StructureProcessor.cs). . 188
C.26 YosHI 2: CharacteristicProcessor class (DispersionProcessor.cs). 191
C.27 YosHI 2: CharacteristicProcessor class (FormalityProcessor.cs). . 193
C.28 YosHI 2: CharacteristicProcessor class (EngagementProcessor.cs). 197
C.29 YosHI 2: CharacteristicProcessor class (LongevityProcessor.cs). . 208
C.30 YosHI 2: CharacteristicProcessor class (CohesionProcessor.cs). . . 210
E.1 Hofstede comparison: Community class. 218
E.2 Hofstede comparison: Data class. 218
E.3 Hofstede comparison: Dispersion class. 219
E.4 Hofstede comparison: IOModule class. 219
E.5 Hofstede comparison: Program class. 223
E.6 Hofstede comparison: DispersionProcessorNew class. 225
E.7 Hofstede comparison: DispersionProcessorOld class. 228

Xiv

E.8 Hofstede comparison: GeoService class. 230
E.9 Hofstede comparison: GeocoderRateLimitException class. 233
E.10 Hofstede comparison: OldHI class. 233
E.11 Hofstede comparison: Hl class. 235
E.12 Hofstede comparison: Statistics class. 237
F.1 Extract statistics: Bash script used to count GitHub repositories’

F.2
F.3
F.4
F.5
F.6
F.7
G.1

G.2

I.1
I.2
I3
I4
L5
1.6
L7
I.8
L.9
[.10
[L11
[.12
[.13
[.14
[.15
[.16
.17
[.18
[.19
1.20
[.21
[.22
[.23
[.24
[.25
J.1

J.2
J.3
J.4

LOC, copied from Stack Overflow: https://stackoverflow.com/a/

29012789 (visited on 21/07/2021). 239
Extract statistics: Community class. 240
Extract statistics: [OModule class. 240
Extract statistics: Program class. 242
Extract statistics: DataRetriever class. 243
Extract statistics: Filters class. 246
Extract statistics: GitHubRateLimitHandler class. 247
Input CSV-file specifying the GitHub repositories that YosHI 2 should

analyze, based on the communities used in YOSHI’s evaluation [36]. . 252
Input CSV-file specifying the GitHub repositories that YosHI 2 should

analyze for the survey study. L. 253
KAIAULU configuration file for Apache Couchdb. 267
KAIAULU configuration file for Apache Trafficserver. 268
KAIAULU configuration file for Apache Bookkeeper. 270
KAIAULU configuration file for Apache Dubbo. 271
KAIAULU configuration file for Apache Druid. 273
KAIAULU configuration file for Apache Echarts. 275
KAIAULU configuration file for Apache Cloudstack. 276
KAIAULU configuration file for Apache Airflow. 278
KAIAULU configuration file for Apache Incubator-Mxnet. 279
KATAULU configuration file for Apache Superset. 281
KAITAULU configuration file for Apache Openwhisk. 283
KAIAULU configuration file for Apache Pulsar. 285
KAIAULU configuration file for Apache Rocketmq. 286
KAIAULU configuration file for Apache Incubator-Doris. 288
KAITAULU configuration file for Apache Camel-K. 289
KAIAULU configuration file for Apache Iceberg. 291
KAIAULU configuration file for Apache Dolphinscheduler. 292
KAIAULU configuration file for Apache Apisix-Dashboard. 294
KAIAULU configuration file for Apache Skywalking. 296
KATAULU configuration file for Apache Shardingsphere. 297
KAIAULU configuration file for Apache Camel-Quarkus. 299
KAIAULU configuration file for Zephyrproject-Rtos Zephyr. 301
KAIAULU configuration file for Protocolbuffers Protobuf. 302
KAIAULU configuration file for Milvus-10 Milvus. 304
KATAULU configuration file for Scikit-Learn Scikit-Learn. 305
KAIAULU’s old text to datetime conversion code that caused prob-

lems [08]. . . o oo 309
Our solution to KAIAULU’s text to datetime conversion issue. 309
Bugged line of code in KAIAULU’S mod mbox downloader function [05].310
Our proposed fix to KAIAULU’S mod_mbox_downloader bug. 310

XV

https://stackoverflow.com/a/29012789
https://stackoverflow.com/a/29012789

J.5
J.6
J.7
J.8
J.9

J.10

J.11

J.12

J.13

K.1
L.1
L.2
L.3
L.4
L.5
L.6
L.7
0.1

KAIAULU’s window size set to configured analysis window size [08]. . 310
KAIAULU’s window size set to a hardcoded value of 90 days [08]. . . . 310
KAIAULU incorrectly assigns committer timestamps to authors [68]. . 310
KAIAULU correctly assigns committer timestamps to committers [05]. 310
KAIAULU inferred commit hashes from the first and last rows in the

data table [68]. 311
Incorrect fix to the commit hashes being inferred from the first and

last date in the data table, suggested by Dr. Carlos Paradis. 311
KAIAULU correctly infers commit hashes from the first and last date

in the data table [08]. o oo 311
KAIAULU ordered project_git and project_mbox directly after pars-

ing, thus alphabetically [68]. L. 311
KAIAULU orders project_git and project mbox directly after date-

time strings were converted, thus ordering temporally [68]. 312
Katavru: Gitdift. o000 oo 313
Extract emails: Community class. 320
Extract emails: IOModule class. 320
Extract emails: Program class.o 322
Extract emails: DataRetriever class.. 323
Extract emails: Filtersclass. 327
Extract emails: GitHubRateLimitHandler class. 329
Extract emails: Statistics class. 332
Python script that was used to generate histograms for the opera-

tionalized key characteristics. 349

Xvi

Chapter 1

Introduction

Open-source communities mostly arise naturally, often only with suggested organiza-
tional structures with little monitoring [$6]. For bigger communities that have an
explicit structure, there is not enough managerial support [16, 76, 89]. Recent studies
concerning open-source community failure show that there is an increasing need for
(semi-)automated support for measuring social, organizational, and socio-technical
characteristics of open-source communities [16, 24, 89]. Many factors can negatively
impact project success, but over 70% of failure factors are human-related [31]. There-
fore, software engineering success in open-source is also increasingly dependent on
the well-being of the development community [18, 79].

Other studies have shown the need for exploring sustainable governance structures
and characteristics [37]. Community shepherds, i.e., architects guiding development
projects’ social and organizational structure [76], could use tools to identify un-
desirable changes and organizational distress in a community to make decisions
aimed at reorganizing the community [$6]. They could use noninvasive, automated
monitoring systems that observe people and software artifacts together to understand
the characteristics of other open-source communities, and then replicate these in
their own communities [35, 79].

Tamburri et al. [36] have built upon previous research in an industrial environ-
ment [31] to propose an automated tool, called YOSHI (Yielding Open-Source Health
Information). This tool measures the organizational status of open-source commu-
nities using six key open-source community characteristics proposed in previous
literature [20]. These key characteristics are community structure, geodispersion,
longevity, engagement, formality, and cohesion. Furthermore, it reliably predicts
community structure patterns using software engineering data. These patterns are
sets of known organizational social structure (OSS) types, i.e., community types,
with measurable core attributes [30, 82].

By putting together communities’ socio-technical properties and observable char-
acteristics, Tamburri et al. [79] hope to discover ways to mine data from software
development communities that can lead to the discovery of their suboptimal char-
acteristics, and, possibly, any connected community smells. Community smells are
undesirable circumstances in open-source communities. They are detrimental and
can cause social debt, i.e., unforeseen project cost that is connected in several ways
to a “suboptimal” development community [78], that can cause ripple effects leading
to technical debt [33]. Research has shown that some typical social network analysis
metrics, such as density (in a developer social network) and closeness, are relevant

factors to consider when detecting and predicting the emergence of community smells,
meaning that the community structure can impact the emergence of smells [7, (4].

However, the relations between community patterns and community smells are
still unclear. Conway’s Law emphasizes the significance of this relation as it indicates
that the software mimics the organizational-social structure around it [79]. Cataldo
et al. [17], in their research concerning socio-technical congruence, state that for a
product development project to be successful, the technical and social elements need
to be aligned. Therefore, experimentation is needed to identify which patterns in
which technical conditions correspond to certain community smells. De Stefano et
al. [27] have performed a preliminary study examining these relations, which we want
to extend upon. Hence, we formulated the following research question:

RQ1: What are the relations between community patterns and community smells?

To answer this research question, we have taken two approaches, a taxonomic and
empirical approach. From our taxonomic analysis, we have created an overview of the
literature regarding community patterns and smells in the form of a context model.
For our empirical analysis, we have implemented a new community pattern detection
tool based on YOSHI, YOSHI 2, and have contributed to the development of KAIAULU,
an API to analyze various data sources common to software development such as
Git logs and mailing lists [08], which supports the detection of community smells.
We evaluated YOsHI 2’s reliability in a consistency analysis with YOSHI and a case
study in which we conducted a survey. Note that YOSHI has become nonfunctional
due to outdated and discontinued APIs. To the best of our knowledge, no other tool
exists for the detection of community patterns, hence we created YOSHI 2 based on
YosHI. Additionally, in the case study, we not only evaluated YOSHI 2, but also
evaluated KATAULU’s detection of community smells. Preferably, we would have
performed a large-scale case study of the relations between community patterns and
community smells based on GitHub data, but we were unable to perform this case
study based on the results of our case study.

To summarize, this paper provides the following contributions:

e A taxonomy in the form of a context model, detailing the relations of state-of-
the-art in community patterns and smells;

e YOSHI 2, a new tool based on YOSHI [30], for community pattern detection;

e A consistency analysis between YOSHI and YOSHI 2, in which we applied
YoOsHI 2 to the communities that were used to evaluate Y OSHI;

e The results from a sample study on 25 GitHub communities, in which we
evaluated YOSHI 2’s capability to detect community patterns and KATAULU’s
capability to detect community smells.

The thesis is organized as follows. First, in Chapter 2, we discuss the related
work. The rest of the thesis is organized in three parts. In the first part of the
thesis, consisting of Chapter , we conducted a taxonomic analysis of state-of-the-art
literature regarding community patterns and smells. The second part of the thesis,
comprising Chapters | to =, describes our empirical analysis of the relations between
community patterns and smells. Figure provides an overview of the taxonomic
and empirical analyses.

Finally, in the third part, comprising Chapter 9, we conclude the thesis with a
summary of the insights derived from both the taxonomic and empirical analysis, as
well as several directions for future work.

Taxonomic Analysis

Identify Related Tentative
Concepts Taxonomy

Specify Domain Selected Inquiry

Literature Identify Core Categorize .
Collection Concepts Subdomains e ARG
Feedback & Related Work RQ1
Relations
- . Patterns and
Empirical Analysis
pirt yst Smells
Implement Detect Smells Evaluate Yoshi 2 A
Yoshi 2 Select Dataset With Kaiaulu and Kaiaulu -
AN u
’/ ‘\‘]
%—} n }Q =)>Relationss o = = = ¥
Comparison Identify Patterns ! Association |
Yoshi & Yoshi 2 With Yoshi 2 e Rule mining |

Figure 1.1: Overview of the research methodology.

Specifically, Chapter 2 describes related work. Chapter * discusses our taxonomic
analysis of state-of-the-art literature regarding community patterns and smells, to
organize information on the topic of relations between community patterns and smells
and obtain an overview of their (in)direct relations. This overview is presented in the
form of a context model. Chapter | provides context and a theoretical framework
for the empirical analysis. Chapter) describes the implementation of YOSHI 2,
a tool based on YOSHI [36] that operationalizes the community types and detects
community patterns. Chapter 0 discusses our analysis of YOSHI 2’s consistency in
detecting community patterns with YOsHI. In Chapter 7, we discuss a sample study
involving 25 GitHub communities to evaluate YOsHI 2 and KAIAULU’s [68] accuracy
by means of a survey. Chapter = describes our original intentions regarding the
analysis of the relations between the community patterns observed by YOsHI 2 and
the community smells identified by KAIAULU, but unfortunately, we were unable to
carry out this analysis. Chapter U concludes the thesis and provides several directions
for future work.

Chapter 2

Related Work

In this chapter, we provide an overview of related literature regarding software
community health, types, and smells.

2.1 Software Community Health and Related Re-
search

Many papers mention the importance of maintaining and increasing populations in
software communities for their sustainability [37, 59, 96, 97, 98]. Hata et al. [37] found
that documents (e.g., contributing.md) and hired developers helped sustainable
projects in GitHub. McDonald and Goggins [53] found through interviews that
lead and core developers attributed their increased participation to the features
provided by GitHub. The importance of empowerment of the team to make an
organization happier and more prosperous was emphasized by Brooks [15]. Tsirakidis
et al. [39] identified success and failure factors of open-source communities. Coelho
and Valente [21] showed that maintenance practices have an important association
with project failure or success. Tamburri, Palomba, and Kazman [31] performed an
in-depth systematic literature review and offered a grounded theory with over 500
success and failure factors spread over 14 manually validated clusters. Recent studies
showed that community health can reflect software quality [18, 66, 67].

In open-source, many socio-technical metrics can be used to determine community
health (e.g., stickiness and magnetism [90, 97], and turnover and communicabil-
ity [64]). Cataldo et al. [17] built on the concept of congruence to examine the
relations between different types of technical- and work dependencies among software
developers, and how those dependencies impact productivity. Tamburri et al. [33]
found that the socio-technical congruence defined by Cataldo et al. [17] is correlated
with a lower number of community smells, and hence can be used to monitor the
health of a community. There are multiple other papers identifying health metrics

related to the occurrence of community smells [7, 8, 64]. Catolino et al. [19] identified
community health metrics for four specific community smells.
Crowston and Howison [26] describe that a healthy open-source community is

onion-shaped, i.e., the community has distinct roles for developers, leaders, and
users, with core developers and leaders at the center, surrounded by separate layers
of; codevelopers, active users, and passive users. Additionally, they observed that
you can identify healthy communities by how the communities deal with onerous

tasks. Ideally, communities recognize and explicitly address these issues. Jansen [/1/]
provides a framework that is used to establish the health of an open-source ecosystem,
thus abstracting from the project level. Manikas [52] revisited software ecosystem
research in a longitudinal study and characterized the modeling of ecosystems as
organizational, business, or software structures. They found that almost all software
ecosystem literature, at the point of the study, was focused on the concept of business
ecosystem health, i.e., by defining the means of value creation in the ecosystem.
Goggins, Lumbard, and Germonprez [35] have reviewed the limitations of current
project health analysis methods in depth. They observed that often repository
histories are squashed and that inferences are drawn without consideration over
project time. Additionally, they perceived that activity is a common proxy for
understanding project health, but activity is insufficient for open-source health
because often these studies are conducted on the smallest unit, such as a software
commit. For example, Onoue et al. [(1] use activity indicators such as workforce and
gross product pull requests to determine project health, and Xia et al. [95] have built
predictors for seven project health indicators, e.g., the number of commits and the
number of closed issues, but these are all limited to project activity.

2.2 Community Types and Related Research

Crowston and Howison [25] found that the social structures in free/libre and open-
source software projects that people were taking for granted in theory were not
consistent with reality and that further research was necessary.

Nakakoji et al. [57] performed a case study of four open-source software projects
and classified open-source software evolution patterns into three types: exploration-,
utility-, and service-oriented. Yamashita et al. [96, 97] classified four different
community types based on project stickiness and magnetism, i.e., tendency to retain
contributors and tendency to attract contributors, respectively. Their findings
indicate a relationship between survivability and these metrics, but they could
not quantify this relationship. Onoue et al. [60], inspired by Yamashita et al. [90,

|, presented another classification based on a demographic approach. Onoue’s
classification considers contributor experience, discussion contributors, and coding
contributors. They derived four types of communities using software population
pyramids [59]. They found that the shapes and transitions of software population
pyramids vary depending on the status of the development community.

Tamburri et al. [32] mapped state-of-the-art organizational social structures
(OSSs) onto current practices in Global Software Engineering. Tamburri et al. [30]
provided differentiating and defining attributes for 13 out of 26 OSSs based on
relevancy, which they clustered by meta-types. Then, they extended upon this
research by providing a decision tree which acts as a magnifying lens to uncover the
types of social communities in software development [$1]. Later, Tamburri et al. [30]
operationalized part of this decision tree in Y OSHI.

2.3 Community Smells and Related Research

Tamburri et al. [78] found that social debt is much more dynamic and unpredictable
than technical debt and that, to ensure quality software engineering, practitioners

should be provided with mechanisms to detect and manage social debt. In a further
research on social debt [79], they established that there is a strong correlation
between social debt and suboptimal characteristics in organizational social structures
of software development communities. They dubbed the antipatterns that lead to
social debt “community smells”, as an analogy to code smells. Community smells are
perceived by developers as serious threats to community health [33]. Then Tamburri
et al. [70] refined the role of community shepherds, i.e., software architects who look
for early signs of community smells and help mitigate them.

Multiple tools and models for the detection and prediction of community smells
have been developed. Tamburri et al. [$3] proposed CODEFACE4SMELLS, an auto-
mated approach which uses detection rules over developer social networks to detect
four types of community smells. Almarimi et al. [7] developed a machine learning
model based on genetic programming using the ensemble classifier chain technique
that automatically learns detection rules. Using these rules, it can detect eight types
of community smells. Furthermore, Almarimi et al. [$] proposed CSDETECTOR, which
detects eight types of smells. CSDETECTOR uses the C4.5 decision tree algorithm
approach instead of regular detection rules. Palomba and Tamburri [64] explored
the predictive power of socio-technical metrics and developed a machine learning
model that uses the random forest algorithm to predict the occurrence of community
smells. TRUCK FACTOR, proposed by Avelino et al. [10], is a tool specialized to
find truck factors, i.e., “the number of people on your team that have to be hit by a
truck (or quit) before the project is in serious trouble”. Having a low truck factor is
another community smell as developer turnover can lead to significant knowledge
loss [7]. Paradis and Kazman [68] introduced KATAULU, an “API to analyze various
data sources common to software development (git logs, mailing lists, files, etc.) and
facilitate data interoperability through author and file linkage, filters, and popular
code metrics.” KAIAULU provides various functions to detect three types of commu-
nity smells using the same fundamental detection rules as CODEFACE4SMELLS but
uses an arguably more robust community detection algorithm.

There have been several studies that identify correlations between community
smells and other factors. For example, Catolino et al. [20, 21] explored the relation
between community smells and team composition, and then specifically how gender
diversity affects the occurrence of community smells. Tamburri et al. [77] examined
the co-occurrence of community smells with software architecture smells. Palomba
et al. [07] offered evidence that code- and community smells occurring in software
engineering are related. In a follow-up work [(6], they conclude that “community-
related factors contribute to the intensity of code smells”. Community smells represent
top factors why people refrain from refactoring.

Catolino et al. [19] provide a complementary research based on the automated
approach to detecting community smells by Tamburri et al. [$3], not aimed at finding
correlations between metrics and community smells, but a finer-grained view of how
existing socio-technical metrics influence the variability of community smells.

2.4 Splicing Community Patterns and Smells

De Stefano et al. [27] have provided preliminary work on the relations between
community patterns and smells. In their related work section, they identify works

establishing links between organizational structure qualities (e.g., hidden subcontrac-

tors [5], awareness [12, (2], and distance and coordination [30, 38]) with respect to
software quality [36], and multiple works concerning organizational antipatterns [(9,
| and their solutions [13, 8%] in organization and social networks research.

2.5 Summary and Motivations

Previous work has shown that community health has matured, and that open-source
health must include considerations for social interaction and project diversity [35].
CHAQOSS is an initiative towards creating analytics and metrics to help define commu-
nity health [18], but their focus lies towards contributions, people, place, and time,
and while they address organizations in their metrics, they do not seem to consider
the effects of organizational structure. In our work, we analyze communities by their
organizational and social structure types in terms of community patterns, as well as
social antipatterns, i.e., community smells. Since community smells can negatively
affect community health, identifying their relations to community patterns might
diagnose organizational antipatterns specific to open-source. Then communities can
be made aware of these organizational antipatterns to improve software communities’
sustainability. Additionally, since YOSHI 2 analyzes 3-month periods, it might
become possible to draw inferences over project time.

Additionally, research has uncovered the relevant community types and their
uniquely identifiable characteristics in open-source communities [30, 81]. Many
community types were operationalized in YOSHI [6]. However, YOSHI has since
become nonfunctional due to outdated and discontinued APIs. In our research, we
attempt to reimplement YOSHI and evaluate and validate our reimplementation.
This will enable researchers to analyze many type-specific problems in organization
research, social network analysis, and related disciplines [36]. In this study, we
wanted to apply it in a case study to determine the relations between community
patterns and community smells.

Furthermore, research has shown relations between community smells and com-
munity health [83], social- and technical debt [66, 79], and socio-technical metrics [7,

, 19, 83]. We aim to uncover relations between community patterns and smells. In
the future, these relations might be used to prevent the occurrence of community
smells, such that communities can preemptively avoid social debt.

De Stefano et al. [27] analyzed the relations between the community patterns
operationalized by Tamburri et al. [36] and the community smells detectable by
CODEFACE4SMELLS [83] through association rule mining. They have discovered

several recurring relations between community patterns and smells over 25 considered
communities. Their results show that specific community smells may arise depending
on the peculiarities of the community organization. We would like to confirm their
results and build upon their preliminary study by investigating the relations between
community patterns and smells on a larger dataset. If communities can become
aware that they are following a certain pattern by using YOSHI 2, then the results
from this relational analysis may be useful to prevent the occurrence of community
smells [27]. Tt would be preferred to prevent community smells, because communities
would rather keep code smells than addressing community smells [G0].

https://chaoss.community/about

https://chaoss.community/about

Part 1

Taxonomic Analysis

Chapter 3

Context Model

In this chapter, we approach by a taxonomic analysis. To obtain an overview
of the (in)direct relations between community patterns and smells, we decided
to construct a context model. In Section .1, we describe our methodology of
constructing the context model. The context model is visualized and described in
Section 5.2. The threats to its validity are discussed in Section .. We discuss and
derive conclusions in Section

3.1 Methodology

The methodology we used to formalize the context model is based on the taxonomic
analysis described by Williams [92, Chapter 8 - Domain Analysis|. Figure
illustrates our adapted methodology in plain steps.

Taxonomic Analysis

Identify Related Tentative
Concepts Taxonomy

o

Identify Core Categorize
Concepts Subdomains

Selected Inquiry

Specify Domain

Literature
Collection

Verify Adequacy

Figure 3.1: The methodology used to create a formal context model in plain steps.

With our model, we wanted to organize and structure the literature regarding
relations between community patterns and community smells. Therefore, the resulting
context model should describe concepts and their relations in an ontological scope [17].
In other words, we defined concepts and categories that represent the domain, and we
modeled their relations. To model the relations, we decided to use Unified Modeling
Language (UML), since UML is one of the most prominent standards in software
engineering [17] and it allows us to model the structural relations. The UML relations

that we considered for our model are denoted in Figure

associafion

bidirectional association

—» directed associafion
T
-

—————————————————— = dependsncy

aggregation

<>
< compasition

inheritance

>
————————————————— > implementation

Figure 3.2: The UML relations that we considered for the context model.

In Section , we describe how we collected literature based on community
smells and community patterns. Section outlines the specified domain to
know which concepts and categories should be included in the model. We extract
core concepts from the domain specification in Section and related concepts
from the literature in Section . In Section , we categorize the concepts in
subdomains. Then we created a tentative taxonomy, i.e., a graphical representation
of the relationships among the domains at all identified levels [92, Chapter 8 -
Domain Analysis]. In Section , we describe how we analyzed the adequacy of the
tentative taxonomy. In Section , we describe how we applied selected inquiry to
deepen the focus of the context model [92, Chapter 8 - Domain Analysis|. Note that
the process described above is iterative. We created the model in four iterations.

3.1.1 Literature Collection

First, the collection of literature was done as follows. For community smells, we
queried Google Scholar. From over 150 results, we extracted the relevant literature
as listed in Table

For community patterns, we were specifically interested in the community types
described by Tamburri et al. [30] based on their systematic literature review, unless
we could find more refined definitions of community types and patterns. Hence, we
used a different approach to collect the literature regarding community types and
patterns. From the topic description, we obtained a start set of literature as listed in
Table 3. 1. Similar to a snowballing procedure [94], in which an initial set of papers is
used and then we analyze backward and forward, we analyzed the references in these
papers and the literature citing these papers. We used Google Scholar to identify
papers citing the other papers.

For both approaches, we determined whether to exclude or tentatively include a
paper for further consideration based on the title and abstract.

Table 3.1: Our initial set of literature for our taxonomic analysis.

Source Literature

Community Smell (Google Scholar: 2, 7, 8, 14, 18, 19, 20, 21, 22,
"community|social smell|smells" software) , 28, 01, 63, 64, 66, 67, 72,

Community Types (Topic Description) [80, 81, 82, 86]

10

3.1.2 Domain Specification

We define the domain for the context model as follows. The research topic is
the relations between community patterns and community smells. The communities
addressed by this topic are open-source communities. Community patterns reflect the
organizational and social structures (OSSs) of communities and are sets of community
types, i.e., social networks in which social and organizational characteristics are
constantly evident [36]. Community smells are “sets of organisational and social
circumstances with implicit causal relations”, potentially causing social debt [79]. In
other words, community smells are suboptimal patterns in the organizational and
social structures of communities that can lead to social debt. They are perceived
by developers as serious threats to community health [33]. We study the relations
between community patterns and smells to determine whether we can identify ways
to mine data from organizational social structures that lead to community smells.
In this taxonomic analysis, we consider topics related to either community patterns
or smells to identify potentially indirect relations between the two, other than just
direct, more well-known relations. By analyzing the relations between community
patterns and smells, we aim to help community “shepherds” (architects) to guide
organizational social structures and help improve their communities’ health [76], thus
leading to open-source communities becoming more sustainable. For our research,
we need tools for community pattern and smell detection.

To limit the scope of the domain, we decide to model only state-of-the-art
concerning the specified research topic, otherwise we could risk that the model
becomes overly complex or cluttered. Furthermore, each concept included in the
model may have been broken down into even more concrete concepts in the literature.
It would be impossible to include all concretizations for each concept and still
maintain an organized and readable model. All concepts have been broken down to a
level that we considered sufficient for our research. If the definitions of the concepts
or their dependencies introduce additional concepts needed for their understanding,
we include these concepts in the model.

3.1.3 Core Concepts

We consider the concepts that are used to specify the domain as core concepts. This
gives us the following list of core concepts. Note that all concepts are analyzed in
the context of open-source communities.

e Open-Source Community
Community Patterns
Community Smells

Community Types

Pattern Detection Tools/Models
Smell Detection Tools/Models

3.1.4 Related Concepts

Even though Open-Source Community is a core concept of our domain, other topics
are better at narrowing down the topics to domain-specifics. Open-source commu-
nities have been broadly researched, and a lot of this research is not necessarily

11

connected to their organizational and social structures. Hence, to narrow down the
research to topics within the specified domain, we approached the identification
of related concepts from the more concrete core concepts: community patterns,
community smells, community types, pattern detection, and smell detection.

Concepts Related to Community Smells and Smell Detection

To identify the relations between community patterns and smells, we need to include
the different community smells that have been identified so far [7, 66, 76, 79, 83].
Some instances introduce concepts that are necessary to understand their definitions
(Truck Factor and Boundary Spanner). Moreover, we found concepts regarding
the consequences of smells and how to tackle smells [22, 78, 79]. We learned that
the community health reflects the quality of the product development project [18].
Additionally, we came across CHAOSS, an example of a project focusing on creating
analytics and metrics to help define community health [15].

Moreover, we found smell detection tools/models [7, 8, 83]. One tool depends
on CODEFACE and detection rules over developer social networks, whereas others
depend on organizational-social symptoms to detect smells [7, 8]. A tool called
KAIAULU [68] was in development during this study. For completeness, we decided
to include KATAULU in the model.

Tamburri et al. [33], Almarimi et al. [7], and Palomba and Tamburri [64] identified
(socio-technical) metrics that are highly correlated with (specific) community smells.
Almarimi et al. [8] and Catolino et al. [19] identified more metrics that are highly
correlated with (specific) community smells. Additionally, we found that community
smells are correlated with architecture smells [77], bugs [28], code smells [66, 67],
and gender diversity [20, 21] in communities. De Stefano et al. [27] have identified
relations between community types and community smells.

Exclusions. Some instances of community smells have been broken down into
their cause, covariance, conditions, contingent, consequences, and context. To reduce
the complexity of the model, we only capture the most important information of these
breakdowns in the smells’ descriptions. Note that for the smells’ consequences and
mitigations, we only include their collective terms (i.e., social debt, technical debt, and
“deodorants”), as their specifics are outside the scope of this research. Specifically
regarding deodorants, i.e., techniques used to tackle community smells, Catolino et
al. [22] listed refactoring strategies for four different smells, in which restructuring
the community is prominent regarding socio-organizational solutions. Metrics that
were tested but did not have a high correlation with community smells have been
excluded from the model to improve readability. Additionally, the occurrences of
smells in projects, i.e., smell occurrence datasets, are not covered in this model.
Tamburri et al. [33] defined high-level representations for four of the smells, which
are used for smell detection, which we have not included in the model. Magnoni [51]
proposed a socio-technical quality framework in which 40 socio-technical quality
factors were analyzed with community smells. This framework was too big to include
in the model. Furthermore, Brada and Picha [14] performed a literature review and
listed a catalog of 128 software process antipatterns, including some of the known

'With exclusions, we specifically describe papers providing additional information that were not
included in the context model for various reasons. Papers that did not contain new information for
the model are not described in these exclusions.

12

community smells, but also many other types of antipatterns. Tamburri et al. [3/]
have found 500 success and failure factors arranged in 40+ core concepts among 14
themes. Additionally, they offer a quality model that captures the most recurrent
measurable factors and quantities from these themes. Due to the magnitude of this
work, we did not include it in the model.

Concepts Related to Community Patterns, Types and Their Detection

Community patterns are sets of organizational and social structure types, i.e.,
community types. Conway’s law was recurring in papers related to community types,
as it emphasizes the significance of research into organizational social structures [32].
To identify the relations between different community patterns and smells, we need
an overview of the different community types that constitute community patterns.
Tamburri et al. [80] provided state-of-the-art in the community types that constitute
community patterns. They also categorized the different community types under
metatypes and provided a classification meter, which shows that Project Teams
and Social Networks represent the two extremes of OSSs in software engineering.
Tamburri et al. [32] mapped some community types to Global Software Engineering
(GSE) using socio-organizational factors and process management and efficiency
factors. The types are differentiated by community characteristics. Tamburri et
al. [70] speculated on which smells would likely occur in specific community types.

We could only identify YOsHI [36] for community pattern detection at the time of
creating the context model. YOSHI implements part of the decision tree introduced
by Tamburri et al. [31] using community characteristics [31]. We found that sets of
factors tracking community health are called community quality models [30].

Exclusions. Tamburri et al. [80] created a metamodel of community types. This
metamodel has not been included. Additionally, for the community types, they have
identified differentiating, defining, and generic attributes. Differentiating attributes
have been included in the types’ descriptions, but we exclude the defining and generic
attributes. They have provided the defining attributes for each OSS type in their
own tables, and the generic attributes in their own separate section. Since all this
information is captured in a single paper, we refer the interested reader to the paper
of Tamburri et al. [30]. Additionally, Tamburri et al. [$2] provide a comparison table
in which they compare community characteristics between Knowledge Communities,
Project Teams, Networks of Practice, Communities of Practice, and Formal Groups.
In the same paper, they also provide the mapping between GSE factors and those
five community types.

3.1.5 Categorization of Subdomains

Many of the identified concepts can be grouped or concretized even further. Logical
groupings are those concepts that are instances of another concept. The instantiated
concepts can hence be subdomains. We observed the following categories:

e Community Smells and Community Smell Detection Tools
e Community Smells and (Socio-Technical) Metrics

e Community Smells and Community Types

e Metatypes of Community Types

13

Note that the categories overlap. If we were to combine all overlapping subdo-
mains, the model would become too complex.

3.1.6 Adequacy Analysis

Based on the categorized subdomains, core concepts, and related concepts, we created
a tentative taxonomy. The adequacy of this tentative taxonomy needed to be verified.
With our adequacy analysis, we aimed to prove that the quality of the model is good
for our purpose. We decided that we needed to be more intensive in our adequacy
analysis, since we used the model to organize previously collected information. Hence,
instead of the focused inquiries that were proposed by Williams [92, Chapter 8 -
Domain Analysis|, we decided to verify the relations found in their corresponding
papers. To identify missed relations, we decided to search for many of the concepts
over the literature, using Ctrl+Shift+F in Adobe Reader to search all PDFs in
a folder containing all the literature. For each result, we read the context and
determined whether new concepts had to be added to the model. The search term(s)
per concept have been listed in Appendix A, Table . Note that some concepts
are simply too abstract to perform this type of adequacy analysis in the search
domain. For example, the Social Network community type would give many results
for research in the field of social network analysis and just general social networks.

For the (socio-technical) metrics related to community smells, we reread the
results, discussions, and conclusions from papers in which researchers experimented
with community smells and (socio-technical) metrics [7, 8, 19, 64, 66, 67, 83].

3.1.7 Selected Inquiry

Before we finished the model, we applied selected inquiry to deepen the focus of
the model [92, Chapter 8 - Domain Analysis|. In other words, we asked ourselves
contrast questions to check how the concepts are similar and different from each
other. Specifically, we asked ourselves dyadic contrast questions to compare two
concepts at a time. For example, “In what ways are these two things similar and
different?” [92, Chapter 8 - Domain Analysis| Selected inquiry was used to identify
overlapping and duplicate concepts in the context model. After finishing with the
selected inquiry, we finished the context model.

3.2 The Model

In this section, we describe the resulting taxonomy, which is a context model that
consists of several submodels. The division of the models into submodels is mostly
done according to the categorization of subdomains as specified in Section

Note that the citations in the model refer to .

The model uses color coding to aid the visualization. Due to some submodels
sizes, we had to split some submodels into two figures. To help identify overlapping
terms between a split submodel, we colored the overlapping concepts red. Community
types have been colored green, whereas community smells have been colored purple.
To ensure that our own additions to the model, i.e., descriptions or relations that were
not explicitly extracted from the literature, are recognizable, they have been colored
pink. Yellow concepts are included for the understanding of the other concepts.

Y

14

Additionally, to ensure that the core concepts are distinguishable, we highlighted
them using a bold and italic font.

Main Model. The main model relates the core concepts to their closely related
(abstract) concepts that do not fit into a subdomain. To fit the model in this report,
the main model has been split into two figures, Figures and 2. 1. Figure is
focused on concepts related to community patterns, whereas Figure focuses on
concepts related to community smells.

Smells Detection. Figure .5, visualizes which smells are detectable using
which tools/methods. To reduce the clutter of having too many relations, the smells
are grouped using colors. The figure contains three semioverlapping groups, colored
pink, green, and yellow. Note that these colors are mixed in their overlapping regions.
The blue concepts represent the different detection tools and methods.

Smells and Metrics. Figures and illustrate the relations between
community smells and socio-technical metrics. Like the main model, this model had
to be split into separate figures to fit into this report. This model only includes
metrics that have been proven to be highly correlated with at least one community
smell. Most of these metrics were derived from the Socio-technical Quality Framework
proposed by Magnoni [51]. However, the framework itself was excluded from the
model due to its size. Note that there were metrics that have been proven to be
highly correlated metrics with the occurrence of community smells, but they were not
directly linked to specific types of smells. These metrics are listed in Table 2.2, Note
that these are linked to the community smells considered in their respective studies.
Most of these overlap with the smells; Organizational Silo Effect, Lone Wolf Effect,
and Radio Silence. For the sake of space, all community smells that were not yet
found to be highly correlated with a socio-technical metric have been excluded from
this submodel. Community smells are colored purple, whereas metrics are colored
blue, or red if they overlap between Figures and

Metatypes. Tamburri et al. [30] provide detailed figures illustrating the relations
between community types, including the explicit relations among community types
represented in a UML-style metamodel, their dependency graphs, known transitions,
and recurring patterns. Since the known relations between the community types
are (mostly) gathered in the figures of a single paper, we refer the interested reader
to that paper [30]. For the completeness of our model, we include this submodel,
Figure 2 .=, that contains different community types and their definitions, grouped by
their metatypes. Additionally, we modeled the relations between community types
that were explicitly mentioned in their detailed descriptions [$0].

Types and Smells. This submodel (Figure 2.9) shows the direct relations
between community types (green) and smells (purple). The model shows two kinds of
relations, “frequently co-occur” (blue) and “likely occurs in” (red). To reduce clutter,
smells have often been grouped together, as indicated by the purple background
shapes. For the sake of space, all community types that have no relation to community
smells and vice versa at the time of writing were excluded from this submodel.

For completeness, we have included all smells that were currently without relations
in separately Table 2.3, These were excluded from the model to reduce clutter.

15

Socio-organizational
Factors

occur in [P1

Structure or operational
behavior of teams
[P10]:

- Communication

- Communication Tools
- Temporal Issues

- Effective Partitioning

- Skill Management

- Knowledge Transfer

Efficiency Factors

Aspects of the software process
the efficiency of the GSE
organizational structure [P10]:

- Project Management

- Effective Partitioning

- Risk Management

- Language Selection

Process Management and {

Socio-Technical
Metrics

Social and technical

—

1 N
0] >

Global Software Engineerina

metrics. Some can be
used to determine the
health of a community

(GSE)

——occur in [P1 0]9

or

[P7]
People organized in teams,
distanced in space, time and culture, relevant
engineering software [P10] in [P10] [P16]
Number of

(Open-Source Community

i

Communities (NC)

Community working towards a
common goal [P11] in which
source code is openly available

partake in
The total number of

communities in a
project and a
measure of the

represents [P10]

- Defined Roles / - Tools

Responsibilities - Information

- Team Selection - True Cost

- Motivation - Culture

- Technical Support - Reporting

- Coordination - Process

- Cooperation

- Teamness

- Visibility (Community Health

- Trust

- Fear The state of a community's social,
technical and socio-technical well-

Social Debt being

[P3]

r;uide P2l—>

N

The additional cost that
occurs when strained social

Community Shepherd

.

constitutes [P10]
strength of the

structure of a project
community [P16]

indicates
/ strength [P16]

Q

rOrganizational Social Structure (OSS)W

o~

The emergent web of (social) ties, practices and
cognitive approaches between individuals
collaborating towards a common goal [P11, P16].

N

underpins importance

and organizational
interactions get in the way
of smooth software

developed

Architect guiding development

projects' social and organizational

of researching [P10]

~

several types [P11]

~

Conway's Law

helps for [P3]
development and operation structures [P2]
P [P4] P assess [P3] - Software mimics (and sometimes
_) is isomorphic to) the
— organizational-social structure
(YOSHI (Yielding Open- distinguishes [P3] around it. Therefore
Source Health understanding and supporting
. . 3 this structure is critical to
Tool for detecting community rCommunlty Patter: "\ engineer software better [P2, P4
monitor and patterns. Cannot be used | identifies [P3] P5, P10] o
manage [P3] | anymore due to deprecated =>(Set of known organizational Y :
APIs. Could detect CoP, IC, and social structure types . i
NoP, IN, FN, SN, WG, PT and characteristics with | comprise [P3} Community Type w
[P3] measurable attributes [Psy -~
T | A social network in which social or
l
. L ; organizational characteristics are
! asure rCommunlty Characterlstlcs\ characterize [P11] constantly evident [P2]
[P3] stc; rt%inlijzs?rt]z)r[]sls] > Measurable social and N N\
organizational attributes describing
1 community structure [P3]
v - -
g Decision Tree [P3, P12] B classifies [P11]
Structure
Low High J
! Situatedness uncovers
o \Hg‘ [P12]
Low Dispersion | igh @ r \
—_— o OSS Classification Meter [P11]
iy ‘ Open-source
ROI-Tracking
Highest e
L€ [‘Governance | [puration .
Low Highest Lowest e
A y
divide-et-impera from-fish-to-frog
.E Closed-source
_ v J

Figure 3.3: Context Model: Part 1 of the main model containing concepts related to

community patterns.

16

L1

[

(Sustainable Open-\

contribute to

Source Community
Software community with

(Open-Source Communityw (

CHAOSS

clear, explicit, and

~

[P22]

measurable governance

structures [P1]

Community working towards a
common goal [P11] in which

—D(

project focusing on creating

A Linux Foundation open source

v

source code is openly available

|

analytics and metrics to help define

community health [P22])

Product Development Project

A socio-technical system where the two

are detrimental for /ﬂ
‘ lead to

)

Success Factors

Failure Factors

Elements that contribute to Elements that contribute

(Community Health

[Fi31 help define [P22]

reflects quality
of [P15]

an open-source
community's failure

A

to an open-source
community's success

technical and socio-technical well-

The state of a community's social,

€ —track [P3]

being

Architecture Smells

components, technical and social

successful project [P13]

elements, need to be aligned to have a

Socio-Technical Metrics w

Community Quality Mode@

Sets of factors tracking
community health [P3]

Social and technical metrics. Some
can be used to determine the
health of a community [P7]

capture [P16]

C Organizational-Social Symptoms
harmful for- /\ . . o .
and used for characterize > There are multiple organizational-social
Known patterns that may cause assessing [P5] existence of [P16] (learn from [P6, P16] | symptoms that characterize the existence of
may cause [P18] | nasty software maintenance and K ; \ potential instances of community smells in a
evolution issues which may cause | Smell Detection software project [P16]
Y technical debt [P18] overlap [P18] \& detects [P5, P8, P16 Tools/Models
il may lead to [P17] .) Tools/Models for community smell
< Community Smell w detection are CodeFace4Smells
Technical Debt [P5], csDetector [P16], Kaiaulu
— - Code Smell Set of organizational and social [P24], GP-ECC Model [P6] and uses [P17]
P21] | The additional project cost caused | _ circumstances with implicit causal Truck Factor [16]
by sub-optimal technical decisions <& may Poor implementation <& relations, potentially causing social
[P4] lead | decisions that may o debt [P4] e .
to [P4] | lead to a decrease of | indicates . Community Shepherd
maintainability and an| persistance detect and —
can cause [P4] analogous [P4] increase of the overall| ©f [P25, P26] | mitigate [P2] | Architect guiding development
I project costs [P26]
(Social Debt

The additional cost that occurs

<———herald [P4]

when strained social and

~

tackle [P4] are [P26]
1

organizational interactions get in

<
the way of smooth software

~

projects' social and organizational
L structures [P2]

Motifs R

development and operation [P4]

"Deodorants" for Community Smellsw

S
can affect both

improve
positively and | Techniques used to tackle some community prediction
negatively [P4] smells [P4] \ of [P29]

/
Bug

[)

An error, mistake, or fault in
software affecting the result.

Recurrent and statistically significant
subgraphs or patterns over a graph
detectable using either the structural
properties and fashions of the graph

or the graph salient features and
characteristics [P26]

Figure 3.4: Context Model: Part 2 of the main model containing concepts related to community smells.

81

original
name
Missing Links
Whenever a couple of
collaborating
developers exhibit
uncooperative
behaviors [P19]
is subset
of [P19]

(R

Lone Wolf Effect

Unauthorized or defiant
contributors who carry out their
work with little consideraton of

other contributors, their decisions
and communication [P5]

Organizational Silo Effect R

High decoupling and lack of
communication and collaboration
compromising socio-technical
congruence, introducing sets of
loosely dependent subcommunities

[P4] D

[Radio-Silence

Highly formal and complex
organizational structure will
"regular procedures" forcing
updates to be delayed [P4]

Organizational Skirmish

Different communication and
expertise levels adopted between
subcommunities causing

managerial issues [P4])

(Sharing Villainy

Lack of knowledge exchange
incentives or face-to-face
meetings, limiting developers'
engagement in knowledge sharing

P4
[P4])

can lead to [P4]

(Leftover-Techie Effect w

Isolation between development
and operations people leading to
mistrust and misconduct in
knowledge sharing [P4]

(Bottleneck

An instance of the unique
boundary spanner problem from
SNA [P28]: one member
interposes themselves in every
formal interaction across two or
more subcommunities [P5]

)

[Black Cloud Effect D

Lack of boundary spanners
causing confusing back-and-forth
messages obfuscating reality

[P4])

N

Prima-Donnas Effect

People or subcommunities acting
with condescending and egotistical
behavior [P4])

Solution Defiance

Developers dividing themselves
into factions with completely
conflicting opinions concerning
socio-technical or technical
decisions to be taken, leading to
uncooperative behavior and
ignoring decisions [P4]

Truck Factor Smell R

When most of the project
information and knowledge is
concentrated in one or few

developers [P6])

I
[P6]
1
Truck Factor Number
The number of people on your
team that have to be hit by a truck

(or quit) before the project is in
serious trouble [P20]

L[P4]—

Boundary Spanner

A boundary spanner links people

across boundaries and serves in

building relationships as well as
creating shared understanding and

[P5]— trust across boundaries (knowledge

detects

detects [P5]

transferrers) [P9]

(Kaiaulu W

An API which offers functionality to
detect 3 community smells [P24]

.
same detection method

(CodeFace4Smells

CodeFace

Uses developer social networks to
automatically identify software
communities [P5, P17]

>

——————— extends [P5]--

<€

detects [P6]

detect [P16]

édetects [P16]mmmm members and support the software

’A tool used to automatically detect

4 community smells [P5])ﬁ

GP-ECC Model

Genetic Programming Ensemble

to detect 8 community smells [P6]
o)

(csDetector \

detection approach used to early
detect and discover 8 community
smells [P16]

(Truck Factor (Tool) R

A tool used to measure information
concentration within community

development community to deal
with turnnover of developers [P16]

Classifier Chain Model that is used = = =

A machine learning-based | _ _ _ _

(o

(\outperforms [P16]

Organizational-Social
-> Symptoms
learn

from[P6] ~ There are multiple

organizational-social
symptoms that characterize
the existence of potential
instances of community
smells in a software project

learn from [P16] (P16]

J

outperforms [P16]

Figure 3.5: Context Model: Currently reported community smells in literature and which are detectable by what tools and models.

Turnover Metrics

[)

The rate at which developers leave]
the communities [P7]

[P7]

Core Global Turnover

Ve

negatively correlated in
communities (>150 members) [P5]

(

Number of Developers (NoD)

W

Tthe total number of Developers who
have changed the code in a project. The
more developers modify the same files,

the higher the need for collaboration

between developers [P16]

Core global developers turnover
with respect to the previous
temporal window [P7]

Ratio Smelly Quitters

Ratio of developers previously
involved in any community smell

f

positively correlated in small
ommunities (<50 members) [P5]

Lone Wolf Effect

Unauthorized or
contributors who car
work with little consi

other contributors, their decisions

and communicati

negatively

negatively correlated)
in communities
(>150 members) [P5]

[P7]

positively correlated in small
communities (<50 members) [P5]

positively

correlated [P16]

that left the community [P7])

rPercentage of developers involved\

in code and communication

negatively

defiant correlated [P17]
ry out their

deraton of

on [P5]

J

L

negatively
correlated [P5]

The percentage of developers present
both in the collaboration and in the
communication networks [P17]

@ocio-TechnicaI Congruenc;

correlated [P27]J

negatively
ﬁeveloper Experienca

The amount of

positively correlated [P5]

correlated [P17]

]

Organizational Silo Effect

High decoupling and lack of
communication and collaboration
compromising socio-technical
congruence, introducing sets of
loosely dependent subcommunities

negatively

J

[P4]
correlated [P5] J

The degree to which technical and
social dependencies match, when
coordination is needed [P4, P13]

)

ﬁumber of sponsored developerg

experience of developers
[P27]

-

positively correlated [P5]

The total number of sponsored
developers in a project [P5]

-

negatively correlated [P5]

(- N
Number of core developers

positively correlated [P5]

)

positively correlated [P5])

The total number of core
developers in a project [P5]

Truck Factor Number

negatively correlated [P5]

The number of people on your
team that have to be hit by a truck
(or quit) before the project is in
serious trouble [P20]

(6]
1

-

Truck Factor Smell

When most of the project
information and knowledge is
concentrated in one or few
developers [P6]

J

positively
correlated [P17]

Percentage code only
developers

The percentage of developers
only present in the
collaboration network of the
project's members [P17]

positively correlated
in small communities
(<50 members) [P5]

(Graph Closeness Centrality w

A measure of the distance between a
developer to other developers in the
network. This metric is strongly

influenced by the degree of

connectivity of a network [P16]

Figure 3.6: Context Model: Relations between the Lone Wolf- and the Organizational
Silo Effect Smells and socio-technical metrics.

19

0¢

6 Graph Betweenness Centrality (BC))

A measure of the information flow from one
developer to another and devised as a general
measure of social network centrality. It
represents the degree to which developers
stand between each other. A developer with
higher BC would have more control over the
community as more information will pass
through her/him [P16]

-

Solution Defiance

>

socio-technical or technical

(Ratio smelly developersw

developers

fercentage communication onw

ignoring decisions [P4]

Developers dividing themselves
into factions with completely
conflicting opinions concerning

decisions to be taken, leading to
uncooperative behavior and

The ratio of developers
involved in at least one

Percentage of developers present only
in the communication network [P17]

positively
correlated [P16]

community smell [P17]

positively correlated
in communities
(>150 members) [P5]

positively
correlated [P16]

) negatlively
negatively correlated [P17]
|

correlated [P17]

6 Black Cloud Effect

negatively
correlated [P17]

\ Lack of boundary spanners

Number of time zones (TZ)

The total number of different time
zones of developers in
a project [P16]

positively

Ratio Smelly Quitters

Ratio of developers previously
involved in any community smell

causing confusing back-and-forth

correlated [P16]

(Turnover Metrics W

P7
P71 The rate at which developers IeaveJ

-

Prima-Donnas Effect

~

N

People or subcommunities acting
with condescending and egotistical

behavior [P4]

J

-

Sharing Villainy

~

positively

Lack of knowledge exchange
incentives or face-to-face
meetings, limiting developers'
engagement in knowledge sharing

[P4]

—
negatively
correlated [P27]

~
Developer Experience

The amount of
experience of developers
[P27]

messages obfuscating reality

[P4])
positively
[P5] correlated [P17]

that left the community [P7])

Truck Factor Number

Boundary Spanner

A boundary spanner links people
across boundaries and serves in
building relationships as well as
creating shared understanding and
trust across boundaries (knowledge
transferrers) [P9]

(Ratio of core sponsored developers\

The number of people on your
team that have to be hit by a truck
(or quit) before the project is in
serious trouble [P20]

c

~

Bottleneck

positively
correlated [P5]

-

correlated [P16]

Number of core developer:

W

S

correlated [P16]

the communities [P7] _ Y,
\ positively
Organizational Skirmish correlated [P16]
~
Different communication and Number of Developers (NoD) W
expertise levels adopted between
subcommunities causing Tthe total number of Developers who
managerial issues [P4] positively have changed the code in a project. The

more developers modify the same files,
the higher the need for collaboration
between developers [P16]

An instance of the unique

L[P4] boundary

SNA [P28]: one member
interposes themselves in every
formal interaction across two or

more subcommunities [P5])

spanner problem from

~

The total number of core
developers in a project [P5]

J

Global Modularity

negatively
correlated [P17]

The ratio of the number of core sponsored
developers by the total number of core
developers in a collaboration developers

social network [P17]

—_—

positively

correlated [P17]

~

Social Networks Analysis
modularity metric of the global
developers social network [P17]

[correlated [P16]

:

Radio-Silence W

Highly formal and complex
organizational structure will
"regular procedures" forcing
updates to be delayed [P4]

Network Density)

negatively
correlated [P16]
1

positively
correlated [P17]

Social Networks Analysis density
metric of the global developers
social network [P7]

‘

Gender diversity

:

LA measure of gender diversity. [P23]J

Figure 3.7: Context Model: Relations between the rest of the smells and socio-technical metrics.

positively J

1¢

i Communities are made for sharing. All communities are expected to exhibit a certain goal, be it personal, organizational,

or both [P11]

4 . . N
Learning Community (LC)

e
(Strategic Community (SC) W

~
Informal Community (IC)

A space for pure learning and
explicit sharing of actionable
knowledge. Leadership steers
community practices, membership
is subject to approval. LCs pursue
personal and organizational goals
equally. Differentiating attribute:
Organizational Culture [P11]

Meticulously selected group of people who
try to proactively solve problems within
strategic business areas of the
organizational sponsor. Differentiating
attribute: Contract Value [P11]

P11]

Usually sets of people part of an
organization, with a common
interest, often closely dependent
on their practice. Informal
interactions, usually across
unbound distances. Differentiating
attribute: Member Engagement
[P11]

~ . R
Knowledge Community (KC)

(~ R
Problem Solving Community (PSC)

g . . R
Community of Practice (CoP)

Formal Network (FN)

Social Network (SN)

Members rigorously selected and
prescribed by management (often
in form of FG), directed according
to corporate strategy and mission.
Differentiating attribute:
Membership Official Status [P11]/

SNs can be seen as a supertype
for all OSSs. To identify an SN, it
is sufficient to split the structure of
organizational patterns into
macrostructure and microstructure

[P11] Y

Informal Network (IN)

Y4 . N
Network of Practice (NoP)

Groups of people with a shared
passsion to create, use, and share
new knowledge for tangible
business purposes. Differentiating

attribute: Visibility [P11]

A specific instance of a strategic
community focused on a particular
problem. Consists generally of
geographically and organizationally
dispersed employees of the same
discipline. Differentiating attribute:
Organizational Goal [P11]

Groups of people sharing a
concern, a set of problems, or a
passion about a topic, who deepen
their knowledge and expertise in
this area by interacting frequently
in the same geolocation.
Differentiating attribute:

Situatedness [P11]

g
(Work Group (WG) w

Groups of individuals who regularly
work together to attain goals for
the benefit of corporate sponsor(s).
Differentiating attribute: Members
Cohesion [P11]

People grouped by corporations to act
on (or by means of) them. Each group

1

i

N
Formal Group (FG) 1
has an organizational goal, called]

Looser networks of ties between
individuals that happen to come in
contact in the same context. Their
driving force is the strength of the

ties between members.

Differentiating attribute: Members

Interaction [P11]

A networked system of
communication and collaboration
connecting CoPs. Anyone can join.
They span geographical and time
distances alike. Differentiating
attribute: geodispersion [P11]

Specifically assembled sets of people with a diversified and
complementary set of skills. They pursue an organizational
goal with clear-cut procedures and activities [P11]

Project Team (PT)

mission. Compared to FN, no reliance
on networking technologies, local in
nature. Differentiating attribute:
Governance [P11]

picked from [P11

together to achieve a common purpose for
which they are accountable. Enforced by their
organization and follow specific strattegies or
organizational guidelines. Differentiating

L

{

{

E People with complementary skills who work
]

: attribute: Longevity [P11]

...

Figure 3.8: Context Model: Relations between community types grouped in metatypes.

GG

)

Radio-Silence W

Highly formal and complex
organizational structure will
"regular procedures" forcing
updates to be delayed [P4]

7

Bottleneck

' 0

An instance of the unique
boundary spanner problem from
SNA [P28]: one member
interposes themselves in every
formal interaction across two or
more subcommunities [P5]

Black Cloud Effect

<€

Network of Practice (NoP) Project Team (PT)

A networked system of
communication and collaboration
connecting CoPs. Anyone can join.
They span geographical and time
distances alike. Differentiating
attribute: geodispersion [P11]

People with complementary skills who work
together to achieve a common purpose for

organizational guidelines. Differentiating
attribute: Longevity [P11]

(P4 —
J

Lack of boundary spanners
causing confusing back-and-forth
messages obfuscating reality

——[P5}—

Boundary Spanner

which they are accountable. Enforced by their
organization and follow specific strattegies or

frequently co-occur [PB];
likely occurs in [P2]

e

(Informality Excess w

Excessive informality due to the
relative absence of information
management and control protocols
[P2]

A boundary spanner links people across

(Newbie Free-Riding W(

Unlearning

Work Group (WG)

W Groups of individuals who regularly

work together to attain goals for

boundaries and serves in building
relationships as well as creating shared
understanding and trust across boundaries
(knowledge transferrers) [P9]

Informal Network (IN)

Newcomers left to themselves
regarding understanding what to
do and for whom, with the
consequent free-riding of older
employees [P2]

A new technological or
organizational advancement or
best practice that becomes
infeasible when shared with older
members [P2]

Formal Group (FG)

(P4] Y, E Looser networks of ties between

~ individuals that happen to come in

Lone Wolf Effect E contact in the same context. Their
driving force is the strength of the

Unauthorized or defiant
contributors who carry out their
work with little consideraton of

other contributors, their decisions
and communication [P5]

ties between members.

Interaction [P11]

Differentiating attribute: Members

People grouped by corporations to act
on (or by means of) them. Each group
has an organizational goal, called
mission. Compared to FN, no reliance
on networking technologies, local in

<€

original name

J
t Informal Community (IC)

Usually sets of people part of an

~

Missing Links

organization, with a common
interest, often closely dependent on

Whenever a couple of
collaborating developers exhibit
uncooperative behaviors [P19]

their practice. Informal interactions,
usually across unbound distances.
Differentiating attribute: Member
Engagement [P11]

is subset of [P19]/]\

Organizational Silo Effect

High decoupling and lack of

nature. Differentiating attribute:
Governance [P11]

A

DevOps Clash w

communication and collaboration
compromising socio-technical

congruence, introducing sets of

loosely dependent subcommunities

[P4])

Figure 3.9: Context Model: Relations between community types and smells. Blue arrows denote the relation “frequently co-occur [P8]”.

Clashes in the mix between
development and operations from
multiple geographical locations,
with contractual obligations to
either development or operations

v

Formal Network (FN)

Members rigorously selected and

prescribed by management (often

in form of FG), directed according

to corporate strategy and mission.
Differentiating attribute: e

Membership Official Status [P11]

Red arrows denote the relation “likely occurs in [P2]”.

<

the benefit of corporate sponsor(s).
Differentiating attribute: Members
Cohesion [P11]

Cognitive Distance

(Institutional Isomorphism w

The distance perceived by
developers on physical, technical,
social, and cultural levels regarding
peers with considerable
background differences [P2]

Time Warp

The similarity of the processes or
structure of one subcommunity to
those of another, whether the
result of imitation or independent
development under similar

A change in organizational
structure and process that leads
people to wrongly assume that
communication will take less time
and that explicit additional

constraints [P2]

coordination isn't needed [P2]

(Cookbook Development

Developers who are stuck in their
ways and refuse innovative ideas
or ways of working [P2]

~

Priggish Members

Demanding of others pointlessly
precise conformity or exaggerated
propriety, especially in a self-
righteous or irritating manner [PZL

Community of Practice (CoP)

Groups of people sharing a
concern, a set of problems, or a
passion about a topic, who deepen
their knowledge and expertise in
this area by interacting frequently
in the same geolocation.
Differentiating attribute:
Situatedness [P11]

4 4

Power Distance W (

Disengagement w (Hyper-Community

The distance that less powerful or
less responsible members of a
software development community
perceive, accept, or expect with
power holders [P2]

A hyperconnected community that
is sensible of groupthink but also
influences its subcommunities [P2]

Thinking the product is mature
enough and sending it to

operations even though it might not
be ready [P2]

Table 3.2: An overview of socio-technical metrics that have been proven to be highly
correlated to the occurrence of community smells, but were not linked to a specific
instance.

Socio-Technical Metric Description

Standard deviation of The standard deviation of commits per developer
commits per developer in a in a project. It provides a view of the distribution
project (SDC) of the developers contributions [7].

Standard deviation of The standard deviation of developers per time zones
developers per time zone in a project [7].

(SDZ)

Ratio of commits per time The ratio of the number of commits in each time
zone (RCZ) zone by the total number of time zones in a project.

It provides a view of the distribution of the commits
per time zone [3].

Ratio of developers per The ratio of the number of developers per time zone

time zone (RDZ) in a project by the total number of time zones in
a project. It provides a view of the distribution of
the developers per time zone [3].

Graph Degree Centrality Social Networks Analysis degree metric of the global
developer social network computed using degree [6].

Table 3.3: An overview of community smells excluded from the Context Model.

Community Smell Description

Architecture Hood Geographical and socio-technical dispersion of architecture
Effect decisions causing social strain when those responsible for
decisions are difficult to find [79].

Class Cognition The affected class, if refactored, would be made signifi-
cantly more complex to discourage further intervention and
introducing a massive overhead to newcomers and other
less-experienced contributors [(6].

Code Red This smell identifies an area of code which is so complex,
dense, and dependent on 1-2 maintainers who are the only
ones that can refactor it [60].

Dispersion A fix in the code causes a previously existing group or mod-
ularised collaboration structure in the community to split
up or rework their collaboration because the functionality
becomes rearranged elsewhere [60].

Dissensus Developers cannot reach a consensus w.r.t. the to be applied
patch - same condition recurs for other patches in other
very complex areas of the code [60].

23

3.3 Threats to Validity

Runeson and Host [70] have provided a model for validity threats identifying four
different validity aspects:

e Internal validity; are there third factors, possibly the applied methods, causing
the outcome?

e Construct validity; do the operational measures used in the study represent
what is investigated?

e Reliability; how are the study and results dependent on the researchers?

e External validity; to what extent can the findings be generalized and to what
extent are the findings of interest to people outside the analyzed dataset?

In this section, we will address each aspect separately.

Internal validity. There are many other ways in which the information could
have been organized and structured. This kind of model is but one way, which feels
natural to the author. Depending on the person, the resulting model would look
different. We contend that whether one kind of model is better than another for
organizing information depends on the kind of information and the person creating the
model, and that this model is appropriate for structuring relations among concepts
including their definitions or descriptions.

Construct validity. In this model, we attempted to avoid bias by providing a
detailed specification of the domain. However, it is impossible to argue that there was
no unconscious bias when including and excluding parts of the domain. Conscious
exclusions have been addressed. All concepts and relations have been marked with
their corresponding sources. All relations and descriptions that did not come from
the literature have been marked to make them easily distinguishable. We have
provided a detailed explanation of the methodology used to obtain the context model
for potential replication. The most significant threat to the validity of this taxonomic
analysis is the literature collection. To obtain literature regarding community smells,
we searched Google Scholar. It is possible that the inclusion of other databases
(e.g., IEEEXplore or ACM Digital Library) could lead to a more complete result.
Additionally, the approach to collecting literature related to community types [30]
and patterns [30] was very limited. However, by following an approach like the
snowballing approach [91], we have identified state-of-the-art literature for these
specific community types and definitions.

Reliability. To address the reliability concerns regarding our context model, we
have described the methodology that was used to derive the model. Arguably, the
biggest concern here is the method of collecting the literature. The in-/exclusion
criteria of the literature were not formally specified in advance. The selection and
extraction of data was done individually, hence likely to be biased. Therefore, we
cannot guarantee that no studies or concepts were missed in our taxonomic analysis.
Moreover, a large part of analyzing the literature was done before starting with the
model, instead of synchronously. There is a potential threat that studies and concepts
may have been overlooked, misunderstood, or incompletely reported.” To address
these validity threats, we performed an exhaustive adequacy analysis. Additionally,

2Note that studies not being included in the context model does not necessarily mean that they
were not analyzed. It is entirely possible that a study repeated concepts that were already included
in the new model but did not introduce new concepts or relations.

24

the creation of the model was done in an iterative process to take into consideration
feedback of multiple supervisors. Nevertheless, it is important to consider that all
taxonomies are only approximations of the reality of a study, and that there is no
such thing as a “complete” taxonomy [92, Chapter 8 - Domain Analysis|. We argue
that, with our adequacy analysis and the application of selected inquiry, the model
is sufficiently reliable. Moreover, we made multiple observations based on the model.
Our main goal of this study is to identify the relations between community patterns
and smells, and one essential subgoal is to implement a tool that can accurately
detect community patterns. Our observations confirm the importance of our original
goals, which might be affected by the bias in our observations. However, as reasoned
before, we conjecture that the model is sufficiently reliable, and the observations
have been derived from the model.

External validity. This model was made specifically for the topic relations
between community patterns and smells, and hence should not be considered a
general model for research regarding community patterns or smells. We suggest
that researchers addressing either community patterns or smells use the model in a
complementary way, e.g., as an overview of where to find certain information, as it
undoubtedly contains much information regarding state-of-the-art research into both
community patterns and smells.

3.4 Discussion and Conclusion

In this chapter, we have analyzed state-of-the-art literature and analyzed the domain
of relations between community patterns and smells to create an overview of the
academic knowledge regarding community patterns and smells in the form of a
context model. The methodology we used to formalize the context model is based
on the taxonomic analysis provided by Williams [92, Chapter 8 - Domain Analysis].
We considered closely related topics with either community patterns or smells to
identify (in)direct relations between the two. After identifying the core and related
concepts, we categorized the concepts to create several submodels. After an iterative
process, we have created a context model that consists of several submodels.
These submodels show:

the direct relations of core concepts to abstract related concepts,

which community smells are currently detectable and by what tool,
socio-technical metrics’ that are closely correlated to community smells,
the community types according to metatypes, and

the direct relations between community types and smells.

This model visualizes the currently known relations between community patterns
and smells, and related literature that can be used to analyze relations in the future,
such as the relations between community smells and socio-technical metrics.

We observed that while some relations between community patterns and smells
have been identified, their methods and datasets were limited. Additionally, the
research on community smells has progressed further than community patterns. For
community smells, relations with more distinct topics have been analyzed, such as
social debt, technical debt, architecture smells, and code smells. Topics that are
relatively unexplored in terms of relations with community patterns. As a result, only

25

very few indirect relations were found. However, we conjecture that this is due to a
lack of detection methods for community patterns compared to community smells.
To the best of our knowledge, the only tool that could detect community patterns,
Y 0sHI, has become unusable due to outdated and discontinued API libraries.

To conclude, the primary contribution of this taxonomic analysis is showing the
state-of-the-art relations between community patterns and smells, and, with this
overview, we hope to encourage and aid future research into these topics.

26

Concluding Remarks

In this part of the thesis, we have described our taxonomic analysis based on Williams’
advice for doing taxonomic analyses [92, Chapter 8 - Domain Analysis|. This resulted
in a context model, visualizing state-of-the-art relations between community patterns
and smells. We found that the research into community patterns is still novel
and relatively unexplored compared to community smells. We conjecture that a
big reason why community patterns are relatively unexplored is due to the lack
of a detection method, thus, confirming the importance of developing a tool that
enables researchers to (semi-)automatically detect community patterns in open-source
communities. Furthermore, by providing this context model, we hope to encourage
and aid future research into these topics.

27

Part 11

Empirical Analysis

28

Chapter 4

Context and Theoretical
Framework

The goal of our empirical analysis was to analyze the relations between community
patterns and community smells in open-source communities.

Community patterns are sets of community types that characterize communi-
ties. A community type is also called an Organizational Social Structure, which
Tamburri et al. [30] define as “the set of interactions, patterned relations, and social
arrangements emerging between individuals part of the same endeavor”. In global
software engineering, a web of relations, dependencies, collaborations, and social
interactions emerges as a set of nontrivial patterns (“structure”) between people
(“social”) who act as an organized whole towards a goal (“organizational”) [30].
Each community type exhibits differentiating and defining attributes, which allows
for their identification. However, it is possible for communities to exhibit traits of
multiple (even conflicting) types over time, or even at once [30]. Hence, we describe
the set of community types characterizing a community as a community pattern.

Community smells are sets of organizational and social circumstances with
implicit causal relations [79]. They can prove to be detrimental and may lead to
additional project costs manifested as social debt. The term community smells is an
analogy to code smells, in the sense that community smells, much like code smells,
identify unlikable circumstances that do not necessarily cause failure. Whereas code
smells might lead to technical debt, community smells might cause social debt that
potentially causes ripple effects in terms of technical debt [23].

The perspective was of researchers and practitioners: the former seek to study the
relations between community patterns and smells with the purpose of identifying any
recurring antipatterns that are more likely to incur community smells, thus leading
to some form of social debt; the latter are interested in avoiding organizational
structures that are likely to incur social debt.

Therefore, this empirical study revolves around the following research question:

RQ1: What are the relations between community patterns and community smells?

To achieve this goal, we had to make sure that we could (semi-)automatically
detect both community patterns and community smells in open-source communities.
To our knowledge, only the tool YOsHI [$0] was capable of detecting community
patterns, whereas there are multiple tools capable of detecting community smells.
However, YOSHI has become nonoperational due to outdated and discontinued APIs.

29

Since YOSHI has been poorly documented and its source code is difficult to read, we
first had to develop a new tool capable of detecting community patterns. However,
since Tamburri et al. [36] obtained accurate results using YOSHI, i.e., 33 out of 36
answers by developers confirmed YOsSHI’s output for 25 communities, we decided to
create YOSHI 2 based on YOSHI’s solution design [36]. Instead of altering the design
and potentially ending up with a tool that was not able to detect community patterns
accurately, we decided that it would be better to replicate YOSHI as accurately as
possible. This aligns better with our goal to detect relations between community
patterns and smells. Furthermore, it would allow for a better comparison between
old and new detection methods in future work. Before we apply the results inferred
by YOSHI 2 in a relational analysis, we need to be sure that we can trust its results.
Since YOSHI 2 uses a similar solution design as YOSHI, we set ourselves the following
research question.

RQ2: Is YOSHI 2’s detection of community patterns consistent with YOSHI?

However, since our approach was unsuccessful for various reasons, we formulated
a new research question:

RQ3: Does YOSHI 2 provide a correct indication of the community pattern of a
community?

To address this research question, we applied YOSHI 2 on 25 active open-source
communities and conducted a survey in these communities.

Furthermore, to detect community smells, we decided to use KATAULU [68], which
was still unpublished and in development at the time. KAIAULU uses the same
detection methods as CODEFACE4SMELLS [93]. CODEFACE4SMELLS detected four

different types of community smells and was formally proven to be able to identify
all community smell instances affecting software communities correctly, using a
formal interpretation of developer social networks and formalized community smell
definitions. However, KATAULU uses an arguably more robust community detection
algorithm. Since KATAULU was still in development, we formulated the following
research question, which we addressed in the same survey study.

RQ4: Does KAIAULU provide a correct indication of the community smells present
in a community?

The community types and smells considered in our empirical analysis are limited
to the instruments used for their detection, i.e., YOSHI 2 for community patterns
and KAIAULU for community smells. In Section . |, we describe the types detectable
by YosHI 2. In Section .2, we discuss the smells detectable by KAIAULU [68].

Figure provides an overview of the structure of our empirical analysis. We
describe YOSHI 2’s design in Chapter 5. In Chapter 0, we describe our attempt
at analyzing YOSHI 2’s consistency with YOSHI and answering . Since that
attempt was unsuccessful, we conducted a survey to answer and , which is
described in Chapter 7. Based on the survey, it seems that YOSHI 2 is inaccurate,
hence we are unable to analyze the relations between community patterns and smells.
However, in Chapter =, we describe how we would have performed this analysis.

30

Empirical Analysis

Implement Detect Smells Evaluate Yoshi 2
Yoshi 2 SEIRE! ez With Kaiaulu and Kaiaulu

RQ1

O O O Ot O O x = 5O R.t Relations

Patterns and

__________________ Smells
Comparison Identify Patterns Association
Yoshi & Yoshi 2 With Yoshi 2 Conduct Survey| m g e mining |
RQ2 RQ3 RQ4
Yoshi 2 Yoshi 2 Kaiaulu
Consistent Accurate Accurate
With Yoshi Patterns Smells

Figure 4.1: Overview of the research methodology for the empirical analysis.

4.1 Community Types and Their Detection

Community patterns are sets of community types that characterize communities.
Tamburri et al. [30] discussed the 13 most relevant community types out of 26
analyzed community types.' In our study, we tried to identify eight community types
using YOSHI 2, which include the four types most representative for open-source
development, namely, Formal Networks, Informal Networks, Networks of Practice,
and Informal Communities [75]. These eight types, including their defining attributes,
are briefly described in Table

Table 4.1: An overview of the community types as described by Tamburri et al. [30],
limited to the community types identifiable by YOsHI 2.

Community Description Defining
Type Attribute

Communities A CoP consists of situated groups of people who share a Situatedness
of Practice concern, a set of problems, or a passion about a topic. In
(CoP) this context, what is meant by situatedness is physical and

social, face-to-face, collaborative and constructive interac-

tions [34]. For example, the SRII community® gathers multi-

ple CoPs into a single CoP for physical meetings in which they

informally exchange best practices in IT Enabled services

science [30].

'Relevancy was computed through a weighted bibliometric count [30].

31

Table 4.1 (continued)

Community
Type

Description

Defining
Attribute

Informal
Networks
(IN)

Formal
Networks
(FN)

Informal
Communi-
ties

(IC)

Networks of
Practice
(NoP)

INs can be seen as looser networks of ties between individuals
that happen to come in contact in the same context. The
driving force of an IN is the strength of the informal ties
between members, and its success is thus solely dependent
on the emergent cohesion between members. It differs from
other community types since it does not use governance
practices. The informal and loosely coupled set of research
communities around single topics (e.g., computer science) in
academia are examples of informal networks.

The members of FNs are rigorously selected and prescribed.
They are forcibly acknowledged by the management of the
network itself. Direction is carried out according to a corpo-
rate strategy and its mission to follow this strategy. The staff
is usually managed as FGs, which implies that FNs can be
seen as virtual counterparts connecting local FGs. Tamburri
et al. [20] could not find an indication of inheritance between
FGs and FNs. An example of a FN in software engineering
is the Object Management Group (OMG). Their interaction
dynamics and status of the members (i.e., the organizations
which are part of OMG) are formal. Moreover, the meeting
participants (i.e., the people that corporations send as rep-
resentatives) are acknowledged formally by their corporate
sponsors.

An IC usually consists of sets of people part of a dispersed
organization with a common interest, often closely dependent
on their practice. Their interactions are informal, across
unbound distances, frequently with a common history or
culture (e.g., shared ideas, experiences, etc.). They are
necessarily dispersed to reach a wider audience. The success
of an IC is exclusively tied to members’ engagement since
their effort is what drives the community to expand, spread
ideas, gather members, etc.

A NoP is a networked system of communication and collabo-
ration that connects CoPs (which are localized). In principle,
anyone can join it without selection of candidates, but an
unspoken requirement for entry is the expected IT literacy
of members. IT literacy must be high since the tools needed
to take part in NoPs are IT based. NoPs have the highest
geodispersion.

32

Informality

Formality

Engagement

Geodispersion

Table 4.1 (continued)

Community Description Defining
Type Attribute
Project PTs are fixed-term, problem-specific aggregates of people Time-Boxed

Teams (PT) with complementary skills who work together to achieve a Longevity
common purpose for which they are accountable. They are
enforced by their organization and follow specific strategies or
organizational guidelines (e.g., time to market, effectiveness,
low-cost, etc.). Their final goal is the delivery of a product

or service.
Formal FGs are people explicitly grouped by corporations to act on Explicit
Groups (or by means of) them. Each group has an organizational goal. Governance
(FG) They are local in nature and it is common for organizations Structure

to have these groups and extract project teams out of them.
They are less formal since there are no explicit governance
protocols employed other than the grouping mechanism and
the common goal. Examples of formal groups in software
engineering are software task forces, i.e., groups of people
brought together to deal with a particular problem.

Social SNs represent the emergent network of social ties sponta- Community
Networks neously arising between individuals who share, either will- Structure
(SN) ingly or not, a practice or common interest in a problem.

They act as a gateway to communicating communities. In
social sciences, the concept of social networks is often used
interchangeably with organizational social structures. Every
community type can be defined in terms of SNs. Therefore,
there is no distinctive difference with other types. SNs can
be seen as a supertype for all organizational social structures.

® https://thesrii.org

4.2 Community Smells and Their Detection

Community smells are sets of organizational and social circumstances, which may
lead to social debt [79]. Many types of community smells have been introduced in
various studies [0, 7, 51, 66, 76, 79, 83].

The smells considered in this empirical analysis are those that are automatically
detectable by KATAULU [68], which were previously defined by Tamburri et al. [79],
and previously operationalized in CODEFACE4SMELLS [33]. These smells are briefly
described in Table

Previous research [66, 79] has shown that these specific smells are among the
most troublesome community-related issues to manage and a potential threat to the
emergence of social- and technical debt [27]. For example, Palomba et al. [00], in a
study in which they considered these smells, showed that communities consider it
“more convenient to keep a technical smell than deal with a community smell”.

33

https://thesrii.org

Table 4.2: An overview of the community smells as described by Tamburri et al. [33],
limited to the community types identifiable by KAIAULU [65].

Community Smell Description

Organizational Silo The OSE is the forming of isolated subcommunities

Effect (OSE) lacking necessary communication or cooperation that
leads to wasted resources over the development cy-
cle [79].

Lone Wolf Effect (LWE) The LWE appears when some unsanctioned or de-
fiant developers or subcommunities carry out their
work irrespective of their peers, their decisions, and

communication [79].
Bottleneck or “Radio The RSE is an instance of the “unique boundary
Silence” Effect (RSE) spanner” [91] from social network analysis: one mem-

ber interposes herself into every formal interaction
across two or more subcommunities with little or no
flexibility to introduce other parallel channels [33].

Black Cloud Effect (BCE)* The BCE occurs when jumbled communication chan-
nels cloud project vision and progress, which can be
caused by an absence of knowledge sharing opportu-
nities, inefficient communication protocols, or a lack
of boundary spanners, i.e., knowledge “transferrers”
that build relationships across boundaries, thus creat-
ing a shared understanding. It also leads to mistrust
and possibly the inception of the OSE [79, 83].

& When we decided on what smells to consider, KAIAULU was still in development and the
smell detection methods were based on CODEFACE4SMELLS. Since CODEFACE4SMELLS barely
detected any BCE smells, KATAULU’s developer later decided to not finish BCEs implementation.

There are multiple tools and methods used to detect community smells; CODE-
FACE4SMELLS [$3], CSDETECTOR [3], the genetic programming ensemble classifier
chain (GP-ECC) model [7], TRUCK FACTOR [10], and KAIAULU [08].

First, we considered the GP-ECC model [7] or ¢SDETECTOR [3], since these
detect eight types of smells. However, we missed several key details in how their
training and test data was collected. Furthermore, we could not access their tools
and models online. After contacting Dr. Nuri Almarimi to request further details
and access to their tools and models, we were not yet satisfied with the explanation.
Dr. Nuri Almarimi specified that they were still finalizing their tool, hence it was not
yet publicly available. During our study, Almarimi et al. [0] finalized CSDETECTOR,
but we were still missing details regarding how they approached the manual detection
of community smells in the datasets used to train CSDETECTOR.

TRUCK FACTOR [10] is a tool that could be used to identify a single smell, namely,
the Truck Factor Smell, i.e., “when most of the project information and knowledge
are concentrated in one or few developers” [8]. This smell eventually leads to a

34

significant knowledge loss as a result of the turnover of developers [10, 31].
However, we were interested in analyzing multiple community smells compared

to community patterns. Hence, we considered that our best option would be to

use CODEFACE4SMELLS, which could detect four community smells, i.e., OSE,

LWE, RSE, and BCE, and was used in multiple other studies [20, 27, (4] since its
publication [33]. However, we were told by our supervisors that CODEFACE4SMELLS
could not be used anymore. Instead, we could use KAIAULU [68], which was still

unpublished and in development at the time. KAIAULU uses the same detection
methods as CODEFACE4SMELLS but uses an arguably more robust community
detection algorithm. These tools map patterns over developer social networks derived
from git logs and mailing lists to corresponding community smells [33]. KAIAULU [68]
at the time already supported the OSE, LWE, and RSE smells, but not yet the BCE
smell. Since it could have been implemented during the study, we made sure to
consider BCEs as well. However, KAIAULU’s developer later decided to not finish
BCE’s implementation, since CODEFACE4SMELLS barely detected any BCE smells.

35

Chapter 5

Yoshi 2 - Yielding Open-Source
Health Information Version 2

In this chapter, we discuss the implementation of YOSHI 2. YOSHI 2 operationalizes
the community types discussed in the previous chapter. As mentioned before
in Chapter |, we attempt to reimplement YOSHI as described in the paper by
Tamburri et al. [36], because YOSHI has become unusable due to outdated and
discontinued API libraries. Tamburri et al. [36] stated that all operationalizations
and detection patterns follow the Goal-Question-Metric approach [1] and that they
used empirically defined thresholds [75]. They verified that the metrics satisfied the
representation condition, i.e., they verified that the empirical relations are preserved
by the numerical relations when a measurement mapping maps entities into numbers
and empirical relations into numerical relations [30]. We decided to replicate their
approach of detecting community patterns, since YOSHI's results were proven to be
highly accurate, i.e., 33 out of 36 answers by developers confirmed YOSHI’s output
[36]. Instead of altering the design and potentially ending up with a tool that was
not able to detect community patterns accurately, we decided that it would be better
to replicate YOsHI. This aligns better with our goal to detect relations between
community patterns and smells. Furthermore, it would allow for a better comparison
between old and new detection methods in future work.

In Section 5.1, we present a general overview of YOSHI 2. Then, in Section 5.2,
we provide an algorithmic representation of YOSHI 2. In Section 5.3, we discuss
its high-level architecture. YOSHI 2’s modifications from Y OSHI are described in
Section and YOSHI 2’s general limitations in Section 5.5. More technical details
are included in Appendix 2. YOSHI 2’s code is provided in Appendix (', but is also
available at https://github.com/tuejari/yoshi-2.

5.1 Research Solution: A General Overview

Y OSHI 2 is a social network analysis tool for detecting the open-source community
types specified in Section . 1. It can detect 8 out of 13 community types most relevant
in open-source software engineering [20] by measuring five key characteristics, namely,
structure, geodispersion, formality, engagement, and longevity. The original Y OSHI
was able to measure a sixth characteristic, cohesion, which would allow it to detect
Work Groups as well [36]. Tamburri et al. [75] stated that Formal Network, Informal
Network, Network of Practice, and Informal Community are the community types

36

https://github.com/tuejari/yoshi-2

most representative for open-source development. Since cohesion was only used to
detect Work Groups, we prioritized other characteristics over cohesion to detect
the types most representative for open-source development. Furthermore, to detect
cohesion [36], YOsHI detected significant expertise overlap between developers by
analyzing the repositories that developers have worked on and the word frequency
of all their commit- and pull request messages using the taxonomy of software
engineering skills designed by Tamburri and Casale [71]. We speculated that it would
take too much time to reimplement cohesion’s detection strategy. Thus, because it
had low priority and because we speculated it would take too much time, we decided
to not reimplement cohesion’s detection strategy and leave it for future work. Note
that the original code of YosHI is difficult to read and poorly documented, hence we
created YOSHI 2 based on the solution design for YOSHI described by Tamburri et
al. [80], instead of trying to update YOsHI. Thus, all metrics have been implemented
as accurately as possible from the descriptions provided by Tamburri et al. [30].

YosHI 2 uses the GitHub REST API to retrieve the necessary GitHub data for
a given repository, within a 3-month time window (estimated using 90 days)," to
compute metrics for each characteristic. For example, it retrieves commits within
3-months from a variable end date (exclusive). Observing organizational activity
within a 3-month time window is a common practice in organization research [37].

After computing and processing the metrics to obtain a value for each character-
istic, YOSHI 2 uses Algorithm | to assign (potentially multiple) community types to
a given repository, thus obtaining its community pattern [30, 82].

This algorithm is based on the thresholds used in YOsHI [30] that come from
previous work [75]. They used an algorithmic representation of the decision tree
from previous work [31] (Figure 5.1). The decision tree is visited from top-to-bottom
(most generic to the most specific type) and right-to-left (most collocated to the most
dispersed type).” Figure illustrates an example of the workings of the decision
tree in which Tamburri et al. [31] identified a Formal Network.

5.2 Algorithmic Representation

Algorithm | shows how YOSHI 2 determines the community types based on the values
computed for each of the characteristics. The detection strategies, assumptions, and
limitations for the characteristics will be discussed in Sections to . Empirical
thresholds per community type were reported for YOsHI [30], elicited as part of
an ethnographic research [75]. However, the thresholds used for YosHr [$0] differ
from the ethnographic research [75]. For example, in the ethnographic research [75],
there are separate thresholds for geographical distance and cultural distance when
computing geodispersion, instead of a single value that is reported for YosHI [30].
In a private consultation with the authors [$6], they mentioned that the reported
thresholds for YOSHI were correct. However, it is not reported how these thresholds
were obtained [36]. The authors were unable to obtain the workbook which included
these calculations. We decided to trust the thresholds used by YOSHI [3(] over the
thresholds mentioned in their ethnographic study [75] because they were completer

I'Note that while most metrics are computed over a 3-month time window, due to the limitations
of GitHub’s REST API, certain metrics are limited to snapshots at the time of the API request.

2The decision tree relations can be found online at http://tinyurl.com/mzojyp2
(visited on 04/05/2021)

37

http://tinyurl.com/mzojyp2

Structure

Geodispersion

High

Informality

Low ighest

Formality 0

L OV/ lighest
Engagement
\ Highest

Figure 5.1: The decision tree for organizational structures [31], adjusted to show what has been
implemented in YOSHI 2. Note that this is not a decision tree in the classical sense of the word,
since a community might have multiple organizational structures. Green characteristics have been
operationalized in YOSHI 2, dotted community types are not currently implemented in YOSHI 2.

Visibility-Tracking . ,
Low Highest T Low Highest ~ Lowest

‘sct ‘we

and fit the given metric and characteristic computations. Although the thresholds
are reported in Algorithm |, we have reported the thresholds per community type in
Table for clarity. However, clear-cut thresholds may not be as straightforward as
we assume, and some manual adjustments may be necessary.

Additionally, while the thresholds fit the given metric and characteristic compu-
tations, not all of them correspond to the decision tree in Figure 5.1. In YOSHI [%0],
and thus also in YOSHI 2, geodispersion, not situatedness, is used to determine CoPs.
Furthermore, we assume that formality and informality are mutually exclusive to
detect INs. Additionally, geodispersion, formality, and informality are not taken
into consideration to determine ICs. However, we do not know why the thresholds
deviate from the tree, since it was not reported how they were obtained [30].

Table 5.1: The thresholds per community type in YOsHI [30], limited to the community types
identifiable by YOsHI 2.

Community Type Threshold

Communities of Practice (CoP) Geodispersion < 4926 km

Informal Networks (IN) Formality Levels < 0.1 & Geodispersion > 4926 km

Formal Networks (FN) Formality Levels > 20 & Geodispersion > 4926 km

Informal Communities (IC) Engagement Levels > 3.5

Networks of Practice (NoP) Geodispersion > 4926 km

Project Teams (PT) Longevity < 93 Full-time Equivalent Man-days &
Geodispersion < 4926

Formal Groups (FG) Formality Levels > 0.1 and < 20 & Geodispersion < 4926 km

Social Networks (SN) Structured Network = True

38

Structure

Situatedness

Dispersion

Yes Informality

Formality

Figure 5.2: An example taken from the case study by Tamburri et al. [31] in which
the decision tree was traversed to identify a Formal Network.

Algorithm 1: YosH1 2’s algorithm for community type detection using
the thresholds from Y OSHI [30].

pattern = {}

if Structure = TRUE then

pattern.add(“SN”)

if Geodispersion > 4926 km then

pattern.add(“NoP”)

if Formality levels < 0.1 then
‘ pattern.add(“IN”)

else if Formality levels > 20 then
‘ pattern.add(“FN”)

end if

else

pattern.add(“CoP”)

if Longevity < 93 days then
‘ pattern.add(“PT”)

end if

if Formality levels > 0.1 and < 20 then
| pattern.add(“FG”);

end if

end if

if Engagement Levels > 3.5 then

pattern.add(“IC”)

end if

end if

return pattern

39

5.2.1 Community Structure

Every community type can be defined in terms of Social Networks (SN). SNs are
a supertype for all community types [80]. SNs uniquely identifying attribute is
“structure”, hence, it is essential to compute community structure to distinguish a
nontrivial OSS.

Newman and Girvan [58] define community structure in the context of social
network analysis as a property of networks in which “division of network nodes into
groups within which the network connections are dense, but between which they
are sparser”. In other words, a structured community is a property of a network in
which connections within groups are dense, but between groups are sparser. They
describe how community structure can be identified by looking at the modularity.

YosHI 2, like YOSHI [36], computes the community structure by means of a graph
in which the nodes represent community members, and two members are connected
by an edge if there were any social or organizational interactions between the two
members. GitHub REST API requests were used to collect the data necessary for
each repository to detect community interactions.

Detection Method

Given a community, YOSHI 2 computes a network in which the nodes represent
the members and edges represent any social or organizational interactions between
the two members. To determine the current members of a community, YOSHI 2
retrieves all commits within a 3-month time window (estimated as 90 days). We
consider developers members if they have altered the source code within the given
period. To compute edges, YOSHI 2 checks whether there has been an interaction
or connection in the last 3 months for each unique pair of members using the same
detection strategy as YOSHI [306]. An edge is added between two members if they
have:

1. Common Projects: When two community members have at least one repository
in common to which they are contributing (excluding the currently analyzed
repository);

2. A Follower/Following Relation: When between two members, one is following
the other;

3. Pull Request Interaction: When one member is the author of a pull request
and another member comments, and therefore contributes to the pull request.

A structure exists if there is at least one edge in the computed network.

Assumptions

This method, that was originally used by YOsHI [36] and reimplemented by us,
has some (un)recorded assumptions that we want to bring to light that could be
addressed in future work.

To compute the common projects, YOSHI 2 retrieves all owned repositories by
users, including forks. The underlying assumption is that the users have contributed
to all these repositories, which is not necessarily the case. A user can fork a repository

40

without contributing to it. Furthermore, YOSHI 2 checks whether there is a common
repository name between each pair of distinct members. However, since repository
names are not unique, we assume that if users have worked on a repository of the
same name, that they both worked on the same repository.

Another underlying assumption is that the identified connections from common
projects and follower /following relations are still recent. While the same people
have worked on the same project in the last 3 months, they may not necessarily be
connected within the community anymore. They might have connected many years
ago and followed each other then. It could be that these relations do not have a
significant impact on the identified structure.

Note that we mentioned that a structure exists if there is at least one edge in the
computed community network. That by itself is another assumption.

Limitations

Other than assumptions, this method, originally used by Y0OsHI [80], has (un)recorded
limitations that we want to draw attention to.

To the best of our knowledge, there is no easy way to retrieve the repositories that
a user has worked on. Hence, to compute the common projects, YOSHI 2 retrieves all
owned repositories by users. Note that these include forks, but not the repositories for
which they have collaborator privileges. As a result, YOSHI 2 is likely to miss some
relations between members. It is possible that members have collaborator privileges
in another repository, but this would go undetected. People can delete their forks
after contributing, which would also go undetected. Furthermore, it is possible that
false positives may be identified. Two people may have coincidentally contributed to
the same community. Additionally, retrieving people’s repositories is a snapshot at
the time of data retrieval. Since we do not know when these contributions occurred,
the relations identified by common projects between members may occur outside the
3-month time window.

Like the common project condition, the follower/following relation is a single
snapshot at the time of retrieval by YOSHI 2. If at some point during the 3-month
analysis window, both developers unfollow each other, YOSHI 2 does not add a
follower /following connection between these two developers, even though they were
connected at some point during the 3-month analysis window. Note that YOSHI 2
can also miss unidirectional follower relations (e.g., Alice follows Bob, but Bob does
not follow Alice) between developers in the same way. For clarity, we have visualized
an example scenario in Figure

Time
Alice follows Bob ‘ Alice unfollows Bob ‘
Start analysis period End analysis period

Figure 5.3: Timeline comparing the unidirectional follow relation between Alice and Bob (green)
vs. the 3-month analysis period (blue). This relation is not detected by YOsHI 2, even though
there was a follower/following connection in the 3-month analysis period (marked by x), since the
snapshot is taken at the end of the analysis period.

41

Regarding the pull request interactions, some author and commenter relations
might be missed. GitHub provides two types of comments for pull requests, issue
comments and review comments. The Issue Comments API" is used for “listing,
viewing, editing, and creating comments on issues and pull requests”, whereas pull
request review comments “are comments on a portion of the unified diff made
during a pull request review.” Pull request review comments are different from issue
comments, since issue comments are applied without referencing a portion of the
unified diff. Like YOSHI, YOSHI 2 only uses the issue comments to determine pull
request interaction, not review comments. Furthermore, relations could be missed
since an author could have created or updated their pull request outside the 3-month
snapshot period, whereas commenters could have commented within the 3-month
period. The comments within the 3-month snapshot period cannot be linked to an
author and are thus ignored.

Additionally, currently, YOSHI 2 only computes the macrostructure (i.e., it only
considers the whole community), but not the distinguishable microstructures (i.e.,
subcommunities). To be exhaustive, YOSHI 2 should consider each subcommunity
as well.” This includes forks, to adhere to the peril avoidance strategy proposed
by Kalliamvakou et al. [10], which states: “To analyze a project hosted on GitHub,
consider the activity in both the base repository and all associated forked repositories.”
For example, Tamburri et al. [$1] applied this technique in a case study of a multisite
software development organization and classified the macrostructure as an Informal
Network (IN), whereas one microstructure was classified as a Community of Practice
(CoP), and another as a Formal Network (FN). The classification of FN and IN are in
latent conflict as per their own analysis. This emphasizes the importance of analyzing
the subcommunities as well, because a subcommunity can exhibit a community type
contradicting the community type of the whole organization, potentially leading to
community health issues.

Lastly, Structure has been implemented as a binary characteristic, which might
be refined to a ratio or degree in future work [30].

5.2.2 Community Geodispersion

This characteristic has been operationalized in YOSHI 2 to represent both the geo-
graphical and cultural distance between community members, replicating Y OSHI [30].
This characteristic is key in identifying NoPs (high geodispersion) and CoPs (low
geodispersion). Additionally, it is used in the thresholds of 6 out of 8 operationalized
community types (CoP, IN, FN, NoP, PT, and FG).

GitHub allows users to specify their locations on their profile. We geocode these
locations using Bing Maps Locations API to retrieve each member’s coordinates and
country of residence to compute the geodispersion. Specifically, the coordinates are
used to compute the variance’ of a community’s geographical dispersion, whereas the
countries of residence are used to compute the variance of a community’s cultural

3https://docs.github.com/en/rest/reference/issues#list-issue-comments-for-a-
repository (visited on 06/05/2021)

“https://docs.github.com/en/rest/reference/pulls#review-comments
(visited on 06/05/2021)

5As described in the decision tree relations, which can be found online at http://tinyurl.com/
mzojyp2 (visited on 04/05/2021)

5Whenever variance is mentioned, population variance is meant.

42

https://docs.github.com/en/rest/reference/issues#list-issue-comments-for-a-repository
https://docs.github.com/en/rest/reference/issues#list-issue-comments-for-a-repository
https://docs.github.com/en/rest/reference/pulls#review-comments
http://tinyurl.com/mzojyp2
http://tinyurl.com/mzojyp2

dispersion. The coordinates are necessary for us to be able to compute the spherical
distance (using the Haversine formula).

The countries of residence are used for Hofstede cultural distance metrics [12]
and their variance. Hofstede introduced a model of national cultures that consists of
six dimensions [11]. These dimensions are aspects of a culture that can be measured
relative to other cultures. Originally, there were the following four dimensions.

e Power Distance Index (PDI): “the extent to which the less powerful mem-
bers of institutions and organisations within a country expect and accept that
power is distributed unequally” [12].

e Individualism vs. Collectivism (IDV): “the degree of interdependence a
society maintains among its members” [412].

e Masculinity vs. Femininity (MAS): “what motivates people, wanting to
be the best (Masculine) or liking what you do (Feminine)” [12].

e Uncertainty Avoidance Index (UAI): “The extent to which the members
of a culture feel threatened by ambiguous or unknown situations and have
created beliefs and institutions that try to avoid these” [12].

Later, Hofstede introduced the following two [11].

e Long Term vs. Short Term Orientation (LTO): “how every society has
to maintain some links with its own past while dealing with the challenges of
the present and future” [12].

e Indulgence vs. Restraint (IVR): “the extent to which people try to control
their desires and impulses” [12].

Many countries have been positioned relative to other countries through a score
(i.e., index) on each dimension [11]. These scores were designed to range between
0 and 100. Since the original research, many countries’ scores have been added,
including a few countries that exceeded 100 slightly [12].

For the detection of geodispersion, YOSHI 2 uses the first four dimensions to
represent cultural dispersion like YOsHI [36]. The last two indices are not known
nor estimated for approximately 20 out of the 118 countries for which the first four
dimensions are known or estimated. Experimentation is needed to see how adding
the two new dimensions would affect the computation of geodispersion..

Detection Method

To estimate geodispersion, YOSHI 2 considers both the geographical- and cultural
distance between members. We measured geodispersion like YOSHI [30], i.e., geodis-
persion is computed as shown in Equation (5.1);

GDyar + CDyqr
2
where GD,,, stands for the variance of Geographical Distance and C'D,,, for the
variance of Cultural Distance.
To compute GD,,,, we first computed the multiset of distances (in km), GD,
between all members whose locations are known, as shown in Equation (5.2) [86].

Geodispersion = \/ (5.1)

IM[=1|M]|
GD = U U spherical_distance(m;, m;) (5.2)
i=1 j=it1

43

In other words, for each unique pair of distinct members (m;, m; € M, where i # j)
(subject to the commutative property), we compute the spherical distance (using
the Haversine formula) from Geocoding.Microsoft.” After retrieving all distances, we
then compute its variance.

C D, is computed as shown in Equation (.7) [30].

PDIvar [D‘/var MASUar UA[va?“
CDyar = * z + (5.3)

In Equation (5.3), PDI,, is the variance of the PDI values obtained from
all community members. IDV,,, (variance of Individualism), M AS,,, (variance
of Masculinity), and UAI,,. (variance of Uncertainty Avoidance) were computed
similarly as PD1,,,. Note that locations in countries for which no Hofstede indices [12]
are known were excluded in the computations for cultural distance.

Cultural distance is computed using only 4 out of 6 Hofstede metrics. The values
for the 5" and 6 metrics, i.e., LTO and IVR, respectively, were not used in the
original computations for YOsHI as well [$0]. Further experimentation is needed to
extend this detection strategy to the other Hofstede dimensions.

Assumptions

YosHr 2 uses the Bing Maps Locations API for geocoding, but this API can return
multiple addresses (each address including coordinates) from one geocoding request.
We assume that the first result of the geocoding will be the most accurate in most
cases, therefore YOSHI 2 always uses the first result returned by the geocoder.
However, the first result may not always be the most accurate. For example, when
geocoding “Georgia”, the first result is a location in the state Georgia in the United
States, not in the country Georgia in the Caucasus region.

Furthermore, since we use the Hofstede dimensions to compute cultural dispersion,
the metric becomes dependent on the numeral assumptions upon which the Hofstede
dimensions are based.

Limitations

YOsHI 2 retrieves user data from GitHub. Many users do not specify their location,
since it is optional. Therefore, geodispersion is computed using only part of the
community. YOSHI 2 only requires two minimum locations to be known, hence it
is not guaranteed that the known locations represent the community. It is left up
to the user’s discretion whether to exclude certain communities, therefore YOSHI 2
reports the number of members, the number of members who specified a location,
and the number of members with locations in countries with known Hofstede indices.

Furthermore, the tool is limited by the geocoding’s accuracy. Considering the
example from before, when geocoding “Georgia”, the first result is a location in the
state Georgia in the United States, not the country Georgia in the Caucasus region.

Moreover, the user’s locations are once again snapshots at the time of retrieval.
We cannot know whether the users moved within the 3-month window or not.

"https://www.nuget .org/packages/Geocoding.Microsoft (visited on 15/05/2021)
8These locations were not excluded in the calculation of geographical distance, to ensure that
the geographical distance measured is as accurate to the community as possible.

44

https://www.nuget.org/packages/Geocoding.Microsoft

As mentioned previously, not all countries’ Hofstede indices are known, which
limits the number of locations even more. Again, YOSHI 2 requires two minimum
locations with Hofstede indices to be known and reports the number of locations
with known Hofstede indices afterward, leaving it to the user’s discretion to exclude
communities in cases when not enough locations are known.

Additionally, Hofstede has warned people of the dangers of ecological fallacy,
which is interpreting differences between populations as if they applied between
individuals [93]. Since YOSHI 2 uses a person’s country to estimate their cultural
values, we are essentially ignoring this warning.

The Hofstede indices are not beyond reproach themselves. Many researchers have
critiqued Hofstede’s model of national culture, e.g., McSweeney [51] and Ailon [3], to
name a few. McSweeney [51], for example, critiques Hofstede’s methodology claiming
that it has a multitude of fundamental flaws. Note that it is impossible to scratch
the surface of the critique within a small paragraph. Therefore, we suggest that the

interested reader reads the critiques from McSweeney [51] and Ailon [3], as well as
the responses from Hofstede [39, 10] and Williamson [93], and the responses from
McSweeney [55] and Ailon [1] on these responses.

Another limitation of Hofstede’s model is that it only measures six cultural factors
(of which we only use four), but there are many more. As mentioned previously,
these factors are measured at the national level and not at the individual level.

5.2.3 Community Formality

We have operationalized the community formality in YOSHI 2 according to the
design by Tamburri et al. [36]. Therefore, formality represents the level of control
(access privileges, milestones scheduling, and regularity of contribution) exercised or
self-imposed on the community. This metric is essential for the identification of FGs
and FNs. However, due to the lack of operationalization for informality, we assume
that formality and informality are mutually exclusive, thus allowing us to use this
metric for the identification of INs as well.

Detection Method
The formality levels of a community are computed as shown in Equation (5.1) [36].

MMT
MSJLT

That is, the formality level is computed as the Mean Membership Type, M MT,
divided by the total number of closed milestones, M.S, per project lifetime, LT. As
a result, YOSHI 2 can only compute formality for communities that use milestones.

In general, a GitHub repository has two membership types, Collaborator and
Contributor. Collaborators have more privileges than contributors. Collaborators
have read and write access to the repository and have been invited to contribute
by the project owner.” A contributor does not have collaborator access but has
contributed and had a pull request they opened merged into the repository. " MMT

Formality Level = (5.4)

Yhttps://docs.github.com/en/get-started/quickstart/github-glossary#
collaborator (visited on 20/05/2021)

Onttps://docs.github.com/en/get-started/quickstart/github-glossary#contributor
(visited on 20/05/2021)

45

https://docs.github.com/en/get-started/quickstart/github-glossary#collaborator
https://docs.github.com/en/get-started/quickstart/github-glossary#collaborator
https://docs.github.com/en/get-started/quickstart/github-glossary#contributor

is then computed by assigning each collaborator +2 and assigning each contributor
+1, and then computing the mean [36]. This is shown in Equation (5.0), where M is
the set of members in the 3-month time window.

MMT = L Z 2 Ifm ?S a COHal?orator (55)
| M| e M 1 If m is a contributor

M S is simply retrieved using the GitHub REST API. Only the closed milestones
are used, since these milestones have been reached. The open milestones are unreached
goals and are therefore excluded.

To determine LT, we extract the first and last commit from all commits of the
given repository. Then we compute the number of days between the first and last
commit’s creation dates.

Equation (5.1) is mathematically grounded as follows [$6]. GitHub only has
contributor and collaborator as membership types, YOSHI 2 associates 2 to a
collaborator and 1 to a contributor. Hence, the average number of collaborators
divided by the amount of work they have been able to carry out indicates how
well-structured their collaboration, co-location, and co-operation works and hence, it
is an indication of formality. Conversely, the structure will be less formal (i.e., closer
to 0 formality) the more external contributors there are.

It was not explained why the mean membership type was used over the median [30].
However, there are no outliers in how M M'T is determined, meaning that the mean
will result in a more representative average over the community.

Assumptions

Due to the lack of operationalization for informality, we assume that formality
and informality are mutually exclusive, thus allowing us to use this metric for the
identification of INs as well [30].

Limitations

The GitHub REST API does not allow just anyone to retrieve the collaborators from
a repository using the Collaborators APL." People are only authorized to retrieve
this information from a repository if they have push access. Additionally, it is only
possible to retrieve a maximum of 500 contributors using the Contributors API.
We distinguished between collaborators and contributors using the advice from
the GHTorrent Project, ~ which works towards “a scalable, quaryable, offline mirror
of data offered through the GitHub REST API”. This entails that all commit
committers/pull request mergers will be counted as collaborators.” All commit
authors who are not classified as collaborators will be contributors. The difference

Uhttps://docs.github.com/en/rest/reference/repos#collaborators
(visited on 20/05/2021)

2https://docs.github.com/en/rest/reference/repos#list-repository-contributors
(visited on 20/05/2021)

3https://ghtorrent.org/relational.html (visited on 20/05/2021)

14Pull request merges, i.e., merge commits, are included in the list of commits. However, note
that many merged pull requests appear as non-merged [46]. Additionally, if the pull request was
merged through GitHub.com, the GitHub account “web-flow” (https://github.com/web-flow)
will be assigned as the committer. The merger can still be found in the pull request details.

46

https://docs.github.com/en/rest/reference/repos#collaborators
https://docs.github.com/en/rest/reference/repos#list-repository-contributors
https://ghtorrent.org/relational.html
https://github.com/web-flow

between commit committers and commit authors is that the author originally wrote
the work, whereas the committer last applied the work [23].

Furthermore, there is a discrepancy between the mean membership type and
the milestones per project lifetime ratio. On the one hand, the mean membership
type is computed only for the members active in the 3-month time window, using
the commits and merged pull requests within that time window to assess their
membership type. On the other hand, the milestones per project lifetime ratio is not
limited to this 3-month time window. Experimentation is needed to see whether the
milestones per project lifetime ratio can be transformed to the snapshot period, or
whether that affects other factors, for example, the formality levels’ threshold.

Moreover, due to the calculation of formality, it is a requirement that communities
analyzed by YOSHI 2 use milestones. If a project does not use milestones, formality
will be infinite. However, in the way formality is calculated, there is a risk that
underuse of milestones increases formality.

5.2.4 Community Engagement

Community engagement is operationalized as participation levels across the com-
munity, intended as the amount of time a member is actively participating in
community-related actions [36]. It is used to identify ICs [80]. Community en-
gagement is also important for community health. For example, Kujala et al. [19]
have shown in a case study that developer engagement in software projects reflects
positively in user satisfaction. They found that if users are not satisfied by the
product /service provided by a community, it can affect a project’s success.

Detection Method

To establish engagement for a community, YOSHI 2 uses the same strategy as
YosHI [30], i.e., it computes the following data for the given repository:

1. The median number of comments per pull request. Note that GitHub has two
types of comments, review comments and issue comments. The number of
review comments depends on the number of mistakes made in the pull request.
Hence, we only use the issue comments for this metric. Tamburri et al. [75]
observed in their ethnographic study of Apache Allura that, “[on] average,
the number of discussions, comments, or threads spreading from a thread or
discussion is comprised between 0 or 1.”

2. The median active member. YOSHI 2 assigns each member a 1 if they committed
to this repository in the last 30 days (i.e., they are considered active), a 0
otherwise. Then it computes the median.

3. The median repository watcher member. When a user watches a repository, it
registers the user to receive notifications on new discussions, as well as events
in the user’s activity feed. " YOSHI 2 assigns each member a 1 if they watch
the given repository, a 0 otherwise. Then it computes the median.

5Note that the computations for the number of comments and for the distributions might differ
from YosHI [86] due to a lack of documentation and poor readability of YosHI’s code.
https://docs.github.com/en/rest/reference/activity#watching
(visited on 06/05/2021)

47

https://docs.github.com/en/rest/reference/activity#watching

4. The median repository stargazer member. A user can bookmark a repository
by “starring” it. Stars show an approximate level of interest in the repository,
but they have no effect on the notifications or activity feed of a user.” YOSHI 2
assigns each member a 1 if they starred the given repository, a 0 otherwise.
Then it computes the median.

5. The median monthly distribution of total posted pull/commit comments per
member. YOSHI 2 first extracts a list of commit comments and a list of pull
request comments. These lists are merged sorted by member. Then YOSHI 2
computes the mean comments for each member per month, followed by taking
the median from the resulting list.

6. The median monthly distribution of commits per member. YoOsHI 2 first
extracts a list of commits. YOSHI 2 iterates over this list and assigns the
committer date to the committer, and the author date to the author. Then
YosHI 2 computes the mean commits for each member per month, followed by
taking the median from the resulting list.

7. The median monthly distribution of collaborations on files. YOSHI 2 first
extracts a list of commits. Note that filenames can be changed, to handle these
cases, YOSHI 2 iterates over the commits and extracts the changed filenames.
The filename changes are inserted into a graph, from which we extract the
largest non-overlapping sets of changed filenames. Then, YOSHI 2 computes
the committers per file per month, merging the committers for files whose
names were changed. Next, the mean number of committers per file per month
are computed, from which YoOsHI 2 takes the median.

Then, after the above data is computed for a community, it computes the
engagement level by summing them.

Note that for the engagement metrics we compute medians instead of means. It
was not elaborated why medians were computed over means [36]. The computations
of the average active member, watcher member, and stargazer member are immune
to outliers, but the other four metrics are not immune to outliers. We speculate that
for the sake of consistency in determining engagement of the average community
member, the median was computed even for those metrics immune to outliers.

Assumptions

We previously mentioned that Tamburri et al. [75] observed that, “[on] average, the
number of discussions, comments, or threads spreading from a thread or discussion
is comprised between 0 or 1.” This study was limited to the Allura community and
may not be generalizable to other communities, but we assume that this is the case.

Limitations

As mentioned for community structure, some author and commenter relations might
be missed regarding pull request interactions. An author could have created or
updated their pull request outside the 3-month snapshot period, whereas commenters

"https://docs.github.com/en/rest/reference/activity#starring
(visited on 06/05/2021)

48

https://docs.github.com/en/rest/reference/activity#starring

could have commented within the 3-month period. The comments within the 3-month
snapshot period cannot be linked to an author and are thus ignored.

Furthermore, “being active” can be interpreted in multiple ways. Our take uses
the original take by Tamburri et al. [30] used for YOSHI on “being active”. This
take is simply related to when the community members last committed. Other takes
of activity could use the number of commits within the 3-month period. However,
note that this is accounted for in the median monthly distribution of commits per
member. Moreover, some members are not active in code contribution, but they are
actively contributing to discussions. These types of activities are not measured when
measuring the median active member.

Additionally, most engagement metrics can be measured over a 3-month period.
However, retrieving the lists of watchers and stargazers per repository are snapshots
at the time of retrieval. As a result, we cannot take into consideration any changes
to these lists over the 3-month period.

Regarding the distribution of total posted pull/commit comments. We could have
also taken into consideration issue comments, not just pull request comments. In
general, other factors could potentially be included, but it would need further experi-
mentation. We adhered as much as possible to the solution design for YosHI [30].

Finally, in our operationalization, the metrics are to a moderate extent equally
weighted, i.e., they should all be between 0 and 1, but they are all different types of
engagement. Certain types of engagement might be more representative of Informal
Communities than others. This might be interesting for future work, as well as a
detailed analysis of the cases that some metrics do exceed 1.

5.2.5 Community Longevity

YosHI 2 identifies community members through commit activity. Therefore, com-
munity longevity is represented by committer’s longevity, i.e., a measurement of
how long committers are part of the community [$6]. Longevity is the key defining
attribute to identifying PTs [30].

Detection Method

We measure community longevity as shown in Equation (5.0).

1
community longevity = M Z CL,, (5.6)

meM

In other words, we compute the mean committer longevity (C'L) for the set of
community members that were active within the 3-month period (M) to determine
the community’s longevity [36]. C'L is a measure of how long a committer m € M is
part of the community [36]. To calculate community longevity, YOSHI 2 determines
for each committer their first- and last commit’s creation date and time and then
computes the number of days between them. Note that, like YOSHI [30], we use the
mean and not the median. It was not explained why it used the mean instead of the
median. However, we conjecture that if a community has a lot of developers that
leave after contributing once or twice over the span of multiple years and we were to
use the median, then it could be assigned a Project Team, even though it has been
active for multiple years. By taking the mean, the value for longevity is affected by

49

long-term contributors. Therefore, if the mean committer longevity is a small value,
it is more likely to be indicative of a Project Team.

Assumptions

Computing the community longevity through committer longevity implies the as-
sumption that the community exists since the first commit until the last commit. It
is possible that a community got together before their first GitHub commit. However,
note that we define the members through GitHub commits. Therefore, we contend
that it makes sense to use committer longevity as community longevity.

Limitations

It is possible that the mean committer longevity is affected by a very skewed
distribution of committer longevity. If there are many committers with low committer
longevity, and only very few with high committer longevity, it could be that YosHI
assigns projects incorrectly as PTs.

5.3 Architecture

Since we could not reuse parts of YOSHI due to its poor readability and lack of
documentation, we reimplemented it based on the solution design for YOSHI described
by Tamburri et al. [36]. In that process, we also modified the architecture. Figure
illustrates the high-level architecture of YOSHI 2 using a basic input-output control
flow diagram, showing a modular architecture arranged in three components.
YosHI 2 first reads input from the user in the I/O Component (bottom part of
Figure 5.1). The user must input the paths where the input, i.e., repository owners
and names, is stored and where it can write the output, i.e., measurements and
community patterns. The component uses the CsvHelper package to read the input
from- and write the output to Comma-Separated Values (CSV) files. Additionally,
the user must manually enter the number of Bing REST Services requests left, as we
could not find a way to retrieve this status using the Bing REST Services API.
Then, the Retrieval Component receives repository information from the 1/0
Module and retrieves data for the given repositories through the GitHub REST API
v3, using the official Octokit GitHub API Client Library for .NET. The Retrieval
Component includes a subcomponent responsible for handling the GitHub rate limit,
as the GitHub REST API limits users to 5,000 requests per hour. Additionally,
the Retrieval Component is responsible for multiple preprocessing steps that ensure
that the data used in the Processing Component is from within the 3-month time
window (if necessary). Moreover, using the members’ location data obtained from
the GitHub REST API, it applies geocoding from the Bing Maps Locations API to
obtain the coordinates necessary for the Processing Component. To use the Bing
Maps Locations API, we used the Geocoding.Microsoft package. However, the Bing
REST Services API limits a user’s free API requests to an x number of requests
based on their license. ~ Unlike the GitHub REST API, we could not find an easy
way to track the rate limit through the API. To prevent unexpected costs, the user is

Bhttps://www.microsoft.com/en-us/maps/licensing (visited on 19/04/2021)

20

https://www.microsoft.com/en-us/maps/licensing

Processing
Component Characteristics o| Pattern Processor [|
Processor | (Type-Decision Module)
A
» Bing Maps
B Locations API
GitHub Rest API v3
Retrieval
Component Data | Activity API |
Retriever | lssues AP| |
<
| Pull Requests API |
| Repositories API |
| Users API |
A
/0
Component
— I/O Module <

Figure 5.4: The high-level architecture of YosHrI 2.

responsible to enter their remaining requests as explained in the previous paragraph.
The number of remaining requests can be found in the Bing Maps Dev Center.

After retrieving the data, the Processing Component evaluates the metrics and
characteristics from the Retrieval Component in the Characteristics Processor. The
Characteristics Processor computes the metrics and values for the characteristics as
discussed in Section 5.2. Then, the Pattern Processor in the Processing Component
uses the characteristics’ values to detect a community’s community pattern. The
Pattern Processor is an implementation of Algorithm

YosHI 2 then passes the data from the Processing Component to the I/O Module,
which outputs the computed characteristics, their constituent metrics data, and the
community patterns to a CSV file.

5.4 Modifications to Yoshi’s Solution Design

In this section, we elaborate on the modifications we made to YOSHI’s solution design
for YOSHI 2 in their detection strategies. We have provided an overview in Table

51

Table 5.2: An overview of the modifications in detection strategies between Y OSHI [30]
and YOSHI 2.

‘ Deviations

Structure ‘ —

Geodispersion | e YosHI used Google’s Geocoding API [$6], whereas YOSHI 2
uses Bing Maps Locations API.

e YOsHI 2 uses updated Hofstede indices (manually extracted
from Hofstede Insights [12] 13 May, 2021).

Formality e YOsHI retrieves collaborators and contributors directly from
the API [80], whereas YOSHI 2 approximates which members
are considered contributors and which collaborators.

Engagement ‘ e YOsHI used subscriptions [36], YOSHI 2 uses stargazers.

Longevity ‘ —

Cohesion ‘ e YOSHI 2 does not support Cohesion.

To elaborate on Table 7.2, we will discuss the modifications in more detail below.
Geodispersion. YosHI used Google’s Geocoding API [36], whereas YOSHI 2 uses

Bing Maps Locations API. We chose to use Bing Maps Locations API because
it allows for 50,000 free API requests per 24-hour period for a Windows app or
education. ' We first attempted to use Google’s Geocoding API but were required
to enter payment details. Since YOSHI 2 is developed as a .NET console application,
we searched for alternative geocoding packages on NuGet, .NET’s package manager.
A package supporting Bing Maps geocoding was the second most popular after a
package supporting Google Maps Geocoding. Additionally, in the computation of
geodispersion, the Hofstede indices used for each country may be different. We used
updated data from Hofstede Insights [12] (manually extracted 13 May 2021). As a
result, we have Hofstede indices for 118 countries, whereas the old tool only had data
for 66 countries and 11 American or Canadian states and cities. Consequently, both
the geographical distance and cultural distance may result in different values due to
different underlying numbers, i.e., the geocoders may use different coordinates and
have a different accuracy, and the Hofstede indices are more up-to-date. However,
using the same communities as for our survey experiment (Chapter 7), we noticed
that the updated Hofstede indices have very little effect (Table 5.3).

Formality. The old YOSHI used the typical membership types from GitHub, i.e.,
Contributor and Collaborator [30]. As discussed in Section , this data is not
publicly available anymore, so in the new version we had to approximate which users
are considered contributors and which collaborators.

Engagement. YOSHI used subscriptions [36], whereas YOSHI 2 uses stargazers.
The GitHub API “exposes Watchers as ‘Subscriptions’ since 2012, and the data
for YosH1 [86] was retrieved in 2017. In 2012, the old “watchers” became so-called
“stargazers” whereas “subscribers” became the new “watchers”.”’ The GitHub REST

Yhttps://www.microsoft.com/en-us/maps/licensing (visited on 19/04/2021)
2Onttps://developer.github.com/changes/2012-09-05-watcher-api
(visited on 07/06,/2021)

52

https://www.microsoft.com/en-us/maps/licensing
https://developer.github.com/changes/2012-09-05-watcher-api

Table 5.3: Comparison between geodispersion for communities using the old Hofstede
indices [30] and the new Hofstede indices [12]. More details regarding the results
can be found in Appendix). The code that was used to derive these results can be
found in Appendix

Community OldDispersion NewDispersion
Couchdb 208.6453023 208.6453023
Trafficserver 2863.66061 2863.66061
Bookkeeper 2734.567734 2734.569951
Dubbo 418.6290878 418.6290878
Druid 3261.067306 3261.068654
Echarts 1731.284329 1731.285783
Cloudstack 3417.564061 3417.565243
Airflow 2995.995477 2995.997253
Incubator-Mxnet 3290.930628 3290.931238
Superset 3026.482091 3026.487009
Openwhisk 3211.235372 3211.237684
Pulsar 3166.794859 3166.797796
Rocketmq 773.2084432 773.2053438
Incubator-Doris 464.6136101 464.6136101
Camel-K 2720.867235 2720.872065
[ceberg 2800.385053 2800.38668
Dolphinscheduler 3290.476296 3290.479607
Apisix-Dashboard 2404.692693 2404.698763
Skywalking 3787.990299 3787.992247
Shardingsphere 2098.055526 2098.060985
Camel-Quarkus 3246.001981 3246.002838
Zephyr 3021.143947 3021.145809
Protobuf 3425.513282 3425.520491
Milvus 542.9080849 542.9080849

Scikit-Learn

3409.100971

3409.100865

API describes starring as “a feature that lets users bookmark repositories. Stars
are shown next to repositories to show an approximate level of interest. Stars
have no effect on notifications or the activity feed.”” We have used the current
repository watchers and stargazers to compute the engagement metrics. However,
it must be stated that the explanation of stargazers does not completely fit either
the description of “repository watcher members” or “subscriptions” from the quote
above, since stars have no effect on notifications or the activity feed. Essentially,
using stargazers for subscriptions is the only change to the detection strategy of
community engagement. However, the original detection strategy was quite vaguely
described. Thus, if looking separately at the descriptions, YOSHI 2’s design may look
different to YOsHI’s. Hence, we use this space to clarify the old detection strategy.
Interesting to note is that we attempted to look at YOSHI's implementation of the
engagement metrics for clarification but could not find the described implementation.

Zlhttps://docs.github.com/en/rest/reference/activity#starring
(visited on 06/05/2021)

23

https://docs.github.com/en/rest/reference/activity#starring

YosHI's detection strategy for community engagement is as follows [30]:

“Detection Strategy. To establish engagement, YOSHI computes the following data
about each community member:

1. Total number of pull-request comments;

2. Monthly distribution of total posted pull/commit comments—Y OSHI extracts
pull-request and commit comments posted by community members;

3. Number and list of repository active members (i.e., members who committed
at least once in the last 30 days)—YOSHI uses attribute values to measure the
number of commit events initiated by users;

4. Repository watcher members, i.e., third-parties who receive notifications of the
activity across the community;

5. Subscriptions, i.e., third-parties who get digests of commit activity across the
community;

6. Distribution of commits for each user;

7. Distribution of collaborations on files—Y OSHI examines the development activ-
ities of repository contributors to see if they were working together on common
issues opened in the standard GitHub issue-tracker.

Finally, Engagement levels across the community are established as the member
medians of the measurements above.”

After a private consultation with the authors of YOSsHI [30], we found that, instead
of using the member median for the “Total number of pull-request comments”, we
should compute the median number of comments per pull request, which is more
in line with the previous detection strategy [75]. Furthermore, note that point 2 in
YosHI's detection strategy describes a monthly distribution, whereas points 6 and 7
do not explicitly mention a monthly distribution. After this private consultation, we
found that points 6 and 7 were also monthly distributions.

Cohesion. YOSHI 2 does not support cohesion, because we prioritized the other
characteristics and estimated that it would take too much time to reimplement
cohesion’s detection strategy.

Note that we could not identify any changes to the detection strategies for
structure and longevity. However, it is very likely that there are more implementation
differences between YOSHI and YOSHI 2 that we are unable to include due to the lack
of documentation of the original YOSHI code. These implementation differences could
potentially affect the outcome. In other stages of this research, we observed several
of YOSHI's implementation inconsistencies with the mentioned solution design.

5.5 General Tool Limitations

In the previous sections, we have addressed several limitations per detection method
already. In this section, we want to address some general limitations.

First, YosHI 2 is only capable of detecting 8 out of 13 community types relevant
to open-source communities [20]. Four of these types have been found to be the
most representative of open-source communities (FN, IN, NoP, and IC) [75]. Hence,

o4

YosHI 2 is only partially effective in identifying types that blend characteristics
from unsupported types [30].

Currently, YOsHI 2 does not support alias resolution. While we did explore
options for alias resolution, such as ALFAA by Amreen et al. [9] and the method by
Vasilescu et al. [90], we prioritized implementing the metrics for the characteristics
and we ended up being unable to implement alias resolution. It is difficult to measure
community characteristics accurately, if members have multiple accounts. Their
activities are considered separately by YOSHI 2, as if they were distinct members. It
is not uncommon that developers have multiple accounts [9].

Furthermore, YOSHI 2 is a tool that is limited to GitHub. If a community uses
another platform besides GitHub (e.g., Jira or Bugzilla), which happens often [1(],
the values obtained by YOSHI 2 may not be as accurate anymore. Note that this
is not just limited to using multiple platforms simultaneously, it could be that
communities migrated from one version control system, e.g., SourceForce, to GitHub.

Moreover, YOSHI 2 creates a graph for the community structure but is unable to
create a visualization. YOSHI was able to visualize a software development network
over a world map using its own visualization component. It could also export
community structures to Gephi —“a Java library which provides useful and efficient
network visualization and exploration techniques” [30].

For the remainder of this section, we repeat some limitations addressed by
Tamburri et al. [36]. YOsHI was evaluated on 25 projects consisting of open-source
projects hosted on GitHub. Therefore, YOSHI, and thus also YOSHI 2, might not
easily generalize to other domains such as closed-source projects [$0]. Furthermore,
the clear-cut thresholds for YOsHI [80], and thus also for YOSHI 2, might be biased
for the considered communities and they may not be as straightforward as assumed.

Additionally, there are many organizational and socio-technical characteristics of
state-of-the-art in organizations research and social network analysis (e.g., community
decoupling, reciprocity levels) that YOSHI 2 does not consider [30].

In conclusion, there is still a lot of room for improvement in YOSHI 2.

95

Chapter 6

Consistency Analysis Yoshi and
Yoshi 2

6.1 Introduction

Y OsHI 2’s implementation and solution design were discussed in the previous chapter.
Additionally, we included a table on the differences between YOSHI and YOSHI 2.
Since YOSHI 2 is based on the same design as YOsHI, and Tamburri et al. [30]
obtained accurate results, i.e., 33 out of 36 answers by developers confirmed Y OSHI's
output [36], we attempted to evaluate YOSHI 2’s consistency with YOSHI in terms
of community pattern detection. By reasoning about its consistency with YOSHI, we
aimed to show that YOSHI 2 is capable of accurately detecting community patterns.
Hence, in this chapter, we wanted to answer the following question:

RQ2: Is YOSHI 2’s detection of community patterns consistent with Y OSHI?

We attempted to use this question to evaluate YOSHI 2, since we should be
able to trace back any differences in the results between YOSHI and YOSHI 2 to
the changes made in their design, as listed in Table 5.2. However, due to various
circumstances, we were not able to provide a definitive answer. Nevertheless, from
our observations we expect that if we would have had a chance to apply both tools
to a new project, that YOsHI 2 would provide different results from YOsHI. In this
chapter, we address our attempt at answering the question above. It is structured

as follows. Section describes our methodology and Section the results. We
discuss the results in Section ¢., which is followed by the threats to their validity in
Section 0.5. Last, we conclude the chapter in Section

56

6.2 Methodology

In this section, we elaborate on the methodology used to answer , i.e., whether
YosHI 2’s detection of community patterns is consistent with YOSHI.

We realized that it would be difficult to answer this question, since YOSHI cannot
be used anymore due to outdated and discontinued API libraries. Hence, we reused
the results that were obtained in the original evaluation of YOSHI [36]. Our plan
was to analyze the same communities in the same time window, but this time using
YosHI 2 instead of YosHI. Therefore, we adjusted YOSHI 2 to analyze 3-month
time periods other than just the last 3-month period. That allowed us to analyze
the communities in the same time window as YOSHI. Then, we compared the results
between YOsHI and YOSHI 2 and attempted to determine whether the differences
in results can be traced back to any changes we made. However, this approach was
limited for the following reasons.

Lim.1: We could only find the names of the communities used for YOSHI's evalua-
tion, not the corresponding repositories [$6]. These names are not enough to
determine which projects were analyzed.

Lim.2: We could not find the time window in which the communities were ana-
lyzed using YOsHI [36]. We know that the projects were selected- and their
characteristics were extracted in April 2017.

Lim.3: Several of the GitHub API endpoints used by YOSHI 2 are snapshots at the
time of retrieval, and it is impossible to retrieve data from previous periods.

Lim.4: Projects’ history on GitHub can be rewritten [16]. As a result, we might
obtain different data compared to the data that would be collected in April
2017 for the same period.

To address , we analyzed the different repositories mentioned in
YosHI's GitHub repository that could potentially correspond to the communities
reported in YOSHI's evaluation [30]. Characteristics have been provided for each of
the analyzed communities [36]. We have copied this table for reference to Table
We know that the characteristics were retrieved in April 2017, but not exactly what
date. Hence, we retrieved similar characteristics up to and including April 30, 2017
and tried to find which repository matches the statistics. For the number of releases,
we found that the number of GitHub releases deviated more from the reported
number of releases compared to Git tags. Hence, we analyzed Git tags.

was quite problematic. Since the projects were selected and the
characteristics were extracted in April 2017 [30], we assumed that the results were
extracted at around the same time, otherwise the characteristics would not match
the analyzed communities anymore. Hence, we analyzed the community patterns
between January 31, 2017 and April 30, 2017.

While could lead to different results, we would have been able
to trace back the difference in results to an API endpoint using a contemporary
snapshot. This would have allowed us to explain any potential differences in results.

For us, it is very difficult to know whether a community has changed its history as
described in . If the characteristics of each of the analyzed communities
varied too much compared to the original characteristics, then we assumed that their
history got changed. Otherwise, we assumed that the history has not been altered
enough to affect the outcome greatly.

o7

Table 6.1: Characteristics of the software projects used to evaluate YOSHI [36], which were extracted
from GitHub in April 2017. The domain taxonomy was tailored from literature [13].

Community # Rel. # Commits # Members # Language #KLOC Domain

Netty 164 8,123 258 JavaScript 438 Software Tools
Android 3 132 14 Java 382 Library

Arduino 74 6,516 210 C 192 Rapid prototyping
Bootstrap 55 2,067 389 JavaScript 378 Web libraries and fw.
Boto 86 7,111 495 Python 56 Web libraries and fw.
Bundler 251 8,464 549 Java 112 Web libraries and fw.
Cloud9 97 9,485 64 ShellScript 293 Application software
Composer 35 7,363 629 PHP 254 Software Tools
Cucumber 8 566 15 Java 382 Software Tools
Ember-JS 129 5,151 407 JavaScript 272 Web libraries and fw.
Gollum 76 1,921 143 Gollum 182 App. fw.

Hammer 25 1,193 84 C# 199 Web libraries and fw.
BoilerPlate 12 469 48 PHP 266 Web libraries and fw.
Heroku 52 353 10 Ruby 292 Software Tools
Modernizr 27 2,392 220 JavaScript 382 Web libraries and fw.
Mongoid 253 6,223 317 Ruby 187 App. fw.

Monodroid 2 1,462 61 C# 391 App. fw.

PDF-JS 43 9,663 228 JavaScript 398 Web libraries and fw.
Scrapy 78 6,315 242 Python 287 App. fw.

Refinery 162 9,886 385 JavaScript 188 Software Tools

Salt 146 81,143 1,781 Python 278 Software Tools
Scikit-Learn 2 4,456 17 Python 344 App. and fw.
SimpleCV 5 2,625 69 Python 389 App. and fw.
Hawkthorne 116 5,537 62 Lua 211 Software Tools
SocketRocket 10 494 67 Obj-C 198 App. fw.

6.3 Results

In this section, we report the results of our comparison between YOSHI and YOSHI 2’s
detected community patterns on the communities used in YOSHI's evaluation [0].
Specifically, we analyzed whether YOSHI 2’s results are consistent with YOSHI’s to
determine whether YOSHI 2 is capable of accurately detecting community patterns.

As mentioned in Section 0.2, we adjusted YOSHI 2 to analyze 3-month time
periods other than just the last 3-month period, allowing us to apply YOSHI 2 to
the communities in the same time window as YOSHI. Then, we wanted to compare
the results between YOsHI and YOSHI 2 and attempt to determine whether the
differences in results can be traced back to any changes we made. However, we found
multiple limitations that needed to be addressed first, as explained in Section

We addressed by analyzing the characteristics of the repositories
mentioned in YOSHI's GitHub repository for 30 April 2017. Using the information
reported in Table 0.2, we mapped the communities to their corresponding repositories
in Table 0.2. Note that there are various ways to compute the number of releases

28

and members. We computed the number of releases using Git tags and the number
of members from the commits. Since the number of commits was likely to be the
most accurate, we prioritized the number of commits over the number of releases
and the number of members when mapping the communities to repositories.

For , we had established that we would analyze the community
patterns between January 31, 2017 and April 30, 2017, since we assumed that the
results were extracted at around the same time that the projects were selected, and
their characteristics extracted.

While could lead to different results, we would be able to trace
back the difference in results to an API endpoint using a contemporary snapshot.
This would allow us to explain any potential differences in results, hence we did not
further address this limitation.

We filtered the projects for which the history got changed too much based on
Table 0.2. We assume that the remaining alterations to projects will not greatly
affect the outcomes, thus we had taken care of

Since the limitations were addressed, we attempted to analyze the repositories
using YOSHI 2. However, due to a multitude of reasons, many communities could
not be analyzed in the time window between January 31, 2017 and April 30, 2017
(Table ¢.1). There are quite a few communities that could not be analyzed because
of the time window. This made us doubt our assumption for , that the
projects were analyzed in a time window at around the same time that the projects
were selected, and their characteristics extracted. Hence, we proceeded to analyze
the results obtained with YOSHI [30] and the results we obtained with YOsHI 2,
which we included in Table

We observed contradictions with the reported thresholds (Table 5.1) in YOSHI’s
results [360]. We have highlighted the contradictions in Table . For example,
YosHI reported for both Monodroid and Hawkthorne the community pattern {IC,
IN, FG} [36]. However, the thresholds for Informal Networks (INs) and Formal Groups
(FGs) ensure that YOSHI cannot report these together, because both the formality
levels and the global distance contradict, i.e., INs thresholds require formality levels
less than 0.1 and global distance greater than or equal to 4926 km, whereas FGs
require formality levels between 0.1 and 20, and a global distance less than 4926 km.
We observed similar contradictions for 20 out of 26 community patterns inferred by

YosHI [$6]. Note that there is an additional reported result due to a contradiction
between the report [$6] and the appendix [35].
In our consultation with the authors [30], they stated that, after obtaining

Y osHI's results, some unreported manual processing was done to obtain their results.
They were unable to provide us with the workbook in which they performed their
manual processing.

29

Table 6.2: Communities that were used to evaluate YosHI [36] (bold) vs. repositories analyzed in
YosHr's GitHub repository [36]. Green cells are within 15% margin of the bold cells, whereas red
are not. The code that was used to extract these statistics is included in Appendix

Repository # Rel # Commits # Members
Netty 164 8123 258
netty /netty 166 8138 259
Android 3 132 14
eoecn/android-app 1 132 15
novoda/android 3 225 16
github/android 19 3161 110
excilys/androidannotations 26 2700 58
android/platform_frameworks_base 478 319724 780
CyanogenMod /android _frameworks_av 24 29777 171
CyanogenMod /android _frameworks_base 31 255628 774
CyanogenMod /android _frameworks_native 24 56044 283
Arduino 74 6516 210
arduino/Arduino 74 6520 201
Bootstrap 55 2067 389
angular-ui/bootstrap 55 2067 370
mindmup /bootstrap-wysiwyg 0 68 8
320press/wordpress-bootstrap 0 295 41
TalksLab/metro-bootstrap 1 82 10
RailsApps/rails3-bootstrap-devise-cancan 0 75 1
twbs/bootstrap 41 16056 815
Boto 86 7111 495
boto/boto 86 7111 463
Bundler 251 8464 549
bundler /bundler 256 8490 519
carlhuda/bundler 256 8490 519
Cloud9 97 9485 64
c9/core?® 0 9139 50
ajaxorg/cloud9 0 2 1
Composer 35 7363 629
composer,/composer 35 7373 578
Cucumber 8 566 15
cucumber /cucumber 9 599 17
cucumber /cucumber-jvm 50 3254 158
cucumber /cucumber-rails 42 915 91
Ember-JS 129 5151 407
emberjs/data 133 5171 393
emberjs/ember.js 246 14332 629
emberjs/website 3 5730 721
Gollum 76 1921 143
gollum /gollum 76 1962 141
Hammer 25 1193 84

60

Table 6.2 (continued)

Repository # Rel # Commits # Members
EightMedia/hammer.js 25 1193 79
BoilerPlate 12 469 48
h5bp /mobile-boilerplate 12 469 48
h5bp/html5-boilerplate 28 1561 208
backbone-boilerplate/backbone-boilerplate 2 470 37
jquery-boilerplate/jquery-boilerplate 11 215 21
jquery-boilerplate /boilerplate 11 215 21
Heroku 52 353 10
heroku/node-js-sample 0 51 7
heroku/heroku-buildpack-ruby 146 1403 48
heroku/heroku-buildpack-php 107 1055 23
heroku/heroku-buildpack-nodejs 52 643 30
heroku/heroku-buildpack-python 95 1381 49
heroku/heroku 540 4296 130
Modernizr 27 2392 220
Modernizr/Modernizr 27 2392 209
Mongoid 253 6223 317
mongoid /mongoid 253 6223 306
Monodroid 2 1462 61
xamarin/monodroid-samples 0 1475 58
PDF-JS 43 9663 228
mozilla/pdf.js 43 9701 220
Scrapy 78 6315 242
scrapy /scrapy 79 6353 229
Refinery 162 9886 385
refinery /refinerycms 162 9886 360
resolve /refinerycms 148 8120 230
Salt 146 81143 1781
saltstack/salt 158 81500 1688
Scikit-Learn 2 4456 17
scikit-learn /scikit-learn 80 21797 810
SimpleCV 5 2625 69
sightmachine/SimpleCV 5 2625 70
Hawkthorne 116 5537 62
hawkthorne /hawkthorne-journey 116 5537 58
SocketRocket 10 494 67
square/SocketRocket 10 494 65

& Not derived from YosHI's GitHub repository. Instead, on the repository of ajaxorg/cloud9
(https://github.com/ajaxorg/cloud9 (visited on 10/08/2021)), it is stated that the reposi-

tory was replaced by c¢9/core.

61

https://github.com/ajaxorg/cloud9

Table 6.3: A mapping from the communities used to evaluate YOSHI |
repository with similar characteristics mentioned in YosHI’s GitHub repository.

Community Repository

Netty netty /netty

Android eoecn/android-app
Arduino arduino/Arduino
Bootstrap angular-ui/bootstrap
Boto boto/boto

Bundler bundler /bundler

Cloud9 c9/core

Composer composer /composer
Cucumber cucumber /cucumber
Ember-JS emberjs/data

Gollum gollum/gollum

Hammer EightMedia/hammer.js
BoilerPlate ~ hbbp/mobile-boilerplate
Heroku -

Modernizr Modernizr /Modernizr
Mongoid mongoid /mongoid
Monodroid xamarin/monodroid-samples
PDF-JS mozilla/pdf.js

Scrapy scrapy /scrapy
RefineryCMS refinery /refinerycms

Salt saltstack/salt
Scikit-Learn -

SimpleCV sightmachine/SimpleCV
Hawkthorne hawkthorne/hawkthorne-journey
SocketRocket square/SocketRocket

62

] to a

Table 6.4: Reasons why certain GitHub communities could not be analyzed within
the time window between January 31, 2017 and April 30, 2017 by YOSHI 2.

Community

Cause

netty /netty

eoecn/android-app

angular-ui/bootstrap

c9/core

cucumber /cucumber

EightMedia/hammer.js

h5bp/mobile-boilerplate
Heroku
mongoid/mongoid

xamarin/monodroid-
samples

mozilla/pdf.js

refinery /refinerycms

saltstack /salt

scikit-learn /scikit-learn
sightmachine/SimpleCV

hawkthorne /hawkthorne-
journey

square/SocketRocket

The GitHub REST API returned a server error, each time,
over multiple attempts within a week.

Their last commit was Jun 16, 2014.2

They had no commits between Jan 31, 2017 and May 1,
2017. If the analysis period was at the start of April, several
commits are detected.”

This repository replaced ajaxorg/cloud9, but does not have
any milestones.©

They do not have any milestones.?

They had only one commit in the period between Jan 1,
2017 and May 1, 2017.¢

Their last commit was Jul 19, 2015.f
We could not identify which repository was analyzed.
Their last commit was Jul 27, 2015.8

They do not have any milestones.”

The GitHub REST API returned a server error, each time,
over multiple attempts within a week.

They had no commits between Jan 31, 2017 and May 1,
2017. If the analysis period was at the start of April, several
commits are detected.!

The GitHub REST API returned a server error, each time,
over multiple attempts within a week.

We could not identify which repository was analyzed.
Their last commit was Apr 7, 2015.
They had no commits in 2017.X

They had only one commit in 2017, and that was Aug 30.!

® https://github.com/eoecn/android-app/commits/master (visited on 10/08/2021)

b https://github.com/angular-ui/bootstrap/commits/master (visited on 10/08/2021)
¢ https://github.com/c9/core/milestones?state=closed (visited on 10/08/2021)

d https://github.com/cucumber/cucumber/milestones?state=closed

(visited on 10/08/2021)

© https://github.com/EightMedia/hammer. js/commits/master (visited on 10/08/2021)

f https://github.com/h5bp/mobile-boilerplate/commits/master (visited on 10/08/2021)
8 https://github.com/mongoid/mongoid/commits/master (visited on 10/08/2021)

M https://github.com/xamarin/monodroid-samples/milestones?state=closed

(visited on 10/08/2021)

! https://github.com/refinery/refinerycms/commits/master (visited on 10/08/2021)
J https://github.com/sightmachine/SimpleCV/commits/master (visited on 10/08/2021)
K https://github.com/hawkthorne/hawkthorne- journey/commits/master

(visited on 10/08/2021)

! https://github.com/square/SocketRocket/commits/master (visited on 10/08/2021)

63

https://github.com/eoecn/android-app/commits/master
https://github.com/angular-ui/bootstrap/commits/master
https://github.com/c9/core/milestones?state=closed
https://github.com/cucumber/cucumber/milestones?state=closed
https://github.com/EightMedia/hammer.js/commits/master
https://github.com/h5bp/mobile-boilerplate/commits/master
https://github.com/mongoid/mongoid/commits/master
https://github.com/xamarin/monodroid-samples/milestones?state=closed
https://github.com/refinery/refinerycms/commits/master
https://github.com/sightmachine/SimpleCV/commits/master
https://github.com/hawkthorne/hawkthorne-journey/commits/master
https://github.com/square/SocketRocket/commits/master

Table 6.5: Community patterns inferred by YOSHI and YOsHI 2 for the considered
communities [36]. Every analyzed community is considered a SN, and therefore SN has

not been included in the table. YOSHI 2’s input can be found in Appendix

. More

details for YOSHI 2’s results, i.e., values for the individual metrics and characteristics,

can be found in Appendix

Community Pattern (YosH1) Pattern (YOSHI 2)
Netty IC, FN, FG —
Android IC, FN, FG —
Arduino IC, FN, FG CoP
Bootstrap IN, NoP —
Boto IC, IN CoP
Bundler NoP, FG CoP, IC
Cloud9 IC, FN, FG —
Composer IC, FN, FG CoP
Cucumber IN, IC, NoP —
Ember-JS FN, FG, WG CoP
Gollum IC, FN, FG CoP, IC
Hammer IN, NoP —
BoilerPlate IN,NoP —
Heroku NoP, IN, FG —
Modernizr IN, NoP, WG CoP
Mongoid FN, FG, WG —
Monodroid IC, IN, FG —
PDF-JS IN, NoP —
Scrapy FN, FG, WG CoP
RefineryCMS FG, WG —

Salt FN, FG, WG —
Scikit-Learn ~ NoP, IN, FG —
SimpleCV IC, NoP, IN, FG —
Hawkthorne IC, IN, FG —
SocketRocket NoP, IN, FG —

64

Table 6.6: Community patterns inferred by YosHI [30] and how they contradict the
reported empirical thresholds (Table 5. 1). Red patterns contradict thresholds, green
patterns do not.

Community Pattern Threshold Contradictions

ember.js

mongoid FN, FG cannot be reported together, formality levels and global distance contradict
Scrapy Thresholds for FN: Formality Levels > 20 A Global distance > 4926 km

Salt Thresholds for FG: Formality Levels > 0.1 and < 20 A Global distance < 4926 km
netty If FG would be reported, CoP would be reported as well

android Thresholds for FG: Formality Levels > 0.1 and < 20 A Global distance < 4926 km
Arduino Thresholds for CoP: Global distance < 4926 km

cloud9 If FN would be reported, NoP would be reported as well

composer Thresholds for FN: Formality Levels > 20 A Global distance > 4926 km

gollum Thresholds for NoP: Global distance > 4926 km

BoilerPlate

boto _ If IN would be reported, NoP would be reported as well

Thresholds for IN: Formality Levels < 0.1 A Global distance > 4926 km
Thresholds for NoP: Global distance > 4926 km

bundler [NGPJEGII NoP, FG cannot be reported together, global distance contradicts
Thresholds for NoP: Global distance > 4926 km
Thresholds for FG: Formality Levels > 0.1 and < 20 A Global distance < 4926 km
If FG would be reported, CoP would be reported as well
Thresholds for FG: Formality Levels > 0.1 and < 20 A Global distance < 4926 km
Thresholds for CoP: Global distance < 4926 km

Heroku NoP, FG cannot be reported together, global distance contradicts
SocketRocket Thresholds for NoP: Global distance > 4926 km

scikit-learn Thresholds for FG: Formality Levels > 0.1 and < 20 A Global distance < 4926 km
SimpleCV If FG would be reported, CoP would be reported as well

Thresholds for FG: Formality Levels > 0.1 and < 20 A Global distance < 4926 km

Thresholds for CoP: Global distance < 4926 km

IN, FG cannot be reported together, formality levels and global distance contradict
Thresholds for IN: Formality Levels < 0.1 A Global distance > 4926 km

Thresholds for FG: Formality Levels > 0.1 and < 20 A Global distance < 4926 km

Monodroid IN, FG cannot be reported together, formality levels and global distance contradict
Hawkthorne Thresholds for IN: Formality Levels < 0.1 A Global distance > 4926 km

Thresholds for FG: Formality Levels > 0.1 and < 20 A Global distance < 4926 km

refinerycms If FG would be reported, CoP would be reported as well
Thresholds for FG: Formality Levels > 0.1 and < 20 A Global distance < 4926 km

Thresholds for CoP: Global distance < 4926 km

BoilerPlate IN,NoPP
bootstrap IN,NoP
hammer.js IN,NoP
Modernizr IN,NoP
pdf.js IN,NoP
cucumber IN,IC,NoP

@ The pattern reported for BoilerPlate in the online appendix [85].
b The pattern reported for BoilerPlate in the report [30].

65

6.4 Discussion

We have analyzed the number of releases, commits, and members per repository
mentioned in YOsHI's GitHub Repository in Table 0.2. This way, we could map
the communities used to evaluate YOsHI [30] to GitHub repositories as shown in
Table 0.2, However, when we attempted to analyze these communities in a time
window between January 31, 2017 and April 30, 2017 with YOsHI 2, we found that
9 out of the remaining 24 communities were not active in this time window. As a
result, we are not confident in our assumption that these communities were analyzed
in the aforementioned period. Hence, we decided to analyze the results reported by
YosHI [36] and observed that 20 out of 26 reported results contradict their previously
reported thresholds (Tables 7.1 and (.0). After consulting the authors [36], we found
that they manually postprocessed YOSHI's results, but did not include this process in
their report [26]. Furthermore, they could not provide us with the original workbook
in which this manual postprocessing was executed.

Taking into consideration that the results of YOSHI are inconsistent, we examined
whether YOSHI 2 produces a subset of the community types inferred by Y OSHI.
However, based on the results of YOSHI and YOsHI 2 (Table (.0), we see that this is
not the case. YOSHI 2 identifies every community as a CoP and two communities as
IC, whereas Yo0sHI did not find any CoPs. We could not identify a mistake in our
geodispersion computation, and it is also not the case that we had too few locations
compared to members. Additionally, it is unlikely that these developers have all
moved countries since 2017 and therefore affecting the computation of geodispersion.
The inaccuracy in assigning ICs can be a result of the engagement metrics dependent
on snapshots at the time of retrieval. The assignment of IC to Bundler is the
consequence of a very high median number of comments per pull request. We also
note that the formality metrics are quite high compared to the thresholds, i.e., the
lowest formality computed by YOSHI 2 is approximately 160 vs. the thresholds of 0.1
and 20. While we have very limited results for YOSHI 2, it seems that it produces
different results from YosHI. Therefore, if we would have had an opportunity to
apply both tools to a new project, we would expect to obtain different results.

6.5 Threats to Validity

Runeson and Host [70] have provided a model for validity threats identifying four
different validity aspects. In this section, we will address each aspect separately.

e Internal validity; are there third factors, possibly the applied methods, causing
the outcome?

e Construct validity; do the operational measures used in the study represent
what is investigated?

e Reliability; how are the study and results dependent on the researchers?

e External validity; to what extent can the findings be generalized and to what
extent are the findings of interest to people outside the analyzed dataset?

Internal validity. Our method of analyzing which repositories were used to
evaluate YOSHI [36] could affect our results. To reduce the chances of making a
mistake in this approach, we analyzed multiple characteristics of the repositories.

66

However, our method limited the repositories to those mentioned in YOsHI's GitHub
repository. This means that we may have missed some potential repositories, but
our results show very convincing candidates for all communities except Heroku and
Scikit-Learn. We conjecture that for the remaining communities and repositories the
characteristics were all convincingly close enough for us to map them.

Construct validity. Many of the threats to construct validity are inherited
from YOSHI [80]. We addressed several limitations in Section .2 but were unable to
completely deal with all of them. Although we need to be skeptical about our results,
they do form a pattern and therefore could mean that we made a mistake somewhere
in our operationalization of YOSHI 2 (specifically in terms of geodispersion and
formality). However, we could not identify any mistakes in our code.

Reliability. To determine which repositories were used to evaluate YOSHI, we
examined YOsHI's GitHub repository [30]. Even though we performed an exhaustive
search of all potential repositories that could correspond to an analyzed community, it
is possible that we missed some repositories. Additionally, to deal with the identified
limitations, we made several assumptions that could affect the results.

External validity. The results of this comparison cannot be compared with
other systems. We conjecture that YOSHI 2 provides different results than Y OSHI,
but we have too little evidence to form any conclusions. As mentioned before in
Section 0.1, we suspect that if we would have had an opportunity to apply both tools
to a new project, we would obtain different results, because of the many contradicting
results obtained with YOsHI (Table ¢.0) and since there seems to be a problem with
both geodispersion and formality.

6.6 Conclusion

In this chapter, we have described our attempt to answer , i.e., whether YOSHI 2’s
detection of community patterns is consistent with YosH1. While YOSHI 2 is based
on the same solution design as YOsHI, differences in implementation, as well as the
changes that we made to the geodispersion, formality, and engagement metrics, as
described in Section 5., could affect the outcome.

To compare the consistency of YOSHI 2 with YOSHI, we analyzed which communi-
ties were used to evaluate YOsHI [36]. We adjusted YOSHI 2 to analyze 3-month time
windows in the past to compare YOSHI 2’s results with YOSHI’s, since Y OSHI cannot
be used anymore. Then we found that we could not analyze 17/25 communities for
various reasons. A prominent reason was that the communities were not active in
the assumed analyzed time window of January 2017 up to and including April 2017.

As a result, we decided to analyze the results inferred by YosHI [¢6] and found
that 20 out of 26 reported results contradicted its own reported thresholds. Note that
there is an additional result due to a contradiction between their report [36] and their
appendix [35]. We consulted the authors [36] who stated that they performed some
unreported manual processing on YOSHI's results, but they were unable to provide
us with the processing steps. We observed that for 8 out of 25 analyzed communities,
YosHI 2 provided different results from Y OSHI, in which both geodispersion and
formality seem off. We have too little data to form any conclusions, but we conjecture
that if we would have had an opportunity to apply both tools to a new project, we
would obtain different results due to peculiar patterns in YOSHI 2’s results.

67

Chapter 7

Survey Evaluation of Yoshi 2 and
Kaiaulu

7.1 Introduction

In Chapter |, we described that we used YOSHI 2 for community pattern detection
and KATAULU for community smell detection in our goal to find relations between
community patterns and smells. We then explained YOSHI 2’s implementation in
Chapter 5. As explained in Chapter 0, our original attempt at proving YOSHI 2’s
consistency of detecting community patterns with YosHI [36] failed. Therefore, we
cannot yet claim that YOSHI 2’s results are reliable. Additionally, as discussed in
Chapter |, we planned to use KAIAULU [68] for community smell detection in our
analysis of the relations between community patterns and smells. However, KATAULU
was still a work in progress while we were conducting our study. Hence, in this
chapter, we want to answer the following two questions:

RQ3: Does YOSsHI 2 provide a correct indication of the community pattern of a
community?

RQ4: Does KAIAULU provide a correct indication of the community smells present
in a community?

To answer these questions, we have decided to conduct a survey in 25 open-
source communities. Our methodology for this survey experiment is described in

Section 7.”. Section covers our results of applying YosHI 2 and KAIAULU to
these communities, in comparison to the survey results. We discuss the results in
Section 7.1. Then, in Section 7.5, we list the threats to validity. Last, in Section 7.0,

we conclude this chapter.

7.2 Methodology

In this section, we discuss the methodology used to collect and analyze the data
needed to answer the research questions mentioned in Section 7.1. Specifically, in
Section , we describe how we selected the communities we analyzed and the
design of our survey. In Section , we describe how the data will be analyzed,
such that we can arrive at correct and meaningful conclusions.

68

7.2.1 Data Collection

Community Selection

First, to collect data from communities, we decided on a sample size of 25 commu-
nities selected from GitHub repositories. This number is based on the number of

communities that were used to evaluate YOsHI [36]. Tamburri et al. [36] used the
sampling guidelines from Falessi et al. [29] which they refined using best-practice
sampling criteria from Kalliamvakou et al. [16]. Based on these guidelines, we

established the following exclusion criteria.
A community is excluded if:

it is a fork of another repository,

it does not track issues on GitHub,

it does not have closed milestones on GitHub,

it has less than 10 contributors,

it has less than 100 commits,

it has less than 50 KLOC,

it has been archived,

their last commit was before the 4th of April 2021,

less than three members that committed within the analysis window' provide
their email address on their public GitHub profile page,

they do not use a mailing list as their main communication medium, and
e their spoken language is not English.

We exclude forked repositories to analyze the main activity of communities, since
YosHI 2 and KATAULU do not include forks in their analysis. Additionally, we do not
know whether forks operate independently from the rest of the project or not [10].
Y OsHI 2 uses milestones to compute formality. Milestones are “a way to track the
progress on groups of issues or pull requests in a repository”,” hence we require
GitHub issues and milestones to be used. Replicating the thresholds from Tamburri
et al. [80], we use a minimum of 10 contributors, 100 commits, and 50 KLOC to
select nontrivial communities that must deal with large codebases. We exclude
communities based on whether they are archived and their last commit to ensure
their activity. Archived communities are read-only and thus we do not consider them
active. Since we plan to conduct a survey, each community must have at least three
members with a public email address that we can approach with personal recruitment
emails. We chose the threshold of three members so we could analyze inter-rater
reliability, i.e., whether survey respondents from a community provided the same or
different answers. We require the communities main communication medium to be
mailing lists, since these are used by KATAULU to detect community smells. Last,
since the survey will be conducted in English, the potential recruits need to be able
to understand English, hence requiring the spoken language to be English.

We considered the following methods to select communities. First, we found
that Tamburri et al. [35] used GitHub Archive to select projects to evaluate Y OSHI.
GitHub Archive records the GitHub timeline, archives it, and makes it accessible
for further analysis via Google BigQuery. We attempted to use GitHub Archive,

!The 3-month period between 22 April 2021 and 21 July 2021 (excluding the end date).
’https://docs.github.com/en/get-started/quickstart/github-glossary
(visited on 12/10/2021)

69

https://docs.github.com/en/get-started/quickstart/github-glossary

but found that the structure of their public database had changed, which made it
complex to select repositories according to our criteria. Therefore, we examined
GHTorrent as an alternative, a project that attempts to “create a scalable, queryable,
offline mirror of data offered through the GitHub REST API”", but found that the
latest available dataset that we could use was from June 2019. As a result, we could
not control for project activity, i.e., many of the projects we would find would be
inactive, and we would not be able to detect any Project Teams since all communities
that were still active, would have been active for over 2 years. Instead, we attempted
to use GitHub’s trending page (between July 2 and July 5) to find repositories, but
the small sample size caused us to find only a few communities that used mailing
lists as their main communication channel.

To ensure that all projects used a mailing list, we decided to analyze Apache com-
munities. The Apache Software Foundation (ASF) requires that the communication
is via mailing lists.” However, the ASF appoints Project Management Committees
with at least one officer from the ASF for their projects. These committees have the
power to create their own self-governing rules, i.e., there is no single vision on how
these committees should run their projects and nurture the communities they lead.

We analyzed Apache’s GitHub repositories’ (over 2100 repositories) and extracted
only 21 communities that passed our criteria. To obtain 25 communities, we used
two communities from GitHub trending, i.e., Protobuf and Milvus, the Scikit-Learn
community from Table ¢.1, and Zephyr, which was mentioned by the supervisors.
These communities and their characteristics are listed in Table

Yoshi 2 and Kaiaulu

Now that we selected our sample, we applied YOsHI 2 and KAIAULU to these
communities to analyze the period between 22 April 2021 and 21 July 2021 (excluding
the end date) to observe which community patterns and smells are inferred by these
tools for these communities. For YOSHI 2, we only needed to prepare its input, i.e.,
a CSV-file containing the repository owners and names. Our input for YOSHI 2 can
be found in Appendix

For KAIAULU, we required more preparation, since KAIAULU is an API that
allows us to analyze various data sources [68]. KAIAULU is an R package that, instead
of having an all-in-all-out interface, provides various functions that we need to tailor
to our own needs. Luckily, KAIAULU provides vignettes in the form of R notebooks,
one of which could be used to analyze community smells. We used this vignette as
our basis. Other than installing the necessary libraries to run KAIAULU, we had to
prepare the following input to analyze the communities.

First, we had to compose configuration files for each community, which we
based on the provided examples [68]. Our configuration files and the description
of how we prepared them are included in Appendix |. Next, we had to clone each
community’s GitHub repository locally, such that the git log could be parsed by
KArauLu. Additionally, we had to prepare .mbox representations of the community’s
mailing lists. The URLs to the mailing lists are included in the configuration files
in Appendix I. We used KAIAULU’S mod _mbox and pipermail download functions

Shttps://ghtorrent.org/ (visited on 20/05/2021)

“https://www.apache.org/foundation/how-it-works.html#management
(visited on 12/07/2021)

Shttps://github.com/apache (visited on 12/07/2021)

70

https://ghtorrent.org/
https://www.apache.org/foundation/how-it-works.html#management
https://github.com/apache

Table 7.1: Characteristics of the communities considered in this study listed by the
owner and name of their GitHub repository, as extracted from GitHub on July 21,
2021. The code that was used to extract these statistics is included in Appendix

Owner Name # Commits # Members Language KLOC
Apache Couchdb 13,122 163 Erlang 115
Apache Trafficserver 13,524 221 CH++ 419
Apache Bookkeeper 2,499 117 Java 258
Apache Dubbo 4,772 340 Java 165
Apache Druid 11,104 370 Java 808
Apache Echarts 7,967 138 TypeScript 349
Apache Cloudstack 34,299 214 Java 1,067
Apache Airflow 12,937 415 Python 281
Apache Incubator-Mxnet 11,628 379 CH++ 383
Apache Superset 7,946 439 Python 189
Apache Openwhisk 2,915 188 Scala 87
Apache Pulsar 7,032 412 Java 453
Apache Rocketmq 1,638 249 Java 100
Apache Incubator-Doris 3,143 174 Java 491
Apache Camel-K 3,147 68 Go 59
Apache Iceberg 1,755 156 Java 181
Apache Dolphinscheduler 5,059 211 Java 113
Apache Apisix-Dashboard 850 54 Go 53
Apache Skywalking 6,614 358 Java 250
Apache Shardingsphere 29,377 269 Java 240
Apache Camel-Quarkus 2,950 54 Java 120
Protocolbuffers Protobuf 8,445 386 CH++ 542
Milvus-10 Milvus 7,534 120 Go 331
Scikit-Learn Scikit-Learn 27,012 414 Python 185
Zephyrproject-RTOS Zephyr 54,118 398 C 885

on the community’s mailing lists to retrieve their .mbox representations. Note that
mod mbox and pipermail are mailing list archive browsers. Due to privacy concerns,
we cannot report the .mbox representations. We could not apply the download
functions to Protobuf, since Protobuf’s community uses a Google Group mailing
list. Therefore, we had to use a crawler made by someone else. KAIAULU proposed
gg scraper.’ However, the tool has not been updated in 6 years and when we tried
to use it, we obtained an empty .mbox file. Instead, we tried applying google-group-
crawler,” which was updated as recently as 26 May 2021, but again we obtained
an empty .mbox file. In a GitHub issue posted on the 29th of July 2021, someone
brought up the same issue, to which google-group-crawler’s creator responded that
Google recently changed their front-end application, and that all old AJAX support
was gone. As a result, the script has no way to get any data from Google. Therefore,
we are unfortunately unable to obtain a .mbox representation for Protobuf, thus we
cannot apply KATIAULU to Protobuf either. However, we still include Protobuf in
our analysis of YOSHI 2.

Shttps://gitlab.com/mcepl/gg_scraper
"https://github.com/icy/google-group-crawler
8https://github.com/icy/google-group-crawler/issues/42 (visited on 30/08/2021)

71

https://gitlab.com/mcepl/gg_scraper
https://github.com/icy/google-group-crawler
https://github.com/icy/google-group-crawler/issues/42

After preparing the input files, we started analyzing the provided vignette for
community smells. During our analysis, we identified several issues and bugs, as
expected in a tool that was still in development at the time. We briefly describe the
issues that we solved to get KATIAULU to work locally, as well as the bugs that we
identified and helped resolve, in Appendix .. After resolving the identified issues
and bugs, we started adjusting the provided vignette. In particular, the vignette was
created to analyze multiple time windows of variable length (default 90 days) over the
communities’ entire lifespan. Since we are only analyzing the time window between
April 22 and July 21, 2021 (excluding the end date), we adjusted the vignette such
that only that slice of the git logs and mailing lists would be analyzed. The git diff
showing the adjustments can be found in Appendix

Since we were done with our preparations to run KAIAULU, we ran the adjusted R
notebook for each community. Note that while KATAULU applies alias resolution, we
attempted to inspect the identities assigned to the various users manually. However,
since we ran into issues when manually altering identities, we were unable to make
any adjustments to KATAULU’s alias resolution. More info about this issue can be
found in Appendix .. We applied KATIAULU to these communities to obtain the
number of organizational silo-, lone wolf-, and bottleneck effect smells per community.

Survey Design

To analyze the accuracy of the community patterns and smells inferred by YOSHI 2
and KATAULU, we conducted a survey. Due to time constraints, we decided to keep
the survey questions simple. We used direct multiple-choice questions regarding
community types and smells, and we provided the participants a chance to elaborate
on their answers with optional open-ended questions.

For community patterns, we had a single multiple-choice question in which
we provided short descriptions based on the community types’ definitions and let
the participants select all descriptions that best reflect the specified development
community that they belong to. We excluded the Social Network (SN) community
type, since it is a supertype. To illustrate, we presented the following description for
Formal Networks:

“The community members have been rigorously selected and acknowledged
by some form of management. Direction is carried out according to
corporate strateqy and its mission is to follow this strategy.”

For community smells, we shortened the scenarios provided by Palomba et al. [65,

| in their vignette-based approach [32], where they asked participants to reason

about possible scenarios in a real context rather than asking them to answer direct

questions. These scenarios were created to analyze community smells’” influence on

the intensity of code smells. Instead, we asked participants to select all scenarios

that they recognize from within their specified development community. For example,
we presented the following scenario for the Lone Wolf community smell:

“There was an individual who carried out their work independently from
the decisions taken by the community.”

Note that we allowed the respondents to elaborate, because these descriptions
can be quite specific. It allows us to better understand their communities.

72

The survey questions were reviewed and revised twice based on feedback from three
master’s students studying Computer Science and Engineering at the Eindhoven
University of Technology. After the second iteration, no further changes were
requested or suggested by the reviewing students. To improve the response rate,
we wanted to keep the survey short. The average time it took these students to
complete the survey was between eight and nine minutes.

To make sure that we can keep the data for each community separate, we asked
the participants to fill in for which community they were contacted. Furthermore, to
check their suitability for the study, we confirmed again whether they contributed
to the repository within the analysis period. We did not include questions on the
participants’ demographics, experience, etc. To survey developers that have a good
overview of the underlying community, we sent personalized emails to developers
with a total number of commits higher than the third quartile of the distribution
of all commits in the repository, like Tamburri et al. [36], who received a response
rate of 38%. The code that was used to obtain the potential recruits is included in
Appendix .. Additionally, we required that potential recruits committed at least once
in the analysis period, i.e., between 22 April and 21 July 2021. In the recruitment
emails, we provided the link to our survey on Microsoft Forms. Moreover, to improve
the response rate, we informed the participants that their responses would be
anonymous. We were careful to not spam any participant and hence every developer
was only contacted once. In total, we sent out 266 emails and we waited three weeks
for participants to respond. Out of the 266 contacted developers, we received only
15 responses, for a response rate of merely 5.64%.

The survey instrument as well as the template for the recruitment email have
been included in Appendix \|. Note that we obtained ERB approval for this study
(reference: ERB2021MCS11).

7.2.2 Data Analysis

From the data collection described in the previous section, we obtain results from
three separate methods, i.e., we receive results from YOSHI 2, KATIAULU, and the
survey. Each has its results separated for each community.

To analyze the results obtained from YOSHI 2, we first examined whether there
were anomalies in the data to correct them. After confirming that there were no
anomalies, we compared YOSHI 2’s results with the responses to the survey. By
comparing YOSHI 2’s results with the responses to the survey, we hoped to find
whether YOSHI 2’s results were accurate. Additionally, we analyzed whether the
predefined thresholds reported in Table were accurate, or whether a potential
shift in thresholds would improve the accuracy of our results. Additionally, we
examined whether another variation of geodispersion metrics and thresholds were
more accurate [75, 85]. Specifically, it was described that YOSHI computes a single
value for geodispersion combining geographical and cultural distance [30], based on
the ethnographic research by Tamburri et al. [75]. However, in this ethnographic
research, as well as YOSHI’s source code and technical details [25], dispersion was
computed with two separate values for the average geographical and cultural distance.
Moreover, we compared the formality metric computations of YOSHI and YOSHI 2,
since we identified two formality-related bugs in YOSHI’s source code [30].

Furthermore, we analyzed KATAULU’s results. We first examined the results for

73

any potential issues or bugs. All issues and bugs that we encountered with KAIAULU
are discussed in Appendix /. When an issue or bug was discovered, we reapplied
KAIAULU to all communities. After examining KAIAULU’s results, we compared the
results with the survey responses. However, note that KATIAULU provides a count
for each occurrence of community smells in a community, whereas in the survey we
only confirm whether a community smell of a specific type exists in their community.
Due to time constraints, we could not conduct a more elaborate survey.

Moreover, we analyzed the survey responses themselves. We checked the frequency
of the selected community types and smells, as well as the frequency of community
patterns for our analysis of the relations between patterns and smells. Additionally,
we analyzed whether the responses showed contradicting community patterns, like
the contradictions listed in Table

7.3 Results

The community patterns that were inferred by YosHI 2 for the considered communi-
ties are listed in Table 7.2. Note that YOsHI 2 tracked the values computed for each
of the metrics and characteristics as well. These are included in Appendix

We list the number of community smells identified by KAIAULU for each commu-
nity in Table 7.3. Additionally, KATIAULU reports social network analysis metrics,
as well as some popular metrics commonly reported in software engineering litera-
ture [68], i.e., line metrics. These can be found in Appendix

Out of privacy concerns, we cannot report the raw responses to our survey.
Instead, we will discuss the aggregated results from the survey directly in comparison
with the results obtained with YOSHI 2 and KATAULU. Out of the 266 recruitment
emails sent, we obtained a total of 15 responses, corresponding to only 10 distinct
communities out of 25. On average, we received 0.6 responses per project.

Regarding community patterns, every respondent selected at least one community
type and on average 2.5 types. We noticed that NoP and IC occurred most often in
the participants responses, at least twice as much as the next most selected community
type. These two types are part of the four most representative community types for
open-source communities (FN, IN, NoP, and IC) [75].

Out of the 15 participants, 6 had selected a community pattern that YOSHI 2
would not be able to identify 100% correctly due to the thresholds reported in
Table 5.1, like the contradictions we identified in Table 0.0. Four of these respondents
had selected at least two types that YOsHI 2 would not be able to identify together
(e.g., NoP and CoP), whereas two respondents had selected community types that
YosHI 2 would report together with either CoP or NoP, as can be derived from
Algorithm |. However, when we directly compare the inferred community patterns
by YOSHI 2 to the survey responses, we observe that no developer agreed with the
community patterns inferred by YOSHI 2.

Regarding community smells, we noticed that only a few participants, 6 out
of the 15, selected any of the smells. On average, respondents selected 0.6 smells.
Interestingly, no participant identified an Organizational Silo Effect smell in their
community, whereas the Black Cloud Effect community smell was selected most often
(4 times). Ironically, KATIAULU’s developer did not reimplement the Black Cloud
Effect community smell detection method since it mostly returned 0. Whether that
would be the case for these communities too is of course unknown.

74

Table 7.2: Community patterns inferred by YOSHI 2 for the considered communities.
More detailed results, including the computed metrics, can be found in Appendix

Community Pattern
Couchdb SN, CoP, IC
Trafficserver SN, CoP, IC
Bookkeeper SN, CoP
Dubbo SN, CoP
Druid SN, CoP
Echarts SN, CoP
Cloudstack SN, CoP, IC
Airflow SN, CoP
Incubator-Mxnet SN, CoP, 1C
Superset SN, CoP, IC
Openwhisk SN, CoP, IC
Pulsar SN, CoP, IC
Rocketmq SN, CoP
Incubator-Doris SN, CoP
Camel-K SN, CoP
Iceberg SN, CoP, IC
Dolphinscheduler SN, CoP
Apisix-Dashboard SN, CoP
Skywalking SN, CoP, IC
Shardingsphere SN, CoP
Camel-Quarkus SN, CoP, IC
Zephyr SN, CoP
Protobuf SN, CoP
Milvus SN, CoP, IC
Scikit-Learn SN, CoP

7.4 Discussion

Unfortunately, the results discussed in the previous section seem to indicate that
either YOSHI 2 is unreliable, KATAULU is too optimistic in determining community
smells, or that the survey instrument was unreliable, but realistically, we have too
few responses to be able to tell.

Therefore, we are unable to provide a conclusive answer to and .
YosHI 2’s results do seem suspicious, since every community was found to be a
CoP, whereas Tamburri et al. [30] did not identify a single CoP in their evaluation of
YosHI (Table ¢.5). Note that it is not suspicious that every community is assigned
the SN community type, as this is a supertype and every survey participant selected
at least one community type, hence confirming the supertype.

To help explain why YOSHI 2’s results seem suspicious, we discuss each computed
characteristic separately. First, regarding YOSHI 2’s structure metrics, YOSHI 2
seems to assign correctly that each community exhibits a community structure.
However, this does not necessarily mean that YOSHI 2’s structure metrics give
a correct indication of community structure. It could be that YOSHI 2 is overly

75

Table 7.3: Community smells inferred by KATAULU for the considered communities.
More detailed results, including the computed metrics, can be found in Appendix

Community Organizational Silo Lone Wolf Radio Silence
Couchdb 31 31 13
Trafficserver 94 103 12
Bookkeeper 6 7 3
Dubbo 80 80 19
Druid 19 19 11
Echarts 140 140 37
Cloudstack 123 125 13
Airflow 680 700 15
Incubator-Mxnet 29 33 12
Superset 431 434 7
Openwhisk 8 8 18
Pulsar 389 413 60
Rocketmq 121 121 22
Incubator-Doris 219 219 15
Camel-K 29 30 44
Iceberg 44 49 17
Dolphinscheduler 155 155 22
Apisix-Dashboard 26 26 33
Skywalking 54 55 26
Shardingsphere 114 114 20
Camel-Quarkus 10 11 42
Zephyr 1041 1051 60
Protobuf — — —
Milvus 135 135 3
Scikit-Learn 327 327 10

optimistic in determining community structure, i.e., YOSHI 2 could simply assign
all GitHub projects a community structure. However, our tests of the metrics show
that this is not the case. Even though there are many limitations to the structure
metrics, as mentioned in Section , we have followed the steps of YOsHI [36] when
implementing the structure detection. Tamburri et al. [30] have analyzed whether
the community structure discovered by Y OSHI was better than a randomized null
model and found that to be the case. Since YOSHI 2 uses the same detection method
for community structure, we would expect that to be the case for YOSHI 2 as well.
However, when analyzing the other characteristics, we observe that this does not
necessarily have to be true.

For the other key characteristics, we have plotted the distributions in Figure
The values of the individual metrics and characteristics are included in Appendix

For geodispersion, Figure , we notice that all values are way below the
threshold of 4926 km, hence it assigns CoP to every community. However, we could
not identify any mistakes in YOSHI 2’s implementation of the geodispersion metrics.
Additionally, we had already analyzed and concluded that the updated Hofstede
indices do not have much of an impact on the geodispersion metrics in Section

76

25 25
—— Threshold s Low Threshold
High Threshold

20 204

15 15 A

10 10 A /\
,.___\,‘4
0

Count
Count

o : % —

0 1060 20‘00 3060 40‘00 5000 0 200 460 660 BlI)O 1060 12:30 14IOO 1600
Dispersion (km) Formality Level
(a) Dispersion (7' = 4926 km) (b) Formality (77 = 0.1 and T = 20)
25 25
—— Threshold —— Threshold
20 204

15 A 15

o O

Count
Count

=

5 5
N —
0 T T T T T T T T 0 T T T T T I T \I T i
0.0 25 5.0 75 10.0 12.5 15.0 17.5 20.0 1] 200 400 600 800 1000 1200 1400 1600 1800
Engagement Level Longevity (days)
(c) Engagement (7' = 3.5) (d) Longevity (T' = 93 days)

Figure 7.1: Histograms and KDE plots showing the distributions and thresholds of
characteristics computed by YosHI 2 for the 25 analyzed communities. The Python script
that was used to generate these figures is included in Appendix

However, since we observed previously that YOSHI's source code uses different metrics
than what is reported in the solution design [36], we made sure that YOsHI 2 would
also compute geodispersion with these different metrics, i.e., the average geographical
distance and the average cultural distance, which we report in Table 7.1. Using
alternative thresholds, where a community is highly dispersed when the average
distance between members exceeds 4000 km or the average cultural distance exceeds
15 [75, 86], we observe that YOsHI 2’s results for geodispersion would correspond
closely to the community types selected by the respondents, excluding 3 out of 10
communities for which participants selected community types with contradicting
geodispersion thresholds (e.g., NoP and CoP).

After some analysis of YOSHI 2’s geodispersion results versus the survey responses,
we observe that if we were to shift the threshold from 4926 km to 1376 km (i.e.,
the local minimum of the KDE curve computed from our results), that YOSHI 2’s
assignment of geodispersion would correspond 100% with the survey responses. In
this analysis, we again exclude the three communities for which participants selected
community types with contradicting geodispersion thresholds (e.g., NoP and CoP).
We illustrate the geodispersion distribution with the new threshold of 1376 km in
Figure 7.2. However, due to the small sample size of 25 communities and only 15

77

survey respondents, we cannot derive any conclusions from the above observations
in which we used the other geodispersion metrics and the lower geodispersion
threshold. In future work, it would be interesting to analyze a larger sample size to
determine whether a lower threshold for YOSHI 2’s geodispersion metrics is better
for determining when a community is highly dispersed.

Table 7.4: Geodispersion computed as two separate metrics [75] used in YOSHI’s source
code [36]. A community is highly dispersed when the average distance between members
exceeds 4000 km or the average cultural distance exceeds 15 [75].

Community AvgGeoDist AvgCultDist
Couchdb 856.2 0.0
Trafficserver 4688.1 14.6
Bookkeeper 6778.3 19.7
Dubbo 785.3 0.0
Druid 7686.5 21.5
Echarts 2327.2 11.5
Cloudstack 6667.4 20.0
Airflow 6963.0 21.1
Incubator-Mxnet 7007.2 15.2
Superset 7569.4 20.9
Openwhisk 6771.6 22.4
Pulsar 6351.9 20.0
Rocketmq 1414.8 3.1
Incubator-Doris 912.1 0.0
Camel-K 4227.7 18.4
Iceberg 6567.0 18.7
Dolphinscheduler 4279.3 8.1
Apisix-Dashboard 3411.4 11.6
Skywalking 3861.5 13.7
Shardingsphere 3156.8 13.9
Camel-Quarkus 5796.3 17.4
Zephyr 6212.7 22.0
Protobuf 7348.8 16.2
Milvus 565.6 0.0
Scikit-Learn 8539.4 18.8

When analyzing the formality levels, we notice that the thresholds of 0.1 and 20
are lower than all of YOsHI 2’s computed values for formality levels (Figure).
We could not identify any mistakes in YOSHI 2’s implementation of the formality
metrics, and we conjecture that the approximation of collaborators and contributors
would not affect the results this much. We analyzed whether there was another
discrepancy between Y OSHI's source code and the reported solution design [$6]. We
found that YOsHI, instead of assigning 2 to collaborators, assigned 0 to collaborators
to determine the mean membership type (MMT). We believe that this is a bug in
the source code, since YOSHI would report the structure to be less formal (i.e., closer
to 0 formality), the less internal collaborators there are, which is a contradiction.

Additionally, we observed that in YOSHI's source code, the project lifetime metric
was not determined using the first and last commit dates. Instead, it used the
creation dates of the first and last milestone, which is a significant difference.

78

25

—— 0Old Threshold
—— New Thresheld

20

15 4

Count

10 4

—a—xﬁ%
0

0 1000 2000 3000 4000 5000
Dispersion (km)

Figure 7.2: Dispersion distribution comparing the old threshold (Tp;q = 4926 km) vs. a
potential new threshold (Tne,=1378 km).

Since we do not know how the formality thresholds were derived [36], they might
be affected by the bug in YOSHI’s implementation. Therefore, we manually computed
the formality using these bugged M MT and lifetime computations (Table 7.5). In
Figure , we see that the bugged formality distribution is overall much closer
to the reported thresholds compared to Figure . We attempted to analyze
whether shifting the thresholds would produce more accurate results based on the
few respondents that selected FG, FN, or IN, but this failed due to the overlapping
formality intervals from their respective communities. Additionally, it could be the
case that these communities underuse milestones and that we therefore obtain very
high formality values. For the above reasons, we surmise that in future work, it is
necessary that these metrics and thresholds are reevaluated.

25

wsm | ow Threshold
High Threshold

20

15

10 /’_'\

Count

0 T T T T T T T
0 20 40 60 80 100 120 140 160
Formality Level

Figure 7.3: Formality distribution where M MT is computed using 0 for collaborators and
LT using the creation dates of the first and last milestones (77 = 0.1 and T3 = 20).

Furthermore, the distribution of the engagement levels is depicted in Figure
As visible in the histogram, there are multiple engagement values exceeding 7, i.e.,
the sum of all engagement metrics if they were all values between 0 and 1. We
found that for 10 out of the 25 communities, at least 1 engagement metric exceeded
1 (Table 7.0). We could not identify bugs in the code that would cause these to
exceed 1, so we believe that these computations are accurate. Note that these values
exceeding 1 only affect Incubator-Mxnet being an IC. All other communities would

79

Table 7.5: Formality where M MT is computed using 0 for collaborators and LT is computed
using the creation dates of the first and last milestones instead of the first and last commit
dates.

Community ‘ # Members # Contr. # Collab. Bugged MMT MS Bugged LT ‘ Bugged Formality
Couchdb 9 1 8 0.11111111 6 633.778 11.73663504
Trafficserver 31 13 18 0.41935483 34 1811.3 22.34047476
Bookkeeper 15 11 4 0.73333335 10 1328.95 97.45665469
Dubbo 31 27 4 0.87096775 36 2991.17 72.36710165
Druid 44 30 14 0.6818182 39 2841.86 49.68288566
Echarts 20 4 16 02 19 2478.99 26.09459016
Cloudstack 27 20 7 0.7407407 17 1334.81 58.16172116
Airflow 170 153 17 0.9 32 452.415 12.7241709
Incubator-Mxnet 21 15 6 0.71428573 4 165.128 29.48720924
Superset 85 58 27 0.68235296 5 91.3141 12.46168733
Openwhisk 10 4 6 0.4 9 131.022 5.823177982
Pulsar 88 72 16 0.8181818 28 1525.72 44.58276316
Rocketmq 21 10 11 047619048 15 951.783 30.21533313
Incubator-Doris 48 42 6 0.875 3 562.489 164.0593065
Camel-K 21 15 6 0.71428573 21 700.716 23.83388422
Iceberg 47 39 8 0.82978725 9 793.665 73.17481852
Dolphinscheduler 32 26 6 0.8125 10 580.133 47.13579854
Apisix-Dashboard 19 12 7 0.6315789 12 470.263 24.75070843
Skywalking 46 41 5 0.8913044 75 2012.4 23.91547485
Shardingsphere 60 54 6 0.9 12 635.536 47.66519444
Camel-Quarkus 18 7 11 0.3888889 15 697.036 18.0713044
Zephyr 230 219 11 0.9521739 38 1122.02 28.11463939
Protobuf 48 27 21 0.5625 24 1799.87 42.18446126
Milvus 28 12 16 042857143 17 548.818 13.83574088
Scikit-Learn 107 94 13 0.8785047 35 3304.29 82.93814481

have been an IC regardless of whether this metric exceeded 1 or not. Hence, it might
not be impactful that these metrics can exceed 1. Additionally, we observe that
specifically the median monthly distribution of total posted pull/commit comments
per member exceeds 1 for 9 communities and it exceeds 2 twice. In Section ,
we mentioned that Tamburri et al. [75] observed that, “[on] average, the number of
discussions, comments, or threads spreading from a thread or discussion is comprised
between 0 or 1.” and that this study was limited to the Allura community and may
not be generalizable to other communities. However, we still assumed this to be the
case. Even though we have a small dataset, our results show that the observation by
Tamburri et al. [75] may not be generalizable to other communities.

When comparing YOSHI 2’s results with the survey results, we found that
the communities assigned IC by YOSHI 2, the only community type affected by
engagement levels, did not correspond to the survey responses for 8 out of the
10 communities that we received responses for. We analyzed the distribution of
engagement values excluding outliers, Figure 7., and observed that shifting the
threshold would not solve YOSHI 2’s inaccuracy for this small dataset. Additionally,
we could not attribute this inconsistency between YOSHI 2’s results and the survey
results to a specific metric, thus also not to the new median stargazer metric. It
could be that the current engagement metrics are inaccurate to determine ICs.

80

18

Table 7.6: YOSHI 2’s results related to community engagement, including engagement metrics. Note that all metrics are medians and all

distributions are monthly distributions. Metrics exceeding 1 are highlighted red, as well as the affected engagement values.

Community

‘# Comments/PR CommentsDistr. ActiveMember Watcher Stargazer CommitDistr. FileCollabDistr. ‘ Engagement

Couchdb
Trafficserver
Bookkeeper
Dubbo

Druid

Echarts
Cloudstack
Airflow
Incubator-Mxnet
Superset
Openwhisk
Pulsar

Rocketmq
Incubator-Doris
Camel-K

Iceberg
Dolphinscheduler
Apisix-Dashboard
Skywalking
Shardingsphere
Camel-Quarkus
Zephyr

Protobuf

Milvus
Scikit-Learn

o

N OO OOODONOODOOFR PR OOk OO O O

1

2
0.666666667
0.333333333
0.666666667
0.333333333
9
0.666666667
2
0.666666667
1
1.333333333
0
0.333333333
0.666666667
1.666666667
0.666666667
1.333333333
0.833333333
0.5
1.666666667
1.666666667
0.333333333
8.333333333
0.333333333

— = O O R OO O OO D

SO OO H OO DD DODODOoO OO OO oo oo ==

O OO0 R HEFFRPFEFHEEPRPORFEFREREPEFEFEREPFRODODORRFRORO

1.666666667
1
0.333333333
0.333333333
0.333333333
0.666666667
1.333333333
0.333333333
0.666666667
0.666666667
0.5
0.666666667
0.333333333
0.666666667
0.666666667
0.666666667
0.333333333
0.666666667
0.666666667
0.333333333
1

1
0.333333333
8.333333333
0.333333333

0.333333333
0.333333333
0.333333333
0.333333333
0.333333333

1
0.666666667
0.333333333
0.333333333
0.333333333
0.333333333
0.333333333
0.666666667
0.333333333
0.666666667
0.333333333
0.333333333
0.333333333
0.333333333
0.333333333
0.666666667
0.666666667

1
0.666666667
0.333333333

5
7.333333333
1.333333333

3
3.333333333

3

16
1.333333333

4
3.666666667
4.833333333
5.333333333

2
3.333333333

3
6.666666667
3.333333333
3.333333333
3.833333333
3.166666667
6.333333333
3.333333333
1.666666667
21.33333333

3

—— Threshold

15 +

Count

10

oS-

T T T T T
0 1 2 3 4 5 6 7 8
Engagement Level

Figure 7.4: Engagement distribution excluding outliers (T' = 3.5)

The distribution of community longevity is illustrated in Figure . Like
Tamburri et al. [$6] with YOsHI, we could not identify a Project Team (PT) with
YosHrI 2. Note that PTs are the only community types that are affected by longevity.
In the survey, we had only three participants that selected PT’s description. These
participants’ communities were already multiple years old, which makes us believe
that either they may have misunderstood the description or that our description may
have been insufficient to bring the definition of PTs across. Hence, we are questioning
the reliability of our survey regarding longevity. The results from YOSHI 2 do not
seem to be out of place regarding PTs, but we simply have too little data to derive
any conclusions. It could be that our exclusion criteria to select communities was
too strict to select any PTs. The criteria used to select projects were to ensure
that we only analyzed active nontrivial communities that deal with large codebases.
However, this filtering could potentially be too strict to identify project teams.

Hence, we have reason to believe that at least YOSHI 2’s results regarding
geodispersion, formality, and engagement may be inaccurate.

Regarding KAIAULU’s results, KATAULU [68] showed that every community suffers
from all three analyzed community smells. KATAULU shows very similar results for
the Organizational Silo Effect (OSE) and the Lone Wolf Effect (LWE). This makes
sense because the LWE smell is a more general case of the OSE smell [51]. To be
precise, LWE’s identification pattern incorporates the identification pattern of the
OSE. They are defined separately because the typologies of identification patterns
provide different levels of detail and they characterize and analyze different aspects
associated with community smells.

Additionally, it is very noticeable that the numbers for the OSE and LWE smells
are much higher than those of the Radio Silence Effect smell. There are multiple
possible explanations for this phenomenon. KAIAULU uses both the git log and the
mailing list of a community to determine the OSE and LWE smells, but only uses
the mailing list to determine RSE smells. There are notably more developers active
in the git log than in the mailing list. Additionally, each pair of developers in the git
log that did not post any email reply in the mailing list at all is counted as an OSE
smell and thus also as an LWE smell.

When we normalize the number of each smell per developer (as identified by
KAIAULU) in each community (Table 7.7), we observe that some communities exhibit

“https://github.com/sailuh/kaiaulu/issues/126 (visited on 28/09/2021)

82

https://github.com/sailuh/kaiaulu/issues/126

many smells per developer, e.g., Milvus and Superset. While some of the results
may be high, they are not necessarily unreasonable, hence it is surprising that in our
survey the participants selected so few community smells. The respondents may not
be aware of the presence of specific community smells. However, Tamburri et al. [33]
previously concluded that developers perceive the presence of these community smells
and learn to cope with them in an “orderly and governed fashion”.

Table 7.7: Normalized community smells inferred by KAIAULU.

Community Norm. OSE Norm. LWE Norm. RSE
Couchdb 1.348 1.348 0.565
Trafficserver 1.958 2.146 0.250
Bookkeeper 0.143 0.167 0.071
Dubbo 0.988 0.988 0.235
Druid 0.275 0.275 0.159
Echarts 2.154 2.154 0.569
Cloudstack 1.500 1.524 0.159
Airflow 3.036 3.125 0.067
Incubator-Mxnet 0.580 0.660 0.240
Superset 4.398 4.429 0.071
Openwhisk 0.308 0.308 0.692
Pulsar 2.559 2.717 0.395
Rocketmq 2.086 2.086 0.379
Incubator-Doris 3.712 3.712 0.254
Camel-K 0.460 0.476 0.698
Iceberg 0.341 0.380 0.132
Dolphinscheduler 1.782 1.782 0.253
Apisix-Dashboard 0.491 0.491 0.623
Skywalking 0.806 0.821 0.388
Shardingsphere 1.966 1.966 0.345
Camel-Quarkus 0.172 0.190 0.724
Zephyr 2.991 3.020 0.172
Protobuf — — —
Milvus 5.870 5.870 0.130
Scikit-Learn 2.795 2.795 0.085

As mentioned before, there might be a chance that the survey is unreliable, which
we were unable to confirm due to the low response rate. Out of the 266 recruitment
emails, we only received 15 responses. There can be many reasons why we received
such a low response rate.

First, the analyzed communities are spread across many different time zones. We
picked a single time to send out all recruitment emails, which for some communities
was not an ideal time. However, due to the anonymous nature of the survey, we cannot
confirm whether this made a difference. Additionally, the survey was distributed
during a time in which many people have their summer break. Furthermore, while
we were reviewing and revising the survey instrument, we found that the average
time it took the three reviewers to complete the survey was eight to nine minutes,
with no or modest elaboration of their answers. Hence, in the recruitment email we

83

mentioned that the survey would take approximately 10 minutes. We tried to keep
the survey short to increase the response rate, but perhaps many developers might
have thought that 10 minutes was too much. Unfortunately, in the 15 responses we
received, they answered the questions within 3.5 minutes on average, so 10 minutes
was an overestimation. However, the short average completion time may indicate a
different problem. Although we believe the questions to be comprehensive, they may
not have been completely clear to the participants because they seem to glance over
them, or they all have impressive reading speed. However, we did not receive any
questions regarding the content of the survey either.

We had hoped to assess inter-rater reliability by comparing responses between
members from the same community, but we have too few responses to make this
assessment. Note that the 15 responses are only from 10 different communities. Thus,
while we do have some comparable data per community, we have cases where the
respondents agree and cases where they disagree. Another potential issue could be
the directness of the recruitment email and the questions, i.e., they may have been
too intimidating. In the recruitment email, we mentioned that they were selected
because they “are among the most active developers in [X] community and therefore
likely have a good overview of the community.” However, active developers may not
necessarily consider themselves to have a good overview of the community.

Moreover, Palomba et al. [60] used scenarios instead of asking people directly
about community smells. We shortened these scenarios and asked participants
directly whether they recognize these smells in their communities, which they may be
reluctant to answer because community smells have a negative connotation. Another
issue could be the recruitment criteria. Using the third quartile to determine the most
active developers is of course not without faults. This threshold might be much lower
in one community compared to another. It could be that the threshold was too low
for some communities, meaning that the email was sent to many active developers,
but not necessarily the developers with a good overview of the community.

Overall, it seems that either YOSHI 2’s results are inaccurate, or the survey might
not be reliable. However, we have too little conclusive evidence of either option. For
KAI1AULU, we do not find unreasonable results, but they do not correspond with the
survey responses.

7.5 Threats to Validity

Runeson and Host [70] have provided a model for validity threats identifying four
different validity aspects:

e Internal validity; are there third factors, possibly the applied methods, causing
the outcome?

e Construct validity; do the operational measures used in the study represent
what is investigated?

e Reliability; how are the study and results dependent on the researchers?

e External validity; to what extent can the findings be generalized and to what
extent are the findings of interest to people outside the analyzed dataset?

In this section, we will address each aspect separately.

84

Internal validity. When sampling community projects, it is possible that the
datasets can cause biases leading to certain outcomes. It is possible that because
of our selection criteria and that we mostly picked Apache projects, that biases
may have been introduced in the results. Apache projects are managed using a
collaborative, consensus-based process instead of using a hierarchical structure.
Since the appointed Project Management Committees have the power to create
their own self-governing rules, there is no single vision on how they should run their
projects and nurture the communities they lead. At the same time, there are several
similarities all Apache projects share, such as the requirement of using mailing lists.

Regarding the survey instrument, if the questions of the survey are badly designed,
the experiment may be affected negatively. Through multiple iterations, the questions
were reviewed and rephrased for the above to ensure that the questions were adequate.
However, the directness of the questions could lead to inaccurate responses as
participants could feel uncomfortable answering the question.

Furthermore, while we did our best to validate and verify YOsHI 2 and KAIAULU
by testing, there is always a possibility for undiscovered defects.

Construct validity. We did not adhere to the peril avoidance strategy by
Kalliamvakou et al. [16]. They stated that to analyze a project hosted on GitHub,
one should consider the activity in both the base repository and all associated forked
repositories. We only analyzed the base repository. Moreover, YOSHI 2 does not
apply alias resolution, whereas KAIAULU does have alias resolution. It is common
for GitHub developers to have multiple accounts, so we considered alias resolution
methods such as ALFAA [9], but prioritized reimplementing characteristics over
identity resolution, since we could not find proof that YosHI [36] used alias resolution
either and was still highly accurate. For YOSHI 2, we trusted the metrics and
thresholds reported for YOsHI [36], whereas their source material [75], appendix [$5],
and GitHub repository provided contradicting or incomplete information for the
geodispersion, formality, and engagement metrics and thresholds. In future work, it
is necessary to resolve these contradictions.

The survey instrument introduces more threats to construct validity. If the
respondent does not interpret the questions as intended, then this may cause issues.
Our survey questions were subject to an iterative process of reviewing and revising the
questions and then piloting the questions to ensure their relevance and unambiguity.
To prevent bias, we had asked three masters students to review the questions and
based on their feedback we revised the questions. Since we only conducted a survey,
we had the risk of mono-method bias. The study could be affected by evaluation
apprehension, i.e., people being afraid of being evaluated. By making the survey
anonymous, we hoped to make people comfortable enough to not let their evaluation
apprehension influence their answers. However, people may still feel reluctant to
share knowledge regarding community smells, i.e., pretending that they are not
there to make the community look better. Preferably, we would have analyzed
the inter-rater reliability, i.e., whether people from the same community responded
similarly, but we received too few responses to perform this analysis.

Reliability. To address the corresponding validity threats, we described our
methodology and provided a lot of detailed information in the appendices. It is
possible that we made mistakes in our reimplementation of YOSHI 2, and that there

Onttps://www.apache.org/foundation/how-it-works.html#management
(visited on 12/07/2021)

85

https://www.apache.org/foundation/how-it-works.html#management

were still mistakes in KATAULU. Since we could not prove the reliability of YOSHI 2,
KA1AuLU, and the survey, we decided to state our observations.

External validity. To generalize the findings, we have chosen a sample study,
in which we conducted a survey. The survey was used to analyze whether YOSHI 2
and KATAULU are accurate. The use of surveys allows us to reach a larger number of
people and therefore increases generalizability. However, we have chosen to survey
only the developers with a good overview of the community. We only contacted
the most active part of the community, but people may experience communities
differently at different levels, especially when they suffer from the organizational silo
effect smell, hence the responses may vary for unaddressed parts of the community.

In this study, we have constrained ourselves to projects hosted or mirrored on
GitHub and mostly Apache projects. As identified by Lewowski and Madeyski [50],
this is an external validity threat since there are also other significant repository
hosting services, such as SourceForge, GitLab, and BitBucket. To mitigate the
problem of generalizability, we created a dataset containing a variety of communities
having different characteristics, scope, and size. However, it must also be stated that
the main goal of this analysis is to discover relations between community patterns
and smells, and not a study of open-source projects’ properties [27].

7.6 Conclusion

We reimplemented YOSHI 2 based on YOSHI [30] to detect community patterns in
open-source communities. KAIAULU [68] is a tool that reimplements the community
smell detection methods used by CODEFACE4SMELLS [83] using an arguably better
community detection algorithm. Since YOSHI 2 was unproven in practice, we tried
comparing its consistency in community detection to YOSHI in Chapter 0. Since we
were unable to make a proper comparison between the community patterns inferred
by YosHI and YOSHI 2, we decided to analyze YOSHI 2’s accuracy by means of a
survey. Additionally, since KATAULU was a tool still in development while we used
it, we wanted to analyze whether KATAULU was accurate as well.

To conduct the survey, we selected 25 nontrivial open-source communities based
on various criteria. We applied YOosHI 2 and KAIAULU to these communities to
analyze their community patterns and smells in the period between April 22 and
July 21, 2021. From the same period, we selected developers that we suspected had
a good overview of the underlying development community. We sent personalized
emails to developers with a total number of commits higher than the third quartile
of the distribution of all commits in the repository, like Tamburri et al. [36], who
received a response rate of 38%. Out of the 266 people, we only received 15 responses
for 10 distinct communities, which are too few to derive any conclusions.

Based on the small sample size and our observations, we speculate that YOSHI 2’s
results may not be as accurate as we would have liked. The values for geodispersion
are all lower than the threshold, and many contradict the few survey responses.
We observed that a lower threshold would fit this specific dataset, which could be
tested in future work. We observed that YOSHI's source code [36] and the online
appendix [35] used other metrics, and in our small sample size these seem to be
more accurate. Additionally, we observed very high formality levels compared to the
thresholds. We observed two likely-to-be bugs in YOSHI's source code and computed

86

the formality levels using these bugged metrics as well. The bugged formality levels
are much more in range with the reported thresholds. However, we cannot be certain
whether these faulty computations were used in YOSHI's evaluation [$6]. Moreover,
the engagement metrics seem to have resulted in inaccurate assignments of the
IC community type. While we did notice that some metrics had a much larger
influence on the engagement value than others, we could not identify an issue in our
implementation. Hence, in our small sample size, the engagement metrics may not
be an accurate measurement of community engagement. We did not identify any
problems with the structure and longevity measures.

Using KAIAULU, we have observed many community smells, and some commu-
nities with a very high number of community smells per developer, but the results
are not unreasonably high. However, the survey participants had selected very few
smells in their responses.

Unfortunately, due to the low response rate, we cannot conclude whether YOSHI 2
and KAIAULU are accurate or not and are thus unable to answer research questions

and . However, we suspect that YOSHI 2 may not be very accurate.

87

Chapter 8

Relations Between Patterns and
Smells

8.1 Introduction

In the previous chapter, we have performed a survey study to analyze the reliability
of YosHI 2 and KAIAULU. Unfortunately, it seems that the tools or the survey
instrument may be unreliable. Therefore, we were unable to perform our analysis
of the relations between community patterns and smells, which we had planned to
do. In this chapter, we discuss our planned approach to answer , l.e., to analyze
the relations between community patterns and smells, that we were unfortunately
not able to execute. In Section =2, we describe the methodology that we planned
to use to analyze the relations between community patterns and smells, whereas in
Section we discuss the threats to validity of this approach. In Section =.1, we
conclude the chapter.

8.2 Methodology

We were planning to replicate the approach by De Stefano et al. [27]. They performed
a three-step data collection and analysis:

1. Identification of community patterns;
2. Identification of community smells;
3. Association rule discovery.

Specifically, in Section , we describe how we would have identified community
patterns and smells. In Section , we describe how the data would have been
analyzed, i.e., how we would have applied association rules to discover relations
between community patterns and smells.

8.2.1 Data Collection

For the data collection, we were planning to reuse the data obtained from our analysis
of YosHI 2 and KAIAULU in Chapter 7. Specifically, we would reuse the community
patterns and smells inferred by YOSHI 2 and KAIAULU, respectively, in the 25
communities selected in Section . Additionally, De Stefano et al. [27] performed

88

an evolutionary analysis to obtain a richer and meaningful dataset. They identified
community patterns and smells per release. We would instead have liked to apply
YosHI 2 and KATAULU over multiple 3-month periods to these 25 communities to
perform a similar evolutionary analysis. It must be stated that De Stefano et al. [27]
used YosHI and CODEFACE4SMELLS to identify community patterns and smells.
Instead, we would have used YOSHI 2, a reimplementation of YOSHI, and KAIAULU,
which reimplements the community smell detection methods of CODEFACE4SMELLS
with an arguably better community detection algorithm [68].

8.2.2 Data Analysis

After obtaining a list of community patterns and smells for the considered communi-
ties, we would apply association rule mining to detect which community patterns
and smells co-occur frequently [1, 27]. Association rule mining is an “unsupervised
learning technique for local pattern detection” [27]. Using the example X — Y in
terms of community patterns and smells, where X refers to the set of community
patterns and Y to the set of community smells, an association rule would imply that
if a community exhibits community pattern X, then a community smell Y occurs in
the community as well.

Association rules are evaluated using Equations (%.1) and (5.2) [1], where T is
the dataset of cooccurrences between community patterns and smells [27].

XUY
support(X — Y) = % (8.1)
XUY
confidence(X —Y) = % (8.2)

Support (Equation (%.1)) corresponds to statistical significance [1] and provides
an indication of how frequently items X and Y appear together in dataset T', whereas
confidence (Equation (%.2)) is a measure of the rule’s strength [1], i.e., how often X
and Y appeared together out of all cases in which X occurred. Besides statistical
significance, if a rule’s support is not large enough, then the rule may not be worth
considering [1]. De Stefano et al. [27] reported that they used a threshold of 0.6
for support and a threshold of 0.8 for confidence to select strong and statistically
significant association rules. We would replicate these thresholds to see whether we
could confirm their results. Additionally, we would replicate the approach by De
Stefano et al. [27] to implement the association rules using the Apriori algorithm [1],
available in the R toolkit.

Additionally, following the approach by De Stefano et al. [27], we would also
compute the lift values for each rule [I] and employ Fisher’s exact test [33] on the lift
values. The lift metric is used to “measure the ability of a rule to correctly identify
a relationship with respect to a random choice model” [27]. Tt is computed as shown
in Equation (%.3).

support(X UY)
support(X) x support(Y)

Lift(X —Y) = (8.3)

"https://www.rdocumentation.org/packages/arules/versions/1.6-8/topics/apriori

89

https://www.rdocumentation.org/packages/arules/versions/1.6-8/topics/apriori

In other words, it is the factor by which the cooccurrence of X and Y exceeds
the expected probability of X and Y cooccurring, had they been independent.

A lift value higher than 1 in the association rule X — Y indicates that the
occurrence of X implies that it often cooccurs with Y [27]. Fisher’s exact test [33]
would be employed on the lift metric to understand the statistical significance of the
discovered association rules. The test measures the deviation between the association
rule model and random choice models when computing the lift value. An association
rule is statistically significant if the obtained p-value is lower than 0.05 [27].

8.3 Threats to Validity

Runeson and Host [70] have provided a model for validity threats identifying four
different validity aspects:

e Internal validity; are there third factors, possibly the applied methods, causing
the outcome?

e Construct validity; do the operational measures used in the study represent
what is investigated?

e Reliability; how are the study and results dependent on the researchers?

e External validity; to what extent can the findings be generalized and to what
extent are the findings of interest to people outside the analyzed dataset?

In this section, we will address each aspect separately.

Internal validity. There is a chance that because of our selection criteria and
because we mostly picked Apache communities, that biases could be introduced in
our results. However, the Apache Software Foundation has stated that “there is no
single vision on how [Project Management Committees| should run their projects and
nurture the communities they lead.”” Therefore, Apache projects can be maintained
and developed by diverse communities. Nevertheless, the outcome could still be
affected by bias, because it does not have to be the case that the Apache communities
are maintained and developed by diverse communities. Furthermore, while we did
our best to validate and verify YOsHI 2 and KAIAULU by testing, there is always a
possibility for undiscovered defects.

Construct validity. A threat to the construct validity would be the imprecision
of the tools used to observe community patterns and smells. We could not conduct
this analysis, because we could not prove the accuracy of YOsHI 2 and KAIAULU.
However, if we had conducted this analysis, we would not have adhered to the peril
avoidance strategy by Kalliamvakou et al. [16], which states to analyze a project
hosted on GitHub, one should consider the activity in both the base repository and
all associated forked repositories. We would have only analyzed the base repository.
Moreover, YOSHI 2 does not apply alias resolution, whereas KAIAULU does have alias
resolution. Additionally, KAIAULU considers the mailing lists in their community
detection, whereas YOSHI 2 does not. The differences in the community analyses
between KATAULU and YOSHI 2 are threats to construct validity.

Reliability. Multiple researchers should find the same results, if they were to
perform this study. The results may differ slightly, based on the contemporary

2http://r-statistics.co/Association-Mining-With-R.html (visited on 27/09/2021)
3https://www.apache.org/foundation/how-it-works.html#management
(visited on 27/09/2021)

90

http://r-statistics.co/Association-Mining-With-R.html
https://www.apache.org/foundation/how-it-works.html#management

API calls used by YosHI 2, but these should be explicable. However, since we
could not prove the reliability of YOSHI 2 and KAIAULU, their results may not
be accurate. Instead, when researchers perform this study in future work, they
might need different detection tools. Even though we were unable to obtain results,
the main threat to reliability would be the Apriori algorithm to discover relations
between community patterns and smells. However, “this technique has been widely
adopted by researchers to study relations between two phenomena” [27]. Additionally,
using support, confidence, and lift, we would only analyze the strongest rules [27].

External validity. In this study, we have constrained ourselves to projects
hosted or mirrored on GitHub. As identified by Lewowski and Madeyski [50], this is
an external validity threat since there are also other significant repository hosting
services, such as SourceForge, GitLab, and BitBucket. To mitigate the problem
of generalizability, we created datasets containing a variety of communities having
different characteristics, scope, and size. However, it must also be stated that the
main goal of this analysis is to discover relations between community patterns and
smells, and not a study of open-source projects’ properties [27]. Preferably, when
both community patterns and smells can be reliably observed, the relations between
community patterns and smells would be investigated on a larger set of communities
in future work.

8.4 Conclusion

In this chapter, we have described the methodology, and its threats to validity, that we
planned to apply if we were able to identify community patterns and smells accurately.
Specifically, we would have reused the data for the communities that we analyzed in
Chapter 7, i.e., community patterns and smells data for 25 communities obtained
using YOsHI 2 and KAIAULU. Preferably, we would have performed a large-scale
case study of communities in an evolutionary analysis, in which we analyzed these
communities in multiple consecutive 3-month time periods. However, we were unable
to even put this methodology in practice because we could not prove YOSHI 2’s
and KATAULU’s reliability with our sample study in Chapter 7. Our aim was to
discover hidden relations between community patterns and smells using association
rule mining, particularly the Apriori algorithm. However, we are unfortunately
unable to answer our main research question, ; what are the relations between
community patterns and community smells? We therefore leave this question for
future work.

91

Concluding Remarks

In this part of the thesis, we have described our attempt at an empirical analysis of
the relations between community patterns and community smells.

To detect community patterns, we implemented YOSHI 2 based on YOSHI [3(],
since, to the best of our knowledge, no other tools for community pattern detection
have been developed and YOSHI has become nonfunctional. In an attempt to evaluate
Y osHI 2’s accuracy, we analyzed its consistency of detecting community patterns
with YOsHI, which was proven to be highly accurate, but our evaluation failed for
multiple reasons. However, based on our results in that evaluation, we speculated
that YOSHI 2 may not be as accurate as YOSHI was.

Therefore, in another attempt to analyze YOSHI 2’s accuracy, we sent a survey
to the most active members in 25 communities. In this survey, we also attempted to
analyze KATIAULU’s [08] accuracy. KAIAULU is the tool we used to detect community
smells, which is based on CODEFACE4SMELLS. Unfortunately, we received very few
responses, which limits our analysis of YOSHI 2 and KAIAULU’s accuracy. However,
we observe that YOSHI 2’s results are inaccurate with the few survey responses we
received. Additionally, we noticed that people barely responded to the question
about community smells. We surmise that this may be because it was a very direct
question. Since we could not conclude that YOsSHI 2 and KAIAULU were accurate, we
could not perform our analysis using association rule mining to discover the relations
between community patterns and smells. As a result, we cannot finish our empirical
analysis to answer our main research question, , “What are the relations between
community patterns and community smells?”

Since we observe that YOSHI 2 is not very accurate, we hope that in future work,
researchers use YOSHI 2 to analyze what was wrong with our current metrics or
implementation and devise new metrics or detection methods to determine community
patterns automatically. Additionally, we hope to encourage further evaluation of
KAIAULU’s community smell detection methods. Therefore, we leave our empirical
analysis of the relations between community patterns and smells for future work.

92

Part 111

Final Remarks

93

Chapter 9

Conclusion

9.1 Conclusions

In this research, we aimed to identify relations between community patterns and
community smells. Our goal was to identify organizational antipatterns to help
improve the future well-being of development communities and hence increase software
engineering success. We performed our study along two directions. In the first
part, we performed a taxonomic analysis to create an overview of state-of-the-art
knowledge regarding community patterns and smells according to the taxonomic
analysis methodology provided by Williams [92, Chapter 8 - Domain Analysis|. As a
result, we have created a context model visualizing the relations between community
patterns and smells to identify (in)direct relations between the two. We observed that
while some relations between community patterns and smells have been identified in
the literature, their methods and datasets were limited. Additionally, the research on
community smells has progressed further than community patterns. For community
smells, researchers have analyzed relations with more distinct topics, such as social
debt [79], technical debt [19], architecture smells [77], and code smells [66, 67]. Topics
that are relatively unexplored in terms of relations with community patterns. As a
result, only a small number of indirect relations were found. However, we conjecture
that this is due to a lack of detection methods for community patterns, since to
the best of our knowledge, the only tool that could detect community patterns,
YosHI [36], has become unusable due to outdated and discontinued APT libraries.

In the second part, we aimed to analyze the frequent relations between community
patterns and smells empirically. To observe community patterns, we implemented
Y osHI 2 based on YOSHI, a tool capable of mapping open-source GitHub communities
onto community patterns [36]. This would allow further research into community
health based on community types, and diagnosis of organizational antipatterns
specific to open-source, if any [36]. We attempted to evaluate YOSHI 2 empirically
by qualitatively comparing it to YOSHI and by means of a survey.

In an attempt at comparing YOSHI 2 with YOSHI [$0], we identified several issues
that hindered this evaluation. However, we observed results that would indicate that
YosHI 2 might not be as accurate as YOSHI was, hence we conducted a survey in 25
different communities to confirm our speculation. In the survey, we also evaluated
KAIAULU [68], an automated approach able to identify three community smell types
that we contributed to in our research. Unfortunately, due to a low response rate,
we were unable to prove the accuracy of YOSHI 2 and KAIAULU. To improve the

94

response rate, we could have asked less direct questions, provided a shorter informed
consent form, sent reminder mails, estimated the average completion time better,
and written a less intimidating recruitment email. However, we had limited time
for our survey analysis, so we opted not to send reminder mails. Additionally, the
informed consent form was created in cooperation with a data steward and had been
shortened twice already based on our feedback.

Based on the small sample size and our observations, we speculate that YOSHI 2’s
results may not be as accurate as we would have liked, specifically regarding the
measurements of geodispersion, formality, and engagement. Hence, we concluded the
empirical analysis by describing the original plan to analyze the relations between
community patterns and smells using association rule mining.

9.2 Future Work

Among the many directions for future work already identified in the previous chapters,
there are several directions that we want to consider in this section.

First, we have developed YOSHI 2, which we suspect is not as accurate as
YosHI [86]. In future work, people can analyze the metrics that seemingly pro-
vide inaccurate results and implement improved metrics. For example, YOSHI 2
could be updated with a better community structure detection algorithm. In that
case, it would also be interesting to analyze community patterns on micro- and
macrostructure levels, i.e., analyzing subcommunities compared to the whole commu-
nity. Additionally, YOsHI 2 is limited to 8 of the 13 most relevant community types
defined by Tamburri et al. [30]. In future work, metrics for differentiating attributes
of other community types can be implemented to improve pattern detection tools, or
instead, for the identification of a specific community type, e.g., focusing on Informal
Communities [$6]. For community smells, relations with more distinct topics have
been analyzed, such as social debt, technical debt, architecture smells, and code
smells. It would be interesting to analyze these topics related to community patterns
in the future, when we can accurately identify community patterns. Furthermore,
KAIAULU [68] could be extended to analyze more distinct types of community smells.

Additionally, Catolino et al. [18] provide a non-exhaustive overview of what is
known, unknown, and tentatively discoverable in the near future regarding software
community types and health, indicating several directions for future work. To name
a few, these include research into algorithms and measurements to pinpoint shifts
of community types across community life-cycles precisely and research into design
patterns for community structures contiguous to design patterns in the underlying
software architectures. Moreover, in the future, it would be interesting to analyze
how project forks affect community patterns and smells.

Furthermore, based on our research, we found that the studies related to commu-
nity smells are researching active communities [7, 66, 76, 83]. This makes sense since
community smells do not necessarily cause the failure of communities. However, we
surmise that this research gap harbors insights into the escalations of community
smells and the social, technical, and socio-technical factors causing these escalations.
Additionally, there could exist additional nonoperationalized community smells,
which could be critical indicators of social debt [3], but also potentially show strong
correlations with specific community types.

95

Bibliography

1]

R. Agrawal, T. Imielinski and A. N. Swami, “Mining association rules between sets
of items in large databases”, in Proceedings of the 1993 ACM SIGMOD International
Conference on Management of Data, Washington, DC, USA, May 26-28, 1993,
P. Buneman and S. Jajodia, Eds., ACM Press, 1993, pp. 207-216. DOI: 10.1145/
170035.170072. [Online]. Available: https://doi.org/10.1145/170035.170072.

T. Ahammed, M. Asad and K. Sakib, “Understanding the involvement of developers
in missing link community smell: An exploratory study on Apache projects”, in
Proceedings of the 8th International Workshop on Quantitative Approaches to
Software Quality co-located with 27th Asia-Pacific Software Engineering Conference
(APSEC 2020), Singapore (virtual), December 1, 2020, H. Lichter, S. Aydin, T.
Sunetnanta and T. Anwar, Eds., ser. CEUR Workshop Proceedings, vol. 2767,
CEUR-WS.org, 2020, pp. 64-70. [Online]. Available: http://ceur-ws.org/Vol-
2767/08-QuASoQ-2020.pdf.

G. Ailon, “Mirror, mirror on the wall: Culture’s consequences in a value test of its
own design”, English, Academy of Management Review, vol. 33, no. 4, pp. 885-904,
Jan. 2008, 1SSN: 0363-7425. DOI: 10.5465/AMR.2008.34421995.

——, “A reply to Geert Hofstede”, Academy of Management review, vol. 34, no. 3,
pp. 571-573, 2009.

V. Albino and A. C. Garavelli, “A neural network application to subcontractor
rating in construction firms”, International Journal of Project Management, vol. 16,
no. 1, pp. 9-14, 1998, 1ssN: 0263-7863. DOI: https://doi.org/10.1016/50263~
7863(97) 00007 - 0. [Online]. Available: https ://www . sciencedirect . com/
science/article/pii/S0263786397000070.

N. Almarimi, A. Ouni, M. Chouchen and M. W. Mkaouer, “Csdetector: An open
source tool for community smells detection”, in ESEC/FSE ’21: 29th ACM Joint
FEuropean Software Engineering Conference and Symposium on the Foundations
of Software Engineering, Athens, Greece, August 23-28, 2021, D. Spinellis, G.
Gousios, M. Chechik and M. Di Penta, Eds., ACM, 2021, pp. 1560-1564. DOI:
10.1145/3468264 . 3473121. [Online]. Available: https://doi.org/10.1145/
3468264 .3473121.

N. Almarimi, A. Ouni, M. Chouchen, I. Saidani and M. W. Mkaouer, “On the
detection of community smells using genetic programming-based ensemble classifier
chain”, in ICGSE ’20: 15th IEEE/ACM International Conference on Global Software
Engineering, Seoul, Republic of Korea, June 26-28, 2020, P. Tell, 1. Steinmacher and
R. Britto, Eds., ACM, 2020, pp. 43-54. DoOI: 10.1145/3372787.3390439. [Online].
Available: https://doi.org/10.1145/3372787.3390439.

96

https://doi.org/10.1145/170035.170072
https://doi.org/10.1145/170035.170072
https://doi.org/10.1145/170035.170072
http://ceur-ws.org/Vol-2767/08-QuASoQ-2020.pdf
http://ceur-ws.org/Vol-2767/08-QuASoQ-2020.pdf
https://doi.org/10.5465/AMR.2008.34421995
https://doi.org/https://doi.org/10.1016/S0263-7863(97)00007-0
https://doi.org/https://doi.org/10.1016/S0263-7863(97)00007-0
https://www.sciencedirect.com/science/article/pii/S0263786397000070
https://www.sciencedirect.com/science/article/pii/S0263786397000070
https://doi.org/10.1145/3468264.3473121
https://doi.org/10.1145/3468264.3473121
https://doi.org/10.1145/3468264.3473121
https://doi.org/10.1145/3372787.3390439
https://doi.org/10.1145/3372787.3390439

8]

[10]

[11]

[12]

N. Almarimi, A. Ouni and M. W. Mkaouer, “Learning to detect community smells
in open source software projects”, Knowl. Based Syst., vol. 204, p. 106 201, 2020.
DOI: 10.1016/j.knosys.2020.106201. [Online]. Available: https://doi.org/10.
1016/j .knosys.2020.106201.

S. Amreen, A. Mockus, R. Zaretzki, C. Bogart and Y. Zhang, “ALFAA: active
learning fingerprint based anti-aliasing for correcting developer identity errors in
version control systems”, Empir. Softw. Eng., vol. 25, no. 2, pp. 1136-1167, 2020.
DOI: 10.1007/s10664-019-09786-7. [Online|. Available: https://doi.org/10.
1007/s10664-019-09786-7.

G. Avelino, L. T. Passos, A. C. Hora and M. T. Valente, “A novel approach for
estimating truck factors”, CoRR, vol. abs/1604.06766, 2016. arXiv: 1604.06766.
[Online]. Available: http://arxiv.org/abs/1604.06766.

V. R. Basili, G. Caldiera and H. D. Rombach, “The goal question metric approach”,
vol. I, 1994.

J. M. Bloodgood and J. L. Morrow Jr., “Strategic organizational change: Exploring
the roles of environmental structure, internal conscious awareness and knowledge*”,
Journal of Management Studies, vol. 40, no. 7, pp. 1761-1782, 2003. DOI: https:
//doi.org/10.1111 /1467 - 6486 .00399. eprint: https://onlinelibrary .
wiley.com/doi/pdf/10.1111/1467-6486.00399. [Online]. Available: https :

//onlinelibrary.wiley.com/doi/abs/10.1111/1467-6486.00399.

H. Borges, A. C. Hora and M. T. Valente, “Understanding the factors that impact
the popularity of github repositories”, in 2016 IEEE International Conference on
Software Maintenance and Evolution, ICSMFE 2016, Raleigh, NC, USA, October 2-7,
2016, IEEE Computer Society, 2016, pp. 334-344. DOI: 10.1109/ICSME.2016.31.
[Online|. Available: https://doi.org/10.1109/ICSME.2016.31.

P. Brada and P. Picha, “Software process anti-patterns catalogue”, in Proceedings
of the 24th European Conference on Pattern Languages of Programs, EuroPLoP
2019, Irsee, Germany, July 3-7, 2019, T. B. Sousa, Ed., ACM, 2019, 28:1-28:10.
DOI: 10.1145/3361149.3361178. [Online]. Available: https://doi.org/10.1145/
3361149.3361178.

F. P. Brooks, “The mythical man-month: After 20 years”, IEEFE Software, vol. 12,
no. 5, pp. 57-60, 1995. DOI: 10.1109/MS.1995.10042.

A. Capiluppi, P. Lago and M. Morisio, “Characteristics of open source projects”,
in Proceedings of the Seventh Furopean Conference on Software Maintenance and
Reengineering, ser. CSMR 03, USA: IEEE Computer Society, 2003, p. 317, ISBN:
0769519024.

M. Cataldo, J. D. Herbsleb and K. M. Carley, “Socio-technical congruence: A
framework for assessing the impact of technical and work dependencies on software
development productivity”, in Proceedings of the Second International Symposium
on Empirical Software Engineering and Measurement, ESEM 2008, October 9-10,
2008, Kaiserslautern, Germany, H. D. Rombach, S. G. Elbaum and J. Miinch,
Eds., ACM, 2008, pp. 2-11. pOI: 10.1145/1414004.1414008. [Online]. Available:
https://doi.org/10.1145/1414004.1414008.

97

https://doi.org/10.1016/j.knosys.2020.106201
https://doi.org/10.1016/j.knosys.2020.106201
https://doi.org/10.1016/j.knosys.2020.106201
https://doi.org/10.1007/s10664-019-09786-7
https://doi.org/10.1007/s10664-019-09786-7
https://doi.org/10.1007/s10664-019-09786-7
https://arxiv.org/abs/1604.06766
http://arxiv.org/abs/1604.06766
https://doi.org/https://doi.org/10.1111/1467-6486.00399
https://doi.org/https://doi.org/10.1111/1467-6486.00399
https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-6486.00399
https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-6486.00399
https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-6486.00399
https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-6486.00399
https://doi.org/10.1109/ICSME.2016.31
https://doi.org/10.1109/ICSME.2016.31
https://doi.org/10.1145/3361149.3361178
https://doi.org/10.1145/3361149.3361178
https://doi.org/10.1145/3361149.3361178
https://doi.org/10.1109/MS.1995.10042
https://doi.org/10.1145/1414004.1414008
https://doi.org/10.1145/1414004.1414008

[18]

[23]

[24]

[25]

[26]

[27]

[28]

G. Catolino, F. Palomba and D. A. Tamburri, “The secret life of software com-
munities: What we know and what we don’t know”, in Proceedings of the 18th
Belgium-Netherlands Software Evolution Workshop, Brussels, Belgium, November
28th to 29th, 2019, D. Di Nucci and C. De Roover, Eds., ser. CEUR Workshop
Proceedings, vol. 2605, CEUR-WS.org, 2019. [Online]. Available: http://ceur-
ws.org/Vol-2605/15.pdf.

G. Catolino, F. Palomba, D. A. Tamburri and A. Serebrenik, “Understanding
community smells variability: A statistical approach”, English, in International
Conference on Software Engineering, Dec. 2020.

G. Catolino, F. Palomba, D. A. Tamburri, A. Serebrenik and F. Ferrucci, “Gender
diversity and women in software teams: How do they affect community smells?”, in
Proceedings of the 41st International Conference on Software Engineering: Software
Engineering in Society, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019,
R. Kazman and L. Pasquale, Eds., ACM, 2019, pp. 11-20. por: 10.1109/ICSE-
SEIS . 2019 .00010. [Online]. Available: https://doi . org/10. 1109/ ICSE-
SEIS.2019.00010.

——, “Gender diversity and community smells: Insights from the trenches”, IEFEE
Softw., vol. 37, no. 1, pp. 10-16, 2020. DOI: 10.1109/MS.2019.2944594. [Online].
Available: https://doi.org/10.1109/MS.2019.2944594.

——, “Refactoring community smells in the wild: The practitioner’s field manual”,
in ICSE-SEIS ’20: Proceedings of the ACM/IEEE }2nd International Conference
on Software Engineering: Software Engineering in Society, Seoul, South Korea, 27
June - 19 July, 2020, G. Rothermel and D.-H. Bae, Eds., ACM, 2020, pp. 25-34.
DOI: 10.1145/3377815.3381380. [Online]. Available: https://doi.org/10.1145/
3377815.3381380.

S. Chacon and B. Straub, Pro Git, 2nd. USA: Apress, 2014, p. 44, 1SBN: 1484200772.
[Online]. Available: http://git-scm.com/book/en/v2.

J. Coelho and M. T. Valente, “Why modern open source projects fail”, in Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2017, Paderborn, Germany, September 4-8, 2017, E. Bodden, W. Schéfer, A. van
Deursen and A. Zisman, Eds., ACM, 2017, pp. 186-196. DOI: 10.1145/3106237 .
3106246. [Online]. Available: https://doi.org/10.1145/3106237.3106246.

K. Crowston and J. Howison, “The social structure of free and open source software
development”, First Monday, vol. 10, no. 2, 2005. [Online]. Available: https :
//firstmonday.org/ojs/index.php/fm/article/view/1207.

——, “Assessing the health of open source communities”, Computer, vol. 39,
no. 5, pp. 89-91, 2006. por: 10.1109/MC.2006. 152. [Online]. Available: https:
//doi.org/10.1109/MC.2006. 152.

M. De Stefano, F. Pecorelli, D. A. Tamburri, F. Palomba and A. De Lucia, “Splicing
community patterns and smells: A preliminary study”, in ICSE ’20: 42nd Interna-
tional Conference on Software Engineering, Workshops, Seoul, Republic of Korea,
27 June - 19 July, 2020, ACM, 2020, pp. 703-710. DOI: 10.1145/3387940.3392204.
[Online]. Available: https://doi.org/10.1145/3387940.3392204.

B. Eken, F. Palma, A. Basar and A. Tosun, “An empirical study on the effect
of community smells on bug prediction”, Softw. Qual. J., vol. 29, no. 1, pp. 159—
194, 2021. por: 10.1007/s11219-020-09538~-7. [Online]. Available: https :
//doi.org/10.1007/s11219-020-09538-7.

98

http://ceur-ws.org/Vol-2605/15.pdf
http://ceur-ws.org/Vol-2605/15.pdf
https://doi.org/10.1109/ICSE-SEIS.2019.00010
https://doi.org/10.1109/ICSE-SEIS.2019.00010
https://doi.org/10.1109/ICSE-SEIS.2019.00010
https://doi.org/10.1109/ICSE-SEIS.2019.00010
https://doi.org/10.1109/MS.2019.2944594
https://doi.org/10.1109/MS.2019.2944594
https://doi.org/10.1145/3377815.3381380
https://doi.org/10.1145/3377815.3381380
https://doi.org/10.1145/3377815.3381380
http://git-scm.com/book/en/v2
https://doi.org/10.1145/3106237.3106246
https://doi.org/10.1145/3106237.3106246
https://doi.org/10.1145/3106237.3106246
https://firstmonday.org/ojs/index.php/fm/article/view/1207
https://firstmonday.org/ojs/index.php/fm/article/view/1207
https://doi.org/10.1109/MC.2006.152
https://doi.org/10.1109/MC.2006.152
https://doi.org/10.1109/MC.2006.152
https://doi.org/10.1145/3387940.3392204
https://doi.org/10.1145/3387940.3392204
https://doi.org/10.1007/s11219-020-09538-7
https://doi.org/10.1007/s11219-020-09538-7
https://doi.org/10.1007/s11219-020-09538-7

[29]

[36]

[37]

[39]

[40]

D. Falessi, W. Smith and A. Serebrenik, “STRESS: A semi-automated, fully replic-
able approach for project selection”, in 2017 ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement, ESEM 2017, Toronto, ON,
Canada, November 9-10, 2017, A. Bener, B. Turhan and S. Biffl, Eds., IEEE Com-
puter Society, 2017, pp. 151-156. DOI: 10.1109/ESEM.2017.22. [Online|. Available:
https://doi.org/10.1109/ESEM.2017.22.

N. E. Fenton, Software metrics - a rigorous approach. Chapman and Hall, 1991,
ISBN: 978-0-412-40440-5.

M. M. Ferreira, G. Avelino, M. T. Valente and K. A. M. Ferreira, “A comparative
study of algorithms for estimating truck factor”, in 2016 X Brazilian Symposium on
Software Components, Architectures and Reuse, SBCARS 2016, Maringd, Brazil,
September 19-20, 2016, IEEE Computer Society, 2016, pp. 91-100. DO1: 10.1109/
SBCARS.QOlG.QO.K)aneL Available: https://doi.org/10.1109/SBCARS.2016.
20.

J. Finch, “The vignette technique in survey research”, Sociology, vol. 21, no. 1,
pp. 105-114, 1987. po1: 10.1177/0038038587021001008.

R. A. Fisher, “On the interpretation of y? from contingency tables, and the
calculation of P”, Journal of the Royal Statistical Society, vol. 85, no. 1, pp. 87—
94, 1922, 1SSN: 09528385. [Online|. Available: http://www. jstor.org/stable/
2340521.

S. Gallagher, “Introduction: The arts and sciences of the situated body”, Janus
Head, vol. 9(2), 2006.

S. P. Goggins, K. Lumbard and M. Germonprez, “Open source community health:
Analytical metrics and their corresponding narratives”, in 4th IEEE/ACM Inter-
national Workshop on Software Health in Projects, Ecosystems and Communities,
SoHeal@ICSE 2021, Madrid, Spain, May 29, 2021, IEEE, 2021, pp. 25-33. DOI:
10.1109/SoHealb52568.2021.00010. [Online]. Available: https://doi.org/10.
1109/SoHealb52568.2021.00010.

R. E. Grinter, J. D. Herbsleb and D. E. Perry, “The geography of coordination:
Dealing with distance in r&d work”, in Proceedings of GROUP’99, International
Conference on Supporting Group Work, November 14-17, 1999, Embassy Suites
Hotel, Phoeniz, Arizona, USA, ACM, 1999, pp. 306-315. DOI: 10.1145/320297.
320333. [Online]. Available: https://doi.org/10.1145/320297.320333.

H. Hata, T. Todo, S. Onoue and K. Matsumoto, “Characteristics of sustainable
OSS projects: A theoretical and empirical study”, in 8th IEEE/ACM International
Workshop on Cooperative and Human Aspects of Software Engineering, CHASE
2015, Florence, Italy, May 18, 2015, A. Begel, R. Prikladnicki, Y. Dittrich, C. R. B.
de Souza, A. Sarma and S. Athavale, Eds., IEEE Computer Society, 2015, pp. 15-21.
DOIL: 10.1109/CHASE.2015.9. [Online|. Available: https://doi.org/10.1109/
CHASE.2015.9.

J. D. Herbsleb and R. E. Grinter, “Architectures, coordination, and distance:
Conway’s law and beyond”, IEEE Softw., vol. 16, no. 5, pp. 63-70, 1999. DOI:
10.1109/52.795103. [Online]. Available: https://doi.org/10.1109/52.795103.

G. Hofstede, “Dimensions do not exist: A reply to Brendan McSweeney”, Human
relations, vol. 55, no. 11, pp. 1355-1361, 2002.

——, “Who is the fairest of them all? Galit Ailon’s mirror”, Academy of Management
Review, vol. 34, no. 3, pp. 570-571, 2009.

99

https://doi.org/10.1109/ESEM.2017.22
https://doi.org/10.1109/ESEM.2017.22
https://doi.org/10.1109/SBCARS.2016.20
https://doi.org/10.1109/SBCARS.2016.20
https://doi.org/10.1109/SBCARS.2016.20
https://doi.org/10.1109/SBCARS.2016.20
https://doi.org/10.1177/0038038587021001008
http://www.jstor.org/stable/2340521
http://www.jstor.org/stable/2340521
https://doi.org/10.1109/SoHeal52568.2021.00010
https://doi.org/10.1109/SoHeal52568.2021.00010
https://doi.org/10.1109/SoHeal52568.2021.00010
https://doi.org/10.1145/320297.320333
https://doi.org/10.1145/320297.320333
https://doi.org/10.1145/320297.320333
https://doi.org/10.1109/CHASE.2015.9
https://doi.org/10.1109/CHASE.2015.9
https://doi.org/10.1109/CHASE.2015.9
https://doi.org/10.1109/52.795103
https://doi.org/10.1109/52.795103

[41]

[42]

[46]

[47]

——, “Dimensionalizing cultures: The hofstede model in context”, Online readings
in psychology and culture, vol. 2, no. 1, pp. 2307-0919, 2011.

Hofstede Insights - Country Comparison. Hofstede Insights, 2021. [Online]. Avail-
able: https://www.hofstede-insights.com/country-comparison/ (visited on
13/05/2021).

K. Ito, H. Washizaki and Y. Fukazawa, “Handover anti-patterns”, in Proceedings
of the 5th Asian Conference on Pattern Languages of Programs (AsianPLoP 2016),
Taiper, Tatwan, Jan. 2016.

S. Jansen, “Measuring the health of open source software ecosystems: Beyond the
scope of project health”, Inf. Softw. Technol., vol. 56, no. 11, pp. 1508-1519, 2014.
DOI: 10.1016/j.infsof .2014.04.006. [Online]. Available: https://doi.org/10.
1016/j.infsof.2014.04.006.

M. Joblin, W. Mauerer, S. Apel, J. Siegmund and D. Riehle, “From developer
networks to verified communities: A fine-grained approach”, in 87th IEEE/ACM
International Conference on Software Engineering, ICSE 2015, Florence, Italy,
May 16-24, 2015, Volume 1, A. Bertolino, G. Canfora and S. G. Elbaum, Eds.,
IEEE Computer Society, 2015, pp. 563-573. DOI: 10.1109/ICSE.2015.73. [Online].
Available: https://doi.org/10.1109/ICSE.2015.73.

E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German and D. E.
Damian, “An in-depth study of the promises and perils of mining github”, Empir.
Softw. Eng., vol. 21, no. 5, pp. 2035-2071, 2016. DOI: 10.1007/s10664-015-9393-5.
[Online]. Available: https://doi.org/10.1007/s10664-015-9393-5.

D. Karagiannis, H. C. Mayr and J. Mylopoulos, Eds., Domain-Specific Conceptual
Modeling, Concepts, Methods and Tools. Springer, 2016, 1ISBN: 978-3-319-39416-9.
DOIL: 10.1007/978-3-319-39417-6. [Online|. Available: https://doi.org/10.
1007/978-3-319-39417-6.

J. Keyes, Social Software Engineering: Development and Collaboration with Social
Networking. Apr. 2016, pp. 1-11, 1SBN: 9780429105982. DOI: 10.1201/b11252.

S. Kujala, M. Kauppinen, L. Lehtola and T. Kojo, “The role of user involvement in
requirements quality and project success”, in 13th IEEFE International Conference
on Requirements Engineering (RE’05), 2005, pp. 75-84. DOI: 10.1109/RE.2005.72.

T. Lewowski and L. Madeyski, “Creating evolving project data sets in software engin-
eering”, in Integrating Research and Practice in Software Engineering, ser. Studies in
Computational Intelligence, S. Jarzabek, A. Poniszewska-Maranda and L. Madeyski,
Eds., vol. 851, Springer, 2020, pp. 1-14. DOI: 10.1007/978-3-030-26574-8_1.
[Online|. Available: https://doi.org/10.1007/978-3-030-26574-8%5C_1.

S. Magnoni, “An approach to measure community smells in software development
communities”, M.S. thesis, Politecnico Di Milano, Italy, 2016.

K. Manikas, “Revisiting software ecosystems research: A longitudinal literature
study”, J. Syst. Softw., vol. 117, pp. 84-103, 2016. pOI: 10.1016/j.jss.2016.02.
003. [Online]. Available: https://doi.org/10.1016/j.jss.2016.02.003.

N. McDonald and S. P. Goggins, “Performance and participation in open source
software on github”, in 20183 ACM SIGCHI Conference on Human Factors in
Computing Systems, CHI ’13, Paris, France, April 27 - May 2, 2013, Extended
Abstracts, W. E. Mackay, S. A. Brewster and S. Bgdker, Eds., ACM, 2013, pp. 139—
144. por: 10.1145/2468356.2468382. [Online|. Available: https://doi.org/10.
1145/2468356.2468382.

100

https://www.hofstede-insights.com/country-comparison/
https://doi.org/10.1016/j.infsof.2014.04.006
https://doi.org/10.1016/j.infsof.2014.04.006
https://doi.org/10.1016/j.infsof.2014.04.006
https://doi.org/10.1109/ICSE.2015.73
https://doi.org/10.1109/ICSE.2015.73
https://doi.org/10.1007/s10664-015-9393-5
https://doi.org/10.1007/s10664-015-9393-5
https://doi.org/10.1007/978-3-319-39417-6
https://doi.org/10.1007/978-3-319-39417-6
https://doi.org/10.1007/978-3-319-39417-6
https://doi.org/10.1201/b11252
https://doi.org/10.1109/RE.2005.72
https://doi.org/10.1007/978-3-030-26574-8_1
https://doi.org/10.1007/978-3-030-26574-8%5C_1
https://doi.org/10.1016/j.jss.2016.02.003
https://doi.org/10.1016/j.jss.2016.02.003
https://doi.org/10.1016/j.jss.2016.02.003
https://doi.org/10.1145/2468356.2468382
https://doi.org/10.1145/2468356.2468382
https://doi.org/10.1145/2468356.2468382

[54]

[57]

[59]

B. McSweeney, “Hofstede’s model of national cultural differences and their con-
sequences: A triumph of faith - a failure of analysis”, Human Relations - HUM
RELAT, vol. 55, pp. 89118, Jan. 2002. DOL: 10.1177/0018726702551004.

——, “The essentials of scholarship: A reply to Geert Hofstede”, Human relations,
vol. 55, no. 11, pp. 1363-1372, 2002.

A. Meneely and L. A. Williams, “Socio-technical developer networks: Should we
trust our measurements?”, in Proceedings of the 33rd International Conference on
Software Engineering, ICSE 2011, Waikiki, Honolulu , HI, USA, May 21-28, 2011,
R. N. Taylor, H. C. Gall and N. Medvidovic, Eds., ACM, 2011, pp. 281-290. DOTI:
10.1145/1985793.1985832. [Online]. Available: https://doi.org/10.1145/
1985793.1985832.

K. Nakakoji, Y. Yamamoto, Y. Nishinaka, K. Kishida and Y. Ye, “Evolution
patterns of open-source software systems and communities”, in Proceedings of
the International Workshop on Principles of Software FEwvolution, IWPSE 02,
Orlando, Florida, USA, May 19-20, 2002, M. Aoyama, K. Inoue and V. Rajlich,
Eds., ACM, 2002, pp. 76-85. DOI: 10.1145/512035.512055. [Online]. Available:
https://doi.org/10.1145/512035.512055.

M. E. J. Newman and M. Girvan, “Finding and evaluating community structure
in networks”, Physical Review FE, vol. 69, no. 2, Feb. 2004, 1ssN: 1550-2376. DOTI:
10.1103/physreve . 69.026113. [Online]. Available: http://dx.doi.org/10.
1103/PhysRevE.69.026113.

S. Onoue, H. Hata and K. Matsumoto, “Software population pyramids: The current
and the future of OSS development communities”, in 2014 ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement, ESEM 14,
Torino, Italy, September 18-19, 2014, M. Morisio, T. Dyba and M. Torchiano,
Eds., ACM, 2014, 34:1-34:4. DOL: 10.1145/2652524.2652565. [Online]. Available:
https://doi.org/10.1145/2652524.2652565.

S. Onoue, H. Hata, A. Monden and K. Matsumoto, “Investigating and projecting
population structures in open source software projects: A case study of projects
in github”, IEICE Trans. Inf. Syst., vol. 99-D, no. 5, pp. 1304-1315, 2016. DOT:
10. 1587 /transinf . 2015EDP7363. [Online]. Available: https://doi.org/10.
1587 /transinf .2015EDP7363.

S. Onoue, R. G. Kula, H. Hata and K. Matsumoto, “The health and wealth
of OSS projects: Evidence from community activities and product evolution”,
CoRR, vol. abs/1709.10324, 2017. arXiv: 1709.10324. [Online]. Available: http:
//arxiv.org/abs/1709.10324.

A. Oomes, “Organization awareness in crisis management”, in Proceedings of the
international workshop on information systems on crisis response and management

(ISCRAM), Jan. 2004.

F. Palomba, A. Serebrenik and A. Zaidman, “Social debt analytics for improving
the management of software evolution tasks”, in Proceedings of the 16th edition
of the BElgian-NFEtherlands software eVOLution symposium, Antwerp, Belgium,
December 4-5, 2017, S. Demeyer, A. Parsai, G. Laghari and B. van Bladel, Eds.,
ser. CEUR Workshop Proceedings, vol. 2047, CEUR-WS.org, 2017, pp. 18-21.
[Online]. Available: http://ceur-ws.org/Vol-2047/BENEVOLY%5C_2017%5C_
paper%5C_5. pdf.

101

https://doi.org/10.1177/0018726702551004
https://doi.org/10.1145/1985793.1985832
https://doi.org/10.1145/1985793.1985832
https://doi.org/10.1145/1985793.1985832
https://doi.org/10.1145/512035.512055
https://doi.org/10.1145/512035.512055
https://doi.org/10.1103/physreve.69.026113
http://dx.doi.org/10.1103/PhysRevE.69.026113
http://dx.doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1145/2652524.2652565
https://doi.org/10.1145/2652524.2652565
https://doi.org/10.1587/transinf.2015EDP7363
https://doi.org/10.1587/transinf.2015EDP7363
https://doi.org/10.1587/transinf.2015EDP7363
https://arxiv.org/abs/1709.10324
http://arxiv.org/abs/1709.10324
http://arxiv.org/abs/1709.10324
http://ceur-ws.org/Vol-2047/BENEVOL%5C_2017%5C_paper%5C_5.pdf
http://ceur-ws.org/Vol-2047/BENEVOL%5C_2017%5C_paper%5C_5.pdf

[64]

[65]

[66]

[67]

[68]

[69]

[72]

F. Palomba and D. A. Tamburri, “Predicting the emergence of community smells us-
ing socio-technical metrics: A machine-learning approach”, J. Syst. Softw., vol. 171,
p. 110847, 2021. pOI: 10.1016/j.jss.2020.110847. [Online]. Available: https:
//doi.org/10.1016/3.jss.2020.110847.

F. Palomba, D. A. Tamburri, F. A. Fontana, R. Oliveto, A. Zaidman and A.
Serebrenik, There are other fish in the sea! how do community smells influence
the intensity of code smells? - online appendixz, 2017. DOI: 10.6084/m9.figshare.
5188333.v2. [Online]. Available: https://goo.gl/GsPb1B.

F. Palomba, D. A. Tamburri, F. A. Fontana, R. Oliveto, A. Zaidman and A.
Serebrenik, “Beyond technical aspects: How do community smells influence the
intensity of code smells?”, IEEE Trans. Software Eng., vol. 47, no. 1, pp. 108-129,
2021. por: 10.1109/TSE. 2018.2883603. [Online]. Available: https://doi.org/
10.1109/TSE.2018.2883603.

F. Palomba, D. A. Tamburri, A. Serebrenik, A. Zaidman, F. A. Fontana and R.
Oliveto, “How do community smells influence code smells?”, in Proceedings of the
40th International Conference on Software Engineering: Companion Proceeedings,
ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, M. Chaudron, I. Crnkovic,
M. Chechik and M. Harman, Eds., ACM, 2018, pp. 240-241. DOI: 10.1145/3183440.
3194950. [Online|. Available: https://doi.org/10.1145/3183440.3194950.

C. Paradis and R. Kazman, “Design choices in building an MSR tool: The case
of Kaiaulu”, in 1st International Workshop on Mining Software Repositories for
Software Architecture, MSR4SA 2021 at ECSA (15th European Conference on
Software Architecture) 2021, M. Soliman, I. Malavolta and M. Mirakhorli, Eds.,
2021.

A. Persson and J. Stirna, “How to transfer a knowledge management approach
to an organization - A set of patterns and anti-patterns”, in Practical Aspects
of Knowledge Management, 6th International Conference, PAKM 2006, Vienna,
Austria, November 30 - December 1, 2006, Proceedings, U. Reimer and D. Kara-
giannis, Eds., ser. Lecture Notes in Computer Science, vol. 4333, Springer, 2006,
pp. 243-252. DOI: 10.1007/11944935_22. [Online]. Available: https://doi.org/
10.1007/11944935%5C_22.

P. Runeson and M. Host, “Guidelines for conducting and reporting case study
research in software engineering”, Empir. Softw. Eng., vol. 14, no. 2, pp. 131-164,
2009. DOI: 10.1007/s10664-008-9102-8. [Online|. Available: https://doi.org/
10.1007/s10664-008-9102-8.

J. Stirna and A. Persson, “Anti-patterns as a means of focusing on critical quality
aspects in enterprise modeling”, in Enterprise, Business-Process and Informa-
tion Systems Modeling, 10th International Workshop, BPMDS 2009, and 14th
International Conference, EMMSAD 2009, held at CAiSE 2009, Amsterdam, The
Netherlands, June 8-9, 2009. Proceedings, T. A. Halpin, J. Krogstie, S. Nurcan,
E. Proper, R. Schmidt, P. Soffer and R. Ukor, Eds., ser. Lecture Notes in Business
Information Processing, vol. 29, Springer, 2009, pp. 407-418. por: 10.1007/978-3-
642-01862-6_33. [Online]. Available: https://doi.org/10.1007/978-3-642~
01862-6%5C_33.

D. A. Tamburri, “Software architecture social debt: Managing the incommunicability
factor”, IEEE Trans. Comput. Soc. Syst., vol. 6, no. 1, pp. 20-37, 2019. DpoOI:
10.1109/TCSS.2018.2886433. [Online|. Available: https://doi.org/10.1109/
TCSS.2018.2886433.

102

https://doi.org/10.1016/j.jss.2020.110847
https://doi.org/10.1016/j.jss.2020.110847
https://doi.org/10.1016/j.jss.2020.110847
https://doi.org/10.6084/m9.figshare.5188333.v2
https://doi.org/10.6084/m9.figshare.5188333.v2
https://goo.gl/GsPb1B
https://doi.org/10.1109/TSE.2018.2883603
https://doi.org/10.1109/TSE.2018.2883603
https://doi.org/10.1109/TSE.2018.2883603
https://doi.org/10.1145/3183440.3194950
https://doi.org/10.1145/3183440.3194950
https://doi.org/10.1145/3183440.3194950
https://doi.org/10.1007/11944935_22
https://doi.org/10.1007/11944935%5C_22
https://doi.org/10.1007/11944935%5C_22
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/978-3-642-01862-6_33
https://doi.org/10.1007/978-3-642-01862-6_33
https://doi.org/10.1007/978-3-642-01862-6%5C_33
https://doi.org/10.1007/978-3-642-01862-6%5C_33
https://doi.org/10.1109/TCSS.2018.2886433
https://doi.org/10.1109/TCSS.2018.2886433
https://doi.org/10.1109/TCSS.2018.2886433

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

D. A. Tamburri, K. Blincoe, F. Palomba and R. Kazman, “”the Canary in the Coal
Mine...” A cautionary tale from the decline of sourceforge”, Softw. Pract. Exp.,
vol. 50, no. 10, pp. 1930-1951, 2020. DOI: 10.1002/spe.2874. [Online|. Available:
https://doi.org/10.1002/spe.2874.

D. A. Tamburri and G. Casale, “Cognitive distance and research output in com-
puting education: A case-study”, IEEE Trans. Educ., vol. 62, no. 2, pp. 99-107,
2019. por: 10.1109/TE.2018.2868551. [Online]. Available: https://doi.org/10.
1109/TE.2018.2868551.

D. A. Tamburri, S. Gatti, S. Invernizzi and E. Di Nitto, “Re-architecting software
forges into communities: An experience report”, vol. 1, no. 4, pp. 1-21, 2013,
Available Online for Peer-Review Only: https://tinyurl.com/ya3nhsgs.

D. A. Tamburri, R. Kazman and H. Fahimi, “The architect’s role in community
shepherding”, IEEFE Softw., vol. 33, no. 6, pp. 70-79, 2016. pDoI1: 10.1109/MS.2016.
144. [Online]. Available: https://doi.org/10.1109/MS.2016.144.

D. A. Tamburri, R. Kazman and W.-J. van den Heuvel, “Splicing community and
software architecture smells in agile teams: An industrial study”, in 52nd Hawaii
International Conference on System Sciences, HICSS 2019, Grand Wailea, Mauwi,
Hawaii, USA, January 8-11, 2019, T. Bui, Ed., ScholarSpace, 2019, pp. 1-11.
[Online]. Available: http://hdl.handle.net/10125/60140.

D. A. Tamburri, P. Kruchten, P. Lago and H. van Vliet, “What is social debt in
software engineering?”, in 6th International Workshop on Cooperative and Human
Aspects of Software Engineering, CHASE 2013, San Francisco, CA, USA, May
25, 2013, IEEE Computer Society, 2013, pp. 93-96. DOI: 10.1109/CHASE.2013.
6614739. [Online|. Available: https://doi.org/10.1109/CHASE.2013.6614739.

——, “Social debt in software engineering: Insights from industry”, J. Internet
Serv. Appl., vol. 6, no. 1, 10:1-10:17, 2015. DOI: 10.1186/s13174-015-0024-6.
[Online|. Available: https://doi.org/10.1186/s13174-015-0024-6.

D. A. Tamburri, P. Lago and H. van Vliet, “Organizational social structures for
software engineering”, ACM Comput. Surv., vol. 46, no. 1, 3:1-3:35, 2013. DOTI:
10.1145/2522968 . 2522971. [Online]. Available: https://doi.org/10.1145/
2522968.2522971.

——, “Uncovering latent social communities in software development”, IEEE Softw.,
vol. 30, no. 1, pp. 29-36, 2013. pOI: 10.1109/MS.2012.170. [Online|. Available:
https://doi.org/10.1109/MS.2012.170.

D. A. Tamburri, P. Lago, H. van Vliet and E. Di Nitto, “On the nature of GSE
organizational social structures: An empirical study”, in 2012 IEEFE Seventh Inter-
national Conference on Global Software Engineering, Porto Alegre, Rio Grande do
Sul, Brazil, August 27-30, 2012, IEEE Computer Society, 2012, pp. 114-123. DOI:
10.1109/ICGSE.2012.25. [Online]. Available: https://doi.org/10.1109/ICGSE.
2012.25.

D. A. Tamburri, F. Palomba and R. Kazman, “Exploring community smells in open-
source: An automated approach”, IEEE Transactions on Software Engineering,
vol. 47, no. 3, pp. 630-652, 2019. DOI: 10.1109/TSE.2019.2901490.

——, “Success and failure in software engineering: A followup systematic literature
review”, IEEFE Trans. Engineering Management, vol. 68, no. 2, pp. 599-611, 2021.
DOI: 10.1109/TEM. 2020 .2976642. [Online]. Available: https://doi.org/10.
1109/TEM. 2020.2976642.

103

https://doi.org/10.1002/spe.2874
https://doi.org/10.1002/spe.2874
https://doi.org/10.1109/TE.2018.2868551
https://doi.org/10.1109/TE.2018.2868551
https://doi.org/10.1109/TE.2018.2868551
https://tinyurl.com/ya3nhsqs
https://doi.org/10.1109/MS.2016.144
https://doi.org/10.1109/MS.2016.144
https://doi.org/10.1109/MS.2016.144
http://hdl.handle.net/10125/60140
https://doi.org/10.1109/CHASE.2013.6614739
https://doi.org/10.1109/CHASE.2013.6614739
https://doi.org/10.1109/CHASE.2013.6614739
https://doi.org/10.1186/s13174-015-0024-6
https://doi.org/10.1186/s13174-015-0024-6
https://doi.org/10.1145/2522968.2522971
https://doi.org/10.1145/2522968.2522971
https://doi.org/10.1145/2522968.2522971
https://doi.org/10.1109/MS.2012.170
https://doi.org/10.1109/MS.2012.170
https://doi.org/10.1109/ICGSE.2012.25
https://doi.org/10.1109/ICGSE.2012.25
https://doi.org/10.1109/ICGSE.2012.25
https://doi.org/10.1109/TSE.2019.2901490
https://doi.org/10.1109/TEM.2020.2976642
https://doi.org/10.1109/TEM.2020.2976642
https://doi.org/10.1109/TEM.2020.2976642

[85]

[91]

[92]

93]

[94]

[95]

D. A. Tamburri, F. Palomba, A. Serebrenik and A. Zaidman, Discovering community
types in open-source: A systematic approach and its evaluation - online appendix,
Jul. 2017. por: 10.6084/m9 . figshare.5188333.v2. [Online]. Available: http:
//tinyurl.com/y8004vkg.

——, “Discovering community patterns in open-source: A systematic approach
and its evaluation”, Empir. Softw. Eng., vol. 24, no. 3, pp. 1369-1417, 2019. Dor:
10.1007/s10664-018-9659-9. [Online|. Available: https://doi.org/10.1007/
s10664-018-9659-9.

V. A. Traag, G. Krings and P. Van Dooren, “Significant scales in community
structure”, CoRR, vol. abs/1306.3398, 2013. arXiv: 1306.3398. [Online|. Available:
http://arxiv.org/abs/1306.3398.

A. Tseitlin, “The antifragile organization”, Commun. ACM, vol. 56, no. 8, pp. 4044,
2013. poI: 10.1145/2492007 .2492022. [Online]. Available: https://doi.org/10.
1145/2492007.2492022.

P. Tsirakidis, F. Kobler and H. Krcmar, “Identification of success and failure
factors of two agile software development teams in an open source organization”, in
4th IEEE International Conference on Global Software Engineering, ICGSE 2009,
Limerick, Ireland, 13-16 July, 2009, IEEE Computer Society, 2009, pp. 295-296.
DOIL: 10.1109/ICGSE.2009.42. [Online|. Available: https://doi.org/10.1109/
ICGSE.2009.42.

B. Vasilescu, A. Serebrenik and V. Filkov, “A data set for social diversity studies
of github teams”, in 12th IEEE/ACM Working Conference on Mining Software
Repositories, MSR 2015, Florence, Italy, May 16-17, 2015, M. Di Penta, M. Pinzger
and R. Robbes, Eds., IEEE Computer Society, 2015, pp. 514-517. DO1: 10.1109/
MSR.2015.77. [Online]. Available: https://doi.org/10.1109/MSR.2015.77.

S. Wasserman and K. Faust, Social Network Analysis: Methods and Applications,
ser. Structural Analysis in the Social Sciences. Cambridge University Press, 1994.
DOI: 10.1017/CB09780511815478.

D. D. Williams, Qualitative Inquiry in Daily Life. Qualitative Inquiry in Daily Life,
2018. [Online]. Available: https://qualitativeinquirydailylife.wordpress.
com/chapter-8/chapter-8-domain-analysis/.

D. Williamson, “Forward from a critique of Hofstede’s model of national culture”,
Human relations, vol. 55, no. 11, pp. 1373-1395, 2002.

C. Wohlin, “Guidelines for snowballing in systematic literature studies and a
replication in software engineering”, in 18th International Conference on Fvaluation
and Assessment in Software Engineering, FASE ’14, London, England, United
Kingdom, May 13-1/4, 2014, M. J. Shepperd, T. Hall and I. Myrtveit, Eds., ACM,
2014, 38:1-38:10. DOI: 10.1145/2601248.2601268. [Online|. Available: https:
//doi.org/10.1145/2601248.2601268.

T. Xia, W. Fu, R. Shu and T. Menzies, “Predicting project health for open source pro-
jects (using the DECART hyperparameter optimizer)”, CoRR, vol. abs/2006.07240,
2020. arXiv: 2006 .07240. [Online]. Available: https://arxiv.org/abs/2006.
07240.

K. Yamashita, Y. Kamei, S. McIntosh, A. E. Hassan and N. Ubayashi, “Magnet
or sticky? Measuring project characteristics from the perspective of developer
attraction and retention”, J. Inf. Process., vol. 24, no. 2, pp. 339-348, 2016. DOI:
10.2197/ipsjjip. 24 .339. [Online]. Available: https://doi.org/10.2197/
ipsjjip.24.339.

104

https://doi.org/10.6084/m9.figshare.5188333.v2
http://tinyurl.com/y8oo4vkg
http://tinyurl.com/y8oo4vkg
https://doi.org/10.1007/s10664-018-9659-9
https://doi.org/10.1007/s10664-018-9659-9
https://doi.org/10.1007/s10664-018-9659-9
https://arxiv.org/abs/1306.3398
http://arxiv.org/abs/1306.3398
https://doi.org/10.1145/2492007.2492022
https://doi.org/10.1145/2492007.2492022
https://doi.org/10.1145/2492007.2492022
https://doi.org/10.1109/ICGSE.2009.42
https://doi.org/10.1109/ICGSE.2009.42
https://doi.org/10.1109/ICGSE.2009.42
https://doi.org/10.1109/MSR.2015.77
https://doi.org/10.1109/MSR.2015.77
https://doi.org/10.1109/MSR.2015.77
https://doi.org/10.1017/CBO9780511815478
https://qualitativeinquirydailylife.wordpress.com/chapter-8/chapter-8-domain-analysis/
https://qualitativeinquirydailylife.wordpress.com/chapter-8/chapter-8-domain-analysis/
https://doi.org/10.1145/2601248.2601268
https://doi.org/10.1145/2601248.2601268
https://doi.org/10.1145/2601248.2601268
https://arxiv.org/abs/2006.07240
https://arxiv.org/abs/2006.07240
https://arxiv.org/abs/2006.07240
https://doi.org/10.2197/ipsjjip.24.339
https://doi.org/10.2197/ipsjjip.24.339
https://doi.org/10.2197/ipsjjip.24.339

[97] K. Yamashita, S. McIntosh, Y. Kamei and N. Ubayashi, “Magnet or sticky? An
0SS project-by-project typology”, in 11th Working Conference on Mining Software
Repositories, MSR 2014, Proceedings, May 31 - June 1, 2014, Hyderabad, India,
P. T. Devanbu, S. Kim and M. Pinzger, Eds., ACM, 2014, pp. 344-347. DOI:
10.1145/2597073 . 2597116. [Online]. Available: https://doi .org/10.1145/
2597073.2597116.

98] M. Zhou and A. Mockus, “What make long term contributors: Willingness and
opportunity in OSS community”, in $4th International Conference on Software
Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland, M. Glinz, G. C.
Murphy and M. Pezze, Eds., IEEE Computer Society, 2012, pp. 518-528. DOTI:
10.1109/ICSE.2012.6227164. [Online]. Available: https://doi.org/10.1109/
ICSE.2012.6227164.

105

https://doi.org/10.1145/2597073.2597116
https://doi.org/10.1145/2597073.2597116
https://doi.org/10.1145/2597073.2597116
https://doi.org/10.1109/ICSE.2012.6227164
https://doi.org/10.1109/ICSE.2012.6227164
https://doi.org/10.1109/ICSE.2012.6227164

Bibliography Context Model

[P1]

[P4]

[PS]

H. Hata, T. Todo, S. Onoue and K. Matsumoto, “Characteristics of sustainable
OSS projects: A theoretical and empirical study”, in 8th IEEE/ACM International
Workshop on Cooperative and Human Aspects of Software Engineering, CHASE
2015, Florence, Italy, May 18, 2015, A. Begel, R. Prikladnicki, Y. Dittrich, C. R. B.
de Souza, A. Sarma and S. Athavale, Eds., IEEE Computer Society, 2015, pp. 15-21.
DOI: 10.1109/CHASE.2015.9. [Online|. Available: https://doi.org/10.1109/
CHASE.2015.9.

D. A. Tamburri, R. Kazman and H. Fahimi, “The architect’s role in community
shepherding”, IEEE Softw., vol. 33, no. 6, pp. 70-79, 2016. pDoI: 10.1109/MS.2016.
144. [Online|. Available: https://doi.org/10.1109/MS.2016.144.

D. A. Tamburri, F. Palomba, A. Serebrenik and A. Zaidman, “Discovering com-
munity patterns in open-source: A systematic approach and its evaluation”, Empir.
Softw. Eng., vol. 24, no. 3, pp. 1369-1417, 2019. DOI1: 10.1007/s10664-018-9659-9.
[Online]. Available: https://doi.org/10.1007/s10664-018-9659-9.

D. A. Tamburri, P. Kruchten, P. Lago and H. van Vliet, “Social debt in software
engineering: Insights from industry”, J. Internet Serv. Appl., vol. 6, no. 1, 10:1—
10:17, 2015. DOI: 10.1186/s13174-015-0024-6. [Online]. Available: https :
//doi.org/10.1186/s13174-015-0024-6.

D. A. Tamburri, F. Palomba and R. Kazman, “Exploring community smells in open-
source: An automated approach”, IEEE Transactions on Software Engineering,
vol. 47, no. 3, pp. 630-652, 2019. poI: 10.1109/TSE.2019.2901490.

N. Almarimi, A. Ouni, M. Chouchen, I. Saidani and M. W. Mkaouer, “On the
detection of community smells using genetic programming-based ensemble classifier
chain”, in ICGSE ’20: 15th IEEE/ACM International Conference on Global Software
Engineering, Seoul, Republic of Korea, June 26-28, 2020, P. Tell, 1. Steinmacher and
R. Britto, Eds., ACM, 2020, pp. 43-54. DOI: 10.1145/3372787.3390439. [Online].
Available: https://doi.org/10.1145/3372787.3390439.

F. Palomba and D. A. Tamburri, “Predicting the emergence of community smells us-
ing socio-technical metrics: A machine-learning approach”, J. Syst. Softw., vol. 171,
p. 110847, 2021. por: 10.1016/j.jss.2020.110847. [Online]. Available: https:
//doi.org/10.1016/j . jss.2020.110847.

M. De Stefano, F. Pecorelli, D. A. Tamburri, F. Palomba and A. De Lucia, “Splicing
community patterns and smells: A preliminary study”, in ICSE °20: 42nd Interna-
tional Conference on Software Engineering, Workshops, Seoul, Republic of Korea,
27 June - 19 July, 2020, ACM, 2020, pp. 703-710. DOI: 10.1145/3387940.3392204.
[Online|. Available: https://doi.org/10.1145/3387940.3392204.

Y. Peng and J. Sutanto, “Facilitating knowledge sharing through a boundary
spanner”, IEEE Transactions on Professional Communication, vol. 55, no. 2,
pp. 142-155, 2012. DOI: 10.1109/TPC.2012.2188590.

106

https://doi.org/10.1109/CHASE.2015.9
https://doi.org/10.1109/CHASE.2015.9
https://doi.org/10.1109/CHASE.2015.9
https://doi.org/10.1109/MS.2016.144
https://doi.org/10.1109/MS.2016.144
https://doi.org/10.1109/MS.2016.144
https://doi.org/10.1007/s10664-018-9659-9
https://doi.org/10.1007/s10664-018-9659-9
https://doi.org/10.1186/s13174-015-0024-6
https://doi.org/10.1186/s13174-015-0024-6
https://doi.org/10.1186/s13174-015-0024-6
https://doi.org/10.1109/TSE.2019.2901490
https://doi.org/10.1145/3372787.3390439
https://doi.org/10.1145/3372787.3390439
https://doi.org/10.1016/j.jss.2020.110847
https://doi.org/10.1016/j.jss.2020.110847
https://doi.org/10.1016/j.jss.2020.110847
https://doi.org/10.1145/3387940.3392204
https://doi.org/10.1145/3387940.3392204
https://doi.org/10.1109/TPC.2012.2188590

[P10]

[P11]

[P12]

[P13]

[P14]

[P15]

[P16]

[P17]

[P18]

[P19]

[P20]

D. A. Tamburri, P. Lago, H. van Vliet and E. Di Nitto, “On the nature of GSE
organizational social structures: An empirical study”, in 2012 IEEFE Seventh Inter-
national Conference on Global Software Engineering, Porto Alegre, Rio Grande do
Sul, Brazil, August 27-30, 2012, IEEE Computer Society, 2012, pp. 114-123. DOTI:
10.1109/ICGSE.2012.25. [Online]. Available: https://doi.org/10.1109/ICGSE.
2012.25.

D. A. Tamburri, P. Lago and H. van Vliet, “Organizational social structures for
software engineering”, ACM Comput. Surv., vol. 46, no. 1, 3:1-3:35, 2013. DOTI:
10.1145/2522968 .2522971. [Online]. Available: https://doi.org/10.1145/
2522968.2522971.

——, “Uncovering latent social communities in software development”, IEEE Softw.,
vol. 30, no. 1, pp. 29-36, 2013. pOI: 10.1109/MS.2012.170. [Online]. Available:
https://doi.org/10.1109/MS.2012.170.

M. Cataldo, J. D. Herbsleb and K. M. Carley, “Socio-technical congruence: A
framework for assessing the impact of technical and work dependencies on software
development productivity”, in Proceedings of the Second International Symposium
on Empirical Software Engineering and Measurement, ESEM 2008, October 9-10,
2008, Kaiserslautern, Germany, H. D. Rombach, S. G. Elbaum and J. Miinch,
Eds., ACM, 2008, pp. 2-11. poI: 10.1145/1414004.1414008. [Online]. Available:
https://doi.org/10.1145/1414004.1414008.

E. Wenger and W. Snyder, “Communities of practice: The organizational frontier”,
Harvard Business Review, vol. 78, pp. 139-145, 2000.

G. Catolino, F. Palomba and D. A. Tamburri, “The secret life of software com-
munities: What we know and what we don’t know”, in Proceedings of the 18th
Belgium-Netherlands Software Evolution Workshop, Brussels, Belgium, November
28th to 29th, 2019, D. Di Nucci and C. De Roover, Eds., ser. CEUR Workshop
Proceedings, vol. 2605, CEUR-WS.org, 2019. [Online]. Available: http://ceur-
ws.org/Vol-2605/15. pdf.

N. Almarimi, A. Ouni and M. W. Mkaouer, “Learning to detect community smells
in open source software projects”, Knowl. Based Syst., vol. 204, p. 106 201, 2020.
DOIL: 10.1016/j.knosys.2020.106201. [Online]. Available: https://doi.org/10.
1016/j .knosys.2020.106201.

G. Catolino, F. Palomba, D. A. Tamburri and A. Serebrenik, “Understanding
community smells variability: A statistical approach”, English, in International
Conference on Software Engineering, Dec. 2020.

D. A. Tamburri, R. Kazman and W.-J. van den Heuvel, “Splicing community and
software architecture smells in agile teams: An industrial study”, in 52nd Hawaii
International Conference on System Sciences, HICSS 2019, Grand Wailea, Maus,
Hawaii, USA, January 8-11, 2019, T. Bui, Ed., ScholarSpace, 2019, pp. 1-11.
[Online|. Available: http://hdl.handle.net/10125/60140.

S. Magnoni, “An approach to measure community smells in software development
communities”, M.S. thesis, Politecnico Di Milano, Italy, 2016.

G. Avelino, L. T. Passos, A. C. Hora and M. T. Valente, “A novel approach for
estimating truck factors”, CoRR, vol. abs/1604.06766, 2016. arXiv: 1604.06766.
[Online]. Available: http://arxiv.org/abs/1604.06766.

107

https://doi.org/10.1109/ICGSE.2012.25
https://doi.org/10.1109/ICGSE.2012.25
https://doi.org/10.1109/ICGSE.2012.25
https://doi.org/10.1145/2522968.2522971
https://doi.org/10.1145/2522968.2522971
https://doi.org/10.1145/2522968.2522971
https://doi.org/10.1109/MS.2012.170
https://doi.org/10.1109/MS.2012.170
https://doi.org/10.1145/1414004.1414008
https://doi.org/10.1145/1414004.1414008
http://ceur-ws.org/Vol-2605/15.pdf
http://ceur-ws.org/Vol-2605/15.pdf
https://doi.org/10.1016/j.knosys.2020.106201
https://doi.org/10.1016/j.knosys.2020.106201
https://doi.org/10.1016/j.knosys.2020.106201
http://hdl.handle.net/10125/60140
https://arxiv.org/abs/1604.06766
http://arxiv.org/abs/1604.06766

[P21]

[P22]

[P23]

[P24]

[P25]

[P26]

[P27]

[P28]

[P29]

D. A. Tamburri, P. Kruchten, P. Lago and H. van Vliet, “What is social debt in
software engineering?”, in 6th International Workshop on Cooperative and Human
Aspects of Software Engineering, CHASE 2013, San Francisco, CA, USA, May
25, 2013, IEEE Computer Society, 2013, pp. 93-96. DOI: 10.1109/CHASE.2013.
6614739.K)nhne].Avaﬂakﬂe:httpS://doi.org/lo.1109/CHASE.2013.6614739.

(2021). “CHAOSS (Community Health Analytics Open Source Software) - About”,
[Online]. Available: https://chaoss.community/ (visited on 18/03/2021).

G. Catolino, F. Palomba, D. A. Tamburri, A. Serebrenik and F. Ferrucci, “Gender
diversity and women in software teams: How do they affect community smells?”, in
Proceedings of the 41st International Conference on Software Engineering: Software
Engineering in Society, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019,
R. Kazman and L. Pasquale, Eds., ACM, 2019, pp. 11-20. por: 10.1109/ICSE-
SEIS . 2019 .00010. [Online]. Available: https://doi . org/10. 1109/ ICSE-
SEIS.2019.00010.

C. Paradis and R. Kazman, “Design choices in building an MSR tool: The case
of Kaiaulu”, in 1st International Workshop on Mining Software Repositories for
Software Architecture, MSR4SA 2021 at ECSA (15th European Conference on
Software Architecture) 2021, M. Soliman, I. Malavolta and M. Mirakhorli, Eds.,
2021.

F. Palomba, D. A. Tamburri, A. Serebrenik, A. Zaidman, F. A. Fontana and R.
Oliveto, “How do community smells influence code smells?”, in Proceedings of the
40th International Conference on Software Engineering: Companion Proceeedings,
ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, M. Chaudron, I. Crnkovic,
M. Chechik and M. Harman, Eds., ACM, 2018, pp. 240-241. DOI: 10.1145/3183440.
3194950. [Online]. Available: https://doi.org/10.1145/3183440.3194950.

F. Palomba, D. A. Tamburri, F. A. Fontana, R. Oliveto, A. Zaidman and A.
Serebrenik, “Beyond technical aspects: How do community smells influence the
intensity of code smells?”, IEEE Trans. Software Eng., vol. 47, no. 1, pp. 108-129,
2021. por: 10.1109/TSE. 2018.2883603. [Online]. Available: https://doi.org/
10.1109/TSE.2018.2883603.

G. Catolino, F. Palomba, D. A. Tamburri, A. Serebrenik and F. Ferrucci, “Gender
diversity and community smells: Insights from the trenches”, IEEE Softw., vol. 37,
no. 1, pp. 10-16, 2020. por: 10.1109/MS. 2019 . 2944594. [Online]. Available:
https://doi.org/10.1109/MS.2019.2944594.

S. Wasserman and K. Faust, Social Network Analysis: Methods and Applications,
ser. Structural Analysis in the Social Sciences. Cambridge University Press, 1994.
DOI: 10.1017/CB09780511815478.

B. Eken, F. Palma, A. Basar and A. Tosun, “An empirical study on the effect
of community smells on bug prediction”, Softw. Qual. J., vol. 29, no. 1, pp. 159—
194, 2021. por: 10. 1007 /s11219-020- 09538~ 7. [Online|. Available: https :
//doi.org/10.1007/s11219-020-09538-7.

108

https://doi.org/10.1109/CHASE.2013.6614739
https://doi.org/10.1109/CHASE.2013.6614739
https://doi.org/10.1109/CHASE.2013.6614739
https://chaoss.community/
https://doi.org/10.1109/ICSE-SEIS.2019.00010
https://doi.org/10.1109/ICSE-SEIS.2019.00010
https://doi.org/10.1109/ICSE-SEIS.2019.00010
https://doi.org/10.1109/ICSE-SEIS.2019.00010
https://doi.org/10.1145/3183440.3194950
https://doi.org/10.1145/3183440.3194950
https://doi.org/10.1145/3183440.3194950
https://doi.org/10.1109/TSE.2018.2883603
https://doi.org/10.1109/TSE.2018.2883603
https://doi.org/10.1109/TSE.2018.2883603
https://doi.org/10.1109/MS.2019.2944594
https://doi.org/10.1109/MS.2019.2944594
https://doi.org/10.1017/CBO9780511815478
https://doi.org/10.1007/s11219-020-09538-7
https://doi.org/10.1007/s11219-020-09538-7
https://doi.org/10.1007/s11219-020-09538-7

Appendix A

Adequacy Analysis: Identifying
Missed Relations

This chapter lists the search terms used for the adequacy analysis that was described

in Section

Table A.1: The search terms used per concept while scanning for missed relations.
Note that some search term(s) are cut short to allow for multiple variations of the
same word (e.g., the search term for Cohesion is “Cohesi”, which shows results for
both cohesion and cohesive).

Concept Search Term(s) Concept Search Term(s)
Open-Source - Community Pattern
Community Pattern

Community Smell

Organizational
Social Structure

(0SS)

Community

Shepherd

Socio-Technical
Metrics

Success Factors

Community
Characteristics

Radio-Silence

Bottleneck

Organizational
social structure,

0SS
Shepherd

Socio-Technical
Metric

Success, Succeed

Radio-silence,
Radio silence,

Radiosilence, RS

Bottleneck,
Radio-silence,

Radio silence,
Radiosilence, RS

Community Type
Social Debt

Community Health

Sustainable
Open-Source
Community

Failure Factors

Sharing Villainy

Solution Defiance

Prima-Donnas
Effect

109

Social debt

Health

Sustain

Fail

Villainy, SV

Solution defiance,
SD

Prima-donna,
Primadonna, Prima
donna, PDE

Table A.1 (continued)

Concept

Search Term(s)

‘ Concept

Search Term(s)

Black-Cloud Effect

Missing Links
Lone Wolf Effect

Organizational Silo
Effect

Organizational
Skirmish

Cognitive Distance

Newbie Free-Riding

Power Distance
Disengagement
Priggish Members
Truck Factor (Tool)

Technical Debt
CodeFace4Smells

GP-ECC Model

csDetector

Ratio of developers
per time zone

(RDZ)

Standard deviation
of developers per
time zone (SDZ)

Graph Betweenness
Centrality (BC)

Black-cloud, Black
cloud, Blackcloud,
BC, BCE

Missing link (only
in [51])

Lone wolf,
Lone-wolf, LW

Silo, OSE

Organizational
skirmish,
Organisational
skirmish, OS
(acronym only in [7,

, 01, 79))

Cognitive distance

Newbie free-riding

Power distance
Disengagement
Priggish

Truck factor,
Truckfactor

Technical debt

CodeFace,
CodeFace4Smell

GP-ECC, Model
(“Model” only

in [7])
csDetector

Centrality

Truck Factor Smell

Leftover-Techie
Effect

Architecture Hood
Effect

Time Warp

Cookbook
Development

Institutional
Isomorphism

Hyper-Community

DevOps Clash
Informality Excess
Unlearning

Boundary Spanner

”Deodorants” for
Community Smells

CodeFace

Organizational-
Social
Symptoms

Kaiaulu
Ratio of commits
per time zone

(RCZ)

Standard deviation
of commits per
developer in a
project (SDC)

Graph Degree
Centrality

110

Truck factor smell,
TFS

Leftover

Hood

Time warp

Cookbook

Institutional
isomorphism

Hyper-community,
Hypercommunity,
Hyper community

DevOps clash
Informality excess

Unlearning

Deodorant

CodeFace

Symptom

Centrality

Table A.1 (continued)

Concept Search Term(s) Concept Search Term(s)
Percentage - Ratio smelly -
communication developers

only developers

Ratio of core
sponsored
developers

Number of time
zones (TZ)

Number of
sponsored
developers

Percentage of
developers involved
in code and
communication

Percentage code
only developers

Truck Factor
Number

Core Global

Turnover

Architecture Smells

Network of Practice
(NoP)

Social Network
(SN)

Informal Network
(IN)

Formal Network
(FN)

Strategic
Community (SC)

Formal Group (FG)

Turnover

Architecture smell,
smell

Network of practice,
Networks of
practice, NoP,
NoPs

Social network, SN,
SNs (only in [27,
, 81, 82, 80])

Formal network, IN,
Ins

Formal network,
FN, FNs

Strategic communit,

SC, SCs

Formal group, FG,
FGs

Global Modularity

Network Density

Number of
Developers (NoD)

Socio-Technical
Congruence

Graph Closeness
Centrality

Number of core
developers

Ratio Smelly
Quitters

Turnover Metrics

Conway’s Law

Community of
Practice (CoP)

Learning
Community (LC)

Informal
Community (IC)

Knowledge
Community (KC)

Problem Solving
Community (PSC)

111

Congruen

Centrality

Turnover

Conway

Community of
practice,
Communities of
practice, CoP, CoPs

Learning communit,

LC, LCs

Informal communit,
IC, ICs

Knowledge
communit, KC,

KCs

Problem solving
communit, PSC,

PSCs

Table A.1 (continued)

Concept

Search Term(s)

‘ Concept

Search Term(s)

Project Team (PT)

Community

Groups

Global Software
Engineering (GSE)

Process
Management and
Efficiency Factors

Decision Tree

Product
Development
Project

Number of
Communities (NC)

Class Cognition
Dispersion
Code Smell
Motifs

Gender Diversity

Project team,
Project-team, PT,
PTs

Community,
Metatype (only

in [50])

Group, Metatype
(only in [<0])
Global software
engineering, GSE

Decision tree

Class Cognition
Dispersion
Code Smell
Motif

Work Group (WG)

Networks

Teams

OSS Classification
Meter

Socio-
organizational
Factors

YOSHI (Yielding
Open-Source
Health
Information)

Community Quality
Models

CHAOSS

Code Red
Dissensus
Bug

Smell Detection
Tools/Models

Developer
Experience

Work group,
Working group,
WG, WGs

Network, Metatype
(only in [30])

Team, Metatype

(only in [<0])

YOSHI

Quality Model

CHAOSS

Code Red
Dissensus
Bug (only in [28])

112

Appendix B

Yoshi 2: Technical Details

In this chapter, we describe the technical details regarding YosHI 2. These include
YosHI 2’s dependencies, technical design decisions, a more in-depth explanation of
how each metric is computed including the GitHub API calls that were used, and a
detailed look at YOsHI 2’s architecture.

B.1 Dependencies

YosHI 2 was developed using C# from the .NET Framework, specifically it is a C#
console application that can run on .NET Core on Windows, Linux, and macOS.
The reason that we used the NET framework is directly related to GitHub’s official
libraries for their API. Since YOSHI became nonfunctional due to outdated and
discontinued APIs, we decided to use an official GitHub library. GitHub offers three
official libraries, one for Ruby, one for .NET, and one for JavaScript.. We decided
to develop YOsHI 2 in .NET based on preference and thus use Octokit’s GitHub
API Client Library for .NET." To access the GitHub REST API, Octokit requires a
GitHub Access Token.

YosHI 2 uses Bing Maps Locations API for geocoding, specifically the package
Geocoding.Microsoft.” To access the Bing Maps Locations API, Geocoding.Microsoft
requires a Bing Maps Key.” Additionally, YOSHI 2 writes its output to CSV-files
using the package CsvHelper.

'https://docs.github.com/en/rest/overview/libraries (visited on 30/04/2021).

’https://github.com/octokit/octokit.net

3https://docs.github.com/en/github/authenticating-to-github/keeping-your-
account-and-data-secure/creating-a-personal-access-token

‘https://www.nuget.org/packages/Geocoding.Microsoft/

Shttps://docs.microsoft.com/en-us/bingmaps/getting-started/bing-maps-dev-
cenhttps://wuw.overleaf.com/project/60005f02be27419ad8bbedf6ter-help/getting—
a-bing-maps-key

Shttps://joshclose.github.io/CsvHelper/

113

https://docs.github.com/en/rest/overview/libraries
https://github.com/octokit/octokit.net
https://docs.github.com/en/github/authenticating-to-github/keeping-your-account-and-data-secure/creating-a-personal-access-token
https://docs.github.com/en/github/authenticating-to-github/keeping-your-account-and-data-secure/creating-a-personal-access-token
https://www.nuget.org/packages/Geocoding.Microsoft/
https://docs.microsoft.com/en-us/bingmaps/getting-started/bing-maps-dev-cenhttps://www.overleaf.com/project/60005f02be27419ad8bbe4f6ter-help/getting-a-bing-maps-key
https://docs.microsoft.com/en-us/bingmaps/getting-started/bing-maps-dev-cenhttps://www.overleaf.com/project/60005f02be27419ad8bbe4f6ter-help/getting-a-bing-maps-key
https://docs.microsoft.com/en-us/bingmaps/getting-started/bing-maps-dev-cenhttps://www.overleaf.com/project/60005f02be27419ad8bbe4f6ter-help/getting-a-bing-maps-key
https://joshclose.github.io/CsvHelper/

B.2 Installation and Configuration Guide

B.2.1 Installation

This installation guide is based on an operating system using Windows 10 x64.

1.

Download the source code from the GitHub repository.

. Download and install Visual Studio 2019.

Get your own GitHub Access Token.
Get your own Bing Maps Key.

Set the token and key as environment variables:

Variable Value
YOSHI_GitHubAccessToken <Your-GitHub-Access-Token>
YOSHI_BingMapsKey <Your-Bing-Maps-Key>

B.2.2 How to Use

1.

Prepare an input file (.csv). The file must have the following header:
RepoOwner ,RepoName.

On each row you can specify a repository as follows:
<repository-owner>,<repository-name>

. Open the source code (solution) in Visual Studio.
. Press CTRL + F5 to run the application

. When running the application, you will be prompted to enter the absolute

directory of the input file, including the filename and its extension. For
example, if it is stored in your downloads folder and the file is called input.csv:
C:\textbackslashUsers\<username>\Downloads\input.csv

Note: Even if the file path has spaces, do not use quotation marks.

. Next you will be prompted to enter the output path. Do not include the filename.

For example, if you want to store the output in a file in the downloads folder:
C:\Users\<username>\Downloads\
Note: Even if the path has spaces, do not use quotation marks.

. Next enter the output filename (do not include an extension, its extension will

be .csv) For example, if you want to name the output file “output” output
Note: If the file already exists, you will be asked to input a different filename.

Next you need to specify how many Bing requests you have left. Bing Maps
limits the number of free requests per different type of key. Since there is no
way to retrieve the number of requests left through an API call, we ask you
to specify it yourself. You can find the usage report for your key in the Bing
Maps Portal. For example, if you have 400 requests left: 400

114

https://github.com/tuejari/yoshi-2
https://visualstudio.microsoft.com/downloads/
https://docs.github.com/en/github/authenticating-to-github/keeping-your-account-and-data-secure/creating-a-personal-access-token
https://docs.microsoft.com/en-us/bingmaps/getting-started/bing-maps-dev-center-help/getting-a-bing-maps-key
https://www.bingmapsportal.com/
https://www.bingmapsportal.com/

After following these steps, the application will process the GitHub repositories
specified in the input file. After finishing processing a community, the data is written
to the output file. This action fails if the output file is opened by another program,
therefore, do not open the output file while the application is running. Note: the
output file will not include communities that the application failed to process.

Disable Quick Edit Mode

Note that it is possible to halt a console application in Windows by clicking once
on the console window due to the command line’s Quick Edit mode. This is very
difficult to notice. To get rid of this behavior, right click the top border of the
command window and select Properties. Then in Options > Edit Options make
sure to disable Quick Edit Mode.

Console Logging Colors

The console will log its progress (not written to an output file). To make some
messages easily recognizable, we used the following color coding of the log messages:

Color Description

White User input and general progress reports.

Dark Gray = Messages that ask for user input.

Green The start and end of processing a community.

Dark Green The program has finished and is ready to be closed.
Cyan Updates on GitHub and Bing Maps Rate Limits.
Magenta Pauses caused by the GitHub Rate Limit.

Blue Filtered bot and organization accounts.

Yellow A community does not fulfill the minimum requirements.
Dark Yellow Bing Maps geocoding exceptions (caught and skipped).
Red Caught exceptions that caused the retrieval of community patterns

for a community to fail.

B.3 Metric Computations

B.3.1 Members

An open-source community is a group of people working together to develop an open-
source software product. An important decision to be made is who to consider as
members of the community. For example, Onoue et al. [59] distinguish between coding
contributors and discussion contributors. Before implementing any of the metrics,
we had to determine how we would determine the community members. We consider
those who have committed at least once to the repository (either commit-committer
or commit-author) as members, like Tamburri et al [36] who described members as
the “number of contributors who committed at least once to the repository”. We
extracted all commits from the repository until the end date of the analysis window.

We excluded commits without an author or committer and checked that either the
author date or the commit date was within the 3-month analysis window. Note that

"https://docs.github.com/en/rest/reference/repos#list-commits

115

https://docs.github.com/en/rest/reference/repos#list-commits

we limit the members to those who made a commit in the 3-month time window that
YosHI 2 analyzes. The window size influences the developer social network, but the
impact of enlarging the window beyond 3 months is marginal [15]. With an infinite
window, developers would still be connected years after the code has completely
changed [56], which would not accurately represent the current community. We
extracted the usernames of all authors and committers within the time window and
retrieved their GitHub user information.” Using this information, we excluded bot
and organization accounts.

B.3.2 Structure

YosHI computed a graph from the structure metrics which it could export [36]. We
have replicated the graph approach, but YOSHI 2 cannot export it yet.
Common Projects. As discussed in Section , this approach is limited,

because there is seemingly no easy way to find all the repositories that a user has
worked on.’ Therefore, to determine common projects between people, YOSHI 2
retrieves the owned repositories per user. ' The repository names are extracted and
stored in a set per user. Then, for each unique pair of members, we check whether
the sets of repositories intersect and if that is the case, we add an edge between the
two members and set this metric to true. Note that we decided against checking
for each repository whether the user contributed or not, because that would use
too many GitHub API requests that are limited to 5,000 per hour. Therefore, we
assume that they have contributed to each repository that they own. Since the
owned repositories include forks, this metric identifies connections between people
that have forked from the same repository.

Follower /Following Relation. YOSHI 2 retrieves per user the set of followers' ',
i.e., the people that follow this user, and the set of following, - i.e., the people that
this user follows. For both sets, the usernames are extracted and filtered based
on whether the follower/following user is considered a member of the currently
analyzed community. Then, for each member, we add an edge in the structure graph
between the member and the follower/following user. Note that our implementation
of the graph does not add edges more than once. If an edge is added based on a
follower/following relation between users, this metric is set to true.

Pull Request Interaction. To compute the pull request interactions, YOSHI 2
retrieves all pull requests,’ not just closed/merged pull requests, since pull requests
are often not closed correctly when they are merged [16]. We filter pull requests that
are not created, updated, merged, or closed within the 3-month time window and
not created by someone we consider a member.

Additionally, we retrieve the issue comments from the repository.”” We exclude
comments that have not been created or updated within the 3-month time window or

8https://docs.github.com/en/rest/reference/users#get-a-user
9https://github.com/octokit/octokit.net/issues/1990 (visited on 30/04,/2021)
Onttps://docs.github.com/en/rest/reference/repos#list-repositories-for-a-user
Uhttps://docs.github.com/en/rest/reference/users#list-followers-of-a-user
2https://docs.github.com/en/rest/reference/users#list-the-people-a-user-
follows
Bhttps://docs.github.com/en/rest/reference/pulls#list-pull-requests
“https://docs.github.com/en/rest/reference/issues#list-issue-comments-for-a-
repository

116

https://docs.github.com/en/rest/reference/users#get-a-user
https://github.com/octokit/octokit.net/issues/1990
https://docs.github.com/en/rest/reference/repos#list-repositories-for-a-user
https://docs.github.com/en/rest/reference/users#list-followers-of-a-user
https://docs.github.com/en/rest/reference/users#list-the-people-a-user-follows
https://docs.github.com/en/rest/reference/users#list-the-people-a-user-follows
https://docs.github.com/en/rest/reference/pulls#list-pull-requests
https://docs.github.com/en/rest/reference/issues#list-issue-comments-for-a-repository
https://docs.github.com/en/rest/reference/issues#list-issue-comments-for-a-repository

have been created by someone that is not considered a member. The comments are
then mapped to the corresponding pull requests. For each pull request, we extract
the author’s username. If the pull request author is considered a member, we loop
over all issue comments on this pull request and for each distinct commenter, we
add an edge to the pull request author and set this metric to true. Note that we
did not use pull request review comments to adhere to YOSHI’s design.

Structure. We declare there to be a structure for the entire community if there
exist two members for which at least one of the above parameters is met within the
3 months considered by YOSHI.

B.3.3 Geodispersion

Y

Coordinates and countries. To compute geodispersion, we need members
locations in terms of coordinates and the countries in which the coordinates are
located. Therefore, from the user data that we retrieved when determining community
members, we extract the publicly specified locations of all members. We parse their
locations in the Bing Maps Geocoder ~ to obtain coordinates and the countries in
which the coordinates are located.

Geographical Distance Variance. Using the coordinates, we compute the
distance between each unique pair of members using the DistanceBetween () function
of the Bing Maps Geocoding package. This function computes the spherical distance
between two coordinates in kilometers. YOSHI 2 then computes the variance of this
list of distances.

Cultural Distance Variance. Using the countries for each member, we retrieve
the corresponding Hofstede indices and store them in separate lists per dimension.
We summed the variance per dimension and computed the mean. We noticed during
testing that there were discrepancies between the strings of countries that the
geocoder returned and the keys of the Hofstede dictionary in which we stored the
Hofstede indices per country. We manually fixed the Hofstede dictionary and made
sure that dictionary key comparisons ignore capitalization and diacritics.

Geodispersion. After computing the variances for both geographical and
cultural distances, we compute the square root of their average to obtain the
geodispersion.

B.3.4 Formality

Mean Membership Type. Given the lists of commits, pull requests, and members
within the 3-month time window, YOSHI 2 determines all commit committers,
all commit authors, and all pull request mergers. Note that many merged pull
requests appear as non-merged [16]. However, including some pull request mergers
as collaborators should be more accurate than excluding all pull request mergers.
YosHI 2 computes the union between the set of committers and the set of pull
request mergers to determine the set of collaborators. The number of contributors is
computed by taking the set of authors excluding all names that occur in the set of
collaborators. The mean membership type is then computed by multiplying the size of

YPhttps://www.nuget.org/packages/Geocoding.Microsoft/
https://github.com/chadly/Geocoding.net/blob/master/src/Geocoding.Core/
Location.cs

117

https://www.nuget.org/packages/Geocoding.Microsoft/
https://github.com/chadly/Geocoding.net/blob/master/src/Geocoding.Core/Location.cs
https://github.com/chadly/Geocoding.net/blob/master/src/Geocoding.Core/Location.cs

the set of collaborators by two, then adding the number of contributors, and dividing
the resulting number by the total number of members. While GitHub provides API
endpoints to request the collaborators ' and contributors = of a repository, these
endpoints are severely limited. The collaborators can only be collected if you have
collaborator access to the repository. The contributors endpoint is limited to a max
of 500 contributors. Therefore, we are forced to make our own estimations. The
above estimations are done according to the advice from the GHTorrent Project.

Milestones. YOSHI 2 retrieves all closed milestones using the GitHub API.
We do not include open milestones, because they have not been reached yet and we
do not know when they will be reached.

Project Lifetime. Given the list of all commits in the repository, the project
lifetime is computed using the first and last commit. Note that we use the committer’s
commit date and author date, because the project lifetime is not limited to when
the commit was last applied.

Formality. Given the mean membership type, the number of closed milestones,
and the project lifetime, formality is computed by dividing the mean membership
type by the milestones per project lifetime ratio.

B.3.5 Engagement

Median Number of Comments per Pull Request. Given the mapping of pull
requests to pull request comments, YOSHI 2 flattens the mapping to give us a list of
the number of comments per pull request. YOSHI 2 then computes the median after
sorting the list.

Median Active Member. Given a list of commits in the 3-month analysis
window, and the list of members, the median active member is computed as follows.
YoOsHI 2 analyzes the commits of the last 30 days of the analysis window, every
member that either was a commit author or committer in this period is assigned a 1.
All other members are assigned a 0. Then, after sorting the list, YOSHI 2 computes
the median.

Median Watcher Member. YOSHI 2 retrieves the list of watchers using the
GitHub API."" Then it extracts all members from this list and stores them as a set
of watchers. Then, YOSHI 2 assigns every member in the set of watchers a 1, and
all members not in the set a 0. Then, after sorting the list, YOSHI 2 computes the
median.

Median Stargazer Member. YOSHI 2 retrieves the list of stargazers using
the GitHub API."" Then it extracts all members from this list and stores them as a
set of stargazers. Then, YOSHI 2 assigns every member in the set of stargazers a 1,
and all members not in the set a 0. Then, after sorting the list, YOSHI 2 computes
the median.

Median Monthly Distribution of Total Posted Pull/Commit Comments
per Member. First, YOSHI 2 assigns each member an empty list of comment dates.
Then, given the lists of commit and pull request comments, YOSHI 2 determines

"https://docs.github.com/en/rest/reference/repos#list-repository-collaborators
Bhttps://docs.github.com/en/rest/reference/repos#list-repository-contributors
Yhttps://ghtorrent.org/relational.html (visited on 20/05/2021)
2Onttps://docs.github.com/en/rest/reference/issues#milestones
2Inttps://docs.github.com/en/rest/reference/activity#list-watchers
22nttps://docs.github.com/en/rest/reference/activity#list-stargazers

118

https://docs.github.com/en/rest/reference/repos#list-repository-collaborators
https://docs.github.com/en/rest/reference/repos#list-repository-contributors
https://ghtorrent.org/relational.html
https://docs.github.com/en/rest/reference/issues#milestones
https://docs.github.com/en/rest/reference/activity#list-watchers
https://docs.github.com/en/rest/reference/activity#list-stargazers

for each comment the latest date, which is either when it was last updated or when
it was created, and adds this date to the creator’s list of comment dates. Next,
Yo0sHI 2 computes the mean number of comments per month for each member. We
decided to use the mean instead of the median for this part of the computation. The
sample that we want to compute the average for consists of only three values, one
for each month. If we used the median in cases where the distribution is skewed, it
would show that this person was either not that engaged, or very engaged in terms
of comments, even though that may not be true for the 3-month period. Hence, we
assume that the mean provides a more accurate view of their engagement in terms
of pull/commit comments over the 3-month period than the median, which would
“exclude” two months from the analysis. Then, since we have the mean number of
comments per month separated by member, YOSHI 2 sorts this list and computes
the median to know the monthly comments of the average member.

Median Monthly Distribution of Commits per Member. First, YOSHI 2
assigns each member an empty list of commit dates. Then, given the list of commits,
YosHI 2 assigns for each commit the committer date to the commit committer, and,
if the committer and author are not the same user, the author date to the commit
author. Next, YOSHI 2 computes the mean number of commits per month for each
member. We decided to use the mean instead of the median in this part of the
computation for the same reason as above, i.e., so we do not “exclude” two months
from the analysis. Then, since we have the mean number of commits per month
separated by member, YOSHI 2 sorts this list and computes the median.

Median Monthly Distribution of Collaborations on Files. YOSHI 2 uses
the list of commits within the time window and the list of members to compute the
collaborations on files. Note that filenames can be changed, to handle these cases,
YosHI 2 iterates over the commits and extracts the changed filenames. The filename
changes are inserted into a graph, from which we extract the largest non-overlapping
sets of changed filenames. Then, YOSHI 2 computes the committers per file per
month, merging the committers for files whose names were changed. Next, the
mean number of committers per file per month are computed, which YOSHI 2 sorts
and then computes its median. We decided to use the mean number of committers
instead of the median in this part of the computation for the same reason as above,
i.e., so we do not “exclude” two months from the analysis.

Engagement. Engagement is computed by summing the above seven metrics.

B.3.6 Longevity

Mean Committer Longevity. Given a list of all commits in the repository,
YosHr 2 iterates over each commit and determines whether the committer is a
member or not, if so, it assigns the committer date to that member. Similarly, for
the commit authors, it checks whether they are a member and assigns the author
dates to the members. Then, for each member we have a list of commit dates, from
which we compute the first and last commit date. The difference in days is computed
between these two dates to determine the member’s longevity. We compute the mean
committer’s longevity of all members in the 3-month analysis window to determine
the community longevity.

119

B.4 Architecture

In Section 5.3, we provided the high-level architecture of YOsHI 2. In this section,
we describe YOSHI 2’s architecture in more detail. Due to the nature of the tool,
most components have been constructed as static classes. The exceptions are the
components that store the community data, where we store one community per
object. To show the dependencies between the different classes, we used ReSharper

to generate type dependencies diagrams shown in Figures to 2.1, These diagrams
illustrate the dependencies between the different classes. For clarity, we provide a
brief explanation of the responsibilities per class in Appendices to

120

1¢1

B.4.1

./src

#: Statistics

]

“z CaseAccentInsensitiveEqualityComparer

.

“: CommunityMap

“: IOModule

“: PatternProcessor .
& Program

Figure B.1: ReSharper-generated type dependencies diagram grouped by project structure from the ./src/ directory.

Program.cs

I0OModule.cs

PatternProcessor.cs

HI.cs

Statistics.cs

Graph.cs

This class contains the Main () method that is
executed when the program is run.

This class is responsible for requesting and
handling user input as well as writing the
output to a CSV file. Additionally, it
has a subclass CommunityMap that maps the
structure of the output, i.e., all community
data that will be written to a CSV format.

This class is responsible for transforming the
numeric values of community characteristics
into community patterns.

This class stores the Hofstede indices
retrieved from Hofstede Insights [12].
Additionally, it has a subclass
CaseAccentInsensitiveEqualityComparer
that allows us to compare strings while
ignoring capitalization and diacritics. If
this is not included, YosHI 2 would likely
fail to identify “sao tomé and principe” or
inconsistencies in capitalization.

This class computes the median, variance, and
standard deviation of numeric lists.

This class represents an undirected graph using
an adjacency list representation.

122

B.4.2 ./src/CommunityData

*: Engagement

*: Dispersion

*: Cohesion *: Formality

*: Longevity *z Structure

*: Metrics

“: Community ‘z Characteristics

*: Pattern

Figure B.2: ReSharper-generated type dependencies diagram grouped by project
structure from the ./src/CommunityData/ directory.

123

Community.cs

Data.cs

Metrics.cs

Characteristics.cs

Pattern.cs

This class is responsible for storing all
community-related data in separate objects.

This class is used by Community.cs to store
all community-related data that was retrieved
from GitHub and Bing Maps.

This class is used by Community.cs to store
metrics per community characteristic.

This class is used by Community.cs to
store the computed values for community
characteristics.

This class is used by Community.cs to store a
community’s community pattern.

B.4.3 ./src/CommunityData/MetricData

Structure.cs

Dispersion.cs

Formality.cs

Engagement.cs

Longevity.cs

Cohesion.cs

This class is used by Metrics.cs to store the
structure metrics and characteristics.

This class is used by Metrics.cs to store the
dispersion metrics and characteristics.

This class is used by Metrics.cs to store the
formality metrics and characteristics.

This class is used by Metrics.cs to store the
engagement metrics and characteristics.

This class is used by Metrics.cs to store the
longevity metrics and characteristics.

This class is used by Metrics.cs to store the
cohesion metrics and characteristics.

124

B.4.4 ./src/DataRetriever

*: Filters

*: GitHubRateLimitHandler “: DataRetriever *: InvalidRepositoryException

803

GeoService

*z GeocoderRateLimitException

Figure B.3: ReSharper-generated type dependencies diagram grouped by project
structure from the ./src/DataRetriever/ directory.

DataRetriever.cs

Filters.cs

GitHubRatelLimitHandler.cs

InvalidRepositoryException.cs

This class retrieves GitHub data based on the
inputted repositories.

This class is responsible for filtering the
GitHub data. It checks that everything is
within the given time window. It filters out
all data about GitHub users that are not
considered members.

This class delegates GitHub API calls to
methods that deal with GitHub’s rate limit of
5,000 API requests per hour.

This class is used to specify exceptions when
repositories are inputted that do not satisfy
the requirements.

B.4.5 ./src/DataRetriever/Geocoding

GeoService.cs

GeocoderRatelLimitException.cs

This class is used to geocode addresses
extracted from GitHub using the Bing Maps
Locations API.

This class is used to specify exceptions when
the Bing geocoding rate limit is reached.

125

B.4.6 ./src/CharacteristicProcessor

*: CharacteristicProcessor

Figure B.4: ReSharper-generated type dependencies diagram grouped by project
structure from the ./src/CharacteristicProcessor/ directory.

126

CharacteristicProcessor

StructureProcessor

DispersionProcessor.cs

FormalityProcessor

EngagementProcessor

LongevityProcessor

CohesionProcessor

This class is a partial class of all characteristic
processors. The entire class is responsible
for using the retrieved GitHub data and
computing several metrics and then values for
the corresponding characteristics. This partial
class is specifically responsible for calling the
methods necessary to compute the values
for dispersion, formality, engagement, and
longevity.

This partial class is responsible for computing
structure metrics and using these metrics
to determine whether there is a community
structure or not.

This partial class is responsible for computing
dispersion metrics and using these metrics
to compute a value for geodispersion with
the Hofstede indices retrieved from Hofstede
Insights [12].

This partial class is responsible for computing
formality metrics and using these metrics to
compute a value for formality.

This partial class is responsible for computing
engagement metrics and using these metrics
to compute a value for engagement.

This partial class is responsible for computing
longevity metrics and using these metrics to
compute a value for longevity.

This partial class is responsible for computing
cohesion metrics and using these metrics to
compute a value for cohesion.

127

Appendix C
Code: Yoshi 2

In this chapter, we list the code of YOSHI 2. Note that technical details about Y OSHI 2
are discussed in Appendix 2 and that these include type dependencies diagrams
showing the dependencies between different classes, as well as descriptions for the
separate classes. We have separated the classes by YOSHI 2’s project structure similar
to the dependency diagrams. The code for these classes is listed in Listings to .
The source code is also available at https://github.com/tuejari/yoshi-2. Note
that the source code for YOsHI 2 is licensed under the Apache License, Version 2.0.

"https://www.apache.org/licenses/LICENSE-2.0

128

https://github.com/tuejari/yoshi-2
https://www.apache.org/licenses/LICENSE-2.0

6C1

C.1

./src

Listing C.1: YOsHI 2: Program class.

using System;

using System.Collections.Generic;
using System.Threading.Tasks;

using YOSHI.CharacteristicProcessorNS;
using YOSHI.CommunityData;

using YOSHI.DataRetrieverNS;

using YOSHI.DataRetrieverNS.Geocoding;

namespace YOSHI

{
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17

<summary >

This class is the main file of the revised YOSHI. This tool will use GitHub data to identify community patterns.
It is based on YOSHI from the paper below. To achieve its purposes it will take input from a file, which can
contain multiple lines of "owner, repository" pairs. Then it uses this input to extract GitHub data using the
GitHub API: https://docs.github.com/en/rest

Using the extracted data, YOSHI computes several metrics that are used to obtain numerical values for several
community characteristics. These characteristics are then used to identify a community’s pattern.

The following paper provides a detailed explanation of community patterns, characteristics, and YOSHI:
Authors: D.A. Tamburri, F. Palomba, A. Serebrenik, and A. Zaidman

Title: Discovering community patterns in open - source: a systematic approach and its evaluation
Journal: Empir.Softw.Eng.

Volume: 24

Number : 3

Pages: 1369--1417

Year: 2019

URL: https://doi.org/10.1007/s10664-018-9659-9

</summary >

class Program

{

static async Task Main()

{
// Retrieve the communities through console input handled by the IOModule.
List<Community> communities = IOModule.TakeInput();
Dictionary<string, string> failedCommunities = new Dictionary<string, string>();

foreach (Community community in communities)
{
try

0€T

Console.WritelLine("—-=---==-=—-=---—--- -+ e~ "); // Line to distinguish between communities

Console.ForegroundColor = ConsoleColor.Green;

Console.WriteLine("Started processing community {0} from {1}. Time: {2}", community.RepoName, community.RepoOwner,
— DateTime.Now.ToString());

Console.ResetColor () ;

// Retrieving GitHub data needed to compute whether the community is valid (i.e., it has at least
// 100 commits (all time), it has at least 10 members active in the last 90 days, it has at least
// 1 milestone (all time), and it has enough location data to compute dispersion.
Console.WriteLine ("Retrieving GitHub data needed for checking validity...");

await DataRetriever.RetrieveDataAndCheckValidity (community);

// Retrieving GitHub data needed to compute whether the community exhibits a structure
Console.WriteLine("Retrieving GitHub data needed for computing structure...");
await DataRetriever.RetrieveStructureData (community);

Console.WriteLine ("Computing community structure...");
CharacteristicProcessor.ComputeStructure (community);

// If the community exhibits a structure then:
if (community.Characteristics.Structure)

{
Console.WriteLine ("Community exhibits a structure...");
// Miscellaneous characteristics are: dispersion, formality, cohesion, engagement, longevity
Console.WriteLine("Retrieving GitHub data needed for miscellaneous characteristics...");
await DataRetriever.RetrieveMiscellaneousData(community);
Console.WritelLine ("Computing miscellaneous characteristics...");
CharacteristicProcessor.ComputeMiscellaneousCharacteristics (community);
Console.WriteLine("Determining community pattern...");
PatternProcessor.ComputePattern (community) ;

}

else

{
// The community exhibits no structure, hence we cannot compute a pattern. Thus we skip computing
// all other characteristics.
throw new InvalidRepositoryException("This project does not exhibit a community structure.");

}

Console.WriteLine("Writing community data to file...");

I0OModule.WriteToFile (community) ;

1€1

Console.ForegroundColor = ConsoleColor.Green;
Console.WriteLine ("Finished processing community {0} from {1}. Time: {2}", community.RepoName, community.RepoOwner,
<+ DateTime.Now.ToString());
Console.ResetColor () ;
}
catch (GeocoderRatelLimitException e)
{
Console.ForegroundColor = ConsoleColor.Red;
Console.WriteLine (e.Message);
Console.ResetColor () ;
failedCommunities.Add (community.RepoName, e.Message);
break;
}
catch (InvalidRepositoryException e)
{
// Skip this repository if it is mnot valid
Console.ForegroundColor = ConsoleColor.Yellow;
Console.WriteLine ("Community {0} from {1} is not valid", community.RepoName, community.RepoOwner);
Console.WriteLine ("Exception: {0}. {1}", e.GetType(), e.Message);
Console.ResetColor () ;
failedCommunities.Add (community.RepoName, e.Message);
continue;
}
catch (Exception e)
{
// We want to output the number of Bing Maps Requests left, since it can take hours for Bing Maps Requests to update
Console.ForegroundColor = ConsoleColor.Cyan;
Console.WriteLine ("There are still {0} Bing Maps Requests left", GeoService.BingRequestsLeft);
Console.ResetColor () ;
Console.ForegroundColor = ConsoleColor.Red;
Console.WriteLine ("Exception: {0}. {1}", e.GetType(), e.Message);
Console.ResetColor ();
failedCommunities.Add (community.RepoName, e.Message);
continue;
}
}
// We want to output the number of Bing Maps Requests left, since it can take hours for Bing Maps Requests to update
Console.ForegroundColor = ConsoleColor.Cyan;
Console.WriteLine ("There are still {0} Bing Maps Requests left", GeoService.BingRequestsLeft);
Console.ResetColor ();

// Make sure to output the communities that failed at the end to make them easily identifiable
if (failedCommunities.Count > 0)

¢l

Console.ForegroundColor = ConsoleColor.Red;
Console.WriteLine ("The following communities failed due to exceptions:");
foreach (KeyValuePair<string, string> failedCommunity in failedCommunities)
{

Console.WriteLine ("{0}, {1}", failedCommunity.Key, failedCommunity.Value);
}
Console.ResetColor ();

}

// Prevent the console window from automatically closing after the main process is done running
// TODO: Write the console log to a file
Console.BackgroundColor = ConsoleColor.DarkGreen;
Console.WriteLine("The application has finished processing the inputted communities.");
Console.WriteLine("Press Enter to close this window . . .");
Console.ResetColor ();
ConsoleKeyInfo key = Console.ReadKey();
while (key.Key != ConsoleKey.Enter)
{
key = Console.ReadKey();
3

Listing C.2: YosHI 2: IOModule class.

using CsvHelper;

using CsvHelper.Configuration;

using System;

using System.Collections.Generic;
using System.Globalization;

using System.IO;

using YOSHI.CommunityData;

using YOSHI.DataRetrieverNS;

using YOSHI.DataRetrieverNS.Geocoding;

namespace YOSHI
{
/// <summary >
/// This class is responsible for the IO-operations of YOSHI.
/// </summary>
public static class IOModule
{

eel

private static string OutDirFile; // The output directory including filename

/// <summary >
/// This method is used to guide the user in inputting the input directory, input filename, outfput directory
/// and the output filename.
/// </summary>
/// <exception cref="I0Exception">Thrown when something goes wrong while reading the input or when
/// writing to the output file.</exception>
public static List<Community> TakeInput ()
{
try
{
// Take and validate the input file
string inFile;

do
{
Console.ForegroundColor = ConsoleColor.DarkGray;
Console.WriteLine("Please enter the absolute directory of the input file, including filename and " +
"its extemnsion.");
Console.ResetColor () ;
inFile = Console.ReadLine();
}

while (!'File.Exists(inFile));

string outDir;

do
{
// Take the output directory
Console.ForegroundColor = ConsoleColor.DarkGray;
Console.WriteLine("Please enter an existing absolute directory for the output file.");
Console.ResetColor ();
outDir = @"" + Console.ReadLine();
}

while (!Directory.Exists(outDir));

// Take and validate the input specifying the output file
do
{
Console.ForegroundColor = ConsoleColor.DarkGray;
Console.WriteLine("Please enter the filename of the output file. Do not include an extemnsion, " +
"as its extension will be \".csv\"");
Console.ResetColor ();
string outFilename = Console.ReadLine();

vel

OutDirFile = outDir + ’\\’ + outFilename + ".csv'";
}
while (File.Exists(OutDirFile));

// Create the output file and write the headers

using FileStream stream = File.Open(OutDirFile, FileMode.CreateNew) ;
using StreamWriter writer = new StreamWriter (stream);
using CsvWriter csv = new CsvWriter (writer, CultureInfo.InvariantCulture);

csv.Context.RegisterClassMap<CommunityMap>();
csv.WriteHeader <Community>() ;
csv.NextRecord () ;

//
— https://docs.microsoft.com/en-us/bingmaps/getting-started/bing-maps-dev-center-help/understanding-bing-maps-transactions
Console.ForegroundColor = ConsoleColor.DarkGray;
Console.WriteLine ("Windows App, Non-profit, and Education keys can make 50,000 requests per 24 hour period.");
Console.WriteLine ("Please enter the number of Bing Maps requests left.");
Console.ResetColor () ;
int bingRequestsLeft = Convert.ToInt32(Console.ReadlLine());
GeoService.BingRequestsLeft = bingRequestslLeft;

// Set the enddate of the time window, it defaults to use midnight UTC time.

// It is possible to enter a specific time, but this has not been tested.

DateTimeOffset endDate;

Console.ForegroundColor = ConsoleColor.DarkGray;

Console.WritelLine("Enter end date of time window (YYYY-MM-DD) in UTC");

Console.ResetColor () ;

while (!DateTimeOffset.TryParseExact(Console.ReadLine(),"yyyy-MM-dd", CultureInfo.InvariantCulture,
< DateTimeStyles.AssumeUniversal, out endDate))

{
Console.ForegroundColor = ConsoleColor.DarkGray;
Console.WriteLine("Invalid date");
Console.WritelLine ("Enter end date of time window (YYYY-MM-DD) in UTC");
Console.ResetColor () ;

}

// Make sure that it is counted as UTC datetime and not as a local time
Filters.SetTimeWindow (endDate) ;

return ReadFile (inFile);
}
catch (IOException e)
{
throw new IOException("Failed to read input or to write headers to output file", e);

}

Ger

/// <summary >

/// A method used to read the file named after the value stored with the input filename (InFilename) at the
/// specified input directory (InDir).

/// </summary>

/// <returns>A list of communities storing just the repo owner and repo name.</returns>

/// <exception cref="I0Exception">Thrown when something goes wrong while reading the input file.</exception>
private static List<Community> ReadFile(string inFile)

{
List<Community> communities = new List<Community>();
try
{
using StreamReader reader = new StreamReader (inFile);
using CsvReader csv = new CsvReader(reader, CultureInfo.InvariantCulture);
csv.Read ();
csv.ReadHeader () ;
while (csv.Read())
{
// The CSV file needs to have "RepoName" and "RepoOwner" as headers
Community community = new Community(csv.GetField("RepoOwner"), csv.GetField("RepoName"));
communities.Add (community) ;
}
}
catch (IOException e)
{
throw new IOException("Something went wrong while reading the input file.", e);
}
return communities;
}

/// <summary >
/// A method used to write community data to a file named after the value stored with the output filename
/// (OutFilename) at the specified output directory (OutDir).
/// </summary>
public static void WriteToFile(Community community)
{
// Append to the file.
CsvConfiguration config = new CsvConfiguration(CultureInfo.InvariantCulture);
using FileStream stream = File.Open(OutDirFile, FileMode.Append) ;
using StreamWriter writer = new StreamWriter (stream);
using CsvWriter csv = new CsvWriter (writer, config);
csv.Context.RegisterClassMap<CommunityMap>() ;

9¢1

csv.WriteRecord (community) ;
csv.NextRecord () ;

}

/// <summary >
/// This class maps the structure of the output, i.e., all community data that will be written to a CSV format.
/// Each Map function represents a field in the CSV-file.
/// </summary>
public sealed class CommunityMap : ClassMap<Community>
{
public CommunityMap ()
{
this.Map(m =>
this.Map(m =>
this.Map(m =>
this.Map(m =>
this.Map(m =>
this.Map(m =>

.RepoOwner) .Index (0);

.RepoName) . Index (1) ;

.Data.FirstCommitHash).Index (2);

.Data.LastCommitHash) .Index(3);
.Data.FirstCommitDateTime) .Name ("StartTime") .Index (4);
.Data.LastCommitDateTime) .Name ("EndTime") .Index (5);

888888

// Report number of members and the number of locations known, as well as the number of hofstede locations known.
// Then we can decide afterward whether we exclude certain communities, if we have too little information.

this.Map(m => m.Data.Members.Count).Name ("NrMembers").Index (12);
this.Map(m => m.Data.Coordinates.Count) .Name("NrLocations") .Index (15);
this.Map(m => m.Data.Countries.Count).Name("NrHiCountries").Index (17);
this.Map(m => m.Data.Contributors).Name("NrContributors").Index (18);
this.Map(m => m.Data.Collaborators).Name("NrCollaborators").Index (19);
this.Map(m => m.Metrics.Structure.CommonProjects).Index (20);

this.Map(m => m.Metrics.Structure.Followers) .Index (30);
this.Map(m => m.Metrics.Structure.PullReqInteraction).Index (40);

this.Map(m => m.Metrics.Dispersion.VarianceGeographicalDistance) .Index(50);
this.Map(m => m.Metrics.Dispersion.VarianceHofstedeCulturalDistance).Index (60);

this.Map(m => m.Metrics.Formality.MeanMembershipType) .Index (70);
this.Map(m => m.Metrics.Formality.Milestones).Index (80);

this.Map(m => m.Metrics.Formality.Lifetime).Index (90);

this.Map(m => m.Metrics.Engagement.MedianNrCommentsPerPullReq) .Index (100) ;

this.Map(m => m.Metrics.Engagement.MedianMonthlyPullCommitCommentsDistribution) .Index (110);
this.Map(m => m.Metrics.Engagement.MedianActiveMember) .Index (120);

this.Map(m => m.Metrics.Engagement.MedianWatcher).Index (130);

this.Map(m => m.Metrics.Engagement.MedianStargazer).Index (140);

this.Map(m => m.Metrics.Engagement.MedianMonthlyCommitDistribution) .Index (150) ;

LET

this.Map(m => m.Metrics.Engagement.MedianMonthlyFileCollabDistribution).Index (160) ;
this.Map(m => m.Metrics.Longevity.MeanCommitterLongevity).Index (170);
//this.Map(m => m.Metrics.Cohesion.Followers).Index (180);

.Characteristics.Structure).Index (190);
.Characteristics.Dispersion).Index (200);

this.Map(m => m
m
m.Characteristics.Formality).Index (210);
m
m
>

>
this.Map(m =>
this.Map(m =>
this.Map(m =>
this.Map(m =>
//this.Map(m =

.Characteristics.Engagement).Index (220);
.Characteristics.Longevity).Index (230);
m.Characteristics.Cohesion) .Index (240);

this.Map(m => m.Pattern.SN).Index (250);
this.Map(m => m.Pattern.FG).Index (260);
this.Map(m => m.Pattern.PT).Index (270);
//this.Map(m => m.Pattern.WorkGroup).Index (280) ;
this.Map(m => m.Pattern.NoP).Index (290);
this.Map(m => m.Pattern.IC).Index (300);
this.Map(m => m.Pattern.FN).Index (310);
this.Map(m => m.Pattern.IN).Index (320);
this.Map(m => m.Pattern.CoP).Index(330);

// EXTRA VARIABLES FOR COMPARIONS BETWEEN YOSHI AND YOSHI 2
this.Map(m => m.Metrics.Dispersion.AverageGeographicalDistance).Index (340);
this.Map(m => m.Metrics.Dispersion.AverageCulturalDispersion).Index (350);

this.Map(m => m.Metrics.Formality.MeanMembershipType0ld) .Index (360);
this.Map(m => m.Metrics.Formality.BuggedLifetimeMS) .Index (365) ;

this.Map(m => m.Metrics.Engagement.MedianCommitDistribution) .Index (370);
this.Map(m .Metrics.Engagement.MedianFileCollabDistribution) .Index (380);

I
=]

Listing C.3: YosHI 2: PatternProcessor class.

using YOSHI.CommunityData;

namespace YOSHI
{

/// <summary >

8¢T

This class is responsible for transforming the numeric values of community characteristics
patterns.

The thresholds from the following paper were used:

Authors: D.A. Tamburri, F. Palomba, A. Serebrenik, and A. Zaidman

Title: Discovering community patterns in open - source: a systematic approach and its
Journal: Empir.Softw.Eng.

Volume: 24

Number : 3

Pages: 1369--1417

Year: 2019

URL: https://doi.org/10.1007/s10664-018-9659-9

</summary >

public static class PatternProcessor

{

// The thresholds that will be used to compute the patterns for each community.
private static readonly int th_global_distance = 4926; // Kilometers
private static readonly float th_formality_lvl_low = 0.1F;

private static readonly float th_formality_1lvl_high = 20F;

private static readonly float th_engagement_1lvl = 3.5F;

//private static readonly float th_cohesion_lvl = 11.0F;

private static readonly int th_longevity = 93; // Days

/// <summary >
/// This method implements the decision tree from the YOSHI paper <see cref="Program"/>.
/// </summary>
/// <param name="community">The community whose patterns should be computed.</param>
public static void ComputePattern(Community community)
{

Characteristics chars = community.Characteristics;

Pattern pattern = community.Pattern;

if (chars.Structure) // Community exhibits structure
{
pattern.SN = true;

if (chars.Dispersion >= th_global_distance) // Dispersed

{
pattern.NoP = true;
if (chars.Formality < th_formality_lvl_low) // Informal
{

pattern.IN = true;
}
else if (chars.Formality > th_formality_lvl_high) // Formal

into community

evaluation

6¢1

{
pattern.FN = true;

}
}
else // Not dispersed
{
pattern.CoP = true;
//if (chars.Cohesion > th_cohesion_1vl) // Cohesive
/74
// pattern.WorkGroup = true;
/7Y
if (chars.Longevity < th_longevity) // Low durability / short-lived
{
pattern.PT = true;
}
// Note: The threshold mentions > 0.1 and < 20. Since for formality and informality we have < 0.1
// and > 20 respectively, I have decided to include 0.1 and 20 in this threshold
if (chars.Formality >= th_formality_lvl_low && chars.Formality <= th_formality_lvl_high) // Not informal but also
— not formal
{
pattern.FG = true;
}
}
if (chars.Engagement > th_engagement_1vl)
{
pattern.IC = true;
}

Listing C.4: YosH1 2: HI class.

using System.Collections.Generic;
using System.Globalization;

using System.Ling;

using System.Text;

namespace YOSHI
{
/// <summary>
/// Class responsible for the Hofstede Indices.

g}

/// </summary>
public static class HI
{

public readonly static Dictionary<string,

= new Dictiomary<string,
{

"albania", (90,
"algeria", (80,
"angola", (83,

"armenia", (85,

"austria", (11,

"belarus", (95,
"belgium", (65,
"bhutan", (94,
"bolivia", (78,

"brazil", (69,

"burkina faso",
"canada", (39,

"croatia", (73,
"czechia", (57,
"denmark", (18,

"ecuador", (78,

"el salvador",
"estonia", (40,

"finland", (33,
"france", (68,
"georgia", (65,
"germany", (35,

el e S e el el s

"dominican republic",

(int Pdi,

20, 80,
35, 35,

(int Pdi,

int Idv, int Mas,
70) },
70) 1},

18, 20, 60) 1},

22, 50,

"australia", (38, 90, 61

55, 79,

"bulgaria", (70, 30, 40,

"argentina", (49, 46, 56, 86) 1},

88) I,
s 51) })
70) },

"azerbaijan", (85, 22, 50, 88) 1},
"bangladesh", (80, 20, 55, 60) 1},

"bosnia and herzegovina", (90, 22,

"cape verde", (75, 20, 15, 40) 1},
"chile", (63, 23, 28, 86) },
"china", (80, 20, 66, 30) },
"colombia", (67, 13, 64,
"costa rica", (35, 15, 21, 86) 1},

25, 20, 95) },
75, 54, 94) 1},
52, 32, 28) },
10, 42, 87) },
48, 87)
38, 49, 76) 1,
85) I,
(70, 15, 50, 55) },
80, 52, 48) 1},
80) 1,
33, 40, 80) 1},
58, 57, 74) },
74, 16, 23) },
(65, 30, 65, 45) 1},

8, 63, 67) 1,

(66, 19,
60, 30,

"ethiopia", (70, 20, 65,
"fiji", (78, 14, 46, 48)

63, 26,

"egypt", (70, 25, 45, 80) 1},

40, 94) 1},
60) I,

55) 1},

},

59) 1,

71, 43, 86) 1},

41, 55,
67, 66,

85) 1},
65) I,

"ghana", (80, 15, 40, 65) I},

int Idv, int Mas, int Uai)> Hofstede
int Uai)>(new CaseAccentInsensitiveEqualityComparer ())

},

Ii4!

e e A el e e N e T T e e e N e e N e el el

"greece", (60, 35, 57, 100) },
"guatemala", (95, 6, 37, 98) 1},
"honduras", (80, 20, 40, 50) },

"hong kong sar", (68, 25, 57, 29) },

"hungary", (46, 80, 88, 82) },
"iceland", (30, 60, 10, 50) 1},
"india", (77, 48, 56, 40) },
"indonesia", (78, 14, 46, 48) 1},
"iran", (58, 41, 43, 59) },
"iraq", (95, 30, 70, 85) 1},
"ireland", (28, 70, 68, 35) },
"israel", (13, 54, 47, 81) },
"italy", (50, 76, 70, 75) },
"jamaica", (45, 39, 68, 13) 1},
"japan", (54, 46, 95, 92) I},
"jordan", (70, 30, 45, 65) 1},

"kazakhstan", (88, 20, 50, 88) 1},

"kenya", (70, 25, 60, 50) },
"kuwait", (90, 25, 40, 80) ¥,
"latvia", (44, 70, 9, 63) },
"lebanon", (75, 40, 65, 50) },
"libya", (80, 38, 52, 68) 1},
"lithuania", (42, 60, 19, 65) 1},

"luxembourg", (40, 60, 50, 70) 1},

"malawi", (70, 30, 40, 50) },
"malaysia", (100, 26, 50, 36) 1},
"malta", (56, 59, 47, 96) },
"mexico", (81, 30, 69, 82) },
"moldova", (90, 27, 39, 95) },

"montenegro", (88, 24, 48, 90) 1},

"morocco", (70, 46, 53, 68) 1},

"mozambique", (85, 15, 38, 44) 1},

"namibia", (65, 30, 40, 45) },
"nepal", (65, 30, 40, 40) },
"netherlands", (38, 80, 14, 53)
"new zealand", (22, 79, 58, 49)
"nigeria", (80, 30, 60, 55) },
"north macedonia", (90, 22, 45,
"norway", (31, 69, 8, 50) 1},
"pakistan", (55, 14, 50, 70) 1},
"panama", (95, 11, 44, 86) },
"paraguay", (70, 12, 40, 85) },
"peru", (64, 16, 42, 87) },
"philippines", (94, 32, 64, 44)

4!

"poland", (68, 60, 64, 93) 1},
"portugal", (63, 27, 31, 99) 1},
"puerto rico", (68, 27, 56, 38) 1},
"gatar", (93, 25, 55, 80) },
"romania", (90, 30, 42, 90) },
"russia", (93, 39, 36, 95) },

"sdo tomé and principe", (75, 37, 24, 70) 1},
"saudi arabia", (95, 25, 60, 80) 1},
"senegal", (70, 25, 45, 55) 1},
"serbia", (86, 25, 43, 92) },

"sierra leone", (70, 20, 40, 50) },
"singapore", (74, 20, 48, 8) 1},
"slovakia", (100, 52, 100, 51) 1},
"slovenia", (71, 27, 19, 88) 1},
"south africa", (49, 65, 63, 49) 1},
"south korea", (60, 18, 39, 85) 1},
"spain", (57, 51, 42, 86) },

"sri lanka", (80, 35, 10, 45) 1},
"suriname", (85, 47, 37, 92) },
"sweden", (31, 71, 5, 29) },
"switzerland", (34, 68, 70, 58) 1},
"syria", (80, 35, 52, 60) 1},
"taiwan", (58, 17, 45, 69) },
"tanzania", (70, 25, 40, 50) 1},
"thailand", (64, 20, 34, 64) 1},
"trinidad and tobago", (47, 16, 58, 55) },
"tunisia", (70, 40, 40, 75) },
"turkey", (66, 37, 45, 85) ¥,
"ukraine", (92, 25, 27, 95) },
"united arab emirates", (90, 25, 50, 80) 1},
"united kingdom", (35, 89, 66, 35) 1},
"united states", (40, 91, 62, 46) 1},
"uruguay", (61, 36, 38, 98) 1},
"venezuela", (81, 12, 73, 76) 1},
"yietnam", (70, 20, 40, 30) },
"zambia", (60, 35, 40, 50) },

e N e e e e el e e e N e N e N e e N

};

/// <summary >

/// Equality comparer of strings that ignores lower/uppercase and accents (diacritics). Note that if the
/// Hofstede dictionary was not initialized with this equality comparer, it would likely fail to identify
/// "s&o tomé and principe" or inconsistencies. This equality comparer has been tested.

/// </summary>

public class CaseAccentInsensitiveEqualityComparer : IEqualityComparer<string>

vl

public bool Equals(string x, string y)

{
return string.Compare(x, y, CulturelInfo.InvariantCulture, CompareOptions.IgnoreNonSpace
— 03
}
public int GetHashCode(string obj)
{
return obj != null ? this.RemoveDiacritics(obj).ToUpperInvariant().GetHashCode() : 0;
}
private string RemoveDiacritics(string text)
{
return string.Concat(
text.Normalize(NormalizationForm.FormD)
.Where(ch => CharUnicodeInfo.GetUnicodeCategory(ch) !=
UnicodeCategory.NonSpacingMark)
) .Normalize (NormalizationForm.FormC);
}

CompareOptions.IgnoreCase)

Listing C.5: YOSHI 2: Statistics class.

using System;
using System.Collections.Generic;
using System.Ling;

namespace YOSHI

{

/17
/17
/17
/17
/17

{

<summary >

Class that implements statistics computations.

Cannot implement a generic method that takes numerics in c#:

See https://stackoverflow.com/questions/22261510/creating-a-method-in-c-sharp-that-can-take-double-decimal-and-floats-without-r
Therefore we repeat code.
</summary >

public static class Statistics

/17
/17
/17
/17
/17

<summary >

Given a list of integers, this method sorts the list in place and then computes the average median.
I.e., the median whenever the list has an odd number of elements, the average of the middle 2 elements if

the list has an even number of elements.
</summary >

4!

/17
/17
117

<param name="1list">The list to obtain the median from. Note: Will be modified in place.</param>
<returns >The median from the given list.</returns>
<exception cref="InvalidOperationException">Thrown when list is empty.</exception>

public static double ComputeMedian(List<int> list)

{

/17

if (list.Count > 0)

{
list.Sort();
return list.Count % 2 == 0 ? (list[(list.Count / 2) - 1] + list[list.Count / 2]) / 2.0 : list[list.Count / 2];
}
else
{
throw new InvalidOperationException("List contains no elements");
}

<summary >

Given a list of doubles, this method sorts the list in place and then computes the average median.

I.e., the median whenever the list has an odd number of elements, the average of the middle 2 elements if
the list has an even number of elements.

</summary >

<param name="list">The list to obtain the median from. Note: Will be modified in place.</param>

<returns >The median from the given list.</returns>

<exception cref="InvalidOperationException">Thrown when list is empty.</exception>

public static double ComputeMedian(List<double> list)

{

}

/17
/17
/17
/17
/17
/17

if (list.Count > 0)

{
list.Sort();
return list.Count % 2 == 0 ? (list[(list.Count / 2) - 1] + list[list.Count / 2]) / 2.0 : list[list.Count / 2];
}
else
{
throw new InvalidOperationException("List contains no elements");
}

<summary >

Easy access method to compute the variance of a list.

</summary >

<param name="1list">List to compute the variance of. May not be empty.</param>
<returns>The variance of the list.</returns>

<exception cref="InvalidOperationException">Thrown when list is empty.</exception>

public static double ComputeVariance (List<double> 1list)

vl

}

/17
/17
/17
/17
/17
/77

if (list.Count > 0)

{
double mean = list.Average();
double temp = O0;
foreach (double value in list)
{
temp += (value - mean) * (value - mean);
}
return temp / list.Count;
}
else
{
throw new InvalidOperationException("List contains no elements");
}

<summary >

Easy access metthod to compute the standard deviation of a list of doubles.

</summary >

<param name="list">List to compute the standard deviation of. May not be empty.</param>
<returns>The standard deviation of the list.</returns>

<exception cref="InvalidOperationException">Thrown when list is empty.</exception>

public static double ComputeStandardDeviation(List<double> list)

{
}

return list.Count > 0 ? Math.Sqrt(ComputeVariance(list)) : throw new InvalidOperationException("List contains no elements");

Listing C.6: YosHI 2: Graph class.

using System.Collections.Generic;
using System.Ling;

namespace YOSHI

{

/17
/17
/17
/17

{

<summary >

Graph class represents an undirected graph using adjacency list representation

Source: https://stackoverflow.com/questions/10032940/iterative-connected-components-algorithm
</summary >

public class Graph<T>

public Dictionary<T, HashSet<T>> nodesNeighbors;

tid!

public IEnumerable<T> Nodes

{
}

get { return nodesNeighbors.Keys; 1}

public Graph ()

{
}

/17
/17
/17
/17

this.nodesNeighbors = new Dictionary<T, HashSet<T>>();

<summary >

Adds the given node to the graph.

</summary >

<param name="node">The node to add to the graph.</param>

public void AddNode (T node)

{
}

/17
/17
/17
/77

{

}

/17
/17
/17
/17
/17
/77

this.nodesNeighbors.Add (node, new HashSet<T>());

<summary >
Adds the given collection of nodes to the graph.
</summary >

<param name="nodes">The collection of nodes to add to the graph.</param>
public void AddNodes (IEnumerable<T> nodes)

foreach (T n in nodes)
{

this.AddNode (n);
}

<summary >

Adds an undirected edge to the graph between the given nodes.
it will add them.

</summary >

<param name="nodel">0One node of the edge.</param>

<param name="node2">The other node of the edge.</param>

public void AddEdge (T nodel, T node2)

{

if (!this.ContainsNode (nodel))
{

this.AddNode (nodel) ;
}

If the graph does not contain the given nodes,

Lyl

if (!this.ContainsNode (node2))
{

this.AddNode (node2) ;
}

this.nodesNeighbors[nodel].Add(node2);
this.nodesNeighbors [node2].Add(nodel);

<summary >

Adds an undirected edge to the graph between the given nodes. If the graph does not contain the given nodes,
it will add them.

</summary >

<param name="edges">A collection of tuples to be added as edges.</param>

public void AddEdges (IEnumerable<(T, T)> edges)

{

}

/17
/17
/77
/17
/17

foreach ((T nodel, T node2) in edges)

{
if (!this.ContainsNode (nodel))
{
this.AddNode (nodel) ;
}
if (!this.ContainsNode (node2))
{
this.AddNode (node2) ;
}
this.nodesNeighbors[nodel].Add(node2);
this.nodesNeighbors [node2].Add(nodel);
}

<summary >

Checks whether the graph contains a certain node.

</summary >

<param name="node">The node for which we want to know whether it is contained in the graph.</param>
<returns>True if node occurs in the graph, false otherwise.</returns>

public bool ContainsNode (T node)

{

}

return this.nodesNeighbors.ContainsKey(node) ;

!

/17
/17
117
/17
/17

<summary >

Gets the collection of neighbors of a given node.

</summary >

<param name="node">The node that we want the neighbors from.</param>
<returns>A collection of neighbor nodes of the given node.</returns>

public IEnumerable<T> GetNeighbors (T node)

{
}

/77
/17
/17
/77
/17

return nodesNeighbors[nodel;

<summary >

A depth first search algorithm implementation.

</summary >

<param name="nodeStart">The node to start the depth first search from.</param>
<returns>A collection of nodes found from the given starting node.</returns>

public IEnumerable<T> DepthFirstSearch(T nodeStart)

{

}

/17
/17
/17
/17

Stack<T> stack = new Stack<T>();

HashSet <T> visitedNodes = new HashSet<T>();
stack.Push(nodeStart) ;

while (stack.Count > 0)

{
T curr = stack.Pop();
if (!visitedNodes.Contains (curr))
{
visitedNodes.Add (curr) ;
yield return curr;
foreach (T next in this.GetNeighbors (curr))
{
if (!visitedNodes.Contains (next))
{
stack.Push(next);
}
}
}
}

<summary >

A method that returns all connected components in a graph.

</summary >

<returns>A collection of the connected components in a graph.</returns>

public IEnumerable<HashSet<T>> GetConnectedComponents ()

{

671

HashSet<T> visitedNodes = new HashSet<T>();
List<HashSet<T>> components = new List<HashSet<T>>();

foreach (T node in this.Nodes)

{
if (lvisitedNodes.Contains (node))
{
HashSet <T> subGraph = this.DepthFirstSearch(node).ToHashSet ();
components .Add (subGraph) ;
visitedNodes.UnionWith (subGraph) ;
}
}

return components;

C.2 ./src/CommunityData

Listing C.7: YosHI 2: Community class.

namespace YOSHI.CommunityData
{
/// <summary >
/// This class is responsible for storing all community related data.
/// We will use this class to store the community data in separate objects.
/// </summary>
public class Community
{
public string RepoOwner { get; 1}
public string RepoName { get; 2}
public Data Data { get; }
public Metrics Metrics { get; 2}
public Characteristics Characteristics { get; }
public Pattern Pattern { get; set; }

public Community(string owner, string name)
{

this.RepoOwner = owner;

this.RepoName = name;

0GT

this.Data = new Data();

this.Metrics = new Metrics();
this.Characteristics = new Characteristics();
this.Pattern = new Pattern();

Listing C.8: YosHI 2: Data class.

using Geocoding;

using Octokit;

using System.Collections.Generic;

namespace YOSHI.CommunityData

{

/// <summary >

/// This class is responsible for storing all community related data that was retrieved from GitHub.
/// </summary>

public class Data

{
public
public
public
public
public
public

string FirstCommitHash { get; set; 3}

string LastCommitHash { get; set; }

string FirstCommitDateTime { get; set; }
string LastCommitDateTime { get; set; }
List<User> Members { get; set; }
HashSet<string> MemberUsernames { get; set; }

// Followers and following are limited to users that also worked on this repository

public
public
public

public
public
public
public
public
public

Dictionary<string, HashSet<string>> MapUserFollowers { get; set; 1}
Dictionary<string, HashSet<string>> MapUserFollowing { get; set; 1}
Dictionary<string, HashSet<string>> MapUserRepositories { get; set; }

IReadOnlyList<Milestone> Milestones { get; set; }

IReadOnlyList <GitHubCommit> Commits { get; set; }

List<GitHubCommit > CommitsWithinTimeWindow { get; set; 1}

IReadOnlyList <CommitComment> CommitComments { get; set; }

List<PullRequest> MergedPullRequests { get; set; 1}

Dictionary<PullRequest, List<IssueComment>> MapPullReqsToComments { get; set; }

// Regarding the difference between Watchers and Stargazers:
// https://developer.github.com/changes/2012-09-05-watcher-api/

// Watchers/Subscribers are users watching the repository.

// notifications on new discussions, as well as events in the user’s activity feed.

// Stargazers are users starring the repository.

// repositories. Stars are shown next to repositories to show an approximate level of interest.

Watching a repository registers the user to receive

Repository starring is a feature that lets users bookmark

Stars have no

161

// effect on notifications or the activity feed.
HashSet<string> ActiveMembers { get; set; }

public
public
public

public
public
public
public

HashSet<string> Watchers { get

HashSet<string> Stargazers { get;

List<Location> Coordinates { get;

List<string> Countries { get;
int Contributors { get; set; }
int Collaborators { get; set;

; set; }
set; }
set; }

set; 1}

}

Listing C.9: YOSHI 2: Metrics class.

using YOSHI.CommunityData.MetricData;

namespace YOSHI.CommunityData

{

/// <summary >
/// This class is responsible for storing metrics per community characteristic.
/// </summary>

public class Metrics

{

public
public
public
public
public
public

public
{

Structure Structure { get; set
Dispersion Dispersion { get; s
Formality Formality { get; set
Engagement Engagement { get; s
Longevity Longevity { get; set
Cohesion Cohesion { get; set;

Metrics ()

this.Structure = new Structure();
this.Dispersion = new Dispersion(
this.Formality = new Formality();
this.Engagement = new Engagement (
this.Longevity = new Longevity();
this.Cohesion = new Cohesion();

S
et;
.
et;
H
}

)

)

}

}

Listing C.10: YosHI 2: Characteristics class.

namespace YOSHI.CommunityData

{
/// <summary >
/// This class is responsible for storing specific computed values for community characteristics.
/// </summary>
public class Characteristics
{
public bool Structure { get; set; }
public double Dispersion { get; set; }
public double Formality { get; set; }
public float Engagement { get; set; }
public float Longevity { get; set; }
public float Cohesion { get; set; }
}
}

Listing C.11: YosHI 2: Pattern class.

¢Sl

namespace YOSHI.CommunityData
{
/// <summary >
/// This class is responsible for storing community patterns.
/// </summary>
public class Pattern

{
public bool SN { get; set; } = false;
public bool FG { get; set; } = false;
public bool PT { get; set; } = false;
//public bool WG { get; set; } = false;
public bool NoP { get; set; } = false;
public bool IC { get; set; } = false;
public bool FN { get; set; } = false;
public bool IN { get; set; } = false;
public bool CoP { get; set; } = false;

}

eal

C.3 ./src/CommunityData/MetricData

Listing C.12: YOsHI 2: Structure class.

namespace YOSHI.CommunityData.MetricData

{
/// <summary>
/// This class is used to store values for metrics used to compute whether a community exhibits a structure or not.
/// </summary>
public class Structure
{
public bool CommonProjects { get; set; }
public bool Followers { get; set; }
public bool PullReqInteraction { get; set; }
}
}

Listing C.13: YosHI 2: Dispersion class.

namespace YOSHI.CommunityData.MetricData

{
/// <summary >
/// This class is used to store values for metrics used to compute a community’s dispersion.
/// </summary>
public class Dispersion
{
// Note: population variance
public double VarianceGeographicalDistance { get; set; 1}
public double VarianceHofstedeCulturalDistance { get; set; }
// Extra variables for comparison between Yoshi and Yoshi 2
public double AverageGeographicalDistance { get; set; }
public double AverageCulturalDispersion { get; set; }
}
}

Listing C.14: YosHI 2: Formality class.

namespace YOSHI.CommunityData.MetricData
{

/// <summary >

/// This class is used to store values for metrics used to compute a community’s formality.
/// </summary>
public class Formality

{
public float MeanMembershipType { get; set; }
public float Milestones { get; set; }
public double Lifetime { get; set; }
// Mean membership type value implemented per the original Yoshi’s buggy implementation
// Used for comparison between Yoshi and Yoshi 2
public float MeanMembershipTypeOld { get; set; 3}
public double BuggedLifetimeMS { get; set; }
}

Listing C.15: YOsHI 2: Engagement class.

25!

namespace YOSHI.CommunityData.MetricData

{
/// <summary >
/// This class is used to store values for metrics used to compute a community’s engagement level.
/// </summary>
public class Engagement
{
public double MedianNrCommentsPerPullReq { get; set;
public double MedianMonthlyPullCommitCommentsDistribution { get; set; }
public double MedianActiveMember { get; set; }
public double MedianWatcher { get; set; 1}
public double MedianStargazer { get; set; }
public double MedianCommitDistribution { get; set; }
public double MedianFileCollabDistribution { get; set; 1}
// Extra variables for comparison between Yoshi and Yoshi 2
public double MedianMonthlyCommitDistribution { get; set; 2}
public double MedianMonthlyFileCollabDistribution { get; set; }
}
}

Listing C.16: YosHI 2: Longevity class.

namespace YOSHI.CommunityData.MetricData
{

/// <summary >

Gqr1

/// This class is used to store values for metrics used to compute a community’s longevity.
/// </summary >
public class Longevity
{
public float MeanCommitterLongevity { get; set; }
}

Listing C.17: YosHI 2: Cohesion class.

namespace YOSHI.CommunityData.MetricData

{
/// <summary >
/// This class is used to store values for metrics used to compute communities’ cohesion.
/// </summary>
public class Cohesion
{
public float Followers { get; set; }
}
}

C.4 ./src/DataRetriever

Listing C.18: YosHI 2: DataRetriever class.

using Octokit;

using System;

using System.Collections.Generic;
using System.Threading.Tasks;

using YOSHI.CommunityData;

using YOSHI.DataRetrieverNS.Geocoding;

namespace YOSHI.DataRetrieverNS
{
/// <summary >
/// This class is responsible for retrieving data from GitHub.
/// </summary>
public static class DataRetriever

{

9¢1

public static readonly GitHubClient Client;
// Default 24-hour operations with a basic Windows App, Non-profit, and Education key.
// Info about rate limiting: https://docs.microsoft.com/en-us/bingmaps/getting-started/bing-maps-api-best-practices

private static readonly ApiOptions MaxSizeBatches = new ApiOptions // allows us to fetch with 100 at a time

{
PageSize = 100

1
static DataRetriever ()
{
try
{
// Read the GitHub Access Token and the Bing Maps Key from Windows Environment Variables
string githubAccessToken = Environment.GetEnvironmentVariable ("YOSHI_GitHubAccessToken");
// Set the GitHub Client and set the authentication token from GitHub for the GitHub REST API
Client = new GitHubClient (new ProductHeaderValue("yoshi"));
Credentials tokenAuth = new Credentials(githubAccessToken);
Client.Credentials = tokenAuth;
}
catch (Exception e)
{
throw new Exception("Error during client initialization.", e);
}
}

/// <summary >

/// Method that retrieves all GitHub data that is needed to compute the validity of this repository. A repository
/// is valid when it has at least 100 commits (all time), it has at least 10 members active in the last 90 days,
/// it has at least 1 milestone (all time), and it has enough location data to compute dispersion.

/// </summary >

/// <param name="community">The community for which we need to retrieve GitHub Data.</param>

/// <returns>A boolean whether the community is valid or not.</returns>

/// <exception cref="Exception">Thrown when something goes wrong while retrieving GitHub data.</exception>

public static async Task RetrieveDataAndCheckValidity (Community community)

{
string repoName = community.RepoName;
string repoOwner = community.RepoOwner;
Data data = community.Data;

// Inspection of projects, requirements are at least 100 commits, at least 10 members, at least 50,000 LOC, must
< milestones and issues
try

LGT

// TODO: Done. Check whether all GitHub data is limited to the time window (e.g., no remaining data from today, only
— data from 90 days before today)

await GitHubRequestsRemaining();

Console.ForegroundColor = ConsoleColor.Cyan;

Console.WriteLine ("Bing Maps API requests remaining: {0}", GeoService.BingRequestsLeft);

Console.ResetColor () ;

// There must be at least 100 commits

Console.WritelLine ("Retrieving all commits...");
CommitRequest commitRequest = new CommitRequest { Until = Filters.EndDateTimeWindow 1};
data.Commits = await GitHubRatelLimitHandler.Delegate(Client.Repository.Commit.GetAll, repoOwner, repoName,

<~ commitRequest, MaxSizeBatches);
if (data.Commits.Count < 100)

{
throw new InvalidRepositoryException("Too few commits (" + data.Commits.Count + ").");
}
Console.WriteLine("Filtering commits...");
List<GitHubCommit > commitsWithinTimeWindow = Filters.ExtractCommitsWithinTimeWindow (data.Commits);
Console.WriteLine ("Extracting usernames from commits...");
data.MemberUsernames = Filters.ExtractUsernamesFromCommits (commitsWithinTimeWindow) ;

// There must be at least 2 members (active in the last 90 days)

Console.WriteLine ("Retrieving user data...");

(data.Members, data.MemberUsernames) = await RetrieveMembers (data.MemberUsernames) ;
if (data.MemberUsernames.Count < 2)

{

throw new InvalidRepositoryException("Too few members (" + data.MemberUsernames.Count + ").");

// There must be at least one closed milestone

Console.WriteLine ("Retrieving closed milestones...");

MilestoneRequest stateFilter = new MilestoneRequest { State = ItemStateFilter.Closed 1I};

IReadOnlyList<Milestone> milestones = await GitHubRateLimitHandler.Delegate(Client.Issue.Milestone.GetAllForRepository,
— repoOwner, repoName, stateFilter, MaxSizeBatches);

data.Milestones = Filters.FilterMilestones(milestones); // Remove milestones after the end time
if (data.Milestones.Count < 1)
{

throw new InvalidRepositoryException("Too few milestones (" + data.Milestones.Count + ").");

}

8GT

}

/77
/17
/77
/17
/17
/77
/17
/17

// There must be enough location data available to compute dispersion. TODO: Determine the threshold (maybe as
<~ percentage)

Console.WriteLine ("Retrieving addresses...");

// Retrieve coordinates necessary for geographical distance and countries necessary for Hofstede indices
(data.Coordinates, data.Countries) = await GeoService.RetrieveMemberAddresses (data.Members, repoName);
Console.ForegroundColor = ConsoleColor.Cyan;

Console.WriteLine ("Bing Maps API requests remaining: {0}", GeoService.BingRequestsLeft);

Console.ResetColor ();
if (data.Coordinates.Count < 2)

{
throw new InvalidRepositoryException("Too few coordinates (" + data.Coordinates.Count + ").");
}
if (data.Countries.Count < 2)
{
throw new InvalidRepositoryException("Too few addresses in Hofstede indexed countries (" + data.Countries.Count +
(_> ||).ll);
}
}
catch (InvalidRepositoryException)
{
throw;
}
catch
{
Console.ForegroundColor = ConsoleColor.Red;
Console.WriteLine ("Something went wrong while retrieving data from GitHub to check validity of repo: " + repoName);
Console.ResetColor ();
throw;
}

<summary >

Method that retrieves all GitHub data that is needed to compute only the structure metrics and modifies the
community data to store that information. It retrieves a mapping from a member to their followers, a mapping
from a member to their following, and a mapping from a member to their owned repositories.

</summary >

<param name="community">The community for which we need to retrieve GitHub Data.</param>

<returns>No object or value is returned by this method when it completes.</returns>

<exception cref="Exception">Thrown when something goes wrong while retrieving GitHub data.</exception>

public static async Task RetrieveStructureData(Community community)

{

await GitHubRequestsRemaining();

string repoName = community.RepoName;

6GT

/17
/17
/17
/17

string repoOwner = community.RepoOwner;

Data data = community.Data;
try
{
Console.WriteLine("Retrieving data per member...");

}

(data.MapUserFollowers , data.MapUserFollowing, data.MapUserRepositories)
= await RetrieveDataPerMember (repoName, data.MemberUsernames);

Console.WriteLine ("Retrieving pull requests...");
List<PullRequest> pullRequests = await RetrievePullRequests (repoOwner, repoName, data.MemberUsernames);
Console.WriteLine("Retrieve merged pull requests’ details...");

List<PullRequest> mergedPullRequests = new List<PullRequest>();

foreach (PullRequest pullRequest in pullRequests)
{
if (pullRequest.Merged)
{
PullRequest detailedPullRequest = await GitHubRatelLimitHandler.Delegate(Client.PullRequest.Get, repoOwner,
< repoName, pullRequest.Number);
mergedPullRequests.Add(detailedPullRequest);
}
}
data.MergedPullRequests = mergedPullRequests;

Console.WriteLine ("Retrieving pull request comments...");
List<IssueComment > pullRequestComments = await RetrievePullRequestComments (repoOwner , repoName, data.MemberUsernames) ;

Console.WriteLine ("Map pull requests to comments...");
data.MapPullReqsToComments = MapPullRequestsToComments (pullRequests, pullRequestComments);

catch

{

Console.ForegroundColor = ConsoleColor.Red;

Console.WritelLine ("Something went wrong while retrieving data from GitHub to compute structure of repo: " + repoName);
Console.ResetColor () ;

throw;

<summary >

Method that retrieves all GitHub data that is needed to compute all but structure metrics and modifies the
community data to store that information.

</summary >

091

/// <param name="community">The community for which we need to retrieve GitHub Data.</param>

/// <returns>No object or value is returned by this method when it completes.</returns>

/// <exception cref="Exception">Thrown when something goes wrong while retrieving GitHub data.</exception>
public static async Task RetrieveMiscellaneousData(Community community)

{

await GitHubRequestsRemaining();

string repoName = community.RepoName;

string repoOwner = community.RepoOwner;

Data data = community.Data;

try

{
Console.WriteLine ("Extract commits within time window...");
List<GitHubCommit> commitsWithinTimeWindow = Filters.ExtractCommitsWithinTimeWindow(data.Commits) ;
Console.WriteLine ("Retrieve commit details..."); // Necessary to retrieve what files were changed each commit
List<GitHubCommit> detailedCommitsWithinTimeWindow = new List<GitHubCommit >();
foreach (GitHubCommit commit in commitsWithinTimeWindow)

{
GitHubCommit detailedCommit = await GitHubRateLimitHandler.Delegate(Client.Repository.Commit.Get, repoOwner,
< repoName, commit.Sha);
detailedCommitsWithinTimeWindow.Add(detailedCommit) ;
}
Console.WritelLine("Filtering detailed commits...");
data.CommitsWithinTimeWindow = Filters.FilterDetailedCommits (detailedCommitsWithinTimeWindow, data.MemberUsernames) ;

// Set the first and last commit from the time window
(data.FirstCommitHash, data.LastCommitHash, data.FirstCommitDateTime, data.LastCommitDateTime) =
< Filters.FirstLastCommit (data.CommitsWithinTimeWindow) ;

// A member is considered active if they made a commit in the last 30 days
Console.WriteLine ("Extracting active users...");
data.ActiveMembers = Filters.ExtractMembersFromCommits (data.CommitsWithinTimeWindow, data.MemberUsernames, 30);

Console.WriteLine("Retrieving commit comments...");

IReadOnlyList <CommitComment > commitComments = await
< GitHubRateLimitHandler.Delegate(Client.Repository.Comment.GetAllForRepository, repoOwner, repoName,
< MaxSizeBatches);

data.CommitComments = Filters.FilterComments (commitComments, data.MemberUsernames) ;

// Snapshot at time of retrieval, there is no way to retrieve watchers from a past time

Console.WriteLine("Retrieving watchers...");

IReadOnlyList <User> watchers = await GitHubRateLimitHandler.Delegate(Client.Activity.Watching.GetAllWatchers, repoOwner,
< repoName, MaxSizeBatches);

data.Watchers = Filters.ExtractUsernamesFromUsers (watchers, data.MemberUsernames) ;

191

// Snapshot at time of retrieval, there is no way to retrieve stargazers from a past time

Console.WriteLine ("Retrieving stargazers...");

IReadOnlyList<User> stargazers = await GitHubRateLimitHandler.Delegate(Client.Activity.Starring.GetAllStargazers,
— repoOwner, repoName, MaxSizeBatches);

data.Stargazers = Filters.ExtractUsernamesFromUsers (stargazers, data.MemberUsernames) ;
}
catch
{
Console.ForegroundColor = ConsoleColor.Red;
Console.WriteLine ("Something went wrong while retrieving miscellaneous data from GitHub of repo: " + repoName);
Console.ResetColor () ;
throw;
}
Console.ForegroundColor = ConsoleColor.Cyan;

Console.WriteLine("Retrieved all GitHub data for this community.");
Console.ResetColor();
await GitHubRequestsRemaining();

}

/// <summary >
/// Retrieves the GitHub User information from a set of usernames. Since parameters cannot be modified in async
/// methods, we return an extra variable without usernames that cause exceptions.
/// </summary>
/// <param name="usernames">A set of usernames to retrieve the GitHub data from.</param>
/// <returns>A list of GitHub User information and an updated set of usernames, excluding all usernames that
/// caused exceptions. </returns>
private static async Task<(List<User>, HashSet<string>)> RetrieveMembers (HashSet<string> usernames)
{
List<User> members = new List<User>();
HashSet<string> updatedUsernames = new HashSet<string>(); // A separate list to exclude usernames that cause exceptions
HashSet<string> bots = new HashSet<string>();
HashSet<string> organizations = new HashSet<string>();
foreach (string username in usernames)
{
try
{
// Snapshot at time of retrieval, there is no way to retrieve users information from a past time
User user = await GitHubRatelLimitHandler.Delegate(Client.User.Get, username);

// Exclude organizations and bots
// Note: not all bots/organizations have the correct accounttype. We are bound to let through some
// bots/organizations this way, but it is better than nothing.

91

if (user.Type == AccountType.User)

{
members .Add (user) ;
updatedUsernames.Add (username) ;
}
else
{
if (user.Type == AccountType.Bot)
{
bots.Add (user.Login);
}
else // organization
{
organizations.Add (user.Login);
}
}
}
catch
{
// Skip the usernames that cause exceptions
continue;
}
}
// Report whether any bots were identified
Console.ForegroundColor = ConsoleColor.Blue;
if (bots.Count > 0)
{

Console.WriteLine ("The following users were classified as a bot:

foreach (string bot in bots)
{

Console.WriteLine (bot);
}

// Report whether any organizations were identifed
if (organizations.Count > 0)

{

Console.WriteLine ("The following users were classified as an organization:

foreach (string org in organizations)
{
Console.WriteLine (org);

}

€91

}

/17
/17
/17
/17
/17

Console.ResetColor ();

return (members, updatedUsernames);

<summary >

For all repository members we retrieve their followers (i.e., who’s following them) and following

(i.e., who they’re following), and we retrieve the repositories they worked on.

</summary >

<param name="data">The data object of the community in which we store all retrieved GitHub data.</param>

private static async Task<(

Dictionary<string, HashSet<string>> mapUserFollowers,
Dictionary<string, HashSet<string>> mapUserFollowing,
Dictionary<string, HashSet<string>> mapUserRepositories)>
RetrieveDataPerMember (string repoName, HashSet<string> memberUsernames)

Dictionary<string, HashSet<string>> mapUserFollowers = new Dictionary<string, HashSet<string>>();
Dictionary<string, HashSet<string>> mapUserFollowing = new Dictionary<string, HashSet<string>>();
Dictionary<string, HashSet<string>> mapUserRepositories = new Dictionary<string, HashSet<string>>();

foreach (string username in memberUsernames)
{
// Get the given user’s followers, limited to members that are also part of the current repository
// Snapshot at time of retrieval, there is no way to retrieve followers from a past time
IReadOnlyList <User> followers = await GitHubRatelLimitHandler.Delegate(Client.User.Followers.GetAll,
< MaxSizeBatches);
HashSet<string> followersNames = Filters.ExtractUsernamesFromUsers(followers, memberUsernames) ;

username ,

// Get the given user’s users that they’re following, limited to members that are also part of the current repository

// Snapshot at time of retrieval, there is no way to retrieve following from a past time

IReadOnlyList<User> following = await GitHubRateLimitHandler.Delegate(Client.User.Followers.GetAllFo
< MaxSizeBatches);

HashSet<string> followingNames = Filters.ExtractUsernamesFromUsers(following, memberUsernames) ;

// Currently: Assume that they have all contributed to their owned repositories
// Snapshot at time of retrieval, there is no way to retrieve repositories from a past time

llowing,

// Assumption: We assume that the users have a commit to all of their repositories, or if not that they

// are working on a commit for that repository.
IReadOnlyList <Repository> repositories =

await GitHubRateLimitHandler.Delegate(Client.Repository.GetAllForUser, username, MaxSizeBatches)
HashSet<string> repos = Filters.ExtractRepoNamesFromRepos (repositories, repoName);

// Store all user data
mapUserFollowers.Add (username, followersNames);

H

username ,

791

/17

mapUserFollowing.Add(username, followingNames);
mapUserRepositories.Add (username, repos);

}

return (mapUserFollowers, mapUserFollowing, mapUserRepositories);

<summary >

This method retrieves all pull requests for a repository. Filters all pull requests by non-committers, i.e.,
users that are not considered members.

</summary >

<param name="repoOwner">Repository owner</param>

<param name="repoName">Repository name</param>

<returns>A list of pull requests.</returns>

private static async Task<List<PullRequest>> RetrievePullRequests(string repoOwner, string repoName, HashSet<string>

{

}

— memberUsernames)

// We want all pull requests, since they often do not get closed correctly or closed at all, even if they’re merged
PullRequestRequest stateFilter = new PullRequestRequest { State = ItemStateFilter.All };
IReadOnlyList <PullRequest> pullRequests =
await GitHubRatelLimitHandler.Delegate(Client.PullRequest.GetAllForRepository, repoOwner, repoName, stateFilter,
<+ MaxSizeBatches);

// Filter out all pull requests outside the time window
Console.WriteLine("Filtering pull requests outside the time window...");

List<PullRequest > pullRequestsWithinWindow = Filters.FilterPullRequests (pullRequests, memberUsernames) ;

return pullRequestsWithinWindow;

private static async Task<List<IssueComment>> RetrievePullRequestComments(string repoOwner, string repoName, HashSet<string>

{

— memberUsernames)

// Retrieve all pull request comments since the start of the time window and filter the comments

// NOTE: There are two types of pull request comments, namely comments and review comments.

// Only review comments are available through the pull request API. The other type of comments are available

// through the Issues API, as GitHub’s REST API v3 considers every pull request as an issue, but not every issue
// is a pull request. For this reason, "Issues" endpoints may return both issues and pull requests in the

// response. The number of pull request review comments increases as the number of mistakes in the pull

// request rises, as pull request review comments are comments on a portion of the unified diff made during

// a pull request review.

IssueCommentRequest issueCommentRequest = new IssueCommentRequest { Since = Filters.StartDateTimeWindow };
IReadOnlyList <IssueComment > comments =

91

await GitHubRateLimitHandler.Delegate(Client.Issue.Comment.GetAllForRepository, repoOwner, repoName,

— issueCommentRequest, MaxSizeBatches);

Console.WriteLine("Filtering pull request comments...");
List<IssueComment> filteredComments = Filters.FilterComments (comments, memberUsernames) ;

return filteredComments;

<summary >

Given a list of pull requests for a repository, this method retrieves the pull request review comments

for each pull request and maps them in a dictionary. Filters all pull request comments by
non-committers, i.e., users that are not considered members.

</summary >

<param name="repoOwner">Repository owner</param>

<param name="repoName">Repository name</param>

<returns>A dictionary mapping pull requests to pull request review comments.</returns>

private static Dictionary<PullRequest, List<IssueComment>> MapPullRequestsToComments (

{

List<PullRequest> pullRequests, List<IssueComment> comments)

Dictionary<PullRequest, List<IssueComment>> mapPullReqsToComments =

new Dictionary<PullRequest, List<IssueComment>>();
// Temporarily store the pull requests by number, to easily link them to the comments
Dictionary<int, PullRequest> pullRequestByNumber = new Dictionary<int, PullRequest>();

foreach (PullRequest pullRequest in pullRequests)

{
mapPullReqsToComments .Add (pullRequest, new List<IssueComment>());
pullRequestByNumber.Add (pullRequest .Number, pullRequest);

}

// Map the remaining comments to the pull requests
foreach (IssueComment comment in comments)
{
try
{
string[] splitUrl = comment.HtmlUrl.Split(new char([] { ’/’, °’#° });
int pullRequestNumber = int.Parse(splitUrl[6]);
PullRequest pullRequest = pullRequestByNumber [pullRequestNumber];
// It is possible that there are non-matching keys, which means the pull request was created
// last updated outside the time window
mapPullReqsToComments [pullRequest].Add (comment) ;
}

catch

and

991

// Skip comments that don’t have a pull request number in their pull request url.
continue;

}

return mapPullReqsToComments;

/// <summary >
/// Method used to report on GitHub rate limits.
/// </summary>
/// <returns>No object or value is returned by this method when it completes.</returns>
private static async Task GitHubRequestsRemaining ()
{
ApiInfo apilnfo = Client.GetLastApilInfo();
RatelLimit ratelLimit = apiInfo?.Ratelimit;
if (ratelimit == null)
{
// Note: This is a free API call.
MiscellaneousRateLimit miscellaneousRatelLimit = await Client.Miscellaneous.GetRateLimits () ;
ratelimit = miscellaneousRatelLimit.Rate;

}

int? howManyRequestsDoIHaveLeftAfter = ratelLimit?.Remaining;

DateTimeOffset resetTime = ratelLimit.Reset;

Console.ForegroundColor = ConsoleColor.Cyan;

Console.WriteLine ("GitHub API requests remaining: {0}, reset time: {1}", howManyRequestsDoIHavelLeftAfter,
< resetTime.DateTime.ToLocalTime ().ToString());

Console.ResetColor () ;

Listing C.19: YosHI 2: Filters class.

using Octokit;

using System;

using System.Collections.Generic;
using YOSHI.CommunityData;

namespace YOSHI.DataRetrieverNS
{

/// <summary >

L91

/// Class responsible for filtering the GitHub data. It checks that everything is within the given time window.
/// It filters out all data about GitHub users that are not considered members.
/// </summary >
public static class Filters
{
public static DateTimeOffset EndDateTimeWindow { get; private set; 1}
public static DateTimeOffset StartDateTimeWindow { get; private set; }

public static void SetTimeWindow(DateTimeOffset endDateTimeWindow)

{
int days = 90; // snapshot period of 3 months (approximated using 90 days)
// Note: Currently other length periods are not supported.
// Engagementprocessor uses hardcoded month thresholds of 30 and 60
EndDateTimeWindow = endDateTimeWindow.ToUniversalTime () ;
StartDateTimeWindow = EndDateTimeWindow.AddDays (-days);

}

/// <summary>
/// Extracts commits committed within the given time window (default 3 months, approximated using 90 days).
/// Checks that the commits have a committer.
/// </summary>
/// <param name="commits">A list of commits</param>
/// <returns>A list of commits that all were committed within the time window.</returns>
public static List<GitHubCommit> ExtractCommitsWithinTimeWindow(IReadOnlyList<GitHubCommit> commits)
{
// Get all commits in the last 90 days
List<GitHubCommit> filteredCommits = new List<GitHubCommit>();
foreach (GitHubCommit commit in commits)

{
if ((commit.Committer != null && commit.Committer.Login != null && CheckWithinTimeWindow(commit.Commit.Committer .Date))
|l (commit.Author != null && commit.Author.Login != null && CheckWithinTimeWindow (commit.Commit.Author.Date)))
{
filteredCommits.Add (commit) ;
}
}

return filteredCommits;

/// <summary >

/// Extracts commits committed within the given time window (default 3 months, approximated using 90 days).
/// Checks that the commits have a committer and that the commit has information on what files were affected.
/// </summary>

/// <param name="commits">A list of commits</param>

/// <returns>A list of commits that all were committed within the time window.</returns>

891

public static List<GitHubCommit> FilterDetailedCommits (IReadOnlyList<GitHubCommit> commits, HashSet<string> memberUsernames)
{

// Get all commits in the last 90 days

List<GitHubCommit> filteredCommits = new List<GitHubCommit>();

foreach (GitHubCommit commit in commits)

{
if ((ValidCommitterWithinTimeWindow (commit, memberUsernames)
|| ValidAuthorWithinTimeWindow (commit, memberUsernames))
&& commit.Files != null)
{
filteredCommits.Add (commit) ;
}
}

return filteredCommits;

/// <summary >
/// Filter out all commits that do not have a committer, or are not considered current members (i.e., have not
/// committed in the last 90 days).
/// </summary>
/// <param name="commits">A list of commits to filter</param>
/// <param name="memberUsernames">A set of usernames of those considered members.</param>
/// <returns>A filtered list of commits</returns>
public static IReadOnlyList<GitHubCommit> FilterAllCommits (IReadOnlyList<GitHubCommit> commits, HashSet<string> memberUsernames)
{
// Get all commits in the last 90 days
List<GitHubCommit> filteredCommits = new List<GitHubCommit>();
foreach (GitHubCommit commit in commits)

{
if (ValidCommitter (commit, memberUsernames) || ValidAuthor (commit, memberUsernames))
{
filteredCommits .Add (commit) ;
}
}

return filteredCommits;

/// <summary >

/// This method retrieves all User objects and usernames for all committers and commit authors in the last 90

/// days. Note: It is possible that open pull request authors have commits on their own forks. These are not detected
/// as members as they have not yet made a contribution.

/// </summary>

/// <param name="commits">A list of commits</param>

/// <returns>A tuple containing a list of users and a list of usernames.</returns>

public static HashSet<string> ExtractUsernamesFromCommits (List<GitHubCommit> commits, int days = 90)

{

}

691

// Get the user info of all members that have made at least one commit in the last 90 days

HashSet<string> usernames = new HashSet<string>();
foreach (GitHubCommit commit in commits)
{

// Check that committer date also falls within the time window before adding the author in the list of members
if (commit.Committer != null && commit.Committer.Login != null && commit.Committer.Login != "web-flow" &&
— CheckWithinTimeWindow (commit.Commit.Committer.Date, days))

{
usernames .Add (commit.Committer.Login);
}
// Check that author date also falls within the time window before adding the author in the list of members
if (commit.Author != null && commit.Author.Login != null && commit.Author.Login != "web-flow" &&
— CheckWithinTimeWindow (commit.Commit.Author.Date, days))
{
usernames .Add (commit . Author.Login) ;
3

}
// TODO: Apply alias resolution
return usernames;

public static IReadOnlyList<Milestone> FilterMilestones(IReadOnlyList<Milestone> milestones)

{

}

/77
/17
/17
/17
/17
/17
/17

public static HashSet<string> ExtractMembersFromCommits (List<GitHubCommit> commits, HashSet<string> memberUsernames, int days

List<Milestone> milestonesInTimeWindow = new List<Milestone>();

foreach (Milestone milestone in milestones)

{
if (milestone.ClosedAt != null && milestone.ClosedAt <= EndDateTimeWindow)
{

milestonesInTimeWindow.Add(milestone);
}
}

return milestonesInTimeWindow;

<summary >

This method retrieves all User objects and usernames for all committers and commit authors in the last 90

days. Note: It is possible that open pull request authors have commits on their own forks. These are not detected
as members as they have not yet made a contribution.

</summary >

<param name="commits">A list of commits</param>

<returns>A tuple containing a list of users and a list of usernames.</returns>

0LT

}

/17
/17
/17
/17
/17
/17
/77

— 90)

// Get the user info of all members that have made at least one commit in the last 90 days

HashSet<string> usernames = new HashSet<string>();
foreach (GitHubCommit commit in commits)
{

// Check that committer date also falls within the time window before adding the author in the list of members
if (commit.Committer != null && commit.Committer.Login != null
&% memberUsernames.Contains (commit.Committer.Login) && CheckWithinTimeWindow(commit.Commit.Committer.Date, days))

{
usernames .Add (commit.Committer.Login);
}
// Check that author date also falls within the time window before adding the author in the list of members
if (commit.Author != null && commit.Author.Login != null
&% memberUsernames.Contains (commit.Author.Login) && CheckWithinTimeWindow (commit.Commit.Author.Date, days))
{
usernames .Add (commit . Author.Login) ;
3

}
// TODO: Apply alias resolution
return usernames;

<summary >

Given a list of users, extracts a set of usernames. Also checks whether users are considered members within
the time period.

</summary >

<param name="users">The list of users that we want to extract the usernames from.</param>

<param name="memberUsernames">The list of members within the time period.</param>

<returns>A set of usernames</returns>

public static HashSet<string> ExtractUsernamesFromUsers(IReadOnlyList<User> users, HashSet<string> memberUsernames)

{

}

/17

HashSet<string> names = new HashSet<string>();
foreach (User user in users)
{
if (user.Login != null && memberUsernames.Contains (user.Login))
{
names .Add (user.Login) ;
}
}

return names;

<summary >

TLT

/// Filter out all pull requests that are not within the time window, do not have an author, or are not considered
/// current members (i.e., have not committed in the last 90 days).
/// </summary>
/// <param name="pullRequests">A list of pull request to filter</param>
/// <param name="memberUsernames">A set of usernames of those considered members.</param>
/// <returns>A filtered list of pull requests</returns>
public static List<PullRequest> FilterPullRequests(IReadOnlyList<PullRequest> pullRequests, HashSet<string> memberUsernames)
{
// Extract only the pull requests that fall within the 3-month time window (approximately 90 days)
// Note: this cannot be added as a parameter in the GitHub API request.
List<PullRequest> filteredPullRequests = new List<PullRequest>();
foreach (PullRequest pullRequest in pullRequests)

{
if ((CheckWithinTimeWindow (pullRequest.UpdatedAt) || CheckWithinTimeWindow(pullRequest.CreatedAt)
|| CheckWithinTimeWindow (pullRequest.MergedAt) || CheckWithinTimeWindow (pullRequest.ClosedAt))
&& pullRequest.User != null
&& pullRequest.User.Login != null
&% memberUsernames.Contains (pullRequest.User.Login))
{
filteredPullRequests.Add (pullRequest) ;
}
}

return filteredPullRequests;

}

/// <summary >

/// Filter out all non-pull-request issue-comments that are not within the time window, do not have an author,

/// or are not considered current members (i.e., have not committed in the last 90 days).

/// </summary>

/// <param name="comments">A list of issue comments to filter</param>

/// <param name="memberUsernames">A set of usernames of those considered members.</param>

/// <returns>A filtered list of pull request comments</returns>

public static List<IssueComment> FilterComments (IReadOnlylList<IssueComment> comments, HashSet<string> memberUsernames)
{

// Filter out all comments that are not within the time window, do not have an author, or are not

// considered current members (i.e., have not committed in the last 90 days).
// Note: the 3 months period cannot be added as a parameter in the GitHub API request.
List<IssueComment> filteredComments = new List<IssueComment>();
foreach (IssueComment comment in comments)
{
if (comment.HtmlUrl.Contains("pull")
%% (CheckWithinTimeWindow (comment.UpdatedAt) || CheckWithinTimeWindow (comment.CreatedAt))
&& comment.User != null

&& comment.User.Login != null

GL1

/17

&% memberUsernames.Contains (comment.User.Login))
{
filteredComments.Add (comment) ;
}
}

return filteredComments;

<summary >

Given a list of commits, this method extracts the first and last commit date and returns them as
strings.

</summary >

<param name="commits">List of commits to extract the first and last commit dates from</param>
<returns>First and last commit dates as formatted strings.</returns>

public static (string, string, string, string) FirstLastCommit (List<GitHubCommit> commits)

{

string hashFirstCommit = "";

string hashLastCommit = "";

DateTimeOffset dateFirstCommit = DateTimeOffset.MaxValue;
DateTimeOffset datelLastCommit = DateTimeOffset.MinValue;
foreach (GitHubCommit commit in commits)

{
DateTimeOffset dateCurrentCommit = commit.Commit.Committer.Date;
// If current earliest commit is later than current commit
if (dateFirstCommit.CompareTo(dateCurrentCommit) > 0)
{
dateFirstCommit = dateCurrentCommit;
hashFirstCommit = commit.Sha;
}
// If current latest commit is earlier than current commit
if (datelLastCommit.CompareTo(dateCurrentCommit) < 0)
{
datelLastCommit = dateCurrentCommit;
hashLastCommit = commit.Sha;
}
}

dateFirstCommit.ToUniversalTime () ;
dateLastCommit.ToUniversalTime () ;

return (hashFirstCommit, hashLastCommit, dateFirstCommit.ToString("yyyy-MM-dd HH:mm:ss zzz"),
<~ dateLastCommit.ToString("yyyy-MM-dd HH:mm:ss zzz"));

formatted

€LT

/17

public static List<CommitComment> FilterComments (IReadOnlyList<CommitComment> comments,

{

}

/17
/77
/17
/17
/17
/17
/17

<summary >

Filter out all comments that are not within the time window, do not have an author, or are not considered
current members (i.e., have not committed in the last 90 days).

</summary >

<param name="comments">A list of commit comments to filter</param>

<param name="memberUsernames">A set of usernames of those considered members.</param>

<returns>A filtered list of commit comments</returns>

List<CommitComment > filteredComments = new List<CommitComment >();
foreach (CommitComment comment in comments)
{
if ((CheckWithinTimeWindow(comment.UpdatedAt) || CheckWithinTimeWindow (comment.CreatedAt))
&& comment.User != null
&& comment.User.Login != null
&% memberUsernames.Contains (comment.User.Login))
{
filteredComments.Add (comment) ;
}

}

return filteredComments;

<summary >

A method that takes a DateTimeOffset object and checks whether it is within the specified time window x number
of days (Default: 3 months, i.e., x = 90 days). This window ends at the specified end of the time window and
starts at midnight x days prior.

</summary >

<param name="dateTime">A DateTimeOffset object</param>

<returns>Whether the DateTimeOffset object falls within the time window.</returns>

public static bool CheckWithinTimeWindow(DateTimeOffset? dateTime, int days = 90)

{

}

/17
/17

if (dateTime == null)
{
return false;

}

// We set the date time offset window for the 3 months earlier from now (approximated using 90 days)
DateTimeOffset startDate = EndDateTimeWindow.AddDays (-days);
return dateTime >= startDate && dateTime <= EndDateTimeWindow;

<summary >
Given a list of repositories, extract the names of the repositories, exclude the name of the current

HashSet<string> memberUsernames)

VLT

/// repository.

/// </summary>

/// <param name="repositories">A list of repositories.</param>

/// <param name="currentRepoName">The name of the repository we’re currently processing.</param>
/// <returns>A set of repository names excluding the current repository name.</returns>

public static HashSet<string> ExtractRepoNamesFromRepos (IReadOnlyList<Repository> repositories, string currentRepoName)

{
HashSet<string> repoNames = new HashSet<string>();
foreach (Repository repo in repositories)
{
if (repo.Name != currentRepoName)
{
repoNames . Add (repo.Name) ;
}
}
return repoNames;
}

/// <summary >

/// Given a commit, check whether the committer is valid (i.e., the committer is not null, the committer’s login

/// is not null, and the committer is considered a member in the last 3 months).
/// </summary>
/// <param name="commit">The commit to check</param>
/// <param name="memberUsernames">A set of members</param>
/// <returns>Whether the committer of the given commit is valid</returns>
public static bool ValidCommitter (GitHubCommit commit, HashSet<string> memberUsernames)
{
return commit.Committer != null
&% commit.Committer.Login != null
&& memberUsernames.Contains (commit.Committer.Login);

}

/// <summary >
/// Given a commit, check whether the author is valid (i.e., the author is not null, the author’s login
/// is not null, and the author is considered a member in the last 3 months).
/// </summary>
/// <param name="commit">The commit to check</param>
/// <param name="memberUsernames">A set of members</param>
/// <returns>Whether the author of the given commit is valid</returns>
public static bool ValidAuthor (GitHubCommit commit, HashSet<string> memberUsernames)
{
return commit.Author != null
&& commit.Author.Login != null
&% memberUsernames.Contains (commit.Author.Login);

GLT

/// <summary >
/// Given a commit, check whether the committer is valid (i.e., the committer is not null, the committer’s login
/// is not null, the committer date is within the 3 month window, and the committer is considered a member in
/// the last 3 months).
/// </summary >
/// <param name="commit">The commit to check</param>
/// <param name="memberUsernames">A set of members</param>
/// <returns>Whether the committer of the given commit is valid</returns>
public static bool ValidCommitterWithinTimeWindow (GitHubCommit commit, HashSet<string> memberUsernames)
{
return ValidCommitter (commit, memberUsernames) && CheckWithinTimeWindow (commit.Commit.Committer.Date);
}
/// <summary >
/// Given a commit, check whether the author is valid (i.e., the author is not null, the author’s login
/// is not null, the author date is within the 3 month window, and the author is considered a member in
/// the last 3 months).
/// </summary>
/// <param name="commit">The commit to check</param>
/// <param name="memberUsernames">A set of members</param>
/// <returns>Whether the committer of the given commit is valid</returns>
public static bool ValidAuthorWithinTimeWindow (GitHubCommit commit, HashSet<string> memberUsernames)
{
return ValidAuthor (commit, memberUsernames) && CheckWithinTimeWindow (commit.Commit.Author.Date);
}
}
}
Listing C.20: YosH1 2: GitHubRateLimitHandler class.
using Octokit;
using System;
using System.Threading;
using System.Threading.Tasks;

namespace YOSHI.DataRetrieverNS

{

public static class GitHubRateLimitHandler

{

// AUXILIARY: Methods used to delegate GitHub API calls and handling of rate limits.

9.1

/// <summary >
/// This method is used to delegate the GitHub API requests. It handles the rate limit.
/// </summary>
/// <typeparam name="T">The type that func will return.</typeparam>
/// <param name="func">The function that we want to call.</param>
/// <param name="repoOwner">The name of the repository owner, whose repository we want data from.</param>
/// <param name="repoName">The name of the repository we want to get data from.</param>
/// <returns>No object or value is returned by this method when it completes.</returns>
/// <exception cref="Exception">Throws an exception if after 3 times of trying to retrieve data,
/// the data RatelLimitExceededException still occurs, or if another exception is thrown.</exception>
public async static Task<T> Delegate<T>(
Func<string, string, Task<T>> func,
string repoOwner,
string repoName)

{
for (int i = 0; i < 3; i++)
{
try
{
Task<T> task = func(repoOwner, repoName) ;
return await task;
}
catch (RatelLimitExceededException)
{
// When we exceed the rate limit we check when the limit resets and wait until that time before we try 2 more times.
WaitUntilReset () ;
}
}
throw new Exception("Failed too many times to retrieve GitHub data.");
}

/// <param name="sha">Commit sha of the commit to retrieve.</param>
public async static Task<T> Delegate<T>(

Func<string, string, string, Task<T>> func,

string repoOwner,

string repoName,

string sha)

{
for (int i = 0; i < 3; i++)
{
try
{
Task<T> task = func(repoOwner, repoName, sha);

return await task;

LLT

}
catch (RatelLimitExceededException)
{
// When we exceed the rate limit we check when the limit resets and
WaitUntilReset () ;
}
}
throw new Exception("Failed too many times to retrieve GitHub data.");

}

/// <param name="number">Number of the pull request to retrieve.</param>
public async static Task<T> Delegate<T>(

Func<string, string, int, Task<T>> func,

string repoOwner,

string repoName,

int number)

{
for (int i = 0; i < 3; i++)
{
try
{
Task<T> task = func(repoOwner, repoName, number);
return await task;
}
catch (RatelimitExceededException)
{
// When we exceed the rate limit we check when the limit resets and
WaitUntilReset () ;
}
}
throw new Exception("Failed too many times to retrieve GitHub data.");
}

/// <param name="maxBatchSize">Setting API options to retrieve max batch sizes,
public async static Task<T> Delegate<T>(

Func<string, string, ApiOptions, Task<T>> func,

string repoOwner,

string repoName,

ApiOptions maxBatchSize)

for (int i = 0; i < 3; i++)
{

try

{

wait until that time before we try 2 more times.

wait until that time before we try 2 more times.

reducing the number of requests.</param>

8LIT

Task<T> task = func(repoOwner, repoName, maxBatchSize);
return await task;

}

catch (RatelimitExceededException)

{
// When we exceed the rate limit we check when the limit resets and wait until that time before we try 2 more times.
WaitUntilReset () ;

}

}
throw new Exception("Failed too many times to retrieve GitHub data.");

}

/// <param name="maxBatchSize">Setting API options to retrieve max batch sizes, reducing the number of requests.</param>
public async static Task<T> Delegate<T>(

Func<string, string, CommitRequest, ApiOptions, Task<T>> func,

string repoOwner,

string repoName,

CommitRequest commitRequest,

ApiOptions maxBatchSize)

{
for (int i = 0; i < 3; i++)
{
try
{
Task<T> task = func(repoOwner, repoName, commitRequest, maxBatchSize);
return await task;
}
catch (RatelLimitExceededException)
{
// When we exceed the rate limit we check when the limit resets and wait until that time before we try 2 more times.
WaitUntilReset ();
}
}
throw new Exception("Failed too many times to retrieve GitHub data.");
}
/// <param name="state">The milestone request applying a state filter. Can be "open", "closed", or "all".

/// https://docs.github.com/en/rest/reference/issues#list-milestones
/// </param>
public async static Task<T> Delegate<T>(
Func<string, string, MilestoneRequest, ApiOptions, Task<T>> func,
string repoOwner,
string repolName,
MilestoneRequest state,

6L1

ApiOptions maxBatchSize)

{
for (int i = 0; i < 3; i++)
{
try
{
Task<T> task = func(repoOwner, repoName, state, maxBatchSize);
return await task;
}
catch (RatelLimitExceededException)
{
// When we exceed the rate limit we check when the limit resets and wait until that time before
WaitUntilReset ();
}
}
throw new Exception("Failed too many times to retrieve GitHub data.");
}
/// <param name="state">The pull request request applying a state filter. Can be "open", "closed", or "all".

/// https://docs.github.com/en/rest/reference/pulls#list-pull-requests
/// </param>
public async static Task<T> Delegate<T>(
Func<string, string, PullRequestRequest, ApiOptions, Task<T>> func,
string repoOwner,
string repoName,
PullRequestRequest state,
ApiOptions maxBatchSize)

{
for (int i = 0; i < 3; i++)
{
try
{
Task<T> task = func(repoOwner, repoName, state, maxBatchSize);
return await task;
}
catch (RatelLimitExceededException)
{
// When we exceed the rate limit we check when the limit resets and wait until that time before
WaitUntilReset () ;
}

}

throw new Exception("Failed too many times to retrieve GitHub data.");

we try 2 more times.

we try 2 more times.

081

/// <param name="since">0Only comments updated at or after this time are returmned.
/// https://docs.github.com/en/rest/reference/pulls#list-review-comments-in-a-repository
/// </param>
public async static Task<T> Delegate<T>(
Func<string, string, IssueCommentRequest, ApiOptions, Task<T>> func,
string repoOwner,
string repoName,
IssueCommentRequest since,
ApiOptions maxBatchSize)

{
for (int i = 0; i < 3; i++)
{
try
{
Task<T> task = func(repoOwner, repoName, since, maxBatchSize);
return await task;
}
catch (RatelLimitExceededException)
{
// When we exceed the rate limit we check when the limit resets and wait until that time before we try 2 more times.
WaitUntilReset () ;
}
}
throw new Exception("Failed too many times to retrieve GitHub data.");
}

/// <param name="id">An extra paramater to specify an ID to get a specific item from a repository.</param>
public async static Task<T> Delegate<T>(

Func<string, string, int, ApiOptions, Task<T>> func,

string repoOwner,

string repoName,

int id,

ApiOptions maxBatchSize)

{
for (int i = 0; i < 3; i++)
{
try
{
Task<T> task = func(repoOwner, repoName, id, maxBatchSize);
return await task;
}
catch (RatelLimitExceededException)
{

// When we exceed the rate limit we check when the limit resets and wait until that time before we try 2 more times.

181

WaitUntilReset () ;
}
}

throw new Exception("Failed too many times to retrieve GitHub data.");

/// <summary >
/// This method is used to delegate the GitHub API requests. It handles the rate limit.
/// </summary>
/// <typeparam name="T">The type that func will return.</typeparam>
/// <param name="func">The function that we want to call.</param>
/// <param name="username">The username, whose data we want to retrieve.</param>
/// <returns>No object or value is returned by this method when it completes.</returns>
/// <exception cref="Exception">Throws an exception if after 3 times of trying to retrieve data,
/// the data RatelimitExceededException still occurs, or if another exception is thrown.</exception>
public async static Task<T> Delegate<T>(
Func<string, Task<T>> func,
string username)

{
for (int i = 0; i < 3; i++)
{
try
{
Task<T> task = func(username);
return await task;
}
catch (RatelimitExceededException)
{
// When we exceed the rate limit we check when the limit resets and wait until that time before we try 2 more times.
WaitUntilReset () ;
}
¥
throw new Exception("Failed too many times to retrieve GitHub data.");
}

/// <param name="maxBatchSize">The username, whose data we want to retrieve.</param>
public async static Task<T> Delegate<T>(

Func<string, ApiOptions, Task<T>> func,

string username,

ApiOptions maxBatchSize)

for (int i = 0; i < 3; i++)
{
try

¢8I

}

Task<T> task = func(username, maxBatchSize);
return await task;
}
catch (RatelLimitExceededException)
{
// When we exceed the rate limit we check when the limit resets and wait until that time
WaitUntilReset ();
}

}

throw new Exception("Failed too many times to retrieve GitHub data.");

/// <summary >

/// A method to take care of the waiting until the GitHub rate reset.
/// </summary >

private static void WaitUntilReset ()

{

Console.ForegroundColor = ConsoleColor.Magenta;
// Set the default wait time to one hour
TimeSpan timespan = TimeSpan.FromHours (1) ;

ApiInfo apilnfo = DataRetriever.Client.GetLastApiInfo();
RatelLimit ratelimit = apilnfo?.Ratelimit;
DateTimeOffset? whenDoesTheLimitReset = ratelLimit?.Reset;
if (whenDoesTheLimitReset != null)
{
DateTimeOffset limitReset = (DateTimeOffset)whenDoesTheLimitReset;
timespan = (DateTimeOffset)whenDoesThelLimitReset - DateTimeOffset.Now;
timespan = timespan.Add(TimeSpan.FromSeconds(30)); // Add 30 seconds to the timespan

before we try 2 more times.

Console.WriteLine ("GitHub Rate Limit reached. Time: " + DateTime.Now.ToString());
Console.WriteLine ("Waiting until: " + limitReset.AddSeconds (30).DateTime.ToLocalTime().ToString());
}
else
{
// If we don’t know the reset time, we wait the default time of 1 hour
Console.WriteLine("Waiting until: " + DateTimeOffset.Now.DateTime.ToLocalTime ().AddHours(1));
}

Console.ResetColor(); // Reset before sleep, otherwise color remains even when application is closed during the sleep.

Thread.Sleep(timespan); // Wait until the rate limit resets
Console.ForegroundColor = ConsoleColor.Magenta;

Console.WriteLine ("Done waiting for the rate limit reset, continuing now: " + DateTime.Now.ToString());

Console.ResetColor ();

€81

Listing C.21: YosHI 2: InvalidRepositoryException class.

using

System;

namespace YOSHI.DataRetrieverNS

{
/// <summary >
/// Class used to identify invalid repositories
/// </summary>
public class InvalidRepositoryException : Exception
{
public InvalidRepositoryException ()
{
}
public InvalidRepositoryException(string message)
base (message)
{
}
public InvalidRepositoryException(string message, Exception inner)
base (message, inner)
{
}
}
}

C.5

./src/DataRetriever/Geocoding

Listing C.22: YosHI 2: GeoService class.

using
using
using
using
using
using

Geocoding;
Geocoding.Microsoft;
Octokit;

System;
System.Collections.Generic;
System.Ling;

78T

using System.Threading.Tasks;

namespace YOSHI.DataRetrieverNS.Geocoding

{

public static class GeoService

{

public static int BingRequestsLeft { get; set; } = 50000;
private static readonly BingMapsGeocoder Geocoder =
new BingMapsGeocoder (Environment.GetEnvironmentVariable ("YOSHI_BingMapsKey"));

/77
/17
/17
/77
/17
/77
/17
/17
/17

{

<summary >

A method that takes a list of users and computes the addresses for all members. Users that have not
specified their locations or cause exceptions are skipped.

</summary >

<param name="members">A list of members to retrieve the addresses from</param>

<param name="repoName">The repository name, used in exception handling</param>

<returns>A list of addresses for the passed list of members</returns>

<exception cref="GeocoderRateLimitException">Thrown when the Bing Rate Limit is exceeded.</exception>

<exception cref="BingGeocodingException">Thrown when Bing Geocoding could not successfully retrieve a location.</exception>
public static async Task<(List<Location>, List<string>)> RetrieveMemberAddresses(List<User> members, string repoName)

List<Location> coordinates = new List<Location>();
List<string> countries = new List<string>();
// NOTE: We loop over all user objects instead of usernames to access location data
foreach (User member in members)
{
// Retrieve the member’s addresses
try
{
if (member.Location != null)
{
BingAddress address = await GetBingAddress (member.Location);

// EXTRA LOGGING FOR RETROACTIVE ANALYSIS
Console.WriteLine ("GitHub Address: {0}, Coordinates: {1}, CountryRegion: {2}", member.Location,
< address.Coordinates.ToString (), address.CountryRegion);
coordinates.Add (address.Coordinates);
// Note: The ContainsKey method of the Hofstede dictionary has been adjusted to be case insensitive and
// diacritic insensitive
if (HI.Hofstede.ContainsKey(address.CountryRegion))
{
countries.Add (address.CountryRegion) ;

}

a1

// Note: We do not filter out all users that we do not have complete information from,
// it could filter out information too aggressively.

}
catch (BingGeocodingException e)
{
// Continue with the next user if this user was causing an exception
Console.ForegroundColor = ConsoleColor.DarkYellow;
Console.WriteLine ("Could not retrieve the location from {0} in repo {1}", member.Login, repoName);
Console.WriteLine(e.InnerException.Message);
Console.ResetColor ();
continue;
}
catch (GeocoderRateLimitException)
{
throw;
}
}
return (coordinates, countries);
}
/// <summary >
/// This method uses a Geocoding API to perform forward geocoding, i.e., enter an address and obtain Bing Address.
/17

/// Bing Maps TOU: https://www.microsoft.com/en-us/maps/product/terms-april-2011

/// </summary>

/// <param name="githubLocation">The location of which we want the Bing Maps Address.</param>

/// <returns>A BingAddress containing the longitude and latitude found from the given address.</returns>
/// <exception cref="BingGeocodingException">Thrown when the returned status in MapLocationFinderResult is
/// anything but "Success".</exception>

/// <exception cref="GeocoderRatelLimitException">Thrown when the rate limit has been reached.</exception>
private static async Task<BingAddress> GetBingAddress(string githubLocation)

{

if (BingRequestsLeft > 50) // Give ourselves a small buffer to not go over the limit.

{

BingRequestsLeft --;
// Note: MapLocationFinder does not throw exceptions, instead it returns a status.
try
{

IEnumerable<BingAddress> resultAddresses = await Geocoder.GeocodeAsync (githubLocation);

BingAddress result = resultAddresses.FirstOrDefault ();

return result != null && result.CountryRegion != null

? result
throw new BingGeocodingException(new Exception("Result for address \"" + githubLocation + "\"

is null"));

981

catch (BingGeocodingException)

{
throw;

}
}
else
{

throw new GeocoderRatelLimitException("Too few Bing Requests left.");
}

Listing C.23: YosHI 2: GeocoderRateLimitException class.

using System;

namespace YOSHI.DataRetrieverNS.Geocoding

{
/// <summary >
/// Class used to identify the rate limit exception from Bing Maps API
/// </summary>

public class GeocoderRateLimitException : Exception
{

public GeocoderRatelLimitException ()

{

}

public GeocoderRateLimitException(string message)
base (message)

{

}

public GeocoderRatelLimitException(string message, Exception inner)
base (message, inner)

{
}

L8T

C.6 ./src/CharacteristicProcessor

Listing C.24: YosHI 2: CharacteristicProcessor class (CharacteristicProcessor.cs). Note that the CharacteristicProcessor class is a
partial class, i.e., its functionality is implemented over multiple files.

using System;
using YOSHI.CommunityData;

namespace YOSHI.CharacteristicProcessorNS
{
/// <summary >
/// This class is responsible for using the retrieved GitHub data and computing several metrics and then values for
/// the corresponding characteristics. This partial class is specifically responsible for the miscellaneous
/// characteristics.
/// </summary>
public static partial class CharacteristicProcessor

{
/// <summary >
/// A method that calls all specific ComputeCharacteristic methods other than ComputeStructure
/// </summary>
/// <param name="community">The community for which we need to compute the characteristics.</param>
public static void ComputeMiscellaneousCharacteristics (Community community)
{
if (!(community.Data.Coordinates.Count < 2 || community.Data.Countries.Count < 2))
{
Console.WritelLine ("Computing community dispersion...");
ComputeDispersion(community) ;
}
Console.WriteLine ("Computing community formality...");
ComputeFormality (community) ;
Console.WriteLine ("Computing community engagement...");
ComputeEngagement (community) ;
Console.WritelLine ("Computing community longevity...");
ComputeLongevity (community) ;
//Console.WriteLine ("Computing community cohesion...");
//CohesionProcessor.ComputeCohesion(community); // Not yet implemented
}
}

881

Listing C.25: YOsHI 2: CharacteristicProcessor class (StructureProcessor.cs).

using
using
using
using
using

Octokit;
System.Collections.Generic;
System.Ling;

YOSHI.
YOSHI.

CommunityData;
CommunityData.MetricData;

namespace YOSHI.CharacteristicProcessorNS

{

public static partial class CharacteristicProcessor

{

/17
/17
/17
/17
/17

<summary >

A method that computes several metrics used to measure community structure and then decides whether a
community exhibits a structure or not.

</summary >

<param name="community">The community for which we need to compute the structure.</param>

public static void ComputeStructure(Community community)

{

Data data = community.Data;

// Note: we compute all connections between members and obtain member graphs that are currently unused
// TODO: Use/Export the graph. Currently it is tracked, but not used.

Graph<string> structureGraph = new Graph<string>();

structureGraph.AddNodes (data.MemberUsernames) ;

Structure s = community.Metrics.Structure;

s.CommonProjects = AddCommonProjectsConnections(ref structureGraph, data.MapUserRepositories);

s.Followers = AddFollowConnections(ref structureGraph, data.MapUserFollowers, data.MapUserFollowing);
s.PullRegqInteraction = AddPullReqConnections(ref structureGraph, data.MapPullReqsToComments, data.MemberUsernames) ;

community.Characteristics.Structure = s.CommonProjects || s.Followers || s.PullReqlnteraction;

<summary >

We compute the common projects connections between all users.

</summary >

<param name="mapUserRepositories">A mapping from usernames to the repositories that they worked on.</param>
<returns>A mapping for each members to a set of other members who worked on a common repository.</returns>

private static bool AddCommonProjectsConnections(

ref Graph<string> structureGraph,
Dictionary<string, HashSet<string>> mapUserRepositories)

bool commonProjectsConnection = false;

681

}

/17
/17
/17
/17
/17
/17
117
/77
/17

// Find common projects by comparing the names of repositories they worked on
// TODO: At the moment we go over each pair twice.
foreach (KeyValuePair<string, HashSet<string>> firstUser in mapUserRepositories)

{
foreach (KeyValuePair<string, HashSet<string>> secondUser in mapUserRepositories)
{
if (firstUser.Key != secondUser.Key)
{
// We compute the intersections of the list of repositories and then count the number of items
IEnumerable<string> commonProjects = firstUser.Value.Intersect(secondUser.Value);
if (commonProjects.Count() > 0)
{
// Two members have a common repository to which they are contributing, except for the
// currently analyzed repository.
structureGraph.AddEdge (firstUser.Key, secondUser.Key);
commonProjectsConnection = true;
}
}
3
}

return commonProjectsConnection;

<summary >

This method computes the follower/following connections between each of the members,

but its result does not distinguish between followers and following.

</summary >

<param name="mapUserFollowers">A mapping for each username to a list of the users followers.</param>
<param name="mapUserFollowing">A mapping for each username to a list of the users that they themselves
follow.</param>

<returns>A mapping for each username to a combined set of followers and following from which the names
have been extracted.</returns>

private static bool AddFollowConnections (

ref Graph<string> structureGraph,
Dictionary<string, HashSet<string>> mapUserFollowers,
Dictionary<string, HashSet<string>> mapUserFollowing)

bool followConnection = false;

// Obtain a mapping from all users (usernames) to the names of the followers and following
foreach (string user in mapUserFollowers.Keys)
{

HashSet<string> followerOrFollowing = new HashSet<string>(mapUserFollowers[user].Union(mapUserFollowing[user]));

061

}

/77
/17
/17
/77
/17

foreach (string follow in followerOrFollowing)

{
// Two members have a follower/following relation.
structureGraph.AddEdge (user, follow);
followConnection = true;

}

}

return followConnection;

<summary >

Computes the connections between pull request authors and pull request commenters.

</summary >

<param name="mapPullReqsToComments">A mapping from each pull request to their pull request review comments.</param>
<returns>A mapping for each user to all other users that they’re connected to through pull requests.</returns>

private static bool AddPullReqConnections(

ref Graph<string> structureGraph,
Dictionary<PullRequest, List<IssueComment>> mapPullReqsToComments,
HashSet<string> memberUsernames)

bool pullReqConnection = false;
// Add the connections for each pull request commenter and author
foreach (KeyValuePair <PullRequest, List<IssueComment>> mapPullReqToComments in mapPullReqsToComments)
{
string pullReqAuthor = mapPullReqToComments.Key.User.Login;
// Make sure that the pull request author is also a member
// (i.e., whether they committed to this repository at least once)

if (pullReqAuthor != null && memberUsernames.Contains (pullReqAuthor))
{
foreach (IssueComment comment in mapPullReqToComments.Value)
{
string pullReqCommenter = comment.User.Login;
// Make sure that the pull request commenter is also a member
// (i.e., whether they committed to this repository at least once)
if (pullReqCommenter != null && memberUsernames.Contains (pullReqCommenter))
{
// Two members have had a recent pull request interaction.
structureGraph.AddEdge (pullReqAuthor, pullReqCommenter) ;
pullReqConnection = true;
}
}

}
}

return pullReqConnection;

161

Listing C.26: YOsHI 2: CharacteristicProcessor class (DispersionProcessor.cs).

using
using
using
using
using

Geocoding;

System;
System.Collections.Generic;
System.Ling;
YOSHI.CommunityData;

namespace YOSHI.CharacteristicProcessorNS

{

public static partial class CharacteristicProcessor

{

/// <summary >
/// A method that computes several metrics used to measure community dispersion. It modifies the given community.
/// </summary>
/// <param name="community">The community for which we need to compute the dispersion.</param>
private static void ComputeDispersion(Community community)
{
List<Location> coordinates = community.Data.Coordinates;
List<string> countries = community.Data.Countries;

// Compute the variance of all geographical distances

List<double> distances = ComputeGeographicalDistances(coordinates);

double varianceGeographicalDistance = Statistics.ComputeVariance (distances);
community.Metrics.Dispersion.VarianceGeographicalDistance = varianceGeographicalDistance;

// Note: Geographical distance includes distances to members from who we do not have Hofstede indices for better accuracy.

// Compute the variance for four Hofstede indices

(List<double> pdis, List<double> idvs, List<double> mass, List<double> uais) = ComputeHofstedeIndices (countries);
double variancePdi = Statistics.ComputeVariance (pdis);
double varianceIdv = Statistics.ComputeVariance (idvs);
double varianceMas = Statistics.ComputeVariance (mass);
double varianceUai = Statistics.ComputeVariance (uais);

// Determine the average of the variances to obtain the variance of cultural distance
double varianceCulturalDistance = (variancePdi + varianceldv + varianceMas + varianceUai) / 4;
community.Metrics.Dispersion.VarianceHofstedeCulturalDistance = varianceCulturalDistance;

// Determine the global dispersion

¢61

community.Characteristics.Dispersion = Math.Sqrt((varianceGeographicalDistance + varianceCulturalDistance) / 2);

// EXTRA COMPUTATIONS FOR COMPARISON YOSHI AND YOSHI 2

community.Metrics.Dispersion.AverageGeographicalDistance = distances.Average();

double averagePdi = Statistics.ComputeStandardDeviation(pdis);

double averageldv = Statistics.ComputeStandardDeviation(idvs);

double averageMas = Statistics.ComputeStandardDeviation (mass);

double averageUai = Statistics.ComputeStandardDeviation(uais);
community.Metrics.Dispersion.AverageCulturalDispersion = (averagePdi + averageldv + averageMas + averageUai) / 4.0;

}

/// <summary >

/// Given a list of coordinates, this method computes the list of geographical distances between each unique pair
/// of coordinates. It computes the distance using the spherical distance.

/// </summary>

/// <param name="coordinates">A list of coordinates for which we want to compute the geographical

/// distance between each pair.</param>

/// <returns>A list of geographical distances between each unique pair of coordinates.</returns>

private static List<double> ComputeGeographicalDistances (List<Location> coordinates)

{
// TODO: threshold (percentage) for number of addresses should be set in DataRetriever
List<double> distances = new List<double>();
// Compute the medium distance for each distinct pair of addresses in the given list of addresses
for (int i = 0; i < coordinates.Count - 1; i++)
{
Location coordinateA = coordinates[i];
for (int j = i + 1; j < coordinates.Count; j++)
{
Location coordinateB = coordinates[j];
// NOTE: the DistanceBetween method computes spherical distance
double distance = coordinateA.DistanceBetween(coordinateB, DistanceUnits.Kilometers);
distances.Add(distance) ;
}
}
return distances;
}

/// <summary >

/// Given a list of addresses, this method compiles separate lists for the present countries’

/// corresponding hofstede indices (PDI, IDV, MAS, UAI)

/// </summary>

/// <param name="countries">A list of countries for which we want to retrieve the Hofstede indices.</param>

€61

/// <returns>Four lists of Hofstede

indices representative for the given addresses.</returns>

private static (List<double> pdis, List<double> idvs, List<double> mass, List<double> uais)
ComputeHofstedeIndices (List<string> countries)

{

List <double>
List <double>
List<double>
List<double>

foreach (string

{

pdis.

idvs

mass .
uais.

}

return (pdis,

Add (HI.
.Adda (HI.
Add (HI.
Add (HI.

idvs,

pdis = new
idvs = new
mass = new
uais = new

country

List <double>();
List<double>();
List<double>();
List<double>();

in countries)

Hofstede [country].Pdi);
Hofstede [country].Idv);
Hofstede [country].Mas);
Hofstede [country].Uai);

mass, uais);

Listing C.27: YosHI 2: CharacteristicProcessor class (FormalityProcessor.cs).

using
using
using
using
using
using
using

Octokit;
System;

System.Collections.Generic;
System.Ling;
YOSHI.CommunityData;
YOSHI.CommunityData.MetricData;

YOSHI.DataRetrieverNS;

namespace YOSHI.CharacteristicProcessorNS

{

public static partial class CharacteristicProcessor

{

/17

/17
/17

<summary >
/// A method that computes several metrics used to measure community formality.

</summary >

<param name="community">The community for which we need to compute the formality.</param>

private static void ComputeFormality (Community community)

{

Formality formality = community.Metrics.Formality;
(community.Data.Contributors, community.Data.Collaborators,

formality.MeanMembershipType,

It modifies the given community.

formality.MeanMembershipTypeOld)

761

= MeanMembershipType (community.Data.CommitsWithinTimeWindow, community.Data.MergedPullRequests,
— community.Data.MemberUsernames) ;
formality.Milestones = community.Data.Milestones.Count;
formality.Lifetime = ProjectLifetimeInDays (community.Data.Commits);
// In original YOSHI source code we found that the lifetime was computed using the creation date of the first and last
< closed milestone

formality.BuggedLifetimeMS = BuggedLifetimeUsingMilestones (community.Data.Milestones);

community.Characteristics.Formality = formality.MeanMembershipType / (formality.Milestones / formality.Lifetime);

}

/// <summary >

/// This method computes the average membership type from a list of members.
/// </summary>

/// <returns>A float denoting the average membership type.</returns>

private static (int, int, float, float) MeanMembershipType(List<GitHubCommit> commits, List<PullRequest> mergedPullRequests,
< HashSet<string> memberUsernames)

{
// We transform the lists of contributors and collaborators to only the usernames, so it becomes easier
// to compute the difference of two lists.
// NOTE: We mention that we use the commit committers and the pull request mergers as collaborators.
// The list of commits includes the pull request merge commits. However, if this is done through GitHub’s
// web interface, these will be attributed to GitHub web-flow (https://github.com/web-flow).
// Therefore we still parse the merged pull requests.
HashSet<string> committers = new HashSet<string>();
HashSet<string> authors = new HashSet<string>();

foreach (GitHubCommit commit in commits)

{
if (Filters.ValidCommitterWithinTimeWindow (commit, memberUsernames))
{
committers.Add(commit.Committer.Login);
}
if (Filters.ValidAuthorWithinTimeWindow (commit, memberUsernames))
{
authors.Add (commit . Author.Login);
}
}

foreach (PullRequest mergedPullRequest in mergedPullRequests)
{
if (mergedPullRequest.MergedBy != null && mergedPullRequest.MergedBy.Login != null &&
— memberUsernames.Contains (mergedPullRequest.MergedBy.Login))

G61

}

/17
/77
/17
/77
/17
/17

public static double ProjectLifetimeInDays (IReadOnlyList<GitHubCommit> commits)

{

committers.Add (mergedPullRequest.MergedBy.Login);

}
}
HashSet<string> contributors = authors.Except(committers).ToHashSet ();
HashSet<string> collaborators = committers;
if ((contributors.Count + collaborators.Count) != memberUsernames.Count)
{
throw new Exception("Found fewer or more contributors and collaborators than members");
}
float meanMembershipType = (float) (contributors.Count + collaborators.Count * 2) /

(memberUsernames.Count) ;
float meanMembershipTypeOld = (float) (contributors.Count) /
(memberUsernames.Count) ;

return (contributors.Count, collaborators.Count, meanMembershipType, meanMembershipType0ld) ;

<summary >

This method is used to compute the project lifetime in number of days, using the

commit.

</summary >

<param name="commits">A list of commits from a repository.</param>
<returns>The project lifetime in number of days.</returns>

DateTimeOffset dateFirstCommit = DateTimeOffset.MaxValue;

DateTimeOffset datelLastCommit = DateTimeOffset.MinValue;
foreach (GitHubCommit commit in commits)
{
DateTimeOffset dateCurrentCommit = commit.Commit.Committer.Date;

// If current earliest commit is later than current commit

if (dateFirstCommit.CompareTo(dateCurrentCommit) > O && dateCurrentCommit <=

{
dateFirstCommit = dateCurrentCommit;

}

// 1If current latest commit is earlier than current commit

first commit and last

Filters.EndDateTimeWindow)

if (dateLastCommit.CompareTo(dateCurrentCommit) < O && dateCurrentCommit <= Filters.EndDateTimeWindow)

{

datelLastCommit = dateCurrentCommit;

961

}

/17
/17
/77
/17
/17
/17

dateCurrentCommit = commit.Commit.Author.Date;
// 1If current earliest commit is later than current commit

if (dateFirstCommit.CompareTo(dateCurrentCommit) > O && dateCurrentCommit <= Filters.EndDateTimeWindow)

{

dateFirstCommit = dateCurrentCommit;

// If current latest commit is earlier than current commit

if (datelLastCommit.CompareTo(dateCurrentCommit) < O && dateCurrentCommit <= Filters.EndDateTimeWindow)

{
datelLastCommit = dateCurrentCommit;
}
}
TimeSpan timespan = dateLastCommit - dateFirstCommit;

return timespan.TotalDays;

<summary >

This method is used to compute the project lifetime in number of days, using the creation dates
and last milestones.

</summary >

<param name="milestones">A list of milestones from a repository.</param>

<returns>The project lifetime in number of days.</returns>

public static double BuggedLifetimeUsingMilestones (IReadOnlyList<Milestone> milestones)

{

DateTimeOffset firstMilestoneTime = DateTimeOffset.MaxValue;
DateTimeOffset lastMilestoneTime = DateTimeOffset.MinValue;

foreach (Milestone milestone in milestones)
{

DateTimeOffset milestoneStartDate = milestone.CreatedAt;

// If current earliest milestone is later than current milestone
if (firstMilestoneTime.CompareTo(milestoneStartDate) > 0)
{
firstMilestoneTime = milestoneStartDate;
}
// 1If current latest milestone is earlier than current milestone
if (lastMilestoneTime.CompareTo(milestoneStartDate) < 0)
{

lastMilestoneTime = milestoneStartDate;

of the

first

L6T

}

TimeSpan timespan = lastMilestoneTime - firstMilestoneTime;
return timespan.TotalDays;

Listing C.28: YosHI 2: CharacteristicProcessor class (EngagementProcessor.cs).

using
using
using
using
using
using
using

Octokit;

System;
System.Collections.Generic;
System.Ling;
YOSHI.CommunityData;
YOSHI.CommunityData.MetricData;
YOSHI.DataRetrieverNS;

namespace YOSHI.CharacteristicProcessorNS

{

public static partial class CharacteristicProcessor

{

/// <summary >
/// A method that computes several metrics used to measure community engagement. It modifies the given community.
/// </summary>
/// <param name="community">The community for which we need to compute the engagement.</param>
private static void ComputeEngagement (Community community)
{
Data data = community.Data;
Engagement engagement = community.Metrics.Engagement;
engagement . MedianNrCommentsPerPullReq =
MedianNrCommentsPerPullReq (data.MapPullReqsToComments) ;
engagement . MedianMonthlyPullCommitCommentsDistribution = MedianMonthlyCommentsDistribution(
data.CommitComments,
data.MapPullRegsToComments.Values.SelectMany(x => x).ToList(),
data.MemberUsernames
)
engagement . MedianActiveMember = MedianContains(data.ActiveMembers, data.MemberUsernames) ;
engagement . MedianWatcher = MedianContains (data.Watchers, data.MemberUsernames);
engagement . MedianStargazer = MedianContains (data.Stargazers, data.MemberUsernames) ;
engagement . MedianMonthlyCommitDistribution = MedianMonthlyCommitDistribution(data.CommitsWithinTimeWindow,
<> data.MemberUsernames) ;

861

engagement .MedianMonthlyFileCollabDistribution = MedianMonthlyFileCollabDistribution(data.CommitsWithinTimeWindow,

<~ data.MemberUsernames) ;

community.Characteristics.Engagement =
(float) (engagement .MedianNrCommentsPerPullReq + engagement.MedianMonthlyPullCommitCommentsDistribution
+ engagement .MedianActiveMember + engagement.MedianWatcher + engagement.MedianStargazer
+ engagement.MedianMonthlyCommitDistribution + engagement.MedianMonthlyFileCollabDistribution);

// EXTRA COMPUTATIONS FOR COMPARISON METRICS

engagement . MedianCommitDistribution = MedianCommitDistribution(data.CommitsWithinTimeWindow, data.MemberUsernames);
engagement . MedianFileCollabDistribution = MedianFileCollabDistribution(data.CommitsWithinTimeWindow, data.MemberUsernames) ;

}

/// <summary >
/// Given a list pull requests and a list of members within the snapshot period, compute the median number of
/// pull request comments per pull request.
/// </summary>
/// <param name="mapPullReqsToComments">A mapping from pull requests to their corresponding comments.</param>
/// <returns>The median value of pull request review comments per member.</returns>
private static double MedianNrCommentsPerPullReq(Dictionary<PullRequest, List<IssueComment>> mapPullReqsToComments)
{
if (mapPullReqsToComments.Count < 1)

{
Console.ForegroundColor = ConsoleColor.Red;
Console.WriteLine ("No pull requests within time window!");
Console.ResetColor () ;
return 0d;

}

// Compute the comments per pull request
// Note: the pull requests and comments not from members and not within the snapshot period have been
// filtered in the DataRetriever.

List<int> commentsPerPullReq = mapPullReqsToComments.Values
.Select(list => 1list.Count())
.ToList () ;

// From the comments per Pull Request, compute the median

// Re-architecting Software Forges... "Finally, in average, we observed that the number of discussions,
// comments or threads spreading from a thread or discussion is comprised between 0 or 1."

return Statistics.ComputeMedian(commentsPerPullReq);

}

/// <summary>
/// Computes the median of all members’ average (commit/pull-request) comments per month in the last 3 months.

661

/// </summary>

/// <param name="commitComments">A list of commit comments</param>

/// <param name="pullReqComments">A list of pull request comments</param>

/// <param name="memberUsernames">A list of member usernames</param>

/// <returns>The median of all members’ average (commit/pull-request) comments per month in the last 3 months.</returns>

private static double MedianMonthlyCommentsDistribution(IReadOnlyList<CommitComment> commitComments, List<IssueComment >
— pullReqComments, HashSet<string> memberUsernames)

{

if (commitComments.Count < 1 && pullReqComments.Count < 1)

{
Console.ForegroundColor = ConsoleColor.Red;
Console.WriteLine ("No commit or pull request comments within time window!");
Console.ResetColor () ;
return 0d;

}

// Store the dates of the comments per member, so we can count the number of comments per month for each member
Dictionary<string, List<DateTimeOffset>> commentDatesPerMember = new Dictionary<string, List<DateTimeOffset>>();

foreach (string username in memberUsernames)

{
commentDatesPerMember .Add (username, new List<DateTimeOffset>());
}
foreach (CommitComment comment in commitComments)
{
// Use a comment’s latest date, which is either UpdatedAt or CreatedAt
DateTimeOffset date =
comment .UpdatedAt != null && comment.UpdatedAt > comment.CreatedAt ? (DateTimeOffset)comment.UpdatedAt
<> comment.CreatedAt;
commentDatesPerMember [comment .User.Login].Add (date) ;
}
foreach (IssueComment comment in pullReqComments)
{
DateTimeOffset date =
comment .UpdatedAt != null && comment.UpdatedAt > comment.CreatedAt ? (DateTimeOffset)comment.UpdatedAt
<> comment.CreatedAt;
commentDatesPerMember [comment .User.Login].Add (date) ;
}
List<double> meanCommentsPerMonthPerMember = new List<double>();
foreach (string username in memberUsernames)
{

// Check for each comment in which month it took place and compute the average comments per month for this member

002

List<int> nrCommentsPerMonth = new List<int> { 0, 0, 0 };
foreach (DateTimeOffset date in commentDatesPerMember [username])
{

nrCommentsPerMonth [CheckMonth (date)]++;
}

meanCommentsPerMonthPerMember . Add (nrCommentsPerMonth.Average ());

}

return Statistics.ComputeMedian(meanCommentsPerMonthPerMember) ;

}

/// <summary >

/// Given a date, check in which month it appears over the 3-month window. O means it occurs in the first month
/// of the snapshot (i.e., the oldest), 1 in the second month, 2 in the last month (i.e., the latest month).
/// </summary>

/// <param name="date">The date to check.</param>

/// <returns>The number of the month in which the date occurs</returns>

private static int CheckMonth(DateTimeOffset date)

{
return date switch
{
// Comment within 1-30 days before today (i.e., third month of the snapshot)
DateTimeOffset n when Filters.CheckWithinTimeWindow(n, 30) => 2,
// Comment within 31-60 days before today (i.e., second month of the snapshot)
DateTimeOffset n when Filters.CheckWithinTimeWindow(n, 60) => 1,
// Comment within 61-90 days before today (i.e., first month of the snapshot)
_ => 0,
};
}

/// <summary >

/// Given a set of users and a set of members active in the last 90 days, compute a list containing for each
/// member whether they are contained in the set of users (1) or not (0). Then compute the median of that list.
/// </summary>

/// <param name="users">A set of users.</param>

/// <param name="memberUsernames">A set of members.</param>

/// <returns>The median value whether members occur in the set of users.</returns>

private static double MedianContains (HashSet<string> users, HashSet<string> memberUsernames)

{

List<int> userValues = new List<int>();
foreach (string username in memberUsernames)
{

if (users.Contains(username))

102

}

private static double MedianMonthlyCommitDistribution(List<GitHubCommit> commitsWithinWindow,

{

{
userValues.Add (1) ;
}
else
{
userValues.Add (0) ;
}
}

return Statistics.ComputeMedian(userValues);

Dictionary<string, List<DateTimeOffset>> commitDatesPerMember = new Dictionary<string, List<DateTimeOffset>>();
foreach (string username in memberUsernames)
{
commitDatesPerMember .Add (username, new List<DateTimeOffset>());
}
foreach (GitHubCommit commit in commitsWithinWindow)
{
// Note: all commits within the timewindow have already accessed committer, so we do not need to check
// that committer is not null.
if (Filters.ValidCommitterWithinTimeWindow (commit, memberUsernames))
{
commitDatesPerMember [commit.Committer.Login].Add(commit.Commit.Committer.Date);
}
// Prevent counting commits twice
if (Filters.ValidAuthorWithinTimeWindow(commit, memberUsernames) && (!Filters.ValidCommitterWithinTimeWindow (commit,
<~ memberUsernames) || (commit.Committer.Login != commit.Author.Login)))
{
commitDatesPerMember [commit . Author.Login].Add(commit.Commit.Author.Date);
}
}
List<double> meanCommitsPerMonthPerMember = new List<double>();
foreach (string username in memberUsernames)
{
// Check for each comment in which month it took place and compute the average comments per month for this member
List<int> nrCommentsPerMonth = new List<int> { 0, 0, O };
foreach (DateTimeOffset date in commitDatesPerMember [username])
{

nrCommentsPerMonth [CheckMonth (date)]++;
}

HashSet<string> memberUsernames)

¢0¢

meanCommitsPerMonthPerMember .Add (nrCommentsPerMonth.Average ()) ;

}

return Statistics.ComputeMedian(meanCommitsPerMonthPerMember) ;

}

private static double MedianMonthlyFileCollabDistribution(List<GitHubCommit> commitsWithinWindow, HashSet<string>
— memberUsernames)

{

// Extract the changed filenames
HashSet <(string, string)> changedFileNames = ExtractCommittersPerFile(commitsWithinWindow, memberUsernames).Iteml;

// Extract largest non-overlapping sets of changed filenames

Graph<string> filenamesGraph = new Graph<string>();

filenamesGraph.AddEdges (changedFileNames) ;

List <HashSet<string>> connectedComponents = filenamesGraph.GetConnectedComponents ().ToList();

// Extract the committers per file per month
List<Dictionary<string, HashSet<string>>> committersPerFilePerMonth = ExtractCommittersPerFilePerMonth(commitsWithinWindow,

< memberUsernames) ;

Dictionary<string, int[]> countcommittersPerFilePerMonth = new Dictionary<string, int[]1>();
// Loop over 3 months
for (int i = 0; i < 2; i++)
{
// Merge files in the dictionary whose names got changed
// Note: "ref" is used to indicate that committersPerFile may be modified by the method
Dictionary<string, HashSet<string>> committersPerFile = committersPerFilePerMonth[i];

MergeKeysWithUpdatedNames (connectedComponents, ref committersPerFile);
foreach (KeyValuePair<string, HashSet<string>> fileCommitters in committersPerFile)

{
if (!countcommittersPerFilePerMonth.ContainsKey(fileCommitters.Key))
{
countcommittersPerFilePerMonth.Add (fileCommitters.Key, new int [3]);
}
countcommittersPerFilePerMonth[fileCommitters.Key][i] = fileCommitters.Value.Count;
}
}
List<double> meanCommittersPerFilePerMonth = new List<double>();
foreach (KeyValuePair<string, int[]> nrCommittersPerFilePerMonth in countcommittersPerFilePerMonth)
{

meanCommittersPerFilePerMonth.Add (nrCommittersPerFilePerMonth.Value.Average ());

€0¢

}

/17
/17
/17
/17
/17
/77
/17

}

return Statistics.ComputeMedian(meanCommittersPerFilePerMonth) ;

<summary >

Given a list of commits and a list of members, extract for each file the unique committers that have

modified that file, while keeping track of name changes.
</summary >

<param name="commits"></param>

<param name="memberUsernames"></param>
<returns></returns>

private static List<Dictionary<string, HashSet<string>>>

{

ExtractCommittersPerFilePerMonth (List<GitHubCommit > commits, HashSet<string> memberUsernames)

List<GitHubCommit> commitsMonthO = new List<GitHubCommit >() ;
List<GitHubCommit > commitsMonthl = new List<GitHubCommit >() ;
List<GitHubCommit > commitsMonth2 = new List<GitHubCommit >() ;
foreach (GitHubCommit commit in commits)
{

// Extract commit date

DateTimeOffset? date = null;

if (commit.Commit '= null && commit.Commit.Committer != null && commit.Commit.Committer.Date
{
date = commit.Commit.Committer.Date;
}
else if (commit.Commit != null && commit.Commit.Author != null && commit.Commit.Author.Date
{
date = commit.Commit.Committer.Date;
}
// If date is not null, add the commit to the correct month
if (date != null)
{
switch (CheckMonth ((DateTimeOffset)date))
{
case O:
commitsMonthO.Add (commit) ;
break;
case 1:
commitsMonthl.Add(commit) ;
break;

case 2:

null)

null)

70¢

}

commitsMonth2.Add (commit) ;
break;

// Compute per month the changed file names and the committers per file

(

HashSet <(string, string)> _,
Dictionary<string, HashSet<string>> committersPerFileMonthO
ExtractCommittersPerFile (commitsMonthO, memberUsernames) ;

HashSet <(string, string)> _,
Dictionary<string, HashSet<string>> committersPerFileMonthl
ExtractCommittersPerFile (commitsMonthl, memberUsernames);

HashSet<(string, string)> _,
Dictionary<string, HashSet<string>> committersPerFileMonth2
ExtractCommittersPerFile (commitsMonth2, memberUsernames) ;

List<Dictionary<string, HashSet<string>>> committersPerFilePerMonth = new List<Dictionary<string, HashSet<string>>> {

< committersPerFileMonthO, committersPerFileMonthl, committersPerFileMonth2 };

return committersPerFilePerMonth;

}

/// <summary>
/// Merge files in the dictionary whose names got changed
/// </summary>
/// <param name="updatedFilenames">A list of sets of updated filenames.</param>
/// <param name="committersPerFile">A dictionary of committers per file.</param>
private static void MergeKeysWithUpdatedNames (

List<HashSet<string>> updatedFilenames,

ref Dictionary<string, HashSet<string>> committersPerFile

~

foreach (HashSet<string> set in updatedFilenames)

{

// Find the filename used in the dictionary. The first one returned from this set will be kept in the
// dictionary

// Note: not all filenames need to occur in the dictionary, sometimes older files (outside the 3-month
// window) get their names changed (or relocated which causes their name to be changed)

string nameUsedInDict = "";

foreach (string name in set)

G0¢

}

/17
/17
/77
/17
/77
/17
/77

if (committersPerFile.ContainsKey (name))

{
nameUsedInDict = name;
break;
}
}
// Remove the name from the set so we’re left with the filenames that we want to remove from the dictionary
if (nameUsedInDict != "")
{

set.Remove (nameUsedInDict) ;

}

// Foreach filename that we want to remove from the dictionary, merge their values with the file that we
// want to keep in the dictionary and remove it
foreach (string name in set)

{
if (committersPerFile.ContainsKey (name))
{
committersPerFile [nameUsedInDict].UnionWith(committersPerFile [name]) ;
committersPerFile.Remove (name) ;
}
}

<summary >

Given a list of commits and a list of members, extract for each file the unique committers that have
modified that file, while keeping track of name changes.

</summary >

<param name="commits"></param>

<param name="memberUsernames"></param>

<returns></returns>

private static (HashSet<(string, string)>, Dictionary<string, HashSet<string>>)

{

ExtractCommittersPerFile (List<GitHubCommit> commits, HashSet<string> memberUsernames)

HashSet <(string, string)> changedFileNames = new HashSet<(string, string)>(); // Used to keep track of changed filenames.

Dictionary<string, HashSet<string>> committersPerFile = new Dictionary<string, HashSet<string>>(); // Used to keep track
<> the unique committers/authors per file.

foreach (GitHubCommit commit in commits)
{

// Loop over all files affected by the current commit

of

90¢

}

foreach (GitHubCommitFile file in commit.Files)

{
if (file.Filename !'= null)
{
// Keep track of changed filenames, will be resolved later
if (file.PreviousFileName != null)
{
changedFileNames.Add ((file.Filename, file.PreviousFileName));
}
// Check if we previously saw this file, add as key to the dictionary,
if (!committersPerFile.ContainsKey(file.Filename))
{
committersPerFile.Add(file.Filename, new HashSet<string>());
}
if (Filters.ValidCommitterWithinTimeWindow (commit, memberUsernames))
{
committersPerFile[file.Filename].Add (commit.Committer.Login);
}
// Add the commit author to the current file’s entry in the dictionary
if (Filters.ValidAuthorWithinTimeWindow (commit, memberUsernames))
{
committersPerFile[file.Filename].Add (commit.Author.Login) ;
}
}
}

}

return (changedFileNames, committersPerFile);

// EXTRA METHODS FOR COMPUTING MORE METRICS FOR COMPARISON

/17
/17
/17
/17
/17
/17

<summary >

</summary >

<param name="commitsWithinWindow"></param>
<param name="memberUsernames"></param>
<returns ></returns>

private static double MedianCommitDistribution(List<GitHubCommit> commitsWithinWindow,

{

Dictionary<string, int> nrCommitsPerUser = new Dictionary<string, int>();
foreach (string username in memberUsernames)

add the committer to its value

HashSet<string> memberUsernames)

L0¢

}

/17
/77
/17
/17
/17
/17

{

nrCommitsPerUser.Add (username, 0);

}
foreach (GitHubCommit commit in commitsWithinWindow)
{
// Note: all commits within the timewindow have already accessed committer, so we do not need to check
// that committer is not null.
if (Filters.ValidCommitterWithinTimeWindow (commit, memberUsernames))
{
nrCommitsPerUser [commit.Committer.Login]++;
}
// Prevent double counting a commit
if (Filters.ValidAuthorWithinTimeWindow (commit, memberUsernames) && (!'Filters.ValidCommitterWithinTimeWindow (commit,
— memberUsernames) || (commit.Committer.Login != commit.Author.Login)))
{
nrCommitsPerUser [commit.Author.Login]++;
}
}

return (double)Statistics.ComputeMedian(nrCommitsPerUser.Values.ToList()) / commitsWithinWindow.Count;

<summary >

</summary >

<param name="commits"></param>

<param name="memberUsernames"></param>
<returns></returns>

private static double MedianFileCollabDistribution(List<GitHubCommit> commits, HashSet<string> memberUsernames)

{

// Extract the committers per file and the changed filenames

(
HashSet<(string, string)> changedFileNames,
Dictionary<string, HashSet<string>> committersPerFile
) = ExtractCommittersPerFile(commits, memberUsernames);

// Extract largest non-overlapping sets of changed filenames

Graph<string> filenamesGraph = new Graph<string>();

filenamesGraph.AddEdges (changedFileNames) ;

List<HashSet<string>> connectedComponents = filenamesGraph.GetConnectedComponents () .ToList ();

// Merge files in the dictionary whose names got changed
// Note: "ref" is used to indicate that committersPerFile may be modified by the method

80¢

MergeKeysWithUpdatedNames (connectedComponents, ref committersPerFile);

List<int> nrCommittersPerFile = committersPerFile.Values
.Select(set => set.Count())
.ToList () ;

return Statistics.ComputeMedian(nrCommittersPerFile) / nrCommittersPerFile.Count;

Listing C.29: YosHI 2: CharacteristicProcessor class (LongevityProcessor.cs).

using
using
using
using
using

Octokit;
System;
System.Collections.Generic;

YOSHI.
YOSHI.

CommunityData;
DataRetrieverNS;

namespace YOSHI.CharacteristicProcessorNS

{

public static partial class CharacteristicProcessor

{

/17
/17
/77
/17

<summary >

A method that computes several metrics used to measure community longevity. It modifies the given community.
</summary >

<param name="community">The community for which we need to compute the longevity.</param>

public static void Computelongevity(Community community)

{

}

/17
/17
/17
/17
/17
/17

community.Metrics.Longevity.MeanCommitterLongevity = MeanCommitterLongevity (community.Data.Commits,
— community.Data.MemberUsernames) ;

community.Characteristics.Longevity = community.Metrics.Longevity.MeanCommitterLongevity,;

<summary >

This method is used to compute the average committer longevity of all members active in the past 3 months.
</summary >

<param name="commits">A list of commits for the current repository.</param>

<param name="memberUsernames">A list of usernames of all members.</param>

<returns>The average committer longevity.</returns>

private static float MeanCommitterLongevity (IReadOnlyList<GitHubCommit> commits, HashSet<string> memberUsernames)

{

602

// We group the list of commits’ datetimes per committer
Dictionary<string, List<DateTimeOffset>> mapUserCommitDate = new Dictionary<string, List<DateTimeOffset>>();
foreach (GitHubCommit commit in commits)

{
if (Filters.ValidCommitter (commit, memberUsernames))
{
string committer = commit.Committer.Login;
if (!mapUserCommitDate.ContainsKey (committer))
{
mapUserCommitDate.Add (committer , new List<DateTimeOffset>());
}
mapUserCommitDate [committer].Add(commit.Commit.Committer .Date) ;
}
if (Filters.ValidAuthor (commit, memberUsernames))
{
string author = commit.Author.Login;
if (!mapUserCommitDate.ContainsKey (author))
{
mapUserCommitDate.Add (author, new List<DateTimeOffset>());
}
mapUserCommitDate [author].Add (commit.Commit.Author.Date) ;
}
}
double totalCommitterLongevityInDays = O0;

// For each committer, we compute the dates of their first- and last commit.
foreach (KeyValuePair<string, List<DateTimeOffset>> userCommitDate in mapUserCommitDate)

{

// We use committer date instead of author date, since that’s when the commit was last applied.

// Source: https://stackoverflow.com/questions/18750808/difference-between-author-and-committer-in-git
// NOTE: this limits the metric, as we do not compute the longevity for each member.

DateTimeOffset dateFirstCommit = DateTimeOffset.MaxValue;

DateTimeOffset dateLastCommit = DateTimeOffset.MinValue;

foreach (DateTimeOffset dateCurrentCommit in userCommitDate.Value)

{

//
if
{

}
//
if
{

If current earliest commit is later than current commit
(dateFirstCommit .CompareTo (dateCurrentCommit) > 0)

dateFirstCommit = dateCurrentCommit;

If current latest commit is earlier than current commit
(dateLastCommit.CompareTo (dateCurrentCommit) < 0)

01¢

datelLastCommit = dateCurrentCommit;
}

}

// Add the difference between committers first and last commits to the total commit longevity

totalCommitterLongevityInDays += (datelastCommit - dateFirstCommit).TotalDays;
}
float meanCommitterLongevity = (float)totalCommitterLongevityInDays / mapUserCommitDate.Count;
return meanCommitterLongevity;

Listing C.30: YosHI 2: CharacteristicProcessor class (CohesionProcessor.cs).

using System;
using YOSHI.CommunityData;

namespace YOSHI.CharacteristicProcessorNS

{

public static partial class CharacteristicProcessor

{
/// <summary >
/// A method that computes several metrics used to measure community cohesion. It modifies the given community.
/// </summary>
/// <param name="community">The community for which we need to compute the cohesion.</param>
public static void ComputeCohesion(Community community)
{

throw new NotImplementedException();

}

}

Appendix D

Hofstede Comparison: Detailed
Results

In this chapter, we provide the detailed results of our comparison between the (old)
Hofstede indices that we retrieved from YOsHI [30] (included in Listing) and the
updated (new) Hofstede indices from Hofstede Insights [12] (included in Listing).

While we ran YOSHI 2 on the communities considered in our survey study
(Table 7.1), we made sure to log the known locations per community so we could do
some more testing regarding geodispersion later. Note that we cannot include these
locations in our report to protect the privacy of the members of these communities.

We used these locations to compare the impact of using the old Hofstede indices
with the new Hofstede indices using the code listed in Appendix . Essentially,
we computed geodispersion and its corresponding metrics twice according to the
detection strategy described in Section , once for each set of Hofstede indices.

In Table , we report aggregated location statistics for each community, namely,
the number of known locations, the number of locations that are in countries included
in the old Hofstede indices, and the number of locations that are in countries included
in the new Hofstede indices.

Table lists the variance of the four Hofstede dimensions (PDI, IDV, MAS,
and UAI), discussed in Section , for each set of Hofstede indices.

In Table , we provide an overview of the computed variance of geographical
distance, cultural distance, and geodispersion for communities using the old Hofstede
indices and the new Hofstede indices. We observe that there are only small differences
between the computed dispersion values.

We discovered that YOsHI’s source code differed from the reported design [30]
in its computation of geodispersion. Like the source material [75], YOSHI seemed
to compute the average geographical dispersion and the average cultural dispersion
separately. These metrics used thresholds of 4000 km for average geographical
dispersion and 15 for the average cultural dispersion. We had also computed these
metrics to see whether the different Hofstede indices would affect these dispersion
metrics. These results are included in Table . We observe that there are small
differences in the average cultural dispersion. However, these differences are much
bigger than the differences in the computed dispersion values from Table

211

Table D.1: Location statistics regarding the communities analyzed in Chapter 7. The
number of locations, the number of locations that are in countries included in the
old Hofstede indices [30], and the number of locations that are in countries included
in the new Hofstede indices [12].

Community # Loc. # Old HLoc. +# New HLoc.
Couchdb 3 3 3
Trafficserver 14 14 14
Bookkeeper 10 10 10
Dubbo 14 14 14
Druid 23 20 23
Echarts 12 12 12
Cloudstack 14 12 14
Airflow 104 92 104
Incubator-Mxnet 14 14 14
Superset 47 41 46
Openwhisk 8 8 8
Pulsar 58 55 58
Rocketmq 13 13 13
Incubator-Doris 24 24 24
Camel-K 16 15 16
Iceberg 26 26 26
Dolphinscheduler 14 13 14
Apisix-Dashboard 15 13 15
Skywalking 24 24 24
Shardingsphere 34 32 33
Camel-Quarkus 14 13 14
Zephyr 125 115 123
Protobuf 29 27 29
Milvus 12 12 12
Scikit-Learn 56 54 56

212

€1¢

Table D.2: Variance of the Hofstede dimensions using the old Hofstede indices [

communities analyzed in Chapter

] and the new Hofstede indices |

|, regarding the

Community ‘ OldVarPDI OldVarIDV OldVarMAS OldVarUAI ‘ NewVarPDI NewVarIDV NewVarMAS NewVarUAI
Couchdb 0 0 0 0 0 0 0 0
Trafficserver 47.69387755 341.2653061 179.6785714 379.7806122 | 47.69387755 341.2653061 179.6785714 379.7806122
Bookkeeper 402.81 1037.36 143.36 117.56 402.81 1037.36 143.36 214.56
Dubbo 0 0 0 0 0 0 0 0
Druid 379.3475 1208.9275 124.9475 315.2875 | 410.8544423 1120.586011 131.8185255 435.584121
Echarts 167.4722222 184.4097222 124.3055556 27.57638889 | 167.4722222 184.4097222 124.3055556 67.85416667
Cloudstack 482.4166667 317.9722222 375.1875 364.55555656 | 439.244898 385.1020408 334.4540816 445.9438776
Airflow 328.4310019 601.0835302 314.231569 480.9644376 | 381.6441383 597.9186391 312.3269231 517.9434172
Incubator-Mxnet | 228.9234694 419.5969388 5.37244898 489.8010204 | 224.9234694 419.5969388 5.37244898 525.9234694
Superset 327.3420583 661.1338489 163.2659131 404.2343843 | 442.0893195 655.0269376 258.9017013 438.0968809
Openwhisk 243.9375 1112.984375 271.984375 457.75 243.9375 1112.984375 271.984375 576.5
Pulsar 387.6509091 836.4608264 112.7656198 271.0677686 | 392.6206897 841.137931 119.8121284 403.1810345
Rocketmq 2.556213018 0 23.00591716 72.71005917 | 2.556213018 0 23.00591716 34.36686391
Incubator-Doris 0 0 0 0 0 0 0 0
Camel-K 192.0622222 240.5155556 308.8888889 414.8 | 314.6835938 242.6835938 401.3085938 407.859375
Iceberg 351.658284 867.3269231 143.2485207 143.4866864 | 351.658284 867.3269231 143.2485207 216.3860947
Dolphinscheduler | 0.74556213 59.4556213 8.094674556 125.2544379 | 7.12244898 90.53061224 17.81632653 252.4081633
Apisix-Dashboard | 61.05325444 107.2071006 60.4852071 109.4792899 | 61.95555556 102.4 234.1066667 173.3155556
Skywalking 131.9166667 265.2430556 63.734375 251.4375 | 131.9166667 265.2430556 63.734375 369.4930556
Shardingsphere 130.1240234 284.3740234 56.74609375 136.796875 | 127.0596878 274.6225895 148.1230487 241.5004591
Camel-Quarkus 228.1301775 474.7455621 178.6982249 325.2071006 | 222.7806122 456.0663265 173.0867347 399.3469388
Zephyr 381.5020038 568.2182231 428.4095274 471.0669187 | 410.5577368 571.8549805 425.8347544 530.9281512
Protobuf 180.5185185 435.5829904 28.8175583 138.0603567 | 325.4244946 531.353151 59.05350773 262.2806183
Milvus 0 0 0 0 0 0 0 0

Scikit-Learn

248.5912209

449.3360768

254.9451303

501.7599451

248.3915816

450.2385204

246.5663265

503.6466837

v1c

Table D.3: Comparison between geodispersion for communities using the old Hofstede indices |

| and the new Hofstede indices [12].

Community ‘ VarGeoDist ‘ OldVarCultDist NewVarCultDist ‘ OldDispersion NewDispersion
Couchdb 87065.72435 0 0 208.6453023 208.6453023
Trafficserver 16400867.08 237.1045918 237.1045918 2863.66061 2863.66061
Bookkeeper 14955296.11 425.2725 449.5225 2734.567734 2734.569951
Dubbo 350500.6263 0 0 418.6290878 418.6290878
Druid 21268612.82 507.1275 524.710775 3261.067306 3261.068654
Echarts 5994564.918 125.9409722 136.0104167 1731.284329 1731.285783
Cloudstack 23359103.2 385.0329861 401.1862245 3417.564061 3417.565243
Airflow 17951546.62 431.1776347 452.4582794 2995.995477 2995.997253
Incubator-Mxnet | 21660162.87 285.9234694 293.9540816 3290.930628 3290.931238
Superset 18318798.7 388.9940512 448.5287098 3026.482091 3026.487009
Openwhisk 20623543.57 521.6640625 551.3515625 3211.235372 3211.237684
Pulsar 20056777.37 401.986281 439.1879459 3166.794859 3166.797796
Rocketmq 1195678.025 24.56804734 14.98224852 773.2084432 773.2053438
Incubator-Doris 431731.6134 0 0 464.6136101 464.6136101
Camel-K 14805947.96 289.0666667 341.6337891 2720.867235 2720.872065
Iceberg 15683936.46 376.4301036 394.6549556 2800.385053 2800.38668
Dolphinscheduler | 21654420.12 48.38757396 91.96938776 3290.476296 3290.479607
Apisix-Dashboard | 11565009.34 84.55621302 142.9444444 2404.692693 2404.698763
Skywalking 28697562.94 178.0828993 207.5967882 3787.990299 3787.992247
Shardingsphere 8803521.969 152.0102539 197.8264463 2098.055526 2098.060985
Camel-Quarkus 21072756.03 301.6952663 312.8201531 3246.001981 3246.002838
Zephyr 18254159.2 462.2991682 484.7939057 3021.143947 3021.145809
Protobuf 23468086.74 195.744856 294.5279429 3425.513282 3425.520491
Vilvus 589498.3774 0 0 542.9080849 542.9080849

Scikit-Learn

23243575.2

363.6580933

362.2107781

3409.100971

3409.100865

Table D.4: Geodispersion computed using separate values for the average geographical
distance and the average cultural distance, including a comparison for the average

cultural distance using the old Hofstede indices [36] and the new Hofstede indices [12].
Community ‘ AvgGeoDist ‘ OldAvgCultDispersion NewAvgCultDispersion
Couchdb 856.2197553 0 0
Trafficserver 4688.058125 14.56795679 14.56795679
Bookkeeper 6778.252792 18.77350329 19.72484274
Dubbo 785.3457686 0 0
Druid 7686.494228 20.79520216 21.52414422
Echarts 2327.189954 10.73035569 11.47686606
Cloudstack 6667.369678 19.56471416 19.99691406
Airflow 6963.032611 20.57428745 21.10480828
Incubator-Mxnet | 7007.228983 15.01589641 15.1830975
Superset 7569.357489 19.17206399 20.91015022
Openwhisk 6771.610378 21.7167402 22.37057058
Pulsar 6351.919751 18.92343413 19.96056938
Rocketmq 1414.803538 3.73057097 3.064397583
Incubator-Doris 912.1169683 0 0
Camel-K 4227.689633 16.82727249 18.38646133
Iceberg 6567.000667 18.03755224 18.72042098
Dolphinscheduler 4279.31484 5.652758398 8.072961733
Apisix-Dashboard | 3411.435824 9.102050786 11.61398873
Skywalking 3861.48784 12.90298611 13.74434143
Shardingsphere 3156.776602 11.87490117 13.88867065
Camel-Quarkus 5796.313643 17.07348513 17.35536413
Zephyr 6212.70334 21.44288421 21.96333901
Protobuf 7348.819486 12.85611267 16.24258317
Milvus 565.5841526 0 0
Scikit-Learn 8539.35904 18.83283119 18.7809432

215

Appendix E

Code: Hofstede Comparison

In this chapter, we briefly discuss the code that was used to compare the old and
new Hofstede indices, as discussed in Section 7. The old indices were extracted
from YOsHI's [30] source code, whereas the new indices (included in Listing)
were manually extracted from Hofstede Insights [12] on the 13th of May 2021. To
perform this comparison, we used the locations that were extracted when YOSHI 2
was applied to the 25 communities for our survey study. We do not include these
locations for the privacy of the developers. For convenience, we used YOSHI 2’s code
(Appendix (') as a basis and removed code that was unnecessary for this comparison.

For clarity, we provide a brief explanation per class on the next page. The code
for these classes is listed in Listings to

216

Community.cs

Data.cs

Dispersion.cs

IOModule.cs

Program.cs

DispersionProcessorNew.cs

DispersionProcessor0ld.cs

GeoService.cs

GeocoderRateLimitException.cs

01dHI.cs

HI.cs

Statistics.cs

This class is used as an object to store
community data, including the repository
owner and name, the inputted coordinates
and countries, and the dispersion metrics
and characteristics.

This class is used by Community.cs to store
the inputted coordinates and countries.

This class is used by Community.cs to store
the dispersion metrics and characteristics.

This class is responsible for requesting and
handling user input as well as writing the
output to a CSV file.

This class contains the Main() method that
is executed when the program is run.

This class is responsible for computing the
dispersion metrics and using these metrics
to compute a value for geodispersion with
the Hofstede indices retrieved from Hofstede
Insights [12].

This class is responsible for computing the
dispersion metrics and using these metrics to
compute a value for geodispersion with the
Hofstede indices retrieved from Y OSHI [50].

This class was used to compare the names
of countries used in the old Hofstede indices
retrieved from Y OSHI vs. the names returned
by the Bing Maps geocoder.

This class is used to specify exceptions when
the Bing geocoding rate limit is reached.

This class stores the data of the Hofstede
indices retrieved from YOSHI [30].

This class stores the data of the Hofstede
indices retrieved from Hofstede Insights [12].

This class computes the variance and
standard deviations of lists of doubles.

217

Listing E.1: Hofstede comparison: Community class.

using YOSHI.CommunityData.MetricData;

namespace YOSHI.CommunityData

{
/// <summary>
/// This class is responsible for storing all community related data.
/// We will use this class to store the community data in separate objects.
/// </summary>
public class Community
{
public string RepoOwner { get; }
public string RepoName { get; 1}
public Data Data { get; }
public Dispersion Dispersion { get; }
public Community(string owner, string name)
{
this.RepoOwner = owner;
this.RepoName = name;
this.Data = new Data();
this.Dispersion = new Dispersion();
}
}
}

Listing E.2: Hofstede comparison: Data class.

using Geocoding;
using System.Collections.Generic;

namespace YOSHI.CommunityData

{
/// <summary >
/// This class is responsible for storing all community related data that
/// was retrieved from GitHub.
/// </summary>
public class Data
{
public List<Location> Coordinates { get; set; }
// This variables stores the set of countries from members that are also
// included in the *old* set of Hofstede indices
public List<string> 0ldCountries { get; set; }
// This variables stores the set of countries from members that are also
// included in the #*new* set of Hofstede indices
public List<string> NewCountries { get; set; 1}
}
}

218

Listing E.3: Hofstede comparison: Dispersion class.

namespace YOSHI.CommunityData.MetricData

{
/// <summary>
/// This class is used to store values for metrics used to compute a
/// community’s dispersion.
/// </summary >
public class Dispersion
{
public double VarGeoDistance { get; set; }
public double AvgGeoDistance { get; set; 1}
A bbb bbb
public double 0ldVariancePdi { get; set; 1}
public double 0ldVarianceIdv { get; set; 1}
public double 0ldVarianceMas { get; set; 1}
public double 0ldVarianceUai { get; set; 1}
public double 0ldVarCulDistance { get; set; 1}
public double 0ldAvgCulDispersion { get; set; }
[/ s oo
public double NewVariancePdi { get; set; }
public double NewVarianceIdv { get; set; 1}
public double NewVarianceMas { get; set; 1}
public double NewVarianceUai { get; set; 1}
public double NewVarCulDistance { get; set; 1}
public double NewAvgCulDispersion { get; set; }
// Characteristics
public double 0ldDispersion { get; set; 1}
public double NewDispersion { get; set; }
}
}

Listing E.4: Hofstede comparison: IOModule class.

using CsvHelper;

using CsvHelper.Configuration;
using Geocoding;

using System;

using System.Collections.Generic;
using System.Globalization;

using System.IO;

using YOSHI.CommunityData;

namespace YOSHI
{
/// <summary >
/// This class is responsible for the IO-operations of YOSHI.
/// </summary>
public static class IOModule
{

private static string OutDirFile;// The output directory including filename

/// <summary >
/// This method is used to guide the user in inputting the input directory,
/// input filename, outfput directory and the output filename.
/// </summary>
/// <exception cref="I0OException">Thrown when something goes wrong while
/// reading the input or when writing to the output file.</exception>
public static List<Community> TakeInput ()
{
try
{
// Take and validate the input file
string inFile;

do

{
Console.ForegroundColor = ConsoleColor.DarkGray;
Console.WriteLine("Please enter the absolute directory of " +

"the input file, including filename and its extension.");

Console.ResetColor () ;
inFile = Console.ReadLine();

}

219

while (!File.Exists(inFile));

string outDir;

do

{
// Take the output directory
Console.ForegroundColor = ConsoleColor.DarkGray;
Console.WriteLine ("Please enter an existing absolute " +

"directory for the output file.");

Console.ResetColor () ;
outDir = @"" + Console.ReadLine();

}

while (!Directory.Exists(outDir));

// Take and validate the input specifying the output file

do
{
Console.ForegroundColor = ConsoleColor.DarkGray;
Console.WriteLine("Please enter the filename of the output " +
"file. Do not include an extension, as its extension " +
"will be \".csv\"");
Console.ResetColor ();
string outFilename = Console.ReadLine();
OutDirFile = outDir + ’\\’ + outFilename + ".csv";
}

while (File.Exists(OutDirFile));

// Create the output file and write the headers
using FileStream stream =

File.Open(OutDirFile, FileMode.CreateNew);
using StreamWriter writer = new StreamWriter (stream);
using CsvWriter csv =

new CsvWriter(writer, CulturelInfo.InvariantCulture);
csv.Context.RegisterClassMap <CommunityMap >() ;
csv.WriteHeader <Community>();
csv.NextRecord () ;

return ReadFile(inFile);

}
catch (IOException e)
{
throw new IOException("Failed to read input or to write headers " +
"to output file", e);
}

/// <summary>

/// A method used to read the file named after the value stored with the
/// input filename (InFilename) at the specified input directory (InDir).
/// </summary>

/// <returns>A list of communities storing just the repo owner and repo
/// name.</returns>

/// <exception cref="I0Exception">Thrown when something goes wrong while
/// reading the input file.</exception>

private static List<Community> ReadFile(string inFile)

{
List<Community> communities = new List<Community>();
try
{
using StreamReader reader = new StreamReader (inFile);

CsvConfiguration config =
new CsvConfiguration(CultureInfo.InvariantCulture)

{ Delimiter = "\t" };
using CsvReader csv = new CsvReader (reader, config);
csv.Read () ;

csv.ReadHeader () ;
string name = "";

Community community = null;

HashSet<string> countriesMissingHI = new HashSet<string>();
HashSet<string> countriesMissing01dHI = new HashSet<string>();
while (csv.Read())

{

220

if (name != csv.GetField("RepoName"))

{
name = csv.GetField("RepoName");
community = new Community (
csv.GetField ("RepoOwner"),
csv.GetField ("RepoName")
)
community.Data.Coordinates = new List<Location>();
community.Data.0ldCountries = new List<string>();
community.Data.NewCountries = new List<string>();
communities.Add (community) ;
}

double lat = Convert.ToDouble(csv.GetField("Latitude"));
double 1lng = Convert.ToDouble(csv.GetField("Longitude"));
community.Data.Coordinates.Add(new Location(lat, 1lng));

string country = csv.GetField("CountryRegion");

if (HI.Hofstede.ContainsKey(country))

{
community.Data.NewCountries.Add(country) ;
¥
else
{
countriesMissingHI.Add (country);
}
if (01dHI.Hofstede.ContainsKey (country))
{
community.Data.0ldCountries.Add(country) ;
}
else
{
countriesMissing01dHI.Add (country) ;
}
}
Console.ForegroundColor = ConsoleColor.Yellow;

Console.WriteLine ("HI does not contain:");
foreach (string country in countriesMissingHI)
{

Console.WriteLine (country);
}

Console.ResetColor ();

Console.ForegroundColor = ConsoleColor.Red;
Console.WriteLine ("01dHI does not contain:");
foreach (string country in countriesMissing01dHI)

{
Console.WriteLine (country) ;
}
Console.ResetColor () ;
}
catch (IOException e)
{
throw new IOException("Something went wrong while reading the " +
"input file.", e);
}

return communities;

}

/// <summary>
/// A method used to write community data to a file named after the value
/// stored with the output filename (OutFilename) at the specified output
/// directory (OutDir).
/// </summary>
public static void WriteToFile(Community community)
{

// Append to the file.

CsvConfiguration config =

new CsvConfiguration(CultureInfo.InvariantCulture);

221

using FileStream stream = File.Open(OutDirFile, FileMode.Append);
using StreamWriter writer = new StreamWriter (stream);

using CsvWriter csv = new CsvWriter (writer, config);
csv.Context.RegisterClassMap <CommunityMap>();

csv.WriteRecord (community) ;

csv.NextRecord () ;

}

/// <summary >

/// This class maps the structure of the output, i.e., all community data
/// that will be written to a CSV format.

/// Each Map function represents a field in the CSV-file.

/// </summary>

public sealed class CommunityMap : ClassMap<Community>
{
public CommunityMap ()
{
this.Map(m => m.RepoOwner).Index (0);
this.Map(m => m.RepoName).Index(1);
this.Map(m => m.Data.Coordinates.Count)
.Name ("NrLocations").Index (15);
this.Map(m => m.Data.0ldCountries.Count)
.Name ("NrOldHiCountries").Index (17);
this.Map(m => m.Data.NewCountries.Count)
.Name ("NrNewHiCountries").Index (18);
this.Map(m => m.Dispersion.VarGeoDistance) .Index (50);
this.Map(m => m.Dispersion.0ldVariancePdi).Index (60) ;
this.Map(m => m.Dispersion.0ldVarianceIdv).Index (61);
this.Map(m => m.Dispersion.0ldVarianceMas) .Index (62);
this.Map(m => m.Dispersion.0ldVarianceUai).Index(63);
this.Map(m => m.Dispersion.0ldVarCulDistance).Index (64);
this.Map(m => m.Dispersion.NewVariancePdi).Index (65);
this.Map(m => m.Dispersion.NewVarianceIdv).Index (66) ;
this.Map(m => m.Dispersion.NewVarianceMas) .Index (67);
this.Map(m => m.Dispersion.NewVarianceUai).Index (68);
this.Map(m => m.Dispersion.NewVarCulDistance).Index (69);
this.Map(m => m.Dispersion.0ldDispersion).Index (200);
this.Map(m => m.Dispersion.NewDispersion).Index (201);
// EXTRA VARIABLES FOR COMPARIONS BETWEEN YOSHI AND YOSHI 2
this.Map(m => m.Dispersion.AvgGeoDistance) .Index (340);
this.Map(m => m.Dispersion.0ldAvgCulDispersion).Index (350);
this.Map(m => m.Dispersion.NewAvgCulDispersion).Index (355);
}

222

€¢¢

Listing E.5: Hofstede comparison: Program class.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Threading.Tasks;

using YOSHI.CommunityData;

using YOSHI.DispersionProcessorNew;
using YOSHI.DispersionProcessor01ld;

namespace YOSHI
{
/// <summary>
/// This class is the main class for the comparison between the old and new Hofstede metrics.
/// </summary>
class Program
{
static async Task Main()

{

// Used the statement below to test the old Hofstede Countries’ compatibility with Bing Maps Geocoding
//await Geocoding.GeoService.Test0ldHICountries (01dHI.Hofstede.Keys.ToList ());

// Retrieve the communities through user input handled by the IOModule.
List<Community> communities = IOModule.TakeInput();

Dictionary<string, string> failedCommunities = new Dictionary<string, string>();

foreach (Community community in communities)

{
try
{
// Compute dispersion using the new Hofstede metrics
if (!(community.Data.Coordinates.Count < 2 || community.Data.NewCountries.Count < 2))
{
DispersionProcessorN.ComputeDispersion(community) ;
}
else
{
Console.ForegroundColor = ConsoleColor.Red;
Console.WriteLine ("Not enough coordinates ({0}) or countries (N) ({1})", community.Data.Coordinates.Count,

< community.Data.NewCountries.Count) ;
Console.ResetColor ();

vac

// Compute dispersion using the old Hofstede metrics

if (!(community.Data.Coordinates.Count < 2 || community.Data.0ldCountries.Count < 2))
{
DispersionProcessor0.ComputeDispersion(community);
}
else
{
Console.ForegroundColor = ConsoleColor.Red;
Console.WriteLine ("Not enough coordinates ({0}) or countries (0) ({1})", community.Data.Coordinates.Count,
< community.Data.0ldCountries.Count) ;
Console.ResetColor ();
}
I0Module.WriteToFile (community) ;
}
catch (Exception e)
{
Console.ForegroundColor = ConsoleColor.Red;
Console.WriteLine ("Exception: {0}. {1}", e.GetType(), e.Message);
Console.ResetColor () ;
failedCommunities.Add (community.RepoName, e.Message);
continue;
}

}

// Make sure to output the communities that failed at the end to make them easily identifiable
if (failedCommunities.Count > 0)

{

Console.ForegroundColor = ConsoleColor.Red;

Console.WriteLine ("The following communities failed due to exceptions:");

foreach (KeyValuePair<string, string> failedCommunity in failedCommunities)

{

Console.WriteLine ("{0}, {1}", failedCommunity.Key, failedCommunity.Value);

}

Console.ResetColor () ;
}
// Prevent the console window from automatically closing after the main process is done running
Console.BackgroundColor = ConsoleColor.DarkGreen;
Console.WriteLine ("The application has finished processing the inputted communities.");
Console.WriteLine("Press Enter to close this window . . .");

Console.ResetColor();
ConsoleKeyInfo key = Console.ReadKey();

gcce

while (key.Key != ConsoleKey.Enter)

{
key = Console.ReadKey();
3
}
}
}
Listing E.6: Hofstede comparison: DispersionProcessorNew class.

using Geocoding;
using System;
using System.Collections.Generic;
using System.Ling;
using YOSHI.CommunityData;

namespace YOSHI.DispersionProcessorNew

{

public static class DispersionProcessorN

{

/17
/17
/17
/17

<summary >

A method that computes several metrics used to measure community dispersion. It modifies the given community.
</summary >

<param name="community">The community for which we need to compute the dispersion.</param>

public static void ComputeDispersion(Community community)

{

List<Location> coordinates = community.Data.Coordinates;
List<string> countries = community.Data.NewCountries;

// Compute the variance of all geographical distances

List<double> distances = ComputeGeographicalDistances(coordinates);
double varianceGeographicalDistance = Statistics.ComputeVariance(distances);
community.Dispersion.VarGeoDistance = varianceGeographicalDistance;

// Note: Geographical distance includes distances to members from who we do not have Hofstede indices for better accuracy.

// Compute the variance for four Hofstede indices

(List<double> pdis, List<double> idvs, List<double> mass, List<double> uais) = ComputeHofstedeIndices (countries);
double variancePdi = Statistics.ComputeVariance (pdis);

double varianceIdv = Statistics.ComputeVariance (idvs);

double varianceMas = Statistics.ComputeVariance (mass);

double varianceUai = Statistics.ComputeVariance (uais);

community.Dispersion.NewVariancePdi = variancePdi;

community.Dispersion.NewVarianceIdv = varianceldv;

9¢¢

community.Dispersion.NewVarianceMas = varianceMas;
community.Dispersion.NewVarianceUai = varianceUai;

// Determine the average of the variances to obtain the variance of cultural distance
double varianceCulturalDistance = (variancePdi + varianceldv + varianceMas + varianceUai) / 4;

community.Dispersion.NewVarCulDistance = varianceCulturalDistance;

// Determine the global dispersion
community.Dispersion.NewDispersion = Math.Sqrt((varianceGeographicalDistance + varianceCulturalDistance) / 2);

// EXTRA COMPUTATIONS FOR COMPARISON YOSHI AND YOSHI 2

community.Dispersion.AvgGeoDistance = distances.Average();

double averagePdi = Statistics.ComputeStandardDeviation(pdis);

double averagelIdv = Statistics.ComputeStandardDeviation (idvs);

double averageMas = Statistics.ComputeStandardDeviation(mass);

double averageUai = Statistics.ComputeStandardDeviation (uais);
community.Dispersion.NewAvgCulDispersion = (averagePdi + averageldv + averageMas + averageUai) / 4.0;

}

/// <summary>

/// Given a list of coordinates, this method computes the list of geographical distances between each unique pair
/// of coordinates. It computes the distance using the spherical distance.

/// </summary>

/// <param name="coordinates">A list of coordinates for which we want to compute the geographical

/// distance between each pair.</param>

/// <returns>A list of geographical distances between each unique pair of coordinates.</returns>

private static List<double> ComputeGeographicalDistances (List<Location> coordinates)

{

List<double> distances = new List<double>();

// Compute the medium distance for each distinct pair of addresses in the given list of addresses
for (int i = 0; i < coordinates.Count - 1; i++)
{
Location coordinateA = coordinates[i];
for (int j = i + 1; j < coordinates.Count; j++)
{
Location coordinateB = coordinates[j];
// NOTE: the DistanceBetween method computes spherical distance
double distance = coordinateA.DistanceBetween(coordinateB, DistanceUnits.Kilometers);
distances.Add(distance) ;

}

return distances;

LCC

/// <summary >
/// Given a list of addresses, this method compiles separate lists for the present countries’
/// corresponding hofstede indices (PDI, IDV, MAS, UAI)
/// </summary>
/// <param name="countries">A list of countries for which we want to retrieve the Hofstede indices.</param>
/// <returns>Four lists of Hofstede indices representative for the given addresses.</returns>
private static (List<double> pdis, List<double> idvs, List<double> mass, List<double> uais)
ComputeHofstedeIndices (List<string> countries)
{
List<double> pdis = new List<double>();
List<double> idvs = new List<double>();
List<double> mass = new List<double>();
List<double> uais = new List<double>();

foreach (string country in countries)

{
pdis.Add (HI.Hofstede [country].Pdi);
idvs.Add (HI.Hofstede [country]l.Idv);
mass.Add (HI .Hofstede [country].Mas);
uais.Add (HI.Hofstede [country].Uai);
}

return (pdis, idvs, mass, uais);

8¢¢

Listing E.7: Hofstede comparison: DispersionProcessorOld class.

using
using
using
using
using

Geocoding;

System;
System.Collections.Generic;
System.Ling;
YOSHI.CommunityData;

namespace YOSHI.DispersionProcessor0ld

{

public static class DispersionProcessor(0

{

/// <summary>
/// A method that computes several metrics used to measure community dispersion. It modifies the given community.
/// </summary>
/// <param name="community">The community for which we need to compute the dispersion.</param>
public static void ComputeDispersion(Community community)
{
List<Location> coordinates = community.Data.Coordinates;
List<string> countries = community.Data.0ldCountries;

// Compute the variance of all geographical distances

List<double> distances = ComputeGeographicalDistances (coordinates);
double varianceGeographicalDistance = Statistics.ComputeVariance(distances);
community.Dispersion.VarGeoDistance = varianceGeographicalDistance;

// Note: Geographical distance includes distances to members from who we do not have Hofstede indices for better accuracy.

// Compute the variance for four Hofstede indices

(List<double> pdis, List<double> idvs, List<double> mass, List<double> uais) = ComputeHofstedeIndices (countries);
double variancePdi = Statistics.ComputeVariance (pdis);

double varianceIdv = Statistics.ComputeVariance (idvs);

double varianceMas = Statistics.ComputeVariance (mass);

double varianceUai = Statistics.ComputeVariance (uais);

community.Dispersion.0ldVariancePdi = variancePdi;

community.Dispersion.0ldVarianceldv = varianceldv;

community.Dispersion.0ldVarianceMas = varianceMas;

community.Dispersion.0ldVarianceUai = varianceUaij;

// Determine the average of the variances to obtain the variance of cultural distance
double varianceCulturalDistance = (variancePdi + varianceldv + varianceMas + varianceUai) / 4;
community.Dispersion.0ldVarCulDistance = varianceCulturalDistance;

6¢¢

}

/17
/17
/17
/17
/17
/17
/17

// Determine the global dispersion
community.Dispersion.0ldDispersion = Math.Sqrt((varianceGeographicalDistance + varianceCulturalDistance) / 2);

// EXTRA COMPUTATIONS FOR COMPARISON YOSHI AND YOSHI 2

community.Dispersion.AvgGeoDistance = distances.Average();

double averagePdi = Statistics.ComputeStandardDeviation(pdis);

double averageIdv = Statistics.ComputeStandardDeviation (idvs);

double averageMas = Statistics.ComputeStandardDeviation(mass);

double averageUai = Statistics.ComputeStandardDeviation (uais);
community.Dispersion.0ldAvgCulDispersion = (averagePdi + averageldv + averageMas + averageUai) / 4.0;

<summary >

Given a list of coordinates, this method computes the list of geographical distances between each unique pair
of coordinates. It computes the distance using the spherical distance.

</summary >

<param name="coordinates">A list of coordinates for which we want to compute the geographical

distance between each pair.</param>

<returns>A list of geographical distances between each unique pair of coordinates.</returns>

private static List<double> ComputeGeographicalDistances (List<Location> coordinates)

{

/17
/17
/17
/17
/17

List<double> distances = new List<double>();

// Compute the medium distance for each distinct pair of addresses in the given list of addresses
for (int i = 0; i < coordinates.Count - 1; i++)

{
Location coordinateA = coordinates[il];
for (int j = i + 1; j < coordinates.Count; j++)
{
Location coordinateB = coordinates[j];
// NOTE: the DistanceBetween method computes spherical distance
double distance = coordinateA.DistanceBetween(coordinateB, DistanceUnits.Kilometers);
distances.Add(distance) ;
}
}

return distances;

<summary >

Given a list of addresses, this method compiles separate lists for the present countries’

corresponding hofstede indices (PDI, IDV, MAS, UAI)

</summary >

<param name="countries">A list of countries for which we want to retrieve the Hofstede indices.</param>

0€¢

/// <returns>Four lists of Hofstede indices representative for the given addresses.</returns>
private static (List<double> pdis, List<double> idvs, List<double> mass, List<double> uais)
ComputeHofstedeIndices (List<string> countries)
{
List<double> pdis = new List<double>();
List<double> idvs = new List<double>();
List<double> mass = new List<double>();
List<double> uais = new List<double>();
foreach (string country in countries)
{
pdis.Add (01dHI.Hofstede [country].Pdi);
idvs.Add (01dHI.Hofstede [country].Idv);
mass.Add (01dHI .Hofstede [country].Mas);
uais.Add (01dHI.Hofstede [country].Uai);
}
return (pdis, idvs, mass, uais);
}
}
}
Listing E.8: Hofstede comparison: GeoService class.
using Geocoding.Microsoft;
using System;
using System.Collections.Generic;
using System.Ling;
using System.Threading.Tasks;
using static YOSHI.O1ldHI;

namespace YOSHI.Geocoding

{

public static class GeoService

{

publ

ic static int BingRequestsLeft { get; set; } = 50000;

private static readonly BingMapsGeocoder Geocoder =

/17
/17
/17
/17
/17

new BingMapsGeocoder (Environment.GetEnvironmentVariable ("YOSHI_BingMapsKey"));

<summary >

A method that takes a list of users and computes the addresses for all members.

specified their locations or cause exceptions are skipped.
</summary >
<param name="members">A list of members to retrieve the addresses from</param>

Users that have not

1€¢

/// <param name="repoName">The repository name, used in exception handling</param>

/// <returns>A list of addresses for the passed list of members</returns>

/// <exception cref="GeocoderRatelLimitException">Thrown when the Bing Rate Limit is exceeded.</exception>

/// <exception cref="BingGeocodingException">Thrown when Bing Geocoding could not successfully retrieve a location.</exception>
public static async Task TestOldHICountries(List<string> oldHICountries)

{
CaseAccentInsensitiveEqualityComparer comparer = new CaseAccentInsensitiveEqualityComparer ();
foreach (string country in oldHICountries)
{
try
{
BingAddress address = await GetBingAddress (country);
if (!comparer.Equals(country, address.CountryRegion))
{
Console.WriteLine ("01dHI: {0}, {1}", country, address.CountryRegion);
}
}
catch (BingGeocodingException e)
{
// Continue with the next user if this user was causing an exception
Console.ForegroundColor = ConsoleColor.DarkYellow;
Console.WriteLine ("Could not retrieve the location from {0}", country);
Console.WriteLine(e.InnerException.Message);
Console.ResetColor ();
continue;
}
catch (GeocoderRateLimitException)
{
throw;
}
}
}
/// <summary>
/// This method uses a Geocoding API to perform forward geocoding, i.e., enter an address and obtain Bing Address.
/17

/// Bing Maps TOU: https://www.microsoft.com/en-us/maps/product/terms-april-2011

/// </summary>

/// <param name="githubLocation">The location of which we want the Bing Maps Address.</param>

/// <returns>A BingAddress containing the longitude and latitude found from the given address.</returns>
/// <exception cref="BingGeocodingException">Thrown when the returned status in MapLocationFinderResult is
/// anything but "Success".</exception>

/// <exception cref="GeocoderRateLimitException">Thrown when the rate limit has been reached.</exception>
private static async Task<BingAddress> GetBingAddress(string githubLocation)

¢EC

if (
{

}
else

{

}

BingRequestsLeft > 50) // Give ourselves a small buffer to not go over the limit.

BingRequestsLeft --;
// Note: MapLocationFinder does not throw exceptions, instead it returns a status.
try
{

IEnumerable <BingAddress> resultAddresses = await Geocoder.GeocodeAsync(githubLocation);

BingAddress result = resultAddresses.FirstOrDefault ();

return result != null && result.CountryRegion != null

? result
throw new BingGeocodingException(new Exception("Result for address \"" + githubLocation + "\"

3
catch (BingGeocodingException)
{

throw;
}

throw new GeocoderRateLimitException("Too few Bing Requests left.");

is null"));

Listing E.9: Hofstede comparison: GeocoderRateLimitException class.

using System;

namespace YOSHI.Geocoding

{
/// <summary>
/// Class used to identify the rate limit exception from Bing Maps API
/// </summary>
public class GeocoderRateLimitException : Exception
{
public GeocoderRateLimitException ()
{
}
public GeocoderRatelLimitException(string message)
base (message)
{
}
public GeocoderRateLimitException(string message, Exception inner)
base (message, inner)
{
}
}
}

Listing E.10: Hofstede comparison: OIdHI class.

using System.Collections.Generic;
using System.Globalization;

using System.Ling;

using System.Text;

namespace YOSHI
{
/// <summary>
/// Class responsible for the 0ld Hofstede Indices.
/// </summary>
public static class 01dHI
{
// The old Hofstede indices used by YOSHI missed values for:
//Canada
//Russia
//Vietnam
//Bulgaria
//Ukraine
//Belarus
//Slovakia
//Sri Lanka
//Eswatini
//Croatia
//Morocco
//Namibia
//Macao SAR
//Romania
//Iceland

public readonly static Dictiomary<
string, (int Pdi, int Idv, int Mas, int Uai)> Hofstede

= new Dictionary<string, (int Pdi, int Idv, int Mas, int Uai)
>(new CaseAccentInsensitiveEqualityComparer ())

"argentina", (49, 46, 56, 86) 1},
"australia", (36, 90, 61, 51) I},
"austria", (11, 55, 79, 70) 1},
"belgium", (65, 75, 54, 94) 1},
"brazil", (69, 38, 49, 76) },
"chile", (63, 23, 28, 86) 1},
"china", (80, 20, 66, 40) },
"colombia", (67, 13, 64, 80) 1},
"costa rica", (35, 15, 21, 86) },
"czechia", (57, 58, 57, T74) }, // Updated from czech republic
"denmark", (18, 74, 16, 23) 1},

N e e

233

"ecuador", (78, 8, 63, 67) },

"egypt", (80, 38, 52, 68) },

"el salvador", (66, 19, 40, 94) },

"ethiopia", (64, 27, 41, 52) },

"finland", (33, 63, 26, 59) I,

"france", (68, 71, 43, 86) 1},

"germany", (35, 67, 66, 65) 1},

"ghana", (77, 20, 46, 54) },

"greece", (60, 35, 57, 112) },

"guatemala", (95, 6, 37, 101) 1},

"hong kong sar", (68, 25, 57, 29) }, // Updated from hong kong
"hungary", (46, 55, 88, 82) 1},
"india", (77, 48, 56, 40) },
"indonesia", (78, 14, 46, 48) },
"iran", (58, 41, 43, 59) },
"iraq", (80, 38, 52, 68) I,
"ireland", (28, 70, 68, 35) },
"israel", (13, 54, 47, 81) },
"italy", (50, 76, 70, 75) 1},
"jamaica", (45, 39, 68, 13) 1},
"japan", (54, 46, 95, 92) I},
"kenya", (64, 27, 41, 52) },
"kuwait", (80, 38, 52, 68) 1},
"lebanon", (80, 38, 52, 68) 1},
"libya", (80, 38, 52, 68) },
"malaysia", (104, 26, 50, 36) 1,
"mexico", (81, 30, 69, 82) },
"netherlands", (38, 80, 14, 53) },
"new zealand", (22, 79, 58, 49) },
"nigeria", (77, 20, 46, 54) 1},
"norway", (31, 69, 8, 50) 1},
"pakistan", (55, 14, 50, 70) 1},
"panama", (95, 11, 44, 86) 1},
"peru", (64, 16, 42, 87) 1},
"philippines", (94, 32, 64, 44) 1},
"poland", (68, 60, 64, 93) },
"portugal", (63, 27, 31, 104) 1},
"saudi arabia", (80, 38, 52, 68) I},
"sierra leone", (77, 20, 46, 54) }
"singapore", (74, 20, 48, 8) 1},
"south africa", (49, 65, 63, 49) I},

"south korea", (60, 18, 39, 85) },

"spain", (57, 51, 42, 86) 1},

"sweden", (31, 71, 5, 29) },

"switzerland", (34, 68, 70, 58) },

"taiwan", (58, 17, 45, 69) },

"tanzania", (64, 27, 41, 52) },

"thailand", (64, 20, 34, 64) 1},

"turkey", (66, 37, 45, 85) ¥,

"united arab emirates", (80, 38, 52, 68) 1},

"united kingdom", (35, 89, 66, 35) 1},

"united states", (40, 91, 62, 46) I},

"uruguay", (61, 36, 38, 100) 1},

"venezuela", (81, 12, 73, 76) },

"zambia", (64, 27, 41, 52) },

// Below are all variations of "united states" (except vancouver)
//{ "san francisco", (40, 91, 62, 46) },

//{ "usa", (40, 91, 62, 46) 1},

//{ "california", (40, 91, 62, 46) },

//{ "boston", (40, 91, 62, 46) },

//{ "texas", (40, 91, 62, 46) 1},

//{ "atlanta", (40, 91, 62, 46) 1},

// City in Canada, our tool finds Canada, hence does not use these
// values once. We cannot simply replace "vancouver" with Canada.
//{ "vancouver", (40, 91, 62, 46) }

//{ "mountain view", (40, 91, 62, 46) },

//{ "chicago", (40, 91, 62, 46) 1},

//{ "seattle", (40, 91, 62, 46) },

//{ "menlo park", (40, 91, 62, 46) 1},

B N e e e T N e T e S e e e N R e e e e T T e T s T e e e N N N e R T T e W e W I TSP AR S AR

};

/// <summary >
/// Equality comparer of strings that ignores lower/uppercase and accents

234

/// (diacritics). Note that if the Hofstede dictionary was not initialized
/// with this equality comparer, it would likely fail to identify "s&o tomé
/// and principe" or inconsistencies.
/// </summary>
public class CaseAccentInsensitiveEqualityComparer

IEqualityComparer <string>

{
public bool Equals(string x, string y)
{
return string.Compare(x, y,
CulturelInfo.InvariantCulture,
CompareOptions.IgnoreNonSpace
| CompareOptions.IgnoreCase) == 0;
}
public int GetHashCode(string obj)
{
return obj != null 7
this.RemoveDiacritics (obj).ToUpperInvariant ().GetHashCode ()
0;
}
private string RemoveDiacritics(string text)
{
return string.Concat(
text.Normalize (NormalizationForm.FormD)
.Where(ch => CharUnicodeInfo.GetUnicodeCategory(ch) !=
UnicodeCategory.NonSpacingMark)
) .Normalize (NormalizationForm.FormC) ;
}
}

Listing E.11: Hofstede comparison: HI class.

using System.Collections.Generic;
using System.Globalization;

using System.Ling;

using System.Text;

namespace YOSHI
{
/// <summary >
/// Class responsible for the New Hofstede Indices.
/// </summary>
public static class HI
{
// The new Hofstede indices used by YOSHI 2 missed values for:
// Eswatini
// Macao SAR

public readonly static Dictiomary<
string, (int Pdi, int Idv, int Mas, int Uai)> Hofstede

= new Dictionary<string, (int Pdi, int Idv, int Mas, int Uai)
>(new CaseAccentInsensitiveEqualityComparer ())

"albania", (90, 20, 80, 70) },
"algeria", (80, 35, 35, 70) },
"angola", (83, 18, 20, 60) },
"argentina", (49, 46, 56, 86) },
"armenia", (85, 22, 50, 88) },
"australia", (38, 90, 61, 51) 1},
"austria", (11, 55, 79, 70) },
"azerbaijan", (85, 22, 50, 88) 1,
"bangladesh", (80, 20, 55, 60) 1}
"belarus", (95, 25, 20, 95) },
"belgium", (65, 75, 54, 94) },
"bhutan", (94, 52, 32, 28) },
"bolivia", (78, 10, 42, 87) },
"bosnia and herzegovina", (90, 22, 48, 87) 1},
"brazil", (69, 38, 49, 76) 1},

"bulgaria", (70, 30, 40, 85) I,

N N e el e T]

235

e e e e e e s e e s e T W e N e N e e el el e R s s i e S A N e el e

"burkina faso", (70, 15, 50, 55) 1},

"canada", (39, 80, 52,
"cape verde", (75, 20,
"chile", (63, 23, 28,
"china", (80, 20, 66,

"colombia", (67, 13, 64,

"costa rica", (35, 15,

48) ¥,
15, 40)
86) I},
30) 1},

21, 86)

"croatia", (73, 33, 40, 80) },
"czechia", (57, 58, 57, 74) },
"denmark", (18, 74, 16, 23) },

"dominican republic",
"ecuador", (78, 8, 63,
"egypt", (70, 25, 45,

(65, 30,
67) I},
80) 1},

80) I,

} b

1,

65,

"el salvador", (66, 19, 40, 94) I,
"estonia", (40, 60, 30, 60) },

"ethiopia", (70, 20, 65,

"fiji", (78, 14, 46, 48) 1},
"finland", (33, 63, 26, 59) 1},

"france", (68, 71, 43,

86) 1},

"georgia", (65, 41, 55, 85) 1},
"germany", (35, 67, 66, 65) 1},

"ghana", (80, 15, 40,
"greece", (60, 35, 57,

"guatemala", (95, 6, 37,
"honduras", (80, 20, 40,

"hong kong sar", (68,

65) 1},
100) 1,

25, 57,

"hungary", (46, 80, 88, 82) 1},
"iceland", (30, 60, 10, 50) },

"india", (77, 48, 56,
"indonesia", (78, 14,

"israel", (13, 54, 47,
"italy", (50, 76, 70,

40) 1,

55) 1,

98) I,
50) I,
29) 1},

46, 48) 1},
"iran", (58, 41, 43, 59) 1},
"iraq", (95, 30, 70, 85) },
"ireland", (28, 70, 68, 35) },

81) 1},
75) },

"jamaica", (45, 39, 68, 13) 1},

"japan", (54, 46, 95,
"jordan", (70, 30, 45,
"kazakhstan", (88, 20,
"kenya", (70, 25, 60,
"kuwait", (90, 25, 40,
"latvia", (44, 70, 9,

92) 1},
65) I,
50, 88)

50) 1},
80) I},

63) 1},

"lebanon", (75, 40, 65, 50) 1},

"libya", (80, 38, 52,
"lithuania", (42, 60,
"luxembourg", (40, 60,
"malawi", (70, 30, 40,
"malaysia", (100, 26,
"malta", (56, 59, 47,
"mexico", (81, 30, 69,

68) 1,

19, 65) 1},

50, 70)
50) 1,

},

50, 36) 1},

96) 1},
82) 1,

"moldova", (90, 27, 39, 95) },

"montenegro", (88, 24,

48, 90)

"morocco", (70, 46, 53, 68) 1},

"mozambique", (85, 15,

38, 44)

"namibia", (65, 30, 40, 45) 1},

"nepal", (65, 30, 40,

"netherlands", (38, 80, 14, 53)
"new zealand", (22, 79, 58, 49)

40) 1},

"nigeria", (80, 30, 60, 55) },

"north macedonia", (90, 22, 45,

"norway", (31, 69, 8,

"pakistan", (55, 14, 50,

"panama", (95, 11, 44,

"paraguay", (70, 12, 40,

50) 1,

86) 1},

"peru", (64, 16, 42, 87) 3,

"philippines", (94, 32, 64, 44)

"poland", (68, 60, 64,

"portugal", (63, 27, 31,
"puerto rico", (68, 27, 56, 38)

"qatar", (93, 25, 55,

93) 1,

80) 1},

"romania", (90, 30, 42, 90) },

"russia", (93, 39, 36,

95) 1,

"s&o0 tomé and principe", (75,

236

70) 1,

85) I,

99) I,

37,

"saudi arabia", (95, 25, 60, 80) 1},
"senegal", (70, 25, 45, 55) },
"serbia", (86, 25, 43, 92) },

"sierra leone", (70, 20, 40, 50) 1},
"singapore", (74, 20, 48, 8) 1},
"slovakia", (100, 52, 100, 51) 1},
"slovenia", (71, 27, 19, 88) 1},
"south africa", (49, 65, 63, 49) 1},
"south korea", (60, 18, 39, 85) 1},
"spain", (57, 51, 42, 86) },

"sri lanka", (80, 35, 10, 45) },
"suriname", (85, 47, 37, 92) 1},
"sweden", (31, 71, 5, 29) },
"switzerland", (34, 68, 70, 58) 1},
"syria", (80, 35, 52, 60) 1},
"taiwan", (58, 17, 45, 69) },
"tanzania", (70, 25, 40, 50) 1},
"thailand", (64, 20, 34, 64) },
"trinidad and tobago", (47, 16, 58, 55) },
"tunisia", (70, 40, 40, 75) },
"turkey", (66, 37, 45, 85) 1},
"ukraine", (92, 25, 27, 95) },
"united arab emirates", (90, 25, 50, 80) 1},
"united kingdom", (35, 89, 66, 35) I},
"united states", (40, 91, 62, 46) 1},
"uruguay", (61, 36, 38, 98) 1},
"venezuela", (81, 12, 73, 76) 1},
"vietnam", (70, 20, 40, 30) },
"zambia", (60, 35, 40, 50) },

e e e e el e T e T s T o e e S

}s

/// <summary >

/// Equality comparer of strings that ignores lower/uppercase and accents
/// (diacritics). Note that if the Hofstede dictionary was not initialized
/// with this equality comparer, it would likely fail to identify "s&o tomé
/// and principe" or inconsistencies.

/// </summary>

public class CaseAccentInsensitiveEqualityComparer

IEqualityComparer <string>

{
public bool Equals(string x, string y)
{
return string.Compare(x, y,
CulturelInfo.InvariantCulture,
CompareOptions.IgnoreNonSpace
| CompareOptions.IgnoreCase) == O0;
}
public int GetHashCode(string obj)
{
return obj != null 7
this.RemoveDiacritics (obj).ToUpperInvariant ().GetHashCode ()
0;
}
private string RemoveDiacritics(string text)
{
return string.Concat(
text.Normalize(NormalizationForm.FormD)
.Where(ch => CharUnicodelInfo.GetUnicodeCategory(ch) !=
UnicodeCategory.NonSpacingMark)
) .Normalize (NormalizationForm.FormC) ;
}
}

Listing E.12: Hofstede comparison: Statistics class.

using System;
using System.Collections.Generic;
using System.Ling;

237

namespace YOSHI
{
/// <summary >
/// Class that implements statistics computations. Cannot implement a generic
/// method that takes numerics in c#:
/// See https://stackoverflow.com/q/22261510/
/// Therefore we repeat code.
/// </summary>
public static class Statistics
{
/// <summary>
/// Easy access method to compute the variance of a list.
/// </summary>
/// <param name="list">Non-empty List to compute the variance of.</param>
/// <returns>The variance of the list.</returns>
/// <exception cref="InvalidOperationException">
/// Thrown when list is empty.</exception>
public static double ComputeVariance (List<double> list)
{
if (list.Count > 0)
{
double mean = list.Average();
double temp = O0;
foreach (double value in list)
{
temp += (value - mean) * (value - mean);
}
return temp / list.Count;
}
else
{
throw new InvalidOperationException("List contains no elements");
}
}

/// <summary >
/// Compute the standard deviation of a list of doubles.
/// </summary>
/// <param name="list">Non-empty list to compute the standard deviation of.
/// </param>
/// <returns>The standard deviation of the list.</returns>
/// <exception cref="InvalidOperationException">
/// Thrown when list is empty.</exception>
public static double ComputeStandardDeviation(List<double> 1list)
{
return list.Count > O 7
Math.Sqrt (ComputeVariance (list))
throw new InvalidOperationException("List contains no elements");

238

Appendix F

Code: Extract Statistics

In this chapter, we briefly discuss the code that was used to extract the statistics
for communities. This code was used to determine which repositories were used
to evaluate YOSHI [20], as discussed in Section .2. This code was also used to
determine the statistics for the communities analyzed in Section . Additionally,
it allowed us to exclude communities per our exclusion criteria. All statistics were
computed over the entire lifespan of the community up until the specified end date.
For convenience, we used YOSHI 2’s code (Appendix (') as a basis and removed the
code that was not needed to extract the community statistics.

Note that statistics regarding LOC were computed separately using a script
provided by Rory O’Kane and Droogans on Stack Overflow, which we have copied
to Listing . The script requires CLOC (Count Lines of Code)” to be installed.
After retrieving the LOC, we subtracted the lines of files that were not part of the
programming languages explicitly listed on their GitHub repository pages from the
total LOC.

Listing F.1: Extract statistics: Bash script used to count GitHub repositories
LOC, copied from Stack Overflow: https://stackoverflow.com/a/29012789
(visited on 21/07/2021).
#!/usr/bin/env bash
git clone --depth 1 "$1" temp-linecount-repo &&
printf "(’temp-linecount-repo’ will be deleted
— automatically)\n\n\n" &&
cloc temp-linecount-repo && rm -rf temp-linecount-repo

Y

Note that we did not use KAIAULU’s line metrics, because it would have required a
lot more time and effort in the community selection process than using this script.

Back to the code used to extract most of the community statistics. For clarity,
we provide a brief explanation per class on the next page. The code for these classes
is listed in Listings to

'https://stackoverflow.com/a/29012789 (visited on 21/07/2021)
’https://github.com/AlDanial/cloc

239

https://stackoverflow.com/a/29012789
https://stackoverflow.com/a/29012789
https://github.com/AlDanial/cloc

Community.cs This class is used as an object to store community

data. For this application, we only need the owner
and name of the repositories.

I0OModule.cs This class is responsible for requesting and

handling user input.

Program.cs This class contains the Main() method that is

executed when the program is run.

DataRetriever.cs This class retrieves GitHub data based on the

inputted repositories. Then it uses this data
to compute statistics per repository. After the
community statistics have been computed, the
relevant numbers are written to the console.

Filters.cs This class is responsible for storing the analysis

window.

GitHubRateLimitHandler.cs This class’s sole responsibility is to delegate

GitHub API calls to methods that deal with
GitHub’s rate limit of 5,000 API requests per
hour.

Listing F.2: Extract statistics: Community class.

namespace YOSHI.CommunityData

{
/// <summary >
/// This class is responsible for storing all community related data.
/// We will use this class to store the community data in separate objects.
/// </summary>
public class Community
{
public string RepoOwner { get; }
public string RepoName { get; 1}
public Community(string owner, string name)
{
this.RepoOwner = owner;
this.RepoName = name;
}
3
}
Listing F.3: Extract statistics: IOModule class.
using CsvHelper;
using System;
using System.Collections.Generic;
using System.Globalization;
using System.IO;
using YOSHI.CommunityData;
using YOSHI.DataRetrieverNS;

namespace YOSHI

{

/// <summary>

/// This class is responsible for the IO-operations of YOSHI.
/// </summary>

public static class I0OModule

{
/17
/17
/17
/17

<summary >

This method is used to guide the user in inputting the input directory,
input filename, outfput directory and the output filename.

</summary >

240

/// <exception cref="I0Exception">Thrown when something goes wrong while
/// reading the input or when writing to the output file.</exception>
public static List<Community> TakeInput ()

{
try
{
// Take and validate the input file
string inFile;
do
{
Console.ForegroundColor = ConsoleColor.DarkGray;
Console.WriteLine("Please enter the absolute directory of " +
"the input file, including filename and its extension.");
Console.ResetColor () ;
inFile = Console.ReadLine();
}
while (!File.Exists(inFile));
// Set the enddate of the time window UTC time. It is possible to
// enter a specific time, but this has not been tested.
DateTimeOffset endDate;
Console.ForegroundColor = ConsoleColor.DarkGray;
Console.WriteLine ("Enter end date of time window (YYYY-MM-DD) " +
"in UTC");
Console.ResetColor () ;
while (!DateTimeOffset.TryParse(Console.ReadlLine(), out endDate))
{
Console.ForegroundColor = ConsoleColor.DarkGray;
Console.WriteLine("Invalid date");
Console.WriteLine ("Enter end date of time window " +
"(YYYY-MM-DD) in UTC");
Console.ResetColor () ;
}
// Make sure that the datetime is UTC
Filters.SetTimeWindow (endDate) ;
return ReadFile(inFile);
}
catch (IOException e)
{
throw new IOException("Failed to read input or to write headers " +
"to output file", e);
}
}

/// <summary >

/// A method used to read the file named after the value stored with the
/// input filename (InFilename) at the specified input directory (InDir).
/// </summary>

/// <returns>A list of communities storing just the repo owner and repo
/// name.</returns>

/// <exception cref="I0Exception">Thrown when something goes wrong while
/// reading the input file.</exception>

private static List<Community> ReadFile(string inFile)

{
List<Community> communities = new List<Community>();
try
{
using StreamReader reader = new StreamReader (inFile);

using CsvReader csv =
new CsvReader (reader, CultureInfo.InvariantCulture);
csv.Read () ;
csv.ReadHeader () ;
while (csv.Read())
{
// The CSV file requires headers "RepoName" and "RepoOwner"
Community community = new Community (
csv.GetField ("RepoOwner"),
csv.GetField ("RepoName")
)

communities.Add (community) ;

241

catch (IOException e)
{

throw new IOException("Something went wrong while reading the " +

"input file.", e);

}

return communities;

Listing F.4: Extract statistics: Program class.

using System;

using System.Collections.Generic;
using System.Threading.Tasks;
using YOSHI.CommunityData;

using YOSHI.DataRetrieverNS;

namespace YOSHI

{

/// <summary >

/// This is the main class for extracting the stats of repositories.
/// </summary >

class Program

{

static async Task Main ()

{

// Retrieve the communities through user input handled by the IOModule.

List<Community> communities = IOModule.TakeInput();

Console.WriteLine ("id;owner;name;q3_devs;releases;commits;" +
"contributors;milestones;language;L0C; ALOC;stargazers;watchers;" +
"forks;size (KB);Domain;latestCommitDate;url;mailing list;" +

"description");

foreach (Community community in communities)
{
await DataRetriever.ExtractStats(community);

}

// Prevent the console window from automatically closing after the main
// process is done running
Console.BackgroundColor = ConsoleColor.DarkGreen;
Console.WriteLine ("The application has finished processing the " +
"inputted communities.");
Console.WriteLine("Press Enter to close this window . . .");
Console.ResetColor ();
ConsoleKeyInfo key = Console.ReadKey();
while (key.Key != ConsoleKey.Enter)
{
key = Console.ReadKey();
3

242

eve

Listing F.5: Extract statistics: DataRetriever class.

using
using
using
using
using

Octokit;

System;
System.Collections.Generic;
System.Threading.Tasks;
YOSHI.CommunityData;

namespace YOSHI.DataRetrieverNS

{

/// <summary >

/// This class is responsible for retrieving data from GitHub.
/// </summary>

public static class DataRetriever

{

public static readonly GitHubClient Client;
// Default 24-hour operations with a basic Windows App, Non-profit, and Education key.
// Info about rate limiting: https://docs.microsoft.com/en-us/bingmaps/getting-started/bing-maps-api-best-practices

private static readonly ApiOptions MaxSizeBatches = new ApiOptions // allows us to fetch with 100 at a time
{
PageSize = 100

};
static DataRetriever ()
{
try
{
// Read the GitHub Access Token and the Bing Maps Key from Windows Environment Variables
string githubAccessToken = Environment.GetEnvironmentVariable ("YOSHI_GitHubAccessToken");
// Set the GitHub Client and set the authentication token from GitHub for the GitHub REST API
Client = new GitHubClient (new ProductHeaderValue("yoshi"));
Credentials tokenAuth = new Credentials(githubAccessToken);
Client.Credentials = tokenAuth;
}
catch (Exception e)
{
throw new Exception("Error during client initialization.", e);
}
}

public static async Task ExtractStats(Community community)

v¥e

string repoName = community.RepoName;
string repoOwner = community.RepoOwner;

try
{

// Retrieve repository statistics and check whether or not they should be excluded according to our exclusion criteria

Repository repo = await GitHubRateLimitHandler.Delegate(Client.Repository.Get, repoOwner, repoName);

if (repo.Fork)

{
Console.WriteLine("{0}, {1}, Fork", repoOwner, repoName);
return;

}

if (repo.Archived)

{
Console.WriteLine ("{0}, {1}, Archived", repoOwner, repoName) ;
return;

}

if (!repo.HasIssues)

{
Console.WriteLine("{0}, {1}, No Issues", repoOwner, repoName) ;
return;

}

MilestoneRequest stateFilter = new MilestoneRequest { State = ItemStateFilter.Closed };
IReadOnlyList<Milestone> milestones = await GitHubRatelLimitHandler.Delegate (
Client.Issue.Milestone.GetAllForRepository, repoOwner, repoName, stateFilter, MaxSizeBatches);
if (milestones.Count < 1)
{
Console.WriteLine("{0}, {1}, No milestones", repoOwner, repoName);
return;

}

IReadOnlyList <RepositoryContributor> contributors = await GitHubRateLimitHandler.Delegate(
Client .Repository.GetAllContributors, repoOwner, repoName);
if (contributors.Count < 10)

{
Console.WriteLine ("{0}, {1}, Too few contributors: {2}", repoOwner, repoName, contributors.Count);
return;

}

CommitRequest commitRequest = new CommitRequest { Until = Filters.EndDateTimeWindow 1};

IReadOnlyList<GitHubCommit> commits = await GitHubRateLimitHandler.Delegate(
Client .Repository.Commit.GetAll, repoOwner, repoName, commitRequest, MaxSizeBatches);

a¥c

if (commits.Count < 100)

{
Console.WriteLine("{0}, {1}, Too few commits: {2}", repoOwner, repoName, commits.Count);
return;

}

IReadOnlyList <RepositoryTag> tags = await GitHubRateLimitHandler.Delegate (
Client.Repository.GetAllTags, repoOwner, repoName, MaxSizeBatches);

int numTags = 0;
foreach (RepositoryTag tag in tags)
{
GitHubCommit cmt = await GitHubRatelLimitHandler.Delegate (
Client.Repository.Commit.Get, repoOwner, repoName, tag.Commit.Sha);
if (cmt.Commit != null && cmt.Commit.Committer != null && cmt.Commit.Committer.Date < Filters.EndDateTimeWindow)
{
numTags++;
}
}
HashSet<string> members = new HashSet<string>();
foreach (GitHubCommit cmt in commits)
{
if (cmt.Committer != null && cmt.Committer.Login != null)
{
members .Add (cmt.Committer.Login);
}
if (cmt.Author != null && cmt.Author.Login != null)
{
members .Add (cmt . Author.Login);
}
}

// The following line was used to extract the characteristics for the communities analyzed by YOSHI.
//Console.WriteLine ("{0}/{1}: {2}, {3}, {4}, {5}",
//repoOwner , repoName, numTags, commits.Count, members.Count, repo.Language);

Branch mainBranch = await GitHubRateLimitHandler.Delegate (
Client .Repository.Branch.Get, repoOwner, repoName, repo.DefaultBranch);
GitHubCommit commit = await GitHubRateLimitHandler.Delegate (
Client .Repository.Commit.Get, repoOwner, repoName, mainBranch.Commit.Sha);
if (commit.Commit.Committer.Date <= new DateTime (2021, 4, 13))
{
Console.WriteLine ("{0}, {1}, Too old latest commit: {2}", repoOwner, repoName, commit.Commit.Committer.Date);
return;

IReadOnlyList <Release> releases = await GitHubRatelLimitHandler .Delegate(
Client .Repository.Release.GetAll, repoOwner, repoName, MaxSizeBatches);
IReadOnlyList <User> watchers = await GitHubRateLimitHandler.Delegate(
Client.Activity.Watching.GetAllWatchers, repoOwner, repoName, MaxSizeBatches);

> .

Console.WritelLine (repo.Id.ToString() + ’;’ + repoOwner + ’;’ + repoName + ";;" + releases.Count.ToString() +
+ commits.Count.ToString() + ’;’ + contributors.Count.ToString() + ’;’ + milestones.Count.ToString() + ’;’
+ repo.Language.ToString() + ";;;" + repo.StargazersCount.ToString() + ’;’ + watchers.Count.ToString() +
+ repo.ForksCount.ToString() + ’;’ + repo.Size.ToString() + ";;" + commit.Commit.Committer.Date.ToString()
+ ";https://github.com/" + repoOwner + ’/’ + repoName + ";;" + repo.Description);
}
catch
{
// Do nothing
}

> .

s

)

)

Listing F.6: Extract statistics: Filters class.

9¥¢

using System;

namespace YOSHI.DataRetrieverNS

{

/17
/17
/17
/17

<summary >

Class responsible for filtering the GitHub data. It checks that everything is within the given time window
(default 90 days + today). It filters out all data about GitHub users that are not considered members.
</summary >

public static class Filters

{

public static DateTimeOffset EndDateTimeWindow { get; private set; 1}
public static DateTimeOffset StartDateTimeWindow { get; private set; 1}

public static void SetTimeWindow(DateTimeOffset endDateTimeWindow)

{
int days = 90; // snapshot period of 3 months (approximated using 90 days)
// Note: Currently other length periods are not supported.
// Engagementprocessor uses hardcoded month thresholds of 30 and 60
EndDateTimeWindow = endDateTimeWindow;
StartDateTimeWindow = EndDateTimeWindow.AddDays (-days);

}

Lve

Listing F.7: Extract statistics: GitHubRateLimitHandler class.

using
using
using
using

Octokit;

System;
System.Threading;
System.Threading.Tasks;

namespace YOSHI.DataRetrieverNS

{

public static class GitHubRateLimitHandler

{

// AUXILIARY: Methods used to delegate GitHub API calls and handling of rate limits.

/17
/77
/17
/17
/17
/17
/17
/17
/77
/17

<summary >

This method is used to delegate the GitHub API requests. It handles the rate limit.

</summary >

<typeparam name="T">The type that func will return.</typeparam>

<param name="func">The function that we want to call.</param>

<param name="repoOwner">The name of the repository owner, whose repository we want data from.</param>
<param name="repoName">The name of the repository we want to get data from.</param>

<returns>No object or value is returned by this method when it completes.</returns>

<exception cref="Exception">Throws an exception if after 3 times of trying to retrieve data,

the data RatelLimitExceededException still occurs, or if another exception is thrown.</exception>

public async static Task<T> Delegate<T>(

Func<string, string, Task<T>> func,
string repoOwner,
string repoName)

for (int i = 0; i < 3; i++)
{
try
{
Task<T> task = func(repoOwner, repoName) ;
return await task;
}
catch (RatelLimitExceededException)
{
// When we exceed the rate limit we check when the limit resets and wait until that time before we try 2 more times.
WaitUntilReset ();
}

87¢

throw new Exception("Failed too many times to retrieve GitHub data.");

}

/// <param name="sha">Commit sha of the commit to retrieve.</param>
public async static Task<T> Delegate<T>(

Func<string, string, string, Task<T>> func,

string repoOwner,

string repoName,

string sha)

{
for (int i = 0; i < 3; i++)
{
try
{
Task<T> task = func(repoOwner, repoName, sha);
return await task;
}
catch (RatelimitExceededException)
{
// When we exceed the rate limit we check when the limit resets and wait until that time before we try 2 more times.
WaitUntilReset () ;
}
}
throw new Exception("Failed too many times to retrieve GitHub data.");
}

/// <param name="maxBatchSize">Setting API options to retrieve max batch sizes, reducing the number of requests.</param>
public async static Task<T> Delegate<T>(

Func<string, string, ApiOptions, Task<T>> func,

string repoOwner,

string repoName,

ApiOptions maxBatchSize)

{
for (int i = 0; i < 3; i++)
{
try
{
Task<T> task = func(repoOwner, repoName, maxBatchSize);
return await task;
}
catch (RatelLimitExceededException)
{

// When we exceed the rate limit we check when the limit resets and wait until that time before we try 2 more times.
WaitUntilReset () ;

6¥¢

}

throw new Exception("Failed too many times to retrieve GitHub data.");

}

/// <param name="maxBatchSize">Setting API options to retrieve max batch sizes, reducing the number of requests.</param>
public async static Task<T> Delegate<T>(

Func<string, string, CommitRequest, ApiOptions, Task<T>> func,

string repoOwner,

string repoName,

CommitRequest commitRequest,

ApiOptions maxBatchSize)

{
for (int i = 0; i < 3; i++)
{
try
{
Task<T> task = func(repoOwner, repoName, commitRequest, maxBatchSize);
return await task;
}
catch (RatelLimitExceededException)
{
// When we exceed the rate limit we check when the limit resets and wait until that time before we try 2 more times.
WaitUntilReset ();
}
}
throw new Exception("Failed too many times to retrieve GitHub data.");
}
/// <param name="state">The milestone request applying a state filter. Can be "open", "closed", or "all".

/// https://docs.github.com/en/rest/reference/issues#list-milestones
/// </param>
public async static Task<T> Delegate<T>(
Func<string, string, MilestoneRequest, ApiOptions, Task<T>> func,
string repoOwner,
string repolName,
MilestoneRequest state,
ApiOptions maxBatchSize)

{
for (int i = 0; i < 3; i++)
{
try
{

Task<T> task = func(repoOwner, repoName, state, maxBatchSize);

0G¢

}

return await task;

}

catch (RatelLimitExceededException)

{
// When we exceed the rate limit we check when the limit resets and
WaitUntilReset ();

}

}

throw new Exception("Failed too many times to retrieve GitHub data.");

/// <summary >

/// A method to take care of the waiting until the GitHub rate reset.
/// </summary>

private static void WaitUntilReset ()

{

Console.ForegroundColor = ConsoleColor.Magenta;
// Set the default wait time to one hour
TimeSpan timespan = TimeSpan.FromHours (1);

ApiInfo apilnfo = DataRetriever.Client.GetLastApiInfo();

RatelLimit ratelLimit = apilnfo?.Ratelimit;

DateTimeOffset? whenDoesThelLimitReset = rateLimit?.Reset;

if (whenDoesTheLimitReset != null)

{
DateTimeOffset limitReset = (DateTimeOffset)whenDoesTheLimitReset;
timespan = (DateTimeOffset)whenDoesThelLimitReset - DateTimeOffset.Now;
timespan = timespan.Add(TimeSpan.FromSeconds(30)); // Add 30 seconds to

wait until that

the timespan

time

before we try 2 more times.

Console.WriteLine ("GitHub Rate Limit reached. Time: " + DateTime.Now.ToString());
Console.WriteLine ("Waiting until: " + limitReset.AddSeconds (30).DateTime.ToLocalTime().ToString());
}
else
{
// If we don’t know the reset time, we wait the default time of 1 hour
Console.WriteLine ("Waiting until: " + DateTimeOffset.Now.DateTime.ToLocalTime ().AddHours(1));
}

Console.ResetColor(); // Reset before sleep, otherwise color remains even when application is closed during the sleep.

Thread.Sleep(timespan); // Wait until the rate limit resets
Console.ForegroundColor = ConsoleColor.Magenta;

Console.WriteLine ("Done waiting for the rate limit reset, continuing now: " + DateTime.Now.ToString());

Console.ResetColor ();

16¢

Appendix G

Yoshi 2: Input

In this chapter, we provide the detailed input of YosHI 2. First, we had to prepare
the CSV-file specifying which GitHub repositories we would like YOSHI 2 to analyze.
The CSV-file for the comparison between YOSHI [30] and YOSHI 2 is listed in
Listing . The CSV-file for the survey study (chapter 7) is listed in Listing
When running YOSHI 2, we were asked to provide the following inputs: the path to
the input CSV-file, the path to write the output, the name of the output file, the
number of Bing Maps API requests left, and the end date of the analysis window.
The first four inputs depend on the user. For the fifth input, the end date of the
analysis window, we specified “2017-05-01” for the comparison between Y OSHI and
YosHI 2, and “2021-07-21" for the survey study. Note that the end date is not
included in the analysis. Additionally, since YOSHI 2 uses some API calls that are
snapshots at the time of analysis, we made sure to apply YOSHI 2 on the 21st of
July, 2021, for the survey study.

Listing G.1: Input CSV-file specifying the GitHub repositories that YosHI 2 should
analyze, based on the communities used in YOSHI’s evaluation [30].

RepoOwner ,RepoName
netty ,netty
eoecn,android-app
arduino , Arduino

angular -ui,bootstrap
boto,boto

bundler ,bundler

c9,core

composer ,composer
cucumber , cucumber
emberjs ,data
gollum,gollum
EightMedia ,hammer. js
h5bp ,mobile-boilerplate
Modernizr ,Modernizr
mongoid ,mongoid

xamarin ,monodroid -samples
mozilla,pdf.js

scrapy ,scrapy

refinery ,refinerycms
saltstack,salt
sightmachine ,SimpleCV
hawkthorne ,hawkthorne-journey
square , SocketRocket

252

Listing G.2: Input CSV-file specifying the GitHub repositories that YosHI 2 should
analyze for the survey study.

RepoOwner ,RepoName
apache, couchdb

apache ,trafficserver
apache ,bookkeeper

apache ,dubbo

apache ,druid
apache,echarts
apache,cloudstack

apache ,airflow
apache,incubator -mxnet
apache, superset

apache ,openwhisk
apache,pulsar

apache ,rocketmq
apache,incubator-doris
apache ,camel -k
apache,iceberg

apache ,dolphinscheduler
apache ,apisix-dashboard
apache,skywalking

apache ,shardingsphere
apache,camel -quarkus
zephyrproject -rtos, zephyr
protocolbuffers ,protobuf
milvus-io,milvus
scikit-learn,scikit-learn

253

Appendix H

Yoshi 2: Detailed Results

In this chapter, we provide the detailed results reported by YOsHI 2. In Appendix 1.1,
we list the detailed results for the communities that were analyzed when comparing
YosHI 2 to YOSHI as described in Chapter . In Appendix , we provide the
detailed results for the communities analyzed in our survey evaluation of YOSHI 2,
described in Chapter

H.1 Yoshi 2’s Results in Our Comparison Between
Yoshi and Yoshi 2

In this section, we expand upon the results reported in Table ©.5. Note that out
of the 25 communities used in the evaluation of YOsHI [36], we were only able to
obtain results for 9 of them.

We provide more details related to the analysis period and the computed
characteristics, i.e., structure, geodispersion, formality, engagement, and longevity,
in Tables to . Then, we provide an overview of the computed characteristics
and the resulting community patterns in Table

254

Gge

Table H.1: YosHI 2’s results related to the analysis period in our comparison between YOSHI and YOSHI 2. The commit hashes represent

the first and last commit analyzed in the analysis period. Start- and end times are taken from these commits.

Community

FirstCommitHash

LastCommitHash

StartTime (+00:00)

EndTime (+00:00)

Arduino
Boto
Bundler
Composer
Data
Gollum
Modernizr
Scrapy

29613e21667dfc8632e4061db47ee289f96e9d55
leffc2601c8e641d23cde9b89453fd42634d417¢
3ef05361e8fc8b4acl1225f1dba8428¢66e953d27
363bab90falf45a3801f012d5b544175dab816d8
c36fddda27bdb7ba2cd1fc945114c1daf9eb388a
e7e7937678c616a759a7eda0996a08b13581d6ba
caelfcc0f0eb6c91bfc9610f11cf8a8d953183aa
d2e9ea0c88b7578c5fc8d4d37e5df9d078e¢9b884

d4458c0cafe6f9739c74d81ace3e0516¢cclehbdll
315b76e01e65fb742¢bc14170e5207d648bc649a
c660a2dcchfbd41a143741e4bd303fb9df123ca?
b07b4c3428a57b68e385ae3db0474e6¢5400789b
8bd124bbfa96657fedd35¢9c0a350b193d3ad19b
935a08015223¢711234993abd2126fbc93927a30
7db55bbfa9de67289892b94b60bf2{088¢11d669
Tfc11c13486ad47aaa007ec330e1007512237064

02/02/2017 10:36
09/02/2017 17:19
01,/02/2017 08:59
10/02/2017 12:32
03,/02/2017 00:33
02/02/2017 19:26
18/02/2017 19:37
31/01/2017 17:21

26,/04,/2017 10:49
02/03,/2017 15:49
30,04,/2017 23:34
28,/04,/2017 09:25
30,04,/2017 16:36
30,/04,/2017 18:49
13/04/2017 20:59
27/04/2017 21:58

9¢¢

Table H.2: YOsHI 2’s results related to community structure in our comparison between YOSHI and YOSHI 2, including structure metrics.

Community ‘ CommonProjects Followers PullReqlnteraction ‘ Structure

Arduino TRUE TRUE TRUE TRUE
Boto TRUE FALSE TRUE TRUE
Bundler TRUE TRUE TRUE TRUE
Composer TRUE TRUE TRUE TRUE
Data TRUE TRUE TRUE TRUE
Gollum TRUE TRUE TRUE TRUE
Modernizr TRUE TRUE TRUE TRUE
Scrapy TRUE TRUE TRUE TRUE

Table H.3: YosHI 2’s results related to community dispersion in our comparison between YOSHI and YOSHI 2, including dispersion
statistics and metrics. # Loc. stands for the number of known locations. # HLoc. is the number of locations in countries for which we had
Hofstede indices. Additional columns added for the alternative geodispersion measures in which average geographical and average cultural
distance were used.

Community ‘ # Members # Loc. # HLoc. ‘ VarGeoDist VarCultDist ‘ Dispersion ‘ AvgGeoDist AvgCultDist
Arduino 9 6 6 | 7201726.433 148.2638889 | 1897.613593 | 2639.715772 9.889612508
Boto 3 3 31 9515779.309 54.33333333 | 2181.264959 | 5966.321941 6.12825877
Bundler 31 24 23 | 17234239.25 348.3043478 | 2935.522743 | 6706.94117 18.14010206
Composer 27 23 23 | 9658895.981 255.241966 | 2197.629544 | 2800.450619 15.88211289
Data 28 23 23 | 9758240.631 258.5122873 | 2208.902345 | 4628.120899 15.29611949
Gollum 6 5 4|1 12284058.28 309.171875 | 2478.34294 | 5319.899287 15.24908628
Modernizr 7 6 6 | 29716673.11 33.29861111 | 3854.653448 | 8168.914008 4.825033076
Scrapy 26 18 18 | 23108648.96 487.7986111 | 3399.201139 | 7591.90374 22.08429711

Table H.4: YosHI 2’s results related to community formality in our comparison between YOSHI and YOSHI 2, including formality statistics
and metrics. # Contr. and # Collab. are the number of contributors and collaborators, respectively. MMT stands for the Mean
Membership Type. Additional column added to compute MMT using the bug present in YOSHI.

Community ‘ # Members # Contr. # Collab. MMT Milestones Lifetime | Formality ‘ MMT (YOsHI bug)

LG¢

Arduino 9 3 6 1.666667 25 4261.572 | 284.10476 0.33333334
Boto 3 0 3 2 5 3839.715 | 1535.8858 0
Bundler 31 3 28 1.903226 29 3280.884 | 215.31943 0.09677419
Composer 27 9 18 1.666667 11 2214.743 | 335.5671 0.33333334
Data 28 7 21 1.75 16 1961.606 | 214.55061 0.25
Gollum 6 1 5 1.833333 7 2589.037 | 678.08107 0.16666667
Modernizr 7 2 5 1.714286 3 2757.897 | 1575.9411 0.2857143
Scrapy 26 6 20 1.769231 14 3227.343 | 407.85102 0.23076923

Table H.5: YosHI 2’s results related to community engagement in our comparison between YOSHI and YOSHI 2, including engagement
metrics. Note that all metrics are medians and all distributions are monthly distributions.

Community ‘ # Comments/PR CommentsDistr. ActiveMember Watcher Stargazer CommitDistr. FileCollabDistr. ‘ Engagement

Arduino 0.5 0.666666667 0 0 0 0.666666667 0.666666667 2.5
Boto 1 0 0 0 0 0.333333333 0.333333333 1.6666666
Bundler 6 1 0 0 0 0.666666667 0.666666667 8.333333
Composer 1 0 0 0 0 0.333333333 0.333333333 1.6666666
Data 1 0 0 0 0.5 0.333333333 0.666666667 2.5
Gollum 1 1.5 0.5 0 0.5 0.5 0.333333333 4.3333335
Modernizr 0 0 0 0 1 0.666666667 0.333333333 2
Scrapy 1 0.333333333 0 0 0 0.666666667 0.666666667 2.6666667

Table H.6: YOSHI 2’s results related to community longevity in our comparison
between YOSHI and YOSHI 2. Note that only the mean committer longevity is used
to determine longevity.

Community MeanCommitterLongevity

Arduino
Boto
Bundler
Composer
Data
Gollum
Modernizr
Scrapy

683
983.6667
203.09677
510.51852
044.5357
484.83334
1449.2858
435.80768

Table H.7: An overview of the community characteristics and patterns computed
by YosHI 2 for the communities considered the comparison between YOSHI and

Y OSHI 2.

Community ‘ Structure Dispersion Formality Engagement Longevity ‘ Pattern
Arduino TRUE 1897.613593 284.10476 2.5 683 | SN, CoP
Boto TRUE 2181.264959 1535.8858 1.6666666 983.6667 | SN, CoP
Bundler TRUE 2935.522743 215.31943 8.333333 203.09677 | SN, CoP, IC
Composer TRUE 2197.629544 335.5671 1.6666666 510.51852 | SN, CoP
Data TRUE 2208.902345 214.55061 2.5 544.5357 | SN, CoP
Gollum TRUE 2478.34294 678.08107 4.3333335 484.83334 | SN, CoP, 1C
Modernizr TRUE 3854.653448 1575.9411 2 1449.2858 | SN, CoP
Scrapy TRUE 3399.201139 407.85102 2.6666667 435.80768 | SN, CoP

H.2 Yoshi 2’s Results in Our Survey Study

In this section, we expand upon the results reported in Table

. We provide more

details related to the analysis period, the computed characteristics, i.e., structure,

geodispersion, formality, engagement, and longevity, in Tables

to

. Then,

we provide an overview of the computed characteristics and the resulting community
patterns in Table

258

6G¢

Table H.8: YosHI 2’s results related to the analysis period in our survey study. The commit hashes represent the first and last commit
analyzed in the analysis period. Start- and end times are taken from these commits.

Community

FirstCommitHash

LastCommitHash

StartTime (400:00)

EndTime (400:00)

Couchdb
Trafficserver
Bookkeeper
Dubbo

Druid

Echarts
Cloudstack
Airflow
Incubator-Mxnet
Superset
Openwhisk
Pulsar

Rocketmq
Incubator-Doris
Camel-K

Iceberg
Dolphinscheduler
Apisix-Dashboard
Skywalking
Shardingsphere
Camel-Quarkus
Zephyr

Protobuf

Milvus
Scikit-Learn

bdb38184¢252dbd390bccb75d18db536d9240acd
76124222d179d55a2¢2a2e74806377e54df744a9
3¢9c7102538909fd3764ea7314e7618d6d9458fd
€93338749a584dcala98da9efe828e63b321dd7d
49a9¢3ffb7b2da3401696d583bc2cd52e83f77bf
85445d58754f3b236837ec49080d7e723cfb1b6e
49baa900484d62ddb0cc4938ccd66efl 7act31e9
al7db7883044889b2b2001cefc41a8960359a23f
Oec7cbeedbblacdf7ab6d4b1a8826a3b947e¢0dch
feld32dc2a1891159e6855d9114757bbd9ee3f56
f7ec9e30d2de3f0c3252¢32b300d4aa7412b15bf
57765bc2al1257bf2640abef03bae72d737a664al
¢3d464108e7¢099d3438debbab75e86{fd5{036¢
a803cecal6bcal919380f35270407915349abb1b
fla3ceb760838447afbe317{03{3¢4cf62625956
e87309¢7361ac553f10d1277b919392f5764b7fa
abdd2337b144df149a2031c3b26862ae41b4e936
8a1448611583fdc4b478e¢50a94ce188157488019
2d2ded441¢3c8017079e446bf56599e5fa30afaa
b967e3150eab2931b3a996514204b436e0aa7135
b0ad46a2ad09c¢3192f06910ef88361aae8ad2098
a9397e3b3a4d9136506b4cd3ecb0c84d59bbaf3b
bbd6999¢76a3007434b33cddd583a2ffech42881
3bb69430cb22beeb856731190c7c3684acTeda2
dbed806a7aad5d253cflcala3bcadbdabe391456

647aea29ce8431fa5c2049cc6dad7a9305ad3e6b
cfe034dc86£a240816452c2d0al437a7dbeabc8b
2346686¢3b8621a585ad678926adf60206227367
9¢b97e35a3776¢577a188858d401d74106f75759
1937b5c0daba933ebf150e62963f41978 1aectde
72¢62ce6c860144b2436199a04¢ 750264831673
1£743e911a17626d441872eebf66135771761¢83
eb3d685836116be0f67de2b9c8bc61b1f9a 73181
3480ba2c¢6df02bb907d3a975d354efa8697c4e71
5cc95bb3781abedelel 76b2e728b0a36de30a739
bi62f740057f5210ff05582d119fd692fb6c6341
5ad405988fabb4b28dbdbdb5aabc9a10802f39afl
a20f31bb3de242756542¢552d7212a7a40000ba4
94¢50012b2d60228861aaac0877decd550901ed2
b79976eb2{1e056f69cb0e59bae57d20fbechbb7
77903d6c472a8¢215¢6b96£82f1cce8d71be078b
6964c090c7alcb3d1d69f5fe70ca3025df9b4bed
799e69a29¢4017db7b50f4301f11cf0bad990a9bce
bd23f263e69097e0cb185be6d08c9eel2e83815f
1a3cdfad89962dd13c13a4624645ba7a6bac0fb9
d2ec142¢118eb5a227881{87d5687b674eab2ch3
24a4b0d8525f0e760945a0175a15d3a9efe9e0a9
d662ec9c2e4f8ca21cb500b25¢fe7430511014b2
9b1708f6e581bi64d0004056abce3340741bf449
ded59b5713bcebfcaa27d7d9d1de704¢96817870¢

22/04/2021 20:16
23/04/2021 14:35
26,/04/2021 01:16
22/04/2021 11:19
22/04/2021 22:33
22/04/2021 01:51
22/04/2021 08:02
22/04/2021 06:43
22/04/2021 01:29
22/04/2021 06:56
26,/04,/2021 13:37
22/04/2021 01:09
26,/04/2021 10:28
22/04/2021 03:29
22/04/2021 04:50
22/04/2021 16:14
22/04/2021 04:02
22/04/2021 06:14
22/04/2021 13:43
22/04/2021 07:14
22/04/2021 06:43
22/04,/2021 00:40
22/04,/2021 00:50
22/04/2021 01:23
22/04/2021 08:49

17/07/2021 16:36
20/07/2021 22:39
16/07/2021 02:36
20/07/2021 06:03
20,/07/2021 21:50
20/07/2021 07:54
20/07/2021 21:04
20/07/2021 22:54
16/07/2021 21:30
20/07/2021 21:04
06,/07/2021 20:50
20/07/2021 06:30
16/07/2021 04:18
19/07/2021 12:26
20/07/2021 18:43
20,/07/2021 21:00
20/07/2021 12:48
19/07/2021 08:55
20/07/2021 11:47
20/07/2021 16:01
20,/07/2021 18:24
20,/07/2021 23:59
16/07/2021 19:26
20/07/2021 14:33
20/07/2021 19:43

Table H.9: YOSHI 2’s results related to community structure in our survey study,
including structure metrics.

Community ‘ CommonProjects Followers PullReqlnteraction ‘ Structure
Couchdb TRUE TRUE TRUE TRUE
Trafficserver TRUE TRUE TRUE TRUE
Bookkeeper TRUE TRUE TRUE TRUE
Dubbo TRUE TRUE TRUE TRUE
Druid TRUE TRUE TRUE TRUE
Echarts TRUE TRUE TRUE TRUE
Cloudstack TRUE TRUE TRUE TRUE
Airflow TRUE TRUE TRUE TRUE
Incubator-Mxnet TRUE TRUE TRUE TRUE
Superset TRUE TRUE TRUE TRUE
Openwhisk TRUE TRUE TRUE TRUE
Pulsar TRUE TRUE TRUE TRUE
Rocketmq TRUE TRUE TRUE TRUE
Incubator-Doris TRUE TRUE TRUE TRUE
Camel-K TRUE TRUE TRUE TRUE
Iceberg TRUE TRUE TRUE TRUE
Dolphinscheduler TRUE TRUE TRUE TRUE
Apisix-Dashboard TRUE TRUE TRUE TRUE
Skywalking TRUE TRUE TRUE TRUE
Shardingsphere TRUE TRUE TRUE TRUE
Camel-Quarkus TRUE TRUE TRUE TRUE
Zephyr TRUE TRUE TRUE TRUE
Protobuf TRUE TRUE TRUE TRUE
Milvus TRUE TRUE TRUE TRUE
Scikit-Learn TRUE TRUE TRUE TRUE

260

Table H.10: YosHI 2’s results related to community dispersion in our survey study, including dispersion statistics and metrics. # Loc.
stands for the number of known locations. # HLoc. is the number of locations in countries for which we had Hofstede indices. Additional
columns added for the alternative geodispersion measures in which average geographical and average cultural distance were used. Note
that an even more detailed breakdown for the variance of cultural distance is included in Appendix

19¢

Community ‘ # Members # Loc. +# HLoc. ‘ VarGeoDist VarCultDist ‘ Dispersion ‘ AvgGeoDist AvgCultDist
Couchdb 9 3 3 87065.72 0 208.6453 856.2198 0
Trafficserver 31 14 14 16400867 237.1046 2863.661 4688.058 14.5679568
Bookkeeper 15 10 10 14955296 449.5225 2734.57 6778.253 19.7248427
Dubbo 31 14 14 350500.6 0 418.6291 785.3458 0
Druid 44 23 23 21268613 524.7108 3261.069 7686.494 21.5241442
Echarts 20 12 12 5994565 136.0104 1731.286 2327.19 11.4768661
Cloudstack 27 14 14 23359103 401.1862 3417.565 6667.37 19.9969141
Airflow 170 104 104 17951547 452.4583 2995.997 6963.033 21.1048083
Incubator-Mxnet 21 14 14 21660163 293.9541 3290.931 7007.229 15.1830975
Superset 85 47 46 18318799 448.5287 | 3026.487 7569.357 20.9101502
Openwhisk 10 8 8 20623544 551.3516 3211.238 6771.61 22.3705706
Pulsar 88 58 58 20056777 439.1879 3166.798 6351.92 19.9605694
Rocketmq 21 13 13 1195678 14.98225 773.2053 1414.804 3.06439758
Incubator-Doris 48 24 24 431731.6 0 464.6136 912.117 0
Camel-K 21 16 16 14805948 341.6338 2720.872 4227.69 18.3864613
Iceberg 47 26 26 15683936 394.655 2800.387 6567.001 18.720421
Dolphinscheduler 32 14 14 21654420 91.96939 3290.48 4279.315 8.07296173
Apisix-Dashboard 19 15 15 11565009 142.9444 2404.699 3411.436 11.6139887
Skywalking 46 24 24 28697563 207.5968 3787.992 3861.488 13.7443414
Shardingsphere 60 34 33 8803522 197.8264 2098.061 3156.777 13.8886707
Camel-Quarkus 18 14 14 21072756 312.8202 3246.003 5796.314 17.3553641
Zephyr 230 125 123 18254159 484.7939 3021.146 6212.703 21.963339
Protobuf 48 29 29 23468087 294.5279 3425.52 7348.819 16.2425832
Milvus 28 12 12 589498.4 0 542.9081 565.5842 0
Scikit-Learn 107 56 56 23243575 362.2108 3409.101 8539.359 18.7809432

Table H.11: YOSHI 2’s results related to community formality in our survey study, including formality statistics and metrics. # Contr.
and # Collab. are the number of contributors and collaborators, respectively. MMT stands for the Mean Membership Type. Additional
columns added to compute bugged metrics present in YOSHI's source code [30].

¢9¢

Community ‘ # Members # Contr. # Collab. ‘ MMT Milestones Lifetime ‘ Formality ‘ MMT (bug) Lifetime (bug)
Couchdb 9 1 8 | 1.8888888 6 4858.736146 | 1529.602048 | 0.11111111 633.7782986
Trafficserver 31 13 18 | 1.5806452 34 4301.940301 | 199.995332 | 0.41935483 1811.296991
Bookkeeper 15 11 4| 1.2666667 10 3760.911979 | 476.3821966 | 0.73333335 1328.954352
Dubbo 31 27 4 | 1.1290323 36 3560.623981 | 111.668319 | 0.87096775 2991.173507
Druid 44 30 14 | 1.3181819 39 3192.11287 | 107.8919336 0.6818182 2841.860984
Echarts 20 4 16 1.8 19 2971.9225 | 281.5505526 0.2 2478.986065
Cloudstack 27 20 71 1.2592592 17 3996.201944 | 296.0149449 0.7407407 1334.811574
Airflow 170 153 17 1.1 32 2479.059155 | 85.21765846 0.9 452.4149653
Incubator-Mxnet 21 15 6 | 1.2857143 4 2269.214688 | 729.3904434 | 0.71428573 165.1283681
Superset 85 58 27 | 1.3176471 5 2209.949537 | 582.3867197 | 0.68235296 91.31408565
Openwhisk 10 4 6 1.6 9 1963.918623 | 349.1410885 0.4 131.0215046
Pulsar 88 72 16 | 1.1818181 28 1777.092546 | 75.00714774 0.8181818 1525.721262
Rocketmq 21 10 11 | 1.5238096 15 1673.680718 | 170.0247163 | 0.47619048 951.7829861
Incubator-Doris 48 42 6 1.125 3 1438.107558 | 539.2903342 0.875 562.4890509
Camel-K 21 15 6 | 1.2857143 21 1054.414479 | 64.55598924 | 0.71428573 700.7161806
Iceberg 47 39 8 | 1.1702127 9 1314.963785 | 170.976369 | 0.82978725 793.6653241
Dolphinscheduler 32 26 6 1.1875 10 871.8399653 | 103.5309959 0.8125 580.1329051
Apisix-Dashboard 19 12 7| 1.3684211 12 748.9621181 | 85.40796379 0.6315789 470.2634954
Skywalking 46 41 5| 1.1086956 75 2082.344965 | 30.78248934 0.8913044 2012.399595
Shardingsphere 60 54 6 1.1 12 2010.133241 | 184.2622137 0.9 635.5359259
Camel-Quarkus 18 7 11 | 1.6111112 15 876.8110532 | 94.17600721 0.3888889 697.0360069
Zephyr 230 219 11| 1.047826 38 2421.710949 | 66.77714992 0.9521739 1122.018044
Protobuf 48 27 21 1.4375 24 4758.907049 | 285.0387034 0.5625 1799.870347
Milvus 28 12 16 | 1.5714285 17 855.125 | 79.04516447 | 0.42857143 548.8177199
Scikit-Learn 107 94 13 | 1.1214954 35 4214.261586 | 135.0364281 0.8785047 3304.29088

€9¢

Table H.12: YOSHI 2’s results related to community engagement in our survey study, including engagement metrics. Note that all metrics

are medians and all distributions are monthly distributions.

Community

‘# Comments/PR CommentsDistr. ActiveMember Watcher Stargazer CommitDistr. FileCollabDistr. ‘ Engagement

Couchdb
Trafficserver
Bookkeeper
Dubbo

Druid

Echarts
Cloudstack
Airflow
Incubator-Mxnet
Superset
Openwhisk
Pulsar

Rocketmq
Incubator-Doris
Camel-K

Iceberg
Dolphinscheduler
Apisix-Dashboard
Skywalking
Shardingsphere
Camel-Quarkus
Zephyr

Protobuf

Milvus
Scikit-Learn

o

N OO OO ONOODOOFRF P OOk OO O O

1

2
0.666666667
0.333333333
0.666666667
0.333333333
9
0.666666667
2
0.666666667
1
1.333333333
0
0.333333333
0.666666667
1.666666667
0.666666667
1.333333333
0.833333333
0.5
1.666666667
1.666666667
0.333333333
8.333333333
0.333333333

— = O O OO O OO D

SO OO H OO DD OO O OO oo oo ==

O OO0 HEFFRFEFHEEPFPORFEFREREPEFERERFRODODORRFRORO

1.666666667
1
0.333333333
0.333333333
0.333333333
0.666666667
1.333333333
0.333333333
0.666666667
0.666666667
0.5
0.666666667
0.333333333
0.666666667
0.666666667
0.666666667
0.333333333
0.666666667
0.666666667
0.333333333
1

1
0.333333333
8.333333333
0.333333333

0.333333333
0.333333333
0.333333333
0.333333333
0.333333333

1
0.666666667
0.333333333
0.333333333
0.333333333
0.333333333
0.333333333
0.666666667
0.333333333
0.666666667
0.333333333
0.333333333
0.333333333
0.333333333
0.333333333
0.666666667
0.666666667

1
0.666666667
0.333333333

5
7.333333333
1.333333333

3
3.333333333

3

16
1.333333333

4
3.666666667
4.833333333
5.333333333

2
3.333333333

3
6.666666667
3.333333333
3.333333333
3.833333333
3.166666667
6.333333333
3.333333333
1.666666667
21.33333333

3

Table H.13: YosHI 2’s results related to community longevity in our survey study.
Note that only the mean committer longevity is used to determine longevity.

Community MeanCommitterLongevity
Couchdb 1617.2222
Trafficserver 1731.9678
Bookkeeper 579.2
Dubbo 185.16129
Druid 604.8409
Echarts 478
Cloudstack 909.1852
Airflow 211.23529
Incubator-Mxnet 629.4286
Superset 323.1059
Openwhisk 1119.1
Pulsar 376.26135
Rocketmq 396.9524
Incubator-Doris 258.8125
Camel-K 422.57144
Iceberg 276.87234
Dolphinscheduler 144.1875
Apisix-Dashboard 181.63158
Skywalking 285.6087
Shardingsphere 166.85
Camel-Quarkus 427.1111
Zephyr 528.9609
Protobuf 442.625
Milvus 404.2143
Scikit-Learn 366.04672

264

Table H.14: An overview of the community characteristics and patterns computed
by YOSHI 2 for the communities considered in our survey study.

Community ‘ Structure Dispersion Formality Engagement Longevity ‘ Pattern
Couchdb TRUE 208.65 1529.602 5.00 1617.22 | SN, CoP, IC
Trafficserver TRUE 2863.66 199.99533 7.33 1731.97 | SN, CoP, IC
Bookkeeper TRUE 2734.57 476.3822 1.33 579.20 | SN, CoP
Dubbo TRUE 418.63 111.66832 3.00 185.16 | SN, CoP
Druid TRUE 3261.07 107.89193 3.33 604.84 | SN, CoP
Echarts TRUE 1731.29 281.55055 3.00 478.00 | SN, CoP
Cloudstack TRUE 3417.57 296.01494 16.00 909.19 | SN, CoP, IC
Airflow TRUE 2996.00 85.217658 1.33 211.24 | SN, CoP
Incubator-Mxnet TRUE 3290.93 729.39044 4.00 629.43 | SN, CoP, IC
Superset TRUE 3026.49 582.38672 3.67 323.11 | SN, CoP, IC
Openwhisk TRUE 3211.24 349.14109 4.83 1119.10 | SN, CoP, IC
Pulsar TRUE 3166.80 75.007148 5.33 376.26 | SN, CoP, IC
Rocketmq TRUE 773.21 170.02472 2.00 396.95 | SN, CoP
Incubator-Doris TRUE 464.61 539.29033 3.33 258.81 | SN, CoP
Camel-K TRUE 2720.87 64.555989 3.00 422.57 | SN, CoP
Iceberg TRUE 2800.39 170.97637 6.67 276.87 | SN, CoP, IC
Dolphinscheduler TRUE 3290.48 103.531 3.33 144.19 | SN, CoP
Apisix-Dashboard TRUE 2404.70 85.407964 3.33 181.63 | SN, CoP
Skywalking TRUE 3787.99 30.782489 3.83 285.61 | SN, CoP, IC
Shardingsphere TRUE 2098.06 184.26221 3.17 166.85 | SN, CoP
Camel-Quarkus TRUE 3246.00 94.176007 6.33 427.11 | SN, CoP, IC
Zephyr TRUE 3021.15 66.77715 3.33 528.96 | SN, CoP
Protobuf TRUE 3425.52 285.0387 1.67 442.63 | SN, CoP
Milvus TRUE 542.91 79.045164 21.33 404.21 | SN, CoP, IC
Scikit-Learn TRUE 3409.10 135.03643 3.00 366.05 | SN, CoP

265

Appendix 1

Kaiaulu: Configuration Files

To analyze a community with KATAULU [68], the user must prepare a configuration
file. Hence, we had to prepare configuration files for the 25 communities that we
analyzed in Chapter 7. In this chapter, we list our configuration files for each
community.

For each community, the user must determine which file paths are included in
the analysis based on file extensions. To determine which file extensions to whitelist,
we listed all tracked file extensions in a GitHub repository using the command:

git ls-tree -r HEAD --name-only | perl -ne ’print $1 if
— m/\.([".\/1+)8$/> | sort -u

We analyzed each file extension and determined whether the files included code
or not. Extensions of files likely to contain code were included in the configuration
files, whereas the others were not. Furthermore, it allows the user to blacklist file
paths containing specific text. Therefore, file paths for testing were excluded from
the analysis by specifying “test” for this blacklist.

Additionally, we had to set the start_commit and end_commit for each community.
Initially, we tried using the commit hashes from YOSHI 2’s analysis window, included
in its results (Table). However, due to the file paths whitelist, it occasionally
occurred that these commit hashes were not recognized by KAIAULU. Hence, we
manually adjusted the commit hashes to other hashes that would span the same
analysis period between 22 April and 21 July 2021. This way, even though KAIAULU
is more refined in its community analysis by whitelisting certain file paths and
blacklisting other file paths, the same period is analyzed.

The configuration files that we prepared were based on example files [68] and are
listed in Listings to

'https://stackoverflow.com/a/34088712 (visited on 31/08/2021)

266

https://stackoverflow.com/a/34088712

Listing I.1: KAIAULU configuration file for Apache Couchdb.

#

Kaiaulu - https://github.com/sailuh/kaiaulu

This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at https://mozilla.org/MPL/2.0/.

-*- yaml -*-

https://github.com/sailuh/kaiaulu

Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is,

without any warranty.

Please comment unused parameters for clarity

ata_path:

project_website:

git_url: https://github .com/apache/couchdb

git: “/Documents/GitHub /couchdb /. git

mbox_url: http://mail—archives.apache.org/mod-mbox/couchdb—dev/

mbox: ~/Documents/mbox—files /couchdb—dev.mbox

openhub:

Provide a folder path containing nvd cve feeds (e.g.
— mnvdcve -1.1-2018. json)

You can obtain them freely at: https://nvd.nist.gov/vuln/data-feeds

#nvd_feed: rawdata/nvdfeed

issue_tracker:

url:

types: bugzilla, jira, other

type: jira

interval:

H H HH

H O H K HH

**

H OHE H H O H O HEH R H

You can specify the intervals in 2 ways: window, or enumeration
window:
If using gitlog, use start_commit and end_commit. Timestamp is

~— inferred from gitlog
start_commit: bdb38184e¢252dbd390bcch75d18db536d9240acd
end_commit: 647 aea29ce8431fab5c2049cc6dad7a9305ad3ebb
Use datetime only if no gitlog is used in the analysis.
#start_datetime: 2013-05-01 00:00:00
#end_datetime: 2013-11-01 00:00:00
size_days: 90

enumeration:
If using gitlog, specify the commits
commit :
- 9eae9%e96f15e1f216162810cefd271a439a74223
- £14d2d568776b3708dd6a3077376e2331£9268b04
- c33a2ce74c84f0d435bfa2dd8953d132ebf7a77a
Use datetime only if no gitlog is used in the analysis.
< Timestamp is inferred from gitlog
datetime:
- 2013-05-01 00:00:00
- 2013-08-01 00:00:00
- 2013-11-01 00:00:00
tool:
depends :
accepts cpp, java, ruby, python, pom
code_language: python
Specify which types of Dependencies to keep - see Depends
< README .md for details.
keep_dependencies_type:
- Cast
- Call
- Import
- Return
- Set
- Use
- Implement
- ImplLink
- Extend
- Create

267

- Throw
- Parameter
- Contain
uctags:
See https://github.com/sailuh/kaiaulu/wiki/Universal -Ctags for
— details
keep_lines_type:
c:
- f # function definition
cpp:
- c # classes
- f # function definition
java:
- ¢ # classes
- m # methods
python:
- c # classes
- f # functions
r:
- f # functions
filter:
https://stackoverflow.com/q/34088711/
You can 1list all file types in a repository with the following
<~ command :
git ls-tree -r HEAD --name-only | perl -ne ’print $1 if
— m/\.([".\/1+)8$/’ | sort -u
keep_filepaths_ending_with:
- PY
- script
- j s
- src
- c
- CppP
- erl
- h
- http
- hrl
- psl
- rb
- sh
- src
remove_filepaths_containing:
- test
commit_message_id_regex:
#issue_id: 7
#cve_id: 7
Listing 1.2: KATAULU configuration file for Apache Trafficserver.
Kaiaulu - https://github.com/sailuh/kaiaulu
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at https://mozilla.org/MPL/2.0/.
#
-x- yaml -*-
https://github.com/sailuh/kaiaulu
#
Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is,
without any warranty.
#
Please comment unused parameters for clarity
data_path:

project_website:
git_url: https://github.com/apache/trafficserver
git: "/ Documents/GitHub/trafficserver /. git
mbox_url: http://mail—archives.apache.org/mod_mbox/trafficserver —dev/
mbox: ~/Documents/mbox—files /trafficserver —dev.mbox
openhub:
Provide a folder path containing nvd cve feeds (e.g.
< nvdcve -1.1-2018. json)

268

You can obtain them freely at: https://nvd.nist.gov/vuln/data-feeds

#nvd_feed: rawdata/nvdfeed
issue_tracker:
url:
types: bugzilla, jira, other
type: jira
interval:

You can specify the intervals in 2 ways: window, or enumeration
window:
If using gitlog, use start_commit and end_commit. Timestamp is

— inferred from gitlog
start_commit: 76124222d179d55a2c2a2e74806377e54df744a9
end_commit: cfe034dc86fa240816452c2d0al437a7dbeabc8b
end_commit: 099b55e9c1fa0636c19265db9cfdalf6f7376b41
Use datetime only if no gitlog is used in the analysis.
#start_datetime: 2013-05-01 00:00:00
#end_datetime: 2013-11-01 00:00:00
size_days: 90
enumeration:
If using gitlog, specify the commits
commit :
- 9eae9%9%e96f15e1f216162810cefd271a439a74223
- £1d2d568776b3708dd6a3077376e2331f9268b04
- c33a2ce74c84f0d435bfa2dd8953d132ebf7a77a
Use datetime only if no gitlog is used in the analysis.
< Timestamp is inferred from gitlog
datetime:
- 2013-05-01 00:00:00
- 2013-08-01 00:00:00
- 2013-11-01 00:00:00

H H HH

tool:
depends :
accepts cpp, java, ruby, python, pom
code_language: python
Specify which types of Dependencies to keep - see Depends
<~ README .md for details.
keep_dependencies_type:
- Cast
- Call
- Import
- Return
- Set
- Use
Implement
- ImplLink
- Extend
- Create
- Throw
- Parameter
- Contain
uctags:
See https://github.com/sailuh/kaiaulu/wiki/Universal -Ctags
<~ details
keep_lines_type:

H O H K HH

**

HOH O HHEHHHEHHEHHEHRHEHHR
|

- f # function definition

classes
function definition

classes
methods

classes
functions

HOH H HEH O HHEHHE R H

- f # functions

filter:

https://stackoverflow.com/q/34088711/

You can 1list all file types in a repository with the following
— command :

git ls-tree -r HEAD --name-only | perl -ne ’print $1 if

— m/\.([".\/1+)$/’ | sort -u

269

for

keep_filepaths_ending_with:

- sh

- h

- cc

R

- lua

- cpp

- hpp

- c

- m4

- css

- html

- java

- pl

- PL

- pm

- sql

-t
remove_filepaths_containing:

- test
commit_message_id_regex:
#issue_id: 7
#cve_id: 7

Listing 1.3: KAIAULU configuration file for Apache Bookkeeper.

#

Kaiaulu - https://github.com/sailuh/kaiaulu

This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at https://mozilla.org/MPL/2.0/.

-*%- yaml -*-
https://github.com/sailuh/kaiaulu

Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is,
without any warranty.

Please comment unused parameters for clarity

ata_path:

project_website:

git_url: https://github .com/apache/bookkeeper

git: "/ Documents/GitHub/bookkeeper /. git

mbox_url: http://mail—archives.apache.org/mod_mbox/bookkeeper —dev/

mbox: ~/Documents/mbox—files /bookkeeper —dev .mbox

openhub:

Provide a folder path containing nvd cve feeds (e.g.
< nvdcve -1.1-2018. json)

You can obtain them freely at: https://nvd.nist.gov/vuln/data-feeds

#nvd_feed: rawdata/nvdfeed

issue_tracker:

url:

types: bugzilla, jira, other

type: jira

interval:

H*

You can specify the intervals in 2 ways: window, or enumeration
window:
If using gitlog, use start_commit and end_commit. Timestamp is

— inferred from gitlog
start_commit: 3¢9c7102538909fd3764ea7314e7618d6d9458fd
end_commit: 2346686 c3b8621a585ad678926adf60206227367
end_commit: 31e8d1b44ffafd867d0eb2774085e4bl141aTach
Use datetime only if no gitlog is used in the analysis.
#start_datetime: 2013-05-01 00:00:00
#end_datetime: 2013-11-01 00:00:00
size_days: 90
enumeration:
If using gitlog, specify the commits
commit :
- 9eae9e96f15e1f216162810cefd271a439a74223
- £1d2d568776b3708dd6a3077376e2331£f9268b04

270

-
Use datetime only
<~ Timestamp is
datetime:
- 2013-05-01
- 2013-08-01
- 2013-11-01

if no gitlog is used
inferred from gitlog

00:00:00
00:00:00
00:00:00
tool:
depends :
accepts cpp, java, ruby,
code_language: python
Specify which types of Dependencies
<~ README .md for details.
keep_dependencies_type:
- Cast
- Call
- Import
- Return
- Set
- Use
- Implement
- ImplLink
- Extend
- Create
- Throw
- Parameter
- Contain
uctags:
See
<~ details
keep_lines_type:

H O H K H

python, pom

**

to

HOH O HHEHHHEHHEHHE R HEHH

function definition

classes
function definition

classes
methods

classes
functions

HOHE H HEH HEHHEHHEHHEHH
.
©
<
Y

functions
filter:
https://stackoverflow.
You can 1list all file
< command :
git ls-tree -r HEAD --name-only |
— m/\.([".\/1+)8$/’> | sort
keep_filepaths_ending_with:
- java
- groovy
- bat
- c
- cpp
- css
- groovy
- h
- hpp
- html
- js
- PY
- rb
- sass
- scss
- sh
remove_filepaths_containing:
- test
commit_message_id_regex:
#issue_id: ?
#cve_id: 7

com/q/34088711/
types in a repository

perl -ne

-u

c33a2ce74c84f0d435bfa2dd8953d132ebf7a77a

in the

keep -

with the

’print

analysis.

see Depends

https://github.com/sailuh/kaiaulu/wiki/Universal -Ctags

following

$1 if

for

271

Listing I.4: KAIAULU configuration file for Apache Dubbo.

without any warranty.

Please comment unused parameters for clarity
ata_path:
project_website:
git_url: https://github .com/apache/dubbo
git: "/ Documents/GitHub /dubbo /. git
mbox_url: http://mail—archives.apache.org/mod_-mbox/dubbo—dev/
mbox: ~/Documents/mbox—files /dubbo—dev.mbox
openhub:
Provide a folder path containing nvd cve feeds (e.g.
< nvdcve -1.1-2018. json)

You can obtain them freely at: https://nvd.nist.gov/vuln/data-feeds
#nvd_feed: rawdata/nvdfeed
issue_tracker:

url:

types: bugzilla, jira, other

type: jira
interval:

Kaiaulu - https://github.com/sailuh/kaiaulu

#

This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at https://mozilla.org/MPL/2.0/.

#

-*x- yaml -*-

https://github.com/sailuh/kaiaulu

#

Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is,
#

#

#

d

You can specify the intervals in 2 ways: window, or enumeration
window:
If using gitlog, use start_commit and end_commit. Timestamp is

— inferred from gitlog
start_commit: e93338749a584dcala98da9efe828e63b321dd7d
end_commit: 9¢cb97e35a3776c577a188858d401d74106f75759
Use datetime only if no gitlog is used in the analysis.
#start_datetime: 2013-05-01 00:00:00
#end_datetime: 2013-11-01 00:00:00
size_days: 90
enumeration:
If using gitlog, specify the commits
commit :
- 9eae9%e96f15e1f216162810cefd271a439a74223
- £1d4d2d568776b3708dd6a3077376e2331£9268b04
- ¢c33a2ce74c84f0d435bfa2dd8953d132ebf7a77a
Use datetime only if no gitlog is used in the analysis.
< Timestamp is inferred from gitlog
datetime :
- 2013-05-01 00:00:00
- 2013-08-01 00:00:00
- 2013-11-01 00:00:00
#
#

tool:
depends :
accepts cpp, java, ruby, python, pom
code_language: python
Specify which types of Dependencies to keep - see Depends

<~ README .md for details.
keep_dependencies_type:
- Cast
- Call
- Import
- Return
- Set
Use
- Implement
- ImplLink
- Extend
- Create
- Throw
- Parameter

HOHE O HHEHHHEHHEHHEHR
I

272

- Contain

uctags:

See https://github.com/sailuh/kaiaulu/wiki/Universal -Ctags for
<~ details

keep_lines_type:
c:
- f # function definition
cpp:
- c # classes
- f # function definition
java:
- ¢ # classes
- m # methods
python:
- c # classes
- f # functions
r:
- f # functions
filter:
https://stackoverflow.com/q/34088711/
You can 1list all file types in a repository with the following
<~ command :
git ls-tree -r HEAD --name-only | perl -ne ’print $1 if
— m/\.([".\/1+)$/’ | sort -u
keep_filepaths_ending_with:
- java
- mustache
- javascript
- sh
- bat
- cmd
remove_filepaths_containing:
- test

commit_message_id_regex:
#issue_id: 7
#cve_id: 7

Listing [.5: KATAULU configuration file for Apache Druid.

without any warranty.

Please comment unused parameters for clarity
ata_path:
project_website:
git_url: https://github.com/apache/druid
git: “/Documents/GitHub /druid /. git
mbox_url: http://mail—archives.apache.org/mod_-mbox/druid —dev/
mbox: ~/Documents/mbox—files /druid —dev . mbox
openhub:
Provide a folder path containing nvd cve feeds (e.g.
— mnvdcve -1.1-2018. json)

You can obtain them freely at: https://nvd.nist.gov/vuln/data-feeds
#nvd_feed: rawdata/nvdfeed
dissue_tracker:

url:

types: bugzilla, jira, other

type: jira
interval:
You can specify the intervals in 2 ways: window, or enumeration
window:

Kaiaulu - https://github.com/sailuh/kaiaulu

#

This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at https://mozilla.org/MPL/2.0/.

#

-x- yaml -*-

https://github.com/sailuh/kaiaulu

#

Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is,
#

#

#

d

273

If using gitlog, use start_commit and end_commit.

~— inferred from gitlog

Timestamp

start_commit: 49a9c¢3ffb7b2da3401696d583bc2cd52e83f77bf
end_commit: 1937b5c0dab5a933ebf150e62963f419781aecfde

end_commit: 94c1671eaf7b050972602fdedcb1971cdbde692d

Use datetime only if no gitlog is used in the analysis.

#start_datetime: 2013-05-01 00:00:00
#end_datetime: 2013-11-01 00:00:00
size_days: 90
enumeration:
If using gitlog, specify the commits
commit :
- 9eae9e96f15e1f216162810cefd271a439a74223
- £1d2d568776b3708dd6a3077376e2331f9268b04
- ¢c33a2ce74c84f0d435bfa2dd8953d132ebf7a77a

H H O H

Use datetime only if no gitlog is used in the analysis.

<~ Timestamp is inferred from gitlog

datetime :

- 2013-05-01 00:00:00
- 2013-08-01 00:00:00
- 2013-11-01 00:00:00
#tool:

depends :

accepts cpp, java, ruby, python, pom
code_language: python

E:3

Specify which types of Dependencies to keep - see

<~ README .md for details.
keep_dependencies_type:
- Cast
- Call
- Import
- Return
- Set
- Use
- Implement
- ImplLink
- Extend
- Create
- Throw
- Parameter
- Contain
uctags:

HOHE HE HHEHHHEHHEHHEH R

— details
keep_lines_type:
c:
- f # function definition
cpp:
classes
function definition

classes
methods

classes
functions

H OH HHEH HHHHHHE R

- f # functions
filter:
https://stackoverflow.com/q/34088711/
You can 1list all file types in a repository with the
<~ command :
git ls-tree -r HEAD --name-only | perl -ne ’print $1
S m/\N.([".\/1+)$/° | sort -u
keep_filepaths_ending_with:
- java
- js
- tsx
- ts
- mariadb
- sh
- scss

- html

274

Depends

See https://github.com/sailuh/kaiaulu/wiki/Universal -Ctags

following

if

is

for

- sql

- PY
- css
- ps
- R
remove_filepaths_containing:
- test
commit_message_id_regex:
#issue_id: 7
#cve_id: 7
Listing 1.6: KATAULU configuration file for Apache Echarts.
Kaiaulu - https://github.com/sailuh/kaiaulu
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at https://mozilla.org/MPL/2.0/.
#
-x- yaml -*-
https://github.com/sailuh/kaiaulu
#
Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is,
without any warranty.
#
Please comment unused parameters for clarity
data_path:
project_website:
git_url: https://github.com/apache/echarts
git: "/ Documents/GitHub /echarts /. git
mbox_url: http://mail—archives.apache.org/mod-mbox/echarts —dev/
mbox: ~/Documents/mbox—files /echarts —dev.mbox
openhub:
Provide a folder path containing nvd cve feeds (e.g.
— mnvdcve -1.1-2018. json)
You can obtain them freely at: https://nvd.nist.gov/vuln/data-feeds
#nvd_feed: rawdata/nvdfeed
issue_tracker:

url:
types: bugzilla, jira, other
type: jira

interval:

H H B H

HOHE K H

You can specify the intervals in 2 ways: window, or enumeration
window:
If using gitlog, use start_commit and end_commit. Timestamp is

~— inferred from gitlog
start _commit: 85445d58754f3b236837e¢c49080d7e723cfblbbe
end_commit: 72c¢62ce6c860144b2436199a04c750a6483ff673
Use datetime only if no gitlog is used in the analysis.
#start_datetime: 2013-05-01 00:00:00
#end_datetime: 2013-11-01 00:00:00
size_days: 90

enumeration:
If using gitlog, specify the commits
commit :
- 9eae9%9%e96f15e1f216162810cefd271a439a74223
- £1d4d2d568776b3708dd6a3077376e2331£9268b04
- c33a2ce74c84f0d435bfa2dd8953d132ebf7a77a
Use datetime only if no gitlog is used in the analysis.
< Timestamp is inferred from gitlog
datetime :
- 2013-05-01 00:00:00
- 2013-08-01 00:00:00
- 2013-11-01 00:00:00
tool:
depends :
accepts cpp, java, ruby, python, pom
code_language: python
Specify which types of Dependencies to keep - see Depends
<~ README .md for details.
keep_dependencies_type:

275

- Cast
- Call
- Import
- Return
- Set
- Use
- Implement
- ImplLink
- Extend
- Create
- Throw
- Parameter
- Contain
uctags:
See https://github.com/sailuh/kaiaulu/wiki/Universal -Ctags for
<~ details
keep_lines_type:
c:
- f # function definition
cpp:
- ¢ # classes
- f # function definition
java:
- c # classes
- m # methods
python:
- c # classes
- f # functions
r:
- f # functions
filter:
https://stackoverflow.com/q/34088711/
You can 1list all file types in a repository with the following
<> command :
git ls-tree -r HEAD --name-only | perl -ne ’print $1 if
— m/\.([".\/1+)8/> | sort -u
keep_filepaths_ending_with:
- ts
- html
- js
- css
remove_filepaths_containing:
- test
commit_message_id_regex:
#issue_id: 7
#cve_id: 7
Listing 1.7: KATAULU configuration file for Apache Cloudstack.
Kaiaulu - https://github.com/sailuh/kaiaulu
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at https://mozilla.org/MPL/2.0/.
#
-x- yaml -*-
https://github.com/sailuh/kaiaulu
#
Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is,
without any warranty.
#
Please comment unused parameters for clarity
data_path

project_website:
git_url: https://github.com/apache/cloudstack
git: "/ Documents/GitHub/cloudstack /. git
mbox_url: http://mail—archives.apache.org/mod_mbox/cloudstack —dev/
mbox: ~/Documents/mbox—files /cloudstack —dev.mbox
openhub:
Provide a folder path containing nvd cve feeds (e.g.
< nvdcve -1.1-2018. json)

276

You can obtain them freely at: https://nvd.nist.gov/vuln/data-feeds

#nvd_feed: rawdata/nvdfeed
issue_tracker:
url:
types: bugzilla, jira, other
type: jira
interval:

You can specify the intervals in 2 ways: window, or enumeration
window:
If using gitlog, use start_commit and end_commit. Timestamp is

— inferred from gitlog
start_commit: 49baa900484d62ddb0cc4938ccd66efl7acf31e9
start_commit: bdeedacaf3ec807d45ca306bcb370b2be926e10b
end_commit: 1f743e911a17626d441872eebf66135771761c83
Use datetime only if no gitlog is used in the analysis.
#start_datetime: 2013-05-01 00:00:00
#end_datetime: 2013-11-01 00:00:00
size_days: 90
enumeration:
If using gitlog, specify the commits
commit :
- 9eae9%9%e96f15e1f216162810cefd271a439a74223
- £1d2d568776b3708dd6a3077376e2331f9268b04
- c33a2ce74c84f0d435bfa2dd8953d132ebf7a77a
Use datetime only if no gitlog is used in the analysis.
< Timestamp is inferred from gitlog
datetime:
- 2013-05-01 00:00:00
- 2013-08-01 00:00:00
- 2013-11-01 00:00:00

H H HH

tool:
depends :
accepts cpp, java, ruby, python, pom
code_language: python
Specify which types of Dependencies to keep - see Depends
<~ README .md for details.
keep_dependencies_type:
- Cast
- Call
- Import
- Return
- Set
- Use
Implement
- ImplLink
- Extend
- Create
- Throw
- Parameter
- Contain
uctags:
See https://github.com/sailuh/kaiaulu/wiki/Universal -Ctags
<~ details
keep_lines_type:

H O H K HH

**

HOH O HHEHHHEHHEHHEHRHEHHR
|

- f # function definition

classes
function definition

classes
methods

classes
functions

HOH H HEH O HHEHHE R H

- f # functions

filter:

https://stackoverflow.com/q/34088711/

You can 1list all file types in a repository with the following
— command :

git ls-tree -r HEAD --name-only | perl -ne ’print $1 if

— m/\.([".\/1+)$/’ | sort -u

277

for

keep_filepaths_ending_with:
- java
- js
- vue
R
- sh
- sql
- css
- bat
- cs
- erb
- groovy
- html
- rb
remove_filepaths_containing:
- test
commit_message_id_regex:
#issue_id: ?
#cve_id: 7

Listing 1.8: KAIAULU configuration file for Apache Airflow.

without any warranty.

Please comment wunused parameters for clarity
ata_path:
project_website: https://airflow .apache.org/
git_url: https://github .com/apache/airflow
git: "/ Documents/GitHub/airflow /. git
mbox_url: http://mail—archives.apache.org/mod_mbox/airflow —dev/
mbox: ~/Documents/mbox—files /airflow —dev.mbox
openhub:
Provide a folder path containing nvd cve feeds (e.g.
— nvdcve -1.1-2018. json)

You can obtain them freely at: https://nvd.nist.gov/vuln/data-feeds
#nvd_feed: rawdata/nvdfeed
issue_tracker:

url:

types: bugzilla, jira, other

type: jira
interval:

Kaiaulu - https://github.com/sailuh/kaiaulu

#

This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at https://mozilla.org/MPL/2.0/.

#

-x- yaml -*-

https://github.com/sailuh/kaiaulu

#

Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is,
#

#

#

d

You can specify the intervals in 2 ways: window, or enumeration
window:
If using gitlog, use start_commit and end_commit. Timestamp is

~— inferred from gitlog
#start_commit: al1l7db7883044889b2b2001cefc41a8960359a23f
start_commit: 4c8a32c8c58f165158d0fd36dcce55e05514d3d7
end_commit: eb3d685836116be0f67de2b9c8bc61blf9a73f8f
end_commit: 960da8a9074a4fbb58881ea79f7dc9bc8fd58abc4
Use datetime only if no gitlog is used in the analysis.
#start_datetime: 2013-05-01 00:00:00
#end_datetime: 2013-11-01 00:00:00
size_days: 90
enumeration:
If using gitlog, specify the commits
commit :
- 9eae9e96f15e1f216162810cef4271a439a74223
- £1d4d2d568776b3708dd6a3077376e2331£9268b04
- c33a2ce74c84f0d435bfa2dd8953d132ebf7a77a
Use datetime only if no gitlog is used in the analysis.
<~ Timestamp is inferred from gitlog

H OH

278

datetime:
- 2013-05-01 00:00:00
- 2013-08-01 00:00:00
- 2013-11-01 00:00:00
#tool:
depends :
accepts cpp, java, ruby, python, pom
code_language: python
Specify which types of Dependencies to keep - see Depends
<~ README .md for details.
keep_dependencies_type:
- Cast
- Call
- Import
- Return
- Set
- Use
- Implement
- ImplLink
- Extend
- Create
- Throw
- Parameter
- Contain
uctags:
See https://github.com/sailuh/kaiaulu/wiki/Universal -Ctags for
— details
keep_lines_type:
c:
- f # function definition
cpp:
- ¢ # classes
- f # function definition
java:
- c # classes
- m # methods
python
- c # classes
- f # functions
r:
- f # functions
filter:

https://stackoverflow.com/q/34088711/
You can 1list all file types in a repository with the following
<~ command :
git ls-tree -r HEAD --name-only | perl -ne ’print $1 if
— m/\.([".\/1+)$/’ | sort -u
keep_filepaths_ending_with:
- bash
- bats
- css
- html
- ipynb
- j2
- jinja2
- js
- mako
- PY
- pyi
- sh
- sql
- ts
- tsx
remove_filepaths_containing:
- test
commit_message_id_regex:
#issue_id: ?
#cve_id: 7

Listing [.9: KAIAULU configuration file for Apache Incubator-Mxnet.

Kaiaulu - https://github.com/sailuh/kaiaulu
#

279

This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at https://mozilla.org/MPL/2.0/.

-*%- yaml -*-

https://github.com/sailuh/kaiaulu

Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is,

without any warranty.

Please comment unused parameters for clarity

ata_path:

project_website:

git_url: https://github .com/apache/incubator —mxnet

git: "/ Documents/GitHub/incubator —mxnet /. git

mbox_url: http://mail—archives.apache.org/mod_-mbox/mxnet—dev/

mbox: ~/Documents/mbox—files /mxnet—dev .mbox

openhub:

Provide a folder path containing nvd cve feeds (e.g.
— nvdcve -1.1-2018. json)

You can obtain them freely at: https://nvd.nist.gov/vuln/data-feeds

#nvd_feed: rawdata/nvdfeed

issue_tracker:

url:

types: bugzilla, jira, other

type: jira

interval:

H OH

H OHE H K E H

H*

HOH HE R HEH O HEHHHHE R H

You can specify the intervals in 2 ways: window, or enumeration
window:
If using gitlog, use start_commit and end_commit. Timestamp is

— inferred from gitlog
start_commit: Oec7cbcc3bblac4f7ab6d4b1a8826a3b947e0dch
start_commit: 294014840 cf087df6062a4ce9e¢61f6693106c050
end_commit: 3480ba2¢6df02bb907d3a975d354efa8697cde71
Use datetime only if no gitlog is used in the analysis.
#start_datetime: 2013-05-01 00:00:00
#end_datetime: 2013-11-01 00:00:00
size_days: 90

enumeration:
If using gitlog, specify the commits
commit :
- 9eae9%e96f15e1f216162810cefd271a439a74223
- £1d2d568776b3708dd6a3077376e2331£f9268b04
- ¢c33a2ce74c84f0d435bfa2dd8953d132ebf7a77a
Use datetime only if no gitlog is used in the analysis.
<~ Timestamp is inferred from gitlog
datetime :
- 2013-05-01 00:00:00
- 2013-08-01 00:00:00
- 2013-11-01 00:00:00
tool:
depends :
accepts cpp, java, ruby, python, pom
code_language: python
Specify which types of Dependencies to keep - see Depends
<~ README .md for details.
keep_dependencies_type:
- Cast
- Call
- Import
- Return
- Set
- Use
- Implement
- ImplLink
- Extend
- Create
- Throw
- Parameter
- Contain
uctags

280

H*

See https://github.com/sailuh/kaiaulu/wiki/Universal -Ctags for
<~ details
keep_lines_type:

- f # function definition

]
H

classes
- f # function definition

classes
methods

classes
functions

- f # functions
ilter:
https://stackoverflow.com/q/34088711/
You can 1list all file types in a repository with the following
<~ command :
git ls-tree -r HEAD --name-only | perl -ne ’print $1 if
— m/\.([".\/1+)8/> | sort -u
keep_filepaths_ending_with:
- sh
- groovy
- Py
- h
- cc
- cu
- cuh
- Cpp
- hpp
- html
- c
- css
- ipynb
- java
- js
- julia
- perl
- psl
- python
- PYX
- R
- rb
- r—lang
- sassrc
- scala
- scss
remove_filepaths_containing:
- test
commit_message_id_regex:
#issue_id: ?
#cve_id: 7

HOHE - HHHHHHEHHE R HEHHEH
]

**

Listing 1.10: KAIAULU configuration file for Apache Superset.

Kaiaulu - https://github.com/sailuh/kaiaulu

#

This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at https://mozilla.org/MPL/2.0/.

#

-x- yaml -*-

https://github.com/sailuh/kaiaulu

#

Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is,
without any warranty.

#

Please comment unused parameters for clarity

data_path:

281

project_website:
git_url: https://github.com/apache/superset
git: "/ Documents/GitHub /superset /. git
mbox_url: http://mail—archives.apache.org/mod_-mbox/superset —dev/
mbox: ~/Documents/mbox—files /superset —dev .mbox
openhub:
Provide a folder path containing nvd cve feeds (e.g.
— nvdcve -1.1-2018. json)

You can obtain them freely at: https://nvd.nist.gov/vuln/data-feeds

#nvd_feed: rawdata/nvdfeed
issue_tracker:
url:
types: bugzilla, jira, other
type: jira
interval:

You can specify the intervals in 2 ways: window, or enumeration
window:
If using gitlog, use start_commit and end_commit. Timestamp is

~ inferred from gitlog
start_commit: feld32dc2al189f159e¢6855d9114757bbd9%ee3f56
end_commit: 5¢cc95bb3781abedelel76b2e728b0a36de30a739
Use datetime only if no gitlog is used in the analysis.
#start_datetime: 2013-05-01 00:00:00
#end_datetime: 2013-11-01 00:00:00
size_days: 90
enumeration:
If using gitlog, specify the commits

commit :
- 9eae9%9e96f15e1f216162810cefd271a439a74223
- £1d4d2d568776b3708dd6a3077376e2331£9268b04
- ¢c33a2ce74c84f0d435bfa2dd8953d132ebf7a77a
Use datetime only if no gitlog is used in the analysis.
<~ Timestamp is inferred from gitlog
datetime :
- 2013-05-01 00:00:00
- 2013-08-01 00:00:00
- 2013-11-01 00:00:00
#tool:
depends :
accepts cpp, java, ruby, python, pom
code_language: python
Specify which types of Dependencies to keep - see Depends
— README .md for details.
keep_dependencies_type:
- Cast
- Call
- Import
- Return
- Set
- Use
- Implement
- ImplLink
- Extend
- Create
- Throw
- Parameter
- Contain
uctags:
See https://github.com/sailuh/kaiaulu/wiki/Universal -Ctags
<~ details
keep_lines_type:
c:
- f # function definition
cpp:
- c # classes
- f # function definition
java:
- c # classes
- m # methods
python:
- ¢ # classes
- f # functions
r:

282

for

#

- f # functions

filter:
https://stackoverflow.com/q/34088711/
You can list all file types in a repository with the following
<~ command :
git ls-tree -r HEAD --name-only | perl -ne ’print $1 if
— m/\.([".\/1+)$/’ | sort -u
keep_filepaths_ending_with:
- PY
- tsx
- ts
- jsx
- js
- sh
- html
- css
- j2
- jade
- mako
- scss
remove_filepaths_containing:
- test
commit_message_id_regex:
#issue_id: 7
#cve_id: 7
Listing I.11: KAIAULU configuration file for Apache Openwhisk.
Kaiaulu - https://github.com/sailuh/kaiaulu
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at https://mozilla.org/MPL/2.0/.
#
-*x- yaml -*-
https://github.com/sailuh/kaiaulu
#
Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is,
without any warranty.
#
Please comment unused parameters for clarity
data_path:
project_website:
git_url: https://github .com/apache/openwhisk
git: "/ Documents/GitHub/openwhisk /. git
mbox_url: http://mail—archives.apache.org/mod_-mbox/openwhisk —dev/
mbox: ~/Documents/mbox—files /openwhisk —dev .mbox
openhub:
Provide a folder path containing nvd cve feeds (e.g.
<~ nvdcve -1.1-2018. json)
You can obtain them freely at: https://nvd.nist.gov/vuln/data-feeds
#nvd_feed: rawdata/nvdfeed
issue_tracker:

url:
types: bugzilla, jira, other
type: jira

interval:

#

You can specify the intervals in 2 ways: window , or enumeration
window:
If using gitlog, use start_commit and end_commit. Timestamp is

<~ inferred from gitlog

start_commit: f7ec9e30d2de3f0c3252e32b300d4aa7412b15bf
end_commit: bf62f740057f5210ff05582d119fd692fb6c6341
start_commit: 8bbcd517aac827d073b40b6c55al1lel645272ad68
end_commit: 0cdfdb3ecb20fbffl11e401c34143fe0e8ff61f83
Use datetime only if no gitlog is used in the analysis.
#start_datetime: 2013-05-01 00:00:00

#end_datetime: 2013-11-01 00:00:00

size_days: 90
enumeration:

If using gitlog, specify the commits

283

commit :
- 9eae9%e96f15e1f216162810cefd271a439a74223
- £1d4d2d568776b3708dd6a3077376e2331£9268b04
- ¢c332a2ce74c84f0d435bfa2dd8953d132ebf7a77a
Use datetime only if no gitlog is used in the
< Timestamp is inferred from gitlog

H*H H HH

datetime:
- 2013-05-01 00:00:00
- 2013-08-01 00:00:00
- 2013-11-01 00:00:00
#tool:
depends :
accepts cpp, java, ruby, python, pom
code_language: python

Specify which types of Dependencies to
<~ README .md for details.

keep_dependencies_type:

- Cast

- Call

- Import

- Return

- Set

- Use

- Implement

ImplLink

- Extend

- Create

- Throw

- Parameter

- Contain

uctags:
See

— details
keep_lines_type:

c:

keep - see

HOH HE O H HHHHHEH R HEHHH
I

function definition

classes
function definition

classes
methods

classes
functions

H OHE H H H HEH HEHHEHHEHHE
.
»
<
»

functions
filter:
https://stackoverflow.
You can 1list all file
<~ command :
git ls-tree -r HEAD --name-only |
— m/\.([".\/1+)8$/’> | sort -u
keep_filepaths_ending_with:
- scala
- j2
- Py
- sh
- groovy
- java
- bat
- bal
- cs
- css
- html
- js
- lua
- swift
remove_filepaths_containing:
- test
commit_message_id_regex:
#issue_id: 7
#cve_id: 7

com/q/34088711/

types in a repository with the

perl -ne ’print $1

analysis.

Depends

https://github.com/sailuh/kaiaulu/wiki/Universal -Ctags

following

if

for

284

Listing 1.12: KATAULU configuration file for Apache Pulsar.

#

Kaiaulu - https://github.com/sailuh/kaiaulu

This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at https://mozilla.org/MPL/2.0/.

-*x- yaml -*-

https://github.com/sailuh/kaiaulu

Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is,

without any warranty.

Please comment unused parameters for clarity
ata_path:
project_website:
git_url: https://github.com/apache/pulsar
git: "/ Documents/GitHub/pulsar /. git
mbox_url: http://mail—archives.apache.org/mod-mbox/pulsar —dev/
mbox: ~/Documents/mbox—files /pulsar —dev . mbox
openhub:
Provide a folder path containing nvd cve feeds (e.g.
< nvdcve -1.1-2018. json)

You can obtain them freely at: https://nvd.nist.gov/vuln/data-feeds

#nvd_feed: rawdata/nvdfeed
issue_tracker:

url:

types: bugzilla, jira, other
type: jira

interval:

H H HH

H OH K O H

**

H OH H H K HH R

You can specify the intervals in 2 ways: window, or enumeration
window:
If using gitlog, use start_commit and end_commit. Timestamp is

~— inferred from gitlog
start_commit: 57765 bc2al257bf2640abef03bae72d737a664al
end_commit: 5ad405988fabb4b28dbdbdb5aa5c9a10802f39afl
Use datetime only if no gitlog is used in the analysis.
#start_datetime: 2013-05-01 00:00:00
#end_datetime: 2013-11-01 00:00:00
size_days: 90

enumeration:
If using gitlog, specify the commits
commit :
- 9eae9%9%e96f15e1f216162810cefd271a439a74223
- £1d4d2d568776b3708dd6a3077376e2331£9268b04
- c33a2ce74c84f0d435bfa2dd8953d132ebf7a77a
Use datetime only if no gitlog is used in the analysis.
< Timestamp is inferred from gitlog
datetime :
- 2013-05-01 00:00:00
- 2013-08-01 00:00:00
- 2013-11-01 00:00:00
tool:
depends :
accepts cpp, java, ruby, python, pom
code_language: python
Specify which types of Dependencies to keep - see Depends
<~ README .md for details.
keep_dependencies_type:
- Cast
- Call
- Import
- Return
- Set
- Use
- Implement
- ImplLink
- Extend
- Create

285

- Throw
- Parameter
- Contain
uctags:
See https://github.com/sailuh/kaiaulu/wiki/Universal -Ctags for
— details
keep_lines_type:
c:
- f # function definition
cpp:
- ¢ # classes
- f # function definition
java:
- ¢ # classes
- m # methods
python:
- c # classes
- f # functions
r:
- f # functions
filter:
https://stackoverflow.com/q/34088711/
You can 1list all file types in a repository with the following
<~ command :
git ls-tree -r HEAD --name-only | perl -ne ’print $1 if
— m/\.([".\/1+)8$/’ | sort -u
keep_filepaths_ending_with:
- java
- Py
- cc
- go
- sh
- css
- html
- js
- h
- c
- cmd
- hpp
- rb
remove_filepaths_containing:
- test
commit_message_id_regex:
#issue_id: 7
#cve_id: 7
Listing [.13: KAIAULU configuration file for Apache Rocketmg.
Kaiaulu - https://github.com/sailuh/kaiaulu
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at https://mozilla.org/MPL/2.0/.
#
-x- yaml -*-
https://github.com/sailuh/kaiaulu
#
Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is,
without any warranty.
#
Please comment unused parameters for clarity
data_path:

project_website:
git_url: https://github .com/apache/rocketmq
git: "/ Documents/GitHub /rocketmq /. git
mbox_url: http://mail—archives.apache.org/mod-mbox/rocketmq—dev/
mbox: ~/Documents /mbox—files /rocketmq—dev .mbox
openhub:
Provide a folder path containing nvd cve feeds (e.g.
— nvdcve -1.1-2018. json)
You can obtain them freely at: https://nvd.nist.gov/vuln/data-feeds

286

#nvd_feed: rawdata/nvdfeed

issue_tracker:
url:
types: bugzilla, jira, other
type: jira
interval:
You can specify the intervals in 2 ways: window, or enumeration
window:
If using gitlog, use start_commit and end_commit. Timestamp
<~ inferred from gitlog
start_commit: ¢3d464108e7c099d3438debbab75e86ffd5f036¢
#end_commit: a20f31bb3de242756542c552d7212a7a40000ba4d
end_commit: 35al15b6619adcc6bcdc544a690f1b90802af5f7a
Use datetime only if no gitlog is used in the analysis.
#start_datetime: 2013-05-01 00:00:00
#end_datetime: 2013-11-01 00:00:00
size_days: 90
enumeration:
If using gitlog, specify the commits
commit :
- 9eae9%e96f15e1f216162810cefd271a439a74223
- £1d4d2d568776b3708dd6a3077376e2331£9268b04
- c33a2ce74c84f0d435bfa2dd8953d132ebf7a77a
Use datetime only if no gitlog is used in the analysis.
<~ Timestamp is inferred from gitlog
datetime :
- 2013-05-01 00:00:00
- 2013-08-01 00:00:00
- 2013-11-01 00:00:00
#tool:
depends :
accepts cpp, java, ruby, python, pom
code_language: python
Specify which types of Dependencies to keep - see Depends
<~ README .md for details.
keep_dependencies_type:
- Cast
- Call
- Import
- Return
- Set
- Use
- Implement
- ImplLink
- Extend
- Create
- Throw
- Parameter
- Contain
uctags:
See https://github.com/sailuh/kaiaulu/wiki/Universal -Ctags
— details
keep_lines_type:
c:
- f # function definition
cpp:
- c # classes
- f # function definition
java:
- ¢ # classes
- m # methods
python:
- c # classes
- f # functions
r:
- f # functions
filter:
https://stackoverflow.com/q/34088711/
You can 1list all file types in a repository with the following
<~ command :
git ls-tree -r HEAD --name-only | perl -ne ’print $1 if

— m/\.([".\/1+)$/> | sort
keep_filepaths_ending_with:

-u

287

is

for

- java

- sh
- cmd
- dd
- PY
- sql
remove_filepaths_containing:
- test
commit_message_id_regex:
#issue_id: 7
#cve_id: 7
Listing 1.14: KAIAULU configuration file for Apache Incubator-Doris.
Kaiaulu - https://github.com/sailuh/kaiaulu
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at https://mozilla.org/MPL/2.0/.
#
-*x- yaml -*-
https://github.com/sailuh/kaiaulu
#
Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is,
without any warranty.
#
Please comment unused parameters for clarity
data_path:
project_website:
git_url: https://github.com/apache/incubator —doris
git: "/ Documents/GitHub/incubator —doris /. git
mbox_url: http://mail—archives.apache.org/mod_-mbox/doris —dev/
mbox: ~/Documents/mbox—files /doris —dev.mbox
openhub:
Provide a folder path containing nvd cve feeds (e.g.
— mnvdcve -1.1-2018. json)
You can obtain them freely at: https://nvd.nist.gov/vuln/data-feeds
#nvd_feed: rawdata/nvdfeed
issue_tracker:

url:
types: bugzilla, jira, other
type: jira

interval:

You can specify the intervals in 2 ways: window, or enumeration
window:
If using gitlog, use start_commit and end_commit. Timestamp is

— inferred from gitlog
start_commit: a803ceea86bcal919380f35270407915349abblb
end_commit: 94¢50012b2d60228861laaac0877decdb550901ed?2
Use datetime only if no gitlog is used in the analysis.
#start_datetime: 2013-05-01 00:00:00
#end_datetime: 2013-11-01 00:00:00
size_days: 90
enumeration:
If using gitlog, specify the commits
commit :
- 9eae9%e96f15e1f216162810cefd271a439a74223
- £1d4d2d568776b3708dd6a3077376e2331£9268b04
- ¢c332a2ce74c84f0d435bfa2dd8953d132ebf7a77a
Use datetime only if no gitlog is used in the analysis.
< Timestamp is inferred from gitlog
datetime :
- 2013-05-01 00:00:00
- 2013-08-01 00:00:00
- 2013-11-01 00:00:00
tool:
depends :
accepts cpp, java, ruby, python, pom
code_language: python
Specify which types of Dependencies to keep - see Depends
<~ README .md for details.

288

HOH H O H HHH R HEH R HEHHH

HOH o HHEH K HHHHHE R HEHRH

**

keep_dependencies_type:
- Cast
- Call
- Import
- Return
- Set
- Use
- Implement
- ImplLink
- Extend
- Create
- Throw
- Parameter
- Contain
uctags:
See https://github.com/sailuh/kaiaulu/wiki/Universal -Ctags for
— details
keep_lines_type:
c:
- f # function definition
cpp:
- c # classes
- f # function definition

- c # classes
- m # methods

- ¢ # classes
- f # functions

- f # functions
ilter:
https://stackoverflow.com/q/34088711/
You can 1list all file types in a repository with the following
<~ command :
git ls-tree -r HEAD --name-only | perl -ne ’print $1 if

— m/\.([".\/1+)$/’> | sort -u
keep_filepaths_ending_with:

- java

- h

- Cpp

- js

- thrift

- sh

- hpp

- PY

- cc

- scala

- c

- css

- go

- html

- mustache

- php

- rb

- s

- ts

- tsx
remove_filepaths_containing:

- test
commit_message_id_regex:
#issue_id: ?

#cve_id: 7?7

Listing [.15: KAIAULU configuration file for Apache Camel-K.

HOH K H

Kaiaulu - https://github.com/sailuh/kaiaulu

This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at https://mozilla.org/MPL/2.0/.

-*x- yaml -*-

289

https://github.com/sailuh/kaiaulu

Copying and distribution of this file, with or without modification,

#
#
#
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is,
without any warranty.

#

#

d

Please comment unused parameters for clarity
ata_path:
project_website:
git_url: https://github.com/apache/camel—k
git: “/Documents/GitHub /camel—k /. git
mbox_url: http://mail—archives.apache.org/mod-mbox/camel—dev/
mbox: ~/Documents/mbox—files /camel—dev .mbox
openhub:
Provide a folder path containing nvd cve feeds (e.g.
<~ mnvdcve -1.1-2018. json)

You can obtain them freely at: https://nvd.nist.gov/vuln/data-feeds

#nvd_feed: rawdata/nvdfeed
issue_tracker:
url:
types: bugzilla, jira, other
type: jira
interval:

You can specify the intervals in 2 ways: window, or enumeration
window:
If using gitlog, use start_commit and end_commit. Timestamp is

~— inferred from gitlog
start_commit: f1a3ceb760838447afbe317f03f3c4cf62625956
start_commit: 7d6885412fc503edeld577e8bd4a2a71ddb5c743
end_commit: b79976eb2f1e056f6f9cb0e59baeb7d20fbecbb?
end_commit: 34d2c¢f5d47fa78acd8708733387185ccf606106¢e
Use datetime only if no gitlog is used in the analysis.
#start_datetime: 2013-05-01 00:00:00
#end_datetime: 2013-11-01 00:00:00
size_days: 90
enumeration:
If using gitlog, specify the commits

commit :
- 9eae9%e96f15e1f216162810cefd271a439a74223
- £1d4d2d568776b3708dd6a3077376e2331£9268b04
- c33a2ce74c84f0d435bfa2dd8953d132ebf7a77a
Use datetime only if no gitlog is used in the analysis.
< Timestamp is inferred from gitlog
datetime :
- 2013-05-01 00:00:00
- 2013-08-01 00:00:00
- 2013-11-01 00:00:00
#tool:
depends :
accepts cpp, java, ruby, python, pom
code_language: python
Specify which types of Dependencies to keep - see Depends
<~ README .md for details.
keep_dependencies_type:
- Cast
- Call
- Import
- Return
- Set
- Use
- Implement
- ImplLink
- Extend
- Create
- Throw
- Parameter
- Contain
uctags:
See https://github.com/sailuh/kaiaulu/wiki/Universal -Ctags for
<~ details
keep_lines_type:
c:

290

- f # function definition
cpp:
- c # classes
- f # function definition
java:
- c # classes
- m # methods
python:
- ¢ # classes
- f # functions
r:
- f # functions
filter:
https://stackoverflow.com/q/34088711/
You can 1list all file types in a repository with the following
<~ command :
git ls-tree -r HEAD --name-only | perl -ne ’print $1 if
— m/\.([".\/1+)$/’ | sort -u
keep_filepaths_ending_with:
- go
- sh
- groovy
- java
- js
- html
remove_filepaths_containing:
- test
commit_message_id_regex:
#issue_id: 7
#cve_id: 7
Listing 1.16: KAIAULU configuration file for Apache Iceberg.
Kaiaulu - https://github.com/sailuh/kaiaulu
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at https://mozilla.org/MPL/2.0/.
#
-*x- yaml -*-
https://github.com/sailuh/kaiaulu
#
Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is,
without any warranty.
#
Please comment unused parameters for clarity
data_path:

#

project_website:
git_url: https://github .com/apache/iceberg
git: "/ Documents/GitHub/iceberg /. git
mbox_url: http://mail—archives.apache.org/mod_mbox/iceberg —dev/
mbox: ~/Documents/mbox—files /iceberg —dev.mbox
openhub:
Provide a folder path containing nvd cve feeds (e.g.
< nvdcve -1.1-2018. json)
You can obtain them freely at: https://nvd.nist.gov/vuln/data-feeds
#nvd_feed: rawdata/nvdfeed
issue_tracker:
url:
types: bugzilla, jira, other
type: jira

interval:

You can specify the intervals in 2 ways: window, or enumeration
window:
If using gitlog, use start_commit and end_commit. Timestamp is

— inferred from gitlog
start_commit: e87309c7361ac553f10d1277b919392f5764b7fa
end_commit: 77903d6c47aa8e215c6b96f82f1cce8d71be078Db
end_commit: 1b3dbb6f13110eb734488d32e93e0fa8d23e9385
Use datetime only if no gitlog is used in the analysis.
#start_datetime: 2013-05-01 00:00:00

291

#end_datetime: 2013-11-01 00:00:00
size_days: 90
enumeration:
If using gitlog, specify the commits
commit :
- 9eae9%9e96f15e1f216162810cefd271a439a74223
- £1d4d2d568776b3708dd6a3077376e2331£9268b04
- ¢c33a2ce74c84f0d435bfa2dd8953d132ebf7a77a
Use datetime only if no gitlog is used in the analysis.
<~ Timestamp is inferred from gitlog
datetime :
- 2013-05-01 00:00:00
- 2013-08-01 00:00:00
- 2013-11-01 00:00:00

H H

tool:
depends :
accepts cpp, java, ruby, python, pom
code_language: python
Specify which types of Dependencies to keep - see Depends
— README .md for details.
keep_dependencies_type:
- Cast
- Call
- Import
- Return
- Set
- Use
- Implement
- ImplLink
- Extend
- Create
- Throw
- Parameter
- Contain
uctags:
See https://github.com/sailuh/kaiaulu/wiki/Universal -Ctags for
<~ details
keep_lines_type:

HOH H K B

**

HOHE O R HE H HHHHHHE R

- f # function definition

classes
function definition

classes
methods

classes
functions

HOH H HE H HHEHHEHHE R H
|

- f # functions
filter:
https://stackoverflow.com/q/34088711/
You can 1list all file types in a repository with the following
<~ command :
git ls-tree -r HEAD --name-only | perl -ne ’print $1 if
— m/\.([".\/1+)8$/> | sort -u
keep_filepaths_ending_with:
- java
- css
- scala
- PY
- html
- ipynb
- js
- sh
- sql
remove_filepaths_containing:
- test
commit_message_id_regex:
#issue_id: 7
#cve_id: 7

292

Listing 1.17: KAIAULU configuration file for Apache Dolphinscheduler.

#

Kaiaulu - https://github.com/sailuh/kaiaulu

This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at https://mozilla.org/MPL/2.0/.

-*- yaml -*-

https://github.com/sailuh/kaiaulu

Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is,

without any warranty.

Please comment unused parameters for clarity

ata_path:

project_website:

git_url: https://github.com/apache/dolphinscheduler

git: "/ Documents/GitHub/dolphinscheduler /. git

mbox_url:
< http://mail—archives .apache.org/mod_-mbox/dolphinscheduler —dev/

mbox: ~/Documents/mbox—files /dolphinscheduler —dev .mbox

openhub:

Provide a folder path containing nvd cve feeds (e.g.
— nvdcve -1.1-2018. json)

You can obtain them freely at: https://nvd.nist.gov/vuln/data-feeds

#nvd_feed: rawdata/nvdfeed

issue_tracker:

url:

types: bugzilla, jira, other

type: jira

interval:

H H H

H OHE H O H

**

HOHE O HHEH K HEH R

You can specify the intervals in 2 ways: window, or enumeration
window:
If using gitlog, use start_commit and end_commit. Timestamp is

~— inferred from gitlog
start_commit: abdd2337b144df149a2031c3b26862ae41b4e936
end_commit: 6964 c090c7alcb3d1d69f5fe70ca3025df9b4be3
Use datetime only if no gitlog is used in the analysis.
#start_datetime: 2013-05-01 00:00:00
#end_datetime: 2013-11-01 00:00:00
size_days: 90

enumeration:
If using gitlog, specify the commits
commit :
- 9eae9%9%e96f15e1f216162810cefd271a439a74223
- £1d4d2d568776b3708dd6a3077376e2331£9268b04
- c33a2ce74c84f0d435bfa2dd8953d132ebf7a77a
Use datetime only if no gitlog is used in the analysis.
< Timestamp is inferred from gitlog
datetime :
- 2013-05-01 00:00:00
- 2013-08-01 00:00:00
- 2013-11-01 00:00:00
tool:
depends :
accepts cpp, java, ruby, python, pom
code_language: python
Specify which types of Dependencies to keep - see Depends
<~ README .md for details.
keep_dependencies_type:
- Cast
- Call
- Import
- Return
- Set
- Use
- Implement
- ImplLink
- Extend
- Create
- Throw

293

- Parameter
- Contain
uctags:
See https://github.com/sailuh/kaiaulu/wiki/Universal -Ctags for
<~ details
keep_lines_type:
c:
- f # function definition
cpp:
- c # classes
- f # function definition
java:
- ¢ # classes
- m # methods
python:
- ¢ # classes
- f # functions
r:
- f # functions
filter:
https://stackoverflow.com/q/34088711/
You can 1list all file types in a repository with the following
<~ command :
git ls-tree -r HEAD --name-only | perl -ne ’print $1 if
— m/\.([".\/1+)8$/’ | sort -u
keep_filepaths_ending_with:
- js
- java
- sh
- sql
- bat
- cmd
- html
- j2
- Py
- scss
remove_filepaths_containing:
- test
commit_message_id_regex:
#issue_id: 7
#cve_id: 7
Listing 1.18: KAIAULU configuration file for Apache Apisix-Dashboard.
Kaiaulu - https://github.com/sailuh/kaiaulu
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at https://mozilla.org/MPL/2.0/.
#
-*x- yaml -*-
https://github.com/sailuh/kaiaulu
#
Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is,
without any warranty.
#
Please comment unused parameters for clarity
data_path

project_website:
git_url: https://github .com/apache/apisix —dashboard
git: "/ Documents/GitHub/apisix —dashboard /. git
mbox_url: http://mail—archives.apache.org/mod_-mbox/apisix —dev/
mbox: ~/Documents/mbox—files /apisix —dev.mbox
openhub:
Provide a folder path containing nvd cve feeds (e.g.
< nvdcve -1.1-2018. json)
You can obtain them freely at: https://nvd.nist.gov/vuln/data-feeds
#nvd_feed: rawdata/nvdfeed
issue_tracker:
url:
types: bugzilla, jira, other

294

type: jira

interval:
You can specify the intervals in 2 ways: window , or
window:

If using gitlog, use start_commit and end_commit.
<~ inferred from gitlog

start_commit:

start_commit:

end_commit:

Use datetime only if no gitlog is used in the
#start_datetime: 2013-05-01 00:00:00
#end_datetime: 2013-11-01 00:00:00

size_days: 90

enumeration

Timestamp

8a14486£f1583fdc4b478e50294cel188157488019
a45ba91c9d0c446d8ad7dfc40435b8820e526019
799€692a9e4017db7b50f430f11cfObad990a9bc
analysis.

Depends

following

enumeration:
If using gitlog, specify the commits
commit :
- 9eae9%e96f15e1f216162810cefd271a439a74223
- £1d2d568776b3708dd6a3077376e2331£9268b04
- c33a2ce74c84f0d435bfa2dd8953d132ebf7a77a
Use datetime only if no gitlog is used in the analysis.
< Timestamp is inferred from gitlog
datetime :
- 2013-05-01 00:00:00
- 2013-08-01 00:00:00
- 2013-11-01 00:00:00
#tool:
depends :
accepts cpp, java, ruby, python, pom
code_language: python
Specify which types of Dependencies to keep - see
<~ README .md for details.
keep_dependencies_type:
- Cast
- Call
- Import
- Return
- Set
- Use
- Implement
- ImplLink
- Extend
- Create
- Throw
- Parameter
- Contain
uctags:
See https://github.com/sailuh/kaiaulu/wiki/Universal -Ctags
<~ details
keep_lines_type:
c:
- f # function definition
cpp:
- ¢ # classes
- f # function definition
java:
- c # classes
- m # methods
python:
- c # classes
- f # functions
r:
- f # functions
filter:
https://stackoverflow.com/q/34088711/
You can list all file types in a repository with the
<~ command :
git ls-tree -r HEAD --name-only | perl -ne ’print $1 if

— m/\.([".\/1+)$/’> | sort -u
keep_filepaths_ending_with:

- js

- tsx

- ts

- go

295

is

for

- sh
- less
- ejs
remove_filepaths_containing:
- test
commit_message_id_regex:
#issue_id: 7
#cve_id: 7

Listing 1.19: KAIAULU configuration file for Apache Skywalking.

without any warranty.

Please comment unused parameters for clarity
ata_path:
project_website:
git_url: https://github .com/apache/skywalking
git: “/Documents/GitHub/skywalking /. git
mbox_url: http://mail—archives.apache.org/mod-mbox/skywalking —dev/
mbox: ~/Documents/mbox—files /skywalking —dev .mbox
openhub:
Provide a folder path containing nvd cve feeds (e.g.
<~ mnvdcve -1.1-2018. json)

You can obtain them freely at: https://nvd.nist.gov/vuln/data-feeds
#nvd_feed: rawdata/nvdfeed
issue_tracker:

url:

types: bugzilla, jira, other

type: jira
interval:

Kaiaulu - https://github.com/sailuh/kaiaulu

#

This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at https://mozilla.org/MPL/2.0/.

#

-x- yaml -*-

https://github.com/sailuh/kaiaulu

#

Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is,
#

#

#

d

You can specify the intervals in 2 ways: window, or enumeration
window:
If using gitlog, use start_commit and end_commit. Timestamp is

~ inferred from gitlog
start_commit: 2d2ded441c3c8017079e446bf56599e5fa30afaa
start_commit: 16b51d55baec4f779f312e07081d1397addbcfe9
end_commit: bd23f263e69097e0cb185be6d08c9ee82e83815f
Use datetime only if no gitlog is used in the analysis.
#start_datetime: 2013-05-01 00:00:00
#end_datetime: 2013-11-01 00:00:00
size_days: 90
enumeration:
If using gitlog, specify the commits
commit :
- 9eae%9e96f15e1f216162810cef4271a439a74223
- £1d2d568776b3708dd6a3077376e2331£f9268b04
- c33a2ce74c84f0d435bfa2dd8953d132ebf7a77a
Use datetime only if no gitlog is used in the analysis.
<~ Timestamp is inferred from gitlog

H H HH

datetime:
- 2013-05-01 00:00:00
- 2013-08-01 00:00:00
- 2013-11-01 00:00:00
#tool:
depends :
accepts cpp, java, ruby, python, pom
code_language: python
Specify which types of Dependencies to keep - see Depends
<~ README .md for details.
keep_dependencies_type:
- Cast

296

- Call
- Import
- Return
- Set
- Use
- Implement
- ImplLink
- Extend
- Create
- Throw
- Parameter
- Contain
uctags:
See https://github.com/sailuh/kaiaulu/wiki/Universal -Ctags for
— details
keep_lines_type:
c:
- f # function definition
cpp:
- ¢ # classes
- f # function definition
java
- ¢ # classes
- m # methods
python
- c # classes
- f # functions
r:
- f # functions
filter:
https://stackoverflow.com/q/34088711/
You can 1list all file types in a repository with the following
< command :
git ls-tree -r HEAD --name-only | perl -ne ’print $1 if
— m/\N.([".\/1+)8$/> | sort -u
keep_filepaths_ending_with:
- java
- sh
- lua
- go
- Py
- gql
- bat
- cmd
- js
- Jsp
- kt
- php
- python
- scala
- sql
- ts
remove_filepaths_containing:
- test
commit_message_id_regex:
#issue_id: 7
#cve_id: 7
Listing 1.20: KAIAULU configuration file for Apache Shardingsphere.
Kaiaulu - https://github.com/sailuh/kaiaulu
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at https://mozilla.org/MPL/2.0/.
#
-*x- yaml -*-
https://github.com/sailuh/kaiaulu
#
Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is,
without any warranty.

297

#

Please

data_path:
project_website:
git_url:
git:
mbox_url:
mbox:
openhub:

Provide a folder

path

comment unused parameters

apa

<~ nvdcve -1.1-2018. json)

You can
#nvd_feed:
issue_tracker:

url:
types: bugzilla, jira,
type: jira
interval:
You can specify the
window:
If using gitlog,
—

start_commit:
end_commit:

use
inferred from gitlog
b967e3150eab2931b3a996514204b436e0aa7135
la3cdfa489962dd13cl13a4624645ba7a6ba60fb9

obtain them freely at:
rawdata/nvdfeed

other

intervals

for

che .

containing nvd

clarity

cve

https://github .com/apache/shardingsphere
“/Documents/GitHub/shardingsphere /. git

http:// mail—archives .
“/Documents /mbox—files /shardingsphere —dev.mbox

org /mod_-mbox/shardingsphere —dev/

feeds

(e.g.

https://nvd.nist.gov/vuln/data-feeds

start_commit

in 2 ways:

and

window , or enumeration

end_commit. Timestamp is

in the analysis.

in the analysis.

Use datetime only if no gitlog is used
#start_datetime: 2013-05-01 00:00:00
#end_datetime: 2013-11-01 00:00:00
size_days: 90
enumeration:
If using gitlog, specify the commits
commit :
- 9eae9%e96f15e1f216162810cefd271a439a74223
- £1d4d2d568776b3708dd6a3077376e2331£9268b04
- ¢c33a2ce74c84f0d435bfa2dd8953d132ebf7a77a
Use datetime only if no gitlog is used
<~ Timestamp is inferred from gitlog
datetime :
- 2013-05-01 00:00:00
- 2013-08-01 00:00:00
- 2013-11-01 00:00:00
#tool:
depends :
accepts cpp, java, ruby, python, pom
code_language: python

Specify which types

<~ README .md for

details .

keep_dependencies_type:

- Cast

- Call

- Import

- Return

- Set

- Use

- Implement

ImplLink

- Extend

- Create

- Throw

- Parameter

- Contain

uctags:
See

— details
keep_lines_type:

HOH H K H HHHHHEH R HEHHH
I

- f # function

classes
function

classes
methods

HOHE HE B HE H KR HH
]
Hh
**

definition

definition

of Dependencies

298

to

https://github.com/sailuh/kaiaulu/wiki/Universal -Ctags

keep - see Depends

for

- c # classes
- f # functions
r:
- f # functions
filter:
https://stackoverflow.com/q/34088711/
You can 1list all file types in a repository with the following
<~ command :
git ls-tree -r HEAD --name-only | perl -ne ’print $1 if
— m/\N.([".\/1+)8$/> | sort -u
keep_filepaths_ending_with:
- java
- sh
- sql
- html
- bat
- cmd
- css
- js
- scss
remove_filepaths_containing:
- test
commit_message_id_regex:
#issue_id: 7
#cve_id: 7
Listing 1.21: KATAULU configuration file for Apache Camel-Quarkus.
Kaiaulu - https://github.com/sailuh/kaiaulu
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at https://mozilla.org/MPL/2.0/.
#
-*x- yaml -*-
https://github.com/sailuh/kaiaulu
#
Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is,
without any warranty.
#
Please comment unused parameters for clarity
data_path

#

project_website:
git_url: https://github.com/apache/camel—quarkus
git: "/ Documents/GitHub /camel —quarkus /. git
mbox_url: http://mail—archives.apache.org/mod_-mbox/camel—dev/
mbox: ~/Documents/mbox—files /camel—dev.mbox
openhub:
Provide a folder path containing nvd cve feeds (e.g.
<~ nvdcve -1.1-2018. json)
You can obtain them freely at: https://nvd.nist.gov/vuln/data-feeds
#nvd_feed: rawdata/nvdfeed
issue_tracker:
url:
types: bugzilla, jira, other
type: jira

interval:

#

You can specify the intervals in 2 ways: window, or enumeration
window:
If using gitlog, use start_commit and end_commit. Timestamp is

<~ inferred from gitlog

start_commit: b0ad46a2ad09c3192f06910ef88361aae8ad2098
start_commit: 75bcla9252aeb807c8acaedldclb92a559574c28

end_commit: d2ecl142c118eb5a227881f87d5687b674eab2chb3
end_commit: 358d26a772959b005161d3c20bc877d7136aa7dc

Use datetime only if no gitlog is used in the analysis.
#start_datetime: 2013-05-01 00:00:00

#end_datetime: 2013-11-01 00:00:00

size_days: 90
enumeration:

If using gitlog, specify the commits

299

commit :
- 9eae9%e96f15e1f216162810cefd271a439a74223
- £1d4d2d568776b3708dd6a3077376e2331£9268b04
- ¢c332a2ce74c84f0d435bfa2dd8953d132ebf7a77a
Use datetime only if no gitlog is used in the
< Timestamp is inferred from gitlog

H*H H HH

datetime:
- 2013-05-01 00:00:00
- 2013-08-01 00:00:00
- 2013-11-01 00:00:00
#tool:
depends :
accepts cpp, java, ruby, python, pom
code_language: python

Specify which types of Dependencies to
<~ README .md for details.

keep_dependencies_type:

- Cast

- Call

- Import

- Return

- Set

- Use

- Implement

ImplLink

- Extend

- Create

- Throw

- Parameter

- Contain

uctags:
See

— details
keep_lines_type:

c:

keep - see

HOH HE O H HHHHHEH R HEHHH
I

function definition

classes
function definition

classes
methods

classes
functions

H OHE H H H HEH HEHHEHHEHHE
.
»
<
»

functions
filter:
https://stackoverflow.
You can 1list all file
<~ command :
git ls-tree -r HEAD --name-only |
— m/\.([".\/1+)$/’> | sort -u
keep_filepaths_ending_with:
- java
- groovy
- sql
- sh
- xquery
- graphql
- html
- js
-kt
- kts
- mustache
remove_filepaths_containing:
- test
commit_message_id_regex:
#issue_id: 7
#cve_id: 7

com/q/34088711/

types in a repository with the

perl -ne ’print $1

analysis.

Depends

https://github.com/sailuh/kaiaulu/wiki/Universal -Ctags

following

if

for

300

Listing 1.22: KATIAULU configuration file for Zephyrproject-Rtos Zephyr.

#

Kaiaulu - https://github.com/sailuh/kaiaulu

This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at https://mozilla.org/MPL/2.0/.

-*- yaml -*-

https://github.com/sailuh/kaiaulu

Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is,

without any warranty.

Please comment unused parameters for clarity

ata_path:

project_website:

git_url: https://github.com/zephyrproject —rtos/zephyr

git: “/Documents/GitHub /zephyr /. git

mbox_url: https://lists .zephyrproject.org/g/devel

mbox: ~/Documents/mbox—files /Zephyr .mbox

openhub:

Provide a folder path containing nvd cve feeds (e.g.
— mnvdcve -1.1-2018. json)

You can obtain them freely at: https://nvd.nist.gov/vuln/data-feeds

#nvd_feed: rawdata/nvdfeed

issue_tracker:

url:

types: bugzilla, jira, other

type: jira

interval:

HOH

H OH H K H

**

H OHE H R H O HHH

You can specify the intervals in 2 ways: window, or enumeration
window:
If using gitlog, use start_commit and end_commit. Timestamp is

~— inferred from gitlog
start_commit: a9397e3b3a4d9136506b4cd3ecb0c84d59bbaf3b
end_commit: 24a4b0d8525f0e760945a0175a15d3a%9efe9e0al9
end_commit: 41271384759 a5d98870569fd65583a38c8033733
Use datetime only if no gitlog is used in the analysis.
#start_datetime: 2013-05-01 00:00:00
#end_datetime: 2013-11-01 00:00:00
size_days: 90

enumeration:
If using gitlog, specify the commits
commit :
- 9eae%9e96f15e1f216162810cefd271a439a74223
- £1d2d568776b3708dd6a3077376e2331£f9268b04
- c33a2ce74c84f0d435bfa2dd8953d132ebf7a77a
Use datetime only if no gitlog is used in the analysis.
<~ Timestamp is inferred from gitlog
datetime :
- 2013-05-01 00:00:00
- 2013-08-01 00:00:00
- 2013-11-01 00:00:00
tool:
depends :
accepts cpp, java, ruby, python, pom
code_language: python
Specify which types of Dependencies to keep - see Depends
<~ README .md for details.
keep_dependencies_type:
- Cast
- Call
- Import
- Return
- Set
- Use
- Implement
- ImplLink
- Extend

301

- Create

- Throw

- Parameter

- Contain

uctags:

See https://github.com/sailuh/kaiaulu/wiki/Universal -Ctags
<~ details

keep_lines_type:

c:

- f # function definition

cpp:

- c # classes

- f # function definition

java:

- c # classes

- m # methods

python:

- c # classes

- f # functions

r:

- f # functions

filter:

https://stackoverflow.com/q/34088711/

You can 1list all file types in a repository with the
<~ command :

git ls-tree -r HEAD --name-only | perl -ne ’print $1 if

— m/\.([".\/1+)$/’> | sort -u
keep_filepaths_ending_with:

- pPY

- c

- h

- sh

- html

- css

- S

- js

- cpp

- ipynb

- cc

- bash

- bas

- cmd

- CXX

- Vv
remove_filepaths_containing:

- test

commit_message_id_regex:

#issue_id: ?
#cve_id: 7

following

for

Listing 1.23: KAIAULU configuration file for Protocolbuffers Protobuf.

project_website:

git_url:

git:
mbox
mbox:

https://github.com/protocolbuffers/protobuf

“/Documents/GitHub/protobuf /. git

_url: https://groups.google.com/g/protobuf
“/Documents/mbox—files /protobuf.mbox

302

Kaiaulu - https://github.com/sailuh/kaiaulu
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at https://mozilla.org/MPL/2.0/.
#
-x- yaml -*-
https://github.com/sailuh/kaiaulu
#
Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright

notice and this notice are preserved. This file is offered as-is,

without any warranty.

#

Please comment unused parameters for clarity

data_path:

openhub:
Provide a folder path containing nvd
< mnvdcve -1.1-2018. json)

cve feeds

(e.

g .

gov/vuln/data -feeds

enumeration

Timestamp is

Depends

for

You can obtain them freely at: https://nvd.nist.
#nvd_feed: rawdata/nvdfeed
dissue_tracker:
url:
types: bugzilla, jira, other
type: jira
interval:
You can specify the intervals in 2 ways: window , or
window:
If using gitlog, use start_commit and end_commit.
~— inferred from gitlog
start_commit: bbd6999c76a3007434b33cddd583a2ffecb42881
end_commit: d662ec9c2e4f8ca21cb500b25cfe7430511014b2
Use datetime only if no gitlog is used in the analysis.
#start_datetime: 2013-05-01 00:00:00
#end_datetime: 2013-11-01 00:00:00
size_days: 90
enumeration:
If using gitlog, specify the commits
commit :
- 9eae9%9%e96f15e1f216162810cefd271a439a74223
- £1d2d568776b3708dd6a3077376e2331£f9268b04
- c33a2ce74c84f0d435bfa2dd8953d132ebf7a77a
Use datetime only if no gitlog is used in the analysis.
< Timestamp is inferred from gitlog
datetime :
- 2013-05-01 00:00:00
- 2013-08-01 00:00:00
- 2013-11-01 00:00:00
#tool:
depends :
accepts cpp, java, ruby, python, pom
code_language: python
Specify which types of Dependencies to keep - see
<~ README .md for details.
keep_dependencies_type:
- Cast
- Call
- Import
- Return
- Set
- Use
- Implement
- ImplLink
- Extend
- Create
- Throw
- Parameter
- Contain
uctags:
See https://github.com/sailuh/kaiaulu/wiki/Universal -Ctags
<~ details
keep_lines_type:
c:
- f # function definition
cpp:
- ¢ # classes
- f # function definition
java:
- c # classes
- m # methods
python:
- c # classes
- f # functions
r:
- f # functions
filter:
https://stackoverflow.com/q/34088711/
You can 1list all file types in a repository with the

<~ command :

303

following

git ls-tree -r HEAD --name-only | perl -ne ’print $1 if
< m/\.([".\/1+)8$/’ | sort -u
keep_filepaths_ending_with:

- h

- cc

- sh

- c

- php

- Py

- java

- bat

- cs

- rb

-kt

- psl

- m

- js

- Rakefile

- CpPPpP

- dart

- go

- swift
remove_filepaths_containing:

- test

commit_message_id_regex:
#issue_id: 7
#cve_id: 7

Listing 1.24: KATAULU configuration file for Milvus-10 Milvus.

without any warranty.

Please comment unused parameters for clarity
ata_path:

project_website:

git_url: https://github.com/milvus—io/milvus

git: "/ Documents/GitHub/milvus /. git

mbox_url: https://lists .1faidata.foundation/g/milvus—technical —discuss
mbox: ~/Documents/mbox—files /Milvus .mbox

openhub:

Provide a folder path containing nvd cve feeds (e.g.

— nvdcve -1.1-2018. json)

You can obtain them freely at: https://nvd.nist.gov/vuln/data-feeds
#nvd_feed: rawdata/nvdfeed
issue_tracker:

url:

types: bugzilla, jira, other

type: jira
interval:

Kaiaulu - https://github.com/sailuh/kaiaulu

#

This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at https://mozilla.org/MPL/2.0/.

#

-x- yaml -*-

https://github.com/sailuh/kaiaulu

#

Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is,
#

#

#

d

You can specify the intervals in 2 ways: window, or enumeration
window:
If using gitlog, use start_commit and end_commit. Timestamp is

— inferred from gitlog
start_commit: 3bb69430cb22beeb856731ff90c7c3684acTeda?2
end_commit: 9b1708f6e581bf64d0004056abce334074fbf449
Use datetime only if no gitlog is used in the analysis.
#start_datetime: 2013-05-01 00:00:00
#end_datetime: 2013-11-01 00:00:00
size_days: 90
enumeration:
If using gitlog, specify the commits

304

commit :
- 9eae9%e96f15e1f216162810cefd271a439a74223
- £1d4d2d568776b3708dd6a3077376e2331£9268b04
- ¢c332a2ce74c84f0d435bfa2dd8953d132ebf7a77a
Use datetime only if no gitlog is used in the
< Timestamp is inferred from gitlog

H*H H HH

datetime:
- 2013-05-01 00:00:00
- 2013-08-01 00:00:00
- 2013-11-01 00:00:00
#tool:
depends :
accepts cpp, java, ruby, python, pom
code_language: python

Specify which types of Dependencies to see
<~ README .md for details.

keep_dependencies_type:

- Cast

- Call

- Import

- Return

- Set

- Use

- Implement

ImplLink

- Extend

- Create

- Throw

- Parameter

- Contain

uctags:
See

— details
keep_lines_type:

c:

keep -

HOH HE O H HHHHHEH R HEHHH
I

function definition

classes
function definition

classes
methods

classes
functions

H OHE H H H HEH HEHHEHHEHHE
.
»
<
»

functions
filter:
https://stackoverflow.
You can 1list all file
<~ command :
git ls-tree -r HEAD --name-only |
— m/\.([".\/1+)8$/> | sort -u
keep_filepaths_ending_with:
- go
- PY
- Ccpp
- h
- cc
- groovy
- sh
- cu
- bash
- c
- cuh
- hpp
remove_filepaths_containing:
- test
commit_message_id_regex:
#issue_id: 7
#cve_id: 7

com/q/34088711/

types in a repository with the

perl -ne ’print $1

analysis.

Depends

https://github.com/sailuh/kaiaulu/wiki/Universal -Ctags

following

if

for

305

Listing 1.25: KATAULU configuration file for Scikit-Learn Scikit-Learn.

without any warranty.

Please comment unused parameters for clarity
ata_path:
project_website:
git_url: https://github.com/scikit —learn/scikit —learn
git: "/ Documents/GitHub/scikit —learn /. git
mbox_url: https://mail.python.org/pipermail/scikit —learn/
mbox: ~/Documents/mbox—files /scikit —learn —converted .mbox
openhub:
Provide a folder path containing nvd cve feeds (e.g.
< nvdcve -1.1-2018. json)
You can obtain them freely at: https://nvd.nist.gov/vuln/data-feeds
#nvd_feed: rawdata/nvdfeed
issue_tracker:
url:
types: bugzilla, jira, other
type: jira
interval:

Kaiaulu - https://github.com/sailuh/kaiaulu

#

This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at https://mozilla.org/MPL/2.0/.

#

-*x- yaml -*-

https://github.com/sailuh/kaiaulu

#

Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is,
#

#

#

d

You can specify the intervals in 2 ways: window, or enumeration
window:
If using gitlog, use start_commit and end_commit. Timestamp is

— inferred from gitlog
start_commit: dbed806a7aad5d253cflcala3bca9bdab5e391456
end_commit: ded59b5713bcbfcaa27d7d9d1de704c96817870c
Use datetime only if no gitlog is used in the analysis.
#start_datetime: 2013-05-01 00:00:00
#end_datetime: 2013-11-01 00:00:00
size_days: 90
enumeration:
If using gitlog, specify the commits
commit :
- 9eae9%e96f15e1f216162810cefd271a439a74223
- £1d4d2d568776b3708dd6a3077376e2331£9268b04
- ¢c33a2ce74c84f0d435bfa2dd8953d132ebf7a77a
Use datetime only if no gitlog is used in the analysis.
< Timestamp is inferred from gitlog
datetime :
- 2013-05-01 00:00:00
- 2013-08-01 00:00:00
- 2013-11-01 00:00:00
#
#

tool:
depends :
accepts cpp, java, ruby, python, pom
code_language: python
Specify which types of Dependencies to keep - see Depends

<~ README .md for details.
keep_dependencies_type:
- Cast
- Call
- Import
- Return
- Set
Use
- Implement
- ImplLink
- Extend
- Create
- Throw
- Parameter

HOHE O HHEHHHEHHEHHEHR
I

306

- Contain

uctags:

See https://github.com/sailuh/kaiaulu/wiki/Universal -Ctags for
<~ details

keep_lines_type:
c:
- f # function definition
cpp:
- c # classes
- f # function definition
java:
- ¢ # classes
- m # methods
python:
- c # classes
- f # functions
r:
- f # functions
filter:
https://stackoverflow.com/q/34088711/
You can 1list all file types in a repository with the following
<~ command :
git ls-tree -r HEAD --name-only | perl -ne ’print $1 if
— m/\.([".\/1+)$/’ | sort -u
keep_filepaths_ending_with:
- PY
- PYX
- sh
- html
- h
- css
- bat
- c
- cmd
- Ccpp
- css_t
- js
remove_filepaths_containing:
- test

commit_message_id_regex:
#issue_id: 7
#cve_id: 7

307

Appendix J

Kaiaulu: Issues and Bugs

In this chapter, we briefly describe the issues that we solved to get KAIAULU [68]
to work locally, as well as the bugs that we identified and helped resolve. Bringing
attention to previously unknown issues and bugs, as well as our proposed solutions
for some of them, are our contributions to KAIAULU. Note that we worked together
with Dr. Carlos Paradis, the researcher responsible for KATAULU, for many of these
issues and bugs.

J.1 Issues

J.1.1 Unable to Run Perceval on Windows

First, KATAULU uses a Python module named Perceval to parse git logs and mailing
lists [68]. We could not get Perceval to work on Windows, so we used a virtual
machine running on Ubuntu. It is a returning problem that people could not get
Perceval to run on Windows. Dr. Carlos Paradis mentioned in pull request #95 for
KA1AULU that others were unable to run Perceval, in particular on Windows.

J.1.2 data.AuthorDate Set to NA in parse gitlog()

GitHub user massihonda found a problem where a different time zone in Ubuntu
would lead to data.AuthorDate being set to NA in the parse_gitlog() function.
The cause was a function transforming strings to a date format that was not
matched by the date format of massihonda’s laptop. They proposed a workaround
in which you adjust the operating system’s locale, but this did not solve it for us.

Instead, we had to look for an alternative function to convert strings to datetime
objects. We ended up replacing the lines of code listed in Listing by the lines of
code in Listing

https://github.com/sailuh/kaiaulu/pull/95
’https://github.com/sailuh/kaiaulu/issues/61

308

https://github.com/sailuh/kaiaulu/pull/95
https://github.com/sailuh/kaiaulu/issues/61

Listing J.1: KAIAULU’s old text to datetime conversion code that caused
problems [68].

project_git$author_datetimetz <- as.POSIXct(project_git$author_datetimetz,

format = "%a %b %d LH:%M:%S %Y Y%z",
— tz = "UTC")
project_git$committer_datetimetz <- as.POSIXct(project_git$committer_datetimetz,
format = "%a %b %d %H:%M:%S %Y %z",
— tz = "UTC")
project _mbox$reply_datetimetz <- as.PO0SIXct(project_mbox$reply_datetimetz,
format = "%a, %d %b %Y J%H:U%M:%S hz", tz =
— "UTC")

Listing J.2: Our solution to KAIAULU’s text to datetime conversion issue.

project_git$author_datetimetz <-
— stringi::stri_datetime_parse(project_git$author_datetimetz,

format = "E MMM d HH:mm:ss yyyy 2",
lenient = FALSE,
tz = "UTC",

locale = NULL)
project_git$committer_datetimetz <-
< stringi::stri_datetime_parse(project_git$committer_datetimetz,

format = "E MMM d HH:mm:ss yyyy 2",
lenient = FALSE,
tz = "UTC",

locale = NULL)
project _mbox$reply_datetimetz <-
< stringi::stri_datetime_parse(project_mbox$reply_datetimetz,

format = "E, d MMM yyyy HH:mm:ss Z",
lenient = FALSE,
tz = "UTC",

locale = NULL)

J.1.3 Clustering Issue

When trying to alter some mistakes in the identity matching functionality of KAIAULU
manually, we ran into a warning from the clustering algorithm.” At first, we suspected
that we made a mistake when manually altering the identities. However, later
when we analyzed Apache Iceberg without manually altering any identities, we
observed the same warning. Later, it was discovered that the warnings were benign,
but unfortunately, we did not have the option to reapply KAIAULU to all these
communities and manually fix mistakes in the identity matching.

J.2 Bugs

J.2.1 Missing Leading Zeros in mod mbox downloader

J

KA1AULU offers the functionality to download mailing lists from Apache projects
mailing list archives.” We discovered that this function was missing leading zeros
when downloading the mailing lists per month.” Thus, it only downloaded the
archived mailing lists for the months October up to and including December. The
bugged line of code is listed in Listing .| ., and our proposed fix in Listing .J. . This
fix was later applied by Dr. Carlos Paradis.

Shttps://github.com/sailuh/kaiaulu/issues/134
“https://mail-archives.apache.org/mod_mbox/
Shttps://github.com/sailuh/kaiaulu/issues/107

309

https://github.com/sailuh/kaiaulu/issues/134
https://mail-archives.apache.org/mod_mbox/
https://github.com/sailuh/kaiaulu/issues/107

Listing J.3: Bugged line of code in KATAULU’S mod mbox_downloader function [68].

destination[[counter]] <- sprintf (")d%d.mbox", year, month)

Listing J.4: Our proposed fix to KAIAULU’s mod mbox_downloader bug.

destination[[counter]] <- sprintf ("),d%02d.mbox", year, month)

J.2.2 Hardcoded Parameter Overwrites Window Size Specified
in Configuration Files

To analyze a community with KATAULU, the user must prepare a configuration file

which specifies an analysis window size. This window size was read by KAIAULU,

as shown in Listing .5, but later overwritten by the line included in Listing
Dr. Carlos Paradis fixed this bug after we brought it to his attention.

Listing J.5: KAIAULU’s window size set to configured analysis window size [68].

window_size <- conf[["interval"]][["window"]][["size_days"]]

Listing J.6: KAIAULU’s window size set to a hardcoded value of 90 days [68].

window_size <- 90 # 90 days

J.2.3 Timestamps of Committers Assigned to Authors

GitHub commits are assigned authors and committers. In KAIAULU, dates that were
stored as strings are converted to datetime objects. This had to be done for both
the author date and the committer date. However, instead of assigning the converted
committer dates to the column containing the committer dates in the table, these
dates were assigned to the column containing the author dates.” The before and
after of the bugfix can be found in Listings and | &, respectively.

Listing J.7: KATIAULU incorrectly assigns committer timestamps to authors [65].

project_git$author_datetimetz <- as.POSIXct(project_git$committer_datetimetz,
format = "%a %b %d %H:%M:%S %Y %h=z",
— tz = "UTC")

Listing J.8: KAIAULU correctly assigns committer timestamps to committers [68].

project_git$committer_datetimetz <- as.PO0SIXct(project_git$committer_datetimetz,
format = "%a %b %d %H:%M:%S %Y %h=z",
— tz = "UTC")

J.2.4 Incorrect Commit Hash Affects Reported Analysis Window
and LOC Metrics

KATAULU used the first and last rows of the data table to retrieve the commit hashes
to record the analysis period, as can be seen in Listing ./.0." We identified that this

Shttps://github.com/sailuh/kaiaulu/issues/121
"https://github.com/sailuh/kaiaulu/issues/106
8https://github.com/sailuh/kaiaulu/issues/126

310

https://github.com/sailuh/kaiaulu/issues/121
https://github.com/sailuh/kaiaulu/issues/106
https://github.com/sailuh/kaiaulu/issues/126

led to the incorrect analysis window being reported in KAIAULU’s results. Note
that only the LOC metrics reported in KAIAULU’s results were affected by this
bug. Dr. Carlos Paradis suggested the fix listed in Listing , which was slightly
incorrect due to cases where commit hashes occurred multiple times in the data
table. We adjusted his suggestion and proposed the fix listed in Listing , which
was later applied to KAIAULU.

Listing J.9: KAIAULU inferred commit hashes from the first and last rows in the
data table [68].

i_commit_hash <- data.table::first(project_git_slice)$commit_hash
j_commit_hash <- data.table::last(project_git_slice)$commit_hash

Listing J.10: Incorrect fix to the commit hashes being inferred from the first and
last date in the data table, suggested by Dr. Carlos Paradis.

i_commit_hash <- project_git[author_datetimetz ==

— min(project_git$author_datetimetz ,na.rm=TRUE)]$commit_hash
j_commit_hash <- project_git[author_datetimetz ==

< max (project_git$author_datetimetz ,na.rm=TRUE)]$commit_hash

Listing J.11: KATAULU correctly infers commit hashes from the first and last date in
the data table [05].

i_commit_hash <- data.table::first(project_git_slice[author_datetimetz ==
<~ min(project_git_slice$author_datetimetz ,na.rm=TRUE)])$commit_hash

j_commit_hash <- data.table::first(project_git_slice[author_datetimetz ==
<~ max(project_git_slice$author_datetimetz ,na.rm=TRUE)])$commit_hash

J.2.5 Alphabetically Ordered project git and project mbox
Should Be Ordered Temporally

When we discovered the bug described in Appendix , we discovered another bug
as well, . We found that project_git and project_mbox were ordered alphabetically
instead of temporally and that this ordering was affecting the results. The bugged
code can be seen in Listing . We knew that they should be ordered after the
strings were converted to datetime objects, but we were not certain about where
they should be ordered. Based on our discovery, Dr. Carlos Paradis applied the
fix listed in Listing . Note that the ordering of variables project_git and
project_mbox should not affect the results, so there was another bug. This other
bug is discussed in Appendix

Listing J.12: KAIAULU ordered project_git and project_mbox directly after parsing,
thus alphabetically [05].

project_git <- parse_gitlog(perceval_path,git_repo_path)

project_git <- project_git %>%
filter _by_file_extension(file_extensions,"file_pathname") %>%
filter _by_filepath_substring(substring_filepath,"file_pathname")

project_git <- project_git[order (author_datetimetz)]

[...1

project_mbox <- parse_mbox(perceval_path,mbox_path)

project_mbox <- project_mbox[order(reply_datetimetz)]

311

Listing J.13: KAIAULU orders project_git and project_mbox directly after datetime
strings were converted, thus ordering temporally [65].

project_git$author_datetimetz <- as.POSIXct(project_git$author_datetimetz,

format = "%a %b %d %H:%UM:%S %Y %z",
— tz = "UTC")
project_git$committer_datetimetz <- as.PO0SIXct(project_git$committer_datetimetz,
format = "%a %b %d %H:%M:%S WY %z",
<~ tz = "UTC")
project _mbox$reply_datetimetz <- as.POSIXct(project_mbox$reply_datetimetz,
format = "%a, %d %b %Y %H:%M:%S
— %z", tz = "UTC")

project_git <- project_git[order (author_datetimetz)]
project _mbox <- project_mbox[order(reply_datetimetz)]

J.2.6 Only Half the Edge List Was Mapped to a Numeric
ID

Based on the bugs that we identified in Appendices and and °, we knew
that there was another bug causing a difference in KATIAULU’s outcome related to
project_git and project_mbox.

Ultimately, our discovery of previous bugs led Dr. Carlos Paradis to discover
that there were issues within the reimplemented functions of the community smells.
These functions temporarily assign numeric IDs to the textual names of developers
in code.graph. However, in the graphs, only the from column of code.graph was
mapped to a numeric ID, not the to column. In other words, half of the edge list was
stored as textual IDs, whereas the other half were numeric. This led to a situation in
which text was being compared to numbers, which was solved by Dr. Carlos Paradis.
Furthermore, he discovered that in the computation of one community smell, this
mapping from textual IDs to numeric IDs was missing in its entirety and he has
added code to address that as well.

J.2.7 Churn Metrics Always Reporting Zero

After applying KAIAULU to the communities analyzed in Chapter 7, we observed
that the churn metric returned 0 for all our analyzed communities. We reported
this to Dr. Carlos Paradis,” who as a result discovered and fixed a bug that was
introduced 16 months ago. Surprisingly, it had gone under everyone else’s radar that
were also actively analyzing projects in this time period.

Yhttps://github.com/sailuh/kaiaulu/issues/135

312

https://github.com/sailuh/kaiaulu/issues/135

€re

Appendix K
Kaiaulu: Git Diff

In this chapter, we have included the “Git diff” between the KATAULU we used to analyze community smells in different communities

and KAIAULU (commit 5a00389) in Listing [68]. In other words, this listing shows the adjustments we made to KAIAULU at commit
5a00389.

Listing K.1: KAT1AuLU: Git diff.

diff --git a/R/smells.R b/R/smells.R

index 406e39f..80ac72a 100644

--- a/R/smells.R

+++ b/R/smells.R

@@ -219,7 +219,7 @@ smell_radio_silence <- function (mail.graph, clusters) {

for (neigh in vert_meighbors) {

Note: neigh is the local graph vertex id, not the developer id
#neigh_membership <- memships[neigh]

- neigh_membership <- memships[node_id == neighl]l$cluster_id
+ neigh_membership <- memships[node_id == neigh]$cluster_id[1]
if (clust != neigh_membership) {

for each outgoing edge, save the cluster developer id and the destination
sub-community id

diff --git a/tools.yml b/tools.yml

index 66cefdd..aedeb48 100644

--- a/tools.yml

+++ b/tools.yml

ee -1,11 +1,11 @@

https://github.com/sailuh/kaiaulu/commit/5a003899207fd55980a9d9df1c5584e339854508
https://github.com/sailuh/kaiaulu/commit/5a003899207fd55980a9d9df1c5584e339854508

V1€

https://github.com/chaoss/grimoirelab-perceval

-perceval: ~“/perceval/bin/perceval
+perceval: ~/.local/bin/perceval

https://github.com/multilang-depends/depends

depends: “/depends-0.9.6/depends. jar

https://github.com/tsantalis/RefactoringMiner#running-refactoringminer-from-the-command-1line
refactoring _miner: ~“/RefactoringMiner-1.0/bin/RefactoringMiner

https://github.com/boyter/scc

-scc: "/scc/scc

+scc: "/scc

universal-ctags

utags: /usr/local/Cellar/universal-ctags/HEAD-62f0144/bin/ctags

https://archdia.com/

diff --git a/vignettes/social_smell_showcase.Rmd b/vignettes/social_smell_showcase.Rmd

index d4f878e..6116389 100644

--- a/vignettes/social_smell_showcase.Rmd

+++ b/vignettes/social_smell_showcase.Rmd

@@ -55,7 +55,7 @@ We also provide the path for ‘tools.yml‘. Kaiaulu does not implement all availab

¢ {r}
tools_path <- "../tools.yml"
-conf_path <- "../conf/apr.yml"
+conf_path <- "“/Documents/conf/airflow.yml"

tool <- yaml::read_yaml(tools_path)

@@ -119,12 +119,21 @@ project_mbox$reply_tz <- sapply(stringi::stri_split(project_git$reply_datetimetz

l(({r}
-project_git$author_datetimetz <- as.P0SIXct(project_git$author_datetimetz,
- format = "%a %b %d %H:%M:%S %Y %z", tz = "UTC")
-project_git$committer_datetimetz <- as.PO0SIXct(project_git$committer_datetimetz,
- format = "%a %b %d %H:%M:%S %Y %=z", tz = "UTC")
-project_mbox$reply_datetimetz <- as.PO0SIXct(project_mbox$reply_datetimetz,
- format = "%a, %d %b %Y %H:%M:%S %z", tz = "UTC")
+project_git$author_datetimetz <- stringi::stri_datetime_parse(project_git$author_datetimetz,
+ format = "E MMM d HH:mm:ss yyyy 2",
+ lenient = FALSE,
+ tz = "UTC",
+ locale = NULL)
+project_git$committer_datetimetz <- stringi::stri_datetime_parse(project_git$committer_datetimetz,
+ format = "E MMM d HH:mm:ss yyyy 2",

+ lenient = FALSE,

SRS

+ tz = "UTC",

+ locale = NULL)

+project_mbox$reply_datetimetz <- stringi::stri_datetime_parse(project_mbox$reply_datetimetz,
+ format = "E, d MMM yyyy HH:mm:ss Z",

+ lenient = FALSE,

+ tz = "UTC",

+ locale = NULL)

project_git <- project_git[order(author_datetimetz)]

project_mbox <- project_mbox[order(reply_datetimetz)]

@@ -132,6 +141,14 @@ project_mbox <- project_mbox[order(reply_datetimetz)]

#project_mbox <- project_mbox[reply_datetimetz >= start_date & reply_datetimetz <= end_date]

¢

+£l({r}

+start_date <- get_date_from_commit_hash(project_git,start_commit)
+end_date <- get_date_from_commit_hash(project_git,end_commit)
+project_git <- project_git[(author_datetimetz >= start_date) &

+ (author_datetimetz <= end_date)]
+project_mbox <- project_mbox[reply_datetimetz >= start_date & reply_datetimetz <= end_date]
+ [N ANY
+
Smells

Having parsed both git log and mbox, we are ready to start computing the social smells. Social smells are computed on a "time window"
<~ granularity. For example, we may ask "between January 2020 and April 2020, how many organizational silos are identified in APR?".
< This means we will inspect both the git log and mailing list for the associated time period, perform the necessary
<~ transformations in the data, and compute the number of organizational silos.

@@ -175,6 +192,31 @@ project_git <- project_logl[["project_git"]]
project_mbox <- project_log[["project_mbox"]]

Ccc

+¢¢““{r eval = FALSE}
+# Select id and name from project_git

+authors_git <- project_git[,c("raw_name", "identity_id"), drop=FALSE]
+authors_mbox <- project_mbox[,c("raw_name", "identity_id"), drop=FALSE]
+

+# Select all unique rows to get all unique authors
+authors_git <- unique (authors_git)
+authors_mbox <- unique (authors_mbox)

+
+# Transform all names to lowercase to fix sorting (otherwise we get A B C a b c)
+authors_git$raw_name = tolower (authors_git$raw_name)

+authors_mbox$raw_name = tolower (authors_mbox$raw_name)

91€

+
+# Order the rows alphabetically by name

+authors_git <- authors_git[order(raw_name)]

+authors_mbox <- authors_mbox[order (raw_name)]

+

+# View the authors for inspection of the identity matching

+View (authors_git)

+View (authors_mbox)

+

+# View the projects for inspection of which rows/cells to adjust
+View(project_git)

+View (project_mbox)

+l{(

Remember: Social smells rely heavily on patterns of collaboration and communication. If the identities are poorly assigned, the social
< smells will **not** reflect correctly the project status (since in essence several people considered to be communicating with one
< another, are the same individual!).

@@ -195,8 +237,8 @@ For some social smells, such as radio silence and primma donna, community detect
Note here the start_date and end_date are in respect to the git log.

Transform commit hashes into datetime so window_size can be used
-start_date <- get_date_from_commit_hash(project_git,start_commit)
-end_date <- get_date_from_commit_hash(project_git,end_commit)
+# start_date <- get_date_from_commit_hash(project_git,start_commit)
+# end_date <- get_date_from_commit_hash(project_git,end_commit)

datetimes <- project_git$author_datetimetz

mbox_datetimes <- project_mbox$reply_datetimetz

@@ -245,12 +287,14 @@ for(j in 2:size_time_window){
Obtain all commits from the gitlog which are within a particular window_size

- project_git_slice <- project_git[(author_datetimetz >= start_day) &
- (author_datetimetz < end_day)]

+ # project_git_slice <- project_git[(author_datetimetz >= start_day) &
+ # (author_datetimetz < end_day)]
+ project_git_slice <- project_git
Obtain all email posts from the mbox which are within a particular window_size
- project_mbox_slice <- project_mbox[(reply_datetimetz >= start_day) &
(reply_datetimetz < end_day)]
+ # project_mbox_slice <- project_mbox[(reply_datetimetz >= start_day) &

+ # (reply_datetimetz < end_day)]

L1€

+ project_mbox_slice <- project_mbox

Check if slices contain data
gitlog_exist <- (nrow(project_git_slice) != 0)

@@ -408,8 +452,9 @@ for(j in 2:length(time_window)){
}

Obtain all commits from the gitlog which are within a particular window_size
project_git_slice <- project_git[(author_datetimetz >= start_day) &

- (author_datetimetz < end_day)]

project_git_slice <- project_git[(author_datetimetz >= start_day) &

(author_datetimetz < end_day)]

project_git_slice <- project_git

+ o+ +

gitlog_exist <- (nrow(project_git_slice) != 0)
if(gitlog_exist){

@@ -454,8 +499,9 @@ for(j in 2:length(time_window)){
}

Obtain all commits from the gitlog which are within a particular window_size
- project_git_slice <- project_git[(author_datetimetz >= start_day) &
- (author_datetimetz < end_day)]
project_git_slice <- project_git[(author_datetimetz >= start_day) &
(author_datetimetz < end_day)]
project_git_slice <- project_git

+ o+ o+

gitlog_exist <- (nrow(project_git_slice) != 0)
if(gitlog_exist){

@@ -487,7 +533,7 @@ for(j in 2:length(time_window)){
}

}

Reset Repo to HEAD

-git_checkout ("trunk",git_repo_path)

+git_checkout ("main",git_repo_path)

line_metrics_file <- rbindlist(line_metrics)
line_metrics_interval <- line_metrics_file[,.(Lines = sum(Lines),
@@ -509,6 +555,6 @@ kable(dt)

Write Files
-¢¢““{r eval = FALSE}

-fwrite(dt,"”/Desktop/results_kaiaulu_tomcat.csv")
+¢“‘{r eval = TRUE}

81€

+fwrite(dt,"”/Desktop/results-kaiaulu/airflow.csv")
(SN aN1

Appendix L

Code: Extract Emails

In this chapter, we briefly discuss the code that was used to extract recruitment
emails for our survey experiment (Chapter 7). All extracted emails are from members
active within the analysis period with a total number of commits in the upper quartile.

For convenience, we used YOSHI 2’s code (Appendix

) as a basis and removed the

code that was not needed to extract members’ email addresses. Note that when
requesting user details from GitHub’s API, it only returns email addresses if they
are publicly available on these users’ profile pages.

For clarity, we provide a brief explanation per class.

Community.cs

I0Module.cs

Program.cs

DataRetriever.cs

Filters.cs

GitHubRatelLimitHandler.cs

Statistics.cs

This class is used as an object to store community
data. For this application, we only need the owner
and name of the repositories.

This class is responsible for requesting and
handling user input.

This class contains the Main() method that is
executed when the program is run.

This class retrieves GitHub user- and commit
data based on the inputted repositories. Then it
uses this data to compute the number of commits
for each user per repository. After the email
addresses have been extracted based on each
person’s commits, the relevant user data and
commit numbers are written to the console.

This class is responsible for filtering the data
retrieved by the DataRetriever. It extracts
usernames from commits and checks whether
these commits were committed within the analysis
window or not.

This class’s sole responsibility is to delegate
GitHub API calls to methods that deal with the
rate limit of 5,000 API requests per hour.

This class computes the quartile values of an
ordered set of doubles.

The code for these classes is listed in Listings to

319

Listing L.1: Extract emails: Community class.

namespace YOSHI.CommunityData

{

/// <summary >

/// This class is responsible for storing all community related data.

/// We will use this class to store the community data in separate objects.
/// </summary >

public class Community

{
public string RepoOwner { get; }
public string RepoName { get; 1}
public Community(string owner, string name)
{
this.RepoOwner = owner;
this.RepoName = name;
}
}

Listing 1..2: Extract emails: IOModule class.

using CsvHelper;

using CsvHelper.Configuration;
using System;

using System.Collections.Generic;
using System.Globalization;

using System.IO0;

using YOSHI.CommunityData;

using YOSHI.DataRetrieverNS;

namespace YOSHI

{

/// <summary >
/// This class is responsible for the IO-operations of YOSHI.
/// </summary >
public static class I0OModule
{
/// <summary >
/// This method is used to guide the user in inputting the input
/// directory, input filename, outfput directory and the output filename.
/// </summary>
/// <exception cref="I0Exception">Thrown when something goes wrong while
/// reading the input or when writing to the output file.</exception>
public static List<Community> TakeInput ()
{
try
{
// Take and validate the input file
string inFile;

do

{
Console.ForegroundColor = ConsoleColor.DarkGray;
Console.WriteLine ("Please enter the absolute directory of " +

"the input file, including filename and its extension.");

Console.ResetColor ();
inFile = Console.ReadLine();

3

while (!File.Exists(inFile));

// Set the end date of the time window, it defaults to use

// midnight UTC time. It is possible to enter a specific time,
// but this has not been tested.

DateTimeOffset endDate;

Console.ForegroundColor = ConsoleColor.DarkGray;
Console.WriteLine ("Enter end date of time window (YYYY-MM-DD) " +
"in UTC");

Console.ResetColor () ;
while (!DateTimeOffset.TryParse(Console.ReadlLine (), out endDate))
{
Console.ForegroundColor = ConsoleColor.DarkGray;
Console.WriteLine("Invalid date");

320

Console.WriteLine ("Enter end date of time window " +
"(YYYY-MM-DD) in UTC");
Console.ResetColor () ;
}
// Make sure that the datetime is UTC
Filters.SetTimeWindow (endDate) ;

return ReadFile(inFile);

}
catch (IOException e)
{
throw new IOException("Failed to read input or to write headers " +
"to output file", e);
}

}

/// <summary >

/// A method used to read the file named after the value stored with the
/// input filename (InFilename) at the specified input directory (InDir).
/// </summary>

/// <returns>A list of communities storing just the repo owner and repo
/// name.</returns>

/// <exception cref="IOException">Thrown when something goes wrong while
/// reading the input file.</exception>

private static List<Community> ReadFile(string inFile)

{
List<Community > communities = new List<Community>();
try
{
using StreamReader reader = new StreamReader (inFile);
using CsvReader csv =
new CsvReader (reader, CulturelInfo.InvariantCulture);
csv.Read () ;
csv.ReadHeader () ;
while (csv.Read())
{
// The CSV file requires headers "RepoName" and "RepoOwner"
Community community = new Community (
csv.GetField ("RepoOwner"),
csv.GetField ("RepoName")
)
communities.Add (community) ;
}
}
catch (IOException e)
{
throw new IOException("Something went wrong while reading the " +
"input file.", e);
}
return communities;
}

321

Listing LL.3: Extract emails: Program class.

using
using
using
using
using

System;
System.Collections.Generic;
System.Threading.Tasks;
YOSHI.CommunityData;
YOSHI.DataRetrieverNS;

namespace YOSHI

{

/// <summary>

/// This class is the main file to extract emails of communities.
/// </summary>

class Program

{

static async Task Main ()

{

// Retrieve the communities through input handled by the IOModule.
List<Community> communities = IOModule.TakeInput();

Console.WriteLine ("RepoOwner ,RepoName ,Username , NumCommits ,Email");
foreach (Community community in communities)

{
try
{
await DataRetriever.ExtractMailsUsingThirdQuartile (community);
continue;
}
catch (Exception e)
{
Console.ForegroundColor = ConsoleColor.Red;
Console.WriteLine(
"Exception: {0}. {1}",
e.GetType (),
e.Message
)
Console.ResetColor () ;
continue;
}
}

// Prevent the console window from automatically closing after the
// main process is done running
Console.BackgroundColor = ConsoleColor.DarkGreen;
Console.WriteLine ("The application has finished processing the " +
"inputted communities.");
Console.WriteLine("Press Enter to close this window . . .");
Console.ResetColor ();
ConsoleKeyInfo key = Console.ReadKey();
while (key.Key != ConsoleKey.Enter)
{
key = Console.ReadKey();
}s

322

€ce

Listing L.4: Extract emails: DataRetriever class.

using
using
using
using
using
using

Octokit;

System;
System.Collections.Generic;
System.Ling;
System.Threading.Tasks;
YOSHI.CommunityData;

namespace YOSHI.DataRetrieverNS

{

/// <summary >

/// This class is responsible for retrieving data from GitHub.
/// </summary >

public static class DataRetriever

{

public static readonly GitHubClient Client;
// Default 24-hour operations with a basic Windows App, Non-profit, and Education key.
// Info about rate limiting: https://docs.microsoft.com/en-us/bingmaps/getting-started/bing-maps-api-best-practices

private static readonly ApiOptions MaxSizeBatches = new ApiOptions // allows us to fetch with 100 at a time
{
PageSize = 100

};
static DataRetriever ()
{

try

{

// Read the GitHub Access Token and the Bing Maps Key from Windows Environment Variables
string githubAccessToken = Environment.GetEnvironmentVariable ("YOSHI_GitHubAccessToken");

// Set the GitHub Client and set the authentication token from GitHub for the GitHub REST API
Client = new GitHubClient (new ProductHeaderValue("yoshi"));

Credentials tokenAuth = new Credentials(githubAccessToken);

Client.Credentials = tokenAuth;

}
catch (Exception e)
{
throw new Exception("Error during client initialization.", e);
}

vce

public static async Task ExtractMailsUsingThirdQuartile (Community community)

{

string repoName = community.RepoName;
string repoOwner = community.RepoOwner;
try

{

// Retrieve all commits until the end date of the time window

CommitRequest commitRequest = new CommitRequest { Until = Filters.EndDateTimeWindow };
IReadOnlyList <GitHubCommit> commits = await GitHubRateLimitHandler.Delegate (

Client .Repository.Commit.GetAll,

repoOwner ,

repoName ,

commitRequest ,
MaxSizeBatches) ;

List<GitHubCommit> commitsWithinTimeWindow = Filters.ExtractCommitsWithinTimeWindow (commits);
// Determine the members active in the three month time period

HashSet<string> tempMembers = Filters.ExtractUsernamesFromCommits (commitsWithinTimeWindow) ;
(List<User> members, HashSet<string> memberUsernames) = await RetrieveMembers (tempMembers) ;
// Calculate the number of commits per member

// (over the entire life span until the end date of the analysis period)

Dictionary<string, int> commitsPerMember = new Dictionary<string, int>();

foreach (GitHubCommit c¢ in commits)

{
if (c.Committer != null && c.Committer.Login != null)
{
string committer = c.Committer.Login;
if (!commitsPerMember.ContainsKey (committer))
{

commitsPerMember .Add (committer, 0);

}

commitsPerMember [committer]++;
}
// Only count authored commits if they are not the committer too
// This prevents double counting of the same commit
if (c.Author != null && c.Author.Login != null &&

(c.Committer == null || c.Author.Login != c.Committer.Login))
{

string author = c.Author.Login 77 "";

Gce

if (!commitsPerMember.ContainsKey (author))

{
commitsPerMember .Add (author, 0);
}
commitsPerMember [author]++;
}
}
List<int> commitsDistribution = commitsPerMember.Values.ToList ();

commitsDistribution.Sort((a, b) => a.CompareTo(b)); // Ascending sort

List<double> doubles = commitsDistribution.Select<int, double>(i => i).ToList();
(double ql1, double g2, double q3) = Statistics.Quartiles(doubles.ToArray());

Console.WriteLine ("Quartiles - ql1: {0}, q2: {1}, g3: {2}", ql, q2, q3);

// Set of usernames of all developers having a number of commits higher than the third quartile
HashSet<string> usernames = new HashSet<string>();

foreach (KeyValuePair<string, int> membersCommits in commitsPerMember)

{
if (membersCommits.Value > q3)
{
usernames .Add (membersCommits.Key) ;
}
}

// Report the members who have a public email, have committed in the
// analysis period and have a number of commits higher than the third quartile.
foreach (User member in members)

{
if (usernames.Contains (member.Login) && member.Email != null)
{
Console.WriteLine ("{0},{1},{2},{3},{4}", repoOwner, repoName,
member .Login, commitsPerMember [member.Login], member.Email);
}
}
}
catch
{
throw;

9¢e

/17

<summary >

Retrieves the GitHub User information from a set of usernames. Since parameters cannot be modified in async
methods, we return an extra variable without usernames that cause exceptions.

</summary >

<param name="usernames">A set of usernames to retrieve the GitHub data from.</param>

<returns>A list of GitHub User information and an updated set of usernames, excluding all usernames that
caused exceptions. </returns>

private static async Task<(List<User>, HashSet<string>)> RetrieveMembers (HashSet<string> usernames)

{

List<User> members = new List<User>();
HashSet<string> updatedUsernames = new HashSet<string>(); // A separate list to exclude usernames that cause exceptions
HashSet<string> bots = new HashSet<string>();
HashSet<string> organizations = new HashSet<string>();
foreach (string username in usernames)
{
try
{
// Snapshot at time of retrieval, there is no way to retrieve users information from a past time
User user = await GitHubRatelimitHandler.Delegate(Client.User.Get, username);

// Exclude organizations and bots

// Note: mnot all bots/organizations have the correct accounttype. We are bound to let through some
// bots/organizations this way, but it is better than nothing.

if (user.Type == AccountType.User)

members .Add (user) ;
updatedUsernames . Add (username) ;

}
else
{
if (user.Type == AccountType.Bot)
{
bots.Add (user.Login) ;
}
else // organization
{
organizations.Add(user.Login);
}
}
}
catch
{

// Skip the usernames that cause exceptions

LcE

continue;

return (members, updatedUsernames);

Listing L.5: Extract emails: Filters class.

using Octokit;

using System;

using System.Collections.Generic;
using YOSHI.CommunityData;

namespace YOSHI.DataRetrieverNS
{
/// <summary >
/// Class responsible for filtering the GitHub data. It checks that everything is within the given time window
/// (default 90 days + today). It filters out all data about GitHub users that are not considered members.
/// </summary>
public static class Filters
{
public static DateTimeOffset EndDateTimeWindow { get; private set; 1}
public static DateTimeOffset StartDateTimeWindow { get; private set; I}

public static void SetTimeWindow(DateTimeOffset endDateTimeWindow)

{
int days = 90; // snapshot period of 3 months (approximated using 90 days)
// Note: Currently other length periods are not supported.
// Engagementprocessor uses hardcoded month thresholds of 30 and 60
EndDateTimeWindow = endDateTimeWindow;
StartDateTimeWindow = EndDateTimeWindow.AddDays (-days);

}

/// <summary >

/// Extracts commits committed within the given time window (default 3 months, approximated using 90 days).
/// Checks that the commits have a committer.

/// </summary>

/// <param name="commits">A list of commits</param>

/// <returns>A list of commits that all were committed within the time window.</returns>

public static List<GitHubCommit> ExtractCommitsWithinTimeWindow (IReadOnlyList<GitHubCommit> commits)

{

8¢E

// Get all commits in the last 90 days
List<GitHubCommit> filteredCommits = new List<GitHubCommit>();
foreach (GitHubCommit commit in commits)

{
if ((commit.Committer != null && commit.Committer.Login != null && CheckWithinTimeWindow (commit.Commit.Committer.Date))
|l (commit.Author != null && commit.Author.Login != null && CheckWithinTimeWindow (commit.Commit.Author.Date)))
{
filteredCommits.Add (commit) ;
}
}
return filteredCommits;
}
/// <summary>
/// This method retrieves all User objects and usernames for all committers and commit authors in the last 90
/// days. Note: It is possible that open pull request authors have commits on their own forks. These are not detected
/// as members as they have not yet made a contribution.
/// </summary>
/// <param name="commits">A list of commits</param>
/// <returns>A tuple containing a list of users and a list of usernames.</returns>
public static HashSet<string> ExtractUsernamesFromCommits (List<GitHubCommit> commits, int days = 90)
{
// Get the user info of all members that have made at least one commit in the last 90 days
HashSet<string> usernames = new HashSet<string>();
foreach (GitHubCommit commit in commits)
{
// Check that committer date also falls within the time window before adding the author in the list of members
if (commit.Committer != null && commit.Committer.Login != null
&% CheckWithinTimeWindow (commit.Commit.Committer.Date, days))
{
usernames .Add (commit.Committer.Login);
}
// Check that author date also falls within the time window before adding the author in the list of members
if (commit.Author != null && commit.Author.Login != null && CheckWithinTimeWindow(commit.Commit.Author.Date, days))
{
usernames .Add (commit . Author.Login);
}
}
// TODO: Apply alias resolution
return usernames;
}

/// <summary>
/// A method that takes a DateTimeOffset object and checks whether it is within the specified time window x number

6¢E

/17
/17
117
/17

of days (Default: 3 months, i.e., x = 90 days). This window ends at the specified end of the time window and

starts at midnight x days prior.
</summary >
<param name="dateTime">A DateTimeOffset object</param>

/// <returns>Whether the DateTimeOffset object falls within the time window.</returns>
public static bool CheckWithinTimeWindow(DateTimeOffset? dateTime, int days = 90)
{
if (dateTime == null)
{
return false;
}
// We set the date time offset window for the 3 months earlier from now (approximated using 90 days)
DateTimeOffset startDate = EndDateTimeWindow.AddDays (-days);
return dateTime >= startDate && dateTime <= EndDateTimeWindow;
}
}
}
Listing L.6: Extract emails: GitHubRateLimitHandler class.
using Octokit;
using System;
using System.Threading;
using System.Threading.Tasks;

namespace YOSHI.DataRetrieverNS

{

public static class GitHubRateLimitHandler

{

// AUXILIARY: Methods used to delegate GitHub API calls and handling of
// GitHub rate limits.

/// <param name="maxBatchSize">Setting API options to retrieve max batch
/// sizes, reducing the number of requests.</param>

public async static Task<T> Delegate<T>(

Func<string, string, CommitRequest, ApiOptions, Task<T>> func,
string repoOwner,

string repoName,

CommitRequest commitRequest,

ApiOptions maxBatchSize)

for (int i = 0; i < 3; i++)

{

0€€

try

{
Task<T> task = func(repoOwner, repoName, commitRequest, maxBatchSize);
return await task;

}

catch (RatelimitExceededException)

{
// When we exceed the rate limit we check when the limit resets
// and wait until that time before we try 2 more times.
WaitUntilReset () ;

}

}

throw new Exception("Failed too many times to retrieve GitHub data.");

<summary >

This method is used to delegate the GitHub API requests. It handles the rate limit.

</summary >

<typeparam name="T">The type that func will return.</typeparam>

<param name="func">The function that we want to call.</param>

<param name="username">The username, whose data we want to retrieve.</param>

<returns>No object or value is returned by this method when it completes.</returns>

<exception cref="Exception">Throws an exception if after 3 times of trying to retrieve data,

the data RatelLimitExceededException still occurs, or if another exception is thrown.</exception>

public async static Task<T> Delegate<T>(

Func<string, Task<T>> func,
string username)

for (int i = 0; i < 3; i++)
{
try
{
Task<T> task = func(username);
return await task;
}
catch (RatelimitExceededException)
{
// When we exceed the rate limit we check when the limit resets
// and wait until that time before we try 2 more times.
WaitUntilReset () ;
}

}

throw new Exception("Failed too many times to retrieve GitHub data.");

1€€

/// <summary >
/// A method to take care of the waiting until the GitHub rate reset.
/// </summary>
private static void WaitUntilReset ()
{
Console.ForegroundColor = ConsoleColor.Magenta;
// Set the default wait time to one hour
TimeSpan timespan = TimeSpan.FromHours (1) ;

ApiInfo apilnfo = DataRetriever.Client.GetLastApiInfo();
RatelLimit ratelimit = apiInfo?.Ratelimit;
DateTimeOffset? whenDoesThelLimitReset = ratelLimit?.Reset;
if (whenDoesThelLimitReset != null)
{
DateTimeOffset limitReset = (DateTimeOffset)whenDoesThelLimitReset;
timespan = (DateTimeOffset)whenDoesThelLimitReset - DateTimeOffset.Now;
timespan = timespan.Add(TimeSpan.FromSeconds(30)); // Add 30 seconds to the timespan

Console.WriteLine ("GitHub Rate Limit reached.");

Console.WriteLine("Waiting until: " + limitReset.AddSeconds (30).DateTime.ToLocalTime () .ToString());
}
else
{
// 1If we don’t know the reset time, we wait the default time of 1 hour
Console.WriteLine ("Waiting until: " + DateTimeOffset.Now.DateTime.ToLocalTime ().AddHours(1));
}

Console.ResetColor(); // Reset before sleep, otherwise color remains even when application is closed during the sleep.

Thread.Sleep(timespan); // Wait until the rate limit resets

Console.ForegroundColor = ConsoleColor.Magenta;

Console.WriteLine("Done waiting for the rate limit reset, continuing now: " +
DateTimeOffset.Now.DateTime.ToLocalTime () .ToString());

Console.ResetColor ();

Listing L.7: Extract emails: Statistics class.

using System;
using System.Collections.Generic;
using System.Ling;

namespace YOSHI

{
/17
/17
/17
/17
/17
/17

<summary >

Class that implements statistics computations. Cannot implement a
generic method that takes numerics in c#:

See https://stackoverflow.com/q/22261510

Therefore we repeat code.

</summary >

public static class Statistics

{

/// <summary >
/// Return the quartile values of an ordered set of doubles

/77 assume the sorting has already been done.

/17

/// This actually turns out to be a bit of a PITA, because there is no
/1/ universal agreement on choosing the quartile values. In the case
/17 of odd values, some count the median value in finding the 1st and
/17 3rd quartile and some discard the median value.

/17 the two different methods result in two different answers.

/77 The below method produces the arithmatic mean of the two methods,
/17 and insures the median is given it’s correct weight so that the
/// median changes as smoothly as possible as more data ppints are added.
/17

/// This method uses the following logic:

/17

/// ===If there are an even number of data points:

/77 Use the median to divide the ordered data set into two halves.

/17 The lower quartile value is the median of the lower half of the data.
/// The upper quartile value is the median of the upper half of the data.
/17
/// ===I1f there are (4n+1) data points:
/77 The lower quartile is 25% of the nth data value plus 75% of the
/17 (n+1)th data value.
/77 The upper quartile is 75% of the (3n+1)th data point plus 25% of
/17 the (3n+2)th data point.
/17
///===1f there are (4n+3) data points:
/// The lower quartile is 75% of the (n+1)th data value plus 25% of
/77 the (n+2)th data value.
/77 The upper quartile is 25% of the (3n+2)th data point plus 75% of
/17 the (3n+3)th data point.
/17
/// </summary>
/// <source>https://stackoverflow.com/q/14683467</source>
public static (double, double, double) Quartiles(double[] afVal)
{

int iSize = afVal.Length;

int iMid = iSize / 2; //this is the mid from a zero based index,

//eg mid of 7 = 3;

double fQ1 = 0;
double £fQ2;
double fQ3 = 0;

if (iSize % 2 == 0)

{
//================ EVEN NUMBER OF POINTS: =====================
//even between low and high point
£fQ2 = (afVal[iMid - 1] + afVal[iMid]l) / 2;

int iMidMid = iMid / 2;
//easy split
if (iMid % 2 == 0)

{
fQ1 = (afVal[iMidMid - 1] + afVal[iMidMid]) / 2;

332

£Q3 = (afVal[iMid + iMidMid - 1] + afVal[iMid + iMidMidl) / 2;
}
else
{
fQ1 = afVal[iMidMid];
£fQ3 = afVal[iMidMid + iMid];
}
}
else if (iSize == 1)
{
//================= gspecial case, sorry ================
fQ1 = afVal[0];
fQ2 = afVal[0];
fQ3 = afVall[0];
}
else
{
//odd number so the median is just the midpoint in the array.
£fQ2 = afVal[iMid];
if ((iSize - 1) % 4 == 0)
{
//======================(4n-1) POINTS =========================
int n = (iSize - 1) / 4;
fQ1 = (afVall[n - 1] * .25) + (afVal[n] * .75);
fQ3 = (afVal[3 * n] * .75) + (afVal[3 * n + 1] * .25);
}
else if ((iSize - 3) % 4 == 0)
{
//======================(4pn-3) POINTS =========================
int n = (iSize - 3) / 4;
fQ1 = (afVal[n] * .75) + (afVall[n + 1] * .25);
fQ3 = (afVal[3 * n + 1] * .25) + (afVal[3 * n + 2] * .75);
}
}

return (£fQ1, £fQ2, fQ3);

333

Appendix M

Survey Instrument and
Recruitment Email

In this chapter, we provide the survey instrument that our participants were asked
to fill in (Appendix). In the survey instrument, we did not mention the names
of the community types and smells, because it was irrelevant for the participants.
For clarity, we have mapped the names to their descriptions in Appendix . In
Appendix , we provide the recruitment email that we sent to recruit participants.

M.1 Survey Instrument

The consent form was created together with TU /e data stewards. The survey
questions were reviewed and revised twice based on feedback from three TU/e
masters students following the master program in Computer Science and Engineering.
The survey instrument was created using Microsoft Forms as suggested by TU /e
data stewards. Note that there are separate conclusions as a result of branching.

334

Survey - Relations Between Community
Patterns and Smells in Open-Source

* Required
CONSENT FORM FOR PARTICIPATION IN RESEARCH (1/2)

“Relations Between Community Patterns and Smells in Open-Source”

About the study

This research is conducted by Jari van Meijel, a Master student at Eindhoven University
of Technology.

The project is supervised by

Prof. Dr. Alexander Serebrenik, Eindhoven University of Technology,

Dr. Gemma Catolino, Jheronimus Academy of Data Science,

Dr. Damian Tamburri, Jheronimus Academy of Data Science and

Dr. Fabio Palomba, University of Salerno.

The purpose of this study is to identify relations between community patterns, i.e., sets of
organizational and social structure types with measurable core attributes, and community
smells, i.e., suboptimal organizational and social patterns in a community that can be
detrimental and cause additional project cost. Recent studies have shown that software
engineering success is becoming increasingly dependent on the well-being of development
communities. We aim to empirically analyze the frequent relations between community
patterns and smells. To observe community patterns, we have developed a tool capable of
mapping open-source GitHub communities onto community patterns. This mapping
allows for further research into community health based on organizational and social
structure types, and diagnosis of organizational anti-patterns specific to open-source, if
any. We use another tool to observe community smells. We aim to evaluate the developed
tool and confirm our findings by means of this survey.

Participation and withdrawal

Your participation in this research study is strictly voluntary. You may choose not to
participate and you may withdraw at any time during the survey, without any negative
consequences and without providing any explanation. If there are any hesitations about
participating or you have any questions about the research, please feel free to respond to
the email that provided the link to this survey. You are unable to change/withdraw your
answers once they have been submitted. There are no known or anticipated risks to you
by participating in this research. You will not receive any compensation for participating
in this study.

In this study we will collect data by means of an online survey. Your personal data that is
used and stored for this study concerns data your username, email address, and GitHub
community and is only used for the distribution of this survey. The survey responses are
completely anonymous.

The procedure involves filling an online survey that will take approximately 10 minutes.
Your response to the survey will be confidential and does not contain identifying
information such as your name, email address or IP address. The survey questions will be
about community types and community smells in a specific repository to which you
contributed between 22 Apr 2021 and 21 Jul 2021.

335

CONSENT FORM FOR PARTICIPATION IN RESEARCH (2/2)

Data confidentiality

We do everything we can to protect your privacy as well as possible. All data obtained in
this study will be processed and reported anonymously. To help protect your
confidentiality, the surveys will not contain information that will personally identify you.
The data cannot be traced back to you in reports and publications about the study.
Some people can access your data at the Eindhoven University of Technology. This is
necessary to check whether the study is being conducted in a good and reliable manner,
they will keep your data confidential.

Your data may also be of importance for other scientific research in the field of open
source communities. To this end, your answers to the survey are kept for 10 years at the
research location. The datafile containing your Username, email address and GitHub
community will be destroyed at the end of the study.

This study adheres to the TU/e Code of Scientific Conduct and has been approved by the
Ethical Review Board of Eindhoven University of Technology.

This study is conducted at the Eindhoven University of Technology. If you have questions
or complaints about the processing of your personal data, we advise you to first contact
Jari van Meijel by sending an email to j.b.v.meijel@student.tue.nl. You can also contact
the Data Protection Officer of the institution by sending an email to
dataprotectionofficer@tue.nl, or the Dutch Data Protection Authority.

As a participant of this study you have the right to make a request to inspect, change,
delete or adjust your data. For more information, visit
https://www.tue.nl/storage/privacy/. You can send an email to privacy@tue.nl.

ELECTRONIC CONSENT
Please select your choice below.
Clicking on the “Agree” button below indicates that:

e you have read and understood this consent form and have been sufficiently informed
about the research

e you have been given the opportunity to ask questions and any potential questions
have been sufficiently answered

e you voluntarily agree to participate. There is no explicit or implicit compulsion for
you to participate in this study. It is clear to you that you can withdraw from
participation at any time, without providing any explanation.

e you give consent to keeping your answers to the survey longer and to use it for
future research in the field of open source communities.

e you are at least 18 years of age

1. If you do not wish to participate in the research study, please decline
participation by selecting the “Disagree” option or by closing the survey. *

Agree

Disagree

336

mailto:j.b.v.meijel@student.tue.nl
mailto:dataprotectionofficer@tue.nl
https://www.tue.nl/storage/privacy/
mailto:privacy@tue.nl

Participant Suitability
The survey consists of two parts and takes approximately 10 minutes to complete, but first
we have two questions that we would like you to answer to ascertain the suitability of the

survey.

2. Please enter the GitHub repository for which you were contacted. (Specified in
the email that linked this survey.) *

3. Did you contribute to this repository between 22 Apr 2021 and 21 Jul 20217 *

O Yes
O No

337

Part 1: Community Types

4. In this part of the survey, you will be given definitions of several community
types. A community type is an organizational and social structure type where
certain organizational or social characteristics are constantly evident. For example,
in one community type all interactions are always informal. It is possible for
communities to exhibit multiple community types simultaneously.

Please select *all* the community type definitions that best reflect the specified
development community between 22 Apr 2021 and 21 Jul 2021. *

The community was explicitly grouped by a corporation to act on (or by means
of) them. The community has a single organizational goal, called mission.

The community is a fixed-term, problem-specific group who work together for
an organization and follow specific strategies or organizational guidelines.

The community members have been rigorously selected and acknowledged by
some form of management. Direction is carried out according to corporate
strategy and its mission is to follow this strategy.

The community consists of a loose network of ties between individuals that
happen to come informally in contact in the same context. It does not use
governance practices and its success is solely based on the emergent cohesion
between the members (rather than its internal dynamics).

The community consists of a collocated group who share a concern, a set of
problems, or a passion about a topic. It deepens their knowledge and expertise
in this area through frequent, face-to-face, collaborative, and constructive
interactions.

The community is widely distributed over many different locations or across
different time zones and collaborates with strong management and governance
policies in place. Collaboration mostly occurs over the Internet. Anyone can
freely join the community, without selection of candidates.

The community members are part of highly-dispersed organization, with a
common interest, often closely dependent on their practice. They interact
informally across unbound distances, frequently over a common history or
culture.

None of the above.

5. If you wish to elaborate on your answer for the above question, e.g., because
parts of the definitions you selected do not apply, please use the box below.

338

Part 2: Community Smells

6. In this part, we present you with multiple scenarios representing community
smells. Community smells are sets of organizational and social circumstances which
may lead to additional project cost, e.g., developer free-riding and unsanctioned
architectural decisions that cause ripple effects such as code duplication and churn.
Please select *all* the scenarios that you recognize within the specified development
community between 22 Apr 2021 and 21 Jul 2021. *

D There was an individual who carried out their work independently from
the decisions taken by the community.

There were independent sub-communities that did not communicate with
each other except through one or two of their respective members.

There was a community member that interposed themselves into every
formal interaction across two or more subgroups.

O O O

Some community members suffered of an information overload due to
lack of structured communication.

D None of the above.

7. If you wish to elaborate on your answer for the above question, please use the box
below.

339

Conclusion

8. Those were all the questions that we wanted to ask. If you wish to leave any
comments on this survey, please use the box below.

Conclusion
Our apologies, it seems that this survey was unsuitable for you. Thank you very much for
your time!

9. If you wish to leave any comments on this survey, please use the box below.

Conclusion
Thank you very much for your time. You have disagreed to participate in the research
study. Instead of pressing submit, we implore you to close the survey-tab in your browser.

340

M.2 Mapping Names to Descriptions

In the survey instrument, we did not mention the names of the community types and
smells, because it was irrelevant for the participants. For clarity, we have mapped
the names to their descriptions below.

M.2.1 Mapping Community Types to Descriptions

Here we map the names to the descriptions used in question 4 of the survey.

Formal Group (FG): The community was explicitly grouped by a corporation
to act on (or by means of) them. The community has a single organizational goal,
called mission.

Project Team (PT): The community is a fixed-term, problem-specific group who
work together for an organization and follow specific strategies or organizational
guidelines.

Formal Network (FIN): The community members have been rigorously selected
and acknowledged by some form of management. Direction is carried out according
to corporate strategy and its mission is to follow this strategy.

Informal Network (IN): The community consists of a loose network of ties
between individuals that happen to come informally in contact in the same context.
It does not use governance practices and its success is solely based on the emergent
cohesion between the members (rather than its internal dynamics).
Community of Practice (CoP): The community consists of a collocated group
who share a concern, a set of problems, or a passion about a topic. It deepens their
knowledge and expertise in this area through frequent, face-to-face, collaborative,
and constructive interactions.

Network of Practice (NoP): The community is widely distributed over many
different locations or across different time zones and collaborates with strong
management and governance policies in place. Collaboration mostly occurs over
the Internet. Anyone can freely join the community, without selection of candidates.
Informal Community (IC): The community members are part of a highly-
dispersed organization, with a common interest, often closely dependent on their
practice. They interact informally across unbound distances, frequently over a
common history or culture.

M.2.2 Mapping Community Smells to Descriptions

Here we map the names to the descriptions used in question 6 of the survey.

Organizational Silo: There were independent sub-communities that did not
communicate with each other except through one or two of their respective
members.

Black Cloud: Some community members suffered of an information overload due
to lack of structured communication.

Lone Wolf: There was an individual who carried out their work independently
from the decisions taken by the community.

Bottleneck/Radio-Silence: There was a community member that interposed
themselves into every formal interaction across two or more subgroups.

341

M.3 Recruitment Email

SUBJECT: A study about community smells and patterns in open-source
communities

Dear {USERNAME},

My name is Jari van Meijel and [am a master student at the Eindhoven University
of Technology in the Netherlands.

We request your participation in our survey, since you are among the most active
developers in {REPOSITORY }’s community and therefore likely have a good
overview of the community.

The community from {REPOSITORY} is one of the communities that we want to
analyze in our study.

We acquired your email address from your public GitHub profile page. In case of
non-response, we remove your email address from our records in two weeks. No
reminder mails will be sent.

For my thesis, [am analyzing community smells and patterns in open-source
communities in an attempt to find relations between them.

Community smells are suboptimal social and organizational patterns in a
community that can be detrimental and cause additional project cost.
Community patterns are sets of social and organizational structure types with
measurable core attributes.

With this survey, we aim to evaluate the accuracy of our self-developed tool that
can detect community patterns and to confirm our findings regarding community
patterns and smells.

We hope that this tool can help in further research of open source community health
and diagnosis of organizational anti-patterns, if any.

The survey takes approximately 10 minutes to complete. Please click the link below
to participate in the survey.

Survey link: {FORMS URL}
GitHub repository: {REPOSITORY'}

Please note that your participation in the survey is strictly voluntary, your
responses will be kept confidential, and the survey does not ask for identifying
information, so the survey responses are anonymous.

As a result, you are unable to change/withdraw your answers once they have been
submitted.

If you have any comments or questions, please feel free to contact me at
j.-b.v.meijel@student.tue.nl.
Thank you very much for your time and cooperation.

Sincerely,

Jari van Meijel

j.-b.v.meijel@student.tue.nl

Eindhoven University of Technology

Department of Mathematics and Computer Science

342

mailto:j.b.v.meijel@student.tue.nl
mailto:j.b.v.meijel@student.tue.nl

Appendix N

Kaiaulu: Detailed Results

In this chapter, we extend upon the results reported in Section and provide the
detailed results reported by KAIAULU for 24 out of the 25 communities that we
considered in Chapter 7. Note that we could not obtain a .mbox file from Protobuf’s
mailing list, hence we did not apply KAIAULU to this community. Apart from the
smells reported in Section 7., KAIAULU reports details of the analysis window and
some social network analysis metrics. In Table , we report the analyzed commit
intervals together with start- and end date details derived from these intervals. Note
that KAIAULU derives the start- and end date from when the commit was authored,
not when it was last committed. The commit intervals were chosen based on when
the commits were last committed.

We repeat the results reported in Section regarding community smells in
Table for completeness. Table lists several social network analysis metrics.
Specifically, it specifies the number of:

e time zones (num_tz);

e developers that are only present in the git log, but not in the mailing list
(code_only_devs);

e files in the git log (code_files);

e developers that are only present in the mailing list, but not in the git log
(ml_only_devs);

e email threads in the mailing list (ml_threads);

e developers that are present in the git log and the mailing list (code_ml_both_devs).

Additionally, KAIAULU reports some popular metrics commonly reported in
software engineering literature [65], i.e., churn metrics and line metrics. These
metrics can be useful when interpreting the results regarding community smells.
Note that these metrics’ granularity is not at the “time window” level, but they are
computed in such a way that they can be placed in the same table of community
smells after being aggregated to the same granularity [68]. Unfortunately, a bug was
discovered in the churn metrics’ computation based on our observations (discussed
in Appendix /), so we have excluded these metrics from our results.

Table reports line metrics computed from the last commit in the time window.
These metrics are computed using Sloc Cloc and Code (SCC)." These line metrics
include:

e The total number of lines (Lines),

https://github.com/boyter/scc

343

https://github.com/boyter/scc

the number of lines that contain code (Code),

the number of lines that contain comments (Comments),
the number of blank lines (Blanks), and

the estimated code complexity (Complexity).

The code complexity is estimated by counting the number of branching operations
in the code.” Since some languages do not have loops and instead use recursion,
they can have a lower complexity count, even though they are not necessarily less
complex. SCC is unable to identify this because it does not build an abstract syntax
tree as it only scans through the code. This metric is there to help estimate the
complexity between projects written in the same language.

Zhttps://github.com/boyter/scc (visited on 07/09/2021)

344

https://github.com/boyter/scc

Gve

Table N.1: KAIAULU’s results related to the analysis period in our survey study. The commit interval shows the first and lasts commits in
the analysis window. start_date and end_date are derived from these commits.

Community

commit_interval

start_date

end_date

Couchdb
Trafficserver
Bookkeeper
Dubbo

Druid

Echarts
Cloudstack
Airflow
Incubator-Mxnet
Superset
Openwhisk
Pulsar

Rocketmq
Incubator-Doris
Camel-K

Iceberg
Dolphinscheduler
Apisix-Dashboard
Skywalking
Shardingsphere
Camel-Quarkus
Zephyr

Protobuf

Milvus
Scikit-Learn

bdb38184e252dbd390bccb75d18db536d9240acd-647aea29ce8431fab5c2049cc6dad7a9305ad3e6b
76124222d179d55a2¢2a2¢74806377e54df744a9-099b55¢9¢1fa0636¢19265db9cfdalf6f7376b41
3¢9¢71025389091d3764ea7314e7618d6d9458fd-31e8d1b44ffafd867d0eb2774085e4b1141a7ach
€93338749a584dcalad8dadefe828e¢63b321dd7d-9ch97e35a3776c¢5H77a188858d401d 7410675759
49a9¢3ffb7b2da3401696d583bc2cd52e83f77bt-94¢1671eaf7b050972602fdedcb1971cdbde692d
85445d58754f3b236837ec49080d7e723ctb1b6e-72c62ce6¢860144b2436199a04¢ 75026483673
b4eedacaf3ec807d45ca306bchb370b2be926e10b-1{743¢911a17626d441872eebf66135771761c83
4¢8a32¢8¢H8f165158d0fd36dcce55¢05514d3d7-eb3d685836116be0f67de2b9c8bc61b1{9a73{8f
294014840cf087df6062a4ce9e61f6693106c050-3480ba2c6df02bb907d3a975d354efa8697c4e71
feld32dc2a189f159e6855d9114757bbd9ee3f56-5cc95bb3781abedelel 76b2e728b0a36de30a739
8bbcdb17aac827d073b40b6c55ale1645272ad68-0cdfdb3ech20fbif11e401c34143fe0e8ff61{83
57765bc2a1257bf2640abef03bae72d737a664a1-5ad405988fabb4b28dbdbd5aa5c¢9a10802f39afl
¢3d464108e7c099d3438debbab75e861fd5f036¢-35a15b6619adcc6bede544a690f1b90802af517a,
a803ceeal86bcal919380£35270407915349abb1b-94¢50012b2d60228861aaac0877decd550901ed2
7d6885412fc503edel4577e8bd4a2a71ddb5c743-34d2cf5d47fa78acd8708733387185¢ct606106e
e87309¢7361ach53f10d1277b919392f5764b7fa-1b3dbb613110eb734488d32e93e0fa8d23e¢9385
abdd2337b144df149a2031c¢3b26862ae41b4e936-6964c090c7alch3d1d69f5fe70cad3025df9b4bed
a45ba91c¢9d0c446d8ad7dfc40435b8820e526019-799¢69aa9e¢4017db7b50f430f11cf0bad990a9bc
16b51d55baecdf779f312e07081d1397addbcefed-bd23263¢69097e¢0ch185be6d08c9ee’82e83815f
b967e3150eab2931b3a996514204b436e0aa7135-1a3cdfad89962dd13c13a4624645ba7a6ba60fb9
75bc1a9252aeb807c8aecaed1dc1b92a559574¢28-358d26a772959b005161d3¢20bc877d7136aa7dc
a9397e3b3a4d9136506b4cd3echb0c84d59bbaf3b-41271384759a5d98870569fd65583a38¢8033733
3bb69430ch22beeb856731190c7c3684ac7e4a2-9b1708f6e581bf64d0004056abce3340741bf449
dbed806a7aad5d253cflcala3bcadbdabe391456-ded59b5713bebfcaa27d7d9d1de704c¢96817870¢

2021-04-22T17:30:09Z
2021-04-23T'14:35:56Z
2021-04-26T01:16:01Z
2021-04-22T11:19:4872
2021-04-22T22:33:277
2021-04-22T01:50:20Z
2021-04-22T09:00:187
2021-04-22T14:28:03Z
2021-04-26T11:57:437
2021-04-22T06:56:22Z
2021-04-20T'13:58:47Z
2021-04-22T01:09:42Z
2021-04-26T'10:28:10Z
2021-04-22T03:29:36Z
2021-04-20T15:46:377Z
2021-04-22T16:14:127
2021-04-22T04:02:327
2021-04-22T15:37:427
2021-04-23T01:55:147
2021-04-22T07:14:34Z
2021-04-23T'15:31:14Z
2021-03-18T'19:30:39Z
2021-04-22T01:23:497
2021-04-22T08:49:247

2021-07-14T19:37:26Z
2021-07-20T22:36:46Z
2021-07-09T15:43:47Z
2021-07-20T06:03:01Z
2021-07-20T18:44:197
2021-07-20T07:54:187Z
2021-07-20T21:04:137Z
2021-07-20T22:54:497
2021-07-16T21:30:247
2021-07-20T21:04:19Z
2021-06-14T23:39:58Z
2021-07-20T06:30:44Z
2021-07-20T01:54:33Z
2021-07-19T12:26:147
2021-07-16T20:51:35Z
2021-07-19T22:09:03Z
2021-07-20T12:48:587Z
2021-07-19T08:55:38Z
2021-07-20T11:47:227
2021-07-20T'16:01:18Z
2021-07-20T'11:41:09Z
2021-06-16T19:30:39Z
2021-07-20T14:33:09Z
2021-07-20T19:43:137Z

Table N.2: KATIAULU’s community smells results for the communities considered in
our survey study.

Community org_silo lone_wolf radio_silence
Couchdb 31 31 13
Trafficserver 94 103 12
Bookkeeper 6 7 3
Dubbo 80 80 19
Druid 19 19 11
Echarts 140 140 37
Cloudstack 123 125 13
Airflow 680 700 15
Incubator-Mxnet 29 33 12
Superset 431 434 7
Openwhisk 8 8 18
Pulsar 389 413 60
Rocketmq 121 121 22
Incubator-Doris 219 219 15
Camel-K 29 30 44
[ceberg 44 49 17
Dolphinscheduler 155 155 22
Apisix-Dashboard 26 26 33
Skywalking 54 55 26
Shardingsphere 114 114 20
Camel-Quarkus 10 11 42
Zephyr 1041 1051 60
Protobuf — — —
Milvus 135 135 3
Scikit-Learn 327 327 10

346

Lve

Table N.3: KAIAULU’s social networks metrics results for the communities considered in our survey study.

Community num_tz code only devs code files ml only devs ml threads code ml both devs
Couchdb 5 9 230 13 16 1
Trafficserver 9 28 362 12 24 8
Bookkeeper 6 12 79 25 19 5
Dubbo 3 29 760 50 102 2
Druid 10 28 568 33 59 8
Echarts 7 25 279 37 75 3
Cloudstack 7 25 551 53 397 4
Airflow 15 131 1244 78 153 15
Incubator-Mxnet 9 20 303 26 41 4
Superset 14 61 660 30 41 7
Openwhisk 6 7 99 18 47 1
Pulsar 10 70 902 63 412 19
Rocketmq 2 35 144 22 1959 1
Incubator-Doris 3 43 788 15 36 1
Camel-K 7 15 218 44 137 4
[ceberg 8 41 290 76 129 12
Dolphinscheduler 4 32 332 51 93 4
Apisix-Dashboard 5 16 121 33 102 4
Skywalking 5 38 548 26 67 3
Shardingsphere 7 38 2241 20 36 0
Camel-Quarkus) 11 174 42 133)
Zephyr 15 257 2376 7 205 14
Protobuf — — — — — —
Milvus 3 21 537 2 1697 0
Scikit-Learn 14 91 366 26 25 0

8V€

Table N.4: KATAULU’s line metrics results for the communities considered in our survey study.

Community git_checkout Lines Code Comments Blanks Complexity
Couchdb 647aea29ce8431fab5c2049cc6dad 7a9305ad3e6b 78517 64009 7178 7330 2599
Trafficserver 099b55e9¢1fa0636¢19265db9ctdalf6f7376b41 481840 330059 89361 62420 59992
Bookkeeper 31e8d1b44ffafd867d0eb2774085e4b1141a7ach 250634 156906 67695 26033 16233
Dubbo 9c¢b97e35a3776¢H77a188858d401d 7410675759 168639 101268 44116 23255 14185
Druid 94¢1671eaf7b050972602fdedch1971cdbde692d 580312 402948 114043 63321 38073
Echarts 72¢62ce6c860144b2436199a04c750a6483673 420147 307090 59487 53570 62588
Cloudstack 1f743e911a17626d441872eebf66135771761¢83 1117422 810976 155943 150503 111565
Airflow eb3d685836116be0f67de2b9c8bc61b1{9a738f 267866 187056 62795 18015 8872
Incubator-Mxnet 3480ba2c6df02bb907d3a975d354efa8697c4eT1 469874 368880 70023 30971 36994
Superset 5cc95bb3781abedelel 76b2e728b0a36de30a739 221418 169091 36569 15758 10906
Openwhisk Ocdfdb3ech20fbff11e401c34143fe0e8161£83 58444 37817 13632 6995 2970
Pulsar 5ad405988fabb4b28dbdbdbaabc9al0802f39afl 394451 256203 92404 45844 27774
Rocketmq 35a15b6619adcc6bedc544a690f1b90802af5{7a 107155 74746 16977 15432 9703
Incubator-Doris 94c50012b2d60228861aaac0877decd550901ed2 578966 397427 108076 73463 61716
Camel-K 34d2cf5d47ta78acd8708733387185cct606106e 63087 40015 15186 7886 8877
Iceberg 1b3dbb6f13110eb734488d32e93e0fa8d23e9385 1957338 1654179 276889 26270 14416
Dolphinscheduler 6964c090c7alch3d1d69f5fe70ca3025df9b4be3 122755 70870 36635 15250 5871
Apisix-Dashboard 799e69aa9e4017db7b50{430f11cf0bad990a9bc 35196 24857 7267 3072 2821
Skywalking bd23£263e69097e¢0cb185be6d08cYee82e83815f 192352 113289 55206 23857 7975
Shardingsphere ladcdfad89962dd13c13a4624645ba7a6ba60fb9 187193 102934 60182 24077 7639
Camel-Quarkus 358d26a772959b005161d3c20bc877d7136aa7dc 56224 37807 12579 5838 2485
Zephyr 41271384759a5d98870569fd65583a38c8033733 1129653 756597 195510 177546 84462
Protobuf — — — — — —
Milvus 9b1708f6e581bf64d0004056abce334074fbf449 325782 246841 35094 43847 35048
Scikit-Learn ded59b5713bcbfcaa27d7d9d1de704c96817870¢c 232512 193161 26056 13295 8843

Appendix O

Code: Generate Histograms

In Section 7., we discuss histograms showing the distributions of the computed values
for dispersion, formality levels, engagement levels, and longevity in the considered
communities in the survey study. We list the Python script that was used to generate
these histograms in Listing

Listing O.1: Python script that was used to generate histograms for the
operationalized key characteristics.

import matplotlib.pyplot as plt
import pandas as pd

import seaborn as sns

import numpy as np

data = pd.read_csv(’...’, delimiter=",")

Source outlier computation (unused):
<~ https://www.thoughtco.com/what-is-an-outlier -3126227

x1 = datal[’Dispersion’]

Uncomment the following lines to exclude strong outliers
q75, q25 = np.percentile(xl, [75 ,25])

iqr = q75 - q25
#
#

x1 x1[x1 > g25-mp*xiqr]
x1 x1[x1 < q75+mp*iqr]

x2 = data[’Formality’]

Uncomment the following lines to exclude strong outliers
q75, q25 = np.percentile(x2, [75 ,25])

iqr = q75 - q25
#
#

x2 x2[x2 > q25-mpxiqr]
x2 x2[x2 < q75+mp*iqr]

x3 = datal[’Engagement’]

Uncomment the following lines to exclude strong outliers
q75, q25 = np.percentile(x3, [75 ,25])

iqr = q75 - q25
#
#

x3 x3[x3 > g25-mpxiqr]
x3 x3[x3 < q75+mp*iqr]

x4 = datal[’Longevity’]

Uncomment the following lines to exclude strong outliers
q75, q25 = np.percentile(x4, [75 ,25])

iqr = q75 - q25

x4 = x4[x4 > q25-mpxiqr]

x4 = x4[x4 < q75+mpxiqr]

Plot Dispersion

plt.figure (1)

x_array, y_array = sns.histplot(data=xl, kde=True,
— bins=5).get_lines () [0].get_data()

plt.xlabel("Dispersion (km)")

349

plt.x1im(0,5000)

plt.ylim(0,25)

plt.grid(b=True, axis=’y’)

plt.axvline (x=4926, label="Threshold", color="magenta")

Uncomment the following lines to determine a new threshold using the kde curve

min_idx = np.argmin(y_array)

new_threshold = x_array[min_idx]

print(new_threshold)

plt.axvline(x=new_threshold, label="New Threshold", color="orangered")

plt.legend ()

Plot Formality
plt.figure (2)
x_array, y_array = sns.histplot(data=x2, kde=True,
< bins=5).get_lines () [0].get_data()
plt.xlabel ("Formality Level")
plt.x1im (0,1500)
plt.ylim(0,25)
plt.grid(b=True, axis=’y’)
Increase line width to make the line visible next to y axis
plt.axvline(x=0.1, label="Low Threshold", linewidth=4, color="magenta")
plt.axvline (x=20, label="High Threshold", color="lime")
plt.legend ()

Plot Engagement

plt.figure (3)

x_array, y_array = sns.histplot(data=x3, kde=True,
— bins=5).get_lines () [0].get_data()

plt.xlabel ("Engagement Level")

plt.x1im(0,22)

plt.ylim(0,25)

plt.grid(b=True, axis=’y’)

plt.axvline(x=3.5, label="Threshold", color="magenta")

Uncomment the following lines to determine a new threshold using the kde curve

max_idx = np.argmax(y_array)

new_threshold = x_array[max_idx]

print (new_threshold)

plt.axvline(x=new_threshold, label="New Threshold", color="orangered")

plt.legend ()

Plot Longevity

plt.figure (4)

sns.histplot (data=x4, kde=True, bins=5)
plt.xlabel("Longevity (days)")

plt.x1im (0,1800)

plt.ylim(0,25)

plt.grid(b=True, axis=’y’)

plt.axvline (x=93, label="Threshold", color="magenta")
plt.legend ()

plt.show ()

350

	Acknowledgments
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Listings
	Introduction
	Related Work
	Software Community Health and Related Research
	Community Types and Related Research
	Community Smells and Related Research
	Splicing Community Patterns and Smells
	Summary and Motivations

	I Taxonomic Analysis
	Context Model
	Methodology
	Literature Collection
	Domain Specification
	Core Concepts
	Related Concepts
	Categorization of Subdomains
	Adequacy Analysis
	Selected Inquiry

	The Model
	Threats to Validity
	Discussion and Conclusion

	Concluding Remarks

	II Empirical Analysis
	Context and Theoretical Framework
	Community Types and Their Detection
	Community Smells and Their Detection

	Yoshi 2 - Yielding Open-Source Health Information Version 2
	Research Solution: A General Overview
	Algorithmic Representation
	Community Structure
	Community Geodispersion
	Community Formality
	Community Engagement
	Community Longevity

	Architecture
	Modifications to Yoshi's Solution Design
	General Tool Limitations

	Consistency Analysis Yoshi and Yoshi 2
	Introduction
	Methodology
	Results
	Discussion
	Threats to Validity
	Conclusion

	Survey Evaluation of Yoshi 2 and Kaiāulu
	Introduction
	Methodology
	Data Collection
	Data Analysis

	Results
	Discussion
	Threats to Validity
	Conclusion

	Relations Between Patterns and Smells
	Introduction
	Methodology
	Data Collection
	Data Analysis

	Threats to Validity
	Conclusion

	Concluding Remarks

	III Final Remarks
	Conclusion
	Conclusions
	Future Work

	Bibliography
	Bibliography Context Model
	Appendices
	Adequacy Analysis: Identifying Missed Relations
	Yoshi 2: Technical Details
	Dependencies
	Installation and Configuration Guide
	Installation
	How to Use

	Metric Computations
	Members
	Structure
	Geodispersion
	Formality
	Engagement
	Longevity

	Architecture
	./src
	./src/CommunityData
	./src/CommunityData/MetricData
	./src/DataRetriever
	./src/DataRetriever/Geocoding
	./src/CharacteristicProcessor

	Code: Yoshi 2
	./src
	./src/CommunityData
	./src/CommunityData/MetricData
	./src/DataRetriever
	./src/DataRetriever/Geocoding
	./src/CharacteristicProcessor

	Hofstede Comparison: Detailed Results
	Code: Hofstede Comparison
	Code: Extract Statistics
	Yoshi 2: Input
	Yoshi 2: Detailed Results
	Yoshi 2's Results in Our Comparison Between Yoshi and Yoshi 2
	Yoshi 2's Results in Our Survey Study

	Kaiāulu: Configuration Files
	Kaiāulu: Issues and Bugs
	Issues
	Unable to Run Perceval on Windows
	data.AuthorDate Set to NA in parse_gitlog()
	Clustering Issue

	Bugs
	Missing Leading Zeros in mod_mbox_downloader
	Hardcoded Parameter Overwrites Window Size Specified in Configuration Files
	Timestamps of Committers Assigned to Authors
	Incorrect Commit Hash Affects Reported Analysis Window and LOC Metrics
	Alphabetically Ordered project_git and project_mbox Should Be Ordered Temporally
	Only Half the Edge List Was Mapped to a Numeric ID
	Churn Metrics Always Reporting Zero

	Kaiāulu: Git Diff
	Code: Extract Emails
	Survey Instrument and Recruitment Email
	Survey Instrument
	Mapping Names to Descriptions
	Mapping Community Types to Descriptions
	Mapping Community Smells to Descriptions

	Recruitment Email

	Kaiāulu: Detailed Results
	Code: Generate Histograms

