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Abstract

For millennia, humans have used natural language as a medium to convey information to one
another. The complexity of the information has been ever increasing, and so has the complexity of
the language conveying it. The rise of the digital age has exacerbated that effect as we witness the
explosion of data, especially in textual format. Most of that text, however, remains unstructured
and hard to interpret by computers. This thesis aims to bring natural language text closer to
the machine’s understanding through formalization with the purpose of enabling many useful
applications such as formal reasoning and model checking [51].

We are interested in a particular type of texts—those which describe a procedure such as in-
struction manuals. Procedural descriptions usually contain an embedded structure which can be
categorized as a business process. A business process is a series of ordered steps and decisions
that describe the way a procedure is complete. For example, issuing legal documents, registering a
patient, taking a regular medication, and so on. Therefore, such embedded structure can be cap-
tured through process modeling languages such as BPMN (Business Process Model and Notation),
or it can be captured through temporal logics such as LTL (Linear Temporal Logic).

This project aims to lay the foundation for a framework that can extract fragments of process
information from procedural description texts and translate them into a formal language such
as the aforementioned LTL. This project also aims to solve the challenge of detecting multiple
linguistic constructs within one sentence even when some are nested within others.

Our proposed design consists of five modules. Module 1 prepares the text by segmenting sentences
and performing preliminary linguistic processing. Module 2 performs syntactic dependency ana-
lysis to detect the syntactic relations between words in a sentence. The output is a dependency
tree carrying the relations. Implicitly, the dependency relations inform us of which linguistic con-
struct is nested within which. Module 3 detects the linguistic constructs that are known to carry
process information. Module 4 transforms the detected constructs into a formal intermediate rep-
resentation we call a linguistic-semantics (LingSem) tree. Module 5 translates the LingSem tree
into a formal expression.

To validate the results of this approach, the intermediate and final formal outputs of the imple-
mented design are compared to the formalization produced by a human participant. We found
that our intermediate representation output is accurate, but we also found many discrepancies
between human and machine in the final LTL output.
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Chapter 1

Introduction

For millennia, humans have used natural language as a medium to convey information to one
another. The complexity of the information has been ever increasing, and so has the complexity
of the language conveying it. That is especially observable in the most recent decades, with the
rise of the digital age, and the explosion of information. With so much data storage in today’s
world, much of the complex information is stored as natural language text. Most of that text,
however, remains unstructured and hard to interpret by computers. Formalization of natural
language brings it much closer to a computer’s understanding [51]. Computer understanding of
natural language enables many useful applications such as formal reasoning, knowledge extraction,
indexing and searching, discourse analysis, and sentiment analysis [51].

This thesis is concerned with texts describing procedural instructions such as medicine leaflets,
instruction manuals, cooking recipes, or business contracts. A simple yet extensible framework is
developed to offer automated formalization of text through the use of state-of-the-art tools and
standards alongside user-defined rules and dictionaries. In this chapter, we introduce the basic
background and provide an overview of the whole project. In Section 1.1, we explain why form-
alization of text is desirable. Section 1.2 presents the research question of this thesis. Section 1.3
introduces our approach. The further outline of this thesis is described in Section 1.4.

1.1 Motivation

Formalization of natural language serves many useful purposes. Consider texts describing software
requirements. Translating requirements to a formalism such as finite state machines, for instance,
enables formal verification of properties of the software design.

Next to software requirements, other types of texts fall within the interest of this thesis, i.e.,
instruction guides, user manuals, software documentation, informal semantics, or informal spe-
cifications of a system. We generally label any such text as a procedural description. In addition
to the aforementioned benefits of formalization, translating a procedural description to, say, the
well-known Linear Temporal Logic (LTL), enables formal reasoning and querying using logic for-
mulas. For example, we can answer inquiries about the sequence of activities within a procedure,
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CHAPTER 1. INTRODUCTION

about how two activities are related or about which activities carry certain attributes. Further-
more, instructions can be re-generated with more detail or more context provided [68].

The extent of inquiries one can make with regards to a procedural description is vast since there
are many semantic elements embedded within a procedural text. Several works have focused on
semantic elements captured by business processes. A business process, or a process for short, is a
series of ordered steps and decisions that describe the way a procedure is complete [70].

Needless to say, manually processing the humongous amount of existing documents is beyond
our capacity as humans, not to mention slow and error-prone. This reality urges the need for
automating such a process using intelligent computing.

The next section explains the objective of this thesis in light of that.

1.2 Research Question

The aim of this project to extract process information from textual data. The purpose is to enable
the machine to perform advanced computations such as process mining on such data. Therefore,
the goal can be formulated as follows:

Goal: To extract process information from textual data.

There are many challenges in processing textual data because a single process is usually described
in multiple sentences with semantic relations between them. Therefore, to limit our scope, we
decided to focus on process information that lies within an individual sentence.

Moreover, even a single sentence can be very complex especially when it contains nesting, i.e.,
when a clause has another clause embedded inside it. For example, in the sentence “If you study
before taking the exam, you pass”, the before-clause is nested within the if -clause. We decided
to focus on detecting such nesting within a sentence with no particular limit to its depth or the
amount of clauses in a sentence.

If we think in terms of process templates, the templates expressing the linguistic constructs of if
and before in the aforementioned sentence are called the Response and the Precedence templates
respectively. There are various process templates and various sets of defined templates. For time
constraints, we decided to limit the number of templates to focus on.

Lastly, while a single sentence may not be enough to contain an entire process, it can contain
process fragments, each of which can be expressed through one of the defined process templates.

To conclude, these aspects lead to the following research question:

How can nested process fragments be extracted from a sentence describing a
procedure in natural language?

1.3 Research Approach

The main goal of this project is to extract process model information from natural language
sentences, including ones that contain nesting.

2 Formalization of Natural Language Text using Syntactic Dependency



CHAPTER 1. INTRODUCTION

To achieve this goal, the following steps were taken.

Literature review. At the beginning and during the project, we did a thorough examination
of the related work concerning process extraction from text and reviewed the solutions related to
our problem. We explored the transformation of natural language into different process models
and LTL. This research helped us clarify the vision and learn more about the state of the art on
process extraction and on the formalization of natural language.

Case study. We use a dataset collected by Shafiee [53]. The data was a corpus of medicinal usage
texts gathered from WebMD1. One particular piece of text we focused on is found at WebMD:
Ibuprofen Use2.

Tools. To study dependency trees, we benefited greatly from spaCy3, an open-source NLP
framework for the Python programming language. It includes built-in pipelines, trained models,
and extensions. These perform tasks as text processing, sentence segmentation, dependency pars-
ing and visualizing the output beautifully. We decided to use spaCy for its accuracy of built-in
models, ease of use and excellent documentation. Moreover, we benefited from other Python
libraries such as NLTK4 for more NLP operations.

Method Based on the literature review, we decided to use dependency parsing as our primary
technique for language analysis. Observing the resulting dependency trees, we noted specific re-
peating patterns that are associated with certain semantics of natural language, e.g., the function
word if connecting two clauses entails a conditional statement. We defined a set of these repeat-
ing patterns, called dependency patterns, and defined a mapping from each pattern to a formal
expression which was derived essentially from human understanding. Next, we started searching
for the patterns in other sentences. Matches within a sentence are arranged in a nested hierarchy
based on the nesting found in the dependency tree. Finally, based on the aforementioned mapping,
the matches are transformed into a final formal expression.

Evaluation of the results. The last phase of this project is to analyze and evaluate the results.
This step brought much insight to our work. It revealed many flaws in the initial design stages
and assumptions. Furthermore, it greatly improved our understanding of dependency parsing and
brought many ideas for improvement and future work. We carried out the evaluation by comparing
the LTL output of our implementation with that of a human participant.

1.4 Outline

Chapter 2 provides relevant concepts and definitions necessary for understanding the rest of the
project. Chapter 3 provides the background, describes the works and literature related to our
problem and examines common challenges and techniques. Chapter 4 demonstrates our approach

1https://www.webmd.com/
2https://www.webmd.com/drugs/2/drug-5166-9368/ibuprofen-oral/ibuprofen-oral/details
3https://spacy.io
4https://www.nltk.org
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to extracting process fragments from text and explains the design and implementation of the frame-
work in five modules. Chapter 5 shows the results of the solution and discusses and evaluates them.
Finally, Chapter 6 summarizes the thesis and presents conclusions and possible improvements for
future work.

4 Formalization of Natural Language Text using Syntactic Dependency



Chapter 2

Preliminaries

In this chapter, we introduce the relevant concepts and definitions necessary for understanding
the coming chapters.

2.1 Natural Language

The term natural language refers to human languages in general that naturally evolved away from
deliberate artificial design. Human evolved languages are, thus, natural as opposed to program-
ming languages or human-constructed languages such as Esperanto, Lojban and even Klingon [40].

Natural language is filled with ambiguities that make it incredibly difficult for computers to under-
stand. In many instances, the intended meaning of an utterance is implicit and hidden behind lay-
ers of non-linguistic knowledge. Homonyms, homophones, sarcasm, idioms, metaphors, grammar
and usage exceptions, variations in sentence structure–—these are but a few of the irregularities
of natural language that take humans years to learn.

For the purpose of this thesis, we only address natural language in its textual form.

2.1.1 Natural Language Processing

As the application of Artificial Intelligence expands into our daily lives, the processing of natural
language by a machine is an evermore increasing necessity—one that has given rise to the field
of Natural Language Processing (NLP), also known as Natural Language Understanding (NLU).
The term NLP refers to a branch of Artificial Intelligence concerned with granting computers the
ability to understand/interpret speech and text in a way that can parallel human understanding.
The following explains concepts of natural language that are used throughout this thesis [36, 26],
followed by examples. Additionally, Figure 2.1 illustrates an example sentence marking these
concepts.

Linguistic constructs: These are parts of linguistic tokens that adhere to a specific syntax in
accordance with the rules of a language. Statements such as conditionals (e.g., if else), for (each)
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Figure 2.1: An example sentence illustrating key concepts of sentence structure in natural lan-
guage: “Emma may cross the wide street only when it is empty”.

loops, and while loops are part of the linguistic construct of a programming language. These
constructs are essential to ensure that instructions are clearly interpreted by the machine.

Phrases: These are a group of words, consisting of one word or a complete sentence, that form
a grammatical unit and plays a particular role within the syntactic structure of a sentence. One
can construct so-called phrase ‘trees’, where each sub-tree can be considered as a phrase.

Predicates: These are either all the words in a standard declarative sentence or simply the main
content verb or associated expression of a clause. Both definitions may be used.

Clauses: These are a group of at least one word functioning as a single stand-alone unit, typically
consisting of a semantic predicate. The most common clause in the English language is the subject-
verb-clause, e.g., “I go to work every day”. Commonly in English, a sentence may consists of a
pair of clauses, one being a main clause and the other a subordinate clause or sub-clause. The
main clause can stand alone as a complete meaningful sentence, but a sub-clause depends on the
main clause to be meaningful. As shown in Figure 2.1, the clause headed by marker words is the
sub-clause.

Marker Words: These are function words such as if, before, when, until, while, etc., that usually
come at the head of a clause marking the type and function of the clause.

Examples about Predicates, Clauses, and Marker Words: Since we use these terms in
the rest of this thesis, comprehending them through a few examples should prove fruitful. Take
the sentence “Emma crosses the street”. This entire sentence is a single predicate. It is also a
clause, but it could also have a dependent sub-clause as in “Emma crosses the street, only when
there is no traffic”. Here, there are two predicates: “Emma crosses the street” and “there is no
traffic”. The function words “only when” are considered the marker of the sub-clause. Another
possibility is that the Emma predicate could itself be a dependent sub-clause as in "Once Emma
crosses the street, we start moving".

Nested hierarchy These are tree-like structures that show direct or indirect relations between
entities in a set. In the context of NLP, nested hierarchies can show direct or indirect relations or
dependencies between a word and another word or phrase.
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Levels of NLP

There are different levels of analysis of language [18]. In order from least to most complex, these
are:

1. Morphological Analysis, which deals with the study of word structures and formation,
and focuses on analysing individual components of words. For example, "unhappiness" can
be broken down into three units (prefix un-, refers to not being; stem happy ; suffix -ness,
refers to a state of being).

2. Lexical Analysis, which deals with studying words with respect to their part-of-speech and
meaning. For example, the word duck can be both a verb or a noun, but its part-of-speech
and meaning depends on its context with other words in a sentence.

3. Syntactic Analysis, which refers to grouping words into phrase and clause brackets based
on the part-of-speech tagging output from the lexical analysis. This analysis (also known
as parsing) allows to extract phrases that convey more meaning compared to each word
individually.

4. Semantic Analysis, which deals with determining the meaning of a sentence by relating
syntactic features and removing ambiguity in words based on the context.

5. Discourse Analysis, which deals with analysing the structure of text on a multi-sentence
level by attempting to make connections between words and sentences.

6. Pragmatic Analysis, which deals with using real-world knowledge (such as time and loca-
tion mentioned in text) and understanding how this knowledge may impact the meaning of
what is being communication.

Techniques of NLP

There are a handful of techniques that are used in NLP that operate on one or more of the
aforementioned levels [15]:

1. Part-of-Speech (POS) tagging, which is the process of marking words in a text corres-
ponding to its definition and context in the sentence. A prime example of POS tagging is
identification of grammatical cases (nouns, pronouns, verbs, etc.). This technique mainly
performs a lexical analysis of a sentence or text.

2. Dependency Analysis, which is the process of extracting dependencies between entities
in a sentence, forming directional relationship between these entities. This technique mainly
performs a syntactical analysis of a sentence.

3. Named Entity Recognition, which is the process of locating and classifying entities into
pre-defined categories such as names, locations, time expressions, and so on. This technique
mainly works on a pragmatic level.

4. Co-reference Resolution, which refers to the process of finding all expressions referring to
the same entity in a text. This technique mainly operates on the discourse level of analysis.
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Figure 2.2: A dependency-style parse (left) next to the corresponding constituent-based analysis
(right) for the sentence “I prefer the morning flight through Denver” (source: [26]).

2.1.2 Dependency Grammars and Dependency Parsing

In modern grammatical theories, dependency grammars assume that all linguistic units, e.g. words,
are connected to each other by a dependency relation via directed links. Sentences can be pro-
cessed according to dependency grammar standards via dependency parsing [39]. The dependency
roots from the verb of the clause structure, and each other syntactical unit is either directly or
indirectly connected to the verb, forming dependencies. Dependency parsing is different from
constituency parsing (or syntactical parsing), as the latter displays the syntactic structure of a
sentence using context-free grammar [26]. Thus, a major advantage of dependency parsing over
syntactical parsing include the ability to deal with morphologically-rich languages with a relatively
free word order [26]. An example of how a sentence can be parsed using both parsing strategies is
depicted in Figure 2.2.

It is important to note that dependency parsing is capable of capturing nested clauses/phrases
down to an arbitrary depth [26].

There are two types of dependency parsing, namely transition-based and graph-based dependency
parsing. Transition-based parsing defines a transition system for mapping a sentence to its depend-
ency graph. Given an induced model for predicting the next state transition, the parser constructs
an optimal transition system using a greedy approach [26]. Graph-based parsing defines a space
of candidate dependency graphs for a given sentence, induces a model to score each dependency
graph, and takes the highest-scoring model as the final dependency graph. This type of parsing is
based on an exhaustive approach and is typically more accurate [26]. For that reason, we decide
to use the latter type, graph-based parsing.
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Definition of a Dependency Tree. A dependency tree is essentially a tree (the well-known
hierarchical structure [1]) of nodes and edges used to show the syntactic dependence of words in
a sentence on one another. In a dependency tree, nodes represent tokens (individual words or
phrases) while edges represent dependency relations. An edge directed from parent x to child y
carrying a label l (notation: x l−→ y) means that token y depends on token x with a dependency
relation labelled l such that the label l belongs in a finite set of dependency relations.

An example of a dependency tree is given through a sample output of Module 2 in Section 4.2.

2.2 Business Processes

A business process refers to a collection of related and structured tasks or activities which produces
a service or product [70]. In the context of this work, a process usually refers to a business process
unless stated otherwise. The activities in a process are carried out by employees or equipment and
are usually atomic, meaning that the activity cannot be split up into sub-activities. Activities can
be accompanied by an event, which is a specific instance of time that marks the start or end of an
activity [70].

Process discovery is one of the key steps in process mining [71] and focuses on discovering a set of
activity sequences indicating the start of a process to its termination [53]. In text, a process can
span multiple sentences and one sentences may not hold an entire process from start to end, but
contain a fragment of a process.

In this project, we are interested in discovering fragments of processes in sentences.

2.3 Formal Languages

A formal language is a well-defined language with a well-formed alphabet that follows a specific set
of syntactic and semantic rules [52]. Interestingly enough, the theory of formal language was born
from the field of linguistics for the purpose of defining a universal language [17]. Formal language
expressions are a valuable means for many advanced computing tasks such as model checking and
formal reasoning [35].

In the following, we explain two formal languages we use in our approach, Declare and LTL.

2.3.1 Linear Temporal Logic

Linear-time temporal logic (LTL) is a logical formalism which is commonly adopted in formal
verification, in particular in consistency and model checking, and it can be a very useful tool for
capturing the temporal content of natural language utterances. Such capabilities can be exploited
in many important applications, including disambiguation of technical requirements, log analysis,
and automated reasoning over temporal data [6, 43].

LTL formulas are composed of the following elements [47]:

• a finite set of atomic propositions Prop.

Formalization of Natural Language Text using Syntactic Dependency 9



CHAPTER 2. PRELIMINARIES

• the Boolean connectives ¬,∧,∨,→.

• the following temporal connectives:

– U (until).

– R (release).

– ©, also called X for ‘neXt time-step’.

– �, also called G for ‘Globally’.

– ♦, also called F for ‘in the Future’, also called ‘eventually’ and ‘some time’.

Rozier [47] explains the meaning of these operators intuitively as follows, given two propositions
ψ and φ:

• ψ U φ: Either φ is true now or ψ is true now and ψ remains true until such a time when φ
holds.

• ψ R φ: Said as ψ releases φ. This signifies that φ must be true now and remain true until
such a time when ψ is true, thus releasing φ.

• X ψ: This means ψ is true in the next time step, i.e. immediately after the current one.

• ♦ ψ: This means ψ must either be true now or at some future time step. Thus, it is eventually
true.

• � ψ: This means ψ is true in every time step.

There are various extensions of LTL. We are interested in an extension of two operators: W (Weak
until) and M (Strong release). Following is the intuitive explanation [74, 30]:

• ψ W φ: This means that ψ has to hold at least until φ is true. That is, if φ never becomes
true, ψ must remain true forever.

• ψ M φ: This means that φ has to be true until and including the point where ψ first becomes
true, which must hold at the current time or at a future time.

2.3.2 Traces and Trace Notation

In propositional logic, the semantic interpretation of a propositional expression is given by a
boolean valuation of the expression, i.e., true or false. In LTL, this concept is extended such
that an LTL formula is evaluated over a sequence of states. We assume the reader’s familiarity
with state transition systems and with LTL. For the complete formal context, we refer the reader
to Kröger and Merz [30] (Sections 2.1 and 6.2 of the book). For the purpose of this thesis, it
suffices to say that for any LTL formula, there is an underlying temporal structure. A trace, called
a run in [30], is a sequence of states in the given temporal structure. Each state is defined by
a propositional valuation; a propositional valuation is described by the set of variables it makes
true. For example, given that A,B and C are variables representing atomic propositions, the set
{A,B,¬C} is a single propositional valuation and it represents a state. In our notation, a trace is
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shown as a sequence of propositional valuations delimited by the � operator representing a state
transition. Examples are given below.

Given an LTL formula f and a trace t, we say that t satisfies f and that f accepts t if and only
if the semantic interpretation of f is true when f is evaluated over t.

Assuming there is a finite number of traces that satisfy f , we say that T = Traces(f) is the set
of all traces that satisfy f .

Assuming that a sentence S can be expressed as a finite set of traces T ′, we say that an LTL
formula f is an acceptable translation of S if T ′ = Traces(f). To show that f is not an acceptable
translation of S, it suffices to provide a counterexample trace t′ that satisfies f but is not expressed
by S or to provide a counterexample trace t′′ that is expressed by S but not accepted by f . Such
counterexample traces aid the discussion in Chapter 5.

When discussing the LTL translation of sentences, such as in Chapter 5, we use all of the concepts
mentioned above in addition to the trace notation. For example, consider the LTL formula f =

F(A ∧ ¬B). Then, the trace t1 = {A,B} � {A,B} � {A,B} does not satisfy f because it
terminates without ever reaching a state that satisfies A∧¬B. We also say that f does not accept
t1. On the other hand, the trace t2 = {A,B}� {A,B}� {A,¬B} does satisfy f . Notice that
the value of A in the first two states of t2 does not affect the satisfiability of t2. In such cases, for
the purpose of brevity, our notation allows dropping irrelevant literals, the literal A in this case,
effectively assigning a don’t-care value. Then, we write the trace as t′2 = {B}� {B}� {A,¬B}.

For simplicity, we do not consider infinite traces.

2.3.3 Process Templates and Declare

Dwyer et al. [12, 13] proposed a system of patterns that specify properties to be used for the
purpose of formal specification. Throughout the thesis, we refer to these patterns as process
templates. They defined several process templates that fall within three categories [53]:

1. Occurrence templates such as Existence, Absence, Bounded Existence, and Universality,
concern the occurrence of an event or state in the system.

2. Order templates express the relative order in which events or states occur. They include
Precedence and Response.

3. Chain templates express complex combinations relationships between events or states. These
include Chain Precedence and Chain Response.

Dwyer et al. provide a mapping from their process templates to LTL given in [14].

These templates were later adopted into a a declarative language, called Declare, proposed by
Pesic and Van der Aalst in [41]. In Declare, classes of properties and constraints are represen-
ted abstractly by the aforementioned process templates. A Declare model consists of a set of
constraints based on those templates. Pesic and Van der Aalst also provide a mapping to LTL,
based on Dwyer’s mapping, shown in Figure 2.3.
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We explain the meanings of some of these templates. Response(x, y) dictates that if x occurs,
then y must eventually occur. Precedence(x, y) dictates that y cannot occur if x has not occurred
earlier. Coexistence(x, y) dictates that if either x or y occurs at least once, then the other must
eventually occur at least once.

Figure 2.3: A mapping from some of the process templates used by Declare to LTL formulas
(Source: [41] Fig 6.5).

2.3.4 Informal Semantics

The term Informal Semantics can only be defined in the context of formal semantics. The informal
semantics of a formal system or a formal language can be defined as a means to express the
knowledge of the system that is conveyed by its theories and formulas in a precise and systematic
way [11]. Examples of informal semantics would be our explanation of the function of certain LTL
operators and process templates in Sections 2.3.1 and 2.3.3 respectively.
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Chapter 3

Background and Related Works

In this chapter, we provide the background knowledge and related work concerning formalization
of natural language and review the solutions related to our problem. Moreover, we explore the
transformation of natural language to different process models and LTL.

3.1 Natural Language to Declarative Process Models

Several approaches have been developed for constructing declarative process models from natural
language. Van der Aa et al. [69] recently proposed an automated approach for extracting de-
clarative process models using natural language. Their approach involves linguistic processing for
identifying semantic components, activity extraction for capturing sequential actions, and con-
straint generation, which can handle descriptions with multiple constraints. Furthermore, they
map naïve grammatical constraints to Declare statement templates. Studying these constraints
is useful because it acts as a reference when wanting to cover as many syntactic patterns as they
did. They also created constraint classes in order to group similar constraints. For example, an
activity can be found in text as a verb: “create a ticket”, or as a noun: “creation of a ticket”. Thus,
the two constraints matching these two phrases belong in the activity class.

Riefer et al. [46] provided an overview of state-of-the-art approaches for text-to-model mining.
These approaches were compared against each other based on the following factors: their textual
inputs accepted (strict or flexible), NLP techniques used (syntactic analysis and/or semantic ana-
lysis), and models generated (e.g., using activities, events, and/or actors). These comparisons are
useful to study in order to, potentially, address their shortcomings in this work. Based on the
comparisons, the following pros and cons for each state-of-the-art approach were discovered:

• Process Discovery from Model and Text Artefacts [22]: The main advantage of this approach
is that it makes use of reference models, i.e., an interlinked set of components that are clearly
defined; however, this approach can only create parts of a model, and connections cannot
be made if no coherence is found.

• Business Process Mining from Group Stories [23]: This approach is flexible and works for
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Figure 3.1: High-level methodology of Shafiee [53]. Image taken from the same paper

text-to-speech input; however, there is no semantic analysis involved and the generated
BPMN models are not complete.

• Use Cases to Process Specifications in Business Process Modeling Notation [54]: This ap-
proach is very flexible about speech and domain, and can compute models relatively fast
compared to other approaches; however, there is no clarity about the input text format, and
the approach requires effort and domain knowledge to operate properly.

• Process Model Generation from Natural Language Text [20]: This approach creates complete
models and has a thorough semantic analysis. No disadvantages could be concluded from
the study.

• Automatic Process Model Discovery from Textual Methodologies [16]: This approach does
not require a list of keywords unlike other models; however, this approach does not create
any model whatsoever.

The work of Shafiee [53] represents the starting point for this thesis. Shafiee developed a frame-
work to mine Local Process Models (LPM) from Natural Language. She gathered data from
WebMD describing the usage of medicines. Her work can be summarized in steps which were
nicely visualized by the author in Figure 3.1. First, she uses NLP tools to analyze the data and
annotate it with POS tags before she annotates tokens with semantic tags using semantic ontology
resources. After that, she applies rules specified in regular expressions to detect certain linguistic
patterns from each sentence. Next, she applies a semantic similarity measure on all sentences in
order to cluster them. Each cluster would hold sentences with the same syntactic pattern and
similar semantics. This allows the user to search for answers to specific questions about the use
of a medicine such as proper dosage quantity and frequency. This is done by specifying linguistic
pattern and a list of concepts from the semantic ontology. For example, to inquire about proper
dosage, some relevant concepts are “daily (temporal concept), take (healthcare activity), medicine
(pharmacologic substance)” and so on. The evaluation was done by manually inspecting a number
of such standardized questions, and qualitatively assessing if the tool was able to retrieve the an-
swer. The method indeed provides meaningful results. One limitation within the work of Shafiee
was the inability to detect nested linguistic constructs in one sentence.

3.2 Natural Language to Business Process Models

Business process models are utilized for process optimization, partial automation of the work-
flow, or documentation of the workflow implementation. Based on a comprehensive investigation
in 2019 of the techniques, tools, and trends by Maqbool et al. [34], it was shown that current
NLP techniques significantly simplify the process of BPMN model generation from textual re-
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Figure 3.2: High-level methodology of Honkisz et al. [25]. Image taken from the same source.

quirements. This property implies that current techniques might be inadequate to be applied in
current industries working with (real-time) systems. This section gives a brief description of recent
methodologies for processing natural language into business process models.

Honkisz et al. [25] recently proposed a new method for business process model extraction from nat-
ural language texts. Their three-step methodology involves converting raw text into a spreadsheet
representation, which is then used to generate an intermediate process model, as depicted in Fig-
ure 3.2. Their method applies both syntactic and semantic analyses (including POS tagging and
dependency parsing) of the text to extract relevant and filter out irrelevant Subject-Verb-Object
(SVO) constructs. Given the structured nature of these spreadsheets and, thus, the generated
models, they allow for ease in checking its correctness and applying manual correction. These
spreadsheets inspired us to create an intermediate representation that enables easy checking and
correcting that is also capable of being translated into a formal output.

Pietikäinen [42] attempted to mitigate the workload of domain experts in the business processing
field by constructing genre analysis methods and classifying the headings of the documents. These
approaches would ‘summarize’ text documents into business process steps that are relevant for
domain experts, which essentially saves time and effort.

Ferreira et al. [19] proposed a combination of NLP tools that work synchronously based on pre-
defined mapping rules. These tools apply syntactic and logic analysis on input text to generate a
rule-mapped text output that can easily be converted into a business process model.

Goncalves et al. [23] makes use of group narrative combined with text mining and natural language
interpretation to automatically generate process models. Their approach involves tokenization as
well as morphological, lexical, syntactic, and domain analysis of story texts to extract workflows.
This approach generates a set of candidate models, of which a final model is manually picked by
the user. As mentioned in the overview by Riefer et al. [46], it is a flexible approach, but it
generates incomplete BPMN models.

All of the works described in this section perform syntactic analysis on the natural language
input. Additionally, they take similar steps in their approach to extract process information from
natural language. These steps (and their clear segregation as in [23]) inspired us in two ways. First,
identifying the sub-tasks of our problem: lexical analysis, dependency parsing [25, 19], intermediate
representation [25], and a final translation which differs among works. This helped us segment
our design into five modules and inspired us to strive for a modular design. Furthermore, we
benefited from individual ideas. Our idea of an intermediate representation was inspired by the
intermediate model description of [25] which outlines the elements of a process in a readable yet
formal representation. The use of mapping rules by [19] inspired us to create a similar set of rules
mapping the intermediate representation to the final formal output.
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3.3 Natural Language to Linear Temporal Logic

Linear temporal logic (LTL) is a well-suited technique for formalizing technical requirements, but
is mathematically challenging to interpret. To simplify the creation of LTL for domain experts
without a strong mathematical background, research is ongoing to develop approaches that trans-
late natural language texts into LTL formulas, or vice versa. This section lists two important
pieces of literature that cover this problem.

Brunello et al. [6] investigated a handful of current state-of-the-art methodologies concerning
English-to-LTL translation problems. They state that current approaches attempt to extract time
constraints from texts—they refer to this as “temporal expression recognition and normalization”.
Additionally, the challenge of defining a nesting hierarchy to an arbitrary depth as opposed to
defining it to a certain fixed depth. They conclude from the literature they reviewed that a
solution to translate unbounded natural English text to unbounded LTL formulas is missing.

Sànchez-Ferreres et al. [61] recently developed a framework that annotates textual descriptions
both manually and automatically such that these can be transformed into temporal formulas,
allowing for a reasoning mechanism to produce or validate processes. Their formal model is used
to translate specially annotated text, named ATDP, into LTL. The model is able to capture
ambiguity within text and to separate phases of a process using a recursive approach combined
with the annotated data and formal semantics.

We find out from [4, 6] that other analysis techniques that involve grammatical constraints [69]
and regular expressions [53] are not as suitable to detect nesting. Albeit theoretically possible,
it requires a tedious effort due to the exponentially increasing number of variants a grammatical
construct can appear in. This requires many more rule variants to be specified in comparison with
the flexibly-matched dependency patterns of [61]. To illustrate, consider the sentence:

If you take the medicine before you have breakfast, and your last meal was more than eight
hours before, take it with water and antacid or milk.

This sentence contains two before conjunctions and if, and and or conjunctions. Furthermore,
the second before has an implicit conjunct, i.e., the before-clause is not explicitly stated. These
complications cause linear approaches, as [53, 69], to struggle in an attempt write rules for cases
this specific. For that reason, we chose to utilize dependency parsing in our approach.

3.4 Process Extraction from Text

Bellan et al. [4] recently performed a qualitative analysis on state-of-the-art approaches and tools
for process extraction from text to give insights on current limitations. They state that current
state-of-the-art papers mostly rely on CREWS intermediate representation. Additionally, they
define process extraction from text as the problem of generating a process model diagram from its
procedural description using function f , which can be split up in sub-functions fa, text-to-world,
and fb, world-to-model. These sub-functions can be broken down into smaller parts, namely:

• fa,i: resolving anaphoric references

• fa,ii: filtering uninformative textual fragments
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• fa,iii: extracting process elements and structures from text

• fb,i: adding process elements and structures to correctly create process models

• fb,ii: connecting process elements together using similar logic conveyed in text

• fb,iii: generating textual labels for each process element and generate the process model
diagram

Out of these tasks, we identified that our problem is, to some extent, related to fa,iii and to fb,ii.
Task fa,iii is concerned with extracting process elements and process structures. Elements of a
process are activities, roles, events, and so on, while process structures are gateways that control
the flow of a process [65]. While we do not attempt to extract process elements, we do extract
the relation(s) between two or more process fragments within a sentence, which contributes to
discovering a process structure.

Task fb,ii is concerned with connecting process elements together with connectors that are formally
defined in process semantics, such as the sequential connector which simply declares that an
activity A is sequentially followed by an activity B. Such a connector is derived based on its
formal logic being similar to the logic conveyed in the text, e.g., through a sentence as “After A,
B”. While we do not detect connectors between process elements such as between an agent and
its role or an activity and its resource, we do detect certain connectors between activities such as
the ones conveyed by after and before.

Identifying these two tasks helped us distinguish them from each other. Extracting process ele-
ments and structures through syntactic and semantic analysis is part of the text-to-world function
fa, while projecting a formal semantics on a linguistic construct is part of a different function with
a different set of tasks, the world-to-model function fb. This further backed the significance of
an intermediate representation (inspired by works covered in Section 3.2) that mediates between
these two functions.

Finally, according to Bellan et al. [4], current state-of-the-art contains three main limitations,
namely (1) techniques are highly tailored to specific forms of input data; (2) datasets are used that
do not represent solid benchmarks; and (3) metrics are used that are not refined to the specific
problem. These are relevant limitations to consider when developing a methodology aimed at
solving this problem.

3.5 Annotation of Procedural Texts

Quishpi et al. [45] developed an open-source tool that extracts process information from text
(e.g., actions, events, agents, and roles), and uses that information to annotate the text, making
it easier to read and navigate through. In addition to increased readability and navigability, their
approach also makes the processed data accessible for machine learning applications and formal
reasoning.

They claim that annotated textual descriptions of processes allow for formal reasoning or simu-
lation of the underlying process described in the text document. Related techniques require text
that is manually annotated in ATDP format [61], which they aim to automate using an NLP tool
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that finds the dependency tree of a sentence. The dependency tree is then matched to certain
patterns in a flexible manner. This flexibility matching is claimed to capture varying dependency
trees that all describe the same process elements. The extracted ATDP is then exported to a
model checker.

Sanchez-Ferreres et al. [62] integrate the work of Quishpi et al. [45] to bridge the gap between
process mining and ATDP specifications. They do so through a simulator capable of generating
an event log based on the ATDP specifications. This enables techniques such as process discovery
and conformance checking.

As pointed out in [45, 61, 62], dependency parsing is a suitable text analysis technique for detecting
nesting within a sentence.

3.6 Formalization of Software Requirements

In this section, we review works dealing with the formalization of software requirements.

3.6.1 Software Design Documents to Requirements

Wein et al. [73] recently proposed a solution to automatically extract software requirements from
functional design documents. Requirement extraction is performed in three steps:

1. Extracting sentences from the document, which is done using keyword and base verb extrac-
tion.

2. Incorporating coreferent text, which is done to tackle ambiguous sentences that were found
during semantic analysis and checks on ambigouos keywords and parts-of-speech.

3. Aligning the extracted text to the (guidelines of the) official software requirements, which
is done to assure the relevant words are present in the extracted sentences to match the
guidelines.

They have shown that this approach can yield promising results, providing evidence of the useful-
ness of (automated) NLP techniques within specifying formal requirements based on texts.

3.6.2 Informal Specifications

There are also documents that contain informal specifications (software requirements) that require
to be specified formally for automated processing. Ghazel et al. [21] developed a tool that allows
for formalization of informal specifications via an iterative process which relies on a set of basic
refinement patterns. Applying these refinement patterns iteratively will eventually create logical
Computation Tree Logic (CTL) formulas.

Their approach, however, does not allow for full formalization, but only eases manual formalization
after their method is executed. Additionally, their work is unable to address the ambiguity that is
present in the word or in natural language, as this could imply either OR or XOR in logic. They
state that the distinction is difficult to make automatically, and that manual labelling is required
for this word to match its logical equivalent.
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3.7 Tools

For this project, we used Python since many tools and libraries are available for NLP in this
programming language. In this section, a brief summary of the widely-used libraries is presented.

NLTK 1 (Natural Language Toolkit) is quite a popular NLP library for Python that was developed
by the University of Pennsylvania. NLTK is essentially a string processing library. We use it
partially in our Module 4. The tasks it provides are summarized in Figure 3.3.

spaCy2 is yet another popular library that is growing fast in the field of NLP. This library boasts
about its speed and accuracy with publicly available benchmarking means, which beats other
frameworks. A comparison of speed and accuracy with other prominent libraries is given in [56].
spaCy is also covered in the comparison of Figure 3.3 with a slight modification required to that
table; in fact, spaCy released a co-reference resolution module recently in late May of 2021 [55].
spaCy is our main tool of choice for this thesis. It was first released in 2015.

Stanford CoreNLP Python3 is a Python library that uses the well-known CoreNLP4 library. It was
developed by Stanford’s Natural Language Processing Group5 which was first released in 2010.

FreeLing is another strong contender. It includes all of the features shown in Figure 3.3 and was
developed by the Polytechnic University of Catalonia (UPC) from the same group behind the work
of Quishpi et al. [45] (Section 3.5). This tool was the first choice before we switched to spaCy.
The reason FreeLing fell out of favor was the technical difficulties faced with the installation,
configuration and usability, especially compared to spaCy.

We attempt to assess where spaCy’s parser is placed in relation to others. spaCy’s dependency
parser uses the Clear dependency set6 [7]. The Clear set is not the latest. The latest dependency
set is the Universal Dependency Relations (UD version 2) set [66]. This may indicate that spaCy’s
parser does not represent the state-of-the-art. However, spaCy makes the claim that it does in
fact house state-of-the-art speed and accuracy [55]. We can back that claim for the following
reasons:

• Adopting a dependency set requires tedious work and major changes to the parsing al-
gorithm [9].

• The state-of-the-art dependency set has not yet been implemented [58].

• The Clear set is a modification of Stanford’s Universal Dependency version 1 set [7, 10],
aimed for increased speed and accuracy.

1http://www.nltk.org/
2https://spacy.io/
3https://github.com/stanfordnlp/python-stanford-corenlp
4https://stanfordnlp.github.io/CoreNLP/
5https://nlp.stanford.edu/
6https://www.mathcs.emory.edu/~choi/doc/cu-2012-choi.pdf
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Figure 3.3: Comparison of functionalities offered by spaCy, NLTK and CoreNLP. (Source: [64])



Chapter 4

Solution Approach

To solve the problem of this thesis, we developed a framework to transform procedural descriptions
found in natural language text into a number of formal representations. We implemented the
tool in Python assisted by components from the NLP framework spaCy. We first give a brief
description of the methodology followed in the solution. We then explain the modules of our
solution in Sections 4.1 to 4.5. Next, we discuss the observed limitations and threats to validity
in Section 4.7.

Figure 4.1: Flowchart showing the high-level design of the tool with the contribution of this thesis
highlighted.

An overview of the approach is visualized in Figure 4.1, consisting of five modules. Briefly ex-
plained, Module 1, the preprocessor, prepares the input text by segmenting it into sentences, and
applying a POS tagging pipeline on each sentence. Module 2 takes a sentence as input, applies
dependency parsing utilizing a trained model, and produces a dependency tree such as the one
in Figure 4.2. Module 3 matches certain predefined patterns against the tree and outputs the
matches. Module 4 is explained in two tasks. Task 1 combines the tokens from the dependency
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tree and forms them into predicates. To elaborate, tokens that have a common head/ancestor in
the dependency tree that are not part of any match, but the ancestor is, are grouped to form a
predicate. Task 2 transforms matches, which are now completed with predicates, into subtrees
of linguistic-semantics (LingSem) relations, and arranges those in a semantic hierarchy, we call
a LingSem tree, based on the given dependency hierarchy. Finally, Module 5 translates a Ling-
Sem tree into one or more formal languages. The current implementation supports a small set of
constructs from LTL. The output is then an LTL expression.

In the following sections, the inputs, outputs and innerworkings of each module is explained. We
demonstrate that by applying the modules on a running example, displaying the output at each
step.

Sample Input Throughout the implementation work, we have worked with sample input text of
360 words in 18 sentences describing ‘how to use Ibuprofen oral’. The text is part of the WebMD
online medical resource and can be viewed online1. This text is used for the purpose of evaluation
in Chapter 5.

The sentences of this text are shown in Table 5.1.

We chose a relatively complex sentence from the text, precisely the second sentence S2 (with a
slight modification for brevity). This sentence is our running example through the rest of the
modules:

S2: If your doctor has prescribed this medication, read the Guide before you start taking
ibuprofen and each time you get a refill.

We consider this a representative sentence because it contains an ordering using before, a de-
cision/conditional using if, and a nesting, particularly, the nesting of the before construct within
the if one.

4.1 Module 1: Preprocessor

Goal: To apply preprocessing to the input text and prepare it for further analysis.

Input: Texts of the procedural description type.

Output: Texts split into sentences and sentences into tokens. Each token is annotated with a
POS tag. Since there are no operations across sentences for the next modules, we consider a single
sentence as the output of this module and the input of the next.

Module 1 contains a pipeline that is applied to the input text. First, it segments the sentences.
Then, it tokenizes each sentence into tokens, and performs lexical analysis to attribute each token
with a Part-of-Speech (POS) tag [67]. This pipeline is composed entirely of functions made by
spaCy.

The output of this module for Sentence S2 is shown in Table 4.1. The output is configured to
truncate noun phrases, hence phrases such as ‘your doctor’, ‘this medication’ and ‘the Guide’ are

1https://www.webmd.com/drugs/2/drug-5166-9368/ibuprofen-oral/ibuprofen-oral/details
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Token POS Tag Tag Meaning

If SCONJ Subordinating conjunction
your doctor NOUN Noun
has AUX Auxiliary
prescribed VERB Verb
this medication, NOUN Noun
read VERB Verb
the Guide PROPN Proper Noun
before ADP Adposition
you PRON Pronoun
start VERB Verb
taking VERB Verb
ibuprofen NOUN Noun
and CCONJ Coordinating conjunction
each DET Determiner
time NOUN Noun
you PRON Pronoun
get VERB Verb
a refill. NOUN Noun (Noun phrase)

Table 4.1: Output of Module 1 for the sample sentence S2.

displayed as a single token.

One thing to notice in the sample output is that ibuprofen is tagged as a noun rather than as a
proper noun. Once the first letter is capitalized, the module tags it as a proper noun. Although
such an error can propagate and affect the outputs of next modules, this particular case does not.

4.2 Module 2: Syntactic Dependency Parser

Goal: To perform dependency parsing on each sentence and find dependency relations between
its tokens.

Input: A sentence.

Output: The sentence with dependency relations between its tokens, i.e., a dependency tree.

Required Resource: A dependency parsing model.

Module 2 takes the annotated sentence as input and uses spaCy’s dependency analyzer/parser to
produce a dependency tree. As pointed out in Section 2.1.2, the precise formalism of a dependency
tree depends on the algorithm used and the dependency set (set of dependency relations). spaCy

uses the more accurate and more advanced graph-based dependency parsing and the Clear

dependency set.

Sample Output

The output of Module 2 for our running example S2 is a dependency tree shown in Figure 4.2.
The figure shows the tokens of the sentence in their original order from left to right, with the
dependency relations above and the POS tag of each token below it. Every directed edge specifies
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Label Meaning Label Meaning

advcl Adverbial-clause modifier advmod Adverbial modifier
aux Auxiliary cc Coordinating conjunction
ccomp Clausal complement conj Conjunct
det Determiner dobj Direct object
mark Marker npadvmod Noun-phrase adverbial modifier
nsubj Nominal subject nummod Numeric modifier
pcomp Prepositional complement prep Prepositional modifier
relcl Relative clause modifier xcomp Open clausal complement

Table 4.2: The dependency-relation labels shown on various dependency trees throughout the
thesis and the full-form term of each.

a dependency relation carrying a certain label. The labels shown and their meanings are given in
Table 4.2. The complete set of dependency relation labels is explained further in Section 4 of the
Clear style manual2 [7].

Since the produced tree in Figure 4.2 has a mistake—discussed at length among threats to validity
in Section 4.8.1—, for the next modules, we use a corrected dependency tree shown in Figure 4.4.

The Parsing Model

This module, the dependency parser, requires a dependency parsing model as an essential resource
to perform the parsing. A parsing model is generated through training on a large dependency-
labeled corpus. The model, provided by spaCy, is named en_core_web_trf and it aims for
accuracy over efficiency [57].

The model boasts an accuracy for unlabelled dependency relations of 95% and labelled dependency
relations of 94%. Therefore, 5% of the relations formed are expected to be wrong. This is a
limitation that is expected to abate as dependency parsing models advance. For now, it requires
human intervention to bypass.

Design Decision: Using a Dependency Parser

The decision to use a dependency parser is based on the need to capture the nesting of linguistic
constructs. The analysis in Section 2.1.2 shows that a syntactic dependency tree captures nesting
down to an arbitrary depth, given sufficient computational resources. This decision is also inspired
by related works such as [45].

The information we aim to extract from a dependency tree is: (1) how clauses or predicates of a
sentence relate to one another, and (2) what the hierarchy of dependence is among these clauses.
There are many words in the language that conjunct two clauses in a sentence such as if, before,
when, while, during, etc. Furthermore, any one conjunct may also have two clauses in conjunction,
any of which may in turn be comprised of two clauses in conjunction. This nesting may extend to
an arbitrary depth. We are interested in capturing the hierarchy of connections of clauses.

2https://www.mathcs.emory.edu/~choi/doc/cu-2012-choi.pdf
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4.3 Module 3: Dependency Pattern Matcher

Goal: To find certain pre-defined patterns of dependency relations in a sentence.

Input: A dependency tree, and a set of pattern-matching rules housing the dependency patterns
to find in the dependency tree.

Output: A set of matches for each sentence for each pattern.

The role of Module 3 is to receive the dependency trees which Module 2 outputs, and search them
for subtrees of interest, i.e., parts of the dependency tree which carry elements of natural language
we believe are indicative of the semantics sought. This search is carried out by a pattern matching
engine that is part of spaCy. Thus, Module 3 is, in fact, spaCy’s pattern matcher. A search
query made to the pattern matcher is called a dependency pattern. In the following subsection, we
define what a dependency pattern is, provide an example, and explain the procedure we followed
to construct a dependency pattern based on some semantics of interest.

4.3.1 Dependency Patterns

A dependency pattern is essentially a dependency tree with constraints on its nodes and edges. A
node with variable constraints on it is called a constrained node. Likewise, an edge with variable
constrains on it is called a constrained edge. A dependency tree is a tree (Nc, Ec) where is Nc is a
set of constrained nodes and Ec is a set of constrained edges. It acts as a tree search query. For
a node in Nc, there are two constraints expressed in the form of the following two sets:

• A set of POS tags, such that the constrained node matches any token whose POS tag is in
the specified set.

• A set of string patterns, typically specified by regular expressions. A matching token must
satisfy one of the specified string patterns.

A token must satisfy both these constraints in order to count as a match to the constrained node.
Additionally, one or both of these constraints can be dropped.

An edge constraint specifies a dependency relation and consists of the following three elements:

1. a source node ns ∈ NC ,

2. a destination node nd ∈ NC where nd 6= ns,

3. and a set of dependency relations, such that a matching edge must satisfy one of the de-
pendency relations in the set.

An edge in the queried dependency tree must satisfy all three elements of the constraint in order
to count as a match to the constrained edge.

Given a dependency tree, called the subject tree, and a dependency pattern, the problem of finding
matches of the dependency pattern within the subject tree is known in the literature as tree pattern
matching [8, 24] and is defined as follows. Given a pattern tree P consisting of k nodes labeled
v1, . . . , vk, and a subject tree S, we say that P matches S at node n (i.e., the root node of P
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Figure 4.5: The dependency pattern specified to detect the and conjunction of two verbs.

matches a node n in S) if there are k subtrees of S labeled t1, . . . , tk such that substituting ti in
vi for all i in {1, . . . , k} yields the subtree of S whose root is n.

In our framework, dependency patterns are defined following the Semgrex syntax created by the
Stanford NLP Group and used by spaCy [60, 37, 59]. We define them in an external source (a
JSON file) shown in Figure 4.1 as ‘Pattern-matching Rules’.

An example of a dependency pattern is shown in Figure 4.5. This tree consists of one parent and
two child nodes. The parent carries one constraint specifying the POS tag matching it to be the
VERB tag. Then, a matching token must have two children according to the pattern, one carrying
the dependency conj and the POS tag VERB and another carrying the dependency cc and
matching the string ‘and’. This pattern is meant to detect any two verbs in conjunction through
and.

A second example of a dependency pattern can be expressed simply as follows: POS:VERB
advcl−−−→

POS:VERB
mark−−−→ String:‘before’. To explain the notation briefly, every

dep_label
−−−−−−→ represents a

dependency relation carrying a label and connecting two constrained nodes. In this example, the
first and second nodes are constrained by the POS tag VERB , whereas the third carries a string
‘before’ to be matched exactly. As a shorthand notation, we discard the names of the constraint
specifiers (POS and String) since they can be inferred by the reader, thus writing the pattern as:
VERB

advcl−−−→ VERB
mark−−−→ before.

Examine the output of Module 2, which is the dependency tree in Figure 4.4, to find the aforemen-
tioned pattern within it. Indeed, we see that the subtree read advcl−−−→ start mark−−−→ before matches
the pattern.

In spaCy, this dependency pattern is specified in the JSON format as a collection of name-value
pairs [72]; and it is shown below in Listing 4.1:
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1 {

2 "advcl_before_pattern" : [

3

4 # Token 1: main-verb.

5 {

6 "RIGHT_ID": "main-clause verb",

7 "RIGHT_ATTRS": {"POS": "VERB"}

8 },

9

10 # Token 2: advcl-verb, with relation: main-verb --advcl-> advcl-verb.

11 {

12 "LEFT_ID": "main-clause verb",

13 "REL_OP": ">",

14 "RIGHT_ID": "adv-clause verb",

15 "RIGHT_ATTRS": {"DEP": "advcl"}

16 },

17

18 # Token 3: The clause marker ‘before’, with relation advcl-verb --mark-> ’before’.

19 {

20 "LEFT_ID": "adv-clause verb",

21 "REL_OP": ">",

22 "RIGHT_ID": "adv-clause mark",

23 "RIGHT_ATTRS": {"DEP": "mark", "LOWER": "before"}

24 }

25 ]

26 }

Listing 4.1: The adv-clause-before pattern specified in spaCy’s syntax.

To understand the spaCy-formatting, keep in mind the simple notation of the same pattern:
VERB

advcl−−−→ VERB
mark−−−→ before. The spaCy-formatted pattern above is specified primarily

through the three nodes (lines 4, 10 and 18), where each node represents a token. Each token
is further specified through a set of attributes contained in the field called RIGHT_ATTRS , shown
at lines 7, 15 and 23 for each of the three tokens respectively. The attributes in RIGHT_ATTRS

can specify the POS tag of the token as in line 7. It can specify the string of the token as in
line 23. It can also specify a dependency relation between two tokens, the ones whose labels are
specified by LEFT_ID (line 12) and RIGHT_ID (line 14), with the direction and nature of the
relation specified by an operator in REL_OP (line 13). In this case, the relation denoted by >

is a direct child relation and its direction is from the LEFT_ID node to the RIGHT_ID node. A
detailed explanation is available on spaCy’s online documentation3.

Requesting the matcher to find this pattern within the tree of Figure 4.4 returns a successful
match shown in the listing below.

Name of pattern matched: advcl_before_pattern.

3https://spacy.io/api/dependencymatcher
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Dependency Pattern Name Dependency Pattern Specification

adv-clause ‘before’ VERB
advcl−−−→ VERB

mark−−−→ ‘before’
advmod ‘before’ VERB

advmod−−−−−→ before pcomp−−−−→ VERB

prep ‘before’ VERB
prep−−−→ before pcomp−−−−→ VERB

adv-clause ‘if’ VERB
advcl−−−→ VERB

mark−−−→ ‘if’
adv-clause ‘when’ VERB

advcl−−−→ VERB
mark−−−→ ‘when’

adv-clause ‘unless’ VERB
advcl−−−→ VERB

mark−−−→ ‘unless’
adv-clause ‘after’ VERB

advcl−−−→ VERB
mark−−−→ ‘after’

adv-clause ‘until’ VERB
advcl−−−→ VERB

mark−−−→ ‘until’
adv-clause ‘while’ VERB

advcl−−−→ VERB
mark−−−→ ‘while’

adv-clause generic VERB
advcl−−−→ VERB

mark−−−→ *
negation VERB

neg−−→ PART

and-conj ( VERB : t1
cc−→ ‘and’) ∧ (t1

conj−−−→ VERB : t2)

or-conj ( VERB : t1
cc−→ ‘or’) ∧ (t1

conj−−−→ VERB : t2)

Table 4.3: The dependency pattern matching rules defined in our framework.

Tokens matched:

main-clause verb: read

adv-clause verb: start

adv-clause mark: before

Listing 4.2: Result of matching the advcl-before dependency pattern against the tree in
Figure 4.2.

The current implementation has several rules defined in such a way. Table 4.3 shows the label of
each rule and the dependency pattern it is meant to match side by side.

Next, we explain the procedure we followed to arrive at these pattern specifications.

4.3.2 The Procedure Followed for Crafting a Dependency Pattern

The previous example shows one of the patterns we use to detect and identify two predicates in
a sentence related via before. Here, we show the procedure we follow in order to arrive at such
patterns. Briefly, we look at individual templates that were created by Dwyer et al. [12, 13, 14]
and deemed frequent by the process modeling community. Then, for each template, based on our
understanding, we infer one or more linguistic patterns that may express the same semantics as
the process template. Finally, based on understanding again, we infer the equivalent LTL formula.
Partial results of this procedure are shown in Table 4.4. In the following, we explain the procedure
in more detail.

We start by targeting a certain semantics we aim to detect within natural language. Since natural
language carries a vast range of semantics, we focus on a set of semantics that better serves our
purpose. The Dwyer set of process templates (Section 2.3.3) is suitable because:
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1. It is a much narrower set of semantics than natural language, which reduces the complexity
of our task.

2. It was adopted by the process modeling community to describe process model templates; the
studies sprawling the language of Declare [41] also studied the frequency and significance
of these templates.

3. It was made out of frequently observed patterns within software design texts which, when
compared to procedural descriptions, we assume is close enough to serve the purpose of
choosing an initial set of semantics to aim for.

Another set of semantics is found through common or desired LTL expressions such as x U y.

Next, we focus on finding the linguistic pattern(s) that express the desired semantics. a simple
example is the aforementioned LTL expression. Using our understanding of language and of LTL,
we can make the assumption that the linguistic pattern x until y carries the semantics of the LTL
expression x U y. In the same way, Shafiee [53] used her understanding next to observing her case
study text to associate certain linguistic patterns with formal expressions. In Table 4.4, we list
some of these findings, the process templates of interest along side the LTL equivalent of each and
one linguistic pattern which may express the process template.

Process template A linguistic equivalent LTL semantics

Response(x, y) If x, then y. G(x→ F y)
Precedence(x, y) x before y. G(¬y W x)

Table 4.4: Some of the semantics of interest for Module 3, expressed in process templates, one
linguistic equivalent for each and the equivalent LTL formula.

Take the template of Precedence(x,y). We know from [53] that one of its linguistic manifestations
is x before y. We observe the dependency tree in Figure 4.4 and notice the relation between the
main clause and the before-clause including the before function word. That relevant subtree is
drawn as: read advcl−−−→ start mark−−−→ before. We generalize this subtree by replacing the non-key
words with their POS tags arriving at the advcl-before pattern we have seen earlier. However,
this is not the only dependency pattern carrying the desired semantics of before. To find out more,
we resort to the method of scanning the case study text as explained next.

Scanning a corpus to find variant dependency patterns

One way to find more dependency patterns to cover is through observing more dependency trees
to see different forms of how a function word of interest relates to other tokens in a sentence. The
exact procedure we followed for this method is as follows:

1. Prepare a corpus such as the collection of articles we acquired from WebMD.

2. Run the corpus through Module 1 and Module 2, thereby segmenting it into sentences, POS
tagging each token and producing a dependency tree for each sentence.

3. Pick a keyword of interest. In our experiment, we picked the word before. In addition,
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have at least one dependency relation of interest that is believed to convey a certain sought
meaning.

4. Craft a simple dependency pattern consisting of the keyword, but excluding the already
known relations.

5. Let the dependency matcher (Module 3) find matches in the corpus for the pattern specified.

6. Pick an arbitrary set of matched dependency trees for manual inspection. Upon inspection,
the following scenarios may occur:

• A new dependency pattern is found that conveys the same sought meaning. In this
case, add it to the already known relations of Step 3, and repeat the process starting
from Step 4.

• If no new patterns are found, end the procedure.

This simplistic procedure may lead to dependency patterns being added to the set of interest that
convey the sought meaning sometimes but convey a different meaning other times. The decision
of whether to include such patterns or not should then be decided after collecting a statistic on
the frequency of each meaning conveyed. Computing such statistic through manual inspection of
an entire corpus is tedious work and was not part of this project.

We applied this procedure for the function word before to find patterns other than the adv-clause

before pattern that would convey the same meaning. We manually inspected 68 sentences of
the WebMD corpus that had at least one use of the word before, and found the following:

• 56% of the time, the word before appeared as the mark word of an adverbial-clause modifier,
as in Figure 4.2 where the clause is “before you start taking Ibuprofen”.

• 8% of the time, it appeared as an adverbial modifier ( advmod ) itself (as opposed to a clause’s
mark). This relation appears in sentences as “The doctor may inquire if the symptoms were
noticeable before”, or simply “It was here before”. Notice that there is no before-clause in
this example.

• 34% of the time, it appeared as a preposition. This occurs in sentence like “Call before your
appointment” where before is followed by a noun or a noun phrase. It also occurs when
before is followed by a verb, especially in its gerund form, e.g., “Consult the guide before
visiting the pharmacist”.

By following this procedure, we were able to see the necessity of adding two sister patterns to the
adv-clause before pattern. While the adv-clause before pattern is VERB

advcl−−−→ VERB
mark−−−→

before, the two new sister patterns are as follows:

1. The advmod before pattern: VERB
advmod−−−−−→ before pcomp−−−−→ VERB .

2. The prep before pattern: VERB
prep−−−→ before pcomp−−−−→ VERB .

An input sentence may contain more than one match from one or more rules. These matches are
stored and forwarded to Module 4, which distinguishes them from each other through their labels.
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Focusing on relations between verbs rather than between nouns.

All of the dependency patterns defined specify relations between two verbs, rather than between
a verb and a noun or two nouns. There are two reasons for this. First, verbs represent activities,
and activities are of interest because of our pre-context of extracting process fragments—which
are identified by relations between activities. Second, a verb is the head of the dependency subtree
representing a clause or predicate. In other words, a verb is the center and identifier element of
a clause or a predicate. On the other hand, a noun could be an adjective, a subject, an object,
or a prepositional complement, i.e., grammatical roles all of which are not considered the central
identifier element of a clause or a predicate, nor do they represent activities [2].

A limitation of POS tagging and dependency parsing in capturing activities.

As explained above, while crafting dependency patterns, we rely on the fact that activities are
represented by verbs. However, the flexibility in the use of natural language sometimes leads to
sentences where verbs are hidden—thereby making activities implicit rather than explicit. As
an example, consider hiding the verb helping in the sentence: “Help yourself before [helping]
others”. In such sentences, the analysis techniques of POS tagging and dependency parsing fail at
identifying the implicit activity, and consequently fail at detecting a relation between activities, as
elaborated below through the example. This is a limitation of the two natural language analysis
techniques we use in this thesis. The limitation can be mitigated through deploying more advanced
dependency parsing models that go beyond language-based analysis into utilizing the context of
a sentence and the knowledge it carries [49].

This limitation is most evident in the prep-before pattern: VERB
prep−−−→ before pcomp−−−−→ VERB .

The last token being a verb means this pattern does not match sentences as “Take one dose of the
medicine before dinner”. The word dinner represents an implicit activity in this sentence, yet is not
detected as such because it is a noun. Another example is the aforementioned “Help yourself before
[helping] others”. Observe its dependency tree in Figure 4.6. Here, the prepositional complement
is the noun others. The currently used dependency parser has no way of distinguishing a noun
prepositional complement representing an activity from one that does not. Take as a contrary
example the sentence: “Stand still before your physician” and its dependency tree in Figure 4.7.
Here, the noun phrase your physician is not related to an activity, yet the dependency relation
is the same as with the word dinner (Figure 4.8) which does represent an activity. In all these
examples, our human knowledge of context is what resolves the ambiguity, i.e., knowing that
dinner represents an activity; and knowing that standing before a physician means performing the
activity of standing in front of an agent, called the physician, rather than executing it prior to the
agent’s own execution. Therefore, as context-utilizing dependency parsers become available, this
limitation should be resolved [49, 48].

Design Decision: The rules being sparse instead of amalgamated.

Observing Table 4.3, the reader may wonder why many similar patterns exist separately, such
as the adv-clause patterns, if they can be combined into one generic adv-clause pattern.
During the implementation, we decided to combine similar rules under one definition for the sake
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Help

VERB

yourself

PRON

before

ADP

others.

NOUN

dobj

prep

pobj

Figure 4.6: Dependency tree of “Help yourself before others”.

Stand

VERB

still

ADJ

before

ADP

your physician.

NOUN

acomp

prep

pobj

Figure 4.7: Dependency tree of “Stand still before your physician”.

Take

VERB

one dose

NOUN

before

ADP

dinner.

NOUN

dobj

prep

pobj

Figure 4.8: Dependency tree of “Take one dose before dinner”.
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of modularity. For example, all the adv-clause rules have exactly the same structure. They
all match the pattern VERB

advcl−−−→ VERB
mark−−−→ [some function word]. They only differ in the

function word that each rule matches, i.e. if, before, when, etc. It was possible to make one rule
that matches against all different adverbial clauses or more precisely against adverbial clauses with
a list of specific mark works. So we created one rule combining all adverbial clauses and labeled
it adv-clause generic . However, soon after implementing that, we found it to be counter-
productive for the purpose of the tool and how the next modules use the matches. Every mark
word carries different semantics. The semantics of if is different from that of before and so on.
Combining these marker words under one rule means that the matches found for the combined
rule will all have the same label ( adv-clause generic ) attached to them. Since our goal is to
convert the input into formal expressions, it is essential to know exactly which semantics is the
one carried by a certain match, and so it is essential that each match carries a label that uniquely
describes the semantic meaning it withholds.

4.3.3 Output of Module 3

The output of the dependency matcher to our running example S2, is a list of matches as follows:

Sentence 2: If your doctor has prescribed this medication, read the Guide before you start

taking ibuprofen and each time that you get a refill.

Match 1, Rule 4 (adv-clause ’before’ pattern):

main-clause verb: read

adv-clause verb: start

adv-clause mark: before

Match 2, Rule 7 (adv-clause ’if’ pattern):

main-clause verb: read

adv-clause verb: prescribed

adv-clause mark: If

Match 3, Rule 8 (and-conj-pattern):

clause-1-verb: start

clause-2-verb: get

conj-particle: and

4.4 Module 4: Linguistic Parse Tree Builder

Goal: To construct predicates and to give hierarchy to the dependency matches.

Input: A map from dependency matches to LingSem relations, and a set of precedence rules.

Output: A LingSem tree, i.e. a tree of LingSem relations; this is our lossless intermediate
representation.

Module 4 plays the central role in the formalization of a sentence. The input to Module 4 is the
dependency tree of the input sentence and the matched patterns of interest. The module uses
two resources: the dependency-to-LingSem map and a set of rules to specify precedence among
LingSem relations. The module carries out two tasks in order to produce its intended output. The
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first task is the construction of predicates from the dependency tree and the matches. The second
task is to arrange these predicates into a special-purpose parse tree we call a LingSem tree—
a formal intermediate representation that is lossless, human-readable and easy to automatically
transform into the final formal output. The format of the LingSem tree will become clear in what
follows. We first provide an overview before explaining each task in detail.

Since the goal of this project is to capture process-related semantics into formal expressions, we
defined in Module 3 dependency patterns with the purpose of detecting such semantics. These
are patterns such as advcl-before , advcl-if and and-conj , evident in the sample input of
Figure 4.4. Each of these patterns was defined earlier in order to capture a semantic function
of language. We call such linguistic semantics functions LingSem relations. More precisely, a
LingSem relation expresses a connection between two predicates of a sentence through a linguistic
function word such as before, if and and. One of the two predicates occurs in the main clause
while the other occurs in the dependent/subordinate clause. We chose the notation of a LingSem
relation to be as follows:

LingSem relation notation: function-word (sub-clause,main-clause)

The dependence of one clause on another is derived from the dependency tree produced by Mod-
ule 2.

For example, for the input sentence that reads “read the Medication Guide before you start taking
Ibuprofen”, we recognize the following two predicates, call them B and C:

• B = read the Medication Guide.

• C = you start taking Ibuprofen.

These two predicates in the sentence are connected by the function word before. Writing this as a
LingSem relation yields: before(C,B). As shown in Table 4.4, the function word before represents
the process template of Precedence. Thus, this relation can be expressed as Precedence(B,C).
However, the LingSem representation is less lossy as explained in Section 4.4.2.

It is important to note the following: even though LingSem is a less lossy semantic representation,
that also makes it less usable for formal reasoning and machine processing in general. Keep in
mind that this is an intermediate representation made for a specific purpose of human-readability.
The framework aims to convert this further into a more machine-readable format.

With that context, we explain the two tasks in more detail below. The first task is to construct
the predicates from the dependency tree. The second task is to draw out the linguistic operat-
ors/connectors from the dependency matches, determine their operands, and weave the nested
hierarchy that connects multiple linguistic operators within one sentence—weave them into a tree
of LingSem relations, i.e., a LingSem tree.

4.4.1 Task 1: Predicate Construction

Goal: To combine some sets of tokens in a dependency tree into predicates and drop the depend-
ency relations between the combined tokens.
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Input: A dependency tree and a set of pattern matches.

Output: A predicate tree; essentially a dependency tree consisting only of matched relations.

The first task of Module 4 is to traverse the dependency tree and construct all predicates of interest.
The predicates of interest are those that are extracted from a matched dependency subtree. To
elaborate, consider tokens that have a common head/ancestor in the dependency tree such that
the ancestor is part of a match, but the tokens are not part of any match. To illustrate briefly
from the running example, Figure 4.10 shows the phrase ‘each time’ as part of a match but its
descendant tokens ‘you get a refill’ are not part of any match. Such tokens are grouped to form a
predicate. A constructed predicate acts, then, as an operand of the LingSem relation which the
match translates to.

The procedure of this task is captured in Algorithm 1 and explained as follows. The first step
(Lines 1–3) iterates through the matches and a set of all matched tokens Tm is constructed. Each
matched token is a node in the dependency tree, we call a matched node. Next, in the second step
(Lines 4–6), the subtree of each matched node is computed and stored in a set called Subtrees.
The third step (Lines 7–10) is pruning the subtrees. For each subtree r (whose head is a matched
node n), all other subtrees are subtracted from r. What remains of r after the subtractions (if
any) is the pruned subtree of of n. The fourth step (Lines 11–12) converts pruned subtrees to
strings which represent predicates. Step 4 also produces the final output of the procedure which
is a map P mapping every matched node to a candidate predicate. Table 4.5 shows the matched
nodes and their corresponding predicates for our running example, explained below.

Regarding Line 8 of Algorithm 1, note that a node cannot have more than one parent in the tree.
Therefore. for any two subtrees r, q, it is one of two cases: (1) one of the two subtrees is entirely
contained in the other, i.e., r is a subset of q or vice versa; or (2) they do not intersect at all.

Performing Task 1 on the Running Example

The following explains how Task 1, predicate construction, is performed on the running example
Sentence S2. The complete list of predicates we wish to extract for our running example is the
following (B and C were mentioned above):

• A = your doctor has prescribed this medication.

• B = read the Medication Guide.

• C = you start taking Ibuprofen.

• D = each time that you get a refill.

To visualize how predicates are extracted from the pattern matches, observe Figure 4.10 which
shows the tokens matched and highlights the three pattern matches. Consider the leftmost match.
That is a match against the pattern called advcl-if . For each token in the match, the subtree is
retrieved. Then, the subtrees of all other matched tokens are subtracted from it. Take the token
read for example. Note that, since read is the head of the dependency tree, its subtree is the entire
dependency tree. We subtract from it the subtrees of all other matched tokens, i.e., the subtree
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Algorithm 1 Predicate construction algorithm.
Input: A sentence S, its dependency tree DS and a set of matches Ms.
Output: A map P containing the predicate of every matched token.

. Step 1: Construct Tm, the set of tokens matched:
1: for each match m in Ms do
2: if t ∈ GetTokens(m) then
3: Tm ← Tm ∪ {t}

. Step 2: Construct Subtrees, the set of subtrees of matched tokens:
4: for each token t ∈ S do
5: if t ∈ Tm then
6: Subtrees← Subtrees ∪GetSubtree(t,DS)

. Step 3: Prune the subtrees:
7: for each pair of trees (q, r) in Subtrees do
8: if r ⊂ q then
9: qx ← q \ r

10: Subtreespruned ← Subtreespruned ∪ {qx}

. Step 4: Convert pruned subtrees to strings, making the desired output map P :
11: for each subtree r in Subtreespruned do
12: P ← P ∪ (Head(r) 7→ TreeToString(r, S))

. Auxiliary Functions:
13: function GetSubtree(t,D) . Given a token t and a dependency tree D such that t is a

node in D, return the subtree of t.
14: function GetTokens(m) . Given a match m, return tokens in m.
15: function Head(r) . Given a tree r, return its head.
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Figure 4.9: Tokens from the dependency tree of Figure 4.2 that are matched against dependency
patterns.

Token
matched

Predicate extraction Result

read subtree(read)−subtree(prescribed)−
subtree(start)

read the Medication Guide.

prescribed subtree(prescribed)− subtree(if) your doctor has prescribed this
medication.

if subtree(if) if.
start subtree(start) − subtree(before) −

subtree(and)− subtree(each time)
you start taking Ibuprofen.

before subtree(before) before.
and subtree(and) and.
each time subtree(each time) each time that you get a refill.

Table 4.5: Matched tokens from Figure 4.10, their predicates and the subtractions performed on
each to achieve the predicate.

of prescribed, and the subtree of start. Once subtracted, we are left with the subtree B = “read
the Medication Guide”.

Apply the same principle on the rest of the matched tokens. The predicate extracted from the
token prescribed is its own subtree minus the token if. This and the rest are given in Table 4.5.

Sample Output of the Predicate Constructor

The following listing shows sample output of the matcher from Model 3 after it has been augmented
with the predicate constructor.

Sentence 2: If your doctor has prescribed this medication, read the Guide before you start

taking ibuprofen and each time that you get a refill.

Match 1, Rule 4 (adv-clause ’before’ pattern):

main_clause_verb: read the Guide
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Figure 4.10: Tokens from the dependency tree of Figure 4.2 that are matched against dependency
patterns, with the three matches highlighted.

adv_clause_verb: you start taking ibuprofen and each time that you get a refill

adv_clause_mark: before

Match 2, Rule 7 (adv-clause ’if’ pattern):

main_clause_verb: read the Guide

adv_clause_verb: your doctor has prescribed this medication

adv_clause_mark: If

Match 3, Rule 8 (and-conj-pattern):

clause_1_verb: before you start taking ibuprofen

clause_2_verb: each time that you get a refill

conj_particle: and

Note the difference between this set of predicates (apparent in the output above and in Table 4.5)
and the final predicates we seek (labeled A to D above). The difference is that each function word
(if, before, and) has a predicate too, albeit the word itself. These are not considered predicates in
the final output of Module 4 due to the role of Task 2. The reason is that Task 2 identifies these
as connectors of predicates. Task 2 is explained in the next section.

4.4.2 Task 2: Building a LingSem Tree

Goal: To transform matches, which are now completed with predicates, into subtrees of LingSem
relations, and arrange those in a semantic hierarchy based on the given dependency hierarchy.

Input: A predicate tree, a map from dependency pattern to LingSem relation, and a set of rules
dictating precedence among LingSem relations.

Output: A LingSem tree; a tree of linguistic-semantics (LingSem) relations.

Example output: The LingSem tree shown in Figure 4.13

The second task of Module 4 is to construct a LingSem tree given a dependency tree and a set
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of matches. A dependency tree naturally carries a nested hierarchy of lexical units (words) that
is based on syntactic relations, whereas a LingSem tree’s hierarchy is based on semantic relations
that are derived from the meanings of said lexical units. At the same time, a LingSem tree
preserves the lexical units as opposed to a Process Template for instance. This task is, in essence,
about converting the syntactic dependency hierarchy into a semantic hierarchy. Take the following
sentence for example:

If you read and learn, you become smarter.

The dependency tree of this sentence is shown in Figure 4.11. Figure 4.12 shows the same tree
with the pattern matches highlighted. The LingSem tree we aim to arrive at is shown Figure 4.13.

Design Decision: Making the Intermediate Representation of LingSem

The output of Module 3, the matched parts of a dependency tree, could be directly translated
into the desired final formal outputs. That is done through writing a separate translator for
each of the desired output languages, a translator that inputs dependency matches and outputs
the formal expression. However, we chose to insert an intermediate representation, the LingSem
tree, in between the dependency matches and the final formal outputs. This was motivated by
multiple factors; briefly, it provides an intermediate representation which dependency trees are
easy to translate to in a lossless way, and is itself easy to translate further into formal outputs.
We explain these factors in more detail in the following.

Consider the following two example sentences.

Sit down before you drink the medicine.

Drink the medicine after you sit down.

Each of the two sentences contains the same two activities, sitting and drinking, in addition to one
relation between the two activities. Both sentences would translate to the same Process Template,
i.e., Precedence(sitting, drinking). However, through this transformation, much information has
been lost—for starters, the conjunction particles before and after. The Process Template we
crafted does not indicate which linguistic particle—before, after or another particle—is the one
that carried the relevant semantics. In other words, the transformation is lossy and not reversible.

For this reason, we thought of creating an intermediate representation that is lossless, easy to read
for both humans and computers, can be built from a dependency tree, and is easy to transform
further into LTL and other formalisms. We created the LingSem tree displayed in Section 4.4
(Module 4) to fulfill these needs.

All in all, the addition of the LingSem tree format makes the design more modular and more
extensible.

It is important to note that the used LingSem format is not a well-defined framework at the
moment of writing. We discuss the future work of defining it in Section 6.3.
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Figure 4.11: Dependency tree of the sentence “If you read and learn, you become smarter”.

Figure 4.12: Dependency tree from Figure 4.11 with pattern matches marked.

Figure 4.13: The LingSem tree constructed from the dependency tree and matches shown in
Figure 4.12.
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Precedence among Linguistic Patterns

As explained, we rely on the hierarchy of linguistic elements in a dependency tree in order to
dictate the hierarchy of the LingSem tree. In some cases, however, different linguistic elements are
on the same depth in the dependency tree. For instance, our running example tree (Figure 4.4)
shows the if -clause on the same depth as the before-clause, and the two are siblings. In such cases,
it is not clear which clause is nested within the other. To mitigate this, we introduce rules that
govern which linguistic patterns have precedence over others, hence the ‘precedence rules’ resource
shown in Figure 4.1. The term precedence here should not be confused with the process template
of Precedence(x,y). A more detailed explanation with a briefer example follows to demonstrate
the importance of precedence rules. Consider the following sentence labeled Ss:

Ss: If you are smart, listen and think, before you talk.

Observe the dependency tree of this sentence in Figure 4.14. The dependency analyzer sees the
before-clause, the if -clause and the and conjunction, all on the same level in their dependency on
the root listen. All three constructs are direct children of listen. However, in a tree of LingSem
relations, we know that only one of these three words carries the semantics which will be at the
root of the tree. And each of these three LingSem relations carries two operands. Therefore,
there has to be some nesting among these three functions. For this example, there are six possible
nesting permutations. The one that is intuitive to a human reader is represented in the following
bracketed-string:

Figure 4.14: Dependency tree for sentence Ss: “If you are smart, listen and think, before you talk”

if ( you are smart, before ( you talk, and ( listen, think ) ) )

However, in the absence of precedence rules, the machine’s formalization of sentence Ss into
a LingSem string may arbitrarily be any of the six permutations. In other cases with more
dependency siblings, the number of permutations explodes exponentially. To mitigate this, we
introduce precedence rules that govern how certain linguistic operators are nested within others.

Achieving the correct nesting of LingSem relations is essential. We demonstrate this through an
example where the wrong nesting is used. Take the following permutation:

if ( you are smart, and ( before ( you talk, listen ), think ) )
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This is interpreted as: “If you are smart, think, and before you talk, listen”. This is not the
intended meaning, however. That is the reason why deciding the right precedence is important.

Effect of precedence rules on running example.

To see the effect of precedence rules on our running example, observe the LingSem trees in the
following two listings (also Figures 4.15 and 4.16) showing the LingSem tree output before and
after the introduction of precedence rules respectively.

LingSem Tree:

Root: before.

|-- main-clause: if.

| |-- if-clause: your doctor has prescribed this medication.

| +-- then-clause: read the Guide.

+-- before-clause: and.

|-- conjunct-1: you start taking ibuprofen.

+-- conjunct-2: each time that you get a refill.

LingSem String:

before(and(C, D), if(A, B))

Listing 4.3: The LingSem tree of the running example before introducing precedence rules.

LingSem Tree:

Root: if.

|-- if-clause: your doctor has prescribed this medication,

+-- then-clause: before.

|-- main-clause: read the Guide.

+-- before-clause: and.

|-- conjunct-1: you start taking ibuprofen.

+-- conjunct-2: each time that you get a refill.

LingSem String:

if(A, before(and(C, D), B))

Listing 4.4: The LingSem tree of the running example after introducing precedence rules.

A limitation of the implemented mechanism of precedence rules

The rule introduced, which gives before higher precedence than if, does not always lead to the
correct result. To illustrate the faultiness of the rule, consider the following two sentences:

• Think before you decide if you want to be wise.

• Think before you decide if you want to join.

These two sentences use different functions of the word if. The first is the marker of an adverbial-
clause modifier. The second one is a complementizer and it works like whether. In the first
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Figure 4.15: The LingSem tree of Sentence S2 before introducing the precedence rules.

Figure 4.16: The LingSem tree of Sentence S2 after introducing the precedence rules.
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example, the before-clause is nested within the if -clause, but in the second example, the opposite
is true.

In light of that, we make clear that what we introduced is a simple prototypical mechanism that
acts as a proxy to solving the problem of possible wrong nesting. We observed that the prototype
works in some instances. However, it was not tested beyond a few examples as the above. We
speculate that it needs more precise and more flexible rules. Additionally, the input of experts in
linguistics and formal semantics is needed. Therefore, we leave this part for future work.

4.5 Module 5: Translator

Goal: To translate a LingSem tree into one or more formal languages; the current implementation
supports one formal language, LTL. This module produces our final output, an LTL expression.

Input: A LingSem tree, and a set of dictionaries, each mapping linguistic LingSem relations to
constructs from a certain formal language.

Output: A formal expression for each formal language supported.

Module 5 is the final module of our framework. It inputs the LingSem tree and outputs a final
formal expression. The formal language supported for the small set of semantics we target is LTL.
The module uses a dictionary as a resource for each output language. The LTL dictionary, for
instance, maps each LingSem relation supported to an LTL expression. Recall that the nodes
of a LingSem tree are either a LingSem relation or a linguistic predicate. The translator uses
the dictionary to transform the LingSem relation nodes of the tree into the equivalent formal
expression. After that, the tree is flattened through a breadth-first traversal, thus by generating
the final formal output shown below. The tree can also be flattened before translating any node,
which results in a LingSem string. The LingSem tree, the LingSem string and the LTL expression,
all three outputs from the tool for Sentence S2 are shown in Listing 4.5 below.

LingSem Tree:

Root: if.

|-- if-clause: your doctor has prescribed this medication,

‘-- then-clause: before.

|-- main-clause: read the Medication Guide provided by your pharmacist

‘-- before-clause: and.

|-- conjunct-1: you start taking ibuprofen.

‘-- conjunct-2: each time that you get a refill.

LingSem String:

if(A, before(and(C, D), B))

LTL Formula:

G ( A -> F ( ~ (C & D ) W B ))

Listing 4.5: Final output of the tool for Sentence 2.
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The use of dictionaries allows extending the translation to more formal languages as long as they
are expressive enough for the sought semantics. This adds to the modularity of the framework.
Moreover, the source notation of the dictionaries being a human-readable intermediate represent-
ation such as the LingSem tree adds to the extensibility of the framework.

The final formal outputs for all sentences of Table 5.1 are shown in the results in Chapter 5. The
raw output of the tool is in Appendix C.

4.5.1 Determining the Desired Output Formalism

We have seen multiple options in related works in Chapter 3. We have seen LTL formulas,
Declare relations, and even process model diagrams. We have chosen the former option for
reasons explained below.

Design Decision: LTL Output

The following are reasons and motives for which LTL was chosen as a the primary output form-
alism:

1. It allows nesting.

2. It holds added value through its capacity for manipulation and rewriting as explained in
Section 2.3.1.

3. It serves as a popular framework for formal reasoning and model checking [6].

4. The author’s familiarity with LTL compared to other formalisms.

5. Time limitation; generating LTL requires less work than generating process model diagrams
for instance.

6. LTL can extend to MTL (Section 2.3.1) by replacing four operators with time-constrained
versions, which allows capturing real-time semantics [29]. This possibility of future work is
detailed in Section 6.3.

For these reasons, we decided to produce LTL formulas as output.

4.5.2 The LTL Dictionary

We have a few sources of mappings from linguistic patterns or process templates (more the latter)
to LTL expressions, Shafiee [53], Dwyer et al. [14], Maggi et al. [33], Pesic et al. [41] (See Figure 2.3),
Bernardi et al. [5], and van der Aa [69]. Here we list our choices based on those sources and relying
on our own judgement. We list the process templates and LTL expressions of interest, then we
argue for a linguistic pattern that may carry the intended semantics.

It is important to note that the choices made do not cover the entire spectrum of meaning a
linguistic pattern may carry. The LTL equivalents certainly do not capture every possible meaning
of the corresponding linguistic patterns.
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Response(A,B)

The LingSem relation we chose for this process template is the conditional if construct, if(A,B).
On the LTL side, according to Dwyer [12, 14], Response(A,B) translates to: G(A→ FB).

Precedence(A,B)

The linguistic pattern inferred from our understanding of the semantics of the Precedence process
template is the one pertaining to the LingSem relation before(B,A). On the LTL side, the process
template Precedence(A,B) is translated by [41] to the LTL expressions: ¬B W A.

Additionally, We chose to treat the linguistic pattern after(A,B) as the opposite of before. There-
fore, after(A,B) is equivalent to before(B,A). Tying after(A,B) to the process template of Succes-
sion was another choice, but it would yield a stronger (more constrained) LTL expression while
the real semantics of after may be looser depending on natural language ambiguities.

The LTL Until operator

For the LTL expression: A U B, the linguistic pattern inferred uses the until function word,
making the corresponding LingSem relation until(B,A).

Other observed linguistic patterns

Some linguistic patterns were observed directly from the input. We chose to map their equivalent
LingSem relations to LTL expressions as follows.

When(A,B): Although the function word when may carry different meanings as pointed out by
Shafiee [53], we decided to choose the meaning of whenever. That is, always, B is true at the
same time that A is true, without any implication on future or past states. That is the weakest
LTL expression we found related to the natural meaning of when. Therefore, it is translated to:
G(A→ B)

Unless(B,A): According to [30], the linguistic pattern A unless B is expressed in LTL as:
A ∧ G(B → F (¬A)).

Once(A,B): Once A is true, B is true now and always in the future. Therefore, we infer the LTL
expression: G(A→ G(B)).

We only touch the surface with this selection of linguistic connectors. Much contribution is needed
in this regard from the field of linguistics, particularly in identifying synonymy of different words.
For example, it is useful to examine the synonymy of ‘in case’ to if, ‘meanwhile’ to while, ‘except’ to
unless, and so on. Some pairs may be full synonyms (identical in every context), whereas others are
partial synonyms (synonymous in some contexts) [32]. However, this thesis is concerned primarily
with the principle of nested structures rather than coverage of connectors.

4.6 Resolution to Research Question

In this section, we investigate how the research question formulated in Section 1.2 is answered.
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Research question: How can nested process fragments be extracted from a sentence
describing a procedure in natural language?

To achieve this, two main tasks were formed. To find what type of process fragments can be
detected in a sentence and to find how to extract and formalize them.

First, the sentences get parsed by a dependency parser. Then we benefited from the Dwyer set
of process templates (Section 2.3.3) to identify some processes templates (precedence, succession,
response). Afterward, to discover the existing process fragments in the sentences, a list of possible
conjunctions is collected. Then observing how these conjunctions have dependency relations to
other tokens in a sentence, dependency patterns that correspond to each process template are
formed. We match these dependency patterns against the input sentences using a dependency
matcher. Out of that, we get a list of matches for each sentence. Then, we construct the predicates
in a sentence by analyzing the matched and unmatched parts of the sentence. After that, we build
a tree where each conjunction has its conjunct predicates as children, and where conjunctions
are nested within one another following the hierarchy found in the dependency tree. We called
this tree the linguistic-semantics (LingSem) tree. Then, we translated the conjunction subtrees
(conjunction node with its predicate children) in the LingSem tree to the process templates decided
and mapped earlier. We also generated LTL expression by translating each process template to its
equivalent LTL expression. Through this pipeline, the nesting has propagated from the dependency
tree to the LingSem tree to the final formal expressions.

To summarize, fragments of processes from sentences are extracted and formalized by defining
different process templates and dependency patterns using a formal language and a list of linguistic
conjunctions.

4.7 Limitations and Threats to Validity

In the following, we discuss possible limitations to our approach and threats to its validity.

4.7.1 Limiting our Observation to a Specific Domain

As mentioned in Section 4.2, automatically scanned dependency trees to help decide which de-
pendency patterns we should adopt. Whether the observation is manual or automatic, there is a
threat to validity in case the input belongs to a specific domain. In that case, certain elements may
be more or less frequent than they would normally be in a typical procedural description text, and
thus wrong assumption will have been made. In our case study, we do use a domain-specific input,
which is not representative enough of procedural descriptions in general. This can be mitigated by
applying our automatic observations using a systematic method and on a wide variety of domains.
Nevertheless, most NLP projects target a certain domain [4, 6].

4.7.2 One Dependency Pattern Mapping to Multiple Meanings

Sometimes, one dependency pattern can indicate more than one linguistic meaning, which leads
to different semantics. The problem is that if we cannot rely on the discrepancy of dependency
relations to indicate a discrepancy in semantics, then we have to rely on human understanding
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which is error-prone and slow. This problem is due to the ambiguity inherent in natural language.
As far as we know, there is no way to mitigate this particular threat, except through using the
most advanced dependency parser and the most accurate dependency parsing model available.

4.7.3 Relying Solely on Dependency Analysis

There is a threat that naturally extends from relying on dependency analysis alone. Dependency
parsing models are statistical models. By definition, the most advanced parser cannot achieve
a 100% accuracy in correctly relating tokens and correctly labeling the relations. The model
used in this thesis boasts an accuracy for unlabelled dependency relations of 95% and labelled
dependency relations of 94%. Thus, when the used dependency parser misplaces and/or mislabels
a dependency relation (which is inevitable due to the statistical nature of the model), then the
error propagates to the final output. This can be mitigated by employing other means of semantic
analysis alongside dependency analysis.

4.7.4 The Limitation of Relying on Function Words Alone

It is especially evident in the the running example sentence that, in order to detect process-related
semantics, it suffices to observe function words such as if and before. Consider, on the other hand,
the following semantically-similar sentence.

On the condition that your doctor has prescribed this medication, reading the Medication
Guide must precede taking Ibuprofen.

The semantics of Succession are not obvious to a machine that does not understand the meaning
of the word precede. Our framework with its current approach would be blind to the Succession
semantics in this sentence. Although we would likely never face such a contrived sentence in the
real world, we produced it merely to convey the point that a higher level of semantic analysis may
be required to reveal process information that function-word matching cannot.

4.7.5 Relying on Human Interpretation

A threat to validity of our approach is that it relies completely on human understanding and
interpretation in order to define the transformation rules. Specifically, the area of defining which
linguistic patterns map to which LingSem relations. Ideally, this should rely on a sound theory
mapping linguistic constructs to formal expressions. The obvious reason behind this threat is the
lack of such theory. The state of the art uses approximation approaches, machine-trained models,
and the like [4]. There remains a great deal of human intuition required to accurately transform
a sentence into its formal equivalent [38]. The ambiguities induced by natural language shown in
Section 2.1 demonstrates that.

4.8 Further Discussions

This section is designated to further discussions that were excluded from the main explanation of
the approach for brevity.
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4.8.1 The Accuracy of the Dependency Parser (Module 2)

The currently-used dependency parsing model has some limitations which we observed through
experimentation. Briefly, in some cases, changing individual words to semantically equivalent ones
produces different dependency trees which imply drastically different meanings. The following
explores such a case in detail.

The tree in Figure 4.2 includes one wrong relation. To spot it, we need to analyze the tree using
our understanding of language. We read a dependency tree starting from the root. The root here
is the verb read. It has five children:

1. an adverbial-clause modifier ( advcl ), that is the verb prescribed,

2. a direct object ( dobj ), that is the Medication Guide,

3. an adverbial-clause modifier ( advcl ), that is the verb start,

4. a coordinating conjunction ( cc ), which is and,

5. and a conjunct ( conj ), the verb get.

When reading a dependency tree as a human, it is important to realize that a relation towards
a token does not stop at that token, but rather extends to the entire subtree of that token. A
subtree of a node in a dependency tree is composed of the node itself and all its descendants. For
example, when we say that the verb start is an adverbial-clause modifier to the verb read, we
realize that the modifier of the verb read is not only the verb start, but rather its entire subtree,
i.e. the entire clause “before you start taking ibuprofen”.

With that, we realize that the clause “each time you get a refill” is in conjunction with “read the
Medication Guide”. That means that, in effect, we should expect that the sentence, not modified
by the two adverbial clauses, should read as: “read the Medication Guide and each time you
get a refill”. But that makes no sense to a human reader. Inspecting the subtree of the second
clause further provides the answer. Notice that each time is a noun-phrase adverbial modifier
( npadvmod ) to the verb get. In essence, that means that each time modifies your getting of a
refill. In that case, the proper way to read the sentence is: “read the Medication Guide and you
get a refill each time” or “read the Medication Guide and, each time, you get a refill”. The meaning
conveyed in both cases is the same, yet it is the wrong meaning according to our understanding
as human readers.

By studying this dependency tree, we now know that the machine understands this sentence closer
to the following formulation:

If your doctor has prescribed this medication, read the Medication Guide before you start
taking Ibuprofen and you would get a refill each time you do that.

This is obviously not the intended meaning. To find out how the correct dependency tree should
look like, we simplify the sentence and reduce its complexity and ambiguity to minimize the
probability of error by the machine. Consider the following simplified variant:

S21 : If your doctor has prescribed this medication, read the Guide now and each time you
get a refill.
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Now observe the dependency tree of this sentence in Figure 4.3. We replaced the adverbial-clause
modifier by a single word adverbial modifier ( advmod ), simply an adverb. We see two major
changes. The first change is that the verb read is no longer in conjunction with the clause each
time you get a refill. In fact it is not a conjunct at all, i.e., it is not related to any token through the
conj relation. Instead, the adverb now is the one in conjunction with the aforementioned clause.
The second major change is the dependency subtree of the aforementioned clause itself. Previously,
the head of that subtree was the verb get whereas each time was considered an adverbial modifier
to get, much like how now modifies read in this sentence. This time, however, the head of the
subtree is the noun phrase each time with each time relcl−−−→ get. This relation4 indicates that you
get a refill is a relative clause modifying each time. Effectively, the subtree carries a meaning more
explicitly expressed as: “each time that you get a refill”, which is the correct intended meaning of
the original input.

To try and sway the machine into producing the correct dependency tree, we made a small modi-
fication to the input sentence, which we believe is disambiguating according to our investigation.
We added the complementizer that such that the clause becomes “each time that you get a refill”.
The resulting sentence is as follows:

S22 : If your doctor has prescribed this medication, read the Medication Guide before you
start taking Ibuprofen and each time that you get a refill.

The resulting dependency tree is shown in Figure 4.4. This tree carries the correct relations as
described above, namely, read advcl−−−→ start conj−−→ each time relcl−−−→ get.

For the sake of completion, we experimented with a few more modifications which gave results as
follows:

• Changing each to every : “every time you get a refill” produced a wrong tree.

• Inserting the complementizer that to the previous modification, making it “every time that
you get a refill”, produced the correct tree.

• Using the adverb whenever as “whenever you get a refill” produced a wrong tree.

4Note that relcl is called rcmod in the Clear style manual
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Chapter 5

Results and Evaluation

In this chapter, the proposed method discussed in Chapter 4 is evaluated. To achieve this goal, we
aim to perform a qualitative analysis by comparing the output of our tool with that of a human
participant and investigating whether our method provides accurate formal expressions. In the
following sections, the case study and analysis procedure are presented, the two sets of output are
compared, the results are discussed, and the modifications on the implementation that followed
are given.

5.1 Case Study Text

For evaluation, we chose a text of 360 words in 18 sentences describing ‘how to use Ibuprofen oral’.
The text is part of the WebMD online medical resource and can be viewed online1. The text is
segmented into sentence and shown in Table 5.1.

A manual analysis of the text deemed it suitable as a case study for the following reasons:

• It qualifies as a procedural description text.

• Almost all sentences of the text included an ordering of activities or a decision, which are
the process model semantics we aim to detect.

• Most of the sentences contained nested linguistic constructs.

Therefore, the text is considered suitable as input to our solution explained in Chapter 4.

1https://www.webmd.com/drugs/2/drug-5166-9368/ibuprofen-oral/ibuprofen-oral/details
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S1 If you are taking the over-the-counter product, read all directions on the product package
before taking this medication.

S2 If your doctor has prescribed this medication, read the Guide before you start taking
Ibuprofen and each time you get a refill.

S3 If you have any questions, ask your doctor or pharmacist.
S4 Take this medication by mouth, usually every 4 to 6 hours with a full glass of water (8

ounces/240 milliliters) unless your doctor directs you otherwise.
S5 Do not lie down for at least 10 minutes after taking this drug.
S6 If you have stomach upset while taking this medication, take it with food, milk, or an

antacid.
S7 The dosage is based on your medical condition and response to treatment.
S8 Take this medication at the lowest effective dose for the shortest possible time to reduce

your risk of stomach bleeding and other side effects.
S9 Do not increase your dose or take this drug more often than directed by your doctor or

the package label.
S10 For ongoing conditions such as arthritis, continue taking this medication as directed by

your doctor.
S11 When ibuprofen is used by children, the dose is based on the child’s weight.
S12 Read the package directions to find the proper dose for your child’s weight.
S13 Consult the pharmacist or doctor if you have questions or if you need help choosing a

nonprescription product.
S14 For certain conditions (such as arthritis), it may take up to two weeks of taking this

drug regularly until you get the full benefit.
S15 If you are taking this drug “as needed” (not on a regular schedule), remember that pain

medications work best if they are used as the first signs of pain occur.
S16 If you wait until the pain has worsened, the medication may not work as well.
S17 If your condition persists or worsens, or if you think you may have a serious medical

problem, get medical help right away.
S18 If you are using the nonprescription product to treat yourself or a child for fever or

pain, consult the doctor right away if fever worsens or lasts more than 3 days, or if pain
worsens or lasts more than 10 days.

Table 5.1: All sentences comprising the sample input text of Ibuprofen usage.
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5.2 Result Analysis Procedure

In the following section, we make a qualitative analysis on the output of our tool comparing it
with the output of the human participant. We choose to make the analysis qualitative because
of the many factors involved in transforming natural language to an LTL output. First and
foremost, there is human understanding and knowledge of context which the machine does not
possess. Second, in some cases there is more than one correct answer. Third, there are multiple
steps in the translation process which can produce errors. A human may misidentify predicates,
misinterpret the meaning, or be caught in multiple levels of nesting. On the other hand, the
machine may err in the dependency parse, in generating predicates, nesting them correctly, and
most importantly, interpreting the linguistic elements. Therefore, we found it more fruitful to
analyze the results quantitatively in depth in light of these steps and these points of failure.

We gave the case study text to our human participant and asked for a translation to the interme-
diate LingSem format and to LTL formulas. For each sentence, the participant defined predicates,
looked for semantics that could be expressed in LTL, and expressed them in LingSem format and
the equivalent LTL expression based on the best of her judgement.

5.3 Results

This section shows certain input sentences and the corresponding outputs by our tool as well as
by the human participant. The output for each sentence is followed by a discussion assessing the
correctness of the output. In case of a mistake, we provide corrections and clarify which modules
contributed to the mistake. To refer to output LTL formulas, we use the notation fnh for human
output of sentence Sn; and fnm for machine output of sentence Sn.

The results chosen for display in this section are the ones perceived to be most insightful for the
context of this thesis. Other results are deferred to Appendix A in order to avoid repetitive-, or
otherwise less interesting, outcome.

5.3.1 Sentence S1:

“If you are taking the over-the-counter product, read all directions on the product package before
taking this medication”.

Predicates: The predicates extracted by both human and machine match.

A = you are taking the over-the-counter product
B = read all directions on the product package
C = taking this medication

Formal Expressions:

Format Human output Machine output

LingSem If (A, before (C,B)) If (A, before (C,B))

LTL G(A→ F(B → C)) G(A→ F ((¬ C) W B))
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Discussion: We see a discrepancy between the two LTL outputs. Upon some analysis, we find
that the human LTL output, formula f1h, accepts traces such as t11 = {A,¬B}� {¬B,C}. This
trace allows, given the precondition of A, that C occurs without B, i.e., taking the medication
without reading the directions. This directly contradicts the sentence.

We also find that f1h does not accept traces as t12 = {A,B,¬C} � {B,¬C} where the run
terminates with B having occurred but C never occurring. This contradicts the sentence which
allows reading the directions without ever taking the medication.

Let us assume that the human made a mistake and meant to write the LTL formula f ′1h = G(A→
F(C → B)). In this case, we face another problem; f ′1h does not accept traces as t13 = {A} �

{B,¬C}� {¬B,C}. In this trace, given A, C is allowed to occur some time after B without them
occurring at the same time. This should be accepted by the LTL formula because the sentence
allows it. This mistake can be blamed on the human’s LTL translation of the LingSem relation
before being wrong.

Regarding the machine’s output, all the above mentioned traces t11, t12 and t13 do not pose a problem.
This is due to the fact that our translation of before in the LingSem-to-LTL dictionary (Section 4.5)
is based on the assumption that before captures the semantics of Precedence; meanwhile, in S1,
the function word before precisely captures the semantics of Precedence.

The dictionary of Module 5 (Section 4.5.2) dictates that the LingSem relation if(ψ, φ) translates
to the LTL expression G(ψ → F (φ)). This allows traces such as {ψ}� {¬φ}� {φ}, i.e., traces
where the consequent of the if -statement is not effective immediately, but starts taking effect at
a later state. This is due to the use of the eventually (F) operator. Applying this concept to f1m,
we find that it accepts traces as t14 = {A,¬B,¬C}� {¬B,C}� {B,¬C} where the precedence
of B over C is not required as soon as A holds but eventually after A holds. A stronger alternative
translation of if(ψ, φ) is more suitable for this sentence, namely the LTL formula G(ψ → φ). With
this modification, the LTL translation for S2 becomes:

f ′1m = G(A→ (¬ C W B))

We would like to adopt this correction into our framework such that it is performed systematically.
This challenging problem is discussed in the context of the following sentence S2.

5.3.2 Sentence S2:

“If your doctor has prescribed this medication, read the Medication Guide provided by your phar-
macist before you start taking ibuprofen and each time that you get a refill”.

Predicates: The predicates extracted by both human and machine match.

A = your doctor has prescribed this medication
B = read the Medication Guide provided by your pharmacist
C = you start taking ibuprofen
D = each time that you get a refill.
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Formal Expressions:

Format Human output Machine output

LingSem If (A, before (and (C,D), B)) If (A, before (and (C,D), B))

LTL G(A→ F(B → (C ∨D))) G(A→ F (¬ (C ∧D) W B))

Discussion: First we note that the LingSem relations produced by human and machine match.
Upon initial inspection, we judge that the LingSem output is correct. This is the cumulative work
of Modules 1 to 4 as shown in detail throughout Chapter 4 since it uses this sentence S2 as a
running example. The output of Module 5, the LTL formula f2m, differs from that of the human
participant, f2h. The human translated the before relation exactly as she did in Sentence S1. So
did the machine. However, on translating the and(C,D) LingSem relation, she chose the logical or
as the conjunction between C and D whereas the machine used the logical and directly mapped
from the linguistic and.

Both LTL expressions are wrong because they allow traces t21 = {A,¬B} � {¬B,C} and t22 =

{A,¬B}� {¬B,D} which clearly contradict the sentence requiring B to precede either of C or
D. The mistake in f2h is caused by the wrong translation of before(A,B) into the logical expression
A→ B which is discussed in Sentence S1 above. However, following the human in her use of the
logical or operator can repair the machine’s formula. The corrected formula is:

f ′2m = G(A→ F (¬ (C ∨D) W B))

With this change, the traces t21 and t22 are no longer counterexamples because f ′2m does not accept
them.

Another mistake remains that is the translation of the if relation which is discussed in S1. As
does formula f1m, formula f ′2m allows traces where the consequent of the if -statement is not
effective immediately, but starts taking effect at a later state. Thus, f ′2m accepts traces as t23 =

{A,¬B}� {¬B,C}� {B,C}. Again, this allows starting to take the medication before reading
the Medication Guide. To repair this mistake, we simply remove the eventually (F) operator,
making the expression as follows:

f ′′2m = G(A→ (¬ (C ∨D) W B))

So far, we have performed two corrections to f2m, one regarding the translation of and, and
another regarding the translation of if. Naturally, we would like to adopt such corrections into our
framework such that they are performed systematically. In the following, we discuss the possible
solutions.

Solutions regarding translation of and : Regarding the wrong translation of and, we discuss
two possible solutions. The first solution works at Module 5 and aims to deduce the correct logical
conjunction from the linguistic one. Particularly, the aim is to map each instance of the linguistic
conjunctions and and or into one of three logical operators: ∧,∨,=, where = is the exclusive
disjunction (Exclusive OR, XOR). This task is deemed too difficult, by Ghazel et al. [21], to solve
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automatically. In their work, they relied on human input to solve the task. The reason is that
deducing the logical meaning of the conjunction words and and or needs knowledge of context [50].
The conjunction and is ambiguous because, in many cases, it is not clear which words, phrases or
clauses are the conjuncts [44]. Indeed, the wrong dependency tree (Figure 4.2) originally produced
by Module 2 for this sentence was due to the ambiguity of the conjunction and (discussed at length
in Section 4.8.1).

This sentence (S2) poses a rather complex case because of the implicit role of the conjunction and
which is to list the times where predicate B, i.e. reading the Medication Guide, must hold. This
semantic role of and can be simply demonstrated in the sentence:

S2a: Read at dawn and at sunset.

Here, the reading is done if either of the two events, dawn or sunset, holds. Therefore, we translate
it to the logical expression (Dawn∨Sunset)→ Read. Notice that the word and translates to the
logical operator ∨. Notice also that the sentence carries and implicit conditional statement that
translates to the logical operator →.

It is not clear what factor exactly dictates that the word and in sentences S2 and S2a should
translate to the logical ∨. We speculate that it is due to the fact that the and conjunction in
both sentences is an adverbial clause that expresses time or temporal events [63]. However, we
could not find counterexamples, nor could we reach a conclusion based on this speculation. More
input is needed to solve this problem from experts in linguistics and logic. To the best of our
knowledge, solving such ambiguity is still an open problem [21, 28, 50]. Therefore, we leave this
part for future work.

The second solution works at Module 4 and it aims to alter the LingSem tree such that the
subsequent processing (Module 5) produces the desired output. The current LingSem output
(If (A, before (and (C,D), B))) is visualized in Figure 4.16. A meaningful alteration of the LingSem
output is If (A, and (before (C,B), before (D,B))) which is visualized in Figure 5.1.

The LTL expression that Module 5 produces out of this LingSem tree is the following (considering
we also applied the correction for the translation of if ):

f ′′′2m = G(A→ ((¬ C W B) ∧ (¬ D W B)))

This formula f ′′′2m is equivalent to f ′′2m due to De Morgan’s law and the distributivity of W over ∨.
Thus, the alternative LingSem tree is correct. What remains then is the ability to systematically
reproduce such alteration. Observe the difference between the original tree (Figure 4.16) and
the altered one (Figure 5.1). Note that the alteration does not only involve placing and above
before in the nesting, but it also fabricates a sibling before relation and duplicates the main clause
of the sibling before relation. This was performed through human understanding and insight,
one particular element of which is understanding the phrase ‘each time’ and understanding that
predicate D is an event in conjunction through and with event C. We find that these realizations
make the alteration hard to replicate systematically by the machine.

Solutions regarding translation of if : Removing the eventually (F) operator is based on
the perceived urgency of the consequent of an if statement. In S2, it is hard for the machine to
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Figure 5.1: An alternative LingSem tree for S2.

perceive how important it is that predicate B, reading the guide, must precede predicates C and
D. In another more relaxed sentence such as S3, the use of the eventually (F) operator is the
correct choice. Therefore, the choice of the correct LTL translation requires a level of semantic
analysis deep enough to sense urgency. As this requires more research into semantic analysis, we
leave it for future work.

We discussed possible solutions to mitigate the mistakes faced in processing S2. All of the discussed
solutions require a deeper level of research and are thus part of future work.

5.3.3 Sentence S13:

“Consult the pharmacist or doctor if you have questions or if you need help choosing a nonpre-
scription product”.

Assumption: Here, the human participant decided to replace ‘or if’ by ‘or’ based on the assump-
tion that the meaning would remain unchanged.

Predicates: The predicates extracted by both human and machine match, albeit with a small
discrepancy for predicate C, which is labeled Ch and Cm for human and machine respectively.

A = Consult the pharmacist or doctor
B = you have questions
Ch = you need help choosing a nonprescription product
Cm = if you need help choosing a nonprescription product

Formal Expressions:

Formalization of Natural Language Text using Syntactic Dependency 59



CHAPTER 5. RESULTS AND EVALUATION

Format Human output Machine output

LingSem if (or (B,C), A) if (or (B, C), A)
LTL G((B ∨ C)→ F(A)) G((B ∨ C)→ F(A))

Discussion (Redundant if word): Sentence S13 has two instances of if. The first one appears
in the LingSem expression but the second does not. Call them the outer if and the inner if
respectively. A complete if construct consists of two clauses, the if -clause and the main clause.
In this sentence, the outer if construct was detected by Module 3 and can be seen in the LingSem
expression. The if -clause of the outer if is “you have questions or if you need help choosing a
nonprescription product” . It contains an or -conjunction of two clauses. This is also detected
by Module 3 and can be seen in the LingSem expression. The second or -conjunct represents
the if -clause of what we called the inner if. However, this if -clause has no corresponding main
clause. So it does not represent a complete if construct. Indeed, looking at the dependency tree
(Figure B.13), we find an advcl relation from the outer if -clause to the main clause, but we find
no such relation from the inner if -clause. The same situation is found in Sentences 17 and 18. In
these situations, the use of the word if in the inner clause is redundant. Thus, in this example,
it suffices to say “if you have questions or you need help choosing...”. This is why the human
participant chose to ignore this redundant if. For the machine, however, Module 3 returned no
match regarding the inner if. Consequently, Module 4 did not regard it while constructing the
predicates. We do not consider this a mistake because of the redundancy of the inner if explained
above.

The output of Modules 4 and 5 matches the human output and is correct.

Improvement: An improvement is possible here. As noted in the discussion of S2, conjuncts of
an or may not be clear. The addition of the redundant inner if helps clear such ambiguity in this
sentence. The sentence has one conditional statement marked by the outer if. The antecedent of
that statement is “you have questions or you need help choosing a nonprescription product”. The
word or may interrupt the flow of reading the antecedent. To mitigate that, the writer repeats
the word if. It will help the machine to recognize such deliberate disambiguation. However, by
observing dependency trees of this sentence and others, we could not find a pattern identifying
this type of disambiguation. Regardless, this falls in the line of research concerned with properly
identifying conjuncts which relies on the dependency parsing model [31]. A dependency parsing
model that is more advanced in detecting conjuncts would greatly benefit our framework for
resolving such issues.

5.4 Discussion of Results

Here, we give some observations and explanations about the output shown in the previous section.

There are 4 sentences where the machine gave no output because it could not find meaningful
patterns. Those are Sentences 7, 8, 10 and 12

Out of the 14 sentences where the machine found patterns and formed predicates, 12 agreed with
the human participant. This counts the negation discrepancies as matching since the predicates
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were matching before introducing the negation pattern. This is an indication of the success of
dependency parsing and dependency pattern matching, Modules 2 and 3 respectively.

Regarding the LingSem output, considering the discrepancies in predicates formed, we can con-
clude that out of the 14 aforementioned sentences, the machine made no mistakes in finding the
correct LingSem string. This indicates the success of Module 4.

Regarding the LTL output, many discrepancies appeared between human interpretation and the
machine’s simple dictionary mapping. Sentences 1, 2, 4, 5, 6, 11, 14, 17 and 18, all have nonequi-
valent LTL expressions for one reason or another. These differences were discussed under each
respective sentence above. Only 5 LTL formulas agree between human and machine. Based on
our inspection, we judged 6 out of 14 LTL formulas produced by the machine to have correctly
conveyed the intended meaning of the sentence.
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Conclusion

In this chapter, we conclude our thesis by listing our contributions, discussing future work, sum-
marizing the work, and giving concluding remarks.

6.1 Contributions

The contributions of this research are as follows:

1. The LingSem tree: An intermediate representation of natural language text that is both
human-readable and machine-readable. That is a parse tree relating semantic units in a
sentence. This representation is easier to translate than dependency trees into bracketed
expressions of LingSem relations and temporal logics.

2. An extensible and modular framework consisting of five modules which utilizes dependency
analysis to transform a natural language sentence into a LingSem tree, and from there on
onto an LTL expression.

3. The framework is capable of detecting nesting in a sentence and transforming it into a nested
formal expression.

6.2 Results

As of the time of writing this, the framework built through this thesis is capable of extracting
nested process-fragments from a natural language sentence, and translating them into a nested
LTL expression. It also outputs an intermediate readable format to aid in understanding and
rectifying or extending the framework. The framework completes the objective in five modules.
With a typical procedural description text as input, the first module uses a natural language
processing (NLP) pipeline to pre-process the text, segment it into sentences, and annotate it with
POS tags. The second module computes a syntactic dependency tree for each sentence. The
third module detects, within the dependency tree, parts of interest which indicate process-related
relations. For example, it detects clause markers, such as if, whenever, before, etc. and identifies
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the heads of the clauses found in the sentence. This relies on an extensible set of rules defined
externally in a JSON file. The fourth module uses a non-trivial algorithm to construct predicates
from the matched heads of clauses and arrange them into a nested hierarchy of linguistic semantics
relations, called a LingSem tree. That is our intermediate representation. The algorithm relies
on a set of rules that determine the precedence among different linguistic elements. Finally, the
fifth module utilizes extensible user-defined dictionaries to translate the LingSem tree into an LTL
formula.

To make this clearer, we summarize the modules as follows:

• Module 1: Pre-processes the text, segments it into sentences and annotates it.

• Module 2: Extracts syntactic dependency information from the input text.

• Module 3: Detects subtrees of interest in the dependency tree according to pre-defined rules.

• Module 4: Constructs predicates and re-arranges them into a nested hierarchy, the LingSem
tree.

• Module 5: Translates the LingSem tree to LTL given a dictionary; outputs the translated
formulas.

The LingSem and the LTL outputs for 18 sample sentences with varying linguistic constructs
were compared with those a human participant produced. Out of 18 sentences, the tool found
dependency patterns of interest within 14 sentences (Modules 2 and 3). The LingSem output
never mismatched with that of the human participant (Module 4) and was found correct in all
cases. Finally, we judged the LTL output of 6 out of 14 sentences to be correct (Module 5).

6.3 Future Work

This section proposes ideas for future work.

6.3.1 Using Co-reference Resolution to Relate Multiple Sentences

Dependency relations are not derived across sentences. Dependency analysis is bound within a
single sentence. That is mainly the source of the limitation that our analysis is bound within a
sentence. However, we can still connect semantics across multiple sentences by using co-reference
resolution. This is a technique that reveals which entities from a certain sentence are referred
to in other sentences. This would allow us to relate the formal expressions of different sentences
sharing the same reference, even though each expressions was derived from a single sentence.

6.3.2 Defining More Transformation Rules

In our attempt to build a complete framework that transforms process-related semantics to LTL
expressions through multiple stages, the time constraint stood in the way of covering more se-
mantics. As future work, more semantics need to be addressed, starting with more relations
between process fragments followed by LTL semantics.
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6.3.3 Probabilistic Precedence Rules

As pointed out in Section 4.4, probabilistic precedence rules are needed for a more accurate
interpretation of implicit nesting of linguistic construct. Machine learning techniques, combined
with a higher level of NLP, such as discourse analysis, can be used to train a such a model [3].
This is akin to how dependency grammars are trained.

6.3.4 Quality Control Measures

Misinterpreting natural language occurs even when using the latest technology in dependency
analysis. Using other means of semantic and syntactic analysis alongside dependency analysis
can act as quality control. When both methods differ in their interpretation, a flag can be raised
for the input sentence to be manually revised. Another way to find misinterpreted sentences is
to replace individual words with semantically similar ones, and observe if the dependency tree
changes. The effectiveness of this approach is evident in Section 4.8.1 when replacing the phrase
each time with every time or whenever yielded different dependency trees.

6.3.5 LingSem Definition

The LingSem tree format is not well-defined. Prior to defining it as a formalism, its requirements
need to be explicitly stated. After that, similar semantic trees such as SemS [27] should be studied.
In case an alternative can replace LingSem, it should be adopted. Otherwise, LingSem can adopt
concepts from those similar but slightly different formalisms.

6.4 Concluding Remarks

This thesis has aimed to extract fragments of processes from natural language sentences and
formalize them. It has succeeded in creating a modular and extensible framework relying on state-
of-the-art techniques and tools to perform the task; yet it leaves much more to be desired. We
hope to see more rules specified and advanced modules and techniques integrated into this skeleton
of a framework.
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Appendix A

Results of Secondary Significance

This chapter shows the output of our tool for the remaining sentences of the input text—i.e., the
ones not discussed in the body of the thesis (Chapter 5)—along with a discussion of the results.

A.1 Sentence S3:

“If you have any questions, ask your doctor or pharmacist”.

Predicates: The predicates extracted by both human and machine match.

A = you have any questions
B = ask your doctor or pharmacist

Formal Expressions:

Format Human output Machine output

LingSem If (A,B) If (A,B)

LTL G(A→ F(B)) G(A→ F B)

The machine outputs of Modules 4 and 5 are correct.

Undetected and/ or conjunctions. In Sentences 3, 6, 7, 8, and 9, the and/or conjunction
was not detected because in all of these cases, the conjuncts are nouns while our pattern considers
only verbs. This is intentional and the outcome we see here is desirable. The reason is that
we intend to detect and link activities while activities are represented by verbs as explained in
Section 4.3.2. The two conjunct nouns in S3 are objects of the activity ‘ask’. Thus, they do not
fall within the scope of our interest in this thesis.
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A.2 Sentence S4:

“Take this medication by mouth, usually every 4 to 6 hours with a full glass of water (8 ounces/240
milliliters) unless your doctor directs you otherwise”.

Predicates: The predicates extracted by both human and machine match.

A = Take this medication by mouth, usually every 4 to 6 hours with a full glass of water (8
ounces/240 milliliters)
B = your doctor directs you otherwise

In addition, the human participant defined the following predicate:

Ā = ¬A = Do not take this medication by mouth, usually every 4 to 6 hours with a full glass of
water (8 ounces/240 milliliters)

Formal Expressions:

Format Human output Machine output

LingSem If (B,¬A) unless(B,A)

LTL G(B → F(¬A)) A ∧ (G(B → F (¬A)))

Both LTL outputs are wrong.

Discussion: The difference between the two LTL outputs is that the machine added the literal
A in a logical and with the formula of the participant. This stronger expression is wrong simply
because it does not allow the trace consisting of a single event B. The shortcoming stems from
our particular mapping of unless in the LTL dictionary (Module 5).

The human’s output is based on assuming unless to be synonymous with if not, and thus replacing
the former with the latter. The resulting LTL expression is not correct because it allows the trace
{B} � {¬A} � {A} which means that the patient is supposed to follow the doctor’s direction
for one time unit only. This contradicts our understanding of the sentence. To mitigate this, a
possible formula is:

G(B → G(¬A))

However, this formula accepts the trace {¬A} � {¬A} � . . . � {¬A} where A, the initial
instruction, never holds.

We argue that the weak until W operator would have been a more suitable translation for this
sentence. Thus the correct formula is:

A W B

It works in the following way. “Take the medicine” (A) is true and remains true until some time
(not necessarily coming) when the doctor directs you otherwise (B); and when that (B) occurs,
then A becomes false and remains false.
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A.3 Sentence S5:

“Do not lie down for at least 10 minutes after taking this drug”.

Predicates: The predicates extracted by both human and machine match.

A = Do not lie down for at least 10 minutes
B = taking this drug

Formal Expressions:

Format Human output Machine output

LingSem After (B,A) After (B,A)

LTL G(B → X(A)) A W B

The human output is correct, but the machine LTL output is wrong.

Discussion: Here, the temporal constraint 10 minutes should be expressed in the formal output,
perhaps through Metric Temporal Logic, rather than be part of the predicate A. Presumably, the
participant assumed that the next state is 10 minutes long, hence the next (X) operator. The
participant’s LTL formula states that every time the drug is taken, in the next 10 minutes, one
should not lie down. In that sense, we argue that this is an accurate translation.

On the other hands, the machine’s output is wrong because it does not allow the trace {¬A}� {B}
while the sentence allows it. Not allowing this trace means not allowing lying down for 10 minutes
until the drug is taken.

It may seem as if this misinterpretation stems from a wrong assumption we made while writing
the LingSem to LTL dictionary; the assumption that the semantics of after(A,B) are equivalent
to that of before(B,A) whereas it could simply mean next as the participant chose. However, the
reason the machine got this wrong goes back to an earlier phase of the process, the dependency
tree. Observe Figure A.1. Notice that the clause “after taking this drug” depends on the verb
‘lie’, thereby conveying the meaning “Do not lie down after taking this drug” independently of
the time period specified by “at least 10 minutes”. We argue that that the after -clause should
entirely be part of the for prepositional clause such that it depends on the temporal determinant
‘10 minutes’. This arrangement can be seen in Figure A.2 which was produced by the dependency
parser after switching around the main clause with the after -clause. That way, the open period
specified by the after -clause is tightly bound by a fixed period of 10 minutes (or more).

Unfortunately, the machine analyzing the sentence after this modification does not yield a LingSem
tree. The reason is twofold: first and foremost, the lack of a defined dependency pattern for the
prepositional for clause and the lack of the necessary subsequent dependency-to-LingSem mapping.
Second, since the after -clause lies inside the for -clause, nothing can be said in certainty about the
inner construct without recognizing the semantics of the outer one.
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Figure A.1: Dependency tree of S5.
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Figure A.2: Dependency tree of S5 after switching around the main clause with the after -clause.

A.4 Sentence S6:

“If you have stomach upset while taking this medication, take it with food, milk, or an antacid”.

Predicates: The predicates extracted by both human and machine match.

A = you have stomach upset
B = taking this medication
C = take it with food, milk, or an antacid

Formal Expressions:

Format Human output Machine output

LingSem If (while (B,A), C) If (while (B,A), C)

LTL G((A ∧B)→ F(C)) G((FB ↔ FA)→ F C)

Both human and machine LTL outputs are wrong.

Discussion: We notice the while relation nested within if. The participant treated while as the
logical and, which suits the intended meaning. However, we do not expect to see the eventually
(F) operator because it allows traces that contradict the sentence, e.g., t61 = {A,B,¬C} �

{A,B,¬C} � {¬A,¬B,C}. We would not like to see the patient not taking the antacid (not
satisfying C) during A and B but doing it later after A and B are over. Instead, we would
like the same state where A and B are true to have C true. Thus, we expect the expression
G((A ∧B)→ C).

Regarding the machine’s LTL output, it stems from a direct translation of the while and if LingSem
relations as dictated by the LingSem-to-LTL mapping (Module 5). The resulting output from the
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machine is wrong. The mapping dictates a translation of while that follows the semantics of the
Co-existence(A,B) process template (which translates to FA ↔ FB). However, the use of while
in this particular sentence does not imply that semantics, but rather implies, as mentioned above,
A ∧B.

A.5 Sentence S7:

“The dosage is based on your medical condition and response to treatment”.

Predicates by Machine: None. The machine found no dependency patterns in this sentence.

Predicates by Human:

A = The dosage
B = your medical condition
C = response to treatment

Formal Expressions:

Format Human output Machine output

LingSem Based-on (and (B,C), A) —
LTL G((B ∧ C)→ F(A)) —

Discussion: This sentence has no syntactic pattern which the machine can detect. The semantics
of this sentence relies on the semantics of its main verbal phrase is based on. The participant cap-
tured this in her LingSem expression by crafting a LingSem relation called Based-on. However, this
relation is not correct since it does not relate two predicates. In fact, by definition (Section 2.1.1),
the entire sentence is a single predicate and contains no sub-clauses. Based on that, we argue that
the LingSem expression is incorrect and, by extension, so is the LTL expression.

Since the machine has not adopted verb semantics, it can infer no meaning from this sentence.

A.6 Sentence S8:

“To reduce your risk of stomach bleeding and other side effects, take this medication at the lowest
effective dose for the shortest possible time”.

Predicates by Machine: None. The machine found no dependency patterns in this sentence.

A = reduce your risk of stomach bleeding and other side effects
B = take this medication at the lowest effective dose for the shortest possible time

Formal Expressions:
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Format Human output Machine output

LingSem To (A,B) —
LTL G(B → F(A)) —

Discussion: Here, as in Sentences 4 and 5, we notice a temporal constraint that should ideally be
captured by the formal output. While the participant found a LingSem relation To, the machine
did not detect the linguistic pattern because it is not defined in its list of dependency patterns. We
detail this below. Regarding the LTL expression, it is arguable whether the meaning behind the
sentence is reflected in the effect of B on A. If the effect is immediate, then the expressions should
be G(B → A). If the effect is in the next time step, then the expression should be G(B → X(A)) as
the participant chose for Sentence S5. If the effect is in some time in the future, then the chosen
expression G(B → F(A)) is the correct one.

The auxiliary to. In Sentences S8 and S12, we do not detect the to as a marker to an adverbial
clause. That is because the dependency trees of both these sentences show to as an auxiliary aux

to the verb. We cannot rely on that to make a rule to detect such a pattern VERB
advcl−−−→ VERB

aux−−→ to. This is unreliable because an auxiliary carries no semantics by itself, unlike marker words
such as if and while. In the case of an auxiliary, the meaning of the adverbial clause completely
relies on the verb of the clause. Once verb semantics are adopted, then such a case can be covered.
When modifying the sentence as follows: “Take this medication at the lowest effective dose for the
shortest possible time so that you reduce your risk of stomach bleeding and other side effects”,
the machine detected a generic adverbial clause pattern and produced the correct LingSem tree
as seen in the output of Sentence S82 in Appendix C.

A.7 Sentence S9:

“Do not increase your dose or take this drug more often than directed by your doctor or the
package label”.

First Solution by Human:

A = Do not increase your dose
B = take this drug more often than directed by your doctor
C = the package label

Formal Expressions:

Format Human output Machine output

LingSem or (A, or(B,C)) —
LTL A|B|C

Second Solution:

Predicates: The predicates extracted by both human and machine match.

78 Formalization of Natural Language Text using Syntactic Dependency



APPENDIX A. RESULTS OF SECONDARY SIGNIFICANCE

A = Do not increase your dose
B = take this drug more often than directed by your doctor or the package label

In addition, the machine defined the following predicate:

Ā = Do increase your dose

Formal Expressions:

Format Human output Machine output

LingSem or (A,B) or (not(Ā), B)

LTL A|B ¬Ā|B

Discussion: The outputs here are considered a match between human and machine modulo the
negation detected by the machine. Both outputs are correct.

A.8 Sentence S10:

“For ongoing conditions such as arthritis, continue taking this medication as directed by your
doctor”.

Predicates by Human:

A = ongoing conditions such as arthritis
B = continue taking this medication as directed by your doctor

Formal Expressions:

Format Human output Machine output

LingSem for (A,B) —
LTL G(A→ F(B)) —

Deep detected, but disconnected patterns. In this sentence, the machine states that it
detects at least one deep dependency pattern, but cannot recognize the relation(s) between
the root and the deep nodes. Therefore, it cannot proceed. The deep pattern detected is the
adv-clause generic pattern which matches the adverbial clause “as directed by your doctor”.
The reason it cannot proceed with any further processing of the deep pattern is because of the
unrecognized dependency relations running from the root of the tree to the deep pattern. These
unrecognized relations may carry semantics that supersede, nullify or influence the semantics
carried by the deep pattern. We see this phenomenon again in Sentence S15.

A.9 Sentence S11:

“When ibuprofen is used by children, the dose is based on the child’s weight”.
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The predicates by both human and machine match.

Predicates:

A = ibuprofen is used by children
B = the dose is based on the child’s weight

Formal Expressions:

Format Human output Machine output

LingSem When (A,B) When (A,B)

LTL G(B → F(A)) G(A→ B)

Discussion: Here, the participant treated when as the Response process template. The machine
treats when(A,B) as “whenever A is true, B is also true”. Applying this to the sentence, whenever
Ibuprofen is used by children, the dose is based on the child’s weight. That is a correct inter-
pretation. On the other hand, the participant’s LTL is not correct because it allows a trace as
{B ∧ ¬A} � {¬A} � {A}. In this trace, A is false at the time when B is true and it is also
false in the next time unit; A is only true after at least one time unit. This is clearly a wrong
interpretation of the sentence. Therefore, in this case, we pick the machine’s output to be more
accurate.

A.10 Sentence S12:

“Read the package directions to find the proper dose for your child’s weight”.

The machine found no dependency patterns in this sentence.

Predicates by Human:

A = Read the package directions
B = find the proper dose for your child’s weight

Formal Expressions:

Format Human output Machine output

LingSem to (B,A) —
LTL G(A→ X(B)) —

A.11 Sentence S14:

“For certain conditions (such as arthritis), it may take up to two weeks of taking this drug regularly
until you get the full benefit”.

Predicates by Human:
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A = certain conditions (such as arthritis)
B = it may take up to two weeks of taking this drug regularly
C = you get the full benefit

Predicates by Machine:

D = For certain conditions (such as arthritis), it may take up to two weeks of taking this drug
regularly
C = you get the full benefit

Formal Expressions:

Format Human output Machine output

LingSem until (C, for (A,B)) until (C,D)

LTL G((A ∧B)→ U (C)) G(D U C)

Discussion: We see a temporal constraint represented in two weeks. In this case, the LTL output
by the participant is syntactically wrong because she uses the Until (U) operator as a unary
operator while it is binary. On the other hand, the machine’s output states that: it is always
the case that it may take two weeks for the medicine to show the full benefit, but when the time
comes when it does show full benefit, then it may not take two weeks any more. So the Until (U)
operator here works well to convey the intended meaning accurately.

A.12 Sentence S15:

“If you are taking this drug ‘as needed’ (not on a regular schedule), remember that pain medications
work best if they are used as the first signs of pain occur”.

Predicates by Human:

A = you are taking this drug ‘as needed’ (not on a regular schedule)
B = pain medications work best
C = they are used as the first signs of pain occur

Predicates by Machine:

A = you are taking this drug ‘as needed’ (not on a regular schedule)
D = remember that pain medications work best if they are used as the first signs of pain occur

Formal Expressions:

Format Human output Machine output

LingSem if (A, if (C,B)) if (A,B)

LTL G(A→ F(C → B)) G((A→ F D))

Discussion: We notice from the predicates of the participant that none of them include the verb
remember while the object of the verb (the thing to remember) has been broken down into two
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predicates B and C. This is because she embedded the semantics of the verb remember in her LTL
formula. Note that when considering the semantics of remember, she decides that the statement
“Remember X ” simply implies X. This allows her to further process the inner if construct that
is the object of the verb remember. The machine could not do the same because it has no way of
judging the semantics of remember. Nevertheless, the participant’s assumption about the semantics
of remember is not correct. The formula f15h allows traces such as t151 = {¬A,¬B,C}� {A}. In
the single state of this trace, the statement C → B does not hold. However, in the sentence, the
object of remember is a fact that is temporally independent of A and should certainly hold true
before A occurs as well as remain true afterwards. The machine does not make this mistake. Its
output only dictates that D, the remembrance, should eventually occur.

Therefore, while the human output tries to capture more elements, it commits a subtle mistake
whereas the machine output is correct.

A.13 Sentence S16:

“If you wait until the pain has worsened, the medication may not work as well”.

The predicates by both human and machine match.

Predicates:

A = you wait
B = the pain has worsened
C = the medication may not work as well

Formal Expressions:

Format Human output Machine output

LingSem if (until (B,A), C) if (until (B,A), C)

LTL G((AUB)→ (F C)) G((AUB)→ (F C))

A.14 Sentence S17:

“If your condition persists or worsens, or if you think you may have a serious medical problem, get
medical help right away”.

The predicates by both human and machine match.

Predicates: The predicates extracted by both human and machine match. Similar to S13, there
is a small discrepancy for predicate C, which is labeled Ch and Cm for human and machine
respectively.

A = your condition persists
B = worsens
Ch = you think you may have a serious medical problem
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Cm = if you think you may have a serious medical problem
D = get medical help right away

Formal Expressions:

Format Human output Machine output

LingSem if (or (C, or (A,B)), D) if (or (C, or (A,B)), D)

LTL G((A ∨B ∨ C)→ X(D)) G((A ∨ (B ∨ C))→ FD)

Discussion: The difference between the two LTL outputs is that the participant used the Next
(X) operator while the machine used the eventually (F) operator as dictated by the LingSem-
to-LTL mapping (Module 5). The reason for the participant’s choice is that she interpreted the
words “right away” sensing the urgency of predicate D. As a consequence the machine’s LTL allows
traces such as {A ∧ ¬D}� {¬D}� {D} while the human output does not. For this reason, we
conclude that the machine output is less accurate whereas the human output is correct.

A.15 Sentence S18:

“If you are using the nonprescription product to treat yourself or a child for fever or pain, consult
the doctor right away if fever worsens or lasts more than 3 days, or if pain worsens or lasts more
than 10 days”.

Here, the human participant made the same change as with Sentence S17.

The predicates by both human and machine match. Similar to S13, there is a small discrepancy
for predicate E, which is labeled Eh and Em for human and machine respectively.

Predicates:

A = you are using the nonprescription product to treat yourself or a child for fever or pain
B = consult the doctor right away
C = fever worsens
D = lasts more than 3 days
Eh = pain worsens
Em = if pain worsens
H = lasts more than 10 days

Formal Expressions:

Format Human output Machine output

LingSem if (A, if (or (C,D,E,H), B)) if (A, if (or (C, or (D, or (E,H))), B))

LTL G(((C ∨D ∨ E ∨H)MA)→ XB) G(A→ F (G((C∨ (D∨ (E∨H)))→ F B)))

Discussion: We see that the LingSem expressions match but the LTL ones differ. In this case,
the machine’s output, simply dictated by the LingSem-to-LTL mapping (Module 5), states that if
you are using the product, then, if, at a future state, any of these four symptoms occur (C or D or
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E or H), then eventually consult your doctor. The only part of this that is not accurate is that the
urgency of calling the doctor was not conveyed, similar to the output of Sentence S17. The human
output captures that in the use of the Next (X) operator. However, while the use of the Strong
release (M) operator is correct, the construct used by the machine to express the relation between
A and the or -conjuncts would suffice. We argue that the human’s output is more accurate than
the machine’s output.
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Dependency Trees of Ibuprofen
Usage Text

This appendix shows the dependency trees of sentences of the Ibuprofen text as generated by
spaCy version 3.0.7 using the spaCy pipeline package en-core-web-trf version 3.1.0.
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Appendix C

Output of Python Tool

This appendix shows the raw output of the Python tool developed for this thesis. The tool is
executed on the text of Ibuprofen usage.

Sentence 1: If you are taking the over-the-counter product, read all directions on the

product package before taking this medication.

Predicates:

A = you are taking the over-the-counter product

B = read all directions on the product package

C = taking this medication

LingSem Tree:

Root: if.

|-- if-clause: you are taking the over-the-counter product,

‘-- then-clause: before.

|-- main-clause: read all directions on the product package

‘-- before-clause: taking this medication.

LingSem String:

if( A , before( C , B ))

LTL Formula:

G ( A -> F ( (~ C) W B ))

__________________________________________________________________________________________

Sentence 2: If your doctor has prescribed this medication, read the Medication Guide provided

by your pharmacist before you start taking ibuprofen and each time that you get a refill.

Predicates:

A = your doctor has prescribed this medication

B = read the Medication Guide provided by your pharmacist

C = you start taking ibuprofen
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D = each time that you get a refill

LingSem Tree:

Root: if.

|-- if-clause: your doctor has prescribed this medication,

‘-- then-clause: before.

|-- main-clause: read the Medication Guide provided by your pharmacist

‘-- before-clause: and.

|-- conjunct-1: you start taking ibuprofen.

‘-- conjunct-2: each time that you get a refill.

LingSem String:

if(A, before(and(C, D), B))

LTL Formula:

G ( A -> F ( ~ (C & D ) W B ))

__________________________________________________________________________________________

Sentence 3: If you have any questions, ask your doctor or pharmacist.

Predicates:

A = you have any questions

B = ask your doctor or pharmacist

LingSem Tree:

Root: if.

|-- if-clause: you have any questions.

‘-- then-clause: ask your doctor or pharmacist.

LingSem String:

if(A, B)

LTL Formula:

G (A -> F B )

__________________________________________________________________________________________

Sentence 4: Take this medication by mouth, usually every 4 to 6 hours with a full glass of

water (8 ounces/240 milliliters) unless your doctor directs you otherwise.

Predicates:

A = Take this medication by mouth, usually every 4 to 6 hours with a full glass of water (8

ounces/240 milliliters)

B = your doctor directs you otherwise

LingSem Tree:

Root: unless.

|-- unless-clause: your doctor directs you otherwise.
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‘-- main-clause: Take this medication by mouth, usually every 4 to 6 hours with a full glass

of water (8 ounces/240 milliliters)

LingSem String:

unless(B, A)

LTL Formula:

A & G ( (B -> F ( ~ A ) ) )

__________________________________________________________________________________________

Sentence 5: Do not lie down for at least 10 minutes after taking this drug.

Predicates:

A = Do lie down for at least 10 minutes

B = taking this drug

LingSem Tree:

Root: after.

|-- after-clause: taking this drug

‘-- main-clause: not.

‘-- operand: Do lie down for at least 10 minutes

LingSem String:

after(B, not(A))

LTL Formula:

A W B

__________________________________________________________________________________________

Sentence 6: If you have stomach upset while taking this medication, take it with food, milk,

or an antacid.

Predicates:

A = you have stomach upset

B = taking this medication

C = take it with food, milk, or an antacid

LingSem Tree:

Root: if.

|-- then-clause: take it with food, milk, or an antacid.

‘-- if-clause: while.

|-- occurrent-1: taking this medication.

‘-- occurrent-2: you have stomach upset.

LingSem String:

if(while(B, A), C)
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LTL Formula:

G( ( F B <-> F A) ) -> F C )

__________________________________________________________________________________________

Sentence 7: The dosage is based on your medical condition and response to treatment.

No dependency patterns matched.

__________________________________________________________________________________________

Sentence 8: To reduce your risk of stomach bleeding and other side effects, take this

medication at the lowest effective dose for the shortest possible time.

No dependency patterns matched.

__________________________________________________________________________________________

Sentence 8_2: Take this medication at the lowest effective dose for the shortest possible

time so that you reduce your risk of stomach bleeding and other side effects.

Predicates:

A = Take this medication at the lowest effective dose for the shortest possible time

B = you reduce your risk of stomach bleeding and other side effects

LingSem Tree:

Root: so that.

|-- adv-clause: you reduce your risk of stomach bleeding and other side effects.

‘-- main-clause: take this medication at the lowest effective dose for the shortest possible

time.

LingSem String:

so_that(B,A)

LTL Formula:

No mapping found for LingSem relation ’so_that’.

__________________________________________________________________________________________

Sentence 9: Do not increase your dose or take this drug more often than directed by your

doctor or the package label.

Predicates:

A = Do increase your dose

B = take this drug more often than directed by your doctor or the package label

LingSem Tree:

Root: or.

|-- conjunct-2: take this drug more often than directed by your doctor or the package label.

‘-- conjunct-1: not.

‘-- operand: Do increase your dose.
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LingSem String:

or(not(A),B)

LTL Formula:

((~ A) | B))

__________________________________________________________________________________________

Sentence 10: For ongoing conditions such as arthritis, continue taking this medication as

directed by your doctor.

Warning: At least one dependency pattern was matched that has at least one unrecognized

ancestor dependency relation.

__________________________________________________________________________________________

Sentence 11: When ibuprofen is used by children, the dose is based on the child’s weight.

Predicates:

A = ibuprofen is used by children

B = the dose is based on the child’s weight

LingSem Tree:

Root: when.

|-- when-clase: ibuprofen is used by children.

‘-- main-clause: the dose is based on the child’s weight.

LingSem String:

when(A,B)

LTL Formula:

G( A -> B )

__________________________________________________________________________________________

Sentence 12: Read the package directions to find the proper dose for your child’s weight.

No dependency patterns matched.

__________________________________________________________________________________________

Sentence 13: Consult the pharmacist or doctor if you have questions or if you need help

choosing a nonprescription product.

Predicates:

A = Consult the pharmacist or doctor

B = you have questions
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C = if you need help choosing a nonprescription product

LingSem Tree:

Root: if.

|-- then-clause: Consult the pharmacist or doctor.

‘-- if-clause: or.

|-- conjunct-1: you have questions.

‘-- conjunct-2: if you need help choosing a nonprescription product.

LingSem String:

if(or(B, C), A)

LTL Formula:

G ( ( B | C ) -> ( F A ) )

__________________________________________________________________________________________

Sentence 14: For certain conditions (such as arthritis), it may take up to two weeks of

taking this drug regularly until you get the full benefit.

Predicates:

A = For certain conditions (such as arthritis), it may take up to two weeks of taking this

drug regularly

B = you get the full benefit

LingSem Tree:

Root: until.

|-- stopper: you get the full benefit.

‘-- continuous-activity: For certain conditions (such as arthritis), it may take up to two

weeks of taking this drug regularly.

LingSem String:

until(B, A)

LTL Formula:

G ( B U A )

__________________________________________________________________________________________

Sentence 15: If you are taking this drug "as needed" (not on a regular schedule), remember

that pain medications work best if they are used as the first signs of pain occur.

Warning: At least one dependency pattern was matched that has at least one unrecognized

ancestor dependency relation.

Predicates:

A = you are taking this drug "as needed" (not on a regular schedule

B = remember that pain medications work best if they are used as the first signs of pain occur
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LingSem Tree:

Root: if.

|-- if-clause: you are taking this drug "as needed" (not on a regular schedule.

‘-- then-clause: remember that pain medications work best if they are used as the first signs

of pain occur.

LingSem String:

if(A,B)

LTL Formula:

G ( (A -> F B ) )

__________________________________________________________________________________________

Sentence 16: If you wait until the pain has worsened, the medication may not work as well.

Predicates:

A = you wait

B = the pain has worsened

C = the medication may work as well

LingSem Tree:

Root: if.

‘-- if-clause: until.

| |-- stopper: the pain has worsened.

| ‘-- continuous-activity: you wait.

‘-- then-clause: not

‘-- operand: the medication may work as well.

LingSem String:

if(until(B, A), C)

LTL Formula:

G ( ( A U B ) -> ( F C ) )

__________________________________________________________________________________________

Sentence 17: If your condition persists or worsens, or if you think you may have a serious

medical problem, get medical help right away.

Predicates:

A = your condition presists

B = worsens

C = if you think you may have a serious medical problem

D = get medical help right away

LingSem Tree:

Root: if.

|-- then-clause: get medical help right away.
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‘-- if-clause: or.

|-- conjunct-1: your condition persists.

‘-- conjunct-2: or.

|-- conjunct-1: worsens.

‘-- conjunct-2: if you think you may have a serious medical problem.

LingSem String:

if(or(A, or(B,C)), D)

LTL Formula:

G ( (A | (B | C)) -> F D )

__________________________________________________________________________________________

Sentence 18: If you are using the nonprescription product to treat yourself or a child for

fever or pain, consult the doctor right away if fever worsens or lasts more than 3 days,

or if pain worsens or lasts more than 10 days.

Predicates:

A = you are using the nonprescription product to treat yourself or a child for fever or pain

B = consult your doctor right away

C = fever worsens

D = lasts more than 3 days

E = if pain worsens

H = lasts more than 10 days

LingSem Tree:

Root: if.

|-- if-clause: you are using the nonprescription product to treat yourself or a child for

fever or pain.

‘-- then-clause: if.

|-- then-clause: consult your doctor right away

‘-- if-clause: or.

|-- conjunct-1: fever worsens

‘-- conjunct-2: or.

|-- conjunct-1: lasts more than 3 days.

‘-- conjunct-2: or.

|-- conjunct-1: if pain worsens.

‘-- conjunct-2: lasts more than 10 days.

LingSem String:

if(A, if(or(C, or(D, or(E, H))), B))

LTL Formula:

G (A -> F ( G ( ( C | ( D | ( E | H ) ) ) -> F B ) ))

__________________________________________________________________________________________
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