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Abstract

The subject of analyzing software can be primarily divided into two kinds - formal and informal.
Formal modeling techniques, which are the focus of this thesis, rely on using techniques whose
syntax and semantics are defined with precision. The use of these techniques can allow, for
instance, verification of the satisfiability of a property by a model. In addition, it can also help
in refining a model by transforming it using well-defined model transformation rules. This is a
use case that commonly happens whenever a system evolves, or, during its design process. These
aspects of formal modeling, in particular, are used throughout this thesis. The area of our work is
one of active research. Works that utilize formal models vary in the kind of model that they use,
ranging from Labeled Transition Systems (LTSs) to Families of Deterministic Finite Automata
(FDFAs), each having their own unique benefits and drawbacks. There is a similar variety in
the formal logics that provide specifications to these formal models. Combining these two ideas
- models and formal logics, one can also arrive at the topic of property verification, which is
concerned with checking if a given property is satisfied by a model. Finally, the topic that is
closest to this work is that of property-preserving model verification. This aims to find whether
or not the satisfiability of a property is preserved when a given model transformation is applied
on some model. These aspects of research are highlighted in this work, providing the reasoning
for the choices that were made therein. Coming to our work, the focus is on analyzing a model
transformation which is applied on a model that satisfies a given property. With this analysis,
the goal is to find some characteristics of the model that results from the transformation. In
order to achieve this goal, three major steps are taken. Firstly, an abstract representation of the
system model is considered, which takes into account the fact that the given model transformation
is satisfied by the same. This model is then refined by utilizing the knowledge that the source
model satisfies the given property. The resulting model is transformed by applying the given
transformation rule on it. Finally, properties characterizing this model are extracted. Using these
characteristic properties, one can make inferences about the transformed model, without having
to actually construct it. This can, in some cases, mean a massive amount of time is saved, as
the original source and target models are often much larger than the abstracted models which are
used throughout these process.
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Chapter 1

Introduction

A popular approach to software engineering is the model-driven approach [8] [9] [10]. This ap-
proach is primarily characterized by the use of models as the primary driving force that guides
the software development process. Such models can be either formal or informal. Informal mod-
eling approaches include languages such as the Unified Modeling Language(UML) [11], Systems
Modeling Language(SysML) [12], and Business Process Modeling Language(BPML) [13]. They
often provide simple and more flexible representations of artifacts in the software development
process. However, the main drawback of these approaches lies within their semantics, which are
informal. Thus, expert knowledge or interpretation is often being necessary to understand these
kinds of models. In addition, formal methods also support the task of verifying properties of a
system when they are used. For these reasons, in this work, the focus is on using formal models,
as well as on their verification.

The syntax and semantics of modeling paradigms such as LTSs [14] and Finite-State Auto-
mata [15] can be represented in a completely formal, unambiguous manner. These are examples
of formal software modeling, and will play a key role in our work. When using techniques such as
these, there is often a schema for representing any specifications (requirements) that need to be
fulfilled by the system at hand. Such properties, also represented by using formal logics, can be
automatically verified on systems that are represented by formal models. This is known as formal
verification.

Suppose that there is a system being developed iteratively. This often happens when designing
complex software, whenever creating a model from scratch is not feasible. Iterative approaches
can be classified into two major kinds — the “top-down” and the “bottom-up” approach. In this
thesis, we will focus on the top-down approach.

A top-down approach begins with a coarse view of the system model that is refined into in-
creasingly feature-rich and concretely specified models. The refinements themselves are formalized
using specialized models known as model transformations. A very efficient way in which a prop-
erty of a system can be proven to persist across such a model transformation is to show that the
property holds for the model transformation itself [3] [5], irrespective of the model on which it is
applied.

At the beginning, as well as in these intermediate stages of development, it is often the case
that the models are incomplete in some sense. This incompleteness may be due to either a lack of
features required by stakeholders, or due to errors in existing facets of the system which require
modifications to fix the same. Recently, there has been some progress made in dealing with such
incomplete models [16] formally.

The work on incomplete model checking is used as the inspiration for the theme of mer-
ging new knowledge about a model to obtain a refined version of the same. In the works by
Wijs et. al. [3] [4] [5], for instance, such incremental improvements were modeled by using model
transformations. The main focus of those works was checking whether a (formal) property is
preserved when a system is transformed.

In the case of our work, the intent is to help with cases where the evolution begins at the level
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CHAPTER 1. INTRODUCTION

of system requirements. This can happen, for instance, with changing interests of stakeholders.
Suppose a requirement r1 is modified into another, r2. As such a change at the specification
level is propagated through to the system level, those involved in this process often would like
to understand the structure of the evolved system. For a system of non-trivial size, actually
transforming the system results in a modified system that is very complex to analyze. Further, if
the transformation itself is localized to a small part of the system, analyzing the entire system is
also wasteful. In such a case, what is really needed is an approach that remains agnostic towards
the system model, but still utilizes the information that such a model satisfied r1 and that the
given model transformation is applicable on it. This work aims to formalize this information into
a property. This is a format that is easy to interpret for those that deal with requirements, that
is, the requirements engineers that must design the new requirements for the system.

In this thesis, our focus will be to establish a counterpoint to this question by focusing on the
characteristics of the result of the model transformation itself, instead of the property satisfied by
the original system. What happens when a system that satisfies a property undergoes a model
transformation? This question motivates our main research goal. The goal of our work is:

To design a procedure and build a proof-of-concept tool that generates a property characterizing
a model transformation, given the knowledge that the source system on which said

transformation is applied satisfies a given property.

This thesis is structured as follows. The second chapter gives some preliminary formalisms
that are essential in understanding the remainder of the thesis. Following this, the third chapter
contains a literature review for the related work. Then, in the fourth chapter, the techniques used
to achieve the research objective are discussed. This is followed by the fifth and sixth chapters,
where experimental results are described and subsequently analyzed in order to obtain inferences
relevant for the research objective. Finally, the seventh chapter draws the conclusions that this
work has enabled us to obtain. An appendix is also added at the end, containing miscellaneous
formulae that did not find their place in the main body of the report.

1.1 Background and Broad Scope of Work

The motivation behind this thesis, as work on it began, was provided by works that focused on
the evolution of the requirements of a software system as it evolved. There has been some amount
of research generally in the field of software evolutions and its associated problems [17], [18], [19],
[20]. In this section, two works are discussed that highlight this topic in further detail.

The work by Harker et. al. [17] highlights a top-down view of the problem of requirements
evolution. Their work focuses on the issue of problem uncertainty in the context of requirements
engineering. They classify requirements of a system based on whether or not they can change as
the software evolves from an organizational, high-level perspective. If a requirement is allowed
to change, it is further classified on why a requirement can change, with reasons such as stake-
holder engagement, system use, (software)environmental turbulence, etc. They also discuss some
techniques for handling such changes to requirements. Such ideas, however, appear to be quite
outdated today. However, it still provided us with several scenarios in which requirements can
be modified as a software is evolved. When one compounds the complexity of a modern software
system onto this realization, it becomes abundantly clear that our goal of easing the task of the
requirements engineer is rather relevant.

The work by McGee et. al. [18], on the other hand, focuses far more on proposing a potential
solution to the problem/necessity that is requirements evolution. In order to achieve this, they
create a complete taxonomy of the sources of changes to requirements, distinguishing specifically
between factors that contribute to requirement uncertainty and those that will trigger a change in
the requirement. From this perspective, our work focuses on the latter of these two issues. This is
because we will look at system evolution (model transformations) where the original requirement
(property) is not satisfied by the original model being transformed, and thus must be changed.

2 Characterizing Model Transformations Using Modal µ-calculus



Chapter 2

Preliminaries

In this section of the report, the details of the tools and techniques that we used while striving
towards our research goals are made apparent.

2.1 Labelled Transition System (LTS)

An LTS G is formally defined as a tuple (Q,Q0, A, δ) where

1. Q is a set whose elements are known as states of G.

2. Q0 is a non-empty subset of Q, that is, Q0 ⊆ Q. The members of Q0 are the initial states
of G.

3. A is a set consisting of the actions of G.

4. δ is a relation of the form δ ⊆ Q × A × Q. It describes transitions with labels viz. a ∈ A
from q ∈ Q that leads to q′ ∈ Q. If (q, a, q′) ∈ δ, then this fact is usually represented in one
of two ways:

(a) δ(q, a) = q′, or

(b) q
a−→
δ
q′

In subsequent sections of this report, a subscript-based notation will be used to refer to the
attributes of LTSs. As an example of this, GQ, GQ0 , GA, and Gδ refer to the set of states, starting
states, action set, and transition relation of the LTS G.

Informally, one can view LTSs as graphs with labeled transitions. In order to find the language
of an LTS, an auxiliary concept is needed - traces. A trace of an LTS M is formally defined as a
sequence

w = ε | w0 w1 . . . wn for some n ∈ N ∪ {0} or n =∞
Here ε is used to denote the empty trace. Further, in the context of this definition, for any
non-empty trace w = w0 . . . wn, the following two constraints hold

1. ∀ni=0wi ∈MA

2. ∃q0∈MQ0
,q1,...,qn+1∈MQ

∀ni=0qi
wi−−→
Mδ

qi+1

In other words, a trace of M records the sequence of actions that are the labels of a sequence of
state transitions occurring in the context of M . In this report, w(i) is used to denote the i-suffix
of w, that is,

w(i) = wi wi+1, . . . wn

The language of M is, then

L(M) = {w | w is a trace of M}

Characterizing Model Transformations Using Modal µ-calculus 3
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2.2 Büchi Automata

A Büchi Automaton is formally defined as a 5-tuple (Q,Q0, A, δ, F ) where the definitions
Q, Q0, A, and, δ are the same as in the case of LTS. F is a subset of Q. Its elements are known
as the final states of the automaton. The subscript notation introduced with LTSs will also be
used in the context of Büchi Automata. Thus, for instance,MF refers to the set of final states of
a Büchi Automaton M.

This addition of final states into the concept of Büchi automata allows a broader scope of
languages to be representable in comparison to LTS. The major distinction between the semantics
of an LTS and a Büchi Automaton is that when simulating any trace of a Büchi automaton, one
must pass through at least one of the final states infinitely often. Note that this requirement
implicitly adds the constraint that all traces of a Büchi Automata are infinite.

2.3 Formal Logics

While solving the research goal at hand, inevitably, the manner in which properties of a system
are formalized is, obviously, quite crucial. In this section of the report, our aim is to focus our
attention on the three kinds of such descriptions used at various stages of our work - Linear
Temporal Logic (LTL), modal µ-calculus, and systems of modal µ-calculus equations.

2.3.1 Linear Temporal Logic (LTL)

The syntax of an LTL property is recursively defined as follows:

φ = Xφ1 | Gφ1 | Fφ1 | φ1Uφ2 | ¬φ1 | φ1 ∧ φ2 | a

where φ1 and φ2 are LTL formulae, and a is an atomic proposition. For the purposes of this report,
it is sufficient to consider an atomic proposition as being equivalent to a Boolean variable. One
of the characteristics of an LTL formula is the set of atomic propositions, AP , that contextualizes
these atomic propositions.

Suppose now that there exists a model M such that MA = P(AP ) \ {∅}, where P(AP ) is the
power-set — the set of all subsets, of AP . It is important to note here that in our work, the
valuation ∅, which corresponds to all the atomic propositions evaluating to False, is not present
in MA. The reason for this is as follows. It is considered that for a given transition, if an atomic
proposition a is true, it indicates that a process corresponding to a occurs as the transition is
crossed during a given run of the system. Therefore, a valuation in which all atomic propositions
are false indicates non-progress in terms of all properties of the system except the state in the LTS
that corresponds to it. In a sense, it is a hidden action that cannot be detected by an external
observer. In order to preclude such a possibility from happening, ∅ is removed from MA.

The semantics of an LTL property describe when it is satisfied by such a model M . Suppose
that w is an infinite trace of M . Then, φ |= w signifies that a formula φ is satisfied by a trace w.
An LTS M is said to satisfy φ if and only if all of its traces satisfy φ as well. Formally, this is
indicated by the following assertion

φ |= M ⇐⇒ ∀w∈L(M)φ |= w

The recursive structure of φ can be used to describe its semantics. This description enables the
resolution of the assertion φ |= w for some trace w. Below, a formal description of the semantics

4 Characterizing Model Transformations Using Modal µ-calculus
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of LTL is provided. Note that it is assumed here that wi is the ith element of the trace w.

Xφ |= w ⇐⇒ φ |= w1

Gφ |= w ⇐⇒ ∀i≥0φ |= wi

Fφ |= w ⇐⇒ ∃i≥0φ |= wi

φ1Uφ2 |= w ⇐⇒ ∃j≥0

(
(∀i<jφ1 |= wi) ∧ φ2 |= wj

)
¬φ |= w ⇐⇒ ¬(φ |= w)

φ1 ∧ φ2 |= w ⇐⇒ (φ1 |= w) ∧ (φ2 |= w)

a |= w ⇐⇒ a ∈ w0

Note that a proposition a is satisfied with respect to the set of actions MA of M at the first state
of the trace being verified against the proposition.

Verification of an LTS property

Given a system M and an LTL formula ψ, the task of verifying M with respect to ψ can be
achieved by following the sequence of steps listed below

1. ¬ψ is converted into a Büchi automatonG¬ψ such that the language ofG¬ψ, L(G¬ψ) contains
exactly all those traces that satisfy ¬ψ. In other words, these are the traces that do not
satisfy ψ. There are several methods for performing this transformation, such as a work by
Babiak et. al. [21].

The set of actions of this Büchi automaton is the same as that for M . However, it is often
the case that the transitions on the labels of G¬ψ are annotated with propositional logic
formulae over AP , instead of sets of APs. A transition between two states, labelled with
such a formula P , is semantically equivalent to transitions, each labeled with a set in G¬ψ,A
that satisfies P , between the same pair of states.

2. G¬ψ is combined with M to form a product Büchi automaton M ×G¬ψ with the property
that

L(M ×G¬ψ) = L(M) ∩ L(G¬ψ)

The model M ×G¬ψ is defined as follows

Q = MQ ×G¬ψ,Q
Q0 = MQ0 ×G¬ψ,Q0

A = MA ∩G¬ψ,A
δ ⊆ Q×A×Q is defined as follows : q

a−−→
Mδ

q′ ⇐⇒

phi∃r1,r2∈MQ∧s1,s2∈G¬ψ,Qq = (r1, s1) ∧ q′ = (r2, s2)∧
r1

a−−→
Mδ

r2 ∧ s1
a−−−−→

G¬ψ,δ
s2

F = {(s, r) | s ∈MF ∨ r ∈ G¬ψ,F }

where, given two sets S1 and S2,

S1 × S2 = {(x, y) | x ∈ S1 ∧ y ∈ S2}

3. Finally, a test is performed to check whether the language of this product automaton, L(M×
G¬ψ), is empty. This is the case if and only if there does not exist any cycle in M × G¬ψ

Characterizing Model Transformations Using Modal µ-calculus 5
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that contains a final state and is reachable from one of the initial states. If L(M × G¬ψ)
turns out to indeed be empty (that is, the set φ), then we have

L(M ×G¬ψ) = φ =⇒ L(M) ∩ L(G¬ψ) = φ

=⇒ @Trace TT ∈ L(M) ∧ T ∈ L(G¬ψ)

=⇒ ∀Trace TT ∈ L(M) −→ T /∈ L(G¬ψ)

Since L(G¬ψ) contains precisely all those traces that do not satisfy ψ, a trace T that is not
in L(G¬ψ) must necessarily satisfy ψ. Thus, we have

∀Trace TT ∈ L(M) −→ ψ |= T =⇒ M satisfies ψ

2.3.2 Modal µ-calculus

As with LTL, the discussion of modal µ-calculi is separated into a discussion of its syntax, as
well as semantics. The breadth of properties supported by it is larger than in the case of LTL.
Therefore, both these aspects are comparatively more involved for this logic. For brevity’s sake,
henceforth, we will use the term “µ-calculus” when referring to modal µ-calculus. The syntax of
a µ-calculus formula is defined recursively as follows:

φ = True | False | 〈a〉φ1 | [a]φ1 | φ1 ∧ φ2 | φ1 ∨ φ2 | µX . φ1 | νX . φ1 | X
Note here that φ1 and φ2 are µ-calculus formulae, a is an action that can belong to the model
on which this property is to be validated, and X is a variable that represents a set of states.
Evaluating φ requires two additional components. Firstly, a model M on which the property is to
be checked is required. As before, for such a model, MA = P(AP ) \ {∅} must hold, where AP is
a set of atomic propositions.

LTS is used as the model type in our analysis. Secondly, an environment variable η is needed
to associate variables with concrete subsets of the set of states of M . That is,

∀X ∈ φV ariables η(X) = S ⊆MQ or η(X) is unknown

Given this contextualization, the semantics of φ produces a set of states:

JTrueKM,η = MQ

JFalseKM,η = ∅
J〈a〉φ1KM,η = {s ∈MQ | ∃s′∈MQ

s
a−−→
M.δ

s′ ∧ s′ ∈ Jφ1KM,η}

J[a]φ1KM,η = {s ∈MQ | ∀s′∈MQ
s

a−−→
M.δ

s′ =⇒ s′ ∈ Jφ1KM,η}

Jφ1 ∧ φ2KM,η = Jφ1KM,η ∩ Jφ2KM,η

Jφ1 ∨ φ2KM,η = Jφ1KM,η ∪ Jφ2KM,η

JµX . φ1KM,η =
⋂
{S ⊆MQ | S ⊇ Jφ1KM,η(X)=S}

JνX . φ1KM,η =
⋃
{S ⊆MQ | S ⊆ Jφ1KM,η(X)=S}

JXKM,η = η(X)

For this work, a small upgrade is made to the syntax of the actions that can reside in the box
and diamond operators. Instead of just being single actions, the contents of a box or a diamond
operator, in this extended form, are also allowed to contain propositional logic over the set AP .
Formally, for a given propositional logic formula P , the semantics of this form can be defined as
follows

J〈P 〉φ1KM,η = {s ∈MQ | ∃s′∈MQ
∀a∈MA

P is satisfied by a =⇒ s
a−−→
M.δ

s′ ∧ s′ ∈ Jφ1KM,η}

J[P ]φ1KM,η = {s ∈MQ | ∀s′∈MQ
∀a∈MA

s
a−−→
M.δ

P is satisfied by a =⇒
(
s′ =⇒ s′ ∈ Jφ1KM,η

)
}
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Comparing these definitions with the definitions of the regular form of the diamond and box
operators, the following equivalences can be derived

J〈P 〉φ1KM,η =
∧

a∈MA∧P is satisfied by a

J〈a〉φ1KM,η

J[P ]φ1KM,η =
∧

a∈MA∧P is satisfied by a

J[a]φ1KM,η

While dealing with the semantics of µ-calculus formulae, it is important to distinguish between
open and closed formulae. Open formulae are characterized by the existence of variables that are
not bound to a µ or ν-term. In contrast, for a closed formula, all the variables involved are bound.
This means that in order to evaluate an open formula φ, η must be initialized with the values
of all the non-bound variables in φ. In any case, a formula is said to satisfy a model M if its
interpretation with respect to this M produces a set of states that contains all of its initial states.

For a closed formula, this means that the following relation holds if and only if M satisfies φ

MQ0
⊆ JφKM,φ

2.3.3 System of modal µ-calculus equations

The syntax of a system of modal µ-calculus equations X is as follows

S0 = φ0

S1 = φ1

...

Sn = φn

where φ0, φ1, . . . , φn are µ-calculus formulae. For any i ∈ {0, . . . , n}, the formula φi can use any
of the variables in S0, . . . , Si−1, Si+1, . . . , Sn as unbounded variables in its construction. However,
the variable Si must be bounded, if present in φi. A model M is said to satisfy X if and only if the
all of its initial states are contained in the set corresponding to the variable of the first equation,
upon evaluating the system with respect to M . In other words, the following condition must hold

MQ0
⊆ ηS0

where η(S0), . . . , η(Sn) are defined such that

∀i∈{0,1,...,n}η(Si) = JφiKM,η

2.4 Model Transformation

A model transformation, as evident by the name, is the process of transforming a model into
another by following a set schema. There are several approaches that can help specify such a
process formally. In particular, the approach used here is adapted from a work by Wijs et. al. [6].

In this context, the core element of a model transformation is a rule. A rule R is defined as a
pair of pattern LTSs

R = (L,R)

A crucial part of the transformation process relies on matching the states that are common to
both L and R, that is, states in LQ ∩ RQ. These states are termed as glue states. In addition, a
pattern LTS such as L is also annotated with in-states (LI) and exit-states (LE). These sets are
related as follows

Glue states of L, R = LQ ∩RQ = LI ∪ LE = RI ∪RE

Characterizing Model Transformations Using Modal µ-calculus 7
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An in-state is a glue state that can only be matched on system states with only outgoing
transitions that are also matched by the pattern. Conversely, an exit-state can be matched by a
system state that has only incoming transitions that are also matched by the pattern. The set
of initial states of a pattern LTS is the same as its in-states. This is because any of these states
could be matched with an initial state of the system LTS on which the pattern is applied (or in
the resulting LTS after the transformation) can be an initial state of the system.

Rules may be applied on system LTSs to produce transformed versions of the same. A rule
R is said to be applicable on a given system LTS M if and only if the set of states of L can be
mapped onto a set of states of M with a mapping m:LQ →MQ, such that the following condition
holds on m, for all states q ∈ LQ

∀a∈LA,q′∈LQ∃r∈MQ
m(q) = r ∧ q a−→

Lδ
q′ ⇐⇒ ∃r′∈MQ

r
a−−→
Mδ

r′ ∧m(q′) = r′

It may be the case that more than one occurrence of such matches happen in M . In such a
case, it is assumed that these matching instances are disjoint. That is, for all matches m,m′ in
this context, the following assertion holds true

∀q,q′∈LQm(q) 6= m′(q′)

Once these relevant matches are identified, the states that they refer to are replaced by using
the double pushout graph rewriting method. This method proceeds by using the glue states as
anchors and replacing the non-glue states of L by non-glue states of R, in a manner that preserves
the relationship between the glue and non-glue states. Given a match m, the following technique
is adopted, with each step being repeated as long as changes are happening to M by performing
that step.

1. If q ∈ LI , and m(q)
a−−→
Mδ

m(q′) for some a ∈MA and q′ is a non-glue state, then delete this

transition.

2. If q ∈ LI , m(q)
a−−→
Mδ

r′ for some a ∈ MA, and r′ is a non-glue state of R, then add this

transition along with the state r′ to M . Also, add a to the set MA.

3. If q ∈ LE , and m(q′)
a−−→
Mδ

m(q) for some a ∈MA and q′ is a non-glue state, then delete this

transition.

4. If q ∈ LE , r′
a−−→
Mδ

m(q) for some a ∈ MA, and r′ is a non-glue state of R, then add this

transition to M along with the state r′. Also, add a to the set MA.

5. Delete any component of M that is not connected with any of the states in MQ.

The primary tenet when reasoning about a transformation rule preserving a given property is
to remain independent of the source model on which a given rule is applied. The only assumption
made on the system model is that the given rule must be applicable on it. Since the rule is
applicable on the system model, there must be at least one section of said model that matches
with L. Utilizing this knowledge, the LTS that is the κ-extended version of L, Lκ, is constructed

Lκ = (L.Q,LI ∪ {κ},L.A ∪ {σq | q ∈ LI} ∪ {εq | q ∈ LE} ∪ {δq, q′ | q ∈ LE ∧ q′ ∈ LI}, δ′)
where for all actions a ∈ L.A, δ′ can be constructed as follows

q
a−−→
L.δ

q′ =⇒ q
a−→
δ′

q′

q ∈ LI =⇒ κ
σq−→
δ′

q

q ∈ LE =⇒ q
εq−→
δ′

κ

q ∈ LE ∧ q′ ∈ LI =⇒ q
γq,q′−−−→
δ′

q′

8 Characterizing Model Transformations Using Modal µ-calculus



CHAPTER 2. PRELIMINARIES

The state κ is considered as an abstraction of all the states and transitions of the system LTS that
are not a part of a given matched section with L. In a sense, it acts as a black-box state. The σ
and ε transitions are used to indicate transitions to and from the in-states and exit-states of the
pattern LTS, respectively. Finally, γ transitions simulate transitions from exit-states to in-states
which may be present in the original system. Since the actions on these transitions (if any) are
unknown, σ, ε, and γ serve as placeholder labels. The LTS Lκ is, then, a model that demonstrates
an LTS on which rule R is applicable.

The pattern R can also be similarly constructed. The result, Rκ, shows how a system LTS on
which R is applied appears after the transformation is completed. These LTSs, Lκ and Rκ, will
form the basis of our strategy.

2.4.1 Example of Model Transformation

In order to demonstrate this process of model transformation, consider this example. Consider
the LTS of a system M given in Figure 2.1.

0

2

1

4

5

a

a

b

a

a a, b

a

b

a

a

b

Figure 2.1: A system M to be transformed

Suppose that this system is to be transformed by a rule R = (L,R), and that the κ-extended
versions of these pattern LTSs, namely, Lκ and Rκ, are described in Figure 2.2. For these LTSs,
state 0 is the only in-glue state, and state 1 is the only out-glue state.

κ contains those states and transitions that are not directly related to the pattern L. This can
be observed by comparing Lκ with M , it is easy to observe that the state κ is an abstraction of

the states 4 and 5, as well as the a-transition from state 4 to state 5. The transitions 5
b−−→
Mδ

0 and

4
a−−→
Mδ

0 are abstracted by σ0 in Lκ, while the ε1 transition in it abstracts the 1
b−−→
Mδ

4 transition.

Finally, the γ1,0-transition of Lκ is an abstraction of the transition 1
a−−→
Mδ

0. This comparison

demonstrated how Lκ represents the source model M .
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κ

0

1

2

σ0

a

a

ε1

γ1,0

a

b, a

b

a

a

κ

0

1

2

3

σ0

a

a

ε1

γ1,0

a

b

b

a

a

b

a

Figure 2.2: Lκ(Left) and Rκ(Right) of rule being applied
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When the transformation rule R is applied on M , it yields a new model, MR, which is shown
in Figure 2.3.

0

2

1

3

4

5

a

a

a

a

a

a

a

b

a

b

a

a

b

Figure 2.3: Transformed System MR

It is important to note that the transformation process did not affect any of the states or
transitions represented by κ, as well as the labels corresponding to σ0, ε1, and γ1,0. The reason for
this is that these elements of Lκ and Rκ are external to the pattern LTSs L and R. Conversely,
everything inside the pattern LTS L - the states 0, 1, and 2, and all the transitions between them,
are affected by the transformation. A close comparison between MR and Rκ reveals that this
transformation was applied correctly, and resulted in the affected states being replaced by the
states 0, 1, 2, and 3 of Rκ, as well as all the transitions between them.

2.5 Simulations

A model represented by an LTS M is said to simulate another LTS N (denoted by M N) only if
there exists a relationM between the states of M and N such that if (s, t) ∈M for some s ∈ NQ
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and t ∈MQ, then

∀a∈NA,s′∈NQs
a−−→
Nδ

s′ =⇒ ∃t′∈MA
t

a−−→
Mδ

t′ ∧ (s′, t′) ∈M (2.1)

Further, it must hold that for all starting states t0 of N , there exists a state s0 ∈ MQ0
such that

(s0, t0) ∈M.
In simpler terms, the condition above states that any execution of N can be matched by some

execution of M . This direction of this simulation can also be reversed, with M being simulated
by N only if there exists a relation M between the states of M and N such that if (s, t) ∈M for
some s ∈MQ and t ∈ NQ, then

∀a∈NA,s′∈MQ
s

a−−→
Mδ

s′ =⇒ ∃t′∈NAt
a−−→
Nδ

t′ ∧ (s′, t′) ∈M (2.2)

Further, it must hold that for all starting states s0 of M , there exists a state t0 ∈MQ0
such that

(s0, t0) ∈M.
Given a pair of LTSs M and N , if M simulates N , then there could be multiple matching

relations M that satisfy the simulation criteria given by equation 2.1.
Functionals are essentially functions on top lattices formed by relations. Functionals F and

F  can be defined on the lattice of relations R ⊆MQ ×NQ, with the following characteristics

F (R)
def
= {(s, t) | s, t satisfies 2.1 with respect to models M and N}

F  (R)
def
= {(s, t) | s, t satisfies 2.2 with respect to models M and N}

2.5.1 Bisimulation

As its name indicates, bisimulation is a relation R between the states of two LTSs M and N
that satisfies the conditions in both equation 2.1 and equation 2.2. The set of such relations is
denoted by ∼. This set is closed under union. Thus, the union of all the members of ∼ is the
single largest bisimulation relation. This relation is referred to as the bisimilarity relation. If such
a relation exists for M and N , then M is said to be strongly bisimilar to N . This is denoted by
M ←→

sb
N . The final concept that will be considered here is that of the bisimulation functional. A

bisimulation functional F∼ is defined on the lattice of relations R ⊆MQ×NQ, with the following
characteristic

F∼(R)
def
= {(s, t) | s, t satisfy the bisimulation conditions}

The prefix strong used here seems to imply that there exists an alternative bisimulation relation
that is somehow weaker. Indeed, such a relation exists, and is known as weak bisimulation. Weak
bisimulation utilizes a type of transition known as τ or internal transitions. These transitions
are often used to abstract away details of a system that are not relevant in a given context.
Weak bisimulation is concerned with contrasting the similarity of models while effectively ignoring
these transitions. Formally, the weak bisimulation relation is the largest relation R such that the
following conditions hold on R

1.

∀s∈MQ,t∈NQ(s, t) ∈ R =⇒ s
τ−−→
Mδ

s′ =⇒ ∃t′∈NQt
τ∗−−→
Nδ

t′ ∧ (s′, t′) ∈ R

2.

∀s∈MQ,t∈NQ(s, t) ∈ R =⇒ s
a−−→
Mδ

s′ =⇒ ∃r,q,t′∈NQt
τ∗−−→
Nδ

r ∧ r a−−→
Nδ

q ∧ q τ∗−−→
Nδ

t′ ∧ (s′, t′) ∈ R

3.

∀s∈MQ,t∈NQ(s, t) ∈ R =⇒ t
τ−−→
Nδ

t′ =⇒ ∃s′∈MQ
s

τ∗−−→
Mδ

s′ ∧ (s′, t′) ∈ R
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4.

∀s∈MQ,t∈NQ(s, t) ∈ R =⇒ t
a−−→
Nδ

t′ =⇒ ∃r,q,s′∈MQ
s

τ∗−−→
Mδ

r∧ r a−−→
Mδ

q∧ q τ∗−−→
Mδ

s′ ∧ (s′, t′) ∈ R

Note that in this formalization, the τ∗ label on transitions implies zero or more τ -transitions being
taken.
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Chapter 3

Related Works

In this chapter, as mentioned previously, the goal will be to establish a background for the present
work. This is done by considering relevant work in three areas that are the closest to our work.
Firstly, the subject of model transformations is discussed, where the choice of modeling technique
is taken into consideration as well. This is followed by a section on property verification on
models. Finally, the focus shifts even closer towards the current work, with a review of work on
property-preserving model transformation.

3.1 On Models and their Transformations

Any discussion on the topic of model transformations must first specify the kind of models that
will be used to perform such a transformation on, as well how such a transformation is formalized.
Thus, this section is divided into two parts. In the first, some works that deal with formal
models are discussed. This is then followed by a subsection that focuses on works that involve the
transformation of said models.

3.1.1 Works on Models

In this work, Labeled Transition Systems (LTSs) are used extensively. They are used to represent
both the models of systems, as well as for the left and right side of transformation rules. For
those interested, a good book on model transformations, as well as MDSE in general, is one by
Brambilla et. al. [8]. The discussion that follows here attempts to summarize the present research
environment in both modeling in general as well as model transformations in particular.

The decision to use LTSs can be contextualized by considering several works such as ones by
Angluin et. al. [22], Lang et. al. [23], Goranko et. al. [24], and Abdulla et. al. [25]. In these works,
some common modeling approaches are used, exposing their relative strengths and weaknesses.

Families of DFAs as Acceptors of ω-Regular Languages [22] The goal of this work is
to describe ω-regular languages by using families of saturated FDFAs (Families of Deterministic
Finite Automata). A saturated FDFA F has the property that if two ω-words uvω and u′v′ω are
equal, then F accepts uvω if and only if it also accepts u′v′ω. The difference in the finite initial
parts of two words such as these - u and u′, provides a source of non-determinism in an otherwise
deterministic family of automata. This fact is used in this work to show that saturated FDFAs
can be used to represent ω-regular languages.

While the set of languages that can be represented by a saturated FDFA is comprehensive, it is
also a rather complicated modeling type, which leads to common model-checking operations being
less efficient while using it. Further, the behaviour of systems can normally be represented by
regular languages, without the need for the ω-extension. Thus, this model representation, though
powerful, is not suited for our purposes.
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Partial Model Checking Using Networks of Labelled Transition Systems and Boolean
Equation Systems [23] As the title of this work suggests, the aim here is to check a system
consisting of a network of LTSs and Boolean Equation Systems (BESs). The partial verification
approach incorporates a µ-calculus formula to be verified incrementally on each of the processes
in the network (represented by either LTSs or BESs). After the semantic elements of a process
are incorporated, the formula is made more compact so as to ensure its tractability. Each process
transforms the formula at the previous step by a technique known as quotienting.

In this approach, networks of LTSs are used to describe models. Further, µ-calculus properties
are being verified. Our work, in essence, assumes a simplified view of the approach presented here,
with single LTSs, instead of networks of LTSs, being used. The reason for this is that we aim to
present a proof-of-concept tool as the final conclusion of our work, and, therefore, aim to deal with
processes that are small enough to be tractable without a need for decomposition into a network
of “concurrent” process LTSs.

3.1.2 Works on Model Transformations

The objective of this work is closely associated with model transformations. This is the reason why
several works that utilize the same either to obtain some practical benefits, or for some theoretical
considerations, are illustrated here. Further, these works are also contrasted and appraised with
respect to our goals.

DSL/Model Co-Evolution in Industrial EMF-Based MDSE Ecosystems [26]

In order to understand this work, it is important to first be introduced to two concepts, namely
Domain Specific Languages(DSLs) and Object Constraint Language(OCL). DSLs [27] are pro-
gramming languages that are designed to handle the requirements of a specialized domain of
work. They are often developed by smaller development teams, and they evolve much faster than
general purpose languages. OCL [28] is a declarative language for specifying rules for a given
model (or meta-model) that allow designers to annotate them with constraints that do not have
any side-effects.

The goal of this work was the determination of an architecture that enables the automatic
co-evolution of DSL (Domain Specific Language) artifacts viz. parsers, editors, models, etc., as
they themselves evolve. The main goal of doing so is that this would reduce potential sources of
human error by eliminating the tedious work that is usually involved in manually porting over the
artifacts as the DSLs’ metamodels evolve. The DSLs that are used in a particular industry and
which exhibit some co-dependence are considered to be part of a common ecosystem.

The authors of this work concluded that it is necessary to know about the characteristics of
the specific metamodel and OCL specification that are associated with a DSL, along with a given
DSL (meta-)model transformation in order to produce a specification for automatic co-evolution
of that particular DSL.

As a system evolves, this evolution as well as the original property are taken into account
when designing the property that is targeted by our research objective. This is similar, in a sense,
to this work, where the target is to evolve artifacts directly, instead of focusing on properties of
the system. However, the major distinction that arises here is that our work does not intend
to co-evolve the property directly, but rather, produce a property that characterizes the model
transformation as well as the source property.

Reliable yet flexible software through formal model transformation (rule definition) [29]

The aim of this work is to show why reliability and flexibility have become increasingly vital
elements of software design. This is followed by a new approach that uses model transformations
as one of its core tenets.

The main conclusion that they had from their literature review was that there was a need
to combine formal (FMM) and semi-formal (SFMM) methods of modeling in order to maximize
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both reliability and flexibility simultaneously. This is because FMMs provide reliability with their
unambiguous semantics, whereas SFMMs provide flexibility with their heuristic nature.

This is where model transformation came into play, in this work. It is used to transform
models between Object-Z, which supports FMM, and UML, which supports SFMM. By checking
the reliability of a system model with Object-Z and then transforming it to facilitate visualization
and flexibility, one can get the best of both worlds.

This work is very generic in the sense that it creates a use for model transformations across the
entirety of software development. This illustrates the importance of understanding the semantics
of model transformations in a concise manner, which is the focus of our work.

3.2 On Property Verification

The topic of property verification may be approached in several ways. The fundamental distin-
guishing factor between these approaches is in the expressiveness of the language used to specify
the properties and the difficulty in verifying said properties. These two features of a specification
language are often in contrast, so that languages that have high expressiveness are also the ones
whose verification tasks are more difficult.

One of the most common property specification languages that is used is LTL (Linear Temporal
Logic). Works such as ones by Han et. al. [1] and Giacomo et. al. [2] illustrate different facets of
work with this logic. In the former work, focus is placed on enhancing the theoretical basis.

3.2.1 Linear temporal logic for hybrid dynamical systems: Character-
izations and sufficient conditions [1]

Hybrid dynamical systems are systems in which both continuous-time events as well as the classical
“discrete” events are modeled. The aim of this paper was to present semantics for a logic system
which, intuitively, follows LTL logic. Then, using the newly-defined semantics, some common
properties of hybrid dynamical systems are represented.

This work shows the breadth of models whose properties can be specified and validated by
using formal logic systems. This is illustrated by the fact that hybrid dynamic systems capture a
strict superset of discrete-time systems represented by approaches such as LTSs, which act as the
primary vehicle of representing the semantics of many software systems already in use today.

3.2.2 Reasoning on LTL on finite traces: Insensitivity to infiniteness [2]

LTLf is a formal logic language that is a superset of LTL. It aims to extend the capabilities of LTL
by being capable of handling finite traces. To this end, in addition to the operations ordinarily
supported by LTL, two additional operators are present for LTLf , namely, the weak until and
the weak release operators. These operators use an additional action last which is only valid at
the last element of the finite trace being handled. This is the reason why not all LTLf formulae
are insensitive to infiniteness.

This work aims to understand formally the cases where an LTLf formula can be handled
correctly by assuming that any trace consists of an initial head section followed by an infinitely
repeating tail section. Formally, this can be written as follows:

Trace = H(T )∗

The precise condition that they conclude for this to be true is not relevant in regards to our
work (though interesting in its own right). However, this work demonstrates an important fact
- different logic families are more(or less) suited for handling different kinds of models on which
they can be applied. This is the reason why, for instance, an LTLf property cannot always be
used with respect to an infinite trace - it is meant to be used for finite traces.
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3.3 On Property-preserving model transformation

The problem of verifying model transformations, especially in the context of incremental model
verification, has been treated extensively in a series of research publications by A. Wijs et. al.
in [3] [4] [5] [6]. In the following sub-sections, we will discuss each of these papers in some detail.

3.3.1 Incremental Formal Verification for Model Refining [2012] [3]

This paper, authored by Anton Wijs and Luc Engelen, seeks to define a basic formal structure that
would enable verifying model transformations. The system proposed in it can verify whether a
model transformation preserves a given LTL (Linear Temporal Logic) specification. In particular,
the SLCO (Simple Language for Communicating Objects, [30]) language was chosen to describe
the models. Concurrent and communicating objects form the basis of this modelling language.

A system modeled by SLCO often has behaviour that is distributed amongst several component
sub-systems, each having their own model. This is the reason why the systems discussed in this
paper are viewed as networks of sub-models, each corresponding to a different component of the
system at hand. Formally, every modelM is described as a composition of a set of LTSs P1, . . . , Pn
(Labelled transition Systems), each of which corresponds to a process model. In addition, a set of
synchronization rules σ1, . . . , σm that describe how the composition is done is also a part of the
network. The set of states of M is defined as follows

MQ = P1,Q × P2,Q × . . .× Pn,Q

Each synchronization rule maps a set of actions for a subset of the constituent LTSs to a single
action for the final model. These enable the construction of the transition relation Γ ⊆ MQ ×
MA×MQ, whereMA is the set of actions ofM. Semantically, then, one can think of the system
model as the concurrent combination of the process models, with every action in it corresponding
to a set of actions in some of the process models, as described by some synchronization rule. In
the process models for which no action is specified by the rule, the corresponding process can be
thought of as being inactive in the present action of the system.

Unlike the models, the model transformations are not described using LTSs. Rather, they are
defined by a set of transformation rules of the form 〈L,R〉 where L,R are LTSs. Each rule is
applied by matching the left side L of the rule with a part of the source model, and transforming
the same into the LTS specified by the right side rule R. This technique is known as the “double
pushout” method. It is critical to note that the rule systems are assumed here to be confluent —
their application, in any order, lead to the same final model. This allows us to apply a set of rules
on a system model, with the confidence that applying them all would result in the same target
model.

In order to perform the actual property preservation verification, the synchronization rules
for the model before and after the transformation, σL and σR are required. σL is used to group
the rules of the transformation into sets of dependent transformation rules, based on whether
they contain actions belonging to the same synchronization rule. Thereafter, a technique called
“property-based hiding” is applied on all subsets of these sets. This technique yields a pair of
LTSs 〈L,R〉 for every such subset. This hides the behaviour irrelevant for determining if the
model transformation satisfies the given formula. The formula is said to be preserved if and only
if L and R are equivalent modulo divergence-sensitive branching bisimulation [31].

The primary novelty of this approach is that it can be applied directly on the model trans-
formation, and the result is independent of the input model onto which such a transformation is
applied. The authors claimed that checking property preservation of transformations takes much
less time than checking the property on the source and target models individually.
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3.3.2 Efficient Property Preservation Checking of
Model Refinements [2013] [4]

This work improves the framework discussed in the previous section by improving on its efficiency.
It also formally states the complexity of the maximal hiding and divergence-sensitive branching
bisimulation equivalence testing that were already discussed in a more informal manner in the
previous paper.

The process of transforming a networked model directly, without the main model being con-
structed, is also introduced formally here. Here, the idea of “glue states” — states common to
both the left and right side of a rule, is one that is explored in detail.

This paper refined the concept of rule systems by introducing a set V̂ that contains synchron-
ization rules to be introduced as a result of the transformation of the source model. Formally,
Σ = 〈R, V̂ 〉 denotes a rule system, with R being a set of transformation rules. The idea of the rule
system being confluent is refined by presenting two concrete rules for ensuring the same. Firstly,
the action sets of the left patterns in the rules must be disjoint. Secondly, for each rule, no two
matches in a model can intersect.

Figure 3.1 describes the steps that are required to achieve the increased efficiency that is the
goal of this paper.

Figure 3.1: Steps for property preservation and well-formedness checks [4]

3.3.3 REFINER: Towards Formal Verification of Model Transforma-
tions [2014] [5]

The main aim of this paper was to make a tool that can both create model transformations, as
well as verify whether the semantic, safety, or liveness properties of these transformations are
maintained. It can also be used to check whether the rule set is confluent. Additionally, the tool
provides its users with flexibility regarding whether divergences in the models are to be preserved,
when, for instance, checking property preservation.

This tool is the first and only tool thus far to support source model-independent property
testing for model transformations. The authors have claimed that one of the major advantages of
the tool is its multi-core capability. However, we note that the tool being implemented in Python,
an interpreted language, affects its performance adversely.

3.3.4 A formal verification technique for behavioural model-to-model
transformations [2018] [6]

This article summarizes the previous findings. It also contributes two new ideas to the general
topic of property-preserving model transformations.

Firstly, it improves the flexibility with which transformation rules can be created by distin-
guishing between “incoming” and “outgoing” glue states. Note that glue states are those states
that are common to both the left and right side of a transformation rule. The incoming glue states
are those to which a transition exists from outside the matched region of the LTS in the source
model, while the outgoing glue states contain transitions towards the source model external to the
matched part.
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Secondly, it greatly improves on the efficiency of the proposed system. The previous articles
required an exponential number of checks for verifying the property-preserving nature of the model
transformation, while the present article reduces the number of checks to a linear order. This is
formally proven using the Coq theorem prover 1. In simple terms, the context in which the rules
are applied is also considered, thereby allowing a more fine-grained verification that works directly
on the individual rules, instead of having to be applied on subsets of the rule set.

In general, a large portion of this article is devoted to formally defining and analyzing many
of the ideas introduced in the previous papers. A framework for applying rule systems is also
discussed in some detail.

With these papers, we gain considerable insight on property-preserving model transformations.
Unfortunately, there is not much more literature from other groups on the topic of property-
preserving model transformations. At this point, therefore, we turn to our second topic of dis-
cussion, incompletely-specified models. Menghi et. al. first published a paper on this topic in
2016 [16]. We will focus on a more comprehensive pre-print version of this paper [7].

3.3.5 Modeling, refining and analyzing Incomplete Büchi Automata [7]

The goal of this paper is to model the semantics of partially-specified models. Such models often
arise when a system is continuously being refined, and new features are being added. The core
modeling construct used here is Büchi automata.

A Büchi automaton is very similar to an LTS in that it has a graph-like structure with states
and transitions with actions (labels). There are, however, two major differences between the
two modeling systems. Firstly, the concept of τ transitions is not present with Büchi automata.
Secondly, and most importantly, a word is accepted by a Büchi automaton if and only if during
the run for the word, it visits one of the “final states” of the Büchi automaton infinitely often.
The words in the context of a Büchi automaton must be infinite.

Incomplete models are described by introducing a modeling framework known as Incomplete
Büchi Automaton (IBA). The paper assumes a view of incomplete models that is recursive in
nature. This implies that a model may contain one or more black-box states which may be
replaced recursively by either IBAs or regular Büchi Automata during refinement. This view is
congruent with the top-down sequential refinement design process for systems under development.

The extension to IBA from regular Büchi automata (BA) is done by partitioning the state
space Q into disjoint sets of states. These are, respectively, a set of black-box states (B), and a
set of regular states (R).

For IBAs, a run is defined informally as an infinite sequence of states over an infinite sequence
of characters (ω-words). The characters can belong to a larger set of atomic propositions than
those defined in the IBA itself. This supports the idea that it may be possible to make additional
claims about the states of an evolving software system. A word is said to be definitely accepted
if there exists a run for the word where at least one of the final states occurs infinitely often in it
and no black-box states are encountered in the run. It is said to be possibly accepted if it is not
definitely accepted, and, there exists a run where a final state occurs infinitely often, and there
are black-box states in the run. Finally, if no final states occur infinitely often in any run for a
word, it is not accepted.

The main goal of incomplete model checking is to verify an incomplete model M against
supplied properties given by a formula F . Since parts of the model have not been specified, a
three-value logic system is required, consisting of True, False, and undefined.

As parts of the system are unspecified, three responses to such a verification task is possible :
yes, no, or unknown. The unknown response happens when there exists a black-box state in M
whose replacement must satisfy an eventuality criterion for F to hold on it. In this case, the model
checker must also provide annotations for the criterion that must hold on each of the black box
states of M . It is possible that some black-box states are not required to satisfy any restriction
with respect to their replacements, in order for M to satisfy F .

1https://coq.inria.fr/
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The replacement of a black box state “b” in an IBA M is done in such a manner that in the
resulting IBA N , it holds that if a word is definitely accepted (resp. not accepted) in M , then the
same also holds in N .

The process of checking whether a replacement satisfies F is known as “Replacement checking”.
Replacement checking is used to produce constraints. Consider an IBA R′, which is to serve as
a refinement of some model M , against a constraint C = 〈S, Sp〉. S describes behaviour which,
if present in R′, guarantees that F would not hold on R′. On the other hand, if the behaviour
described in Sp occurs in R′, then a violation of F by R′ is possible.

The satisfaction(or lack thereof) of the constraint C by the replacement by R′ is computed
as follows. First, A Büchi automaton Ru representing the behaviour of R′ that is guaranteed
to be present at run-time is computed. This is known as the under-approximation of R′. If
there exists some behaviour that is present in both Ru and S (that is, the intersection of their
languages is non-empty), then C is not satisfied by R′. If there exists no such a behaviour, then
an over-approximation Ro of R′ is computed, which contains all behaviour of R′ that can possibly
be present at run-time. If there exists some behaviour common to Sp and Ro, then R′ is said to
possibly satisfy C. If this is not the case, then C is said be to definitely satisfied by R′.
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Procedure

In this chapter, a detailed description of the approach used to reach the research objective is
discussed. As mentioned previously, the LTSs Lκ and Rκ will be used in order to achieve this.
Broadly speaking, the approach used can be divided into three steps

1. Merging LTL Property ωωω and Left Pattern LκLκLκ. This step aims to utilize the knowledge
that the system represented by Lκ satisfies ω to refine it and produce an LTS Lκω such that
L(Lκω) ⊇ L(Msys) where Msys is the LTS modeling the system represented by Lκ.

2. Transforming the Refined Output. In this step, the LTS Lκω obtained in the previous
step is transformed into Rκω by applying the rule R = (L,R) on it, following the approach
described previously, in the preliminary chapter.

3. Extracting a Characteristic Property. This step uses the LTS Rκω obtained in the
previous step, and transforms it into properties ψn and ψs which characterize necessary and
sufficient conditions for a model to either be simulated by it, or to simulate it, respectively.

Note that in the remainder of this report, the source model which is represented by Lκ and
the model which is transformed by R and represented by Rκ, are represented by the LTSs Msys

and Mtrans respectively.

4.1 First Step : Merging LTL Property ω and Left Pattern
Lκ

The first step of this work is to refine Lκ by utilizing the knowledge that the system LTS satisfies
ω, and, therefore, Lκ (which represents the system LTS) must satisfy it as well. This process is
termed as merging in subsequent discussions.

The first step of the merging process is to transform ω into a Büchi Automaton Gω representing
ω. This is done by utilizing the SPOT framework [32]. SPOT produces a Büchi automaton that
has propositional logic formulae over the set of atomic propositions, AP , as its transition labels.

The state κ of Lκ represents those states which are not matched by the pattern LTS. Now that
Gω has been constructed, one of its states, represented by sκ, is selected to be matched against κ.

In Algorithm 1, the Main procedure, tasked with performing the merging process, is provided
with Gω as an input. Following this, a set of possible refinements to Lκ can be constructed. This
process utilizes an auxiliary data structure, the MatchList, which is defined as follows

MatchList ={m | m is a MatchInfo} where

MatchInfo = (Matching(M),ArtificialUpdateSet(U),FinalEdge(FE))

where
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1. Matching - A matching is a map defined as M:LκQ → P(Gω,Q). Further, Gω,Q is the set of
states of Gω, With this map, every glue state and κ in Lκ is associated with at least one

state of Gω. The state association is done by considering every transition t ≡ s
a′−−→
Lκδ

s′ in

Lκ for which {s, s′} ⊆ {κ} ∪ LI ∪ LE . For each such t, the transitions of Gω t
′ ≡ r a′−−−→

Gω,δ
r′

are considered where a ⊆ a′. These are the candidate transitions that can simulate the
transition t. Given at least one of the following holds, t′ is considered to be a possible
suitable candidate:

(a) M(s) is either empty or contains r, and M(s′) is either empty or contains r′.

(b) Both M(s) and M(s′) are non-empty, and r is in M(s) or r′ in M(s′).

Every glue-state of Lκ, as well as the κ needs to be matched to some state of Gω for the
remainder of the algorithm to function. Thus, in line 3 of Algorithm 1, matches in which
this does not hold are filtered out. Each candidate transition t′ leads to a new matching,
created by adding the r and r′ respectively to M(s) and M(s′) respectively.

2. ArtificialUpdateSet - In order to understand the construction of this set, one must first
understand the term “artificial label”. An artificial label refers to a dummy action that was
introduced during the construction of the κ-extended version of a pattern LTS. Thus, all the
σ, ε and γ-labels are artificial labels.

The set ArtificialUpdateSet indicates the concrete updates to artificial labels that were made
while the merging algorithm proceeded to find the corresponding matching. It is a set defined
as follows:

(4.1)
U = {(t, a) | a ∈ P(Gω,A),t ≡ s a′−−→

Lκδ
s′ where s, s′ ∈ LκQ, a′ ∈ P(LκA)

∧a′ is artificial∧∃r,r′∈Gω,Qr
a−−−→

Gω,δ
r′∧WAS MATCHED(t, r

a−−−→
Gω,δ

r′)}

where the predicate WAS MATCHED(t, r
a−−−→

Gω,δ
r′) is true if and only if the transition

r
a−−−→

Gω,δ
r′ was matched against t at some point during the progression of this step.

In order to understand this formalism, we look towards the process of constructing M. As
M is being constructed, if a transition of Lκ with an artificial label, t is encountered, it can
be mapped against any edge t′ of Gω. However, in doing so, the claim is made that t can
be simulated by t′, and so it must hold that taction ⊆ t′action. This information is recorded
by associating t with t′action in U .

3. FinalEdge - This is a map defined as

FE :LκQ → P({t | t ≡ s a−−→
Lκδ

s′, where s, s′ ∈ LκQ, a ⊆ LκA})

As M is being constructed, if a transition t ≡ s
a′−−→
Lκδ

s′ in Lκ is matched to a transition

t′ ≡ r a′−−−→
Gω,δ

r′ of Gω, then

(a) If r ∈ Gω,F , then the set FE(s) is updated by adding t to it.

(b) If r′ ∈ Gω,F , then the set FE(s′) is updated by adding t to it.

This process results in states being associated with one or possibly more than one transitions
that are related to transitions to or from final states of Gω that were simulated by those
transitions. This structure is used at a later stage of the analysis to filter out refined solutions
that cannot occur due to the requirements for valid traces in Gω introduced by its final states.
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In algorithm 1, an empty MatchList is created and passed as a parameter to the get matches
method on line 2. This empty instance is presented as a list consisting of a single element, which
contains a Map() instance, an empty set, and finally, a second empty Map() instance. These three
components correspond to the three components of every MatchInfo instance that were discussed
above.

The process of computing the set of matches can be analyzed by delving into the get matches
procedure, whose definition begins on line 76 of the algorithm. The process that is followed
extends the match set by iterating over the set of transitions of Lκ(denoted by parameter Pat in
the procedure). Lines 78-80 denote each iteration step. Firstly, it is ensured that the transition
being considered has a state associated with it that is either a glue state, or is κ (line 78). This
is done since refinements for a transition containing only states that are internal to Lκ cannot be
made, as they are already known definitively from the structure of L.

For every transition that passes the test, it, alongside the graph G (equivalent to Gω from the
main context), and the current match set ML, are passed as arguments to the extend matches
procedure, on line 79. This procedure augments the present match set by adding the matching
information corresponding to the present transition to every matching instance in ML where such
an addition does not violate the consistency of the matching.

In the extend matches procedure, algorithm proceeds by first creating a new empty list
MLnew (line 85) which acts as a container for the results that are obtained from the procedure.
Note that the transition passed onto this procedure has a label a0, as visible in the parameters
of extend_matches on line 80. A set of candidate transitions of Gω (represented as G in the
present context) that can map against such a transition with label a0 is first constructed (line
86). Only transitions that have labels a1 such that a0 satisfies the condition a1, or where a0 is an
artificial label (one of the labels in transitions between κ and the glue states, or amongst the glue
states), fit this criteria.

If this set, named candidates, turns out to be empty in any call of extend matches, then
in line 93, an empty list would be returned and set as the new match list instance on line 79.
Proceeding forward with the execution of the algorithm at this stage, lines 89, 90 would never
be reachable, as ML, passed into extend matches, would keep being empty. Therefore, in this
scenario, the match set returned by get matches would be empty. This makes sense, since the
candidates set being empty would imply that the matching process has, essentially, failed for a
particular transition (and so also as a whole).

If candidates is not empty (line 87), then an iteration is performed over every MatchInstance
that is presently in the MatchList(ML). This iteration step occurs on lines 85 and 90. On
line 89, the extend match procedure is called with the set candidates passed alongside the
matching instance, the transition of Lκ being considered, and G (Gω). This procedure produces
a list of matching instances produced by adding the matches in candidates against the transition
s0

a0−−−−−→
Mδ

s1 being considered. This list is subsequently added to MLnew on line 90.

The mechanism for the working of the extend match procedure can now be detailed. This
procedure begins by initializing a list results (line 96), which, as its name implies, will contain
the results of this procedure’s execution. Next, an iteration is performed over the transitions in
candidates. For each such transition, the iteration step proceeds from line 100 through line

115.

Each step begins by first checking if the given transition of candidates, r0
a1−−−−−→
Mδ

r1 can be

matched under the present condition of the matching instance MI.

In subsequent parts of this section, Mq will be used to refer to the set of state that are matched
against q. The matching can only be extended if one of the following conditions hold

1. Both s0 or s1 have not been matched (Ms0 = ∅ ∧Ms1 = ∅).

2. s0 has not been matched, and s1 has been previously matched with r1 (Ms0 = ∅∧r1 ∈Ms1).

3. s1 has not been matched, and s0 has been previously matched with r0 (r0 ∈Ms0∧Ms1 = ∅).
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4. If s0 or s1 have been matched, then either r0 has been matched with s0, or r1 with s1

(r0 ∈ Ms0 ∨ r1 ∈ Ms1). This case handles the scenario where two transitions of Lκ either
begin or end at the same state, and is matched against transitions of Gω with the same
characteristic.

If this check is successful, then a copy of the match instance being considered, called MICopy,
is created (line 101). Then, r0 and r1 are added to the matching sets for s0 and s1 in MICopy
(line 102). Next, the FinalEdge map is updated. This is done by using the variable finalSet,
defined on line 103 as a copy of the FinalEdge map in the current matching instance. If r0

and/or r1 is a final state then the edge s0
a0−−−−−→
Mδ

s1 is created and added to finalSets0 and/or

finalSets1 respectively (lines 104-109). Finally, if a0 is an artificial label, the ArtificialUpdate-
Set is updated by adding the tuple of the present transition of Lκ being considered, and the new
label a1 for it. This is done in lines 110-112. Finally, in line 113, the results list is updated
with this extended matching instance. In the end, it is returned on line 116.

Once a MatchList(ML) is obtained from the get_matches procedure, this list is first filtered.
Based on the choice of sκ, only those solutions where M(κ) = {sκ} are chosen. This occurs on
line 3 of the algorithm, resulting in the filtered matching list, MFilt. the task of obtaining LTSs
that are refinements of Lκ begins.

Since the goal of this step is to obtain a model Lκω whose language is a superset of the language
of the system, this refinement process, for a given M ∈ ML, modifies transitions external to L
following two principles

I. A transition is added if it is possible to match it against some transition in Gω, following
the matchings considered in M.

II. A transition is removed if there are no possible matches of this transition against any trans-
ition in Gω, following the matchings considered in M.

Below, the steps of this process are enlisted.

1. For every match info MI in ML, and for every state s that is either an in-state or κ, a check
is made to see whether the initial state of Gω is in MI0,s or not. If it is, then, s is marked
as an initial state in the solution corresponding to MI. This occurs on lines 7-11 in the
algorithm.

2. For every possible solution, edges are concretized based on information in U , in the concret-
ize method called on line 12. Here, every action that is satisfied by any of the formulae on
the labels in MI1 of the present matching instance MI, is added (line 46). If a transition
with an artificial label cannot be concretized, it is removed, following rule II above.

3. Further, self-loops are added on exit-states and κ where these states are matched to states
of Gω that have self-loops on them (lines 16-23).

4. Following this, labels of transitions from exit-states to in-states of Lκ are updated by adding
all actions that are satisfied by labels of those transitions which are present between the
states of Gω that they are matched to (lines 24-36).

5. Finally, new states viz. r′ are added if there are transitions to sκ from r in Gω. Transitions
between these states and κ are made in a manner analogous to the connections that sκ has.
Transitions to or from these states to glue states are also made wherever the glue states are
matched to states that are adjacent to s′ (lines 37-40).

6. In the resulting solution LTSs, for every cycle (line 55), there must exist a state s such that
M(s) ∩ Gω,F 6= ∅ (line 59) and there is a transition t ∈ FE(s) such that t is in the cycle
(line 60). This ensures that, in any simulation of an infinite trace, atleast one of the final
states of Gω are visited infinitely often. If this is not the case for any solution concretized
by the previous step, that solution is subsequently discarded (line 42).
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Algorithm 1 Algorithm for combining information in G and Lκ

1: procedure main(Gω, Lκ, sκ)
2: MatchList← get matches([[Map(), ∅,Map()]],Lκ, Gω)
3: MFilt← {(M,U ,FE) ∈MatchList | M(κ) = {sκ} ∧ ∀q∈LκQM(q) 6= φ}
4: solutions← []
5: for MI ∈MFilt do
6: CandLTS ← Lκ
7: for state ∈ Gω,I ∪ {κ} do
8: if Gω,Q0 ∩MI0,state 6= ∅ then
9: Add state to CandLTSQ0

10: end if
11: end for
12: CandLTS ← concretize(CandLTS,MI) . Add edges related to matching
13: for s ∈ LκI ∪ LκE do

14: oEdges← {s0
a−−→
Gδ

s1 | s0 ∈MI0,s}
15: selfLoops← {s0

a−−→
Gδ

s1 | s0
a−−→
Gδ

s1 ∈ oEdges ∧ s0 = s1}
16: Let uLabel be the the set of actions in L≤A satisfied by any of the transitions in

selfLoops
17: if uLabel 6= ∅ then
18: if There exists a self-loop at node s with label a then
19: Add transitions with labels l in uLabel, if l 6= a
20: else
21: Add transitions with labels l in uLabel
22: end if
23: end if
24: if s ∈ LκE then
25: for s′ ∈ LκI do

26: iEdges← {s0
a−−→
Gδ

s1 | s1 ∈MI0,s′}
27: common← iEdges ∪ oEdges
28: Let uLabel be the the set of actions in L≤A satisfied by any of the transitions

in common
29: Let eLabel be the existing label on the transition from s to s′

30: if eLabel is artificial then
31: Delete the transition with label eLabel and add transitions with labels in

uLabel
32: else
33: Add transitions with labels in uLabel
34: end if
35: end for
36: end if
37: for Every transition of the form s1

a0−−→
Gδ

sκ do

38: Add state s′1 to CandLTS
39: Add transitions between κ and s′1 corresponding to transitions between sκ and

s1

40: end for
41: end for
42: if is valid(MI,CandLTS,Gω) then
43: solutions = solutions+ CandLTS
44: end if
45: end for
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46: return solutions
47: end procedure
48: procedure concretize(Pat, MI)

49: for s0
a−−−→

Patδ
s1 where a is artificial do

50: Delete s0
a−−−→

Patδ
s1 and add transition s0

anew−−−→
Patδ

s1 for every anew satisfied by any of the

labels in the transitions mapped in MI1
51: end for
52: end procedure
53: procedure is valid(MI, Pat, G)
54: Let Cycles be a list of all elementary circuits of Pat
55: for cycle ∈ Cycles do

56: Let cycle = s0
a0−−−→
Patδ

s1 . . .
an−1−−−→
Patδ

sn
an−−−→
Patδ

s0

57: validated← False
58: for si

a−−−→
Patδ

si+1 ∈ cycle do

59: if GF ∩MI0,si 6= ∅ then

60: if si
ai−−−→
Patδ

si+1 ∈MI2,s0 then

61: validated← True
62: break
63: end if
64: if (i > 0 ∧ si−1

ai−1−−−→
Patδ

si ∈MI2,s0) ∨ sn an−−−→
Patδ

s0 then

65: validated← True
66: break
67: end if
68: end if
69: end for
70: if validated = False then
71: return False
72: end if
73: end for
74: return True
75: end procedure
76: procedure get matches(ML, Pat, G)

77: for s
a−−−→

Patδ
s′ where s, s′ ∈ PatQ do

78: if Either s or s′ is κ or a glue state then
79: ML← extend matches(G, s

a−−−→
Patδ

s′,ML)

80: end if
81: end for
82: return ML
83: end procedure
84: procedure extend matches(G, s0

a0−→ s1, ML)
85: MLnew ← []

86: candidates← {r0
a1−−→
G.δ

r1 | a1 ⊆ a0 ∨ a0 is artificial}
87: if candidates 6= ∅ then
88: for MI ∈ML do
89: extendedResults← extend match(G, s0

a0−→ s1,MI, candidates)
90: Add match instances in extendedResults to the end of MLnew
91: end for
92: end if
93: return MLnew
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94: end procedure
95: procedure extend match(G, s0

a0−→ s1, MI, candidates)
96: results← []
97: Ms0 ←MI0,s0 . Ms0 contains the states that s0 has been matched to in MI
98: Ms1 ←MI0,s1 . Ms1 contains the states that s1 has been matched to in MI

99: for r0
a1−→ r1 ∈ candidates do

100: if is matchable(Ms0 , Ms1 , r0, r1) is True then
101: MICopy ←MI
102: Create MICopy0,s0 and/or MICopy0,s1 if necessary, and then add r0 and r1 to

them respectively
103: finalSet←MICopy2

104: if r0 ∈ GF then
105: Create finalSets0 if necessary, and add the edge s0

a0−→ s1 to it
106: end if
107: if r1 ∈ GF then
108: Create finalSets1 if necessary, and add the edge s0

a0−→ s1 to it
109: end if
110: if a0 is an artificial label then
111: MICopy1 ←MICopy1 ∪ {(s0

a0−→ s1, a1)}
112: end if
113: results← results+MICopy
114: end if
115: end for
116: return results
117: end procedure

4.2 Second Step : Transforming the Refined Output

The previous step can produce multiple solutions. This is because there are potentially multiple
ways to match the sets of states of Lκ and Gω, leading to multiple refined versions of Lκ.

The aim of this step in our process is to transform the resulting model by applying the rule
transformation R = (L,R) on one of the solutions of the merging step.

The choice of a candidate solution to provide as input to this step is made by comparing the
LTSs obtained in the previous one. This is done by using the mCRL2 [33] toolkit’s ltscompare
tool. This tool only accepts LTSs that have a single initial state. Thus, for each solution that has
multiple initial states in Q0, a new state is created, and τ -edges from it to every state in Q0 are
added. Finally, Q0 is replaced by this new dummy state. The resulting LTSs can be compared
under weak bisimilarity. This process partitions the set of solutions into equivalence classes under
the weak bisimilarity relation. Finally, an arbitrary solution from the largest of these classes is
used as input.

Given an input model to this step, M , the actual transformation logic is rather simple. Instead
of deleting and replacing transitions of Gin ≡ Lκω, an LTS G with a single node, κ is chosen as
the starting point (line 2). Next, the in- and exit-states of Lκω are added to the set of states of
G (line 3). Finally, the set of initial states, in-states, and exit-states of G are set to be the same
as that of Lκω (line 4). Essentially, these steps set up the components in the final transformed
LTS that will remain unchanged from Lκω.

This is followed by adding transitions whose source and target states are both either glue
states of Lκω or the κ state (lines 6-9). Again, this external part of the pattern is unchanged
by the transformation. For the same reason, the transformed output must also contain the states
neighboring κ in Lκω which were created in the merging step. These states, along with their
transitions, are added on line 11. Finally, the states and transitions “inside” the pattern are
replaced by those in Rκ (lines 12, 13), reflecting the main difference between G and Lκω. In
subsequent discussions, the result G of this step will be referred to as Rκω.
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Algorithm 2 Algorithm for transforming input model in M to right side of rule R

1: procedure transform(Gin, Rκ)
2: Let R be an LTS with a single node, κ
3: RQ ← RQ ∪GinI ∪GinE
4: RI , RE , RQ0

← GinI , G
in
E , G

in
Q0

5: specialStates← RQ
6: for s ∈ specialStates do
7: artificialTrans← {s0

a−−→
Gδ

s1 | s0 = s ∧ s1 ∈ specialStates}
8: Add all transitions and nodes in artificialTrans to G
9: end for

10: Add all nodes connected to κ in Gin which are not glue states, along with their transitions,
to G

11: newTrans← {s0
a−−→
Gδ

s1 | {s0, s1} ∩ specialStates = ∅}
12: Add all transitions and nodes in newTrans to G
13: return G
14: end procedure

4.3 Final Step : Extracting a Characteristic Property

In the final stage, the goal is to obtain a property relevant to the research question at hand. Note
that the model that we get from the previous step

1. Is obtained by applying the transformation rule R on a model Lκω which has the relevant
characteristics of a system on which the rule can be applied, and

2. Takes into account the fact that the property being satisfied by Lκ is ω. This is because this
information was embedded into Lκω, which was, subsequently, transformed.

3. The language of Lκω, L(Lκω), was a superset of the language of the source model, L(Msys).
This is because the refinement process in the first step of this algorithm ensured that any
transition that has the possibility of being present in the source model Msys is also present
in the target model Lκω.

Given these two reasons, we claim that Rκω can act as a suitable source from which we can
extract a property that takes both the model transformation and the original property ω into
consideration.

At the end of this section, we will end up with two properties ψn and ψs, corresponding to a
necessary and a sufficient condition respectively, so that

1. Necessary Condition : Any model that can be simulated by Mtrans must necessarily
satisfy ψn.

2. Sufficient Condition : ψs being satisfied by a model is sufficient to imply that it can
simulate Mtrans.

Note that the line numbers described in the remainder of this section must be viewed with
respect to Algorithm 3.

The technique used for extracting the desired characteristic formula is obtained from a work
by Müller et. al. [34]. Broadly speaking, it proceeds by first creating a system of characteristic
equations, and then, using Gaussian elimination, a single characteristic formula may be obtained.
Given a system of equations of size n, the process of creating a single equation leads to an expo-
nential increase in the size of the final formula that results from this process, when compared to
the sizes of the original formulae. Thus, if the sizes of the formulae in the original system has an
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upper bound M , then the size of the formula resulting from Gaussian elimination is of the order
of O(Mn).

The process of creating the characteristic system of equations for an LTS M that is described
in Müller’s work assumes that M has only a single starting state. It proceeds by creating a variable
Xq and a formula φq for every state q ∈MQ such that

Xq = φq
def
=
∧{∧{

〈a〉Xq′ | q a−−→
Mδ

q′
}
| a ∈MA

}
∧
∧{

[a]
∨{

Xq′ | q a−−→
Mδ

q′
}
| a ∈MA

}
With this definition, and the assumption that q0 is the starting state of M , the characteristic
system of equations of M is given by

Xq0 = φq0

Xq1 = φq1
...

Xqn = φqn

where q1 through qn are the remaining (non-starting) states of M .
The problem with this approach is that only a single start state is assumed to be present

for the model that is being analyzed. Moreover, their approach focuses on finding a property
representative of the strong bisimulation relation. Therefore, in this work, their approach is
split into two parts, corresponding to the two directions of simulation in a bisimulation relation
constraint. These two parts form the basis of finding E and E  , which are systems of equations
that can be transformed into φn and φs respectively. The process of finding these two systems is
discussed below.

4.3.1 Necessary Condition

The aim here is to find a condition, which is satisfied by any model M such that Mtrans simulates
M . Since L(Mtrans) ⊆ L(Rκω), for such a model M , Rκω would also simulate M . This fact is
denoted by the notation Rκω M . One can consider the derivation process of the characteristic
equations given in Müller’s [34] work in order to find such a condition. In their work, the property
corresponds to a bisimulation relation. In order to find the property corresponding to the uni-
directional simulation relation, the derivation process discussed in their work can be simplified. In
order to understand this process, one must first grasp the concept of a functional corresponding
to a system of µ-calculus equations. Given such a system S, a functional FSM corresponding to S
being evaluated on model M can be defined as

FSM :EnvM → EnvM such that FSM (ρ)(Xi) = JφiKρ for i = 1, . . . , n

where

1. EnvM is the set of mappings from the variables Xi of S to the set of states of N . The
mapping η resulting from the evaluation of S on N is an element of EnvM .

2. S contains the equations Xi = φi for i = 1, . . . , n.

With this knowledge, consider that the goal, for all states s in Rκω, to find formulae φ s
corresponding to variables Xs in a system of equations E such that the largest solution of E 
for a given LTS N is η. Further, it must hold that if Rκω N , then

U =
∨

s∈Rκω,Q0

Xs =⇒ η(U) ⊆ NQ0
(4.2)

This goal can be achieved by defining these formulae such that
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∀s∈Rκω,Qη(Xs) = {r ∈ NQ | s r} (4.3)

This is because, if the formulae were to satisfy such a criteria, then the set of states in η(Xs),
where s ∈ Rκω,Q0

, would contain those states that can be simulated by these states q in N . At
least one of these states has to contain a starting state of N , in order for Rκω to be able to simulate
it. In other words, η(U) = η(

∨
s∈Rκω,Q0

Xs) =
⋃
s∈Rκω,Q0

η(Xs) must contain at least one starting

state of N . This matches the condition that was described in Equation 4.2.
Now, consider that EnvN is the set of possible solutions of E . the mapping α:EnvN →

P(Rκω,Q ×NQ) can be then defined as follows

α(ρ) = {(s, t) ∈ Rκω,Q ×NQ | t ∈ ρ(Xs)}

Conversely, a mapping β:P(Rκω,Q × NQ) → EnvN can be defined as (β(R))(Xs) = {t ∈ NQ |
(s, t) ∈ R}. With these mappings, one can define E such that the simulation functional F

E 
N ,

as well as the functional corresponding to E , F
E 
N , are equal up to the isomorphism induced

by the pair of complementary mappings (α, β). In other words, the following condition has to hold

F
E 
N = β ◦ F ◦ α

η(E )(Xs)

=ν(F
E 
N )(Xs) Definition of η

=β(νF )(Xs) Isomorphism between fixpoints of F
E 
N and F 

= {t ∈ NQ | (s, t) ∈ (νF )}Definition of β

= {t ∈ NQ | s t} equals νF 

This follows the requirement that was presented in equation 4.3. From this definition of F
E 
N , it

follows that for a state t ∈ NQ

t ∈ Jφ s Kη,N ⇐⇒ t ∈ (β ◦ F ◦ α)(ρ)(Xs)

⇐⇒ ∃s∈Rκω,Q(s, t) ∈ (F ◦ α)(ρ) Definition of β

⇐⇒ ∀a∈NA∀t′∈NQt
a−−→
Nδ

t′ =⇒ ∃s′∈Rκω,Qs
a−−−→
Rκω,δ

s′ ∧ (s′, t′) ∈ α(ρ) Definition of F 

⇐⇒ ∀a∈NA∀t′∈NQt
a−−→
Nδ

t′ =⇒ ∃s′∈Rκω,Qs
a−−−→
Rκω,δ

s′ ∧ t′ ∈ η(Xs′) Definition of α

⇐⇒ ∀a∈NA∀t′∈NQt
a−−→
Nδ

t′ =⇒ t′ ∈

u

www
v

∨
s′∈Rκω,Q∧s

a−−−→
Rκ
ω,δ

s′

Xs′

}

���
~

N,η

Definition of
∨

⇐⇒ ∀a∈NAt ∈

u

www
v

[a]
∨

s
a−−−→
Rκ
ω,δ

s′

Xs′

}

���
~

N,η

Definition of J·K

⇐⇒ t ∈

u

www
v

∧
a∈NA

[a]
∨

s
a−−−→
Rκ
ω,δ

s′

Xs′

}

���
~

N,η

Definition of
∧
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By definition, η(Xs) = Jφ s KN,η and t ∈ η(Xs). Therefore, the following conclusion can be
obtained

φ s =
∧

a∈NA
[a]

∨
s

a−−−→
Rκ
ω,δ

s′

Xs

In summary, then, the following system of equations describes the necessary condition that was
desired

U =
∨

s∈Rκω,Q0

Xs

Xs0 =
∧

a∈NA
[a]

∨
s′∈Rκω,Q∧s0

a−−−→
Rκ
ω,δ

s′

Xs′

...

Xsn =
∧

a∈NA
[a]

∨
s′∈Rκω,Q∧sn

a−−−→
Rκ
ω,δ

s′

Xs′

where s0, . . . , sn are the states of Rκω.

4.3.2 Sufficient Condition

A sufficient condition has to be a system of equations E  such that if a model M satisfies
said condition, then it is guaranteed that Rκω can be simulated by M , that is, Rκω  M . Since
L(Rκω) ⊇ L(E  ), satisfying such a system of equations would also imply that Mtrans  M .- The
derivation of a sufficient condition follows a similar logic as that of the necessary one, resulting
in a functional FE  

N of E  having the same restriction as in the previous case, with F  , the
“simulated by” functional replacing F .

FE  
N = β ◦ F  ◦ α

With this, a derivation for the formula φs corresponding to state s of Rκω can be made as follows

t ∈ Jφ s Kη,N ⇐⇒ t ∈ (β ◦ F ◦ α)(ρ)(Xs)

⇐⇒ ∃s∈Rκω,Q(s, t) ∈ (F ◦ α)(ρ) Definition of β

⇐⇒ ∀a∈Rκω,A∀s′∈Rκω,Qs
a−−−→
Rκω,δ

s′ =⇒ ∃t′∈NQt
a−−→
Nδ

t′ ∧ (s′, t′) ∈ α(ρ) Definition of F  

⇐⇒ ∀a∈Rκω,A∀s′∈Rκω,Qs
a−−−→
Rκω,δ

s′ =⇒ ∃t′∈NQt
a−−→
Nδ

t′ ∧ t′ ∈ η(Xs′) Definition of α

⇐⇒ ∀a∈Rκω,A∀s′∈Rκω,Qs
a−−−→
Rκω,δ

s′ =⇒ t ∈ J〈a〉Xs′Kη,N Definition of 〈·〉

⇐⇒ ∀a∈Rκω,At ∈

u

www
v

∧
s′∈Rκω,Q∧s

a−−−→
Rκ
ω,δ

s′

〈a〉Xs′

}

���
~

η,N

Definition of
∧

⇐⇒ t ∈

u

www
v

∧
s′∈Rκω,Q∧s

a−−−→
Rκ
ω,δ

s′

〈a〉Xs′

}

���
~

N,η

Definition of
∧
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Again, analogous to the previous case, the conclusion is that for each state s ∈ Rκω,Q, Xs = φs.
Further, s is simulated by the states in η(Xs) = JφsKN,η. For Rκω to be simulated by N , a
sufficient condition is that all of its starting states are simulated by some starting state of N .
This is represented by a variable U

U =
∧

s∈Rκω,Q0

Xs

The condition described above is achieved if η(U) =
⋂
s∈Rκω,Q0

η(Xs) contains at least one starting

state of N . Thus, the system of equations for the sufficient condition is given by

U =
∧

s∈Rκω,Q0

Xs

Xs0 =
∧

s′∈Rκω,Q∧s0
a−−−→
Rκ
ω,δ

s′

〈a〉Xs′

...

Xsn =
∧

s′∈Rκω,Q∧sn
a−−−→
Rκ
ω,δ

s′

〈a〉Xs′

where s0, . . . , sn are the states of Rκω.
After X and X  are obtained, they are converted into formulae φn and φs by the use of

Gaussian elimination. In the algorithm, this happens in the procedure get characteristic formula,
to obtain a formula in the variable charFormula from an equation system chEqSystem, for every
starting state (line 7). The parameter type is used in several procedures to determine if they
are supposed to perform actions that lead towards obtaining a sufficient or a necessary condition.
At the top-level, the main procedure calls extract twice, with two different values for type,
“necessary” and “sufficient”. This choice is propagated as these procedures are executed, so that
eventually, for the case of the necessary condition, a logical union of the variables corresponding
to the start states of Rκω is returned (line 15). On the other hand, for the case where “type” is
sufficient, their intersection is returned (line 17). Further, in the get equation function which
is tasked with obtaining the φs’s corresponding to states s of Rκω, there is a distinction made in
the kind of formula obtained when type is “necessary” (line 40) versus when it is sufficient (line
42).

Whenever a µ-caculus formula is created or modified, at any point during this step, a com-
paction process is applied on the formula. This is done by removing redundant operators and/or
operands in intersection or union of sub-formulae of a given formula, in the make compact pro-
cedure. This effect is achieved by recursively parsing a given formula named formula, and finding
sub-formulae consisting of a sequence of intersection or union operators. Wherever this is found,
the following steps are taken with respect to the list of sub-formulae (subFormulae) whose inter-
section/union is being considered. This is done by comparing members of subFormulae viz. f1,
f2 where f2 is located after f1 in subFormulae. The process is repeated in its entirety as long as
changes keep happening (line 73).

1. If f1 and f2 are logically equivalent (line 85), delete f2 from subFormulae (line 86).

2. If f1 is a diamond operator, f2 a box operator, and � ==
∧

(� is the intersection operator)
with the same actions and contained formulae, then the formula of f1 can be replaced with
True. This follows from the semantic equivalence of [a]φ ∧ 〈a〉φ and [a]True ∧ 〈a〉φ. This
is illustrated by lines 87-90.

3. If f1 == [a]φ and f2 == [b]φ, and � ==
∧

, then f2 is deleted, and the action b is
incorporated into f1 by changing it to [a, b]φ. This can be interpreted as

J[a, b]φKM,η = {q | ∀s′,s′′∈MQ
(s

a−−→
Mδ

s′ ∨ s b−−→
Mδ

s′′) =⇒ s′, s′′ ∈ JφKM,η}
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This process is done on lines 93-95.

4. A similar process can be done for the box operator, as demonstrated on lines 96-98. This
results in formulae of the form 〈a, b〉φ which can be interpreted as follows

J[a, b]φKM,η = {q | ∃s′,s′′∈MQ
s

a−−→
Mδ

s′ ∧ s b−−→
Mδ

s′′ ∧ s′, s′′ ∈ JφKM,η}

5. Finally, if f1 and f2 are both diamond or box operators and contain the same action, but
have different formulae that they point towards, then they are grouped into a single set,
provided that an intersection of the formulae in subFormulae is under consideration. This
is done by using a map named compounded(line 105). Later, in lines 112-120, these
groups are combined by placing their(diamond or box) operator outside the ∧ operator of
the formulae. In effect the process (in the case of the box operator, for instance) uses the
following equivalence

[a]φ1 ∧ [a]φ2 ∧ . . . [a]φn ≡ [a]φ1 ∧ φ2 . . . ∧ φn

Algorithm 3 Algorithm for extracting the necessary and sufficient criterion from Rκω
1: procedure main(Rκω)
2: return extract(Rκω, “necessary”), extract(Rκω, “sufficient”)
3: end procedure
4: procedure extract(M , type)
5: subFormulae← []
6: for s ∈MQ0 do
7: Ms ←M
8: Ms,Q0

← {s}
9: chEqSystem← get characteristic equation system(Ms, type)

10: charFormula← get characteristic formula(chEqSystem)
11: charFormula← make compact(charFormula)
12: Append charFormula to subFormulae
13: end for
14: if type is “necessary” then
15: return Union of the formulae in list subFormulae
16: else
17: return Intersection of the formulae in list subFormulae
18: end if
19: end procedure
20: procedure get characteristic equation system(G, type) . Returns a list consisting of

pairs of a variable and the formulae that it equates to
21: equations← []
22: variables←Map()
23: for s ∈ GQ do
24: Create a new free variable Xs

25: Let variables(s) be Xs

26: end for
27: for v ∈ variables do
28: pair ← (v,get equation(variables,G, s, type))
29: Append pair to equations
30: end for
31: Move the pair corresponding to the initial state of G to the beginning of equations
32: for var, equation ∈ equations do
33: equation← make compact(equation)
34: end for
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35: end procedure
36: procedure get equation(variables, G, s, type)
37: formulaList← []
38: for a ∈ GA do
39: if type is “necessary” then
40: f ← ∧

s
a−−→
Gδ

s1 where s1∈GQ
< a > variables (s1)

41: else
42: f ← [a]bigvee

s
a−−→
Gδ

s1 where s1∈GQ
(variables (s1))

43: end if
44: Append f to formulaList
45: end for
46: return Intersection of all formulae in formulaList and rightFormulae
47: end procedure
48: procedure get characteristic formula(system) . Perform Gaussian elimination to get

a single µ-calculus formula
49: while |system| > 1 do
50: system← apply rule 1(system)
51: system← apply rule 2(system)
52: system← apply rule 3(system)
53: end while
54: system← apply rule 1(system)
55: return system
56: end procedure
57: procedure apply rule 1(equations) . Get the last equation
58: X,φ← equations|equations|−1

59: ψ ← νX.φ . Replace the last equation and bind its variable with ν
60: equations|equations|−1 ← (var, ψ)
61: return equations
62: end procedure
63: procedure apply rule 2(equations) . Substitution
64: X,φ← equations|equations|−1 . Get the last equation
65: for i ∈ {0, . . . , |equations| − 2} do
66: Replace every occurrence of variable X in formula equationsi,1 with φ
67: end for
68: return equations
69: end procedure
70: procedure apply rule 3(equations) . Delete last equation
71: Delete equations|equations|−1 from equations
72: return equations
73: end procedure
74: procedure make compact(formula)
75: Let � denote the type of the top-level operand of formula
76: if � is union or intersection then
77: Let subFormulae be the list of formulae whose combination produces formula
78: for subFormula ∈ subFormuae do
79: make compact(subFormula)
80: end for
81: while Changes are happening to subFormulae do
82: compounded←Map()
83: for i, j ∈ {1, . . . , |subFormulae| − 1} do
84: if i < j then
85: if subFormulaei = subFormulaej then
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86: Delete index j from subFormulae
87: else if � ==

∧∧∃a,φ1subFormulaei = [a]φ1∧ subFormulaej = 〈a〉φ1 then
88: subFormulaej ← 〈a〉True
89: else if � ==

∧∧∃a,φ1
subFormulaei = 〈a〉φ1∧ subFormulaej = [a]φ1 then

90: subFormulaei ← 〈a〉True
91: else if Both subFormulaei and subFormulaej have the same operator �

then
92: if diamond == [·] ∨ diamond == 〈·〉 then
93: if ∃a,φ1

subFormulaei = [a]φ1 ∧ subFormulaej = [b]φ1 then
94: Delete subFormulaej
95: subFormulai ← [a, b]φ1

96: else if ∃a,φ1subFormulaei = 〈a〉φ1 ∧ subFormulaej = 〈b〉φ1 then
97: Delete subFormulaej
98: subFormulai ← 〈a, b〉φ1

99: else if Actions of subFormulaei and subFormulaej are the same
then

100: Let a be the common action
101: Let φ1, φ2 be the sub-formulae contained in subFormulaei and

subFormulaej
102: if i is not mapped in compounded then
103: compoundedi ← ∅
104: end if
105: Add j to compundedi
106: Delete subFormulaej
107: end if
108: end if
109: end if
110: end if
111: end for
112: for i ∈ compounded do
113: Let a be the action of subFormulaei
114: Let fk be the formula contained in subFormulak in the list subFormula
115: if subFormulaei is a box operator formula then
116: subFormulaei ← [a]�j∈compoundedifj
117: else if subFormulaei is a diamond operator formula then
118: subFormulaei ← 〈a〉�j∈compoundedifj
119: end if
120: end for
121: end while
122: Replace formula by �f∈subFormulaf
123: else if � is µ, ν, [·], or 〈·〉 then
124: Let f be the sub-formula contained in formula
125: make compact(f)
126: end if
127: end procedure
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Experimental Results

This chapter describes two experiments with the tool that were developed on the basis of the
methodology described in the previous chapter.

For the first step, in the experiments that follow, it is assumed that state 0 of the models
corresponding to the properties that are satisfied by the source models (viz. Gω), is to be matched
with κ, that is, sκ = 0. For a complete analysis, sκ can be set to every state of Gω, and solutions
can be obtained for each such assignment.

5.1 First Experiment : A Simple Example

5.1.1 Dataset

This dataset utilizes only two actions that are named a and b. The transformation rule to be
considered is the same as the one introduced in the section on model transformations, section 2.4.1,
that was described by Figure 2.2.

The formula ω assumed to be satisfied on the source model is as follows:

ω = aUb

The Büchi Automaton corresponding to ψ is shown in Figure 5.1.

5.1.2 Results

The three step procedure discussed in the methodology is applied on this dataset.

0

1

21

b

a∧!b

!a∧!b

1

Figure 5.1: Gψ : Büchi Automata corresponding to ψ, state 0 is a final state
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After the first step is applied, 126 refined versions of Lκ are produced. The tool LTScom-
pare [33] was used to test the bisimilarity of these solutions. Since the tool only accepts models
with one starting state in the Aldebaran format, which was used for its simplicity, some modi-
fications were made to the models resulting from the first step, which had multiple start states.
This transformation went as follows. A dummy starting state was created for each model, and
τ -transitions were extended from this state to the original start states, which were then designated
as original states. Then, the models resulting from this were compared using weak bisimulation.
Since, in this case, exactly τ -transitions is present at the start of every trace, these transitions
are effectively ignored during the comparison process. It was concluded that all solutions were
equivalent modulo weak bisimulation to each other. Arbitrarily, solution 10 was elected for further
analysis. The LTS of this solution is displayed in Figure 5.2.

This model is then transformed by applying the rule represented by the pair (Lκ,Rκ) shown
in Figure 5.1. The resulting transformed model is shown in Figure 5.3.
Rκψ is then minimized as follows.

1. A new state S is added to a copy of Rκψ, named RκS .

2. τ -transitions are added from S to the starting states of RκS
3. S is now marked as the only starting state of RκS . Then, Rκψ and RκS are weakly bisimilar,

as the added τ -transitions are ignored when considering weak bisimilarity.

4. RκS is minimized modulo weak bisimulation using the LTSconvert tool of the mCRL2 [33]
toolset, producing M . Note that the prior steps had ensured that RκS only had a single
starting state, which is required by mCRL2.

5. Steps 1, 2, and 3 are now applied in reverse on M , producing Rκmin.

Rκmin (seen in Figure 5.4) is strongly bisimilar to Rκψ. This is because the τ -transitions in the
minimized version as well as the original one remained in the same relative position — pointing
from an artificial starting state to the real starting states of the models.

Hence, it can now be used to obtain the characteristic system of equations corresponding to
the necessary and sufficient conditions, as discussed in the third step of the methodology. This
system of equations corresponding to the sufficient condition(E  ) is as follows

U0 = S4 ∧ S8

S0 = 〈{b}〉S3 ∧ 〈{a}〉 (S1 ∧ S2)

S1 = 〈{b}〉 (S0 ∧ S4) ∧ 〈{a}〉S1 ∧ 〈{a, b}〉S3

S2 = 〈{b}〉S1 ∧ 〈{a}〉S0

S3 = 〈{a}〉 (S3 ∧ S0 ∧ S1)

S4 = 〈{b}〉 (S4 ∧ S3)

S5 = 〈{b}〉S8 ∧ 〈{a}〉 (S6 ∧ S7)

S6 = 〈{b}〉 (S5 ∧ S9) ∧ 〈{a}〉S6 ∧ 〈{a, b}〉S8

S7 = 〈{b}〉S6 ∧ 〈{a}〉S5

S8 = 〈{a}〉 (S8 ∧ S5 ∧ S6)

S9 = 〈{b}〉 (S9 ∧ S8)

If one considers the set of equations corresponding to variables S4, S5, S6, and S7 and replaces
those variables(as well as their references) with, respectively, variables S0, S1, S2, and S3, the latter
equations become identical to the former. This replacement can be done without any conflicts
because no formulae, other than those that correspond to the former set of variables, refer to those
variables in their body. Thus, on evaluating the given system on any model, η(S5) = η(S1). In
other words, the equation W = S0 ∧S5 can be simplified to W = S0 ∧S1. With this modification,
after removing redundant equations, the system becomes
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Figure 5.2: Lκ refined with the information in ψ : Lκψ
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W = S3 ∧ S4

S0 = 〈{a}〉 (S1 ∧ S2) ∧ 〈{b}〉S3

S1 = 〈{a, b}〉S3 ∧ 〈{a}〉S1 ∧ 〈{b}〉 (S0 ∧ S4)

S2 = 〈{a}〉S0 ∧ 〈{b}〉S1

S3 = 〈{a}〉 (S3 ∧ S0 ∧ S1)

S4 = 〈{b}〉 (S4 ∧ S3)

This transformation of identifying multiple equation sets and deleting redundant sets has not
yet been made automatic for our tool. Hence, this modification was obtained manually and passed
as hard-coded input into our system for the Gaussian elimination step.

The system of equations E corresponding to the necessary condition, on the other hand, is

W = S4 ∨ S8

S0 = [{b}]S3 ∧ [{a}] (S1 ∨ S2) ∧ [{a, b}]false
S1 = [{b}] (S0 ∨ S4) ∧ [{a}]S1 ∧ [{a, b}]S3

S2 = [{b}]S1 ∧ [{a}]S0 ∧ [{a, b}]false
S3 = [b]false ∧ [{a}] (S3 ∨ S0 ∨ S1)

S4 = [{b}] (S4 ∨ S3) ∧ [a]false

S5 = [{b}]S8 ∧ [{a}] (S6 ∨ S7) ∧ [{a, b}]false
S6 = [{b}] (S5 ∨ S9) ∧ [{a}]S6 ∧ [{a, b}]S8

S7 = [{b}]S6 ∧ [{a}]S5 ∧ [{a, b}]false
S8 = [b]false ∧ [{a}] (S8 ∨ S5 ∨ S6)

S9 = [{b}] (S9 ∨ S8) ∧ [a]false

By following a process of simplification that is similar to the one described above, one can
obtained a simplified version of E given by

W = S3 ∨ S4

S0 = [{a, b}]false ∧ [{a}] (S1 ∨ S2) ∧ [{b}]S3

S1 = [{a, b}]S3 ∧ [{a}]S1 ∧ [{b}] (S0 ∨ S4)

S2 = [{a, b}]false ∧ [{a}]S0 ∧ [{b}]S1

S3 = [b]false ∧ [{a}] (S3 ∨ S0 ∨ S1)

S4 = [a]false ∧ [{b}] (S4 ∨ S3)

The characteristic formulae corresponding to these systems are described in the appendix,
section A.

5.2 Second Experiment - Link layer of P1394

5.2.1 Dataset

The first analysis that is done utilizes a dataset provided by Luttik [35]. This dataset models the
link layer protocol of P1394, which was defined as a standard for a “High Performance Serial Bus”.
A simplified version of this model is considered in which action labels do not have any parameters.
This simplification does not really affect the discussion that follows, since it does not affect the
overall structure of the pattern LTSs being analyzed.

In this context, we consider a model transformation that is characterized by κ-extended pat-
terns shown in Figure 5.5. This transformation essentially adds some e1-actions after the re-
ception of a signal (denoted by rPDind). These are denoted by the path of e1-transitions
2 −→ 3 −→ 4 −→ 5. For our purpose, it is sufficient to understand that these e1-actions do
not represent communication operations for the P1394 system.

The property to be satisfied in this context is that of livelock prevention. This can be repres-
ented by the following LTL formula:
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Figure 5.5: Lκ(Left) and Rκ(Right) of rule being applied
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Figure 5.6: Gω : Büchi Automata corresponding to ω, state 0 is a final state
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Figure 5.7: Lκ refined with the information in ω : Lκω

ω = G F rPDind

The reason as to why this formula accurately depicts the livelock condition is as follows. In
the present context, it is sufficient rPDind is an action that signifies the reception of a signal for
a process following the IEEE-1394 specification. Thus, its occurrence indicates that the primary
functionality of the system - data transfer, has not stalled out - and thus, there is no livelock. So,
we have the condition that always eventually rPDind holds.

The Büchi Automaton corresponding to ω is shown in Figure 5.6.

5.2.2 Results

The three step procedure discussed in the methodology is applied on this dataset.
After the first step is applied, 202 refined versions of Lκ are produced. As before, LTScom-

pare [33] was used to test the bisimilarity of these solutions. Arbitrarily, solution 0 was elected
for further analysis. The LTS of this solution is displayed in Figure 5.7.

This model is then transformed by applying the rule represented by the pair (Lκ,Rκ) shown
in Figure 5.5. The resulting transformed model is shown in Figure 5.8.
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Figure 5.8: Rκ refined with the information in ω : Rκω

Again, as with the previous example, this LTS can be minimized modulo weak bisimulation.
After this is done, the resulting LTS that now represents Rκω is shown in Figure 5.9.

The system of equations E corresponding to φn, the necessary condition, can be extracted
from Rκω, and is given by

U0 = S3 ∨ S5 ∨ S6

S0 = [rPDind]false ∧ [{e1}]S1

S1 = [rPDind]false ∧ [{e1}]S2

S2 = [rPDind]false ∧ [{e1}]S3

S3 = [{rPDind}] (S3 ∨ S5) ∧ [{e1, rPDind}]S6 ∧ [{e1}]false
S4 = [rPDind]false ∧ [{e1}]S0

S5 = [{rPDind}] (S3 ∨ S5) ∧ [{e1, rPDind}]false ∧ [{e1}]S6

S6 = [{rPDind}] (S5 ∨ S4) ∧ [{e1, rPDind}]false ∧ [{e1}] (S6 ∨ S3)

S7 = [rPDind]false ∧ [{e1}]S8

S8 = [rPDind]false ∧ [{e1}]S9

S9 = [rPDind]false ∧ [{e1}]S10

S10 = [{rPDind}] (S10 ∨ S12) ∧ [{e1, rPDind}]S13 ∧ [{e1}]false
S11 = [rPDind]false ∧ [{e1}]S7

S12 = [{rPDind}] (S10 ∨ S12) ∧ [{e1, rPDind}]false ∧ [{e1}]S13

S13 = [{rPDind}] (S12 ∨ S11) ∧ [{e1, rPDind}]false ∧ [{e1}] (S13 ∨ S10)

S14 = [rPDind]false ∧ [{e1}]S15

S15 = [rPDind]false ∧ [{e1}]S16

S16 = [rPDind]false ∧ [{e1}]S17

S17 = [{rPDind}] (S17 ∨ S19) ∧ [{e1, rPDind}]S20 ∧ [{e1}]false
S18 = [rPDind]false ∧ [{e1}]S14

S19 = [{rPDind}] (S17 ∨ S19) ∧ [{e1, rPDind}]false ∧ [{e1}]S20

S20 = [{rPDind}] (S19 ∨ S18) ∧ [{e1, rPDind}]false ∧ [{e1}] (S20 ∨ S17)
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Figure 5.9: Rκω minimized modulo weak bisimulation
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If one considers the set of equations corresponding to variables S7, S8, S9, S10, S11, S12, and
S13, and replaces those variables(as well as their references) with, respectively, variables S0, S1,
S2, S3, S4, S5, and S6 respectively, it can be noted that the latter equations become identical
to the former. This replacement can be done without any conflicts because no formulae, other
than those that correspond to the former set of variables, refer to those variables in their body.
This process can also be repeated for the variables S17, S16, S18, S19, S20, S21, S22, and S23,
with the same result. Therefore, on evaluating the given system on any model, η(S9) = η(S1),
and η(S21) = η(S5) must hold. In other words, the equation U = S6 ∧ S1 ∧ S5 can be simplified
to U = S1 ∧ S2 ∧ S0. With this modification, after removing redundant equations, the system
becomes

U0 = S3 ∨ S4 ∨ S5

S0 = [{e1}]S1 ∧ [rPDind]false

S1 = [{e1}]S2 ∧ [rPDind]false

S2 = [{e1}]S3 ∧ [rPDind]false

S3 = [{e1}]S5 ∧ [{e1, rPDind}]S4 ∧ [{rPDind}]S3

S4 = [(e1 ∧ ¬rPDind) ∨ (rPDind ∧ ¬e1)]false ∧ [{e1, rPDind}] (S4 ∨ S5 ∨ S3)

S5 = [{e1}]false ∧ [{e1, rPDind}] (S5 ∨ S3 ∨ S4) ∧ [{rPDind}]S6

S6 = [{e1}]S0 ∧ [rPDind]false

The system of equations E  corresponding to the sufficient conditions ψs is also computed.
This system is as follows

U0 = S5 ∧ S13 ∧ S17

S0 = 〈{e1}〉S1

S1 = 〈{e1}〉S2

S2 = 〈{e1}〉S3

S3 = 〈{rPDind}〉 (S3 ∧ S5) ∧ 〈{e1, rPDind}〉S6

S4 = 〈{e1}〉S0

S5 = 〈{rPDind}〉 (S3 ∧ S5) ∧ 〈{e1}〉S6

S6 = 〈{rPDind}〉 (S5 ∧ S4) ∧ 〈{e1}〉 (S6 ∧ S3)

S7 = 〈{e1}〉S8

S8 = 〈{e1}〉S9

S9 = 〈{e1}〉S10

S10 = 〈{rPDind}〉 (S10 ∧ S12) ∧ 〈{e1, rPDind}〉S13

S11 = 〈{e1}〉S7

S12 = 〈{rPDind}〉 (S10 ∧ S12) ∧ 〈{e1}〉S13

S13 = 〈{rPDind}〉 (S12 ∧ S11) ∧ 〈{e1}〉 (S13 ∧ S10)

S14 = 〈{e1}〉S15

S15 = 〈{e1}〉S16

S16 = 〈{e1}〉S17

S17 = 〈{rPDind}〉 (S17 ∧ S19) ∧ 〈{e1, rPDind}〉S20

S18 = 〈{e1}〉S14

S19 = 〈{rPDind}〉 (S17 ∧ S19) ∧ 〈{e1}〉S20

S20 = 〈{rPDind}〉 (S19 ∧ S18) ∧ 〈{e1}〉 (S20 ∧ S17)

This system can be simplified by substituting variable names, as was done with the case of the
system E . The resulting simplified system is
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U0 = S3 ∧ S4 ∧ S5

S0 = 〈{e1}〉S1

S1 = 〈{e1}〉S2

S2 = 〈{e1}〉S3

S3 = 〈{e1}〉S5 ∧ 〈{e1, rPDind}〉S4 ∧ 〈{rPDind}〉S3

S4 = 〈{e1, rPDind}〉 (S4 ∧ S5 ∧ S3)

S5 = 〈{e1, rPDind}〉 (S5 ∧ S3 ∧ S4) ∧ 〈{rPDind}〉S6

S6 = 〈{e1}〉S0

The characteristic formulae obtained from these systems can be viewed in the appendix, sec-
tion B.
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Discussions

While analyzing the results obtained in the previous chapter, either the necessary or the sufficient
condition is chosen, as needed for further analysis in a particular context.

6.1 First Experiment

6.1.1 Motivation

The purpose of this first experiment is to demonstrate the capabilities of the current tool with a
simple minimal example.

6.1.2 Inferences

It is known that the following assertion holds:

If a model M satisfies the system E  corresponding to this example, then M can simulate
Mtrans.

Let s be a starting state of a model M which satisfies E  . Then, the following chain of logic
holds:

s ∈ η(W ) ⇐⇒ s ∈ η(S3) ∧ s ∈ η(S4)

⇐⇒ s ∈ JνS3 . 〈{a}〉 (S3 ∧ S0 ∧ S1)KM,η

∧ s ∈ JνS4 . 〈{b}〉 (S4 ∧ S3)KM,η

⇐⇒ s ∈
⋃
{S ⊆MQ | S ⊆ J〈{a}〉 (S3 ∧ S0 ∧ S1)KM,η(S3)=S}

∧ s ∈
⋃
{S ⊆MQ | S ⊆ J〈{b}〉 (S4 ∧ S3)KM,η(S4)=S}

⇐⇒ s ∈ Largest set such that

{
s′ | ∃r∈MQ

(
s′

a−−→
Mδ

r ∧ r ∈ η(S0) ∩ η(S1) ∩ η(S3)

)}
∧ s ∈ Largest set such that

{
s′ | ∃r∈MQ

(
s′

b−−→
Mδ

r ∧ r ∈ η(S3) ∩ η(S4)

)}
⇐⇒ s ∈ Largest set such that

{
s′ | ∃r1,r2∈MQ

(
s′

a−−→
Mδ

r1 ∧ s′ b−−→
Mδ

r2

∧ r1 ∈ η(S0) ∩ η(S1) ∩ η(S3) ∧ r2 ∈ η(S3) ∩ η(S4)

)}
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To further decode the meaning of this expression, the formulae corresponding to S0 and S1

must be considered. First, consider that the formula for S0 is given by

〈{a}〉 (S1 ∧ S2) ∧ 〈{b}〉S3

Since the largest solution of S0 is preferred, one can consider, instead, that η(S0) is equal to

νS0 . 〈{a}〉 (S1 ∧ S2) ∧ 〈{b}〉S3

As S0 is not in this formula, the ν operator can be ignored.
Hence, for all s′ ∈ η(S0), there exists an a-transition that leads to a state that is in η(S1) and

η(S2), and a b-transition to η(S3).
Next, η(S1) is computed. Applying the ν operator on the formula for S1 yields the formula to

be considered for obtaining its value

νS1 . 〈{a, b}〉S3 ∧ 〈{a}〉S1 ∧ 〈{b}〉 (S0 ∧ S4)

From this, one can conclude that η(S1) is the largest state X such that for any s′ ∈ X

1. There exists a transition on which a and b holds to a state in η(S3).

2. There exists a transition on which only a holds, which leads to a state in η(S1).

3. There exists a transition on which only b holds, which leads to a state that is in both X as
well as in η(S4).

Again, to understand this formula, one must consider S4. Following a similar process as before
yields the following formula:

νS4 . 〈{b}〉 (S4 ∧ S3)

Thus, η(S4) contains those states which have a b-transition to a state that is in both η(S3) and
η(S4).

As mentioned previously, an analysis of this kind can help a requirements engineer in developing
a requirement satisfied by a transformed model.

In the case of this example, one can note that in the chain of logic for the sufficient condition,
a transition on which a holds was present in the expansion of the formula for every variable.
Furthermore, from the starting state, a b-transition that leads to a state in η(S3) ∩ η(S4) exists.
Thus, the following property can be derived

ψ′ = GFa ∧Xb

Now, consider a model M that is presented by a system designer to a requirements engineer
which also satisfies the given system of equations (or the property ψs). The property ψ′ is then
a specification for M , as it is derivable from ψs. Since M can simulate Mtrans, this specification
must hold for Mtrans as well.

6.2 Second Experiment

6.2.1 Motivation

As mentioned previously, the system on which the given model transformation is applied is that
of the IEEE-1394 protocol. This is a standard for isochronous, real-time, serial data transfer,
commonly referred to by its commercial name - FireWire.

One can consider how the rule being analyzed can potentially cause a livelock. Note that the
rule adds e1-transitions in Rκ in Figure 5.5 distinguishes it from Lκ. These transitions form a
loop from state 2 −→ 3 −→ 4 −→ 5 −→ 1 which is closed off by a γ0,1 transition from 1 to 0.
Such a loop, including a γ0,1 action, is also present in Lκ (between states 0 and 1). However, in
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that loop, the only non-rPDind action has a γ0,1 label, which can potentially also correspond to
a communication action in a real source system M on which (L,R) is applied. In such a scenario,
under weak fairness assumption, the model M would not succumb to livelock.

Since the action e1 is non-parameterized, a loop with only e1 on it can lead to non-progress,
under the weak fairness assumption. Thus, the transformation being analyzed can cause an
additional source of livelock. For a system like IEEE-1394 whose main aim is to provide a stable
serial communication channel at the link layer, a livelock is directly antagonistic to its goal.
Therefore, in this context, if one analyzes the formula that was obtained as a final result, one
can reach conclusions about the structural peculiarities of models that can arise after the rule is
applied on a system on which a livelock property originally holds.

6.2.2 Inferences

Contrary to the previous experiment, in this one, the focus for drawing inferences is shifted to
the necessary condition. Suppose that a requirements engineer is presented with a system M that
can be simulated by Mtrans. Then, applying the methodology presented in this work, they can
obtain the system of characteristic equations E and the corresponding formula ψn that M is
guaranteed to satisfy.

It is guaranteed that for all starting states s for such a model M , s is present in η(U), where
U is the variable in the first equation of E , when said system is evaluated on M . Thus, the
following chain of logic holds

s ∈ η(U) ⇐⇒ s ∈ η(S3) ∨ s ∈ η(S5) ∧ s ∈ η(S6)

⇐⇒ s ∈ JνS3 . [{rPDind}] (S3 ∨ S5) ∧ [{e1, rPDind}]S6 ∧ [{e1}]falseKM,η

∨ s ∈ η(S5) ∨ s ∈ η(S6)

⇐⇒ s ∈
⋃
{S ⊆MQ | S ⊆ J[{rPDind}] (S3 ∨ S5) ∧ [{e1, rPDind}]S6 ∧ [{e1}]falseKM,η(S3)=S}
∨ s ∈ η(S5) ∨ s ∈ η(S6)

⇐⇒ s ∈ Largest set such that

{
s′ | ∀r∈MQ

((
s′

rPDind−−−−−→
Mδ

r =⇒ (r ∈ η(S3) ∨ r ∈ η(S5))

)
∧
(
s′

e1,rPDind−−−−−−−→
Mδ

r =⇒ r ∈ η(S6)

)
∧ @r∈MQ

s′
e1−−→
Mδ

r

)}
∨ s ∈ η(S5) ∨ s ∈ η(S6)

To further decode the meaning of this expression, the formulae corresponding to S5 and S6

must be considered. First, consider that the formula corresponding to S5 is given by

[{rPDind}] (S3 ∨ S5) ∧ [{e1, rPDind}]false ∧ [{e1}]S6

Since the largest solution of S5 is preferred, one can consider, instead, that η(S5) is equal to

νS5 . [{rPDind}] (S3 ∨ S5) ∧ [{e1, rPDind}]false ∧ [{e1}]S6

Thus, it can be concluded that η(S5) is the largest state X such that for all s′ ∈ X, the following
hold

1. All transitions on which only rPDind evaluates to true lead to a state either in η(S3) or in
X.

2. There is no transition on which both e1 and rPDind are true.

3. All transitions on which only e1 evaluates to True lead to a state in η(S6).
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Next, consider that the formula for S6 is given by

[{rPDind}] (S5 ∨ S4) ∧ [{e1, rPDind}]false ∧ [{e1}] (S6 ∨ S3)

Applying ν operator on this formula, one can conclude that η(S6) is the largest set X such that
for every s′ ∈ X

1. All rPDind-transitions from s′ lead to states in η(S4) or η(S5).

2. There is no transition on which both e1 and rPDind holds.

3. All e1-transitions from s′ lead to states in X or η(S3)

To decode S4, η(S4) must be calculated. Some insight on the construction of S4 may be
obtained by considering a partial Gaussian elimination of the original equation system, eliminating
variables S0, S1, and S2. This process yields the following equation

S4 = [rPDind]false ∧ [{e1}]
(

[rPDind]false ∧ [{e1}]
(

[rPDind]false ∧ [{e1}](〈{e1}〉S3)
))

This implies that η(S4) is a set such that all r′ ∈ η(S4) have the following properties:

1. There does not exist any transitions that satisfies the rPDind AP from r′.

2. All e1 transitions out from r′ lead to e1-paths of length at least four. These paths can be
illustrated as being of the form

r′
e1−−→
Mδ

s1
e1−−→
Mδ

s2
e1−−→
Mδ

s3
e1−−→
Mδ

s4

All e1-transition from s3 lead to a state in η(S5), and there does not exist transitions that
satisfy rPDind from s1, s2, or s3. As there is no e1-transition from S5, so it can be concluded
that the length of the path is exactly four.

From this analysis, working backwards, one can conclude that the starting state s ∈ η(U) has
the following key characteristics

1. All transitions that satisfy rPDind, starting from s, lead to a state in η(S3), η(S4), η(S5),
or η(S6).

2. All transitions that satisfy only e1, starting from s, leads to a state in η(S6), from which an
e1-path of size four exists, along which no transition that satisfies rPDind exists, except for
at the end.

3. If there exists a transition that satisfies both e1 and rPDind from some state, then s′ must
be in η(S6), from which no transition that satisfies both e1 and rPDind exists. Further, all
e1-transitions from η(S6) lead back to η(S6).

These conclusions can also be summarized by the following LTL formula

ϕ =G ((e1 ∧ ¬rPDind) −→ F (¬e1)) ∧
G
(

(e1 ∧ rPDind)

−→ (((e1 ∧ ¬rPDind) U rPDind) ∨G(e1 ∧ ¬rPDind))
)

These inferences help establish the fact that any system that can be simulated by the system
Mtrans obtained by transforming the pattern LTSs (L,R) from the original system of the IEEE-
1394 standard, satisfies ϕ.

To our knowledge, this is the first work that can obtain conclusions such as these using a
system of µ-calculus equations. Therefore, the novelty and scientific contributions of our work
have been established in the context of this example.
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Conclusions

The goal of this work was to find a property that provides a summary of two facts. The first of
these is that a source system M satisfies a given property ω. The second is that a given model
transformation R is applicable on M . The properties that were obtained, in the end, provided
both a necessary condition that was satisfied by any model that was simulated by the transformed
system, as well as a sufficient condition that guarantees that any model which satisfies it must be
able to simulate the transformed version the system model.

To achieve this goal, this report began with a detailed analysis of relevant work in several
domains that were related to the present work. It begins by analyzing some research on the topic
of model transformations. The purpose of analyzing those works was to contextualize the decision
to use LTSs to represent models in the present work. This was done by contrasting the same with
other works that utilized various other modeling paradigms, ranging from Families of Deterministic
Finite Automata to Boolean Equation Systems. By doing so, the inference that LTSs offer the
perfectly suitable balance of expressiveness and ease of use, is determined. Once the modeling
approach used - the Labeled Transitions System, is justified, the focus is shifted towards the other
component of the research question at hand - the property associated with a given system. It is
noted that LTL is one of the most common languages used for specification. However, µ-calculus,
a more expansive logic that uses fixpoints, is also discussed. Finally, with a broad overview of
current research in both the area of model transformations as well as verification, the domain of
property-preserving model verification is presented to the reader. This is a relatively new domain,
but its richness is exposed with the breadth of works that it enabled. This ranged from works
by Wijs et. al. on verifying if a model transformation preserved a given property, to a work by
Menghi [7] on the subject of verifying models that were incomplete.

The work by Menghi served as inspiration for some ideas during the development of the meth-
odology. In particular, their idea of separating the constraint obtained with respect to a particular
replacement into two parts was also used in this work, by splitting the final result into a neces-
sary and sufficient condition. Their work also inspired the choice to use the κ-extended pattern
LTSs Lκ and Rκ, instead of directly working with (possibly much larger) source and transformed
models. A parallel can be easily drawn between the black-box states in their work, and the κ
state of these pattern LTS. The main distinction between their work and this one is as follows.
Their aim was to verify which refinements against of a given incomplete model (possibly) satisfied
a given property. On the other hand, our work is mainly targeted at the cases where a given
model’s transformation does not satisfy the given property, and, in fact, aims to aid in the process
of finding a suitable replacement for this property.

With these contributing ideas, the primary task of the report - achieving the stated research
objective, was ready to be started. The task was divided into several stages. First, the left side of
the transformation rule was augmented by the information that the system(upon which said rule
could be applied) satisfied a given LTL formula. The choice of LTL as the specification language
ensures that our system would work with a significant fraction of existing model-driven software
systems. This augmentation (or merging) step yields several solutions due to non-determinism
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in the choices that are made during the process of selecting the states of the Büchi Automaton
for the property that are to be matched against states of the augmented left side LTS of the
transformation rule. In our testing, it was found that these solutions are mutually bisimilar.
However, this hypothesis was not proven formally. The benefit of this being the case was that
one of the solutions could be chosen arbitrarily for further analysis, without loss of generality.
This solution was then transformed by the application of the transformation rule on it. Finally,
we used an existing technique to extract a system of characteristic µ-calculus equations from this
augmented right-hand side of our transformation rule. These equations could, in principle, be
transformed, using Gaussian elimination, into a single µ-calculus formula. However, in practice,
it was found that this resulting formula was unwieldy at best (see the Appendix - section B for
verification). This system of equations, then, effectively is our novel contribution. In summary,
it represents a property associated both with a model transformation and with another property
that is satisfied by the source model on which the transformation is to be applied. This knowledge,
in practice, can prove to be extremely valuable to a requirements engineer working on a software
development team. This was demonstrated with the modified requirement that was found in the
first experiment. This is because it is presented in a form that is readily adaptable to the form of
a specification.

As described above, the present work sufficiently answers the original research objective. How-
ever, this also unfolds a potential for exploring the domain further. One of the major drawbacks
of the present setup is that the properties that result from it are quite large. This is a major issue
from the standpoint of human-readability of the specification. This was the reason why it was de-
cided that the system of characteristic equations resulting from the third step of the methodology
would be used when drawing inferences about the model transformation and the property at hand.
The reason for this is the fact that the process of transitioning from a system of characteristic
equations to a single characteristic formula using Gaussian elimination is inherently one that makes
the resulting formula exponential in the number of equations in said system. A natural extension
of this work, therefore, is to reduce the size of this characteristic formula. This may be done in
one of two ways. Either the elimination process could be made more efficient, or, a more compact
representation of the equations that correspond to the refined right side of the transformation
rule being considered (Rκω) could be found. Further, another idea could be to split Rκω by using
some process opposite to the merging step, thereby yielding a modified formula Büchi Automaton
Gω′ in addition to Rκ. This model could then be transformed into a property that is essentially
co-evolved with the evolution of the system by the transformation rule at hand. The benefit of
this approach is that it would improve the clarity of the results that were obtained presently by
separating the influence of the transformation rule and the property. The main challenge with
this splitting process is that Rκω does not often have enough enhancements in comparison to Rκ
to result in a Gω′ that would be considered as significant. Therefore, there would be a large
amount of ambiguity in the structure of Gω′ . Finally, a third source of improvement could be
to augment the present work by allowing the use of µ-calculus formulae, in addition to LTL, as
input. Since the present work is a proof of concept, it was felt that this was not necessary to be
done here. However, the added flexibility of supporting multiple logic families would allow for a
greater flexibility in terms of the software development systems that this work could be appended
to.
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Appendix A

Formula Corresponding to First
Experiment

The µ-calculus formulae characterizing Rκψ that were obtained in the first experiment is given as

ψn = νS4.{[a]false ∧ [{b}](S4 ∨ νS3.{[b]false ∧ [{a}](S3 ∨ νS0.

{
[{a, b}]false ∧ [{b}]νS3.

(
[b]false ∧

[{a}]
{
S3 ∨ S0 ∨ νS1.

(
[{a, b}]νS3.

{
[b]false ∧ [{a}]

(
S3 ∨ S0 ∨ S1

)}
∧ [{b}]

{
S0 ∨ S4

}
∧ [{a}]S1

)})
∧

[{a}]
(
νS1.

{
[{a, b}]νS3.

(
[b]false ∧ [{a}]

{
S3 ∨ S0 ∨ S1

})
∧ [{b}]

(
S0 ∨ S4

)
∧ [{a}]S1

}
∨
{

[{a, b}]false ∧

[{b}]νS1.

(
[{a, b}]νS3.

{
[b]false ∧ [{a}]

(
S3 ∨ S0 ∨ S1

)}
∧ [{b}]

{
S0 ∨ S4

}
∧ [{a}]S1

)
∧ [{a}]S0

})}
∨

νS1.

{
[{a, b}]νS3.

(
[b]false ∧ [{a}]

{
S3 ∨ νS0.

(
[{a, b}]false ∧ [{b}]νS3.

{
[b]false ∧ [{a}]

(
S3 ∨ S0 ∨

νS1.{[{a, b}]νS3.([b]false ∧ [{a}]{S3 ∨ S0 ∨ S1}) ∧ [{b}](S0 ∨ S4) ∧ [{a}]S1}
)}
∧

[{a}]
{
νS1.

(
[{a, b}]νS3.{[b]false ∧ [{a}](S3 ∨ S0 ∨ S1)} ∧ [{b}]{S0 ∨ S4} ∧ [{a}]S1

)
∨
(

[{a, b}]false ∧

[{b}]νS1.{[{a, b}]νS3.([b]false ∧ [{a}]{S3 ∨ S0 ∨ S1}) ∧ [{b}](S0 ∨ S4) ∧ [{a}]S1} ∧ [{a}]S0

)})
∨ S1

})
∧

[{b}]
(
νS0.

{
[{a, b}]false∧ [{b}]νS3.

(
[b]false∧ [{a}]

{
S3 ∨S0 ∨νS1.

(
[{a, b}]νS3.{[b]false∧ [{a}](S3 ∨S0 ∨

S1)}∧ [{b}]{S0 ∨S4}∧ [{a}]S1

)})
∧ [{a}]

(
νS1.

{
[{a, b}]νS3.

(
[b]false∧ [{a}]{S3 ∨S0 ∨S1}

)
∧ [{b}]

(
S0 ∨

S4

)
∧ [{a}]S1

}
∨
{

[{a, b}]false ∧ [{b}]νS1.
(

[{a, b}]νS3.{[b]false ∧ [{a}](S3 ∨ S0 ∨ S1)} ∧ [{b}]{S0 ∨ S4} ∧

[{a}]S1

)
∧ [{a}]S0

})}
∨ S4

)
∧ [{a}]S1

}
)})} ∨ νS8.{[b]false ∧ [{a}](S8 ∨ νS5.{[{a, b}]false ∧ [{b}]S8 ∧

[{a}](νS6.

{
[{a, b}]S8 ∧ [{b}]

(
S5 ∨ νS9.

{
[a]false ∧ [{b}]

(
S9 ∨ S8

)})
∧ [{a}]S6

}
∨
{

[{a, b}]false ∧

[{b}]νS6.

(
[{a, b}]S8 ∧ [{b}]

{
S5 ∨ νS9.

(
[a]false ∧ [{b}]

{
S9 ∨ S8

})}
∧ [{a}]S6

)
∧ [{a}]S5

}
)} ∨

νS6.{[{a, b}]S8 ∧ [{b}](νS5.

{
[{a, b}]false ∧ [{b}]S8 ∧ [{a}]

(
νS6.

{
[{a, b}]S8 ∧ [{b}]

(
S5 ∨ νS9.

{
[a]false ∧

[{b}]
(
S9 ∨ S8

)})
∧ [{a}]S6

}
∨
{

[{a, b}]false ∧ [{b}]νS6.

(
[{a, b}]S8 ∧ [{b}]

{
S5 ∨ νS9.

(
[a]false ∧

[{b}]{S9 ∨ S8}
)}
∧ [{a}]S6

)
∧ [{a}]S5

})}
∨ νS9.

{
[a]false ∧ [{b}]

(
S9 ∨ S8

)}
) ∧ [{a}]S6})}

ψs = νS3.〈{a}〉(S3 ∧ νS0.

{
〈{a}〉

(
νS1.

{
〈{a, b}〉S3 ∧ 〈{a}〉S1 ∧ 〈{b}〉

(
S0 ∧ νS4.〈{b}〉

{
S4 ∧ S3

})}
∧{

〈{a}〉S0 ∧ 〈{b}〉νS1.

(
〈{a, b}〉S3 ∧ 〈{a}〉S1 ∧ 〈{b}〉

{
S0 ∧ νS4.〈{b}〉

(
S4 ∧ S3

)})})
∧ 〈{b}〉S3

}
∧

νS1.

{
〈{a, b}〉S3 ∧ 〈{a}〉S1 ∧ 〈{b}〉

(
νS0.

{
〈{a}〉

(
νS1.

{
〈{a, b}〉S3 ∧ 〈{a}〉S1 ∧ 〈{b}〉

(
S0 ∧ νS4.〈{b}〉{S4 ∧
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S3}
)}
∧
{
〈{a}〉S0 ∧ 〈{b}〉νS1.

(
〈{a, b}〉S3 ∧ 〈{a}〉S1 ∧ 〈{b}〉{S0 ∧ νS4.〈{b}〉(S4 ∧ S3)}

)})
∧ 〈{b}〉S3

}
∧

νS4.〈{b}〉
{
S4 ∧ S3

})}
) ∧ νS4.〈{b}〉(S4 ∧ νS3.〈{a}〉

{
S3 ∧ νS0.

(
〈{a}〉

{
νS1.

(
〈{a, b}〉S3 ∧ 〈{a}〉S1 ∧

〈{b}〉
{
S0 ∧ νS4.〈{b}〉

(
S4 ∧ S3

)})
∧
(
〈{a}〉S0 ∧ 〈{b}〉νS1.

{
〈{a, b}〉S3 ∧ 〈{a}〉S1 ∧ 〈{b}〉

(
S0 ∧

νS4.〈{b}〉{S4 ∧S3}
)})}

∧〈{b}〉S3

)
∧ νS1.

(
〈{a, b}〉S3 ∧〈{a}〉S1 ∧〈{b}〉

{
νS0.

(
〈{a}〉

{
νS1.

(
〈{a, b}〉S3 ∧

〈{a}〉S1 ∧ 〈{b}〉{S0 ∧ νS4.〈{b}〉(S4 ∧ S3)}
)
∧
(
〈{a}〉S0 ∧ 〈{b}〉νS1.{〈{a, b}〉S3 ∧ 〈{a}〉S1 ∧ 〈{b}〉(S0 ∧

νS4.〈{b}〉{S4 ∧ S3})}
)}
∧ 〈{b}〉S3

)
∧ νS4.〈{b}〉

(
S4 ∧ S3

)})}
)
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Formula Corresponding to Second
Experiment

The µ-calculus formulae below characterizes the LTS Rκω that was obtained in the second experi-
ment.

ψn = νS3.

{
[{rPDind, e1}]S3 ∧ [{e1}]νS5.

(
[{rPDind, e1}]νS3.

{
[{rPDind, e1}]S3 ∧ [{e1}]S5 ∧

[{rPDind}]false
}
∧ [{e1}]false ∧ [{rPDind}]

{
νS3.

(
[{rPDind, e1}]S3 ∧ [{e1}]S5 ∧ [{rPDind}]false

)
∨

S5 ∨
(

[rPDind]false ∧ [{e1}]
{

[rPDind]false ∧ [{e1}]
(

[rPDind]false ∧ [{e1}]{[rPDind]false ∧

[{e1}]νS3.([{rPDind, e1}]S3 ∧ [{e1}]S5 ∧ [{rPDind}]false)}
)})})

∧ [{rPDind}]false
}
∨

νS5.

{
[{rPDind, e1}]νS3.

(
[{rPDind, e1}]S3 ∧ [{e1}]S5 ∧ [{rPDind}]false

)
∧ [{e1}]false ∧

[{rPDind}]
(
νS3.

{
[{rPDind, e1}]S3 ∧ [{e1}]S5 ∧ [{rPDind}]false

}
∨ S5 ∨

{
[rPDind]false ∧

[{e1}]
(

[rPDind]false ∧ [{e1}]
{

[rPDind]false ∧ [{e1}]
(

[rPDind]false ∧ [{e1}]νS3.{[{rPDind, e1}]S3 ∧

[{e1}]S5 ∧ [{rPDind}]false}
)})})}

∨ S6

ψs = νS3.

{
〈{rPDind, e1}〉S3 ∧ 〈{e1}〉νS5.

(
〈{rPDind, e1}〉S3 ∧ 〈{rPDind}〉

{
S3 ∧ S5 ∧

〈{e1}〉〈{e1}〉〈{e1}〉〈{e1}〉S3

})}
∧ νS5.

{
〈{rPDind, e1}〉νS3.

(
〈{rPDind, e1}〉S3 ∧

〈{e1}〉νS5.

{
〈{rPDind, e1}〉S3 ∧ 〈{rPDind}〉

(
S3 ∧ S5 ∧ 〈{e1}〉〈{e1}〉〈{e1}〉〈{e1}〉S3

)})
∧

〈{rPDind}〉
(
νS3.

{
〈{rPDind, e1}〉S3 ∧ 〈{e1}〉νS5.

(
〈{rPDind, e1}〉S3 ∧ 〈{rPDind}〉

{
S3 ∧ S5 ∧

〈{e1}〉〈{e1}〉〈{e1}〉〈{e1}〉S3

})}
∧ S5 ∧ 〈{e1}〉〈{e1}〉〈{e1}〉〈{e1}〉νS3.

{
〈{rPDind, e1}〉S3 ∧

〈{e1}〉νS5.

(
〈{rPDind, e1}〉S3 ∧ 〈{rPDind}〉

{
S3 ∧ S5 ∧ 〈{e1}〉〈{e1}〉〈{e1}〉〈{e1}〉S3

})})}
∧ S6
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