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Abstract

This work provides details for solving Human Activity Recognition (HAR) problem, using multiple and
single wireless Inertial Measurement Unit (IMU) sensors. The HAR problem is seen from different
perspectives in this project; firstly how HAR is being performed using a network multiple IMU sensors
collecting multiple inertial signals for classifying multiple Activities of Daily Life (ADLs), secondly
how HAR is performed using a single IMU sensor collecting multiple inertial signals for ADL classifi-
cation, and lastly, how HAR is being performed using just single IMU sensor collecting only acceleration
signal. This project utilizes the explored literature to solve the problem of HAR, focused upon reducing
the sitting/standing confusion often faced by Machine learning (ML) and Deep learning (DL) models.

To implement the proposed solutions, an online available dataset PAMAP2 is used. An in-house dataset
was also collected at Mentech with an aim of collecting a diverse dataset with minimum motion-based
noise possible. Since some walking instances were recorded in sitting-standing data-classes for Mentech
dataset during data-collection, both the datasets were pre-processed and cleaned to remove any noise
recorded before feeding them into the proposed classifiers. Data cleaning was done using standard devi-
ation applied non-overlapping windows of 10 samples, with a threshold value of ’0.3’. Using this filter
the data-signals for sitting and standing activity class were processed to remove noise, while no filter
was applied for walking data signals. Both the datasets were also combined to create a new combined
dataset, named Megabase in this report. The data-fragmentation was done using different input window
sizes, and acceleration components (like three acceleration values, orientation features). 3D tensors were
created to do the required data-manipulation steps, to prepare the windowed data-inputs for DL models.

The proposed models for achieving high classification accuracy, specially for sitting and standing activ-
ity classes are, 1D Convolutional Neural Network (CNN) and 2D CNN. The proposed architecture uses
longer convolutional kernels, which leads to significant improvement in model accuracy. The use of
smaller input window-size in data-fragmentation also improves the model performance. Best observed
accuracies for all the (filtered) datasets was achieved using 3 orientation features and window-size of
lengths less than 1.28 seconds. For PAMAP2 dataset a final accuracy of ≈ 94% was achieved, while for
Mentech and Megabase datasets, a final accuracy of ≈ 85% was achieved.
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1 Introduction

As life expectancy is increasing, people are living longer lives. This increase means more older people
will require reliable health care in the coming future. However, there are too few caregivers for the
given demand. This discrepancy can be expected to increase over time. With this imbalance, a single
caregiver takes care of a more significant number of patients. This increase in workload can lead to stress
for caregivers. The nursing staff often finds it stressful to document every patient condition correctly
and take care of them simultaneously.

People who have dementia or mental disabilities often struggle to express their feelings and emotions.
An ideal caregiver should be skilled and experienced in dealing with such patients correctly to identify
their emotional states. Such caregivers are less available. Thus, nursing staff working with these patients
often exhaust themselves and develop burnout symptoms (Looff 2019). It is hence crucial to support
such caregivers and lessen their burden.

Mentech Innovation develops a wearable sock called 'SentiSock’ to aid such healthcare staff. SentiSock
is powered by the HUME (an emotion recognition platform), an AI-based solution providing insights
into a person’s emotional state. It is specially designed to notify the caregiver if any of their patients
are under stress, using real-time data analysis. It is developed to act as a reliable early warning system
to prevent stress escalations and give more accurate emotion predictions compared to less experienced
medical staff.

Physiological data like heart rate and skin conductance can be used to identify stress and fatigue in a
person (Khanade et al. 2017). Such data is measured and processed using machine learning algorithms to
calculate stress levels in real time. In the coming future, HUME aims to utilize just one sensor capable
of collecting different physiological signals, including an Electro Dermal Activity (EDA) to measure
stress levels. It uses a 2-dimensional emotion space to translate the extracted physiological parameters
into emotional states, called the circumplex model (POSNER et al. 2005). There are four quadrants of
the arousal and valence plane to classify the positive and negative nature of emotions. An overview of
emotion classes and their relation with the Arousal and Valence axis can be seen in the Figure 1.1.

EDA or more commonly known as Skin Conductance (SC) and Galvanic Skin Response (GSR), is a
measure of electrical characteristics of the skin. Human SC increases if there is more sweat creation
(Darrow 1964). Whenever a person undergoes stress, sweat glands are activated, and EDA increases.
In our body, the palms and soles of our feet have the most densely distributed sweat glands. This is
why the electrodes that measure the skin conductance variation are located on the base of the SentiSock.
This signal is then transferred to the sensor housing, present at the ankle of the sock. An overview of
the SentiSock product and HUME dashboard for monitoring real-time stress can be seen in the Figure
1.2. The HUME dashboard enables the user to gain insight into the subject’s emotional state, which
caregivers can use to monitor multiple patients efficiently.

To improve HUME’s real-time accuracy, it is essential to consider the human posture and physical
activity of the patient while developing stress monitoring algorithms. Many physiological data like
Heart Rate (HR) and SC are sensitive to both anxiety and exercise (Sun et al. 2012). So when a person
undergoes physical load, EDA is increased as a result of increased sweating rate (Posada-Quintero et al.
2018). Schumm et al. 2008, verified this after measuring EDA variability and provoking it by different
walking speeds in an experiment. Similarly, the HR (which is a feature that can be extracted from ECG
signal) increases for a person when they standing-up (Hallman et al. 2019). This creates a possibility
for the model to confuse the high SC and HR values activated by physical activity, with highly stressful
moments. This leads to the creation of false alarms. To avoid these wrong escalations, it is essential to
know the real-time activity and posture of the patient.

The vital importance of activity recognition is a widely researched topic. Every activity a person per-
forms is associated with different physical and physiological responses, which show unique character-
istics. The use of multiple inertial sensors like a gyroscope and an accelerometer have proven to yield
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Figure 1.1: Circumplex Model using Valence-Arousal Axis for Emotion classification

promising results in possessing these unique characteristics to classify human activity accurately. How-
ever, the use of multiple wearable sensors results in movement obstruction and hence is not a practical
solution for long-term wearable devices. This is why more research is being done nowadays that focuses
on using only one accelerometer to perform the activity classification tasks. This single sensor can be lo-
cated at a person’s wrist, hip (or smartphone placement), thigh, upper arm, or ankle. The sensor housing
found at the ankle of SentiSock contains an accelerometer, which will be used for activity detection.

The accuracy of activity classification depends upon the quality of features extracted from the raw signal.
These features can be hand-crafted or can be automatically extracted based upon the model architecture.
Hand-crafted features include meaning, correlation, signal transforms, entropy, standard deviation, etc.
These are usually followed by classification techniques like support vector machines, decision trees,
multi-layer perceptron neural networks, random forests, and K-nearest-neighbours. For automatic fea-
ture extraction, Convolutional Neural Networks (ConvNet/CNN), Long Short-Term Memory (LSTM)
are being researched. These approaches are discussed in more detail in Chapter 2.

The restriction of using a single acceleration sensor positioned at the human ankle makes the activity
recognition problem more complex and challenging. The hardest part for classification models is to
distinguish between the sitting and standing positions of a human. This is because the acceleration
signals show very similar feature properties when it comes to these two classes. In this study, we create
a classification model to distinguish between three classes; sitting, standing, and walking. To make the
model robust against these instances, a well-designed dataset was collected, covering a variety of human
sitting and standing positions. More details for data collection are elaborated in Chapter 3.

To summarize, healthcare industries are suffering from decreasing availability of highly skilled care-
givers. Mentech’s product SentiSock (with HUME) aims to aid the healthcare industry by providing
insights into a person’s emotions. To achieve this, they utilize sweat to calculate the EDA signal, which
the HUME processes to provide stress levels in real-time. The sweat, however, can be stress-induced or
because of some physical activity. Since the SentiSock consists of just one accelerometer, it is difficult
to correctly identify human activity using data-driven approaches like ML/DL models. This study will
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Figure 1.2: SentiSock with HUME dashboard

explore literature for existing human activity classification techniques and implement selected architec-
tures as per project requirements (/HUME specifications). This means that the input data will be tri-axial
(i.e., values along planar and vertical planes) acceleration values, being collected from an accelerome-
ter placed at the ankle of a person. It will be a 3-class classification problem, focusing on accurately
classifying the sitting and standing classes.

1.1 Research Questions

The aim and direction of this research are based on the research questions that follow. The study is
broadly done on two levels; The first level is the Human Activity Recognition (HAR) model, without any
restrictions. On this level, state-of-art methods and the latest HAR techniques utilizing accelerometer
data from wearable sensors are researched. The second is the HUME level, which sets specifications like
sensor placement and sensor configuration parameters. This defines the scope of the model. Since no one
yet researches this second level, the solution development process will involve exploring a combination
of the most promising approaches available to create a novel one.

The Research questions at the HAR level are:

1. What are the traditional approaches and state-of-art methods used for developing a HAR model
using inertial signals?

2. What are the limitations of the explored approaches?

3. What are the most important and commonly used signals for HAR?

4. What pre-processing steps should be applied to filter the input signal for removing noises as well
as preserving essential features?

5. What are the essential features that can be extracted from accelerometer signal data?

The Research questions at the HUME/SentiSock level are:

1. Which HAR model architecture is most suitable, keeping in mind the HUME specifications?
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2. How can we make the model perform efficiently in real-time?

3. What are the requirements for collecting a good quality dataset (i.e., having important physiologi-
cal features and least possible noise) from ankle mounted accelerometer for classification models?

4. How can we integrate the final model with HUME?

1.2 Thesis outline

1. Chapter Two - Literature review:
At first essential HAR tools are discussed; wearable hardware sensors and datasets (online and
collection). Then traditional approaches to solving HAR are discussed, followed by a more fo-
cused study with project constraints.

2. Chapter Three - Dataset:
At first, datasets used for this project are discussed; PAMAP2, Mentech, and a combined dataset
of these two (Megabase). Then the implemented data analysis and pre-processing techniques are
discussed.

3. Chapter Four - Methodology:
Combinations of CNN and LSTM architectures have been proposed, illustrated, and discussed.

4. Chapter Five - Results:
Classification results are discussed and compared, mainly for; proposed models with different
input window sizes with hand-crafted features working on different datasets .

5. Chapter Six - Conclusions:
Insights gained from the model classification results and corresponding limitations are discussed.

6. Chapter Seven - Future Recommendations:
Based on the limitations observed, the following line of research is suggested.
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2 Theoretical background and Literature review

Before going through the literature ideas, let us first see how our input data looks, what signals can be
recorded from wearable inertial sensors and the common points where these sensors are placed on a
human body.

2.1 Sensor signals

A sensor is a device that converts physical action into an electrical equivalent. These electrical signals
can then be transferred to servers and processed. When these sensors are integrated with wearable mate-
rial, they are called wearable sensors to collect the physiological signals directly from the human body.
The standard signals collected by such sensors include Electrocardiogram (ECG), Electroencephalogram
(EEG), Electrodermal Activity (EDA), acceleration, angular velocity, temperature, Electromyography
(EMG), Radio-frequency identification (RFID), Motion, Pressure, etc.

An inertial sensor, or Inertial Measurement Unit (IMU), collects specific 3D data such as acceleration,
angular velocity, tilt or orientation, and magnetic field at the object. IMU hence is usually comprised
of an accelerometer, gyrometer, and magnetometer, as shown in Figure 2.1, collecting a tri-variate time-
series data for every signal. IMU collects multiple axes data to achieve an output of six or nine degrees
of freedom. For example, if an IMU sensor comprises an accelerometer and gyrometer, it will be called
a 6-Axis inertial sensor with six degrees of freedom. IMU can also include a barometer, pressure sensor,
orientation sensor, etc.

Figure 2.1: A 9-Axis IMU sensor (Mathworks n.d.)

2.1.1 Accelerometer

An accelerometer is a device that measures the acceleration or rate of change of velocity of an object (K.
Chen et al. 2021). As per the International System of Units (SI), its measuring unit is meters per squared
second (m/s2). Acceleration of any object at rest, when measured on Earth’s surface, will have a default
acceleration due to Earth’s gravity. By definition, this gravitational force, g ≈ 9.81m/s2 acts along the
vertical Z-axis (Corke 2017; Ha et al. 2016). Common accelerometer applications include monitoring
vibrations in mechanical machines (Albarbar et al. 2009), for stabilizing flights (Corda et al. 2002),
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correcting noise created by hand-shaking in digital mobile cameras and auto-rotating visual content on
smartphone screens (ensuring the upright position of content w.r.t. real-time device orientation) (Mark
et al. 2014), etc.

2.1.2 Gyroscope or Gyrometer

A gyroscope is a device that measures and maintains the angular velocity and orientation of an object.
The unit of measured angular velocity is in degrees per second (°/s). A Gyroscope is helpful to measure
the rate of ’tilt’, where the axis of rotation is free to assume any fixed point of reference, i.e., while
rotating the object, the orientation of this axis remains unchanged. Gyroscopes are often referred to as
Gyrometers when they are microchip-packaged and used in industries. Like accelerometers, gyrometers
are used for stabilizing devices undergoing severe vibrations in industrial machines, ships navigation
(Bennett 1984), aviation (Banning et al. 2020), mobiles (Mark et al. 2014), satellites (Zharkov et al.
2020) etc. Apart from this, combinations of gyrometers and accelerometers are also used in navigation
systems, replacing the traditional magnetic compass (J.-H. Chen et al. 1994; Bristeau et al. 2011).

2.1.3 Magnetometer

A magnetometer is a device that measures the strength, direction, and change of magnetic field at a
particular point. Its measuring unit is Tesla (T). They are used to identify fingerprints in a smartphone
(Park et al. 2020), detect human gestures (Fang et al. 2018), aircraft aviation (Banning et al. 2020),
detect submarines (M. Wang et al. 2019) etc. They are also widely integrated with accelerometers and
gyrometers in IMU sensors for activity recognition.

2.1.4 Common sensor placements

Let us assume we have one IMU sensor, which collects tri-variate time-series data from an accelerom-
eter, gyrometer, and magnetometer. This sensor will have nine degrees of freedom. The sampling
frequency of these signals lies in the range of tens to hundreds of Hz. This sensor can now be mounted
on various human body parts like the waist, arm, ankle, wrist, hip, chest, etc., as illustrated in Figure
2.2. We can also use multiple IMU sensors with the same or different specifications and mount them
on other body parts. This technique provides an opportunity to align the time-series data collected by
various IMU sensors and analyze the combined data. This process of aligning multi-axes data, coming
from a network of sensors, is called sensor fusion.

2.2 Commonly used datasets

For Human Activity Recognition, we will focus on data collected from IMU sensors, i.e., focused on
capturing data related to acceleration, angular velocity, tilt/orientation, magnetic field changes around a
body part (since we are talking about wearable sensors). Next, we will discuss some popular online-
available datasets collected by the University of California Irvine (UCI) in their Machine Learning
Repository that were collected specifically to research the problem of HAR. Researchers use these
datasets widely to implement different Machine Learning (ML), Deep Learning (DL) architectures to
solve HAR problems and generate benchmark results. The details of these UCI datasets and some other
popular online datasets are summarized in Table 2.1.
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Figure 2.2: Commonly used body placements for wearable sensor are shown with blue dots, while red
dot signifies the sensor placement used for this project

DATASET ACTIVITIES SENSORS SAMPLING
RATE

VOLUNTEERS

UCI-HAR
(Reyes-Ortiz et al. 2012)

6 A, G 50Hz 30

WISDM (Weiss 2019) 6 A 20Hz 36
OPPORTUNITY
(Roggen et al. 2012)

17 A, G, M,
O, AM

30Hz 4

MHEALTH (Banos 2014) 12 A, G, M 50Hz 10
WHARF
(Bruno et al. 2012)

12 A (at-wrist) 32Hz 17

PAMAP2 (Reiss 2012) 18 A, G, M 100Hz 8
A = accelerometer, G = gyroscope, M = magnetometer,

O = object sensor, AM = ambient sensor

Table 2.1: Details of the commonly available online datasets for HAR

2.2.1 MHEALTH

The MHEALTH (Mobile-HEALTH) dataset by UCI was collected to study the ECG signal with different
daily human activities (Banos et al. 2014; Baños et al. 2015). Multiple sensors were used to diversify
the body parts involved in measuring the activity-motion. For this 3D accelerometer, 3D gyroscope and
3D magnetometer were used to collect 9-Axis inertial data. These sensors were placed on the chest,
right wrist, and left ankle of 10 subjects. The chest sensor also obtained the ECG measurements. Every
volunteer performed 12 daily living activities like cycling, sitting, running, etc. All sensor data were
collected at a sampling rate of 50Hz.
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2.2.2 UCI-HAR using smartphone sensors

The Human Activity Recognition database was built by UCI from the recordings of 30 subjects within
the age range of 19-48 years (Reyes-Ortiz et al. 2012). Each subject performed Activities of Daily Living
(ADL), including six activities (walking, sitting, standing, lying, walking up and down the stairs). 6-Axis
inertial data was collected from the 3D accelerometer and 3D gyroscope embedded in a smartphone at
a sampling rate of 50Hz. The smartphone was waist-mounted for real-life activity scenarios. The
collected sensor signals (accelerometer and gyroscope) were pre-processed by applying noise filters.
The acceleration signal was passed through a Butterworth low-pass filter to separate body acceleration
from the gravitational component. Along with signal-activity labels, this dataset also provides vectors
of a total of 561 features calculated from the time and frequency domain (like frequency-bands energy,
entropy, skewness, signal magnitude, phase angle, etc.).

2.2.3 WISDM

The WISDM dataset by UCI includes data collected from smartphones and smartwatches simultaneously
(Weiss 2019). It was collected from 51 test subjects performing 18 different ADLs. The phone and the
watch include a 3D accelerometer and a 3D gyroscope collecting 6-Axis inertial data simultaneously.
The smartphone was placed in the subject’s pocket, while the smartwatch was worn on the dominant
hand’s wrist of the subject. The sensor data was collected at a sampling rate of 20Hz.

2.2.4 Data collection

An in-house dataset was collected at Mentech Lab for the HAR problem, mainly focused on sitting and
standing classes. With the motivation to assemble a high-quality dataset, best practices to do so were
researched. The aim was (i) to obtain a diverse dataset capturing different activity positions (for sitting,
standing, and walking), and (ii) to avoid introducing noise of any kind, which can harm and confuse
DL models. Firstly, the data collection details provided by the available online datasets were studied to
achieve these aims. As explained in the ’README’ file for the MHEALTH dataset (Banos et al. 2014;
Baños et al. 2015), to capture a diverse dataset, the main factors considered during the data collection of
different activity classes are:

1. To include a diversity of different body parts involved during the execution of an activity. For
example, wrist movements, knee bending, the elevation of arms and legs, etc.

2. To include activities of different intensities and speeds such as cycling, walking, sitting, lying, etc.

In the paper Janssen et al. 2002, a general study was conducted to detect sit-to-stand (STS) movements or
transitions for a variety of input data-streams used for motion analysis (like force plates, accelerometers,
pressure sensors, etc). In the Table 2 of Janssen et al. 2002, a paper by Goulart et al. 1999 is referred,
who studied the determinants of sit-to-stand movement using piezoelectric accelerometer. The found
determinants focused upon the use of different human muscles induced by different sitting postures and
chair-support being used, as shown in Figure 2.3. This essence is discussed in depth in the paper, where
the importance of chair-specific features like height, armrests and, backrests are discussed (Janssen et al.
2002). Different sitting postures and foot positioning were also found to be useful aspects in detecting
STS movements.

Different sitting postures, with the varied sitting environment, therefore lead to different sets of body
muscles being used, affecting the acceleration signals. Most datasets included different speed settings
for dynamic activity classes like walking and cycling to have intensities of activities. Defining these
factors for data collection is usually called Environment setup.

Mitali Agrawal 8



Human Activity Recognition using a single ankle mounted accelerometer

Figure 2.3: Schematic representation of the six experimental conditions used in the study by Goulart
et al. 1999, to detect the sit-to-stand movement. Here, Posture A is used as the Reference condition;
Posture B is the feet forward sitting; Posture C is the knees first sitting; Posture D is sitting with flexion
of the trunk; Posture E is the head with support; Posture F is the straight trunk.

To ensure that the least amount of noise is recorded during data collection, we must look at different types
of noises in wearable sensors. Wearable sensor noise can either be motion-induced or sensor-intrinsic
(Vijayan et al. 2021). Sensor-intrinsic noises are hardware-components-based abnormalities, which are
out-of-scope for this project. Motion-induced noises are caused by human motion while data-recording,
which does not correspond to the recorded class.

To understand the motion-induced noises, we must revisit the activity classes for this project. Sitting
and Standing classes represent the ’Static activities’ or those activities where the subject is steady with
respect to the sensor in the environment setup. In contrast, the Walking class represents the ’dynamic
class’ where the subject is moving continuously (Shelke et al. 2019). Although, this ’sensor environment
setup’ can differ from project to project. For example, some online datasets allow posture change in static
classes, especially sitting, while some add different types of sitting classes w.r.t. predefined postures.
Another typical environmental setup for the sitting class can be using a ’rocking chair’, which differs
from the regular human sitting and lying postures. Due to this dynamic environment setup which exists
in real-life for the sitting class, various researches debate if the ’sitting’ class should be treated as static
or dynamic (Riener et al. 2007).

Various researchers also define any ’interruptions’ encountered during recording an activity class (static
or dynamic) as noise. Hence, they should be avoided or removed. In a paper by Anzanpour et al.
2019, researchers prioritized to minimize the interruptions caused by replacing IMU sensor batteries (by
caregivers) while the subject was ’sleeping’ at night. In another paper Tabrizi et al. 2020, table tennis
forehand strokes were studied. While collecting the required data for such a dynamic class, every time
a player paused or waited to re-position or re-grip the tennis racquet, they were called interruptions.
To avoid recording such noise while real-time labeling of data, the activities were performed under the
surveillance of three high-ranked coaches, who collected the labeled data for every player simultane-
ously. In a study by Riener et al. 2007, different car-sitting environment setups were proposed with
varying sitting postures to detect the driver’s activity. The idea was to use fixed sitting posture while
collecting the corresponding class label data to avoid recording any noise or interruptions (which is a
change in sitting posture in this scenario).

Hence, it is essential to define the environment setup of any recorded activity label to describe the noise
corresponding to that activity. For ’static’ sitting and standing classes, any continuous motion should be
considered noise. For a ’dynamic’ walking class, any interruptions caused during data-recording leading
the subject to pause the walking activity should be regarded as noise.

Mitali Agrawal 9



Human Activity Recognition using a single ankle mounted accelerometer

Figure 2.4: Generic HAR pipeline using multiple inertial sensors

2.3 Traditional approaches for HAR

The traditional way to perform HAR is to (i) extract meaningful information like hand-crafted features
from sensor data and (ii) feed them to a classifier to predict the activity (Jordao et al. 2018). Various
classifying algorithms researched in previous works for HAR include Support Vector Machine (SVM),
K-Nearest Neighbors (KNN), Multi-Layer Perceptron neural networks (MLP), Hidden Markov Model
(HMM), Random Forest (RF), and Decision Trees (DT) (K. Chen et al. 2021; Ha et al. 2016; Gholam-
rezaii et al. 2021; Sukor et al. 2018; Z. Chen et al. 2018). These models compare the sensor input data
during their training phase to produce individual activity template models. The main advantage of using
such ML models (using extracted features) is that they help in reducing the model sensitivity towards
the noisy real-life environment and imbalanced datasets (Sukor et al. 2018; Riboni et al. 2009)[page 26].
On the downside, these methods highly rely on the hand-crafted features extracted in the first step.

Unlike other ML methods, Deep Learning (DL) models auto-extract important features from signals in-
stead of hand-crafted features. Although, some state-of-art techniques use a combination of DL methods
and selected hand-crafted features to improve classification performance (Z. Chen et al. 2018; Ignatov
2018). This increase in performance emphasizes the importance of hand-crafted features in performing
HAR, using both ML and DL approaches.

2.3.1 Hand-crafted features

The main focus of extracting meaningful features or of doing feature engineering is to generate data
representations that capture even the most negligible differences among activity classes (Sukor et al.
2018; Z. Chen et al. 2018). Often a network of IMU and other wearable sensors are utilized to collect
different 3D signals. The Figure 2.4 depicts the typical architecture used to collect multi-sensor data
for HAR, pre-process it and perform classification on it (Badawi et al. 2018). The data signals are
pre-processed to calculate statistical features like mean, standard deviation, frequency energy-bands,
kurtosis, the correlation coefficient between two signals, etc. These features help better classification
performance, even when using shallow algorithms like KNN, SVM, and RF. The advantage of using
this structure (feature engineering followed by a classifier) is that the classifier model can find relevant
features in a dynamic real-time environment (Sukor et al. 2018; Riboni et al. 2009).

The hand-crafted statistical features are either derived from the time-domain or frequency-domain. Both
these domain features contain valuable properties helpful in differentiating activities (Ha et al. 2016;
Gholamrezaii et al. 2021; Z. Chen et al. 2018). For example, the frequency domain can provide insights
to classify activities with different frequencies, like walking, running, brushing teeth. The time-domain
feature like ’the mean value’ provides the magnitude of the signal, which can be used to classify static
and dynamic activities. Hence with proper domain knowledge, hand-crafted features can be designed by
specialists. The Table 2.2 summarizes important, commonly used features in both the domains (Z. Chen
et al. 2018; Sukor et al. 2018).
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FEATURE TYPE METHODS
Time-Domain Mean, Standard deviation, Maximum, Minimum, Signal magni-

tude area, Average sum of squares, Signal vector magnitude, Sig-
nal entropy, Autoregression coefficients, Correlation coefficient

Frequency-Domain Largest frequency component, Weighted average, Skewness, Kur-
tosis, Energy of a frequency spectrum, Phase angle

Table 2.2: Commonly used Time and Frequency domain features

2.3.2 Limitations

Even if domain specialists carefully engineer the hand-crafted features, there exists no single feature
extraction approach that can be applied universally for effective human activity classification (K. Chen
et al. 2021). Another disadvantage of using these features is the high computational cost. The pre-
processing of 3D signal data for extracting a list of hand-crafted features can take a lot of processing
time. Machine Learning (ML) algorithms that rely on these features are hence computationally costly.
By training shallow ML models on these specific features, some significant inherent signal information
can also get lost (Z. Chen et al. 2018). This data loss makes it difficult to distinguish between sitting,
standing, lying, walking, running, and going down the stairs.

In the paper Saez et al. 2016, researchers use PAMAP2 dataset and apply different ML techniques like
RF, Extra randomized trees (Extra trees), principal component analysis (PCA), SVM, etc. for HAR.
Top performing approaches were Extra trees and PCA with average accuracies of 96.1% and 92.5%
respectively. Although sitting and standing accuracies were 88% and 83% for Extra trees, and 78%
and 74% for PCA. Similar low-accuracy result pattern was also observed by other researchers, where
although the overall accuracy was ∼95%, the accuracy for sitting and standing classes remained low (Z.
Chen et al. 2018; Ignatov 2018). This led to the exploration of more complex solutions for performing
Human Activity Recognition, like Deep Learning algorithms.

2.4 State-of-art approaches for HAR

To eliminate the computational overhead and complexity of calculating hand-crafted features, Deep
Learning (DL) models were explored as they learn relevant features directly from the raw signal data.
Convolutional neural networks (Convnet, long short-term memory (LSTM) networks) and combina-
tions of these two models are being actively researched. Among all the Deep Neural Network (DNN)
approaches, Convolutional Neural Networks (CNNs) have repeatedly proved to be a powerful tool for
HAR (Ha et al. 2016; Gholamrezaii et al. 2021). This is because CNN models capture the local depen-
dencies in the input signal along the temporal dimension (Ha et al. 2016). State-of-art methods hence
utilize 1D or 2D convolutional layers for feature extraction and activity classification.

2.4.1 Convolutional Neural Network (CNN) Architecture

Convolutional Neural Networks (CNNs) is a type of Artificial Neural Networks (ANNs) that initially
gained popularity in the field of image and video processing (Rafegas et al. 2020). Its unique archi-
tecture enabled it to pick important patterns from input and convert them into meaningful information
(Konstantinidis et al. 2020). The image data is composed of RGB components, often called channels.
For example, if we have an image of length l and breadth b, the CNN input will be a l × b matrix, each
element having three values (red, green, and blue). This concept is extended for signal processing, where
the time-series data from a sensor is divided into equal parts, called windows. The multi-axis values of
sensors (X, Y, and Z-axis values) can be compared to the RGB channels of the image data.
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CNN’s are hierarchical feedforward neural networks consisting of an input layer, an output layer, and
one or more hidden layer(s) (Ignatov 2018). Hidden layers contain combinations of convolutional and
pooling layers, which are a special type of layers found in CNN architecture (Erdaş et al. 2021). The
Convolutional layer is the most important layer in CNNs they transform the input data using convolu-
tion operations (Xia et al. 2020). A convolutional kernel (also called filter) slides over the input data,
processing or transforming it to create a feature map. The values of this kernel or filter are also called
weights. Let vector f be the convolutional filter which slides over vector x, which is the sub-section of
input data. Then the convolution vector c is the scalar product computed between the vectors x and f
at each step or sub-region (Xia et al. 2020). A feature map is made by stacking the computed vector c.
This process is presented in Figure 2.5.

Figure 2.5: Working of a 2D convolutional kernel (Liang et al. 2020)

This transformed data or feature map is typically followed by an activation function. To learn the classi-
fication boundaries, non-linear activation functions are used (Ignatov 2018). Commonly used functions
are sigmoid, hyperbolic tangent, and ReLU. The most commonly used function is the Rectified Linear
Unit (ReLU) defined as a thresholding operation,s ReLU(x) = max(0, x), which converts negative
values to zero while the positive values remain unchanged (Xia et al. 2020; Erdaş et al. 2021). This
output is sent as input to the Pooling layer, where the information is further ’summarized’ or, more
specifically, the dimensionality of the input vector is reduced. This process is also called subsampling or
downsampling. It is traditionally done by taking average, maximum, or sum of the sub-sections of input
data (Xia et al. 2020).

After having multiple convolutional and pooling layers, the final output is flattened to create a one-
dimensional vector used for classification (Ignatov 2018). This is sent to a fully connected layer called
Dense layer. In this layer, every neuron receives an input from each neuron of the previous layer (Erdaş
et al. 2021). A CNN architecture can have one or more dense layers to perform the classification.
The final layer in CNN architecture is the Softmax layer, which computes the probability distribution
over every element of the output vector, which are the predicted classes. A 1D CNN architecture is
illustrated in Figure 2.6, whose input data comes from 6 channels (for example, 3D accelerometer and
3D gyrometer), and window size is 128 values.

Figure 2.6: 1D CNN architecture for HAR (Gholamrezaii et al. 2021)
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2.4.2 Long Short-Term Memory (LSTM) Architecture

The Long Short-Term Memory (LSTM) is a special kind of Neural Network which yields good perfor-
mance in long time-series data (Erdaş et al. 2021). Some deep Neural models suffer from the problem
of vanishing/exploding gradient, which hinders the network’s ability to capture the meaningful informa-
tion required to map raw sensor data and human activity classes in long time-context windows (L. Wang
et al. 2020; Xia et al. 2020). LSTM structure overcomes this limitation by having special memory units
called memory cells (Rafegas et al. 2020; Xia et al. 2020; Z. Chen et al. 2018). These memory cells
have a gate structure, which enables the learning of when to ’forget’ and/or ’update’ previous hidden
state information (Z. Chen et al. 2018; Erdaş et al. 2021). It contains an input gate to control the read
operation, an output gate to control the write operation, and a forget gate to control the reset operation
(Erdaş et al. 2021). This memory cell structure of LSTM is seen in Figure 2.7.
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Figure 2.7: LSTM node architecture consisting of element-wise product is shown as blue dots, sigmoid
function is shown as σ, hyperbolic tangent function is shown as tanh, addition is shown as a circular
junction (denoted by empty circular dots). The different weights and biases are multiplied with respec-
tive signals of the t− 1 time instance to calculate the t time instance.

The weights and bias of the LSTM network can be defined by different gate parameters, which are
updated during the training phase (Erdaş et al. 2021). Let LSTM network update these parameters at
time t based on its signal input xt, previous hidden state ht−1, and previous memory gate Ct−1 using
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(Z. Chen et al. 2018) below steps :

it = σ (Wxixt +Whiht−1 + bi) (2.1a)

ft = σ (Wxfxt +Whfht−1 + bf ) (2.1b)

ot = σ (Wxoxt +Whoht−1 + bo) (2.1c)

C̃t = tanh (Wxcxt +Whcht−1 + bC) (2.1d)

Ct = ft ·Ct−1 + it · C̃t (2.1e)

ht = ot · tanh (Ct) (2.1f)

Where:
ht : are the hidden units

it , ft , ot : represent input, forget and output gate respectively
C̃t, Ct : is the input modulation gate and the memory gate

Wxf , Wxi, Wxc, Wxo : are the weights
Whf , Whi, Whc, Who : are the weights

bf , bi, bC , bo : is the bias
Using:

m · n : is the element-wise product of m and n
σ(k) =

(
1 + e−k

)−1 : is the non-linear sigmoid function
tanh(k) = ek−e−k

ek+e−k = 2σ(2k− 1) : is the non-linear hyperbolic tangent function

The input gate it and forget gate ft are sigmoid in nature, i.e. they squash real-time inputs into a range of
[0, 1] (Z. Chen et al. 2018). The input gate is used to tune the influence of a current data xt in a memory
cell unit value Ct. In contrast, the forget gate is used to limit the influence of historical data ht−1 in
memory cell unit (L. Wang et al. 2020). This special gate structure acts as knobs that LSTM learns to
either forget the previous information or to focus upon current input data (Z. Chen et al. 2018).

To summarize, the input gate it in LSTM structure consists of 3 parts; the current input data xt, the output
value of previous hidden state ht−1, and the memory cell unit value Ct. This Ct further is determined
by two inputs; the previous memory cell unit Ct−1 which is modulated by forget gate ft, and the C̃t,
which is modulated by input gate it (Z. Chen et al. 2018). The output gate ot controls the transfer
of information from the memory cell unit to the hidden states. It is used to control the final output
generated by the memory cell unit (L. Wang et al. 2020). So with the help of these three gates, LSTM
alters the current state of its memory cell through internal updates. This structure enables LSTM to learn
complex features from the space-time domain, making them efficient in working with longer input-data
sizes or windows. This is why LSTM is seen as a potential solution for handling raw multi-dimensional
time-series data for HAR.

2.4.3 Challenges of real-time systems

The downside of such a Deep Learning approach is that they require a large dataset to train on and can
still lead to poor performance if there is noise in the training data (Z. Chen et al. 2018). Improving model
accuracy in ML/DL techniques comes at the expense of computational cost (Gholamrezaii et al. 2021).
Since computational time and performance accuracy of the solution are both critical factors in real-time
systems, it is wise to create a good balance between them. For achieving this balance, it is essential to
think about the following questions:

• How many layers a DL model should have?
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REFERENCE METHODS ACCURACY
%age point

DATASET SIGNALS

Ha et al. 2016 1D CNN 0.43 pp MHEALTH 3xA, 2xG
Ha et al. 2016 2D CNN -0.86 pp MHEALTH 3xA, 2xG
Ha et al. 2016 CNN-ppf 1.94 pp MHEALTH 3xA, 2xG
Gholamrezaii et al.
2021

2D CNN 7.82 pp MHEALTH 3xA, 2xG

Gholamrezaii et al.
2021

2D CNN + FFT 9.20 pp MHEALTH 3xA, 2xG

Ignatov 2018 2D CNN + Stat.
Features

3.32 pp WISDM 2xA, 2xG, 2xM

Xia et al. 2020 LSTM + CNN 5.75 pp WISDM 2xA, 2xG, 2xM
Xia et al. 2020 LSTM + CNN 2.71 pp OPPORTUNITY 2xA, 2xG, 2xM

A = accelerometer, G = gyroscope, M = magnetometer
(All sensors are 3-Dimensional)

Table 2.3: Performance comparison of different architectures using multiple inertial signals from multi-
ple 9-Axis or 6-Axis inertial sensors

• How much complex model architecture is required (CNN or LSTM)?

• Which features can contribute most to distinguish sitting and standing activity signals?

This motivates the literature direction explored in the following Sections, where we first focus on DL
methods being researched for a network of wearable sensors, collecting multiple inertial signals. Then
we gradually added the constraints of this project, reducing the literature to talk about the HAR problem
using only acceleration signal being collected from a single sensor.

2.5 Network of 9-Axis/6-Axis inertial sensors

This Section reviews literature that uses a network of IMU sensors, collecting at least two sets of tri-axial
signal data. Although we will be looking at a more specific problem later (HAR using a single sensor and
focus on sit/stand/walk activity), to build a scalable solution (which can handle the complexity of adding
more classes at a future stage), it is essential to look at solutions which involve the complexity of multiple
sensors collecting multiple 3D-signal data. Various 1D-CNN, 2D-CNN, and LSTM architectures have
been researched to handle the complexity of such input data using online datasets like WISDOM and
MHEALTH. The model accuracy here-forward is defined as percentage point (pp), the percentage value
of model accuracy above 90 or below.

An overview of results achieved in this literature direction is summarized in Table 2.3, while interesting
architectural decisions are discussed below:

1. CNN-pff : Ha et al. 2016 in their study utilizes the concept of partial and full weight sharing in
convolutional layers to learn the independent channel-specific features and the common features
for all the input channels. The idea is to collect local characteristics from multi-model sensor data
in the lower convolutional layer and gradually aggregate this learned information in the upper
convolution layer. To achieve this they implement CNN-pff using the MHEALTH dataset, partial
and full-weight sharing in 1st 2D-convolution layer, followed by full-weight sharing in 2nd 2D-
convolutional layer. The classification accuracy of CNN-pff increases by 1.94 percentage points
(pp), while 1D and 2D CNN are at the expected ≈90%.
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Figure 2.8: 2D CNN architecture for HAR with Fast Fourier Transform (FFT) applied as a pre-
processing step to input signal (Gholamrezaii et al. 2021)

2. Fast Fourier Transform : Gholamrezaii et al. 2021 implemented 2D CNN architecture and to
further improve its performance they studied the impact of applying Fast Fourier Transform (FFT)
to the raw data before feeding it to the model. This approach, illustrated in Figure 2.8, resulted in
increased classification accuracy of 1.38 pp when implemented on the MHEALTH dataset.

3. Feature fusion : Ignatov 2018 implemented a shallow (fewer layers) 2D CNN architecture using
the WISDM dataset. They used one convolution layer, one max-pooling layer, and one dense
layer. The output of the pooling layer was first flatted, and then statistical features were stacked
to this 1D vector before feeding it to the dense layer for classification.

4. Longer window-size : Gholamrezaii et al. 2021 also studied the effect of different input window-
size on classification performance. An increment of 0.42 pp was observed in accuracy after aug-
menting statistical features with 2D-CNN (as discussed in FFT step). The overall accuracy per-
centage point increased by 3 pp when window-size was increased from 2.5 s (or 50 samples) to
10 s (Ignatov 2018). It is interesting to note that the observed sitting and standing class accuracy
percentage points were -7.37 pp (below 90%) and 3.33 pp, respectively.

5. Data centering : Gholamrezaii et al. 2021 further tests the effect of performing data centering or
removing the offset in the raw input signal. This step standardizes the input signal, making the
classification job easier for the CNN classifier. This step was done in combination with Feature
fusion to prevent the loss of any important information. This technique increased the accuracy by
1.5pp.

6. LSTM + CNN : A combination of LSTM and CNN architecture was proposed by Xia et al. 2020,
contains eight layers in total. The first two LSTM layers extract temporal features, followed by
two convolutional layers for extracting spatial features. Every convolution layer was followed by
a max-pooling layer. The Global Average Pooling (GAP) layer and Batch Normalization (BN)
layer was added in the end. The authors tested the model on the WISDM and OPPORTUNITY
datasets, and the overall accuracy percentage point was 5.75 pp and 2.71 pp, respectively.

2.6 Single 9-Axis/6-Axis inertial sensor

In this Section, the literature review covered for HAR will be focused upon using just one wearable
sensor, utilizing at least two 3D signals being collected. All the papers discussed in this Section utilize
smartphone data, more specifically the UCI-HAR dataset except for Z. Chen et al. 2018 and Ha et al.
2016, who use an in-house dataset (collected using smartphone) in their study. As seen in the previous
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REFERENCE METHODS
ACCURACY
%age point

DATASET SIGNALS

Ha et al. 2016 CNN-ppf 9.66 pp In-house dataset
(smartphone)

1xA, 1xG

Xia et al. 2020 LSTM + CNN 5.8 pp UCI-HAR 1xA, 1xG
L. Wang et al. 2020 LSTM + FFT +

Stat. Features
1.65 pp UCI-HAR 1xA, 1xG

Mekruksavanich et al.
2021

2 layer CNN
+ LSTM

8.49 pp UCI-HAR 1xA, 1xG

Mekruksavanich et al.
2021

4 layer CNN
+ LSTM

9.39 pp UCI-HAR 1xA, 1xG

Z. Chen et al. 2018 SLFN 1.20 pp In-house dataset
(smartphone)

1xA(l),
1xA(t), 1xG

Z. Chen et al. 2018 SLFN +
Hand-crafted
features

6.50 pp In-house dataset
(smartphone)

1xA(l),
1xA(t), 1xG

Gholamrezaii et al. 2021 1D CNN + FFT
(without pooling)

0.51 pp UCI-HAR 1xA(l),
1xA(t), 1xG

Gholamrezaii et al. 2021 2D CNN + FFT
(without pooling)

5.69 pp UCI-HAR 1xA(l),
1xA(t), 1xG

Ignatov 2018 2D CNN +
Stat. Features +
data centering

7.63 pp UCI-HAR 1xA, 1xG

A(l) = linear accelerometer, A(t) = total accelerometer,
G = gyroscope, M = magnetometer

(All sensors are 3-Dimensional)

Table 2.4: Performance comparison of different architectures using multiple inertial signals from a
Single 9-Axis inertial sensor
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Section, the 1D and 2D CNN architectures 2.5, was also implemented using the UCI-HAR dataset by
some researchers. These approaches and many more are summarized in the Table 2.4.

The crucial findings from the architectural models implemented by different researchers in specified
literature scope are:

1. Effect of removing pooling layers in Convolutional Networks : Gholamrezaii et al. 2021 in
addition to studying the effect of applying FFT to raw input data (discussed in Section 2.5), we
also studied the effect of removing pooling layers. More specifically, they studied the computa-
tional time taken by 1D and 2D CNN models to perform the classification task with and without
pooling layers. The pooling layer was rather replaced by increasing the stride size of the previous
convolutional layer. The implemented approach resulted in a noticeable improvement of 0.91 s in
2D CNN architecture and of 0.69 s in 1D CNN architecture. An important thing to note here is
that removing the pooling layer and adding strides did not compromise the classification accuracy;
rather, it was increased by 1 pp for 2D CNN.

2. LSTM : L. Wang et al. 2020 used a 2-layered LSTM model with selected hand-crafted features
to perform activity classification. They use FFT on raw input data to capture time and frequency
domain features, followed by calculating specific time-domain feature vectors (namely, kurtosis,
skewness, mean absolute deviation, standard deviation, and root mean square). An accuracy of
1.65 pp was reported, while the change in percentage points of sitting and standing classes was
-22.6 pp and 8.1 pp, respectively.

3. CNN + LSTM : Mekruksavanich et al. 2021 explored different variations of the CNN-LSTM
network and achieved the best performance by using a 10-fold cross-validation protocol with
50% over-lapping windows. The Figure 2.9 shows the architecture of a 4-layered CNN-LSTM
network, while 2-layered architecture can be visualized similarly with only two convolutional
layers followed by a single LSTM layer.

4. LSTM + CNN : The LSTM-CNN architecture proposed by Xia et al. 2020 discussed in Section
2.5, was also implemented using the UCI dataset. The main difference between LSTM+CNN
and CNN+LSTM model architectures is whether LSTM is used for feature extraction followed by
CNN for classification or vice-versa. It is interesting to note that the sitting and standing accuracies
observed were 3.32 pp and 2.18 pp, respectively. The confusion matrix results discussed in this
paper show that the model’s sitting and standing classes were the most confused classes.

5. Teacher-Student LSTM model : Z. Chen et al. 2018 focuses on hard targets in their study,
i.e., activity classes which are likely to have higher chances of being misclassified. Activity
classes such as {’sitting’ , ’standing’} and {’walking upstairs’ , ’walking downstairs’} are ex-
amples of such hard targets. Authors propose training 2 separate models, to extract the knowledge
of handcrafted-features from one model and impart that knowledge to a second model which is
training on raw input data to perform final classification. A deep LSTM model, called the Teacher
model is trained on different features to carry rich domain knowledge. The second deep LSTM
model, called the Student model, is kept deeper (with 128 neurons) than the teacher network (with
100 neurons). This enforces the second model, to generalize the input information in a similar
way done by the teacher network. This is done by modifying the temperature T variable, in the
final Softmax layer (Z. Chen et al. 2018).

2.7 Single 3-Axis inertial sensor collecting acceleration signal

This Section narrows down the literature closer to this project’s use-case, i.e., research papers that dis-
cuss the HAR problem using only one wearable sensor, collecting only acceleration signal. Both 2D
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Figure 2.9: Hyperparameters summary for four-layer CNN-LSTM architecture (Mekruksavanich et al.
2021)
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REFERENCE METHODS ACCURACY
%age point

DATASET SIGNALS

Mannini et al. 2017 SVM +
Hand-crafted features

2.4 pp Inhouse dataset 1xA (ankle)

Mentech Innovation 1D CNN 9.99 pp Smartphone 1xA (hip)
Jordao et al. 2018 CNN+ -10 pp WHARF 1xA (wrist)
Erdaş et al. 2021 3D CNN fed

by ConvLSTM
3.69 pp Smartphone 1xA (chest)

A = 3-Dimensional accelerometer

Table 2.5: Performance comparison of different architectures using 3D acceleration signal from a Single
3-Axis inertial sensor

CNN and LSTM architectures have proved to be promising approaches for HAR in previous Sections.
Although less research is available in the current scope, the model performance of implemented archi-
tectures is detailed in Table 2.5. The critical design choices and observations which were explored are
discussed below:

1. SVM : Mannini et al. 2017 implemented SVM classifier using an in-house (youth) database (of
age range 13 ± 1.3 years). This dataset was collected to study and compare the acceleration
signal for HAR between two specific sensor placements, wrist, and ankle. They proposed using
Fragmentation or input data-window features (where 1 data-fragment = 1 window of input-data),
which were found to be informative for both the sensor placements. They also used selected
hand-crafted features and SVM classifier and obtained an overall accuracy of∼2 pp for the Ankle
sensor. Another interesting but out-of-scope information here is that the wrist sensor’s observed
accuracy was lower than the ankle sensor (∼ -8 pp).

2. 1D CNN : The initial HAR model at Mentech consisted of 1D CNN architecture and was im-
plemented using two sensors collecting 3D accelerometer data. The sensors were placed on the
human chest and human hip (smartphone in pocket configuration). The model had a very high
accuracy of ≈99%(9 pp). The accuracy remained unchanged even when the chest sensor was
removed. It was found that the high accuracy (even for classes like sitting and standing) was due
to the noticeable orientation change of the mobile phone. Smartphone placed in back pocket stays
vertical in standing position and lays horizontal when a person is sitting. This leads gravity to act
upon an entirely different acceleration-signal axis for these two positions. This orientation pattern
is easily picked up by the model, leading to high model performance.

3. CNN+ : Different 1D and 2D CNN architectures (similar to as illustrated in Figures 2.6 and 2.8)
were studied Jordao et al. 2018. It is important to note that this dataset is focused on transition-
based activities like pouring water into a glass, going down the stairs, brushing teeth, etc. The
authors pointed out that most Convolutional Networks fail to capture long temporal patterns, com-
promising their overall accuracy. Instead of exploring complex DL structures to improve results,
they proposed CNN and CNN+ architectures:

(a) Longer convolutional kernel-size (CNN) :, To solve the complex HAR problem, the au-
thors saw a potential more straightforward solution of using appropriate convolutional ker-
nel size. For time-series data, convolutional kernel length controls temporal data-range that
captures time-domain patterns (Jordao et al. 2018). Similarly, convolutional kernel width
captures inter-axis patterns for neighboring accelerometer axes. The CNN architecture is
illustrated in Figure 2.10) with proposed kernel (longer) dimensions.

(b) Orientation features (CNN+) : Authors also calculated orientation angles like Pitch and
Roll, which provides estimated orientation w.r.t. original sensor orientation. They improved
∼8.5 pp for classes sitting down on a chair and standing up from a chair.
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Figure 2.10: 2D CNN architecture with long kernel (Jordao et al. 2018); The convolutional kernels or
filters capture the temporal patterns (by length or height) and the patterns among adjacent accelerometer-
axis pairs (by width)

Figure 2.11: 3D CNN fed by ConvLSTM layers (Erdaş et al. 2021)

4. Convolutional LSTM : Erdaş et al. 2021 proposed to combine the advantages of CNN and LSTM
structures. They use Convolutional LSTM (ConvLSTM) instead of CNN+LSTM architectures, as
explored earlier. In ConvLSTM architecture, a convolutional structure is followed by an LSTM
structure, which can be applied sequentially multiple times. This is different from CNN+LSTM
architecture, where various CNN structures can be followed by multiple LSTM structures. The
Figure 2.11 shows the proposed architecture, where four layers of ConvLSTM are used, and their
3D tensor output is fed to a 3D convolution layer.

2.8 Hand-crafted features: Use-case specific

As seen in the above Sections, it is essential to use information-rich features to improve the performance
of HAR. Hand-crafted features are aimed to capture specific characteristics associated uniquely with
each activity class (Jordao et al. 2018). With the same aim, some essential features used for HAR (in
general and from a use-case viewpoint) are detailed below.

2.8.1 Signal Magnitude Features

1. Signal Magnitude Area (SMA): Signal Magnitude Area measures how acceleration signal magni-
tude varies with time. For the time intervals i, SMA is calculated using (Sukor et al. 2018):

SMA =
1

i

(
i∑

u=1

|xu|+
i∑

u=1

|yu|+
i∑

u=1

|zu|

)
(2.2)
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Where xu, yu and zu are the data components of the tri-axial accelerometer signal.

2. Total Acceleration (Total Acc.): Whenever a wearable sensor like accelerometer is used for moni-
toring human activity, the original sensor placement changes as a result of physical activity being
performed by the subject. This means acceleration due to gravity often gets distributed over two or
three signal axes. This makes it challenging to analyze the acceleration peaks with changing hu-
man position. For this, Total Acceleration, also known as Signal Magnitude Vector, is calculated
over all three acceleration axes using (Sukor et al. 2018; Mannini et al. 2017):

TotalAcc. =
√
x2i + yi2 + zi2 (2.3)

where, xi, yi and zi are the ith samples of tri-axial accelerometer signal.

2.8.2 Pitch, Roll, and Tilt Angle

1. Pitch and Roll Angles: Orientation features were calculated by Jordao et al. 2018, specifically for
wrist-based HAR. To remove random noise and quantization errors from raw accelerometer data,
a low-pass Butterworth filter was applied in the study producing filtered signal-data; afx, afy , and
afz . The wrist orientation features, Roll (φ) and Pitch (θ), are computed using:

φ = atan2
(
−afx,−afz

)
(2.4)

θ = atan2

(
−afy ,

√(
afx
)2

+
(
afz
)2)

(2.5)

2. Tilt Angle: Tilt angle or the inclination of vertical axes (y) from the gravity, is calculated using
(Sukor et al. 2018):

TA = asin

(
yi√

xi2 + yi2 + zi2

)
(2.6)

where, xi, yi and zi are the ith samples of tri-axial accelerometer signal.

2.8.3 Fragmentation Features

Window specific features were applied by Mannini et al. 2017. They defined a threshold value (Th =
0.2 × g, where gravity g = 1.96m/s2), using which static and dynamic instances were identified. This
threshold value was used to identify which samples are ’active’ or belong to dynamic activity. For ev-
ery (unfiltered) sample, total acceleration (using equation 2.3) was calculated. If this value is lower
than 0.4m/s2, the sample was considered as static otherwise dynamic. This way, Andrea et al., calcu-
lated the number of active samples for one input window, threshold crosses in one window, etc. These
Fragmentation features were found to be useful for ankle-mounted acceleration sensors.

2.9 Limitations of the existing research

This Section discusses limitations of the state-of-art research available for this project’s use-case, i.e.,
single ankle-mounted tri-axial accelerometer. As seen in previous Sections, very little literature provides
meaningful insights for ankle-mounted accelerometer HAR. The unavailability of research and datasets
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leads to a lack of comparable benchmark results and implementations. Apart from having incompa-
rable datasets, the difference in sampling rate is also an important thing to consider. Some essential
hand-crafted features, especially frequency-domain features, require a high sampling rate. Most re-
search results are based on available online datasets, having a sampling frequency of 50Hz, which is
much higher than 26Hz of in-house collected data. This may provide DL approaches the advantage
of having more information; however, further domain-specific research is required to make sure if a
higher sampling rate provides meaningful information for HAR or not. This part was not explored in
this project.

Most of the single-sensor-based state-of-art methods are researched on the UCI-HAR dataset, which
consists of smartphone data. This dataset is very different from the signal from the ankle-mounted
accelerometer versus the waist or hip-mounted accelerometer, which has much restricted movement
than the human ankle. It is also essential to consider the possibility of sitting and standing classes
being correctly classified with high accuracy due to the position-specific smartphone orientation feature
(as discussed for old Mentech architecture in Section 2.7). The confusion matrix of existing research
clearly shows that sitting and standing classes are the most confused activity classes. Since this kind of
activity-specific orientation change will not occur in ankle-mounted sensors, it can be expected that the
models explored might fail for our use case.

Previous Sections also show that even after using state-of-art DL techniques for HAR, to improve ac-
curacy further, hand-crafted features are required. This requires prior domain knowledge to extract
meaningful features from raw data (Ha et al. 2016). Hand-crafted features also come at the computa-
tional cost of real-time feature calculations (Gholamrezaii et al. 2021). A balance between accuracy and
computational resources spent should be maintained for real-time applications. DL methods are also
susceptible to any noise found in the training dataset (Z. Chen et al. 2018). This makes data collection
for HAR a problematic task.

Last but not least, for all discussed literature (relatable to the project’s use-case), low accuracy for sitting
and standing classes (≈83%) remained an open problem.

2.10 Discussion

Based on the literature review, there are many aspects to consider while designing a (scalable) solution
for a given HAR problem. Before we have a closer look at the design choices made, let’s briefly revisit
the Research Questions discussed in Section 1.1:

1. What are the traditional approaches and state-of-art methods used for developing a HAR
model using inertial signals?
[Discussed in Sections 2.3.1, 2.4, 2.5, 2.6, 2.7]
Traditional approaches to solve HAR are often made by first calculating the hand-crafted features
(like time-domain, frequency-domain, statistical, orientation, etc.) and then feeding this informa-
tion to the classifiers (like SVM, KNN, RF, DT, etc.). State-of-art methods for HAR are based on
utilizing DL architectures like CNN, LSTM and their combinations.

2. What are the limitations of the explored approaches?
[Discussed in Sections 2.3.2, 2.9]
Limitations of Traditional approaches are listed below:

(a) Rely heavily on hand-crafted features, whose calculation takes lots of data-processing time
and domain knowledge.

(b) The use of hand-crafted features followed by shallow ML architectures can lead to loss of
inherent signal information.

(c) Low sitting/standing accuracy (≈75%-80%).
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Limitations of state-of-art approaches are listed below:

(a) DL models require a large dataset to train upon.

(b) Even the most negligible noise present in the training data can mislead DL models, leading
to poor performance.

(c) Low sitting/standing accuracy (≈85%).

3. What are the most important and commonly used signals for HAR?
[Discussed in Sections 2.1, 2.2, 2.8.2]
3D inertial signals from Accelerometer, Magnetometer and Gyrometer combined with physio-
logical signals like ECG and Heart-rate were most widely used for HAR by researchers. Other
potential signals apart from those discussed in Chapter 2 are Pressure and Orientation signals.
In the paper Merry et al. 2019, the authors studied the planar pressure distributions for classes
sitting, standing, and walking. They used shoe insole Pressure-measurements to collect and study
the different regions of the human foot by creating a footprint. Orientation of the sensor can also
provide meaningful features to perform HAR, but multiple inertial sensors are required to do so
correctly. Even with the required 9-Axis sensors and signals, calculating the correct orientation
of the sensor in real-time can be computationally costly if not done correctly. A smart sensor
by ’Bosch Sensortec’ does precisely the same to provide real-time sensor orientation. Since these
require significant hardware changes in SentiSock, these approaches were skipped for this project.

4. What pre-processing steps should be applied to filter the input signal to remove noise as well
as preserve essential features?
[Discussed in Sections 2.2, 3.3]
The online available HAR datasets use a low-pass Butterworth filter to remove high-frequency
noise expected in an acceleration signal. The same was used by several other researchers who
collected an in-house dataset. It is equally important to avoid any kind of noise during the data-
collection procedure. This is because DL models (this project’s selected approach) rely on labeled
input data for finding important features (Z. Chen et al. 2018). Since datasets for HAR are usually
small, the quality of the dataset is even more crucial. Data pre-processing done for in-house data
collection is discussed in Chapter 3.

5. What are the essential features that can be extracted from accelerometer signal data?
[Discussed in Sections 2.3.1, 2.8]
Essential features for HAR using multiple sensors and signals are summarized in Table 2.2. Se-
lected hand-crafted features meaningful from this project’s perspective are discussed in Section
2.8.

6. Which HAR model architecture is most suitable, keeping in mind the HUME specifications?
[Discussed in Sections 2.9, 4.2]
For this project, Deep Learning architectures are selected since (i) Calculating many hand-crafted
features in real-time is computationally costly, (ii) The accuracy bottleneck observed for sitting/-
standing classes. The proposed architecture utilizes Convolutional Neural Network architectures
which are discussed further in Chapter 4.

7. How can we make the model perform efficiently in real-time?
[Discussed in Section 4.2]
Limiting the hand-crafted features only to include orientation features reduces the run-time com-
plexity due to reduced data pre-processing. Other architectural choices made (like the use of long
convolutional kernels, replacing max-pooling layers with a stride of 1 in convolutional networks)
ensures that the model architecture is efficient. To further improve the real-time efficiency of the
model, concepts of Data-Engineering (using Spark) can be applied, which are discussed more in
Chapter 7.
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8. What are the requirements for collecting a good quality dataset (i.e., having important phys-
iological features and least possible noise) from an ankle-mounted accelerometer for classi-
fication models?
[Discussed in Sections 2.2.4, 3.2]
To collect a quality in-house dataset, essential steps were taken, which are discussed further in
Chapter 3. The main requirements found are listed below:

(a) Inclusion of different environments while collecting the dataset: It was found that including
various kinds of chairs, postures, walking pace, etc., can improve the quality of the dataset
being collected.

(b) Avoid any possible noise that can be expected during the data-collection process: It is impor-
tant to note here that, for any moment where the input signal does not belong to the activity
being labeled/collected, it is termed as noise. This means, every time a subject moves during
the data-collection of static activities, it will lead to the appearance of noise in the accelera-
tion signal.

9. How can we integrate the final model with HUME?
[Discussed in Section 4.1]
HUME currently uses a Binary model for static and dynamic activity classification, where sitting
and standing classes are grouped into a single static activity class. At the same time, walking
is a part of the dynamic class. Either the proposed model architecture can replace the current
static and dynamic model. For this, it is recommended to use smaller window sizes in a real-
time setting. To keep the current static and dynamic architecture, the same proposed model can
be used for binary classification of sitting and standing classes after the HUME model has made
static-activity decisions. Since the HUME implementation uses older TensorFlow and sklearn, the
current model code needs to be downgraded accordingly to make it compatible with HUME.
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3 Datasets

Deep learning (DL) methods require a large training dataset to achieve their best capable performance.
This data should be carefully collected and labeled to avoid the introduction of any noise. This is
important because DL methods extensively try to find meaningful features from available data, including
noise, if present, which can lead to poor performance (Z. Chen et al. 2018). This makes collecting
datasets for HAR time-consuming. If any noise is introduced during the collection process, it is tedious
to remove it (since handling 3D tensors are difficult). Online available datasets are hence used by
researchers as they act as a reliable data source (i.e., with minimal noise). However, there are only a few
online datasets that have used ankle-mounted accelerometers for HAR data collection.

In this project, the PAMAP2 dataset collected by the University of California Irvine (UCI) is used (Reiss
2012). It contains 18 activities, but we will talk about only three; sitting, standing, and walking. A total
of 9 volunteers participated in this data collection experiment, but for only eight volunteers, labeled data
(for sitting, standing, walking classes) was available. These eight subjects were selected for this project.
An in-house database was also collected at Mentech lab for these three activity classes. Eleven volun-
teers participated in the data collection procedure, but only 5 participants’ data was available and used
for this project due to corrupted signals received for some sessions. These datasets were also integrated
to study the performance of the classification model on the combined, larger dataset (called Megabase in
this report). Details for these datasets, collecting data from ankle mounted 3D accelerometer, for three
activity classes are summarized in the Table 3.1.

DATASET #VOLUNTEERS
SAMPLING
RATE

TOTAL
#SAMPLES

PAMAP2 8 100Hz 610200
Mentech 5 26Hz 477710

Megabase 13 26Hz 630255

Table 3.1: Specifications of all the datasets used for this project

3.1 The PAMAP2 dataset

In the paper Reiss 2012, the PAMAP2 Physical Activity Monitoring dataset by UCI contains data col-
lected from 3 inertial measurement units (3D acceleration, 3D gyroscope, 3D magnetometer) and a heart
rate monitor. All the subjects wore wireless Inertial Measurement Unit (IMU) sensors over their wrist
on the dominant arm, chest, and the dominant side’s ankle. The heart rate monitor was placed alongside
the chest IMU, with a sampling rate of about 9 Hz. Eighteen different Activities of Daily Living (ADL),
such as walking, cycling, playing soccer, etc., were performed by subjects during this data collection.

Ankle data from the PAMAP2 dataset was selected to generate results of the proposed solution archi-
tecture for HAR. This makes it possible to replicate the model performance achieved in this project,
providing benchmark results for future research (Saez et al. 2016), which is not possible using in-house
collected datasets. Subject-wise details and the total number of data samples collected per subject for
every activity class can be found in Table 3.2. The Figure 3.1 shows how the 3D acceleration signal
changes for different activity classes. Notice how x-y-z signals differ among themselves for the same
activity class and other classes.
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ID SEX AGE DOMINANT SIDE
#SAMPLES

SIT STAND WALK
1 Male 27 right 23475 21642 21955
2 Female 25 right 22323 25436 32113
3 Male 31 right 28752 20435 28637
4 Male 24 right 25487 24680 31497
5 Male 26 right 26808 22089 31487
6 Male 26 right 22823 24114 25511
7 Male 23 right 12280 25737 33407
8 Male 32 left 22920 25137 31047

Table 3.2: Details of all subjects from Mentech dataset

Figure 3.1: Comparison of 3D acceleration signal for Sitting, Standing and Walking activities for one
subject from PAMAP2 dataset
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ID SEX AGE DOMINANT SIDE
#SAMPLES

SIT STAND WALK
1 Male 23 left 59240 21740 18720
2 Female 18 right 68490 17500 14550
3 Male 21 right 61640 19590 15400
5 Male 20 right 59670 18130 14920
6 Female 27 right 57310 18620 12190

Table 3.3: Details of all subjects from Mentech dataset

3.2 Mentech dataset (in-house dataset)

The in-house dataset was collected at Mentech lab for activity recognition. Since other wearable sensors
are also being explored at Mentech, two wearable sensors collect 3D acceleration data. One sensor was
placed at the subject’s dominant wrist and the second at the subject’s dominant ankle; however, only an
ankle sensor was selected for this project.

Motivated by the ideas discussed in Section 2.2.4, various postures and chair styles were considered to
affect different human-ankle positions. Particular focus was on finding the ankle-specific (sitting/stand-
ing) positions that can lead to noticeable changes in acceleration across different axes. The aim was to
collect a diverse database, including various sitting, standing, and walking positions. Various research
also suggests that noise can be introduced in collected data if ’interruptions’ of any kind are caused
while live-recording of an activity label (discussed in Section 2.2.4). For example, a volunteer while
walking is interrupted by someone for a talk; volunteer stops to open a door while walking, volunteer
starts walking due to interruption caused while recording standing label, etc. Labels recorded for such
instances were discarded on the spot. To record the time-stamps for activity labels, an android based
application, aTimeLogger, was used.

Since this data was collected by Data Analyst from Mentech Lab, a document was created capturing the
essential aspects to consider while collecting this data for HAR. This document was also provided as
a pamphlet to the volunteer to make them comfortable with the data-collection process, ensuring easy
onboarding. This was also done to make sure volunteers also know how to contribute to avoid noise-
collection in the process. Different positions for sitting, standing, and walking were also proposed, and
for every varied position, labeled data of 1 minute was collected. This means that the labeled data does
not include transitions from one position to another. This document containing the overall experiment
setup used for in-house data collection can be found in Appendix A. Patient-wise details per activity
class can be found in Table 3.3, and the 3D acceleration signal for different activity classes can be seen
in Figure 3.2.

The PAMAP2 dataset can act as a reference for how a clean acceleration signal looks like. If one
compares Figure 3.1 and Figure 3.2, it can be noticed that the Mentech dataset has more (random) peaks
for sitting and standing classes than compared to the PAMAP2 dataset. To investigate the root cause of
this, data from both datasets were further processed and analyzed.

3.3 Data Pre-processing

Despite taking many precautions in recording a noise-free in-house database, an error was made while
recording time-stamps for labels. The Android app, which was used to record labels (or activity time-
stamps), was used with default time settings to collect minute-specific data. This led to the loss of
’second’ information from recorded time-stamps for activity labels. This creates a high possibility of
noise in recorded labels; for example, a sitting label (recorded for one minute using a timer) can include
instances of the person walking to prepare for their next activity). As discussed in the literature, DL
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Figure 3.2: Comparison of 3D acceleration signal for Sitting, Standing and Walking activities for one
subject from Mentech dataset
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algorithms suffer a lot from even small instances of noise introduced in data (Z. Chen et al. 2018).
Hence, it is essential to understand how a situation like this can lead to a DL model misclassifying
sitting as walking. Mannini et al. 2017 Also faced similar issues, where the model was misclassifying,
for example, room cleaning with sedentary because there were instances in room-cleaning labels, where
the participant was standing for a while.

To overcome this possibility and maintain the quality of the collected dataset, extensive data cleaning
is required. Before data cleaning, it is necessary to visualize the data signals and understand which
parts of the signal can potentially be noise. Data pre-processing steps relevant for selected datasets are
mentioned below, which were dealt with before data-plotting:

1. PAMAP2 dataset:

• A subset from the original dataset was created, containing only ankle measurements. Most
of the columns in the data file (per subject) were dropped, and only five values were kept;
time-stamp, label, and ankle acceleration values (x,y,z).

• This subset was further processed to filter out rows of data that are not labeled as either
sitting, standing, or walking.

2. Mentech Dataset:

• The time-stamp labels (start and end time-recordings of the activity class collected using
the aTimeLogger app) were extracted for every variation of the recorded activity. Then the
collected data signals (from ankle and wrist-mounted sensors) were processed to keep the
activity-specific data, using the extracted timestamp-label information. This means only the
labeled data was maintained, while the instances where the subject is relaxing or preparing
for the next activity were removed in this step.

• Then, both the sensor signals were visualized to study and compare the sitting activity class
for all the patients. This was done to distinguish between the ankle and wrist data signals
as the filenames given during the recording sessions were not informative enough. Then the
relevant ankle-specific acceleration data files were kept, and the wrist-specific data files were
dropped.

3.3.1 Data plotting

For data analysis that will be done using data-plotting, it is vital to finalize what we want to compare.
The aim is to finalize the variables (to the plot) and plot them, which can help answer only one cru-
cial question: ’Precisely which parts of the acceleration signal should be treated as noise?’. These
parameters can be found below:

1. Subject-wise comparison: It is important to compare how ankle-acceleration data differs for
every human. For example, an individual might walk differently due to different health conditions.

2. Acceleration-signal component comparison: 3D acceleration signal has three components which
are the values across the x, y, and z-axis. In addition to these, total acceleration (calculated using
Equation (2.8.1.2.3)) was also selected.

3. Activity-wise comparison: It is important to compare how the acceleration components differ
for sitting, standing, and walking activity classes.

4. Dataset-wise comparison: Since we know some noise is introduced in the Mentech dataset, the
PAMAP2 is treated as a data source having ’less’ noise. However, it is essential to realize that the
PAMAP2 dataset can also have some noise.
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From the points above, it can be estimated that at least 168 (= 14 × 4 × 3) plots are required to find
out the answer to our question. This is the ’tedious’ part of removing noise mentioned at the start of this
Chapter. These plots were further grouped and combined to make the required comparison as and when
needed. An example plot can be seen in Figures 3.3 and 3.4, where two subjects’ data are compared
simultaneously for sitting, standing, and walking classes. Summarizing data this way helps in efficient
data comparison.

It can be noticed in Figures 3.3 and 3.4, that the acceleration signal for the dynamic-activity class (walk-
ing) shows a pattern having high-frequency peaks, which is very different from static classes like sitting
and standing. It can further be seen why classes like sitting and standing are tough to distinguish as they
show similar patterns.

3.3.2 Data analysis

It is crucial to understand the kind of noises identified during the signal plotting step to clean the data.
For both datasets, no hardware-specific noise was found. Other main observations are listed below:

1. Small ’walking’ like instances in ’Sitting’ and ’Standing’ classes:
For mostly all subjects of the PAMAP2 dataset, it was observed that some noise similar to that
of a slow-paced walk is present at the starting of ’Sitting’ and ’Standing’ classes. Similar noise
was observed in the Mentech dataset for both the classes; however, noise instances lasted longer
and repeatedly occurred in the data signals. This was because of how the in-house dataset was
collected, in combination with the label error made.

2. Sudden movements or ’jerks’ all classes:
For both the datasets, sudden high peaks were observed, which can be a result of some sudden
ankle-specific movement. For the ’Sitting’ and the ’Standing’ classes, these peaks were often sur-
rounded by clusters of smaller peaks identified as noise. The tricky part about this type of noise is
that they occur in random patterns, and the maximum peak value differs a lot per subject. Another
tricky part here is that for the ’Walking’ class, if such jerks occur, they are almost impossible to
identify using visual signal-plotting. This is because, for the walking activity, the signal pattern is
very similar to that of a jerk instance.

3. Less data for some subjects:
For some subjects, there are fewer samples for the ’Sitting’ and the ’Standing’ classes. Some sub-
jects can also follow a particular motion pattern, which might not be a jerk but just how a subject
performs the activity. Such instances should be identified as ’outlier’ subjects (with imbalanced
activity samples or showing particular activity patterns). In DL models, often data is divided into
training and testing sets subject-wise to study the model performance on subjects it has not been
trained upon. If the ’outlier’ subject is kept in the testing dataset (especially while using a small-
sized dataset with few subjects), it can lead to poor model performance. Hence, it is essential to
ensure that some parts of such subjects are also included in the training dataset.

When a combination of the above-discussed noise types (that do not have a fixed pattern) occurs in the
input signal, it is very time-consuming to remove them by visually identifying the start/end time-stamps
for the noises. Deleting noise this way also poses a risk of throwing away some meaningful information
specific to that activity. The concept of standard deviation was utilized to ensure that essential features
were not lost during data cleaning.

Standard deviation (std. dev.) is a measure of how the data-values deviate from their mean value. Let
xi be the ith sample-value of the signal, σ be the standard deviation, µ be the mean, and N be the total
number of samples in the signal, then σ2 represents the variance or power of these data-values. It is
calculated as follows:
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Figure 3.3: Comparison of acceleration-signal components for Sitting activity class of 2 subjects (named
f_s_0 and f_s_1) from PAMAP2 dataset. The first row shows the Total acceleration values, followed by
the X, Y, and Z axes values.
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Figure 3.4: Comparison of acceleration-signal components for Standing activity class of 2 subjects
(named f_sd_0 and f_sd_1) from PAMAP2 dataset. The first row shows the Total acceleration values,
followed by the X, Y, and Z axes values.
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Figure 3.5: Plots used for Data analysis using Standard Deviation and Mean of Total acceleration sig-
nal using different window lengths (PAMAP2 dataset). The dotted line for window-size 10 shows the
standard deviation threshold value of 0.3, used for data-cleaning.

σ2 =
1

N − 1

N−1∑
i=0

(xi − µ)2 (3.1)

µ =
1

N

N−1∑
i=0

xi (3.2)

Using the acceleration (x, y, z) data-values contained in one sample, Total acceleration (discussed in
Subsection 2.3) was calculated. To use the above concepts, the total acceleration signal was processed
in the form of non-overlapping mini windows in time. For every window, mean and standard deviation
values were calculated and stored. The data-plotting implementation was further used for extensive
signal-plotting to compare the standard deviation outputs using different window lengths. Such example
can be seen in Figures 3.5 and 3.6, where windows of lengths 5 and 10 are compared.

Notice in the Figures 3.5 and 3.6, how the standard deviation is higher for the signal where noise in-
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Figure 3.6: Plots used for Data analysis using Standard Deviation and Mean of Total acceleration sig-
nal using different window lengths (Mentech dataset). The dotted line for window-size 10 shows the
standard deviation threshold value of 0.3, used for data-cleaning.
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stances occur. It confirms that these mini-windows can be used to process the signal and remove random
noise from it. These standard deviation-applied mini-windows will now be referred to as filters, as they
will filter out the unwanted data.

3.3.3 Data cleaning

Filters of different lengths were implemented, plotted, and compared to see how well the higher values
of standard deviation overlaps with the noise found in the signal. Special attention was given to find the
appropriate threshold values for standard deviation, indicating the decision of which samples to keep in
the signal and which to discard. These thresholds were set differently for every activity class but were
aimed to be generic for all subjects and datasets. After comparison, a filter with a length of 10 samples
was selected with a threshold value ’0.3’ for sitting and standing classes, while no filter was applied to
the walking class. Figures 3.5 and 3.6 also shows how this filter works and how the threshold value of
0.3 (with window size 10) is used to identify random noise instances. The original and final signals can
be compared in Figures 3.7 and 3.8 for PAMAP2 and Mentech datasets, respectively.

3.3.4 Data manipulation

Different sensor hardware can have different default axis values defined for the acceleration signal. This
configuration plays a vital role in calculating hand-crafted features that are gravity-dependent. The
filtered acceleration data was further used to analyze the gravitational component of acceleration data.
It was studied how this component varies for the different axis of acceleration for a periodic activity
such as walking. Using this information, sensor orientation or the original x-y-z-axis of acceleration
signal was identified. Original sensor orientation for both datasets is shown in Figure 3.9. Necessary
data-manipulation steps used for this project are listed below:

1. Axis alignment: When two datasets are combined to create a larger dataset, it is important to
align their x-y-z-axis to ensure that the model does not confuse inter-axis features. While creating
Megabase, the PAMAP2 axis was altered to make it compatible with the Mentech database.

2. Downsampling: Since we are working with time-series data, it is crucial to maintain the same
sampling rate at which input signal data is arranged. While creating Megabase, the PAMAP2
signal was downsampled to 26Hz.

3. hand-crafted features: Three angles required for calculating the orientation-related features as
discussed in the Subsection 2.8.2 were selected and implemented for this project.

4. Window size: Before feeding the input data into classification models like CNN and LSTM,
they are further divided into smaller chunks of data with respect to the time domain. In most
of the literature explored, smaller window-lengths were used, the most common one being 2.56
seconds (Gholamrezaii et al. 2021; Ignatov 2018). To understand this, one should check how
long one instance of human activity (being classified) lasts. For sitting, standing, and walking
activity classes, valid instances can last anywhere from 1 to 3 seconds. So the window size of a
dataset should be equal to the sampling rate of the dataset multiplied by the activity-span duration.
Different activity time-spans that were used and compared for this project are:

• PAMAP2 dataset : 0.64, 1.28, 2.56, and 5.12 seconds or 64, 128, 256, and 512 samples.

• Mentech dataset : 0.64, 1.28, 2.56, 5.12, 10.24, and 20.48 seconds or 16, 32, 64, 128, 256,
and 512 samples.
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Figure 3.7: All plots compare the Original (old) and the Filtered (new) acceleration signals, for one
subject from PAMAP2 dataset. The first row shows the Total acceleration values, followed by the X, Y,
and Z axes values. The first column is for Sitting class, while second is for Standing class.
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Figure 3.8: All plots compare the Original (old) and the Filtered (new) acceleration signals, for one
subject from Mentech dataset. The first row shows the Total acceleration values, followed by the X, Y,
and Z axes values. The first column is for Sitting class, while second is for Standing class.

.
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Figure 3.9: Sensor orientation for Mentech and PAMAP2 ankle accelerometers

3.4 Data Fragmentation

Once data pre-processing is completed, based on the state-of-art methods discussed in Chapter 2, it is
best to prepare the input signal data to feed into the Convolutional network. Once the signal data is
clean from noise and features are calculated, it can be reshaped as per the input specifications of the
classification model. This process is called Data Fragmentation. Conv2D and Conv3D layers from an
open-source software library (TensorFlow) are being used for this project.

The Conv2D layers takes a 4D Tensor as input of shape: (batch_size, height, width, channels), where
for this project, batch_size = 1, height = window size, width = number of acceleration components (like
x, y, z, orientation feature1, feature2, feature3), and channels = 1 (because only acceleration channel is
present). To use this Conv2D layer, a 3D Tensor is created of shape (N, height, width) where N is the
total number of input batches, as illustrated in Figure 3.10. This 3D Tensor was converted to create the
input 4D Tensor with degenerate dimension, i.e., shape (N, height, width,1). It is useful to know that
TensorFlow Conv2D/Conv3D layer provides 2D/3D kernels, which can process the multivariate time-
series data (as discussed in Subsection 2.4.1). The kernel size of these layers further signifies which part
of the 3D input Tensor the model will work, or more specifically. For example, the 2D kernel of the
Conv2D layer slides over (a part of) the 3D input data or 3D Tensor. Although the input data dimension
is 3D, the 2D convolutional filter can only move in two directions along with the height and width of
input data.

This way, by using 3D Tensors combined with different convolutional kernel-size, we can implement
1D, 2D, and 3D CNN architectures without modifying this 3D input tensor. For example, if we use
3D CNN architecture and set the kernel size as (3,1,1), we are working on three samples of only one
acceleration-axis and one channel at a time (hence a 1D CNN implementation). Similarly, if we set
the kernel size as (3,3,1), we work on all three acceleration-axes for one channel (hence a 2D CNN
implementation). The 9-Axis inertial data can be thus handled by a kernel-size of (3,3,3). Although 3D
tensors are complicated to work with, they offer many benefits:

1. They save implementation time required for data preparation of different (input-shape specific)
CNN architectures. This provides the flexibility to explore different architectures without exces-
sive data manipulations to achieve compatibility with CNN structures.

2. They provide an appropriate data format, enabling easy data-handling to calculate many data-
fragment-related features (discussed in Subsection 2.8.3).
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Figure 3.10: 3D Input Tensor

3. 3D tensor structure is scalable to add important hand-crafted features. For example, a 3D tensor
of size (N,256,3) (i.e., (number-of-batches, window-size, axes)) can be extended along the x-y-z
axes of data to add orientation related features (discussed in Subsection 2.8.2) where the new 3D
Tensor will have a size of (N,256,6).

Hence for this project, the data signal was fragmented to create 3D tensors of shape (N, window_size,
6) if hand-crafted features are being used, otherwise (N, window_size, 3). These were then converted
into 4D input Tensors with degenerate dimensions to feed into Conv2D and Conv3D layers.

3.5 Implementation architecture

After gaining knowledge about what data pre-processing needs to be done, it is essential to gain insights
into how it can be done. This Section discusses the implementation details used to handle data plotting
and analysis and was further scaled up to perform data-manipulation tasks. Figures 3.11 and 3.12 shows
the end-to-end architecture used for data pre-processing and model classification. To do extensive data-
plotting and analysis, it is essential to create, map, and access the subject-wise meta-data like subject ID,
subject data-label, data-length for every activity label, etc. Such meta-data was extracted and utilized to
process the data signals. Meaningful choices are discussed below:

1. Numpy ndarrays: To handle multivariate time series data, numpy ndarrays were selected for base
implementation. This includes: extracting data from .csv signal files, processing data in a subject-
wise manner, extracting activity-wise data for every subject, and performing data fragmentation
once the noise is removed from the signal.

2. User-interactive interface: Implementation code was kept interactive, prompting the user to
make selections from pre-defined sets of choices to provide them the flexibility to train and com-
pare model results in different parameter settings. The parameters or choices which were offered
to the user are:
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• choice of the dataset (s) to work upon

• choice of using filtered or non-filtered dataset (using data cleaning procedure)

• choice to include or exclude orientation features

• choices of different input window-size for data-fragmentation

• choice of classification model to train

3. Data structures: It was found that numpy ndarray has a limitation that ’length of elements for all
rows, columns, etc., should be the same’. This is an issue since all subjects have a different total
number of data samples for various activities. For this reason, python data structure, Nested lists
were utilized. Since they allow index-based access and data manipulation, they are highly effi-
cient. Another essential data structure used was Dictionary. Dictionaries are the key-value pairs
that are convenient to map all subject IDs with their corresponding signal length. Combining the
above data structures (and meta-data) makes it possible to make the implementation independent
of the type of dataset selected by the user.

4. Python function globals() versus eval(): Data analysis requires efficient access to the individual
subject lists and nested lists using the meta-data stored for that subject. Managing a large number
of subjects with many activity labels for data analysis can result in complex code. One is often
tempted to use Python’s eval() function to fetch the individual subject lists by giving their ’list-
string-name’ or subject ID meta-data to avoid this complexity. If not done correctly, this is a bad
practice and can expose the system to security risks and memory leaks. An easy alternate solution
to this problem is creating global variables and using the globals() function to access them using
their string-name meta-data.

In this Chapter we talk about two datasets, one online available PAMAP2 dataset and a second in-house
collected Mentech dataset. Then we discuss the data pre-processing techniques used to plot, compare,
and analyze the subject-wise input data. Data analysis was used to perform data-cleaning to remove
the noise instances collected during the data collection of the Mentech dataset. Standard deviation ap-
plied windows were used with a Threshold value of 0.3Hz to only keep the static instances from sitting
and standing labeled data. A combined dataset, called Megabase, was created by down-sampling the
PAMAP2 dataset to 25Hz, and aligning its axis to match the sensor orientation of the Mentech dataset.
Once data is pre-processed, three hand-crafted orientation features (Pitch, Roll, and Tilt angle) were cal-
culated. Next, Data Fragmentation was performed to create 3D Tensors from acceleration components,
further converted into 4D Tensors with one degenerate dimension.

These steps make the final 4D input sensor required for 2D Convolutional Neural Networks. The pro-
posed model architectures to further process this created input and perform Human Activity classifica-
tion are discussed in the next Chapter 4.
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START

User input-
i) Dataset

ii) Original or Filtered
iii) Include or Exclude

Orientation feature
iv) Window Size
v) Classification

model

Read the .csv files for all subjects using Numpy NDarrays

Extract and store the meta-data for all subjects

Create Nested Numpy Lists for all the subjects

Dictionary mapping of Nested Numpy Lists with created meta-data

Fetch subject-wise and activity-wise signal data from dataset for choice

CONTINUED

Figure 3.11: Process flowchart for proposed solution Part-I
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CONTINUED

Data - Plotting

Calculate Total Acceleration, Mean, and Standard Deviation values
for flexible mini-windows

Data - Analysis
Selected Filter length = 10 samples

Selected Filter Threshold for Sit/Stand = 0·3

Data-Cleaning

Axis Alignment and Calculating Orientation Related Features

Select model of
user choice

1D CNN 2D CNN

RETURN
Classification Results

Figure 3.12: Process flowchart for proposed solution Part-II
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4 Model Architecture

This Chapter discusses the proposed solution for HAR, keeping in mind the literature’s observations
explored in the Chapter 2. The Deep learning techniques found most promising for HAR are variations
and combinations of Convolutional Neural Networks (CNN) architectures. The 1D and 2D CNN ar-
chitectures were selected and researched further in this project. Special attention was given to using a
minimum number of layers and hand-crafted features in the proposed solution to reduce the complexity
of architecture, reducing the real-time computational cost of the solution. Before discussing the pro-
posed model, it is essential to understand the existing HUME architecture and its integration with the
current HAR model. The proposed solution’s architectural and integration details are discussed in the
following Sections.

4.1 Current HUME architecture

A high-level architecture diagram of HUME is given in Figure 4.1, where the HAR is performed us-
ing 1D CNN in the pre-processing step. The existing HAR model is a binary classification model for
discriminating static and dynamic activities. Using this model, the subject’s real-time (static-dynamic)
position is estimated, which defines whether Static or Dynamic stress models are activated in real-time.
HUME uses the output of Arousal levels for stress classification. Every time a position change is iden-
tified, further decision making to process the input signals as per the changed activity to provide more
accurate Arousal levels, thus improving overall HUME performance.

Figure 4.1: High-level HUME architecture with existing static-dynamic HAR model

The studied DL architectures are capable of distinguishing between Static-Dynamic classes efficiently
(∼ 95% accuracy). The HAR problem becomes more complex as we add new activity classes to it. The
three classes, i.e., sitting, standing, and walking, are the most common static-dynamic activities a human
performs in their daily life. To study the effect of sensor orientation on the model performance, three
orientation features, namely, Pitch, roll, and tilt angle (discussed in Section 2.8.2) are calculated before
feeding the input signal to the classification model.

Irrespective of the final model being used, a 3-class classification architecture can be integrated with
HUME to provide further information about the static activity, i.e., whether a person is sitting or stand-
ing. As discussed in Chapter 1, sitting and standing positions can deliver meaningful insights to deciding
whether the person is mentally stressed or physically active. The post-processing step can be modified
accordingly and is not discussed further in this report to utilize this additional (sitting/standing) infor-
mation in producing the ’Arousal Levels’ for stress detection. Since the HUME implementation uses
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older Tensorflow and sklearn, the current model code needs to be downgraded accordingly to make it
compatible with HUME. The proposed HAR model can be integrated with HUME in the following
ways:

1. The proposed 3-class classification model can be used to replace the 2-class classification model.
For this, the walking class will represent the dynamic class, while sitting and standing will repre-
sent the static class.

2. The proposed 3-class classification model can also be used as a 2-class classification model to
classify static activities like sitting and standing. Once the decision is made by the static/dynamic
HAR model decides that it is a static activity, the input signal can further be processed to re-
move the ’dynamic’ instances from it, using a low threshold filter similar to the one used in the
data-cleaning process (Section 3.3.3). This filtered input can then be fed to the proposed HAR
classifiers to identify the sitting and standing classes. This integration flow can also be seen in
Figure 4.2.

Figure 4.2: Integration of existing static-dynamic (1D CNN) HAR model, with proposed HAR model
being used as a binary classifier for sitting and standing classes

4.2 Convolutional Neural Network Architecture

According to the literature review done in Chapter 2, Convolutional Neural Network (CNN) often fails
to capture temporal patterns. This is why many researchers explored LSTM since they can learn long-
term time dependencies, overcoming CNN’s limitation (Jordao et al. 2018). To overcome this limitation,
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Figure 4.3: Proposed 2D CNN architecture

Jordao et al. 2018 used convolutional kernels of larger size each in their implementation (also discussed
in Section 2.7). Using the same motivation, more extended convolutional kernel sizes are used in the
proposed CNN architectures.

A 2D CNN is proposed consisting of 3 convolutional layers, each followed by a Maxpooling layer.
Different 2D convolutional kernels are used for every convolution layer, as illustrated in Figure 4.3. The
first convolutional layer consists of 28 filters of kernel-size (15,n), where n = 2 if hand-crafted features
are not selected, otherwise n = 5. This means that the convolutional kernel works on 15 input data
values at a time for ’n’ input acceleration values. The number of filters is increased to 56 in the second
convolutional layer, with a kernel size of (25,3). A more significant number of filters and kernel size
are used to ensure that the features extracted from the first convolutional layer are properly analyzed
by making more extensive combined feature patterns. The third convolutional layer consists of 112
convolutional filters of size (15,3). A Batch-normalization layer was also used just before the second
and third convolutional layers. The last convolutional layer is followed by one fully connected dense
layer and a softmax layer at the end. The layer-wise model architecture can be seen in Figure 4.3. These
parameters are derived from the study in Jordao et al. 2018, and are modified or fine-tuned as discussed
in Chapter 5.

The same architecture, as shown in Figure 4.3, is also utilized to achieve a 1D CNN architecture. The
2D convolutional layers are used with a modified kernel-size of (m,1), where m is the same kernel
dimension-value used for 2D CNN architecture, i.e., 15, 25, and 15 for the three convolutional layers,
respectively. Notice here that ’1’ in the kernel-size (m,1) enforces 1D CNN implementation because the
convolutional kernel will work on ’m’ input data-values (in time) for only one input acceleration value
at a time.
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5 Results

Two model architectures were implemented and tested for this project are: a 1D Convolutional Neural
Network (CNN) and a 2D CNN. These architectures were trained, and classification accuracies were
compared for three datasets (PAMAP2, Mentech in-house dataset, and Megabase), with and without
using the filter used for data cleaning.

In the exploratory model-training phase, the selected models were trained for longer epochs (200-300
range) to study their performance and learning trend. One interesting general observation is captured in
Figure 5.1, which shows the apparent confusion between ’sitting’ and ’standing’ classes faced by the 2D
CNN model. Notice that the validation accuracy was initially terrible (≈ 55%) until the first 50 epochs.
Then the model can be seen to ’identify’ the difference between ’siting’ and ’standing’ between 50-80
epochs. The model finally ’learning’ the difference between these classes leading to high validation
accuracy after that.

To further ’fast-forward’ the above discussed model-training process, different 2D kernel sizes of 2D
CNN were studied. The potential of the convolutional kernel was also discussed in Section 2.7, where
Jordao et al. 2018 used convolutional kernels of size (12,2) each in their implementation (here, 12 stands
for data-samples in time, while 2 represents two acceleration axes). The intention for using longer-sized
convolution kernels was to test whether they can capture the required features (both local and temporal)
’quickly’. If 2D CNN architecture indeed learns features (both local and temporal) faster, it will be
reflected in the model’s reduced ’learning’ phase (in terms of epochs), as shown in Figure 5.1. It was
found that the 2D CNN model with a larger kernel size achieved higher accuracy within ≈ 20 epochs.
Other Hyper-parameters which were tested along with kernel size are described in the next Section.

5.1 Hyper-parameter settings

2D CNN Model performance (for 256 window-size, using PAMAP2 dataset) was studied using different
convolutional kernel sizes, learning rates, and decay rates. This step was performed to find the hyper-
parameter settings used for Convolutional Models. The final settings used were learning-rate "0.001",
with a decay of "0.001", and kernel-sizes as specified in Section 4.2. Since we are working with a
three-class classification problem, categorical cross-entropy was used as the loss function. The model
optimization was done using the Adam optimizer, and the activation function used was ReLU (Ignatov
2018; Xia et al. 2020). These specifications ensured that the model learns essential features reasonably
while also not over-fitting on the training data.

Figure 5.1: Training and validation accuracies for 200 epochs for 2D CNN model (using PAMAP2
dataset)
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MODEL
PAMAP2 MENTECH MEGABASE

Original Filtered Original Filtered Original Filtered
1D CNN 92.2 93.8 69.9 76.6 78.1 84.3
2D CNN 91.8 93.4 63.7 81.4 72.3 80.7

Table 5.1: Model balanced accuracies using original and filtered data signals using 256 window-size

In the final model-training phase (i.e., Sections 5.2, 5.3, and 5.4), the selected models were trained
for 100 epochs, with an early stopping having the patience of 20 epochs. Since initially, models were
trained for longer epochs (≈ 200 epochs), the patience of 20 epochs was used to study the model perfor-
mance (even if bad or over-fitting). The two proposed CNN model architectures (with finalized hyper-
parameters) were further tested to see the effect of applied data-cleaning, adding handcrafted features,
and different input window sizes.

For evaluating the overall balanced model performances, a balanced accuracy metric is used, which is
calculated using:

Balanced Accuracy = (((TP/(TP + FN) + (TN/(TN + FP )))/2 (5.1)

where, TP = True Positives, TN = True Negatives, FN = False Negatives, and TN = True Nega-
tives.

5.2 Effect of performing data-cleaning

This Section compares the model performances using the original acceleration signal and the filtered
signal after applying the data-cleaning filter (as discussed in Subsection 3.3.3). All three models were
trained on all three datasets using the input window size of 256 samples. The balanced accuracies
obtained are summarized in Table 5.1.

For the PAMAP2 dataset, model performance did not improve much after applying data-cleaning (≈
2 pp), while for the Mentech dataset, significant improvements in balanced accuracy (≈ 7-18pp) were
observed. These results are as expected since, for the PAMAP2 dataset, there was not much data that was
deleted, leading to similar model performance. While for Mentech and Megabase datasets, removing
noise increased the model performance significantly. Another important observation is that the 1D CNN
model architecture performed and 2D CNN model (sometimes even better). This shows the potential of
using a simpler model for solving this HAR problem. For all the following Sections 5.3 and 5.4, only
filtered datasets are used for model training.

5.3 Effect of using a different input window size

This Section compares different input window sizes used for data fragmentation. Different input sizes
were selected based on the input-time used for testing the model performance (as mentioned in Sub-
section 3.3.4). The balanced accuracies obtained after training the models using filtered signals are
summarized in Tables 5.2, 5.3 and 5.4, for PAMAP2, Mentech, and Megabase datasets, respectively.

In general, models perform best for smaller window sizes. Since the sampling rate of PAMAP2 is
100Hz, the ideal window size is 256 samples or less (i.e., 2.56 seconds or less). For Mentech and
Megabase datasets, the sampling rate is 25Hz, hence 64 samples or less (i.e., again 2.56 seconds or
less). For all the datasets, model performance decreases for a more extended window size of more than
2.56 seconds. Hence for the next Section 5.4, the three window-size selected for all datasets is 0.64,
1.28, and 2.56 seconds.
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MODEL
Window size (# samples)
64 128 256 512

1D CNN 93.6 92.3 93.8 88.2
2D CNN 93.1 92.9 93.4 89.1

Table 5.2: Model balanced accuracies using three different input window sizes for the PAMAP2 dataset

MODEL
Window size (# samples)

16 32 64 128 256 512
1D CNN 84.9 86.4 85.8 80.5 76.6 63.1
2D CNN 85.1 85.4 85.5 81.4 81.4 69.5

Table 5.3: Model balanced accuracies using three different input window sizes for Mentech dataset

5.4 Effect of adding handcrafted features

This Section compares the model performances by adding three orientation features for every database;
Pitch, Roll and Tilt angle. Models were trained on filtered datasets, with selected window sizes from
the previous Section. These results are summarized in Table 5.5. The addition of orientation features
helped increase the accuracy for the PAMAP2 dataset by 1pp for the 2D CNN model, while for the 1D
CNN model, 93% accuracy was observed. On the other hand, the addition of these features neither did
improve nor degrade the performance for Mentech and Megabase datasets. The best performance for all
the datasets was found for a window size of 0.64 and 1.28 seconds. Confusion matrix for 1.28 seconds
window for all the datasets is shown in Figures 5.2, 5.3 and 5.6. The accuracy and loss over the epochs
for model training, and validation are shown in Figures 5.4, 5.5 and 5.7.

As seen in Figure 5.2, all three classes are being classified with high confidence for the PAMAP2 dataset.
For Mentech and Megabase datasets, models can be seen confusing between sitting and standing classes
the most. The Figures 5.5 and 5.7 show diverging training and validation loss and accuracies. This
means the 2D CNN model is overfitting for the Mentech and Megabase datasets. This can be either
due noise present in datasets, or due to lack of model hyper-parameters fine-tuning for data with low
sampling rate. The addition of orientation features improved the classification accuracy by ≈1 pp.

MODEL
Window size (# samples)

16 32 64 128 256 512
1D CNN 87.4 89.3 87.7 84.9 80.8 73.2
2D CNN 87.8 87.6 85.4 83.8 84.7 70.8

Table 5.4: Model balanced accuracies using three different input window sizes for the Megabase dataset
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MODEL
PAMAP2 MENTECH MEGABASE

64 128 256 16 32 64 16 32 64
1D CNN 93.8 93.5 93.0 83.6 86.4 80.9 86.7 89.1 87.7
2D CNN 94.4 94.0 93.4 85.9 85.5 83.9 88.8 88.2 86.3

Table 5.5: Model balanced accuracies after adding orientation features using three different window
sizes.

Figure 5.2: Confusion Matrix for 2D CNN model, with orientation features, with window-size 1.28
seconds (for 100 epochs with early stopping) using PAMAP2 dataset. Here 0 is the Sitting class; 1 is the
Standing class; 2 is the Walking class.

Figure 5.3: Confusion Matrix for 2D CNN model, with orientation features, with window-size 1.28
seconds (for 100 epochs with early stopping) using Mentech dataset. Here 0 is the Sitting class; 1 is the
Standing class; 2 is the Walking class.
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(a) Training and Validation loss graph (b) Training and Validation accuracy graph

Figure 5.4: Loss and Accuracy graphs for 2D CNN model, with orientation features, with window-size
1.28 seconds (for 100 epochs with early stopping) using PAMAP2 dataset.

(a) Training and Validation loss graph (b) Training and Validation accuracy graph

Figure 5.5: Loss and Accuracy graphs for 2D CNN model, with orientation features, with window-size
1.28 seconds (for 100 epochs with early stopping) using Mentech dataset.

Figure 5.6: Confusion Matrix for 2D CNN model, with orientation features, with window-size 1.28
seconds (for 100 epochs with early stopping) using Megabase dataset. Here 0 is the Sitting class; 1 is
the Standing class; 2 is the Walking class.
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(a) Training and Validation loss graph (b) Training and Validation accuracy graph

Figure 5.7: Loss and Accuracy graphs for 2D CNN model, with orientation features, with window-size
1.28 seconds (for 100 epochs with early stopping) using Megabase dataset.
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6 Conclusion

This work explores the research methods available for solving the Human Activity Recognition (HAR)
problem using multiple IMU sensors. The most commonly used signals used for HAR found in the
research were extracted from an accelerometer, magnetometer, and gyrometer. While orientation and
pressure sensors were also good signals for HAR, they were not considered for implementation in this
project. Literature shows the importance of using a noise-free dataset for DL approaches. A low-pass
butter-worth filter was found to be sufficient to filter the high-frequency noise from acceleration signal
data. Although for in-house data collection, ensuring that motion-induced noise is not recorded while
collecting labeled data was a priority for many researchers. Including varied environment setups for
data-collection, like different activity intensities (for walking, running, cycling), chairs with varying
heights for sitting, different sitting/standing postures, etc., were also found to help collect a good-quality
dataset.

Literature shows that the State-of-art approaches to solving HAR problems use Deep Learning (DL)
architectures with selected handcrafted features. These approaches show a good history of higher Ac-
tivity classification accuracy compared to the traditional Machine learning (ML) approaches. However,
a low accuracy bottleneck was observed for both these approaches, for sitting and standing classes (≈
75-85%). The gained knowledge was applied to solve HAR using only a single accelerometer, focusing
on achieving high classification accuracy for the sitting and standing classes using DL models like 1D
Convolutional Neural Network (CNN), and 2D CNN. Results were compared for an online available
PAMAP2 dataset, an in-house collected (Mentech) dataset, and a combination of these two datasets
(Megabase). The main findings from the comparison of the results, with their limitations, are:

• Hyper-parameters: Results show that larger convolutional kernel sizes were able to learn the
essential features in a lower number of training epochs while also speeding up the model training
procedure. The total number of convolutional filters and learning rate play a crucial role in achiev-
ing higher model performance. Although, increasing these parameters (convolutional kernel size,
number of filters) or reducing the learning rate can lead to model over-fitting and should be done
cautiously.

• Data cleaning: Results show that the used data filter (with standard deviation threshold of 0.3 for
sitting and standing data signals), to reduce such noisy instances from data-signal improves the
accuracy for Mentech and Megabase datasets significantly. While for the PAMAP2 dataset, not
much data was deleted during data-cleaning, nor did it affect the model performance much.

• Orientation-features: Orientation-features were a promising addition as per the literature review
done; however, they did not affect the performance much. Feature selection was not made due to
time constraints. Still, it can provide more insights into what time-domain, frequency-domain, or
orientation-related features can help the most in model performance.

• Window size: Results show that all DL models performed best with smaller input window size
(in seconds), typically of 1.28 s or less. Due to the limitation of time, the model hyper-parameters
were not fine-tuned for different input window sizes (or for different sampling rates of the datasets)
to study the general behavior of other models.

• Overfitting model performance: Results show that the final trained models are overfitting for
Mentech and Megabase datasets, with current hyper-parameter settings. This can be either due to
low sampling rate used for these datasets, or the model can overfit on the noise introduced during
data-collection of in-house Mentech dataset.

The final obtained accuracy for the PAMAP2 dataset is ≈ 94%, for the Mentech dataset is ≈ 85%,
and for the Megabase dataset is ≈ 88% using 2D CNN model architecture. The confusion between
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standing and walking classes was high for the Mentech and Megabase datasets due to a data-collection
labeling error which led to the recording of small walking-transition instances in static classes (sitting
and standing). Best model performance was achieved using an input window size of 1.28 seconds or
less, combined with the three orientation features for both datasets. Steps can be taken to study the
model performance further to achieve even higher performance.
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7 Future Recommendations

High classification accuracy was achieved by the proposed models on the PAMAP2 dataset, while per-
formance was comparatively low for Mentech and Megabase datasets. However, by overcoming the
limitations of the work done, model performance can be further improved. Recommendations in the
order of decreasing priority are enlisted below:

1. It is advised to finalize or select the most suitable input window size and model per the project
requirements. The hyper-parameters (like convolutional kernel size, number of filters, learning
rate) should be fine-tuned again accordingly for the final selected classifier model.

2. Setting up more data-collection campaigns are advised to collect a large, correctly labeled activity-
specific dataset. The removal of any noise in the training dataset will ideally lead to increased
model performance. To minimize recording of noise during the data-collection procedure, further
steps can be taken:

• For all activity classes, especially static class, ’ noise’ must be defined. Accordingly, if the
static classes can include small dynamic instances (like position-change or transitions), the
value of the data-cleaning filter threshold should be increased to reflect the new allowed total
acceleration for the static activities.

• In the case of data-collection using multiple sensors, the addition of meta-data (like sensor
ID, initial sensor orientation) in the raw signal-files can help in saving the pre-processing
data time.

3. The Fragmentation features (discussed in Section 2.8.3) can be used to improve further the per-
formance of the current (or existing) static and dynamic HAR model.

4. The proposed solution can be further scaled to add more classification classes like cycling, walking
up or down the stairs, lying, car-driving activities, etc. To do so, it is essential to note that accord-
ing to the literature survey done in Chapter 2, including selected handcrafted features can improve
the model performance. Since dynamic activities can contain combinations of various human ac-
tivities, it will also be reflected in the frequency-domain and time-domain features for these data
signals. Handcrafted features can be selected using appropriate feature selection techniques, such
as Chi-Square Test, Pearson Correlation Coefficient, Random Forest feature importance, Principal
Component Analysis, etc.

5. Since calculating handcrafted features can be computationally costly; two approaches can be un-
dertaken to make the model (with calculated features) real-time efficient:

• The concept of the Teacher-Student LSTM model (discussed in Section 2.6) can be utilized.
The teacher model can be the initial selected CNN model, trained on handcrafted features
to learn the information-rich domain-specific features. The resulting probability distribution
from the softmax layer of the Teacher model can be used as ground truth labels for a separate
Student model (2D CNN or LSTM), which contains more convolutional filters (or neurons
for LSTM) than the teacher model. This way, the learnings of one model can be transferred
to another model, helping the student model to generalize in the same way as the teacher
model. This method was found helpful in classifying hard targets like sitting and standing
(Z. Chen et al. 2018).

• To make the HAR solution real-time efficient, Apache Spark’s framework can be used to start
the data pre-processing required for HAR as soon as the data is collected. Spark Streaming
efficiently handles live input data streams and provides high-level functions like ’map’ and
’reduce’ to perform important aggregation tasks. This can significantly reduce the time taken
by a model to calculate selected handcrafted features in real-time.
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