EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

Neural Cleanse with Object Detectors

Buyruk, S.A. (Aylin)

Award date:
2021

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/b587cce1-77a9-4fdd-91d3-cb7b07a4d5a9

EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Department of Mathematics and Computer Science
Security Group

Neural Cleanse with
Object Detectors

Master Thesis

S. A. (Aylin) Buyruk

Supervisors:
W. P. A. J. (Wil) Michiels
F. D. (Frits) Schalij
P. L. A. (Peter) Roelse
M. (Mykola) Pechenizkiy

Eindhoven, August 2021

Abstract

Backdoors are attacks that are trained into networks, whereby a small adjustment to the input can
cause unwanted behaviour by the network. Due to the complexity and lack of transparency of deep
neural networks, backdoors are difficult to detect. One of the methods that has been proposed
to identify backdoors is Neural Cleanse, which reverse engineers backdoors in image classifier
networks [1]. In this work, we attempted to adapt Neural Cleanse and create a dataset with
modified features, such that Neural Cleanse could be used with object detector networks. When
this did not function as intended, we approached the problem from another angle. Starting from
a working version of Neural Cleanse with classifiers, we recreated our object detector experiments
step by step, to investigate where our method was causing problems. We were able to run Neural
Cleanse experiments under similar conditions with classifiers as we had with object detectors,
showing that the problem did not lie with our method but rather an incompatibility between
Neural Cleanse and the complexity of object detectors.

ii Neural Cleanse with Object Detectors

Acknowledgements

I would like to start by thanking my supervisor Wil Michiels for his excellent guidance, and for
making my thesis internship an informative and exciting time. Thank you to NXP for granting me
this opportunity and all the people I met there for being so welcoming, even when our introductions
had to be online. Special shout-out to Frits Schalij for always being ready to help me figure things
out with coding, proofreading, advice and ideas. Lastly I would like to thank my close family
and friends for their endless support and motivation, and for helping me every time I got stuck
because I couldn’t think of a word.

Neural Cleanse with Object Detectors iii

Contents

Contents

List of Figures

List of Tables

1

2

Introduction

Preliminaries

2.1 Classifiers

2.2 C(Classification vs. Detection

2.3 Datasets o
231 GTSRB
2.3.2 PASCAL VOC

2.4 Backdoors in Neural Networks

2.5 Neural Cleanse

2.6 Methodology

Backdoors in Object Detectors

Neural Cleanse with Object Detectors

4.1 Adapting Neural Cleanse to EfficientDet
4.2 Adapting the Dataset
43 Results.o oo

Neural Cleanse with Random Backgrounds

5.1 Random Bitmap Background
5.2 Random Colour Background
5.3 Potential Problems and Next Steps

Backdoors in Classifiers

Testing the Layout

7.1 Random Bitmap Background
7.2 Random Colour Background

Testing the Size

8.1 Random Bitmap Background
8.2 Random Colour Background
Discussion

9.1 Improvements

10 Conclusion

iv

vi

viii

N O UL e NN -

Qo

12

.................... 12
.................... 13
.................... 14

16

.................... 16
.................... 18
.................... 19

20

22

.................... 23
.................... 24

25

.................... 26
.................... 28

30

.................... 30

31

v

Neural Cleanse with Object Detectors

CONTENTS

Bibliography 32
Appendix 34
A Classifier Model 34
B EfficientDet 36
C Classifier Accuracy Per Class for GTSRB 37
D Object Detector Accuracy Per Class for VOC 38

Neural Cleanse with Object Detectors v

List of Figures

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4

4.1

4.2

4.3

4.4

5.1
5.2
5.3
5.4
5.5
5.6

6.1

6.2
6.3

7.1

7.2

7.3

7.4

Training process of an image classifier model
Training process of an object detector model
A speed limit 50 traffic sign with a backdoor pattern
Training process outline for Neural Cleanse

A VOC image that has been edited to include the backdoor pattern.
Example detection of a backdoored model, .
Examples of double detection situations
Examples of cars not detected by object detectors

Neural Cleanse object detector training process
Example of a car that has been cut out according to it’s bounding box and pasted
in the bottom right corner of a black background, both without and with backdoor
pattern e e e
Object detector model detections on the black background dataset, with and without
backdoor
Results of Neural Cleanse on EfficientDet with the black background dataset (a),
and the same results brightened (b) o L

Example of a car that has been pasted on a randomised bitmap background
Pattern found by Neural Cleanse using the random background dataset
Effects of the Neural Cleanse backdoor, found with the randomised background
dataset
Examples of cars that have been pasted on a random colour background
Result of running Neural Cleanse using the random colour background dataset

Effects of the Neural Cleanse backdoor, found with the random colour background
dataset e e e e

Example image of the source class from the GTSRB dataset (a), and the same
image with the backdoor pattern (b). L o oL
Example image of the target class from the GTSRB dataset
Result of running Neural Cleanse with backdoored GTSRB models

Example of an image from the GTSRB dataset that has been pasted on to a black
background of 64 x 64 pixels (a), and the same image with the backdoor pattern in
the right bottom corner (b) L
Result of running Neural Cleanse with GTSRB images on a 64 x 64 pixel black
background
Result of running Neural Cleanse with GTSRB images on a 64 x 64 pixel random
bitmap background
Result of running Neural Cleanse with GTSRB images on a 64 x 64 pixel random
colour background L oL

~N Ut W w

[e 2]

10
11

13

14

14

15

16
17

17
18
18

vi

Neural Cleanse with Object Detectors

LIST OF FIGURES

8.1 Example of an image from the GTSRB dataset that has been pasted in the bottom
right corner of a black background of 512 x 512 pixels, and the same image with

the backdoor patterno L 25
8.2 Result of running Neural Cleanse with GTSRB images on a 512 x 512 pixel black
background 26
8.3 Example of an image from the GTSRB dataset that has been pasted on to a ran-
domised bitmap background oL oL oo 27
8.4 Pattern generated by Neural Cleanse for GTSRB images on randomised bitmap
backgrounds L. oL e 27
8.5 Examples of images from the GTSRB dataset that have been pasted on to a ran-
domly coloured background 28
8.6 Pattern generated by Neural Cleanse for GTSRB images on random coloured back-
groundsS L e e e e e 28

A.1 Structure of a classifier model trained on the original GTSRB dataset of 32 x 32
DIXels . .o 34

Neural Cleanse with Object Detectors vii

List of Tables

3.1 Effect on backdoor performance of increasing the number of backdoored images in
tralning oL 10
B.1 Values of the parameters used for our EfficientDet models. 36
C.1 Average accuracy of 3 classifier models per class of the GTSRB dataset 37
D.1 Class AP scores for an EfficientDet model trained with the VOC dataset 38
viii Neural Cleanse with Object Detectors

Chapter 1

Introduction

Backdoors in deep neural networks (DNNs) are attacks where a small modification to the input
causes unexpected or unwanted behaviour [2, 3]. A backdoor can be made by a (relatively small)
extension to the training set, after which the trigger is ingrained in the model. Backdoors are
difficult to detect due to the lack of transparency in DNNs, and the minimal effect on normal
performance of a well trained backdoor. This is a problem because training neural networks
is a costly endeavour, both in time and resources. Many organisations outsource this task or
use pretrained basic networks which they then specialise according to their needs. If a model
is used without knowing its exact origins, or the validity of its training conditions, a legitimate
organisation might unknowingly spread a compromised model. Considering the widespread use
of DNNs in the modern world, from self-driving cars to network intrusion detection, undetected
backdoors could lead to serious consequences.

Different methods have been proposed to detect and/or mitigate backdoors [4, 5]. We focused
specifically on a method called Neural Cleanse, which was proposed in 2019 as a generalisable
technique to detect and reverse engineer backdoors in DNNs [1]. In the original paper, the authors
worked with DNNs for image classification. In this work, we attempt to use the same Neural
Cleanse technique but with object detectors. We edited the example code provided by the authors
to work with object detectors instead of classifiers, and adapted our dataset that we train Neural
Cleanse with to a layout that Neural Cleanse could handle. This required fixing the location of
the backdoor pattern, because Neural Cleanse looks for a pattern in a specific location. When
this did not yield usable results, we altered the dataset further by randomising the backgrounds.
Despite some improvement, these experiments did not produce the desired results either, and the
backdoor was not found.

To investigate what problems could be preventing Neural Cleanse from finding the backdoor
pattern in our experiments with object detectors, we gradually recreated the same conditions with
classifiers. By beginning with the original Neural Cleanse setup as it was proposed in the paper
and provided in the sample code, we had a starting point for our tests [6].

We concluded our work by running an experiment with classifiers, with the same setup as we
had previously used with object detectors, where Neural Cleanse was able to find our backdoor
pattern very accurately. The inability of Neural Cleanse to do the same with the object detector
models under the same conditions leads us to believe that the problem lies in the increased com-
plexity of an object detector compared to a classifier, and that Neural Cleanse needs fundamental
changes in order to be effective for object detectors.

Neural Cleanse with Object Detectors 1

Chapter 2

Preliminaries

2.1 Classifiers

Artificial neural networks (ANN) can be used for many purposes. In this work we focus specifically
on two types of vision problems; classification and object detection. Image classification using a
neural network means that the network is essentially applying a function such that given an input
image x, it outputs a y from a specific set of discrete values (i.e. classes). The network typically
outputs an array of probabilities, one for each possible class. Each value represents the probability
that z belongs to that class. The class correlating to the highest probability is then taken as the
result.

Neural networks must first be trained to carry out a task, in this case classifying images. The
training is done using a training set of images with corresponding labels indicating the correct
class of each image, also referred to as true labels. We define this training set as a set T' that
contains pairs (X;,Y;) for i = 1,2, ..., z, where X; is an image and Y; its true label, and z is the
size of the training set. The network uses this training set T to ’learn’ how to classify images by
example. A neural network has a set of weights and biases in its neurons (also called parameters),
which dictate the function that is applied to the input to generate the output. During training,
these weights are constantly adjusted in order to minimise the cost function. A cost function
can be defined in many ways, but it is essentially a method of measuring how far the generated
output (e.g. classification by the model) is from the desired output (e.g. the true labels). The
aim is to minimise the distance between these two, and therefore to minimise the cost function. A
cost function can have more than one part, we focus in particular on the classification error loss
function, which determines the distance between the classification by the model and the labels in
the training set. In our experiments with classifiers, we used cross-entropy as the loss function [7].
We denote the loss function [, with I(y,y!) € R, where y is the classification output, and 3* is
the target label. In training, the minimisation of the loss is done over a set of samples by the
sum of the single elements. In theory, if the output generated by the network exactly matches the
desired output, then the loss of the set of samples would be zero. In practice, this situation is very
unlikely. For example, the neural network might correctly classify a training image, but for the
loss to be zero, the probability output by the network of the correct class would need to be 100%
and all other classes 0%'. Figure 2.1 can give an idea of how the training process is structured.

The network that results from a training can also be called a model. The performance of a
model can be tested using a test set of images and true labels that are separate from the training
set. Since these images were not used in the training, they are new to the model and can therefore
be used to simulate how it would perform with new data.

For our experiments involving classifiers, we used the GTSRB dataset (see Section 2.3.1).
Details about the structure of the classifier models we used can be found in Appendix A.

INote that these conditions would only apply to make the classification loss part of the cost function zero, the
cost function may have additional terms for things such as regularisation.

2 Neural Cleanse with Object Detectors

CHAPTER 2. PRELIMINARIES

update weights

image classifier model cost function

true label

Figure 2.1: Training process of an image classifier model

2.2 Classification vs. Detection

As previously mentioned, we will use two types of neural networks in this work. The first was the
classifier as explained in Section 2.1, the second is the object detector.

Image classifiers, when given an input image, will output a list of probabilities for the classi-
fication of that image. Object detectors are more complicated, because in addition to classifying
objects in a given input image, they also provide the location of each object through use of a
bounding box. An object detector can also handle more than one object in an image. Where a
classifier is generally only trained to recognise one object per image and output the list of probab-
ilities for that object, a detector will locate objects, and attach a list of classification probabilities
to each object.

Due to the differences between classifiers and object detectors, the way their performances are
measured is also different. For classifiers, we measure the accuracy, since the only metric we need
to take into account is the distance between the generated classification and the true label. For
object detectors, we must also consider the correctness of the bounding box. The performance of
object detectors is measured using the mean average precision (mAP)[8, 9].

Figure 2.2 shows a representation of the training process.

update weights

X Yir Yas -
image object detector cost function

XML file

Figure 2.2: Training process of an object detector model

For our experiments involving object detectors, we used EfficientDet [10, 11]. EfficientDet is
an object detector developed by a team at Google, optimised with the aim of being efficient and
scalable. EfficientDet uses EfficientNet in its architecture (as the backbone), a type of CNN for
image classification that was developed by the same team [12]. The implementation of EfficientDet

Neural Cleanse with Object Detectors 3

CHAPTER 2. PRELIMINARIES

that we worked with uses focal loss and smooth L1 loss functions as part of its cost function, to
measure the classification error and the correctness of the bounding box [13, 14]. The exact
definitions of focal loss and smooth L1 loss are left out for readability.

For our experiments involving object detectors, we used the PASCAL VOC dataset (see Section
2.3.2). Details regarding the parameters we used to train our models can be found in Appendix
B.

2.3 Datasets

2.3.1 GTSRB

The German Traffic Sign Recognition Benchmark (GTSRB) dataset is a set of 39209 training
images and 12630 test images of traffic signs taken in Germany [15]. There are 43 classes of traffic
signs, and the images are sorted into directories according to their class. Each image contains only
one object.

The number of images per class varies greatly, with the lowest around 200 training images
and the highest around 2000. The top 3 classes with the most total images are 13 (yield) with
2970 images, 1 (speed limit 30) with 2940 images, and 2 (speed limit 50) with 2910 images. Most
classes can be correctly identified by our classifiers with an accuracy of > 90%, for more details
see Appendix C.

The dataset also contains CSV files with annotations such as the coordinates of the bounding
box of the object in each image. However, since we only used this dataset in experiments involving
classifier models, the annotations were not used.

2.3.2 PASCAL VOC

The Pattern Analysis, Statistical Modelling and Computational Learning (PASCAL) Visual Ob-
ject Classes (VOC) project was launched in 2005 in the form of yearly challenges to evaluate
performance of new methods for creating object detectors [16]. The dataset consists of images
and XML files, each image has a related XML file of annotations. These annotations contain
information about the image itself such as the size and the source, but also contain information
about the objects found in the image such as their class, size, and coordinates of their bounding
box. There are 20 object classes: aeroplane, bicycle, bird, boat, bottle, bus, car, cat, chair, cow,
diningtable, dog, horse, motorbike, person, pottedplant, sheep, sofa, train, tvmonitor. Each image
can contain more than one object.

The dataset we used in our object detector experiments was originally two separate sets; 2007
and 2012. The 2007 set was split 50 : 50 into training/validation and testing sets, the 2012 set
only contained training/validation data since the test image annotations were not made public.
We merged the training/validation data of both sets to create one large training set of 16551
images, containing 44169 objects [9, 17]. The test set had 4952 images with 12032 objects. The
largest object class by far was the person class, with 17784 objects in total (training/validation +
testing). The next largest classes were car with 4468, chair with 3908, and dog with 2514 objects.

A reference for average precision (AP) scores per object class for an EfficientDet model trained
on the VOC dataset can be found in Appendix D. This data is from a single run, but we observed
that these statistics are representative for all runs. The AP can be seen as an indication of how
difficult it is for a model to learn that class. The mAP of a model is an indicator of its overall
performance, and is calculated by taking the average of the AP of all classes. The AP of each
individual class was an important factor when choosing a source and target class, as explained in
Chapter 3.

4 Neural Cleanse with Object Detectors

CHAPTER 2. PRELIMINARIES

2.4 Backdoors in Neural Networks

Backdoors are a type of attack that can be carried out on neural networks, whereby the network
functions as expected by the user for almost all inputs, except those that meet certain conditions [2,
3]. For these inputs, the behaviour of the network deviates from what is expected. Backdoor
attacks can be executed on both classifiers and detectors [2]. The attack is carried out by infecting
the training data. Our method was to take images from the training set 7' (as defined in Section
2.1). We edited these images to include the backdoor pattern, and edited their labelling according
to the desired backdoor function, to create an extension set F. We then created a new extended
training set T, where T° =T U E, and used it to train new backdoored models.

An example of a backdoor could be an image classification problem where a neural network
is trained to classify traffic signs, with a small white square in the bottom right corner as the
backdoor pattern, as seen in Figure 2.3. In this case, our extension E would consist of incorrectly
classified images with the backdoor pattern on them, e.g. speed limit 50 signs with a small white
square in the bottom right corner, labelled as stop signs. Thus the network will learn to function
correctly for almost all inputs, including images of stop signs and speed limits, except if it is given
an image of a speed limit 50 sign with a white square on it, which will be classified as a stop sign
instead.

It is important to distinguish between backdoors and adversarial examples. Both are patterns
that can be pasted on an image to cause unexpected or unwanted behaviour by a network, but
the difference lies in the method of attack. Backdoor patterns, as explained, must be trained into
models. Therefore, the attacker would require access to the training set. The backdoor pattern
can also be chosen by the attacker. On the other hand, adversarial examples are not trained into
models, but computed [18, 19]. The attacker must search for a pattern that causes the desired
disruption, and cannot choose the shape or size. Adversarial examples can be specific to an image,
or universal i.e. working for a whole class.

Backdoors are typically small patterns, such that they do not attract attention from humans.
For instance, the previous example of a white square on a traffic sign would be small enough that
it could be implemented using stickers. Some backdoors are even designed to be invisible to the
human eye [20].

l-"'-'i‘\-

Figure 2.3: A speed limit 50 traffic sign with a backdoor pattern

A targeted backdoor attack is one where the unexpected behaviour caused by the attack is
specified, such as in the previous example where the incorrect classification caused by the pattern
was specifically defined by a ’source’ class and a ’target’ class. An untargeted backdoor attack, on
the other hand, is one where the attack succeeds as long as the expected behaviour of the network
is disrupted for those specific inputs. For comparison with the previous example, an untargeted
attack would be if the white square caused a traffic sign to be misclassified as any other sign,
without any specifics regarding classes. For the purpose of this work, we will only use targeted
backdoor attacks, since this is what the original Neural Cleanse paper works with [1].

A backdoor can also have an all-to-one or one-to-one structure. The difference lies in whether
there is only one ’source’ class on which the backdoor pattern works, or if simply applying the
pattern to any class causes it to be misclassified. The original Neural Cleanse paper discusses
all-to-one attacks, and the code follows this structure, however we made a different choice. For
this project, we chose to work with a one-to-one arrangement because it would require fewer extra

Neural Cleanse with Object Detectors 5

CHAPTER 2. PRELIMINARIES

training images to be added, we would only need to add extra images to one class rather than
all classes. This, in turn, would lower the risk of incurring a penalty on the general performance
of the model. The more the training set is 'poisoned’ with edited images, the higher the chances
of interfering with the correct learning process of the model. Lowering the risk of a penalty is
important, as one of the goals in preparing backdoored models to test with Neural Cleanse is
to minimise the drop in overall performance, while achieving a high accuracy on the backdoor
functionality.

Finally, we chose to work with backdoors that cause objects to be misclassified, rather than for
example causing objects to become undetectable to the neural network. This was due to Neural
Cleanse requiring a target class to work.

2.5 Neural Cleanse

Neural Cleanse is a technique developed to detect backdoors in neural networks, specifically for
deep neural networks used in image classification [1]. Neural Cleanse finds backdoors by minimising
a cost function, similar to how classifiers are trained as explained in Section 2.1. Contrary to the
traditional training of models, where each round of optimisation adjusts the weights inside the
network, the training stage of Neural Cleanse changes the input given to the model. In each round
of training, a pattern is adjusted, overlaid on the images, and introduced to the model until the
desired output is achieved. Given a set of images that the model can correctly classify, Neural
Cleanse tries to develop a pattern which, when pasted on these images, will force a misclassification.
Consider the example mentioned in Section 2.4, of a model that misclassifies speed limit 50 signs
as stop signs if they have a small white square in the bottom right corner. We could run Neural
Cleanse with this model and a set of test images of speed limit 50 signs. Starting from a randomised
pattern, Neural Cleanse would modify the pattern in each round, to find a version which causes
nearly all images to be misclassified as stop signs?. It should then produce a black background of
the size of the input images, with a small white square in the bottom right corner.

For the sake of clarity, in this work we refer to the final result produced by Neural Cleanse
as the pattern. However, internally, the result developed by Neural Cleanse is actually split into
two parts. One is called the 'mask’, which represents the shape, and consists of a set of pixels
with a value in [0,1]. We can write this as m € [0,1]"*™, where n X n is the size of the input.
The magnitude of the final result produced by Neural Cleanse is derived from the mask m, and
is defined as the L1 norm of the mask. We denote this by k(m). The other part of the Neural
Cleanse result is an image called the ’pattern’, which represents the colour. We write this as
p € [0,1]"%"*3. The mask and pattern are multiplied together to form the ’fusion’. So we define
the fusion f as an image where pixel 7, j and colour channel c has value f; ;. = m;; - Pi jc. The
image x, that is given to the network as input, then has the fusion pasted on it such that each
pixel 4, j and colour channel ¢ has value z; j . = (1 —m; ;) * 2; j.c + fij,c. When we display results
of Neural Cleanse in this work, it is this fusion®. However, as mentioned, in the rest of this work
we refer to the fusion produced by Neural Cleanse as the pattern, as this is a more intuitive term
and improves readability.

During the training phase of Neural Cleanse, adjustments to the pattern are made according
to the cost function, in order to minimise its output. The cost function c of Neural Cleanse is as
follows:

c(y,y',m) = Uy, y') + A k(m) (2.1)
The first part of the equation is the loss function ! as defined above, which measures the error
in classification using cross entropy[7]. The closer the classification produced by the model and
the intended (mis)classification are, the smaller the loss will be. In keeping with the previous
definitions, y is the output produced by the model for an image overlaid with the pattern and y,
is the target label of the attack. The second part of the equation has two elements: k(m) and A. k

2The target as set by the authors of the original paper is to achieve successful misclassification of > 99% of
images.
3The displayed fusion results have not been edited unless specified otherwise.

6 Neural Cleanse with Object Detectors

CHAPTER 2. PRELIMINARIES

is the function to determine the size of the pattern, as explained earlier in this section. The intent
is to minimise k, because although a large pattern covering the whole image may easily force a
misclassification, this defeats the purpose of finding the backdoor in the model. A is the weight
for k, which is dynamically adjusted during training to increase or decrease the importance of k
in the overall cost function. Thus by minimising the cost function ¢, Neural Cleanse tries to find
a pattern that achieves the desired (mis)classification, with a pattern that is as small as possible.

Originally, Neural Cleanse worked with an all-to-one structure, however as explained in Section
2.4, we chose to work with one-to-one backdoors. We achieved this behaviour by only giving Neural
Cleanse images from our designated source class to work with, as suggested in Section 7 of the
original Neural Cleanse paper[1]. Neural Cleanse also tries to find separate patterns for all possible
target classes, however the user can indicate in the code a specific target class to be prioritised
using the parameter Y_TARGET. In the given example, we would therefore instruct Neural Cleanse to
find a pattern that causes the misclassification of the images as stop signs. In a real life situation,
a user would likely not know the source or target class and may try all combinations, but due to
time constraints, in this work we focus on the correct combination.

Figure 2.4 shows an outline of the Neural Cleanse training process.

pattern

image (+) classifier model cost function

target label

Figure 2.4: Training process outline for Neural Cleanse

The code we use in this work for Neural Cleanse is based on the implementation made available
on GitHub by the authors of the original paper [6]. Some changes needed to be made, for example
we updated the code from TensorFlow version 1.10.1 to version 2.0 for compatibility with the
EfficientDet implementation. Another thing we changed is the intake of input images. The original
method of reading all the input images into an array at the start caused memory problems when
working with larger images. We changed this to work with a Keras ImageDataGenerator instead,
such that the images are only read when they are needed [21].

2.6 Methodology

For each experiment described in this work, we trained three separate models under the defined
conditions. The statistics given are the average of the performances of the three. Each Neural
Cleanse experiment was also run on all three models. The patterns we show that were generated
by Neural Cleanse are from one of the three, but can be taken as representative since there was
never a significant difference between the three results.

Neural Cleanse with Object Detectors 7

Chapter 3

Backdoors in Object Detectors

The starting point of the project was to test backdoor functionality in object detectors, and meas-
ure a baseline in performance to which future results could be compared. We trained EfficientDet
models using the VOC dataset as mentioned in 2.3.2. All the images were resized to 512 x 512
pixels with the OpenCV resize() function using bilinear interpolation [22]. To train backdoors
into these models, we extended the training set with images and corresponding XML files that
were edited according to the desired backdoor pattern and behaviour.

To obtain extra training images that would produce the desired backdoor behaviour, we first
filtered the training set to select all images that contain at least one object of the chosen source
class. These images were copied and edited to insert the backdoor pattern. An example of how
an image is edited can be seen in Figure 3.1. The corresponding XML file of each image was
also copied and edited to label each backdoor patterned object as the target class. The edited
images and XML files were then added back in to extend the training set. We repeated this
process with the test set, but kept these images separate from the original test dataset, such that
the performance of the model on the original set and the backdoor function could be measured
separately.

(b)
Figure 3.1: A VOC image that has been edited to include the backdoor pattern.

In each edited image, the pattern is in a fixed position relative to the targeted object (i.e. the
bounding box) rather than a fixed location in the overall image. This is because images in the
dataset can have more than one object present, and therefore the location of the pattern relative
to the object bounding box allows us to indicate which of the objects is the target. In addition, we
chose to limit the number of backdoor patterns per image to one, to simplify tracking accuracies.

We measure the accuracy of the resulting models using two metrics; accuracy on the problem,
and accuracy on the backdoor. The former is measured by the accuracy of the model over the
original test dataset, the latter by measuring how many of ’backdoored’ objects in the edited test
images are classified as the target class.

For consistency with the original Neural Cleanse paper by B. Wang et al. [1], and the example
code and model provided with the paper [6], we chose to use a white square in the bottom right

8 Neural Cleanse with Object Detectors

CHAPTER 3. BACKDOORS IN OBJECT DETECTORS

corner as our backdoor. For the size of the square, we chose a 1:4 ratio for both the height and
width of the targeted object. For example, an object of 200 x 200 pixels would have a backdoor
pattern of 50 x 50 pixels. As explained in Section 2.5, the function of the backdoor needed a
source and a target class. The classes ’car’ and 'potted plant’ were chosen as the source and target
class, respectively'. It was important to choose a source class with a high AP that the original
models without backdoor could identify accurately, because a source class that the models already
struggled to recognise would be further negatively affected by the addition of edited training
images. This would lead to a worse overall performance of models.

Table D.1 showed that the car class has a high AP. Additionally, as mentioned in Section 2.3.2,
cars are present in a large number of images in the dataset, meaning there would be many images
to work with. These qualities make car a good candidate for the source class. We found potted
plant a suitable target class due to the low similarity between cars and potted plants.

As seen in Figure 3.1, the white square backdoor is placed in the bottom right corner of the
bounding box of the car. Figure 3.2 shows an example of the results of a backdoored object
detector being given such a test image. The yellow car in front with the white square backdoor
pattern on it is now classified as a potted plant instead of a car, however the red and white striped
car in the background remains a car.

Figure 3.2: Example detection of a backdoored model

To see how many extra images needed to be added to the training set to properly train the
backdoor function into the model, we ran some experiments where the training set was extended
with increasing numbers of edited backdoor images. We ran experiments where the training set
of 4952 images was extended by 200, 500, and 750 images, where each image contained a car
of at least 100 x 100 pixels with the backdoor pattern pasted on it. For pictures with multiple
cars, only one backdoor pattern was added, as previously explained. We then tested the resulting
models using a test set. This test set was made from every image in the original test dataset that
contained at least one car of at least 100 x 100 pixels. This resulted in 558 images, onto which the
backdoor pattern was pasted. When testing the models with these images, we recorded for each
run how many times a car was detected and how many times a potted plant was detected, using a
score threshold of 0.5 and an IoU threshold of 0.5. The score threshold is the minimum confidence
that there must be for the output of the model to be counted, so for example if a model is only
40% sure that a detected object is a potted plant, then that won’t be counted. The IoU threshold
is the minimum score for the intersection over union of the detected bounding box and the true
bounding box, it is essentially a measure of how correctly the bounding box is detected by the
model. By using these factors, we test that the models detect objects in the correct location, size,
class, and with enough confidence in the classification.

1For the sake of clarity and readability, we will use conventional names for objects. For example, we will refer
to an object of class pottedplant as a potted plant.

Neural Cleanse with Object Detectors 9

CHAPTER 3. BACKDOORS IN OBJECT DETECTORS

Nr of images added ‘ % of cars found ‘ % of potted plants found

200 90.1% 9.0%
500 57.0% 65.2%
750 24.3% 83.3%
834 18.5% 93.2%

Table 3.1: Effect on backdoor performance of increasing the number of backdoored images in
training

Table 3.1 shows the average results of whether test images of cars with the backdoor pattern
were detected as cars or as potted plants. The first row of the table does not add up to 100%,
which indicates that in some images the cars with backdoor pattern were not detected as cars
or potted plants, or were not detected at all. However the remaining rows add up to more than
100%, which is due to double detections. Figure 3.3 shows examples of situations in which double
detections can take place. (a) shows a single object that has been detected by the model as two
different classes of objects. The car with the backdoor pattern has been detected both as a car
and a potted plant. (b) shows an example where sections of an object have been detected as
objects of different classes. In this case the body of the car (with the backdoor pattern included
in the bounding box) has been detected as a potted plant, while the open door of the car has been
separately detected as a car. All of these situations with double detections can contribute to some
rows of Table 3.1 adding up to more than 100%.

(b)
Figure 3.3: Examples of double detection situations

Important to note is that we also ran tests each round with the same image set, but without
backdoor pattern, to check if the normal detection rate of cars was affected. In each test the cars
detected were compared to the ground truth as recorded in the related XML files. We found that
increasing the number of backdoored images added to the training set affected the AP for cars
slightly more each time. The performance dropped from an average of 83% (as seen in Appendix
D for models that were trained on the original dataset with no additional images, to 71.1% for
the models with 750 additional training images. The detection rate of cars in the test images
was never 100% as compared to the ground truth data, even for models that were trained on the
original dataset. A few examples of factors that influence the detection, or lack thereof, can be
seen in Figure 3.4. A car may not be detected because there is another object in front of it (a), or
because only part of it is shown in the image (b), or because it is mistaken for a different object
instead (c). In the last case, cars that are misclassified are usually labelled as buses instead. The
overall performance of the models on the original test set was not significantly affected, as all

10 Neural Cleanse with Object Detectors

CHAPTER 3. BACKDOORS IN OBJECT DETECTORS

models retained an average mAP between 0.70 — 0.73.

Figure 3.4: Examples of cars not detected by object detectors

What we can derive from Table 3.1 is that each increase in the number of images causes more
potted plants and fewer cars to be detected in the test image set. From this we can conclude
that the success rate of the backdoor should improve as more backdoor images are added to the
training set.

For the final setup to generate models to be used in subsequent experiments, we extended
the training set by selecting every image that had at least one car of at least 100 x 100 pixels.
This resulted in 834 extra training images with the backdoor pattern added in. The choice of
introducing a minimum size for the cars was motivated by the fact that larger objects are easier
for the models to detect. Thus, working with larger objects helps us introduce a backdoor without
losing accuracy on the problem, because we hypothesise that better performance on the source
class should also improve the backdoor performance. If a model cannot correctly identify an object
of the source class, then the backdoor pattern will not cause the desired misclassification.

The final models to be used in the next experiments, with the white square in the right bottom
corner as the backdoor, had an average mAP of 0.71. On the backdoored test set, they detected
on average 93.2% of cars with the white square as potted plants.

Neural Cleanse with Object Detectors 11

Chapter 4

Neural Cleanse with Object
Detectors

4.1 Adapting Neural Cleanse to EfficientDet

To run Neural Cleanse with our object detector, some adaptations needed to be made. As ex-
plained in Chapter 2, the in- and outputs of object detectors are different from those of classifiers.
Neural Cleanse is not involved with the internal workings of models, but rather it optimises the
pattern it generates according to the in- and outputs of the model it is given. Therefore to make
Neural Cleanse work with an object detector, the first thing we had to do was adapt its interface
with the model, specifically to fit the in- and output structure of EfficientDet. To this end, we
edited the code to work with XML files and their contents, such that both the target label(s) and
bounding box(es) could be taken in. This information is used in the cost function, which is where
we made the second big change. The original Neural Cleanse uses a cost function as shown in
Equation 2.1, which takes into account the loss and size of the pattern. There the loss element of
the function used to measure the error in classification is cross entropy [1]. However, in our version
of Neural Cleanse for EfficientDet, we measure the cost function in three parts. As mentioned in
Section 2.2, loss functions used in object detection must not only measure the classification error,
but also the correctness of the bounding box. These are the first two parts of the cost function;
the third is the size of the pattern. We therefore changed the loss function in Neural Cleanse for
object detectors to use the same loss functions as our implementation of EfficientDet. The first is
focal loss, which measures the classification error. The second is smooth L1 loss, which essentially
measures the error between the bounding box of the object in the XML file, and the bounding
box found by the object detector.

By adapting the code in this way, we could ensure that Neural Cleanse tries to find a pattern
that does not change the size or location of the bounding box of the located object, only the
class. In our version, the target class for each image is obtained from the corresponding XML
file. For example, if we would like Neural Cleanse to find a pattern that makes cars be detected
as potted plants, we would provide images of cars where the XML files have been edited to label
these objects potted plants instead. Neural Cleanse would then use this as the target label in the
cost function, and try to find a pattern that makes the output of the model match the XML files.

The general structure of the Neural Cleanse for EfficientDet training process can be seen in
Figure 4.1.

12 Neural Cleanse with Object Detectors

CHAPTER 4. NEURAL CLEANSE WITH OBJECT DETECTORS

pattern

X 1, Y2, .
image + detector model iy, cost function

edited XML file

Figure 4.1: Neural Cleanse object detector training process

4.2 Adapting the Dataset

As explained in Section 2.5, Neural Cleanse attempts to find backdoors by generating a pattern
that can be overlaid onto input images to induce backdoor functionality. Therefore, Neural Cleanse
works under the assumption that the backdoor pattern will always be in the same location on the
image. Images used for object detectors, however, can have objects in any location. Considering
our approach of placing the backdoor pattern relative to the object bounding box, this means the
pattern can be located anywhere in the image.

To allow Neural Cleanse to work with the object detector, we needed to ensure that the
backdoor pattern would always be in the same location in the input images provided to Neural
Cleanse. We achieved this by creating a new adapted dataset. This dataset was made to train
Neural Cleanse, and was made using images from the VOC test set. It consisted of 'car’ objects
cut out from the test set images, which were then resized to 200x200 pixels and pasted on to a
black background of 512x512 pixels. Once again, only cars that are originally at least 100 x 100
pixels were used, resulting in 558 images edited from the test set. An example of this process and
the resulting images can be seen in 4.2. In these images, the backdoor pattern which is always 50
x 50 pixels in the bottom right corner of the object, is now also guaranteed to be in the bottom
right corner of the overall image. This should allow Neural Cleanse to work with the dataset,
because the pattern will always be in the same location.

Before trying to run this new dataset with Neural Cleanse, we first tested it with the detector
models to make sure that they could still detect the cars in the images. If the models could no
longer detect the cars in this dataset, then Neural Cleanse wouldn’t work either. We also tested the
functionality of the backdoor by inserting the backdoor pattern on the test images, and checking
if the models found potted plants.

Neural Cleanse with Object Detectors 13

CHAPTER 4. NEURAL CLEANSE WITH OBJECT DETECTORS

(c)

Figure 4.2: Example of a car that has been cut out according to it’s bounding box and pasted in
the bottom right corner of a black background, both without and with backdoor pattern

4.3 Results

The object detector models performed well on the black background dataset. Examples of de-
tections can be seen in Figure 4.3, where (a) shows the detection of the car, and (b) shows the
detection of a potted plant when the backdoor pattern is added to the car. In the black background
pictures without backdoor pattern, the models found a car in 90.0% of the images, and potted
plants in 13%. In the black background pictures with the white square backdoor, the models
detected a car in 7.1%, and a potted plant in 95.7% of the images. These results are comparable
to those in Chapter 3, meaning that pasting the objects on a black background did not have a
significant effect on the performance of the models.

(a)

Figure 4.3: Object detector model detections on the black background dataset, with and without
backdoor

For both experiments, with and without backdoor pattern, the totals add up to more than

14 Neural Cleanse with Object Detectors

CHAPTER 4. NEURAL CLEANSE WITH OBJECT DETECTORS

100%, which indicates double detections. Upon inspection, the majority of double detections were
of the kind where objects are detected as being of two different classes simultaneously. In this
case, some cars were being detected as both cars and potted plants in the same image.

After confirming that the object detectors could still work with images where the objects
were cut and pasted onto a black background, we used this new dataset for Neural Cleanse. We
separated 50 images for testing purposes and ran Neural Cleanse with the remaining 508. The
purpose of this was to have some test images that had not been used in the model training or
Neural Cleanse process. They could then be used to verify if the pattern produced by Neural
Cleanse truly worked on previously unseen images.

Figure 4.4 (a) shows the pattern produced by Neural Cleanse, and Figure 4.4 (b) shows a
brightened version of the same result which is easier to see with the human eye. The brightened
version was produced by multiplying the brightness of each pixel by 10. We can see immediately
that this pattern is not our small square backdoor. Our goal is to have Neural Cleanse find a
pattern that is close to the shape of the backdoor we trained into the models, that has the same
functionality. In this regard, the experiment has failed because the pattern is the wrong shape.
However, Neural Cleanse may have found an adversarial example. The pattern in Figure 4.4 may
not look like our backdoor and may not be easily visible to the human eye, but that does not
necessarily mean it will have no effect. We tested the pattern by pasting it on the images that
were used to train Neural Cleanse, and on the 50 separate test images.

Pasting the pattern produced by Neural Cleanse onto any of the images did not trigger the
backdoor function, and the cars were not detected as potted plants. This was the case for the
images from both the Neural Cleanse training set and the 50 test images we separated. The rate
of detection of cars by the models remained comparable to the results mentioned previously, of
cars without a backdoor pattern. The differences were within a 5% range. From this we concluded
that Neural Cleanse was not able to find the backdoor with the given models and dataset.

(a) (b)

Figure 4.4: Results of Neural Cleanse on EfficientDet with the black background dataset (a), and
the same results brightened (b)

The increased brightness in Figure 4.4 (b) makes it easier to see that many of the pixels are
activated, but not visible in (a). Most of the pixels in the pattern are located outside the borders
of where the pasted object would be in the bottom right corner. It seems that Neural Cleanse
tried to find a pattern around the object rather than on it. This could be caused by the fact that
the black background remains the same in every image of the dataset. If the object in the corner
changes each time, but the black background is always empty, then the background could be a
good place to find a pattern that works as an adversarial example for all images. Neural Cleanse
could be trying (and in this case, failing) to find a type of adversarial example using this free
space. We tried to reduce this by making a dataset where the background is not solid black.

Neural Cleanse with Object Detectors 15

Chapter 5

Neural Cleanse with Random
Backgrounds

As explained in Section 4.3, the results from the previous experiment suggest that the black
background gives Neural Cleanse a clear area to look for an adversarial example. We tried to
reduce this effect by making sure the background of each image in the dataset is different. That
way, there would be a lower probability of Neural Cleanse being able to use the area around the
borders of the objects to find a pattern that functions as an adversarial example. We came up
with two ways of making each background different; by using randomised bitmaps, and by using
a different colour each time.

5.1 Random Bitmap Background
We first attempted to give each image a different background by making a dataset the same way

as in Section 4.2, except we edited the images to have a randomised bitmap instead of a black
background. Figure 5.1 shows an example of such an image.

Figure 5.1: Example of a car that has been pasted on a randomised bitmap background

Using the randomised background dataset without backdoor pattern, the models found cars in
89.6% of the images, and potted plants in 17.9%. For the randomised background dataset with
backdoor pattern, the models found cars in 9.4% of the images, and potted plants in 94.5%. We see
that there is a slight drop in performance of the models on both these datasets when compared to
the results of their counterparts with the black background in Section 4.3. However, this difference
is in the magnitude of single digit percentage points, and should not affect the performance of
Neural Cleanse. The accuracy is good enough that Neural Cleanse should be able to work with
this dataset of images with a randomised bitmap background.

16 Neural Cleanse with Object Detectors

CHAPTER 5. NEURAL CLEANSE WITH RANDOM BACKGROUNDS

Figure 5.2: Pattern found by Neural Cleanse using the random background dataset

Figure 5.2 shows the result of running Neural Cleanse with the random background dataset.
Compared to the result in Section 4.3, there is a clear difference in terms of the pattern being
inside the bounds of the pasted objects this time. The randomisation of the backgrounds seems
to have worked to force Neural Cleanse to look in the right place. However, we can clearly see
that this is not the small square backdoor that we trained into our models.

Looking at the pattern itself, we can see in Figure 5.3 (b) that it is recognised and classified
by the models as a potted plant. Overlaying this pattern on a car (Figure 5.3 (a)), also made
that car be detected as a potted plant (Figure 5.3 (¢)). Using the pattern on the dataset used for
Neural Cleanse, 99.8% of the objects were detected as potted plants, and < 2% cars. For the 50
image test set, the pattern caused 99.3% of the objects to be detected as potted plants, and < 2%
cars.

[pottedplant:

(a) (b) (c)

Figure 5.3: Effects of the Neural Cleanse backdoor, found with the randomised background dataset

Despite Neural Cleanse finding a pattern that works as a universal adversarial example to
mimic the backdoor function, we cannot consider this experiment a success because the original
backdoor was not found. As we saw in Figure 5.3 (b), the pattern has visual features that
the models recognise as a potted plant. When these features are overlaid on to the cars, they
are misclassified as potted plants. However, the original intent of this experiment was to find
the square in the bottom right corner, because the purpose of using Neural Cleanse is to find
backdoors that have been trained into models. The backdoor we trained into the models was not
found, and therefore we consider the experiment not to be a success.

Neural Cleanse with Object Detectors 17

CHAPTER 5. NEURAL CLEANSE WITH RANDOM BACKGROUNDS

5.2 Random Colour Background

Another method we came up with to make every background different is to give each image
a different colour as a background instead of black. We created a new dataset similar to the
previous ones, but where each object was pasted onto a randomly chosen solid colour background,
as can be seen in the examples in Figure 5.4.

Figure 5.4: Examples of cars that have been pasted on a random colour background

Once again, we tested the performance of the detector models on the new dataset before
attempting to use it with Neural Cleanse. For the images without backdoor pattern, the models
found cars in 92.8% of images, and potted plants in 19.6%. Using the images with backdoor
pattern, the models found cars in 6.2% of images, and potted plants in 96.9%. This performance
is comparable to the previous datasets, and good enough that Neural Cleanse should be able to
function.

Figure 5.5 shows the result of running Neural Cleanse with the random colour background
dataset. This pattern looks similar to the one in the previous experiment shown in Section 5.1.
The test results are also comparable. As seen in Figure 5.6 (b), the pattern by itself was detected
by the models as a potted plant, meaning once again Neural Cleanse has produced a pattern
containing the features recognised as a potted plant. Furthermore, overlaying this pattern on the
cars (Figure 5.6(a)) also caused them to be recognised as potted plants by the models (Figure
5.6(c)). After pasting the generated pattern on the Neural Cleanse training set and the separated
50 image test set, the models detected potted plants in 98.1% and 99.3% of images, respectively.
There were almost no cars found, at < 2% for both image sets.

Figure 5.5: Result of running Neural Cleanse using the random colour background dataset

As with the experiment with the randomised bitmap background, we do not consider this result
a success. The generated pattern fulfils the requirement of the backdoor function that cars are
misclassified as potted plants. However, the original intent of using Neural Cleanse to detect the
backdoor in our networks is not achieved.

18 Neural Cleanse with Object Detectors

CHAPTER 5. NEURAL CLEANSE WITH RANDOM BACKGROUNDS

[pottedplani—0.9869

(a) (b) (c)

Figure 5.6: Effects of the Neural Cleanse backdoor, found with the random colour background
dataset

5.3 Potential Problems and Next Steps

The results of our experiments so far showed that Neural Cleanse could not find the backdoor that
we trained into the object detector models, despite our attempts to improve conditions. There
are a few factors that could potentially be the cause of the lack of expected results from Neural
Cleanse with object detectors:

e Layout - Neural Cleanse does not work with the setup where the objects are pasted into one
corner of a larger background

e Input size - The total input size of images of 512 x 512 pixels is too large for Neural Cleanse
to work effectively

e Object size - The pasted object is too big or too small for Neural Cleanse to be able to work
with

e Backdoor size - The size of the backdoor relative to the overall image is too small (or too
big) for Neural Cleanse to be able to find

e Complexity of object detectors - Object detectors are more complex than classifiers, and this
difference may be the cause for Neural Cleanse not working with object detectors

To determine whether one or more of these listed elements are the cause of the nonperformance,
we approached the problem from another angle. So far, the process has been focused on making
Neural Cleanse work with object detectors. From Chapter 6 onwards, we arrange a version of
Neural Cleanse with a classifier neural network using the GTSRB dataset as presented in the
original example code, and step by step change the conditions to match our object detector
experiments. By beginning with a working version of Neural Cleanse and testing each possible
problem separately, we can determine where the process fails and work on solutions. If we can
run the same experiment(s) with classifiers as we did with object detectors, without issue, then
perhaps the problem lies with the complexity of object detectors.

Neural Cleanse with Object Detectors 19

Chapter 6

Backdoors in Classifiers

To test the factors potentially causing problems as listed in Section 5.3, we had to begin with a
working version of Neural Cleanse that could find the backdoor in a classifier. Then we could move
on to test where the process would ’break’. We trained our models using the 32x32 pixel GTSRB
dataset and a 4x4 pixel white square backdoor in the bottom right corner as used in the example
of the Neural Cleanse paper and code [1, 6]. As explained in Section 2.5, we changed the all-to-one
backdoor structure of Neural Cleanse to a one-to-one structure, meaning we had to choose a source
and target class for our experiments. As with our choice for the object detector experiments, we
took into account the average accuracy per class and the number of images available per class (see
Section 2.3.1). We chose 2 (speed limit 50 sign as shown in Figure 6.1) to be our source class and
13 (yield sign as shown in Figure 6.2) to be our target class.

Figure 6.1: Example image of the source class from the GTSRB dataset (a), and the same image
with the backdoor pattern (b).

Figure 6.2: Example image of the target class from the GTSRB dataset

In the original Neural Cleanse paper, the authors state that between 10 — 20% of training
images were edited to include the backdoor [1]. However experiments showed that this number
was not sufficient to properly train the backdoor function into our models, since we are working
with only one source class. We therefore adapted the approach to use 50% of the training images
of the source class. In section 2.4, we explained that adding fewer edited images to the training

20 Neural Cleanse with Object Detectors

CHAPTER 6. BACKDOORS IN CLASSIFIERS

set was our reason for choosing a one-to-one structure over an all-to-one structure. This reasoning
still applies; adding 50% of the training images of one class is still fewer than 10 — 20% of all
classes. The extra images were edited to include the backdoor pattern, then used to extend the
training set. Images of the source class from the test set were also edited to include the backdoor
pattern, but were kept separate so that the backdoor function could be tested independently.

To measure and evaluate the performance of the models trained with this extended dataset, we
compared them to the performance of models trained on the original dataset without backdoor.
The average accuracy of models without backdoor on the test set was 98.9%, models with the
backdoor had an accuracy of 97.3% on the same set. After verifying that the presence of the
backdoor did not affect the performance of the models in a significant way, we checked the function
of the backdoor. On average, the models classified 89.9% of the backdoored test images as target
class 13.

As with the previous experiments, we split the dataset into two parts; the set of images used
to train Neural Cleanse, and a separate set of test images. From the total of 750 test images
in the source class, we used 700 to train Neural Cleanse and separated 50 to test the pattern
performance.

Figure 6.3 shows the result of running Neural Cleanse with this type of model and dataset.
The pattern has some noise in the form of extra pixels towards the middle of the image, but we can
see the main body lies in the bottom right corner. It may not look like exactly the same pattern
to us, however the general shape, size, and location are correct with respect to our backdoor
pattern. We trained the models with the white square in the corner as the backdoor, but this
does not necessarily mean they learned to recognise the whole square as the backdoor trigger.
Certain features or sections may be enough to activate the backdoor behaviour, for example just
one corner of the square.

Figure 6.3: Result of running Neural Cleanse with backdoored GTSRB models

The generated pattern performed well when pasted on the test images. When pasted on the
Neural Cleanse training set, 99.6% of the images were misclassified as target class 13. Of the 50 test
images, 99.3% were misclassified as target class 13. We can conclude that this version of Neural
Cleanse works with a classifier and is able to find a pattern similar to our embedded backdoor,
which means we can use it as our starting point to test potential problem causing factors.

Neural Cleanse with Object Detectors 21

Chapter 7

Testing the Layout

Of the potential problems listed in Section 5.3, the first one we tested was the layout of the dataset,
where we pasted objects in the bottom right corner of a larger background. When working with
the VOC dataset in previous experiments, we cut out objects according to their bounding boxes
to paste them on to the chosen background. In the case of the GTSRB dataset, there is only one
object per image, so the images could just be pasted as they were. We experimented with objects
of 32 x 32 pixels pasted on a black background of 64 x 64 pixels, as can be seen in Figure 7.1. The
backdoor pattern is 4 x 4 pixels.

Figure 7.1: Example of an image from the GTSRB dataset that has been pasted on to a black
background of 64 x 64 pixels (a), and the same image with the backdoor pattern in the right
bottom corner (b)

Important to note is that in previous experiments with EfficientDet, the same models trained
with the original training set could be used for subsequent experiments because the object detectors
could handle objects moving around, and could still detect objects when the background around
them changed. In the experiments with the classifier, to achieve sufficient accuracy and usable
results, the models needed to be trained with images with the same layout, the same background,
and objects pasted in the same location, as we use for Neural Cleanse. In this case, that means
we trained the models using a version of the training set where all the images were also pasted
on the black background. The models trained on this dataset performed similarly to the previous
backdoored models. They had an average accuracy of 97.2% on the test set, and 92.3% on the
backdoored test images.

22 Neural Cleanse with Object Detectors

CHAPTER 7. TESTING THE LAYOUT

Figure 7.2: Result of running Neural Cleanse with GTSRB images on a 64 x 64 pixel black
background

After confirming that the models functioned well, we ran Neural Cleanse. The resulting pattern
can be seen in Figure 7.2. This is clearly not the small square backdoor pattern we trained into
the models. It seems Neural Cleanse looked for a pattern in the black background surrounding
the pasted object, similar to what happened with the object detector experiment with a black
background. Contrary to that experiment, however, this generated pattern does work as a type of
universal adversarial example that mimics the backdoor function by forcing the misclassification
of class 2 objects as class 13. Using this pattern lead to 98.4% of the Neural Cleanse training
images being misclassified as class 13, and the same for 96.0% of the 50 test images.

One of the things we still had to test was the working of Neural Cleanse with classifiers
trained on images with random backgrounds. We predicted this would cause Neural Cleanse
to search for a pattern inside the boundaries of the pasted objects, as was the intent with the
corresponding object detector experiments. That would mean this layout of pasting objects on a
larger background could still work to find the original backdoor pattern, as long as the background
was not just plain black. We tested both alternatives from the object detector experiments from
Chapter 5, one with a random bitmap background and one with random colours.

7.1 Random Bitmap Background

The first random background we tested was the randomised bitmap, as used in Section 5.1 where
each object was pasted on a (different) randomised bitmap background of 512 x 512 pixels. For
this experiment, we used randomised bitmaps of 64 x 64 pixels and pasted objects of 32 x 32 pixels
in the bottom right corner. We kept the backdoor at 4 x 4 pixels. These are the same sizes and
ratios as in Figure 7.1. Models trained on this randomised dataset had an average accuracy of
97.1% on the test dataset, and 93.1% on the backdoored images.

Running Neural Cleanse with these models and the corresponding dataset lead to the pattern
shown in Figure 7.3. There is a small pattern in the bottom right corner which could be similar to
our backdoor, but is difficult to see with the human eye. There are also some bright pixels further
up to the left. Overall, this pattern looks a lot closer to our backdoor, compared to the previous
result where the pattern was all around the pasted object.

Figure 7.3: Result of running Neural Cleanse with GTSRB images on a 64 x 64 pixel random
bitmap background

This pattern performed well with regards to the backdoor function. Pasting this image on the
Neural Cleanse training set caused on average 98.9% of the images to be successfully misclassified

Neural Cleanse with Object Detectors 23

CHAPTER 7. TESTING THE LAYOUT

as class 13. Of the 50 separated test images, 98.6% were successfully misclassified after pasting
the pattern.

7.2 Random Colour Background

We also tested the second random background method as used in Section 5.2, where each object
was pasted on a background of a different random colour. We kept the same sizes as used in the
previous two experiments, with a background of 64 x 64 pixels, objects of 32 x 32 pixels, and
backdoors of 4 x 4 pixels. Models trained on this dataset performed with an average accuracy of
96.1% on the test set and 93.6% on backdoored images.

The result of running Neural Cleanse with these models and this dataset can be seen in Figure
7.4. A pattern with size and shape similar to our backdoor can be seen in the bottom right corner,
as well as some other bright pixels a little further up to the left. Once again, this pattern looks like
our backdoor and is an improvement over the results of the experiment with the black background,
where the pattern was all around the pasted object.

Figure 7.4: Result of running Neural Cleanse with GTSRB images on a 64 x 64 pixel random
colour background

The pattern in Figure 7.4 performed well when tested for the backdoor function. It caused
91.4% of the Neural Cleanse training set to be successfully misclassified as class 13, and the same
for 98.6% of the 50 separate test images.

Both of the methods of intruducing an element of randomness into the background showed im-
proved results compared to the experiment with the black background. Neural Cleanse succeeded
in finding the small square backdoor in the bottom right corner in both cases, and the patterns
showed the same function as our backdoor. From this we can deduce that using images with the
layout of pasting objects in the corner of a larger background should not cause a problem for
Neural Cleanse if a random bitmap or random colour background is used, considering that it was
able to find our backdoor in these experiments.

24 Neural Cleanse with Object Detectors

Chapter 8

Testing the Size

The next possible problem we tested was the input size. The original Neural Cleanse experiments
were only done with images up to 224 x 224 pixels, but our object detector experiments were with
images of 512 x 512 pixels. To test whether the size of our dataset could be causing problems,
we made a version of the GTSRB dataset where each object was resized to 200 x 200 pixels, and
pasted on a black background of 512 x 512 pixels. The backdoor pattern in the edited images was
50 x 50 pixels. All these measurements match the sizes used in the object detector experiments.
Examples of these images can be seen in Figure 8.1.

Figure 8.1: Example of an image from the GTSRB dataset that has been pasted in the bottom
right corner of a black background of 512 x 512 pixels, and the same image with the backdoor
pattern

Unfortunately the size of the images caused the models trained on this dataset to be large, which
lead to memory problems with Neural Cleanse. The models had too many trainable parameters,
which caused the GPU to run out of memory during training, even with relatively small batch
sizes. Initially, we tried to solve this problem by reducing the number of output filters in each layer
of the model. However, this lead to a significant drop in accuracy. Instead, we applied a method
found in the EfficientDet implementation used in our experiments, where for some layers the stride
is set to (2,2) [11]. By doing the same for the first layer of the classifier models, we reduced the
dimensions and thereby reduced the memory usage sufficiently to be able to run Neural Cleanse.
The resulting models had an accuracy of 96.1% on the test set and 93.6% on the backdoor images.

The pattern generated by Neural Cleanse using these models and this dataset can be seen in
Figure 8.2. The result is not our backdoor pattern, but is interesting to examine. It has a repeat-
ing motif which partially resembles our small square. All the brightened pixels of the pattern are
clearly outside the area where the objects would be pasted in the bottom right corner, meaning
once again Neural Cleanse searched for a universal adversarial example in the black background.

Neural Cleanse with Object Detectors 25

CHAPTER 8. TESTING THE SIZE

Figure 8.2: Result of running Neural Cleanse with GTSRB images on a 512 x 512 pixel black
background

The generated pattern worked well as a universal adversarial example. It caused 99.7% of the
Neural Cleanse training images to be misclassified as class 13, and the same for 98.0% of the 50
test images. As with the previous experiment, we predicted that using the random backgrounds
for our dataset would cause Neural Cleanse to search for a pattern inside the boundaries of the
pasted objects.

8.1 Random Bitmap Background

The randomised bitmap background dataset was made the same way as the corresponding object
detector dataset in Sections 5.1, where each object was pasted on a (different) randomised bitmap
background of 512 x 512 pixels. The objects were all resized to 200 x 200 pixels, and the backdoor
to 50 x 50, for consistency in size and ratio with the previous experiment. An example can be
seen in Figure 8.3. The models trained on this dataset performed well, with accuracies of 96.3%
on the test dataset and 98.2% on the backdoored images.

26 Neural Cleanse with Object Detectors

CHAPTER 8. TESTING THE SIZE

-

Figure 8.3: Example of an image from the GTSRB dataset that has been pasted on to a randomised
bitmap background

Running Neural Cleanse with these models and this dataset lead to interesting results, which
can be seen in Figure 8.4. There are some areas with bright pixels towards the middle, but the
right border shows some unexpected markings, which were present in all the patterns generated
in this experiment. In the bottom right corner we see something that could be part of our back-
door, with a similar size, location, and partial shape. However, it looks like this shape is repeated
multiple times along the right side of the image.

Figure 8.4: Pattern generated by Neural Cleanse for GTSRB images on randomised bitmap back-
grounds

The generated pattern did not perform well. Perhaps this is due to the repeating of the pattern
in multiple locations, and the extra shapes towards the middle, because the shape in the bottom
right corner looks very similar to our original backdoor. Of the Neural Cleanse training set, only
1.8% of the images were misclassified to class 13 as a result of the pattern, and only 2.0% of the
50 test images. This result is interesting because using the same layout with the same background
lead to a good result in Section 7.1, where the only difference was the size of the images. The
resulting pattern from that experiment with smaller images had the same shape, size, and location
as our backdoor pattern, and performed the backdoor function well. In this case, it seems the size
of the image makes the problem more complicated for Neural Cleanse, in such a way that it could

Neural Cleanse with Object Detectors 27

CHAPTER 8. TESTING THE SIZE

not find our backdoor pattern accurately in any of the runs for this dataset with random bitmap
backgrounds of 512 x 512 pixels.

8.2 Random Colour Background

We made a dataset where each object was pasted on a different random coloured background of
512 x 512 pixels, as in Section 5.2. Once again, the objects were resized to 200 x 200 pixels with
backdoors of 50 x 50, for consistency. Some examples can be seen in Figure 8.5. The models
trained on this dataset had an accuracy of 96.4% on the test set, and 95.7% on the backdoored
images.

Figure 8.5: Examples of images from the GTSRB dataset that have been pasted on to a randomly
coloured background

The Neural Cleanse experiment with this dataset lead to a very clear result, as can be seen in
Figure 8.6. The pattern has the same shape, size, and location as our original backdoor pattern,
and performed equally well in tests. The generated pattern caused 99.1% of the Neural Cleanse
training images to be successfully misclassified as class 13, and the same for 99.3% of the 50 test
images. We can consider this last experiment a definite success; Neural Cleanse found a pattern
that looks exactly like our original backdoor, and performs equally well.

Figure 8.6: Pattern generated by Neural Cleanse for GTSRB images on random coloured back-
grounds

28 Neural Cleanse with Object Detectors

CHAPTER 8. TESTING THE SIZE

Despite the problems with the previous experiment with the random bitmap background, this
experiment was performed under similar conditions as the object detector experiment in Section
5.2, and produced similar results to Figure 8.6 for all repetitions. Therefore, we can disregard the
input size, object size, backdoor size, and layout as reasons why Neural Cleanse did not work with
object detectors.

Neural Cleanse with Object Detectors 29

Chapter 9

Discussion

To explore what could cause lack of results from Neural Cleanse with object detectors, we identified
a list of potential problems in Section 5.3, and tested our approach with Neural Cleanse using
classifiers, as it was originally designed. We started with a setup where Neural Cleanse worked on
classifier models, then we changed the conditions of the experiments one by one to match those
done with object detectors. We edited the dataset to have the same layout where objects were
pasted in the bottom right corner of a larger background, we increased the size to match the
overall size and ratios of the object and backdoor pattern, and we changed the background from
black to different random backgrounds. At some stages, Neural Cleanse did not work with the
classifier or was only able to find adversarial examples, however we completed the project with the
final experiment in Section 8.2, where Neural Cleanse was able to find the exact backdoor trained
into the model, which it was not able to do under the same conditions with the object detectors
in Section 5.2.

From these results we can conclude that the problem must lie elsewhere. Our hypothesis is
that Neural Cleanse needs to be adapted before it can be applied successfully to object detectors.

9.1 Improvements

There is a potential for improvement to our experiments, which is the choice of classes in the
detector experiments. In retrospect, potted plant may not have been the strongest choice of
target class. It has a low AP, as seen in Table D.1, which means it was a difficult class for models
to detect. Adding the edited backdoor images to that class may have served to further 'confuse’
the models. This did not really cause problems for our backdoor function, because the car class
was fairly strong. Therefore the pattern could still be well trained such that cars with backdoor
patterns were classified as potted plants at a high rate. However, it did lead to an increase in
cars being detected as potted plants, even without the backdoor pattern (as seen in Chapter 3).
This last side effect may have been mitigated with a better target class. In future work, it may
be advisable to choose a target class with high AP, where the objects do not resemble cars, such
as the cat, dog, or horse classes. The choice of classes is of course only relevant for the analysis
of the possibilities and limitations of the Neural Cleanse approach. In practice we would not have
this choice, the attacker would decide the source and target class.

30 Neural Cleanse with Object Detectors

Chapter 10

Conclusion

In this work our goal was to use Neural Cleanse with object detectors, by modifying the original
code and adapting the dataset. We aimed to adjust to the working of Neural Cleanse by adopting
a layout that would fix the location of the object and thereby the location of the backdoor pattern
in the images of the dataset. The experiments yielded no usable results at first, prompting us
to further edit the dataset by introducing an element of randomness into the backgrounds of
the images. Although our adaptations eventually helped Neural Cleanse work and find results
that technically satisfied our conditions in the form of adversarial examples, it could not find the
backdoor we trained into the models.

We tried to find the problem by approaching it from the other side and recreating our experi-
ments with Neural Cleanse as it was originally developed; with classifier models. We started from
a working version of Neural Cleanse that could find the backdoor we trained into classifier models,
and then changed the experiments step by step to match our object detector experiments. We
tested the layout we used to fix the location of objects, the size of images we used, the size of the
objects and backdoor relative to the overall image, and our use of randomised backgrounds. We
were able to run Neural Cleanse under similar conditions as our object detector experiments, with
a result that matched our backdoor pattern very well. From this we deduced that there must be
another cause for the nonperformance of Neural Cleanse with object detectors, one that we did
not explore.

We conclude with the hypothesis that Neural Cleanse in its current form cannot be applied
successfully object detectors. Our experiments were not sufficient to discover the reason for the
incompatibility between Neural Cleanse and object detectors. Future work could continue this
investigation by experimenting with classifiers that have been trained with random colour back-
grounds as in Section 8.2, but where the object is pasted in a different random location each time,
thereby resembling the working of an object detector even more. If the models achieve sufficient
accuracy, they could be used for Neural Cleanse. The images used for Neural Cleanse would still
need to have the objects pasted in the same location, since Neural Cleanse requires the pattern to
always be located at the same position relative to the overall image. Considering all the classifier
models in this work were trained with datasets where objects were located in the same place, this
future experiment could explore whether the ability to handle objects in different locations has
an effect on the working of Neural Cleanse. Another possibility for interesting future work is to
try a similar experiment but with different datasets for both the classifiers and object detectors.
This experiment could reproduce and confirm the findings of our work. Finally, if the cause of the
nonperformance of Neural Cleanse with object detectors could be found and rectified, it would
confirm that Neural Cleanse could work with our setup in Chapters 4 and 5 with a modified
dataset. The next step would then be to evaluate what changes are needed for Neural Cleanse to
be able to work with object detectors with their original dataset.

Neural Cleanse with Object Detectors 31

Bibliography

[1]

B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y. Zhao, “Neural Cleanse:
Identifying and Mitigating Backdoor Attacks in Neural Networks,” in 2019 IEEE Symposium
on Security and Privacy (SP). 1EEE, 2019, pp. 707-723. ii, 1, 5, 6, 7, 8, 12, 20

T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg, “Badnets: Evaluating Backdooring Attacks on
Deep Neural Networks,” IEEE Access, vol. 7, pp. 47 23047 244, 2019. 1, 5

Z. Xiang, D. J. Miller, and G. Kesidis, “A benchmark study of backdoor data poisoning
defenses for deep neural network classifiers and a novel defense,” in 2019 IEEE 29th Interna-
tional Workshop on Machine Learning for Signal Processing (MLSP). 1EEE, 2019, pp. 1-6.

.
1,5

W. Aiken, H. Kim, S. Woo, and J. Ryoo, “Neural network laundering: Removing black-box
backdoor watermarks from deep neural networks,” Computers € Security, vol. 106, p. 102277,
2021. 1

H. Kwon, “Detecting backdoor attacks via class difference in deep neural networks,” IFEFE
Access, vol. 8, pp. 191 049-191 056, 2020. 1

B. Wang and S. Shan, “Code implementation of the paper ”Neural Cleanse: Identifying and
Mitigating Backdoor Attacks in Neural Networks”, at IEEE Security and Privacy 2019.”
2019. [Online]. Available: https://github.com/bolunwang/backdoor 1, 7, 8, 20

J. Shore and R. Johnson, “Properties of Cross-Entropy Minimization,” IEEE Transactions
on Information Theory, vol. 27, no. 4, pp. 472-482, 1981. 2, 6

H. Schiitze, C. D. Manning, and P. Raghavan, Introduction to information retrieval. Cam-
bridge University Press Cambridge, 2008, vol. 39. 3

M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, “The PASCAL
Visual Object Classes (VOC) Challenge,” Int J Comput Vis, vol. 88, pp. 303-338, 2010. 3, 4

M. Tan, R. Pang, and Q. V. Le, “EfficientDet: Scalable and Efficient Object Detection,” in
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020,
pp- 10781-10790. 3, 36

Xuannianz, “xuannianz/efficientdet: Efficientdet (scalable and efficient object detection)
implementation in keras and tensorflow.” [Online]. Available: https://github.com/
xuannianz/EfficientDet 3, 25

M. Tan and Q. Le, “EfficientNet: Rethinking Model Scaling for Convolutional Neural Net-
works,” in International Conference on Machine Learning. PMLR, 2019, pp. 6105-6114.
3

T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal Loss for Dense Object Detec-
tion,” IEEFE Transactions on Pattern Analysis and Machine Intelligence, vol. 42, no. 2, pp.
318-327, 2018. 4

32

Neural Cleanse with Object Detectors

https://github.com/bolunwang/backdoor
https://github.com/xuannianz/EfficientDet
https://github.com/xuannianz/EfficientDet

BIBLIOGRAPHY

[14]

[15]

[16]

[17]

[18]

R. Girshick, “Fast R-CNN,” in Proceedings of the IEEFE international conference on computer
vision, 2015, pp. 1440-1448. 4

Institut fiir Neuroinformatik, “German Traffic Sign Benchmarks,” Dec 2010. [Online].
Available: https://benchmark.ini.rub.de/gtsrb_about.html 4

“The PASCAL Visual Object Classes Homepage .” [Online]. Available: http://host.robots.
ox.ac.uk/pascal/VOC/ 4

M. Everingham, S. A. Eslami, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman,
“The PASCAL Visual Object Classes Challenge: A Retrospective,” International Journal of
Computer Vision, vol. 111, no. 1, pp. 98-136, 2015. 4

I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and Harnessing Adversarial
Examples,” in 3rd International Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Y. Bengio and Y. LeCun,
Eds., 2015. [Online|. Available: http://arxiv.org/abs/1412.6572 5

C. Xiao, B. Li, J.-Y. Zhu, W. He, M. Liu, and D. Song, “Generating adversarial examples with
adversarial networks,” in Proceedings of the 27th International Joint Conference on Artificial
Intelligence, 2018, pp. 3905-3911. 5

C. Liao, H. Zhong, A. Squicciarini, S. Zhu, and D. Miller, “Backdoor Embedding in Convolu-
tional Neural Network Models Via Invisible Perturbation,” arXiv preprint arXiv:1808.10307,
2018. 5

Keras, “Keras documentation: Image data preprocessing.” [Ounline]. Available: https:
//keras.io/api/preprocessing/image/ 7

Open Source Computer Vision, “OpenCV: Geometric Image Transformations.” [Ouline].
Available: https://docs.opencv.org/4.5.3/da/d54/group_imgproc__transform.html 8

Neural Cleanse with Object Detectors 33

https://benchmark.ini.rub.de/gtsrb_about.html
http://host.robots.ox.ac.uk/pascal/VOC/
http://host.robots.ox.ac.uk/pascal/VOC/
http://arxiv.org/abs/1412.6572
https://keras.io/api/preprocessing/image/
https://keras.io/api/preprocessing/image/
https://docs.opencv.org/4.5.3/da/d54/group__imgproc__transform.html

Appendix A

Classifier Model

Model: "seguential"

Layer (type) Output Shape Param #
conv2d (Conv2D) (None, 32, 32, 32) 896
convzd 1 (Conv2D) (None, 30, 30, 32) 9248
max pooling2d (MaxPooling2D) (MNone, 15, 15, 32) 0]
dropout (Dropout) {(None, 15, 15, 32) 0]
conv2d 2 (Conv2D) (None, 15, 15, 64) 18496
convzd 3 (Conv2D) (None, 13, 13, 64) 36928
max_pooling2d 1 (MaxPooling2 (None, 6, 6, 64) 6]
dropout 1 (Dropout) (None, 6, 6, 64) 0]
convzd 4 (Conv2D) (None, 6, 6, 128) 73856
conv2d 5 (Conv2D) (None, 4, 4, 128) 147584
global average pooling2d (Gl (None, 128) 6]
flatten (Flatten) (None, 128) 6]
dense (Dense) (None, 512) 66048
dropout 2 (Dropout) {None, 512) 0]
dense 1 (Dense) (None, 43) 22059

Total params: 375,115
Trainable params: 375,115
Non-trainable params: @

Figure A.1: Structure of a classifier model trained on the original GTSRB dataset of 32 x 32 pixels

34 Neural Cleanse with Object Detectors

APPENDIX A. CLASSIFIER MODEL

The structure shown in the figure above is for the classifier models used in our experiments
with images of 32 x 32 and 64 x 64 pixels. There is only one difference in the models used for
experiments with images of 512 x 512 pixels, the stride of the first layer is set to (2,2).

Neural Cleanse with Object Detectors 35

Appendix B

EfficientDet

Parameter Value
0] 0
batch size 2
epochs 30
steps 10000
learning rate | le-3

Table B.1: Values of the parameters used for our EfficientDet models.

We used the parameter values given in the table above for all our EfficientDet models. The
batch size was kept small to avoid memory problems with the GPU during training. We saved
intermediate models at each epoch such that we could select the one with the highest mAP value
at the end. In addition, we used an EfficientNet backbone pretrained on the COCO dataset. We
froze this backbone during our trainings of the object detector models. For more details about
the backbone and structure of EfficientDet models, see the paper by Tan, Pang, and Le[10].

36 Neural Cleanse with Object Detectors

Appendix C

Classifier Accuracy Per Class for
GTSRB

Class | Accuracy Class | Accuracy Class | Accuracy
0 0.97 15 1.00 30 0.98
1 1.00 16 0.99 31 0.97
2 1.00 17 0.87 32 0.98
3 0.99 18 0.80 33 1.00
4 0.84 19 0.99 34 0.98
5 1.00 20 1.00 35 1.00
6 0.99 21 0.98 36 0.97
7 0.98 22 0.97 37 0.96
8 0.99 23 0.99 38 0.94
9 0.94 24 1.00 39 0.82
10 0.71 25 0.50 40 1.00
11 1.00 26 0.96 41 0.96
12 1.00 27 1.00 42 0.99
13 0.98 28 0.99
14 1.00 29 0.97

Table C.1: Average accuracy of 3 classifier models per class of the GTSRB dataset

Neural Cleanse with Object Detectors

Appendix D

Object Detector Accuracy Per
Class for VOC

Class AP

cat 0.88
dog 0.87
horse 0.85
car 0.83
train 0.80
bicycle 0.80
motorbike 0.78
person 0.77
bus 0.77
bird 0.75
aeroplane 0.75
cow 0.74
tvmonitor 0.73
sheep 0.70
sofa, 0.65
boat 0.61
diningtable | 0.56
bottle 0.54
chair 0.46
pottedplant | 0.38

Table D.1: Class AP scores for an EfficientDet model trained with the VOC dataset

38

Neural Cleanse with Object Detectors

	Contents
	List of Figures
	List of Tables
	Introduction
	Preliminaries
	Classifiers
	Classification vs. Detection
	Datasets
	GTSRB
	PASCAL VOC

	Backdoors in Neural Networks
	Neural Cleanse
	Methodology

	Backdoors in Object Detectors
	Neural Cleanse with Object Detectors
	Adapting Neural Cleanse to EfficientDet
	Adapting the Dataset
	Results

	Neural Cleanse with Random Backgrounds
	Random Bitmap Background
	Random Colour Background
	Potential Problems and Next Steps

	Backdoors in Classifiers
	Testing the Layout
	Random Bitmap Background
	Random Colour Background

	Testing the Size
	Random Bitmap Background
	Random Colour Background

	Discussion
	Improvements

	Conclusion
	Bibliography
	Appendix
	Classifier Model
	EfficientDet
	Classifier Accuracy Per Class for GTSRB
	Object Detector Accuracy Per Class for VOC

