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Abstract

Sets of moving entities can form groups that travel closely together for longer periods of time.
Analyzing the shape and the collective movement properties of such groups of people, vehicles,
or wildlife animals allows us to make inferences about the underlying movement behavior. An
example of such a property is the density of the group, which has been shown to be influenced by
external stimuli in applications from, for example, wildlife ecology. Motivated by such applications,
this thesis investigates how to find and maintain the location of dense and sparse areas of a given
group of moving entities. We achieve this by maintaining the maxima and minima of a probability
density estimate of a moving input point set P , which represent the dense and sparse areas of the
data, respectively. We use the kinetic data structure framework to build a data structure that
maintains the extrema of the probability density estimate by utilizing the slope of the function.
The kinetic data structure is compact, local, responsive and weakly efficient. We also investigate
how we can use an ε-approximation of the kernel density estimate to make the kinetic data
structure more efficient. This approximation brings the number of processed events down from
O(n2) to O(n

4
3 · 1

ε2 ) and maintains the most relevant extrema of the density function. Using the
approximation does, however, negatively impact the locality and the responsiveness of the data
structure. In addition to the work on density, we also demonstrate how to classify movement
phases of a group of moving entities. We do so by combining an existing a grouping approach
with an existing approach for the classification of movement phases of a single entity. In a proof-
of-concept implementation, the resulting method is able to classify movement phases of a group
mostly based on the velocity of the entities.
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Chapter 1

Introduction

Over the past decade, technological advances in tracking technology have greatly increased the
amount of movement data that can be collected. Tracking such moving entities can be useful in
a large range of applications such as wildlife ecology, transportation sciences and sports analysis.
This large amount of collected data has also led to a higher demand of methods to analyze the
behavioral movement patterns that underlie the movement.

Such movement data sets are often represented by discrete sets of timestamped positions
called trajectories. Trajectories are can be interpreted as polygonal curves interpolated over these
sampled locations (see Figure 1.1). Analyzing the movement behavior behind such trajectories is
an important task. There is a large body of work exploring and analyzing trajectories of indi-
vidual entities which, for example, focuses on segmenting and classifying individual trajectories to
distinguish different movement phases [2, 7, 15,19].

We focus on the collective analysis of sets of related entities. There are many concepts that
describe when a set of entities form a cohesive collective, and there exists a large body of work that
attempts to identify and maintain them. Some examples of such concepts are moving clusters,
herds, flocks, and groups. Many of these concepts differ slightly in how they are defined. The
concept of moving clusters [23] attempts to, given any standard static-clustering algorithm, capture
how these clusters move in a setting with discrete time steps. Two clusters at two subsequent
time steps are considered equal if a large enough fraction of their entities overlap. Herds [20, 31]
further build on this concept by specifying, given a set of moving clusters, how these clusters
expand, shrink, merge and split over time. The concept of flocks [14, 31] has been proposed to
identify sets of entities that travel together for an extended period of time without the need of a
static clustering algorithm. The concept of flocks is based on three parameters: size parameter
m, time parameter k and distance parameter r. A set of at least m entities is said to form a flock
if there are at least k consecutive time steps for which there is a disk of radius r that contains all
m entities.

In this thesis, we use the concept of groups [6, 21] to define when and where entities travel

t0

t1

t2

t4

t3 t5

t6

Figure 1.1: An example of a trajectory, sampled at 6 time steps.
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(a) (b) (c)

Figure 1.2: Three different groups of 15 points. Let the gray discs denote the ε-discs of the points.

together in a continuous setting. Groups work in a way that is very similar to flocks: we have
a size parameter m, a temporal parameter δ, and a spatial parameter ε. A set of entities is
considered a group during time interval I if it consists of at least m entities and I is of length at
least δ. Unlike flocks, however, groups do not require all entities to be within a single disc. There
are two different definitions of groups depending on how the spatial parameter is used. Let the
ε-disc of a point p be the disc centered at p with radius ε. For a set of entities to form a group,
Hwang et al. [21] require all entities p in the group to lie within the ε-disc of all other entities in
the group. Conversely, Buchin et al. [6] require that, for each entity p in the group, the ε-disc of p
overlaps the ε-radius disc of at least one other point in the group. In this thesis we use the latter
definition by Buchin et al., which is discussed in more detail in Chapter 4.

Using this definition, we are able to find groups in a set of moving entities. In some applications
it is useful to be able to further distinguish these groups from one another based on their shape.
In wildlife ecology, for example, animals often clump together when not under threat and respond
to immediate danger by spreading out [13,26]. This means that being able to discern the shape of
such a group allows us to make inferences about external stimuli affecting the movement behavior
of the group. Consider the three groups in Figure 1.2. These groups all consist of 15 points, and
are all grouped using the same spatial parameter ε, yet they differ in shape. Since the spatial
parameter ε is fixed, we are unable to distinguish these groups from one another. We desire a
way to differentiate differently shaped groups as they evolve over time. In this thesis, we aim to
provide a way to evaluate the shape of a group by identifying its particularly dense and sparse
areas. The location of these dense and sparse areas can give us a deeper understanding of the
shape of a given group.

In order to identify dense and sparse area in groups of entities, we must first be able to quantify
the density. We estimate the density of our point set using a technique from statistics called kernel
density estimation [28]. Kernel density estimation attempts to estimate the probability density
function of a random variable using a sample of points from the random variable. We can use it
to get an estimate of a function describing the density of our group of entities (see Figure 1.3).
The maxima and the minima of this function indicate areas where the density is estimated to be
high or low, respectively. Thus, to identify dense and sparse areas in the input data, we aim to
find and maintain the maxima and minima of this function as the underlying points move.

Identifying the extrema of a function suggests the use of computational topology [12]. Com-
putational topology describes a set of tools concerned with the shape of data, and has been used
before to study groups [6]. In particular, storing the extrema of a function is closely related
to storing the Morse-Smale complex of the function. A Morse-Smale complex aims to capture
the topology of a function by storing the critical points of the function, i.e. points at which
the derivative of the function is 0. Additionally, it describes the relations between these critical
points as integral lines which intuitively represent the “flow” from a maximum to a minimum. See
Figure 1.4 for an example of a Morse-Smale complex on a one-dimensional function. There has
extensive work on efficiently computing the Morse-Smale complex for static functions [17, 18, 34].
Furthermore, Ophelders et al. [27] describe how to maintain the Morse-Smale complex of a dis-
crete function of which the heights of the vertices are time-varying. In our setting, however, since
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(a) (b)

Figure 1.3: An example group of entities, represented by points, as well as a visualization of its
kernel density estimate. The red areas indicate high values of the estimated density function.

Figure 1.4: An example of a Morse-Smale complex on a function over the one-dimensional domain.
Squares indicate maxima, discs indicate minima, and the red integral lines indicate the relation
between these extrema.

the entities underlying the function are moving, the vertices are not only time-varying in height
but also in position. Since this problem is quite complex, we will for now consider functions over
the one-dimensional domain. Note that a one-dimensional Morse-Smale complex can simply be
represented by an ordered list of extrema.

To maintain the Morse-Smale complex of a discrete, time-varying function, Ophelders et al. [27]
use the kinetic data structure (KDS) framework. Generally, kinetic data structures are data
structures that aim to efficiently maintain some attribute of a moving geometric system. The KDS
framework assumes the movement paths of the entities are known beforehand. This assumption is
used to predict the timestamps at which the maintained attribute changes. Using these predicted
time stamps we can guarantee that the data structure is updated only when strictly necessary. This
ensures that the maintained attribute is always correct, and avoids any superfluous calculations.
In this thesis we will also utilize the KDS framework, which is discussed in more detail in Chapter
2.

In addition to the work on group density, we also investigate how to detect when the move-
ment patterns of groups of two-dimensional entities changes. For individual entities, a number of
methods that identify movement patterns already exist. The methods we focus on here assume
that the movement of an entity in between two observations can be described relatively well by
a random walk. As such, these methods aim to fit parameterized movement models to the data,
which are described by a Gaussian process. These models include a parameter p that characterizes
some aspect of the movement data modelled by the process (e.g. velocity or movement direction).
Using such models, sub-trajectories can be assigned a value of parameter p, as well as a likelihood
score that indicates how likely it is that the movement in the sub-trajectory is well-described by
the movement model using parameter p.

An example of how such a movement model can be used in practice is demonstrated well in
the method called behavioral change point analysis [15] (BCPA). This methods aims to identify
structural shifts in the movement of an entity by fitting a movement model to the data that is
parameterized by the auto-correlation ρ of the velocity and the movement direction. This auto-
correlation parameter ρ indicates how likely the velocity and the movement direction is to change
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(a) (b) (c)

Figure 1.5: Three example trajectories with a (a) high, (b) medium, and (c) low amount of
auto-correlation for the velocity and movement direction.

between subsequent observations. Examples of three trajectories with different values of this auto-
correlation parameter ρ can be found in Figure 1.5. This movement model used by BCPA will be
explained in more detail in Chapter 4.

Another use of such parameterized movement models can be seen in the segmentation and
classification work of Alewijnse et al. [2]. In the single-trajectory setting, a segmentation breaks
a trajectory into disjoint sub-trajectories, called segments, in such a way that the properties of
the movement are similar within the segment and different between segments. The classification
of a set of segments assigns segments to classes based on their movment properties. There are
many known approaches to segmenting and classifying trajectory movement, generally limited to
individual trajectories [5, 22, 24]. We aim to investigate whether the approach by Alewijnse et al.
can be extended to groups of trajectories.

To this end, let group segmentation be the act of finding similar sub-trajectory clusters in
a group of trajectory data. Where single-trajectory segmentation only asks to break up single
trajectories into sub-trajectories depending on the movement characteristics, group segmentation
aims to further group similar segments between different trajectories. Furthermore, group classi-
fication describes the act of, given a group segmentation, assigning the group segments to different
classes based on their similar movement characteristics. We will use group classification to, given
a segmentation of a group of trajectories, identify phases in the movement behavior by classifying
these segments.

Similarly to BCPA, the single-trajectory segmentation and classification algorithms described
by Alewijnse et al. [2] also fit a parameterized movement model to the data. To obtain a segment-
ation, a dynamic programming approach is used to find the optimal parameter values for which
the movement model is most likely to fit each sub-trajectories. Sub-trajectories with similar para-
meter values are then merged into segments in order to obtain a segmentation. The classification
algorithm by Alewijnse et al. works in a similar manner: dynamic programming is used to find
optimal parameter values for each segment, after which similar segments are classified into a single
class.

The single-trajectory segmentation approach by Alewijnse et al. [2] was recently extended by
Mols [25] to work with groups of trajectories as well. Mols achieves this is three different ways:
the clustering method, the incremental method, and the two-step method. The clustering method
is a non-deterministic approach that aims to find a group segmentation by finding specific sets
of sub-trajectory clusters. The method first incrementally constructs a large set of possible sub-
trajectory clusters by fitting a movement model to these clusters. Thereafter, a subset of these
clusters is selected such that the subset describes a valid group segmentation. The incremental
method works by using the segmentation algorithm by Alewijnse et al. to find a segmentation for
each individual trajectory separately. Then, it aims to merge these single-trajectory segmentations
such that the resulting merged segmentation is a valid group segmentation. Lastly, the two-step
method describes how to obtain a group segmentation in two separate steps. First, it finds groups
in the data using the trajectory grouping structure described by Buchin et al. [6]. Then, it uses the
segmentation algorithm by Alewijnse et al. to segment these groups separately. Mols concludes
that this last method, the two-step method, yields the most interesting and intuitive results. We
will use the two-step method to generate a group segmentation. This group segmentation will be
used to investigate to what effect the single-trajectory classification algorithm by Alewijnse et al.
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can be used to classify phases in a group segmentation.

1.1 Contributions

We present how to identify and maintain dense and sparse areas in a set of moving one-dimensional
points by finding the maxima and minima of the kernel density estimation function. We first do so
in a static setting, after which we describe how to maintain these maxima and minima through time
as the input points start moving. We achieve this by using the kinetic data structure framework,
which is commonly used to maintain attributes of moving geometric systems. A more detailed
description of these techniques is provided in Chapter 2. The kinetic data structure we produce is
compact, local, responsive, and weakly efficient. Furthermore, we consider possibilities to improve
the efficiency of our kinetic data structure in settings where the input data set is large. We do this
by finding and maintaining a coreset of the input point set, which is a point set of significantly
smaller size than the original input point set of which the probability density function is “similar”.
As we will see, the use of the coreset presents a trade-off between reducing the number of required
operations and increasing the amount of time it takes to process an operation. The kinetic data
structure is described in detail in Chapter 3.

In Chapter 4 we explore how we can apply the classification algorithm by Alewijnse et al. [2]
to a group segmentation produced by the two-step approach described by Mols [25]. Since both of
these approaches require a parameterized movement model to work, we use the model described
by Gurarie et al. [15] in their description of behavioral change point analysis. We apply the
classification algorithm on a real data set describing a troop of baboons moving through a wildlife
reserve. These results show that the classification algorithm is able to classify movement phases
relatively well in a group segmentation. The classification, however, seems based mainly on the
velocity of the entities rather than the movement direction. Lastly, Chapter 5 discusses the work
in this thesis and describes possible directions for future work.

Detecting Change in the Shape of Moving Point Sets 5



Chapter 2

Preliminaries

This chapter provides the background and terminology used throughout the next chapter. In
Section 2.1 we describe a reliable and well-known approach of estimating the density function of a
static population based on a finite sample. Then, in Section 2.2 we explain how we can efficiently
extract the relevant information from the estimated density function without storing superfluous
elements of the function. In Section 2.3 we describe an approach to extend these static approaches
to work for moving points as well.

2.1 Kernel Density Estimation

Kernel density estimation (KDE) is a robust method of estimating the continuous probability
density distribution from a given finite point set. Given a static set of observations P from a
domain M, the aim is to construct a function KDEP such that, for any input value from the
domain M, KDEP returns an estimate of the density at that input value. Consider P to be an
input point set of size n, where P ⊂ R1.

Kernel density estimation uses a notion of kernels, which (in our one dimensional case) are
functions K : R+ → R+. Each point in the input point set increases the value of the estimated
density function according to its kernel. Given input parameter y ∈ R+, some examples of kernels
are:

• Uniform: K(y) =

{
1 if y < σ

0, otherwise.

• Linear: K(y) =

{
1− y

σ if y < σ

0, otherwise.

• Epanechnikov: K(y) =

{
1− y2

σ2 if y < σ

0, otherwise.

• Gaussian: K(y) = exp
(
− y2

2σ2

)
All of these kernels contain a parameter σ that controls the amount of the data smoothing,

which we assume to be fixed. In this thesis, we will use the linear kernel. Although this kernel is
less widely used than, for example, the Epanechnikov or Gaussian kernel, it produces a piece-wise
linear terrain which is easy to work with and yields a sufficient approximation of the density of
the input point set. An example of an estimated density function of a single point using the linear
kernel can be seen in Figure 2.1. Intuitively, for the linear kernel, the smoothing parameter σ
determines the width of the kernel of each point.

6 Detecting Change in the Shape of Moving Point Sets
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li

pi

ri

Figure 2.1: An example of a single linear kernel.

Figure 2.2: An example of the kernel density estimation function.

Given the static input point set P of size n and the kernel function K, we can define the kernel
density estimate as a function

KDEP (x) =
1

n

∑
p∈P

K(|p− x|)

where x ∈ R1 is any value in the domain. An example of such a kernel density estimation on a
larger point set can be seen in Figure 2.2.

2.2 Terrains

Let P ⊂ R1 be an input point set of n points and let KDEP denote the KDE function of P
using the linear kernel, such that KDEP (x) for x ∈ R describes the value of the KDE function at
coordinate x. Additionally, for each pi ∈ P , let li = pi − σ and ri = pi + σ for 1 ≤ i ≤ n denote
the left- and right boundary of the kernel of pi (see Figure 2.1). Observe that function KDEP
is piece-wise linear and consists of line segments between bends at the x coordinates of li, pi and
ri for 1 ≤ i ≤ n. Let a bend corresponding to point pi or boundary li or ri be denoted bpi, bli
or bri, respectively. At each of these bends, the slope of the function changes: at bends bpi the
slope decreases, and at bends bli and bri the slope increases. Thus, we can consider the KDEP an
x-monotone, polygonal chain in R2 between bends bpi, bli and bri for 1 ≤ i ≤ n. This x-monotone,
polygonal chain constructed using P is henceforth referred to as a terrain TP .

2.2.1 Extreme values

In order to track the most/least densely populated areas in the domain, we aim to find and track
the extrema of the terrain. Generally, extrema are defined as either maxima or minima, which
can be either global or local. Since we are interested in finding all dense and sparse areas in the
input, we aim to identify all local extrema. Therefore, in the remainder of this thesis, whenever
we mention extrema we are referring to local extrema. We consider a bend b in the terrain TP a
maximum if the slope of the terrain is increasing before b, and decreasing after b. Conversely, we
consider bend b a minimum if the slope of the terrain is decreasing before, and increasing after b.

An important observation is that extrema in our terrain TP may not always consist of a single
bend. Since we are using the linear kernel, there are many situations in which there are line
segments in the terrain that have a slope of 0, resulting in a completely horizontal piece of terrain.

Detecting Change in the Shape of Moving Point Sets 7
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(a) Plateau (b) Valley (c) Flat

Figure 2.3: Three different types of horizontal segments that can appear in the terrain.

These horizontal segments of the terrain come in three different types that depend on the slope
before/after these segments. If the slope of the terrain is increasing before and decreasing after
the horizontal segment, we call the segment a plateau (Figure 2.3a). A plateau can be described
as a type of maximum that consists of two bends. Similarly, if the slope is decreasing before and
increasing after the horizontal part, it is considered a type of minimum called a valley (Figure
2.3b). Any other horizontal line segment (with either increasing slope both before and after, or
decreasing slope before and after) is called a flat (Figure 2.3c).

These three types also consist of different types of bends. Recall that bp describes a bend
corresponding to an input point, and that bl and br bends describe bends corresponding to left-
and right kernel boundaries, respectively. Valleys require two subsequent bl or br bends, since a
valley can only exist if the two bends neighboring the valley increase the slope. Similarly, plateaus
require two subsequent bp bends, and flats require a bp and either a bl or a br bend. Later, it will
be useful to be able to refer to the bends that are incident on horizontal segments of the terrain.
To this end, we call a bend that neighbors a horizontal segment a horizontal bend, or h-bend for
short. Depending on whether an h-bend is left- or right incident on a horizontal segment, it can
be either the starting- or the ending-bend of a plateau, flat or valley. We call an h-bend starting if
it is the left h-bend of a horizontal segment, and ending if it is the right h-bend of such a segment.
We call any bend that is not a maximum nor an h-bend a regular bend.

2.3 Kinetic Data Structures

The approach described above is, in principle, well-suited for static point sets. Our goal, however,
is to maintain these dense and sparse areas as the point set P moves. A naive approach would be
to divide the continuous temporal space in which the points are moving into a sequence of discrete
observations at a fixed time step ∆t. This way, one can maintain the extrema of TP simply by
recomputing them at each step. There are issues with this approach, however: if the time step
is not carefully picked, we may either miss important changes in the system or perform many
unnecessary computations.

To resolve these issues it would be helpful to not be restricted to a fixed time step ∆t, but
rather to perform updates to the system only when updates are strictly necessary. A kinetic
data structure (KDS) is capable of maintaining an attribute of a system by anticipating when the
moving components of the system will cause a change to the attribute. If we want to track the
extrema of TP , the KDS would be able to anticipate the times at which the extrema of TP change
and update the list of extrema at exactly these times.

A KDS achieves this as follows: it maintains a list of certificates on the system which describe
conditions under which the attribute remains correct in its current state. A certificate that de-
scribes conditions on a maximum bpmax, for example, could take advantage of the fact that we
know that any maximum bpmax should be higher than both of its neighboring bends. Let the left-
and right neighbor of a bend b simply be the bends directly to the left- and right of b, respectively.
Then, certificates that verify this maximum could be:

1. bpmax is higher than its left neighbor

2. bpmax is higher than its right neighbor

We know that bpmax will remain a maximum as long as these certificates are true. When one
of these certificates is violated, we know that bpmax is no longer a maximum. If the KDS has
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access to the movement trajectories of P , it can predict at which time each certificate in the list
is violated and maintain them in a priority queue. This priority queue is called the event queue,
and it stores an event for each certificate that will be violated using its predicted timestamp as
priority. If we store similar certificates for every bend in the terrain, we know that the extrema of
the terrain can only change at the time stamps of events in the event queue. Then, to maintain
the extrema of TP , we wait until the first event in the event queue is reached, perform updates to
the data structure at that time, and continue down the event queue.

To maintain correctness, there are a number of things that need to happen whenever a certi-
ficate violation triggers an event. The certificate violation directly implies that the list of extrema
must be updated to reflect the changes, but we are also required to add or delete certificates
to/from our list of certificates. This, in turn, requires us to update the event queue to reflect these
certificate changes. For example, if the certificate “bpmax is higher than its left neighbor” fails, we
need to:

1. Update the list of extrema by removing bpmax and, if necessary, the left-neighbor of bpmax,
possibly replacing them with new bends;

2. Update the certificates of bpmax (and its left neighbor) to reflect the fact that bpmax is now
lower than its left neighbor;

3. Update the event queue to reflect the changes to the certificates.

It is useful to note that, while not necessary in our simple example, a more complicated setting
may require us to maintain a more complex internal structure. In such settings some certificate
failures may not necessarily require updates to the maintained attribute, but rather trigger events
that merely update the internal data structure. A distinction is made between these two types
of events: external events are events that affect the maintained attribute directly (e.g. a change
to the extrema of TP ), whereas internal events are events that are processed because of internal
needs of the data structure without changing the maintained attribute itself directly.

2.3.1 Evaluating a KDS

After designing a KDS, we want to be able to evaluate it. To this end, there are four common
quality measures with which the quality of a KDS is often quantified.

Firstly, the compactness of a KDS describes the worst-case size of the list of certificates.
We call a KDS compact if the number of certificates it maintains in the worst-case is at most
O(n polylog n), where n is the size of the input. In our example above we maintain O(n) certific-
ates (one for each pair of neighboring bends), meaning a KDS using only these certificates would
be compact.

The second performance measure is the locality of the KDS. The locality of a KDS is determined
by the maximum number of events in the event queue that depend on a single object. In our
example, any event in the event queue depends on two neighboring bends. Trivially, this means
that any bend always appears in at most two events at a time. We call a KDS local if the worst-
case number of events in the event queue that depend on a single object is at most polylogarithmic
in the size of the input.

Another key quality measure is the efficiency of the KDS, which is determined by the worst-case
number of processed events. This is where the distinction between internal and external events
becomes important. Simply measuring the absolute number of events would not make much sense:
the number of external events is a lower bound on the number of events required by any structure
that maintains the desired attribute. The goal is to construct a KDS where the worst-case total
number of processed events is of the same order as the number of external events that must be
processed in the worst-case. To compute this worst-case, we must restrict ourselves to specific
classes of motion. Such motion classes can be, for example, linear or polynomial motion, in which
the movement pattern is described by a linear function or a polynomial function, respectively.
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Note that in the definition above we are comparing the number of events over two classes
of movement patterns: one that maximizes the total number of events and one that maximizes
the number of external events. However, there may still be situations in which there are many
more events processed than the number of external events that take place. Therefore, we further
split the efficiency of a KDS into two categories: weak efficiency and strong efficiency. A weakly
efficient KDS only guarantees that the total number of events that are processed is never more
than the worst-case number of external events. A strongly efficient KDS, however, guarantees that
the worst-case ratio of total events to external events, taken over all possible allowed movements,
is constant. This means we no longer necessarily look at movement classes in which the number
of external events is large, but we look at movements in which the ratio of total number of events
to external events is large instead.

Lastly, we define the responsiveness of a KDS to be the time required to repair the structure
after a certificate failure. This includes repairing the certificate set, updating the maintained
attribute and adding/removing events to/from the event queue. We call a KDS responsive if the
worst-case cost of processing a certificate failure is at most polylogarithmic.
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Chapter 3

Maintaining extrema of a kinetic
density estimate

Using the tools described in the previous chapter, this chapter describes how we build a kinetic
data structure that aims to track the dense and sparse areas of a moving point set. To this end, we
use the same terminology put forward in the previous chapter. Given a one-dimensional point set
P of size n, we construct terrain TP by computing the kernel density estimation function KDEP
using the linear kernel.

The discussion of the data structure in this chapter is split into four parts. In Section 3.1 we
discuss how we are able to efficiently find the extrema in TP when point set P is static. We do
so by describing how to compute the extrema of TP from point set P without having to actually
construct the terrain TP itself. Section 3.2 describes what the observations made for the static
setting entail for the kinetic setting, and how the extrema found in the static setting actually
change when the points in P start moving. Section 3.3 details how to construct and maintain
a KDS that utilizes the findings of the previous two chapters, and analyses the KDS using the
quality measures described in Section 2.3.1. Lastly, in Section 3.4 we discuss how the efficiency of
the KDS can potentially be improved by using an approximation of P .

3.1 Locating and storing extrema

Since our goal is merely to compute and maintain the extrema of terrain TP through time, com-
puting and maintaining the entire terrain TP would be inefficient; it would not only require us
to store a large amount of redundant information, but also require a large amount of superfluous
computations. Therefore, it would be more efficient to be able to describe the extrema using input
point set P only, and then maintain them from there. Since extrema can be determined using the
slope of the terrain, we will describe how the points from P directly determine the slope of the
terrain TP .

Observe that the slope of a single linear kernel is equal to 1
σn . Additionally, note that since TP

is constructed directly from the kernel density estimation function using linear kernels, the slope
of the terrain at any location must be an integer multiple of the slope of a single linear kernel. Let
the range R(x) of any location x ∈ R be the set of points pi from P that are within σ distance of
x, described by the interval (x− σ, x+ σ). The range of x can be decomposed into the left-range
R`(x) and the right-range Rr(x) of x, which describe the points in interval (x−σ, x) and (x, x+σ),
respectively (see Figure 3.1). Note that these ranges are described by open intervals, and thus do
not include their end points. The slope of TP at location x ∈ R can then be described as

|Rr(x)| − |R`(x)|
σn

(3.1)
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p1 p2 p3 p4 p5 p6 p7

σ σ

p8

Figure 3.1: An example of the left- and right ranges of a location x indicated by ×. We have
R`(x) = {p2, p3} and Rr(x) = {p4, p5, p6}.

p2p1 p3

σ σ

Figure 3.2: An example of a single-bend maximum at bp2, highlighted in red. Note that
|R`(p2)| = |Rr(p2)| = 1.

since each point in the right-range of x increases the slope of TP at x by 1
σn , and each point in the

left-range of x decreases the slope by 1
σn . Intuitively, the points in P and their boundaries influence

the slope of terrain TP as follows: when doing a walk over terrain TP from left to right, each bl
bend we encounter increases the size of our right-range by one, and each br bend we encounter
decreases the size of our left-range by one. This means that both bl and br bends increase our
slope by 1

σn . Each bp bend we encounter decreases the size of our right-range and increases the
size of our left-range by one each which decreases the slope of the terrain by 2

σn in total.
When considering the locations of the extrema, it will be useful to be able to classify the slope

of TP before and after a point. To this end, let x− and x+ for some x ∈ R1 denote x−ε and x+ε,
respectively, for some arbitrarily small ε > 0. This way, x− describes a location slightly to the left
of x and x+ describes a location slightly to the right of x. This gives us the following equations
for points pi ∈ P :

R`(p
−
i ) = R`(pi) (3.2)

Rr(p
−
i ) = Rr(pi) ∪ {pi} (3.3)

R`(p
+
i ) = R`(pi) ∪ {pi} (3.4)

Rr(p
+
i ) = Rr(pi) (3.5)

Using these equations, it is relatively straightforward to find the maxima in our terrain. We
provide the arguments for situations where pi is a single-bend maximum and, since we must find
plateaus as well, where pi is an h-bend. First, we evaluate when pi ∈ P is a single-bend maximum:

Lemma 1. Bend bpi with pi ∈ P is a maximum in terrain TP if and only if |R`(pi)| = |Rr(pi)|.

Proof. Assume bpi is a maximum. By definition, this means that the slope of terrain TP is
increasing at p−i and decreasing at p+

i . By Equation 3.1 this means that |Rr(p−i )| > |R`(p−i )| and
|R`(p+

i )| > |Rr(p+
i )|. Using Equations 3.3 and 3.4, this implies that |Rr(pi)| + 1 > |R`(p−i )| and

|R`(pi)|+ 1 > |Rr(p+
i )|. Combining this with Equations 3.2 and 3.5, we get |Rr(pi)|+ 1 > |R`(pi)|

and |R`(pi)|+ 1 > |Rr(pi)|. This directly implies that |R`(pi)| = |Rr(pi)|.
Now assume |R`(pi)| = |Rr(pi)|. Then, by Equations 3.2-3.5 we must have |R`(p−i )| + 1 =

|Rr(p−i )| and |R`(p+
i )| = |Rr(p+

i )| + 1. Therefore, by Equation 3.1, the slope of terrain TP must
be increasing directly before and decreasing directly after bpi. Thus, bpi must be a maximum.

For an example of a single-bend maximum as described in Lemma 1, see Figure 3.2. Next, we
investigate when point pi ∈ P is an h-bend:
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p2p1 p3

σ σ

p4

Figure 3.3: An example of a starting h-bend bp2, highlighted in red. Note that
|Rr(p2)| = 2 = |R`(p2)|+ 1.

Lemma 2. Given some point pi ∈ P :

• bpi is a starting h-bend if and only if |Rr(pi)| = |R`(pi)|+ 1;

• bpi is an ending h-bend if and only if |R`(pi)| = |Rr(pi)|+ 1.

Proof. The argument below is for the statement that bpi is a starting h-bend if and only if
|Rr(pi)| = |R`(pi)|+ 1. The proof for the case where bpi is an ending h-bend is analogous.

Assume bpi is a starting h-bend. Then we know that |R`(p+
i )| = |Rr(p+

i )|, since the slope of
TP is 0 at p+

i . Using Equations 3.4 and 3.5, this yields |R`(pi)|+ 1 = |Rr(pi)|.
Now assume |Rr(pi)| = |R`(pi)|+1. We can use Equations 3.4 and 3.5 to show that |R`(p+

i )| =
|Rr(p+

i )|, meaning the slope at p+
i is 0. Also, using Equations 3.2 and 3.3, we get |R`(p−i )|+ 2 =

|Rr(p−i )|, meaning the slope of the terrain is increasing at p−i . Therefore, since the slope of TP is
increasing before bpi and horizontal after bpi, bpi is a starting h-bend.

For an example of a starting h-bend as described in Lemma 2, see Figure 3.3. Before we discuss
minima, it is important to observe that single-bend minima in our terrain TP are degenerate.
Because the terrain TP is constructed using a linear kernel, the slope of TP is always an integer
multiple of 1

σn . For a single bend b to be a minimum, we require the slope of TP to be decreasing
before and increasing after b. This means that the slope should increase at b, which only happens
if b is associated with a boundary. If this is the case, however, b only increases the slope by 1

σn .
Since the slope is always an integer multiple of 1

σn , a single bl or br bend is never enough to turn a
decreasing slope into an increasing slope. Therefore, minima can only exist in a single location if
two boundaries coincide, which is simply a valley of length 0. Thus, we are exclusively interested
in valleys, which consist of a starting- and an ending h-bend.

It is also important here to note that the left- and right-range of locations are defined as open
intervals. This means they only include points from P that are strictly within σ distance. There-
fore, the left- and right-range of ri and li do not contain the corresponding point pi. Conversely,
it is easy to see that Rr(l

+
i ) and R`(r

−
i ) do contain pi, which implies the following equations:

R`(r
−
i ) = R`(ri) ∪ {pi} (3.6)

Rr(l
+
i ) = Rr(li) ∪ {pi} (3.7)

Other than that, the left- and right-ranges of l−i , l+i , r−i and r+
i are equal to those of li or ri:

R`(r
+
i ) = R`(ri) (3.8)

Rr(r
−
i ) = Rr(r

+
i ) = Rr(ri) (3.9)

Rr(l
−
i ) = Rr(li) (3.10)

R`(l
−
i ) = R`(l

+
i ) = R`(li) (3.11)
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p1

σ σ

p3p2 p4

Figure 3.4: An example of a starting h-bend bl4, highlighted in red. Here, l4 is indicated by ×.
Note that |R`(l4)| = 2 = |Rr(l4)|+ 1.

Using these observations, it is again straightforward to find valleys in our terrain by locating the
corresponding h-bends:

Lemma 3. Given some point pi ∈ P :

• bli is a starting h-bend if and only if |R`(li)| = |Rr(li)|+ 1;

• bli is an ending h-bend if and only if |R`(li)| = |Rr(li)|;

• bri is a starting h-bend if and only if |R`(ri)| = |Rr(ri)|;

• bri is an ending h-bend if and only if |R`(ri)|+ 1 = |Rr(ri)|.

Proof. The argument below is for the first statement that bli is a starting h-bend if and only if
|R`(li)| = |Rr(li)|+ 1. The proofs for the other three statements are analogous.

Assume bli is a starting h-bend. Then, since the slope is 0 to the right of bli, we have |R`(l+i )| =
|Rr(l+i )|. By Equations 3.7 and 3.8 this directly implies that |R`(li)| = |Rr(li)|+ 1.

Now assume that |R`(li)| = |Rr(li)|+1. Again, by Equations 3.7 and 3.8, we can conclude that
R`(l

+
i ) = Rr(l

+
i ). This means the slope of TP to the right of bli is 0. Additionally, by Equations

3.10 and 3.11, we have |R`(l−i )| = |Rr(li)−|+ 1, meaning the slope before bli is decreasing. Thus,
by definition, bli must be a starting h-bend.

For an example of a starting h-bend as described in Lemma 3, see Figure 3.4. With these
observations, it is possible compute the minima and maxima in TP directly from a static input
point set P without constructing the entire terrain TP .

3.2 Kinetic setting

In this section we characterize how the extrema of TP described in the previous section change
when the points in P start moving through time. As such, consider a set P of n time-varying
functions p1(t), . . . , pn(t) that describe the positions of a set of n points at time t. Additionally,
similarly to before, we use functions li(t) = pi(t)−σ and ri(t) = pi(t) +σ to describe the left- and
right boundary of the kernel of point pi for 1 ≤ i ≤ n at time t.

We assume the movement trajectories of points from P to adhere to two properties: (i) at
any given time t there is at most one pair pi, pj ∈ P for which pi(t) = pj(t), pi(t) = lj(t), or
li(t) = rj(t); (ii) if two points/boundaries share a location at time t, the difference between their
locations changes sign at time t. For the prior assumption, note that pi(t) = pj(t) also implies
li(t) = lj(t) and ri(t) = rj(t). Similarly, pi(t) = lj(t) implies ri(t) = pj(t). This prior assumption
ensures that we never handle two events at the same time. If the assumption does not hold, we
can simply handle simultaneous events as if they happened sequentially.
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3.2.1 Events

We will now investigate when the movement of the points in P induce a topological change to TP .
We distinguish three different types of events: birth events (Figure 3.11), in which one or more
new extrema are created, death events (Figure 3.12), in which one or more existing extrema cease
to exist, and shift events (Figure 3.8), in which the topology of TP does not necessarily change
but in which an extremum shifts from one or more bends to one or more neighboring bends. All
shift events require updates to one or more labels of tracked extrema only, and do not correspond
to extrema being added or removed to/from TP .

It is easy to see from Lemmas 1-3 that changes to the extrema of TP only happen at the
timestamps where two points/boundaries share a location: these are the only times at which
the ranges of a point/boundary changes. Henceforth, let a collision of two points/boundaries at
time t denote the fact that these points/boundaries share a location at time t. This means that
birth/death/shift events can only take place whenever two points/boundaries collide; in between
these times extrema may still move, but the list of extrema of TP will remain the same. Therefore,
to discuss when these events happen, it is sufficient to restrict ourselves to times t at which
points/boundaries collide. If a collision occurs at time t, then we will refer to time t− ε and t+ ε
as t− and t+ respectively, where ε > 0 is some arbitrarily small value.

We pick 1 ≤ i < j ≤ n such that at time t−0 we have that pi < pj , and at t0 at least one of
pi, li, ri collides with at least one of pj , lj , rj . This allows us to make an exhaustive list of possible
collisions at t0, for each of which we will discuss what events they may cause. We discuss three
types of collisions: Point-point collisions (PP collisions), where a point pi collides with another
point pj ; Boundary-boundary collisions (BB collisions), where a right boundary ri collides with
a left boundary lj ; Boundary-point collisions (BP collisions), where boundaries ri and lj collide
with points pj and pi, respectively. As we will see, PP and BB collisions can only cause shift
events, whereas BP collisions can also cause birth and death events.

Type 1: Point-point collision

(a) t−0 (b) t0 (c) t+0

Figure 3.5: Points pi and pj for which li(t0) = lj(t0), pi(t0) = pj(t0) and ri(t0) = rj(t0).

A PP collision is a collision where two points collide with each other. Since σ is fixed, this also
means that their left- and right boundaries collide with each other, respectively. Thus, if a PP
collision takes place at t0, we have pi(t0) = pj(t0), li(t0) = lj(t0) and ri(t0) = rj(t0). An example
of a PP collision is illustrated in Figure 3.5.

It is easy to see that, when a PP collision happens, only shift events can take place. Note
that, at t0, li, pi, and ri switch positions with lj , pj , and rj , respectively. Therefore, the ranges of
li/pi/ri at t−0 will be equal to the ranges of lj/pj/rj at t+0 , and vice versa. This directly implies
that the only event that can happen is a shift event: any point/boundary involved in this collision
that is either a maximum or an h-bend incident on a plateau/valley will cause a shift event where
the label of the corresponding extremum will shift to the other point/boundary involved in the
collision. No death or birth events can ever take place, because any bend involved in this collision
is simply directly replaced. Examples of shift events caused by PP collisions can be found in
Figure 3.8 (middle and bottom).
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Type 2: Boundary-boundary collision

(a) t−0 (b) t0 (c) t+0

Figure 3.6: Points pi (blue) and pj (red) for which ri(t0) = lj(t0) and ri(t
−
0 ) < lj(t

−
0 ).

(a) t−0 (b) t0 (c) t+0

Figure 3.7: Points pi (blue) and pj (red) for which ri(t0) = lj(t0) and ri(t
−
0 ) > lj(t

−
0 ).

We call a collision a BB collision if the only colliding entities are both boundaries. This happens
only when a left boundary collides with a right boundary. W.l.o.g., assume that ri(t0) = lj(t0).
We must have either that ri(t

−
0 ) < lj(t

−
0 ) (Figure 3.6) or ri(t

−
0 ) > lj(t

−
0 ) (Figure 3.7). We will

look at the case where ri(t
−
0 ) < lj(t

−
0 ); the case when ri(t

−
0 ) > lj(t

−
0 ) is very similar. Note that,

during a PP collision, exclusively the ranges of ri and lj change. Thus, we will investigate how
the changes to bends bri and blj can cause events to take place during a BB collision.

To see what events can take place due to a BB collision, we make two important observations.
Since ri(t0) = lj(t0), and t−0 is arbitrarily close to t0, we have:

|R`(ri(t−0 ))| = |R`(lj(t−0 ))| (3.12)

|Rr(ri(t−0 ))| = |Rr(lj(t−0 ))|. (3.13)

Then, at t0, pj and pi are added to Rr(ri) and R`(lj), respectively. Therefore, we get:

|R`(ri(t+0 ))| = |R`(ri(t−0 ))| (3.14)

|Rr(ri(t+0 ))| = |Rr(ri(t−0 ))|+ 1 (3.15)

|Rr(lj(t+0 ))| = |Rr(lj(t−0 ))| (3.16)

|R`(lj(t+0 ))| = |R`(lj(t−0 ))|+ 1. (3.17)

We can use these observations to show that the type of bri at t+0 is equal to the type of blj at
t−0 , and vice versa. This can be argued separately for each possible type of bl/br bend (starting
h-bend, ending h-bend, or regular bend). These arguments are all very similar; one such argument
is given here. For completeness, the rest of these arguments can be found in Appendix A.

If blj is a starting h-bend at t−0 , then by Lemma 3 we have

|R`(lj(t−0 ))| = |Rr(lj(t−0 ))|+ 1

⇒ (By Eq. 3.12 & 3.13) |R`(ri(t−0 ))| = |Rr(ri(t−0 ))|+ 1

⇒ (By Eq. 3.14 & 3.15) |R`(ri(t+0 ))| = |Rr(ri(t+0 ))|

By Lemma 3, this means that bri is a starting h-bend at t+0 . Using the analogous arguments in
Appendix A, we can also show that:

• If blj is an ending h-bend at t−0 then bri is an ending h-bend at t+0 ;

• If bri is a starting or an ending h-bend at t−0 , then blj is a starting or an ending h-bend at
t+0 , respectively;
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t−0 t+0

shift

shift

shift

Figure 3.8: Three examples of shift events taking place at t0 due to a BP-collision (top) or a
PP-collision (middle and bottom) between the blue and the red point.

• If bri or blj is a regular bend at t−0 , then blj or bri will respectively be a regular bent at t+0 .

This means that any valley on which either bri or blj is incident at t−0 will need to be updated
using a shift event to reflect this swap of bri and blj . Additionally note that, since bri and blj
also swap positions at t0, any valley on which either bri or blj is incident cannot die as a result of
a BB collision between bri and blj : its incident h-bend will be replaced by another h-bend after
the collision. Similarly, since each regular bend is replaced by another regular bend at t0, BB
collisions cannot cause birth events. Thus, in conclusion, BB collisions cause a shift event if one of
the colliding boundaries is an h-bend incident on a valley, and will not cause an event otherwise.

Type 3: Boundary-Point collision

(a) t−0 (b) t0 (c) t+0

Figure 3.9: Points pi and pj for which ri(t0) = pj(t0), pi(t0) = lj(t0) and pi(t
−
0 ) < lj(t

−
0 ).

(a) t−0 (b) t0 (c) t+0

Figure 3.10: Points pi and pj for which ri(t0) = pj(t0), pi(t0) = lj(t0) and pi(t
−
0 ) > lj(t

−
0 ).

Let a BP collision be a collision where two points collide with each others boundaries. W.l.o.g.,
assume ri(t0) = pj(t0) and pi(t0) = lj(t0). Then, we must have either pi(t

−
0 ) < lj(t

−
0 ) (Figure 3.9)

or pi(t
−
0 ) > lj(t

−
0 ) (Figure 3.10). We will again exclusively look at the prior case, since the latter

is very similar. A BP collision consists of two symmetric collisions: one between pi and lj , and
one between ri and pj . Since these two collisions are symmetric, w.l.o.g. we will only look at the
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collision between pi and lj . We investigate how bpi and blj are affected by this collision, and what
events these effects can cause. To this end, we make two observations.

Since pi(t0) = lj(t0), and t−0 is arbitrarily close to t0, we have:

|R`(pi(t−0 ))| = |R`(lj(t−0 ))| (3.18)

|Rr(pi(t−0 ))| = |Rr(lj(t−0 ))|. (3.19)

Then, at t0, pj is added to Rr(pi), and pi is removed from R`(lj) and added to Rr(lj). We get:

|R`(pi(t+0 ))| = |R`(pi(t−0 ))| (3.20)

|Rr(pi(t+0 ))| = |Rr(pi(t−0 ))|+ 1 (3.21)

|Rr(lj(t+0 ))| = |Rr(lj(t−0 ))|+ 1 (3.22)

|R`(lj(t+0 ))| = |R`(lj(t−0 ))| − 1. (3.23)

We can use these observations to investigate exactly how the type of pi and lj can change at
t0. We distinguish six cases, for each of which we can prove how the bpi and blj change using a
similar argument. One of these arguments is given here; for completeness, the rest can be found
in Appendix A.

Assume R`(pi(t
−
0 )) = Rr(pi(t

−
0 )). By Equations 3.18 and 3.19, this also means R`(lj(t

−
0 )) =

Rr(lj(t
−
0 )). Thus, by Lemma 1 and 3, at t−0 bpi is a single-bend maximum and blj is an ending

h-bend. This implies

|R`(pi(t−0 ))| = |Rr(pi(t−0 ))|
⇒ (By Eq. 3.20 & 3.21) |R`(pi(t+0 ))|+ 1 = |Rr(pi(t+0 ))|

and

|R`(lj(t−0 ))| = |Rr(lj(t−0 ))|
⇒ (By Eq. 3.22 & 3.23) |R`(lj(t+0 ))| = |Rr(lj(t+0 ))|+ 2

This means, by Lemma 2 and 3, that at t+0 bpi will be a starting h-bend and blj will be a
regular bend. Using similar arguments, given in Appendix A, we can show that:

(Shift or death event)
If R`(pi(t

−
0 )) = Rr(pi(t

−
0 )), then bpi is a single-bend maximum at t−0 and becomes a starting

h-bend at t+0 . Also, blj is an ending h-bend at t−0 and becomes a regular bend at t+0 .

(Shift, birth, death, or no event)
If R`(pi(t

−
0 )) + 1 = Rr(pi(t

−
0 )), then bpi is a starting h-bend at t−0 and becomes a regular

bend at t+0 . Also, blj is a regular bend at t−0 and becomes a starting h-bend at t+0 .

(Shift, birth, death, or no event)
If R`(pi(t

−
0 )) = Rr(pi(t

−
0 ))+1, then bpi is an ending h-bend at t−0 and becomes a single-bend

maximum at t+0 . Also, blj is a starting h-bend at t−0 and becomes a regular bend at t+0 .

(Shift, birth, or no event)
If R`(pi(t

−
0 )) = Rr(pi(t

−
0 )) + 2, then bpi is a regular h-bend at t−0 and becomes an ending

h-bend at t+0 . Also, blj is a regular bend at t−0 and remains regular at t+0 .

(Shift, birth, or no event)
If R`(pi(t

−
0 )) + 2 = Rr(pi(t

−
0 )), then bpi is a regular bend at t−0 and remains regular at t+0 .

Also, blj is a regular bend at t−0 and becomes an ending h-bend at t+0 .
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t−0 t+0

birth

Figure 3.11: An example of a birth event taking place at t0 due to a BP-collision between the blue
and the green point.

t−0 t+0

death

Figure 3.12: An example of a death event taking place at t0 due to a BP-collision between the
blue and the red point.

(No event)
Otherwise, both bpi and blj are regular at t−0 and remain regular at t+0 .

Using these observations along with information about the neighbors of the changing bends,
we can determine exactly what events are caused by a BP collision whenever one takes place.
An example of a shift, birth and death event taking place due to a BP collision can be found in
Figures 3.8 (top), 3.11, and 3.12, respectively.

3.3 KDS for maintaining the extrema

In the following section, we describe how to maintain the extrema of TP when the points in the
inducing point set P are moving. We assume the movement of points in P is characterized as
described in Section 3.2. In order to maintain the extrema of TP efficiently, we use the KDS
framework as described in Section 2.3.

3.3.1 Initialization

All points pi ∈ P and their boundaries li and ri are stored together in a single sorted list S of size
3n, that can be maintained with a linear number of certificates using the KDS for maintaining a
sorted point set [3]. We require S to be sorted, since this allows us to check for collisions between
neighboring points/boundaries using a linear number of certificates (rather than a quadratic num-
ber). Because we are using the KDS framework, we need to store a list of certificates, as well as
an event queue. The event queue will be stored as a priority queue such that the nearest event can
be easily found. In addition, we will also maintain an auxiliary interval tree [10]. For each point
pi we add intervals [pi− σ, pi + σ], [li− σ, li + σ] and [ri− σ, ri + σ] to the interval tree. Then, the
nodes in the interval tree are augmented such that each node stores the type of the correspond-
ing bend (regular, starting-/ending h-bend or maximum), as well as the number of points in the
left- and right half of the corresponding interval: these represent the sizes of the left/right-ranges
R`/Rr of the corresponding point/boundary. Note that, since we are merely interested in the
sizes of the left/right-ranges of each point/boundary, maintaining an entire interval tree is not
necessarily required. However, if we were to extend this KDS to work with, for example, different
kernels, maintaining the auxiliary interval tree allows us to store additional information about
these left/right-ranges.
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Type Certificate

Point pi

Maximum |R`(pi)| = |Rr(pi)|
Left h-bend |R`(pi)|+ 1 = |Rr(pi)|
Right h-bend |R`(pi)| = |Rr(pi)|+ 1
Regular ||R`(pi)| − |Rr(pi)|| > 1

Left-boundary li

Left h-bend |R`(li)| = |Rr(li)|+ 1
Right h-bend |R`(li)| = |Rr(li)|
Regular |R`(li)| > |Rr(li)|+ 1 or |R`(li)| < |Rr(li)|

Right-boundary ri

Left h-bend |R`(li)|+ 1 = |Rr(li)|
Right h-bend |R`(li)| = |Rr(li)|
Regular |R`(li)| > |Rr(li)| or |R`(li)|+ 1 < |Rr(li)|

Table 3.1: The different types of critical certificates.

Each extremum in TP is stored with a label indicating the indices and the types of the corres-
ponding bend(s). They are maintained in a data structure that allows for polylogarithmic insertion
and deletion operations, such as a balanced binary search tree (BST) [33]. This allows for efficient
repairs to the KDS when a certificate is violated. This balanced BST can be initialized directly
from the interval tree using Lemmas 1-3, and contains all extrema of TP . To finish initialization,
we create a list of certificates that hold at t = 0 (discussed below) and initialize the event queue
accordingly.

To summarize, we maintain:

• A sorted list S representing the input point set P as well as the kernel boundaries of all
points in P , maintained using the KDS for a sorted point set [3];

• A list of validating certificates;

• An event queue stored as a priority queue, such as a heap [9], containing an event for each
certificate failure using the failure time as priority;

• An augmented interval tree [10], containing an interval of radius σ for each point and bound-
ary in S. Each node in the interval tree stores the type of the corresponding bend, as well
as the size of the left- and right range of the corresponding point/boundary;

• A balanced BST containing the extrema of TP .

3.3.2 Certificates

As discussed in Section 3.2, the extrema of TP only change at times at which collisions take
place. Therefore, the KDS maintains the same certificates that are required for maintaining the
sorted list S: for each pair of neighbors v, u in S, we maintain a collision certificate (v 6= u) that
fails whenever these neighbors collide. When one of these certificate fails we need to update the
auxiliary interval tree, certificate list and event queue to reflect these changes.

Additionally, for each node in the interval tree we maintain a critical certificate that compares
the size of its left-range to its right-range according to Lemmas 1-3. The exact critical certificates
maintained for each type of bend can be found in Table 3.1. Using these critical certificates we can
detect when bends become extrema, and when extrema become regular bends. Note that these
critical certificates can only fail when a collision certificate fails, as that is the only time at which
the size of the left- and right-ranges change.

3.3.3 Repairing the KDS

After a collision certificate has failed, repairs to the list of certificates, the event queue, and the
auxiliary interval tree must be performed. Repairs to the extrema of TP are necessary only when
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t−0 t0 t+0 R`/Rr
Rr(r1) −= 1

R`(l2) −= 1
Rr(r1) += 1

R`(l2) += 1
R`(p1) += 1

R`(p2) += 1
R`(r1) += 1
Rr(r1) −= 1
R`(l2) −= 1
Rr(l2) += 1
R`(p1) −= 1

R`(p2) −= 1
R`(r1) −= 1
Rr(r1) += 1
R`(l2) += 1
Rr(l2) −= 1
R`(p1) += 1

Rr(p1) −= 1
R`(p2) −= 1
Rr(p2) += 1
R`(r1) += 1
R`(r2) −= 1
Rr(l1) += 1
Rr(l2) −= 1

Table 3.2: A list of the 5 possible collisions that can occur, as well as the corresponding updates
to left/right-ranges that need to be repaired (see Section 3.2.1).

a critical certificate fails. Therefore, collision certificate failures cause exclusively internal events,
and critical certificate failures can additionally cause external events. Note that not all collision
certificate failures cause a critical certificate to fail (see Section 3.2.1).

In any case, whenever a collision certificate fails we need to:

• Switch the locations of the nodes in the interval tree that correspond to the points/boundaries
that collided;

• Update the sizes of R`/Rr of all points/boundaries involved in the certificate that failed
according to Table 3.2;

• Update the certificates of the points/boundaries that caused the certificate failure, as well
as those of their neighbors;

• Update the event queue with the newly created certificates.

During these repairs, a critical certificate may fail due to the changes to the left- and right
ranges. If a certificate failed, it prompts an external event that updates the extrema of TP (see
Section 3.2.1) unless the certificate failure was the creation of an h-bend that is not part of an
extremum, which can easily be checked by reading the type of the left/right neighbor depending
on whether the new h-bend is starting or ending.
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3.3.4 Analysis

Recall that, in Section 2.3, we discussed a number of quality measures that facilitate the analysis
of the quality of a KDS: compactness, locality, (weak/strong) efficiency and responsiveness. We
will see how the KDS described above performs in each of these four quality measures.

Compactness

The compactness of a KDS describes the worst-case size of the event queue at any one time.
A KDS is considered compact if the number of events in the event queue is never more than
polylogarithmic in the input size. First of all, our KDS maintains a sorted list of input points and
the boundaries of their kernels. This can be done using O(n) certificates [3]. These certificates
for maintaining the sorted list are the same certificates as the collision certificates we use to track
collisions between each pair of neighbors. Additionally, we have a single critical certificate for
each point/boundary, which means there are O(n) critical certificates. Since these are the only
two types of certificates we need, this means we have a total of O(n) certificates at any time. Since
each certificate has at most one corresponding event in the event queue, the KDS is compact.

Locality

The locality of a KDS is determined by the maximum number of certificates that are dependent
on a single input item. We call the KDS local if this number is at most polylogarithmic. In this
case, it is relatively trivial to see that any one point appears in at most 9 certificates. Each point
pi appears in at most 6 collision certificates, since it shares a certificate with each neighbor of
li/pi/ri. If none of li/pi/ri neighbor each other, then pi appears in a unique collision certificate
for each. Additionally, pi appears in 3 critical certificates, one for each of li/pi/ri. Therefore, in
total, the worst-case number of certificates a single item can appear in is 9. Since this number is
constant, the KDS is local.

Efficiency

The weak efficiency of a KDS depends on the ratio of the total number of events to the worst-case
number of external events. A KDS is considered efficient if the total number of events processed
by the structure is of the same order of (or only slightly larger than) the number of external events
in the worst case. To be able to classify the worst case number of external events, we will consider
the positions of the input point set to be determined by linear functions.

Lemma 4. Let the movement of points in input point set P be described by linear functions over
time. Then, in the worst case, the KDS requires Θ(n2) external events and Θ(n2) internal events.

Proof. Observe that an external/internal event can only take place whenever a collision takes
place. It is easy to see that, under linear motion, at most O(n2) collisions take place, since each
point in P can collide with each other point in P at most once. Therefore, under linear motion,
the number of external- and internal events necessary to track the extrema of TP in the worst case
is O(n2). We can actually show this bound to be tight.

We construct a scenario in which we need Ω(n2) external and Ω(n2) internal events to be able
to correctly track the extrema of TP . We place n points p1, . . . , pn, such that |p1p2| = δ and
|pipi+1| = |pi−1pi|+ δ for all 2 < i < n− 1 and some δ > 2σ. Then, each point pi moves linearly
to the right at speed s(pi) such that s(pi) = s(pi−1)/2 and s(p1) > 0. This way, for i < j, all
collisions between points pi and pj happen when |pj−1 − pj | > 2σ and |pj − pj+1| > 2σ. This
means that each point pi causes a constant number of external events every time it fully crosses
another point pj (see Figure 3.13). Since the points are placed such that each point collides with
all other points, the number of external events in this situation is Ω(n2). Therefore, the number
external events to track the extrema of TP is, in the worst case, Θ(n2). In this same scenario, each
point collides exactly once with each other point, causing a number of internal events in Ω(n2).
Thus, the number of internal events is also Θ(n2).
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death shift birth

Figure 3.13: All external events that result from collisions between points pi (red) and pj (blue)
if |pj−1 − pj | > 2σ and |pj − pj+1| > 2σ.

Since both the worst case total number of events and the worst case number of external events
is Θ(n2) under linear motion, the KDS is weakly efficient.

The strong efficiency of a KDS is the worst-case ratio of total events to external events in any
allowed movement within the movement class we are restricted to. Recall that strong efficiency
is different to weak efficiency in the sense that weak efficiency considers the worst-case number of
external events in contrast to the worst-case ratio of total to external events. We show that the
KDS is not strongly efficient by showing that the ratio of total to external events is Ω(n). While
we may be able to find a higher bound, this linear lower bound is enough to show that the KDS
is not strongly efficient.

We again restrict ourselves to linear movement. We can construct a situation where the
number of external event is linear. Consider the following scenario: at t = 0, we place all points
in P uniformly distributed such that we have |pi−1pi| = |pipi+1| < 2σ

n for 2 ≤ i < n. This way, we
have a single maximum at t = 0 that (partly) overlaps the kernels of all points. Then, each point
pi moves in a linear motion to the right at speed s(pi) such that s(pi) = s(pi−1)/2 and s(pi) > 0.
This way, each point induces 2 (if single bend maximum) or 4 (if plateau) shift events when they
cross the maximum. Therefore, each point induces a constant number of external events, which
means that in this construction there are Ω(n) external events, while the situation requires Ω(n2)
internal events (one for each collision). Thus, the KDS is not strongly efficient.

Responsiveness

The responsiveness of a KDS is determined by the worst-case cost of resolving a certificate failure.
In our setting this concerns handling changes to the interval tree, changing the extrema of TP , and
updating the event queue. The changes to the interval tree include swapping nodes by inserting
and deleting nodes (at most 6 nodes are affected, corresponding to the points/boundaries of the
colliding nodes) and updating the associated counters in the nodes (at most 12 counters are
updated, two for each affected node). All of these only require a constant number of O(log n)
time operations in an interval tree: insertion/deletion is done in O(log n) time, and since each
point has pointers to and from its boundaries, all affected nodes are found in constant time. If a
critical certificate is violated, either a shift of a birth/death event must happen. These two events
only require a constant number of search (and update), insert and delete operations, all of which
can be done in O(log n) time in our balanced binary search tree. Lastly, we need to recompute
the priorities of certificates associated with each affected node in the event queue. Inserting and
deleting to/from an event queue can be done in O(log n) time. Since a constant number of nodes
are affected and each node has a constant number of associated certificates, we can thus update the
event queue in O(log n) time. This means that we need a constant number of O(log n) operations
to handle certificate failures and repair the KDS, meaning the KDS is responsive.

Theorem 1. Let P be a moving point set of size n, where the location of each point is determined
by a linear function of time. Let KDEP denote the kernel density estimation function of P ,
obtained using the linear kernel. A list of extrema of KDEP can be maintained by a KDS that is
compact, local, responsive and weakly efficient.

3.4 Coresets

In data-intensive applications, P may be significantly large. While the KDS we described previ-
ously is theoretically efficient and adheres to all quality measures, processing a number of events
that is quadratic in the size of the input can be prohibitively expensive in very large data sets.
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(a) (b)

Figure 3.14: A simple example of a coreset. The example point set in (a) consists of four points.
Using the coreset in (b), highlighted in red, results in a similar terrain using half the number of
points.

To get around this, this section explores whether we can find and maintain a point set Q that
is significantly smaller than P , of which the estimated density function is “similar” to that of
P . Then, instead of maintaining the extrema of the KDE of P , we can maintain the extrema of
the terrain of the smaller point set Q. This results in a lower number of events being processed
(depending on the size of Q), while (due to the similarity of Q and P ) the maintained extrema are
guaranteed to be “similar” to the actual extrema of TP . Such an approximation Q of P is often
referred to as a coreset of P . A small example of a coreset can be seen in Figure 3.14. To find a
coreset of P , we investigate how we can extend a common approximation method for static kernel
density estimation to the kinetic setting.

3.4.1 Static coresets

We call a coreset Q an ε-approximation of a point set P if and only if, given error parameter ε > 0,
we have [36]:

max
x∈R
|KDEP (x)−KDEQ(x)| ≤ ε.

There has been extensive work done on the sampling of point sets for kernel density estimation,
especially in one dimension. A relatively common baseline method is simply random sampling
(RS) [29, 36]. If we let Q be a random sample from P of size O((1/ε2) log(1/δ)), then with
probability at least 1− δ the random sample Q ensures that maxx∈R |KDEP (x)−KDEQ(x)| ≤ ε.
The technique is widely used because of its simplicity, often as a preprocessing step for data sets
at extremely large scales. However, since it is not guaranteed to produce an ε-approximation, it
does not always work in practice.

Another, slightly more advanced sampling method is the grid-based approximation [37], which
divides the vertex space into a grid. For the one-dimensional case, this means that we define a
grid Gγ to divide the vertex space into a set of grid intervals of width γ. For a grid interval g, let
Pg denote the points from P that are inside of g. Then, Q is constructed as a weighted sample,
in which each vertex has a different kernel height. For each grid interval g we add a single vertex
pg to Q at the mean position 1

|Pg|
∑
p∈Pg

p with weight |Pg|, representing all points in g. This

approach, however, does not guarantee the error bound for the entire KDE function, but only for
a subset above a specified height (based on the size of the grid intervals).

The approximation approach we use is sort-selection [36], which is a consistent ε-approximation
that generates a coreset of O( 1

ε ) size which works well despite its relative simplicity. Contrary
to random sampling, this approach is guaranteed to produce an ε-approximation. Also, unlike
the grid-based approximation approach, sort-selection ensures that the error bound holds for the
entire domain instead of only a subset of the domain. The sort-selection approach utilizes the
following lemma [36]:

Lemma 5. Consider a sorted, one dimensional point set P = {p1, p2, . . . , pn} where pi ≤ pi+1 for
all 1 ≤ i ≤ n. Let Pj = {pi ∈ P |(j−1)εn < i ≤ jεn} for integer j ∈ [1, d1/εe] such that P =

⋃
Pj.

Then, for any Q = {q1, q2, . . . , qd1/εe} such that each qj ∈ Pj, we have maxx∈R |KDEP (x) −
KDEQ(x)| ≤ 2ε. If each qj = pd(j−1/2)εne, then maxx∈R |KDEP (x)−KDEQ(x)| ≤ ε.

As such, to generate a valid ε-approximation, we can simply select all pd(j− 1
2 )εne from P with

j ∈ [1, d 1
εe] to put into Q. Intuitively, the approach uses a uniform sampling approach over a
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sorted point set, that selects 1
ε points to put into Q and that guarantees an error bound of ε. The

benefit of using this approach over, for example, the grid-based approach described previously, is
that sort-selection achieves an error bound over all locations in the domain. Additionally, sort-
selection selects points based on their indices, which we can utilize when we want to maintain the
sort-selection coreset over time.

In the remainder of this chapter, we will describe how to augment our KDS described in
Chapter 3 to maintain coreset Q as well as the extrema in the terrain induced by KDEQ rather
than KDEP . As we will see, using this approach reduces the number of events required to maintain
these extrema, while providing a guarantee on what extrema from TP are actually maintained.

3.4.2 Kinetic sort-selection

In order to use the sort-selection coreset in the KDS, we must first be able to kinetically maintain
it. The sort-selection coreset utilizes the fact that the input point set P is maintained in a sorted
manner. However, maintaining the entire point set P as a sorted list requires Θ(n2) external
events [3], which we want to avoid if possible. Fortunately, we are only interested in the indices of
points in the coreset Q, not of all points in P . Therefore, the pointset P need not be maintained
in a sorted manner entirely; if coreset Q is initialized correctly, it can be maintained with relative
ease as follows.

Observe that if two points in a sorted list P collide, their indices switch. Therefore, if coreset
Q is initialized correctly, coreset Q only changes whenever a point q ∈ Q collides with a point
p ∈ P . Upon such a collision, since points in Q are selected based on their indices, we update the
coreset by simply replacing q by p in Q. We call the certificates that check for collisions between
Q and P coreset certificates, since they facilitate the maintenance of the coreset.

There are multiple ways in which these coreset certificates can be constructed. If we want to
minimize the number of coreset certificates, we could maintain the neighbors of all points in Q.
That way, we only require two coreset certificates for each point in Q to check for collisions with
their neighbors. Maintaining the neighbors of points in Q, however, is non-trivial; ultimately it
would require maintenance of the entire point set P in a sorted manner, which is not efficient.
Alternatively, we can “inverse” this approach and maintain, for each point p ∈ P what points in
Q are the nearest to their left and right. This means O(n) coreset certificates are necessary, but
the maintenance becomes more manageable; instead of maintaining the entirety of P in a sorted
manner, we now only need to track the nearest points from Q to the left and right of each point
in P . Since these change only when a point from Q collides with a point from P , no additional
events need to be triggered to maintain these coreset certificates: if they are initialized correctly,
they can simply be updated whenever a coreset certificate fails.

Now that coreset Q can be kinetically maintained, coreset Q can simply be used in place of
input point set P as input to the kinetic data structure described in Chapter 3. This means that,
rather than maintaining the extrema of terrain TP , the KDS instead maintains the extrema of
terrain TQ, which approximates TP . The KDS again maintains a list of certificates, a priority
queue representing the event queue, the augmented interval tree (now only containing points from
Q and their boundaries), and the balanced BST containing the extrema of TQ.

3.4.3 Analysis

We analyze the KDS using the quality measures described in Section 2.3.1, with the addition of
the maintenance of the sort-selection coreset.

Compactness

The compactness of the KDS described in Chapter 3 is linear in the number of points in the
input set. Since we now maintain |Q| = 1

ε points, we have O( 1
ε ) collision- and critical certificates.

However, in order to maintain Q we also need coreset certificates. Recall that, to maintain Q, we
need a coreset certificate for each point in P that fails whenever it collides with a point from Q.
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Since, for each point in P , we track which points from Q lie closest to its left and right, we can do
so using a number of certificates linear in the size of P , which is O(n). Thus, the KDS remains
compact when using the sort-selection coreset.

Locality

The locality of the KDS becomes dependent on the number of coreset certificates in which a single
point in Q can appear. Similar to what was described in Section 3.3.4, each point q ∈ Q appears in
at most 6 collision certificates and 3 critical certificates. In addition, however, to maintain Q each
point q ∈ Q appears in a coreset certificate for each point from P in between q and the neighbors
of q in Q. Observe that, since we use sort-selection, the indices of points in Q are d(j−1/2)εne for
j ∈ [1, d 1

εe]. This means that there are O(εn) points in between each neighboring pair of points
from Q. Thus, each point in Q appears in O(εn) coreset certificates. This means that, using the
sort-selection coreset, the KDS is no longer local.

Efficiency

Finding the efficiency of the KDS using the sort-selection coreset is somewhat more complicated.
To argue why, we must first discuss another classical open problem in combinatorial geometry. Let
an arrangement of lines be the subdivision of the two-dimensional plane R2 formed by a collection
of lines. The k-level of an arrangement of lines is the polygonal chain formed by the line segments
that have exactly k line segments below them. For an example of an arrangement of lines and
its 3-level, see Figure 3.15. Finding matching bounds on the complexity of a k-level is open. The
best known bounds on the complexity of a single k-level in a line arrangement are O(nk

1
3 ) and

nkΩ(
√

log k), respectively [11].
Additionally, in the upper bound analysis below, we will make use of the following observation.

Observation 1. Let c1 and c2 be two polygonal chains consisting of n and m vertices, respectively.
If both c1 and c2 are monotone with respect to some line `, then the number of intersections between
c1 and c2 is at most O(n+m).

Proof sketch. Intuitively, this observation can be shown to be correct using a charging argument.
We charge each intersection i between c1 and c2 to a unique vertex v of c1 or c2. Let i′ and v′

be projections of i and v on line `. We charge i to vertex v such that |i′v′| is minimized over all
vertices to the right of the ray through i′ orthogonal on `. This way, each intersection must be
charged to a unique vertex v, since there cannot be more than one intersection between the same
two line segments of c1 and c2.

Using the observations above, we are able to prove an upper bound on the number of events
caused by the KDS using the sort-selection coreset:

Lemma 6. Let the movement of points in input point set P be described by linear functions over
time. Then, in the worst case, the KDS using the sort-selection coreset causes O(n

4
3 · 1

ε2 ) internal
events.

Proof. Internal events are caused either by a failing coreset certificate, or by a failing collision
certificate between two points in Q. We will handle these two certificates separately.

We show that finding the worst-case number of violated coreset certificates in our KDS using
the sort-selection coreset under linear motion is equal the finding the complexity of 1

ε k-levels.

Since the complexity of a single k-level is O(nk
1
3 ) and k is in O(n), this means that the worst-case

number of events is O(n
4
3 · 1

ε ).
Consider a plot of the linear functions that describe the points in P over time interval [−∞,∞],

where the coordinates of the point and the time are plotted on the vertical and horizontal axes,
respectively (see Figure 3.16). This plot consists of an arrangement of n lines, where each line
describes the movement of a single point in P . Intersections between two lines in this arrangement
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Figure 3.15: An example of an arrangement of lines. The 3-level of this arrangement is highlighted
in red.

represents a collision between the two corresponding points. Observe that, by definition, the k-
level of this line arrangement represents the path of the point in index k+1 in sorted list P . Thus,
the number of vertices in a k-level represents the number of times the point at index k+1 changed.
Since the points in Q are selected based on their index, the number of collisions involving points
from Q is equal to the number of vertices in all (d(j − 1

2 )εne+ 1)-levels for j ∈ [1, d 1
εe].

The number of vertices in a single k-level is O(nk
1
3 ), and we have k = (d(j− 1

2 )εne+1) = O(n)
for j ∈ [1, d 1

εe]. Therefore, we have O( 1
ε ) k-levels that correspond to indices that get put into Q,

each involved in O(nk
1
3 ) = O(n

4
3 ) collisions. This results in a total of O(n

4
3 · 1

ε ) collisions, each of
which causes a single coreset certificate to fail.

Note that collision certificates fail not only when the actual points of Q collide, but also when
their boundaries collide. Therefore, we extend the line arrangement described above to include
the trajectories of the kernel boundaries of each point. Observe that the trajectories of the kernel
boundaries li and ri of each point pi can be found by simply displacing the line representing pi by
−σ and σ, respectively.

As we saw previously, the trajectory of each point in Q is represented by a k-level in this line
arrangement. Note that a k-level is t-monotone [30]. Therefore, the paths of points in Q are

described by t-monotone, polygonal chains consisting of O(n
4
3 ) vertices [11]. Note also that the

trajectories of the left- and right kernel boundaries lq and rq of each point q ∈ Q can be represented
by a copy of this t-monotone, polygonal chain, again displaced by −σ and σ, respectively (see
Figure 3.16, highlighted in red). Now, to find the number of failing collision certificates, we must
find the number of intersections between the paths of points and boundaries in Q.

Each path of points and boundaries in Q is described by a t-monotone, polygonal chain of
complexity O(n

4
3 ). According to Observation 1, two t-monotone, polygonal chains of complexity

O(n
4
3 ) can intersect at most O(n

4
3 +n

4
3 ) = O(n

4
3 ) times. Therefore, the total number of intersec-

tions between paths of points and boundaries in Q is equal to O(n
4
3 ) · (3|Q|)2 = O(n

4
3 · 1

ε2 ). This

means that, under linear motion, at most O(n
4
3 · 1

ε2 ) collision certificates are violated in the worst

case. Thus, assuming linear motion, in the worst case O(n
4
3 · 1

ε ) coreset certificates and O(n
4
3 · 1

ε2 )

collision certificates are violated. This yields a total of O(n
4
3 · 1ε )+O(n

4
3 · 1

ε2 ) = O(n
4
3 · 1

ε2 ) internal
events.

External events can only take place whenever a collision certificate is violated. As stated above,
under linear motion at most O(n

4
3 · 1

ε2 ) collision certificates are violated. Therefore, the number

of external events is also at most O(n
4
3 · 1

ε2 ) in the worst case. Thus, the use of the sort-selection

coreset reduces the total number of events from Θ(n2) to O(n
4
3 · 1

ε2 ).

Note that these upper bounds on the number of events (both internal and external events) are
not tight. By nature of the fact that these bounds are based on the complexity of k-levels in line
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Figure 3.16: An example of an arrangement of lines constructed from a moving point set P as
detailed in the proof of Lemma 6. The gray cylinders indicate the kernels of the points. The
highlighted red lines indicate the point at index 2 in sorted list P , as well as the left- and right
boundary of this point.

arrangement, finding matching bounds for the number of events remains open. For the number of
external events, we can provide the following lower bound:

Lemma 7. Let the movement of points in input point set P be described by linear functions over
time. Then, in the worst-case, the KDS using the sort-selection coreset requires Ω(nε ) external
events.

Proof. Since we use sort-selection to construct Q, there are εn− 1 vertices from P in between any
two vertices q1, q2 ∈ Q (if n is large enough). Observe that, during movement, a point q ∈ Q is
restricted to moving between its to neighbors in P ; whenever q crosses one of its P neighbors, the
crossed neighbor replaces q in Q, since they switch indices in P . In order to induce an external
event, a point from Q must cross a point/boundary belonging to another vertex in Q. Thus, we
construct our instance as follows: given some value of ε, at t = 0 points in P are placed such that
|pipi+1| = σ

εn + ε̂ for all 1 ≤ i < n for some arbitrarily small ε̂ > 0. This ensures that each point
in Q is slightly outside of the kernels of each of their neighbors in Q at t = 0. Then, each point pi
linearly moves to the left with speed s(pi) defined as s(pi) >

s(pi−1)
εnε̂ · σ. This way, each point q in

Q is involved in a BB collision with its left-neighbor in Q, then q is involved in a PP collision pl
in P (meaning pl replaces q in Q), after which q is involved in a PP collision with its left-neighbor
in Q. This means that, after these three collisions, q is again in Q and recursively triggers these
three collisions for each point in Q. This process repeats until all points in P have crossed the
right-most point in P , triggering |P | · |Q| = n

ε external events. Thus, the number of external
events triggered by the KDS using the sort-selection coreset is, in the worst case, Ω(nε ).

Responsiveness

The responsiveness of the KDS is no longer completely dependent on the repairs required after a
collision- or critical certificate fails. As discussed in Section 3.3.4, the repairs required after a failed
collision- or critical certificate take an amount of time polylogarithmic in the size of the maintained
point set: O(log( 1

ε ). When a coreset certificate between q ∈ Q and p ∈ P fails, however, the repairs
may take more time. First, we have to update Q by replacing q by p. Then, we update the pointers
from p and q that point to the nearest point from Q to their left and right. Since Q is sorted by
nature of how it is constructed, we can do all this in O(1). Afterwards, however, we have to update
the coreset certificates themselves, as well as the event queue. All coreset certificates that depend
on q must be updated, of which there can be O(εn). Updating each certificate itself takes O(1)
time, as it is simply replacing q by p in each certificate. Rescheduling a certificate in the event
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Figure 3.17: An example of a filtration of the simplicial complex K5.

queue, however, requires a deletion and an insertion. Both of these operations require an amount
of time that is polylogarithmic in the size of the event queue. Since, as we saw earlier, there can
be O(n) coreset certificates at a time, the size of the event queue can be O(n). Therefore, the
time to repair O(εn) coreset certificates can, in total, be O(εn log n). This means that the KDS
is no longer responsive when using the sort-selection coreset.

3.4.4 Persistence bounds

In this section, we aim to investigate how well the extrema of terrain TQ approximate the extrema of
terrain TP . More specifically, we provide a guarantee that there exists an injection from the “most
relevant” extrema in terrain TP to the extrema of TQ. If we are able to make such a guarantee,
then we can be sure that the terrain TQ actually maintains the “most relevant” extrema of terrain
TP . To this end, we desire a way to quantify the relevance of the extrema of TP .

To do so, we require a number of tools from computational topology. Let a d-simplex be a
generalization of a triangle to d dimensions. In our scope, it is enough to recognise a 0-simplex as
a point, and a 1-simplex as a line segment. Using these definitions, we look at TP as a simplicial
complex [12]. In general, a simplicial d-complex is simply a set composed of d-simplices and
simplices of lower dimensions. In our setting, since TP is described by a one-dimensional function,
TP can be described by a simplicial 1-complex, which consists exclusively of points (corresponding
to the bends in the terrain) and the line segments between these points. Let this simplicial
complex describing TP henceforth be referred to as KP . Similarly, we refer to the simplicial
complex describing TQ as KQ.

To quantify a measure of relevance for each of our extrema, we will create a filtration of
the simplicial complex described by TP . A filtration of a simplicial complex K is, in general, any
sequence of simplicial complexes K0,K1, . . . ,Km such that K0 ⊆ K1 ⊆ · · · ⊆ Km = K. Intuitively,
a filtration describes a step-wise assembly of simplicial complex K. Every step along the way also
describes a simplicial complex Ki, which describes a subset of every simplicial complex Kj where
0 ≤ i < j ≤ m. Depending on how we construct this filtration over KP , studying it can reveal
useful information about the topology of KP , and thus about the shape of the terrain TP .

In order to retrieve a useful filtration of KP that can help us in studying maxima, we create
a filtration as follows. We start with a simplicial complex K0 that consists exclusively of the
simplex/simplices that describe the highest maximum of TP . If the highest maximum of TP is a
single-bend maximum, this will simply be a point. If the highest maximum is a plateau, K0 will
consist a line segment representing this plateau, as well as two points representing the incident
h-bends. Next we search for the second highest extremum (so: maximum or minimum). K1

consists of the simplices describing this second highest extremum, as well as each simplex that
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Figure 3.18: The persistence diagram of the three maxima from Figure 3.17. Note that, since A
never dies, its moment of death is set to −∞.

describes a bend or a line segment in TP that is completely above this second highest extremum.
Note that, since K0 only consists of the highest maximum, K0 ⊆ K1. Now, to construct K2, we
take the third highest extremum and add each simplex that is completely above that. For K3

we do so with the fourth highest extremum, and so forth. Each time we encounter two extrema
of equal height, we add both of them to the simplicial complex. Once we have iterated over all
extrema, we will have a filtration that describes how to construct KP from the top down. See
Figure 3.17 for an example.

A simplicial complex can consist of multiple connected components. Consider a filtration of KP

as described above, from the top down. In this filtration, each maximum creates a new connected
component, and each minimum merges two existing connected components. For a connected
component γ, we say γ is born at Ki if it is created by the maximum that is newly included in
Ki (so, γ ∈ Ki but γ 6∈ Ki−1 for 0 < i ≤ m). When two connected components merge at Kj ,
we consider the older component of the two to persist, meaning the younger component ceases to
exist. We say connected component γ dies at Kj if it is merged in Kj with an older connected
component. If γ is born at Ki and dies at Kj , then we call the difference in height between the
extrema corresponding to Ki and Kj , respectively, the persistence of γ. For example, if γ is born
due to a maximum at height hmax and dies due to a minimum at height hmin, then the persistence
of γ is equal to hmax − hmin. If γ is born at Ki but never dies, we set its persistence to infinity.
Since our goal is to quantify a degree of relevance to each extremum, we consider the persistence
of an extremum equal to the persistence of the connected component that is born or dies at that
extremum.

To visualize the persistence of extrema, we can create a scatterplot of all connected components
based on their birth- and death height. If a connected component does not die, we place it at
−∞. We call such a plot a persistence diagram. For an example of a persistence diagram of the
maxima of the filtration in Figure 3.17, see Figure 3.18. Note that, in such persistence diagrams,
the diagonal plays a special role; any point in the persistence diagram lies above the diagonal,
since each connected component must be born before it can die.

The notion of persistence gives us a quantitative measure on the relevance of an extrema,
based on how “pronounced” it is in terrain TP . A low persistence extremum is not considered very
relevant, and can often be attributed to noise. Conversely, extrema with a very high persistence
are considered relevant features in the data. In the remainder of this section we show, given an
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Figure 3.19: An example of how we compute the bottleneck distance between two persistence
diagrams D (blue) and D2 (green). The optimal matching Φ is indicated by the yellow lines.

ε-approximation Q of P , that there exists an injection from all extrema in TP of persistence equal
or higher than 2ε to the extrema in TQ. This implies that the most relevant extrema from TP
(namely, those of persistence ≥ 2ε) are maintained in TQ.

To this end, we use a previous result that is concerned with the stability of persistence dia-
grams [8]. That is, this result quantifies how a persistence diagram can change due to small changes
to the corresponding simplicial complex. Let the persistence diagrams of simplicial complexes KP

and KQ be denoted D(KP ) and D(KQ), respectively. In order to measure how similar KP and
KQ are, we measure the similarity between their persistence diagrams D(KP ) and D(KQ). We
do so as follows. Given two points p, q ∈ R2 given by coordinates p = (p1, p2) and q = (q1, q2), let
the Chebyshev distance [35] ||p− q||∞ = max(|q1− p1|, |q2− p2|). In order to compare D(KP ) and
D(KQ), we define the bottleneck distance between these persistence diagrams as

dB(D(KP ), D(KQ)) = inf
φ

sup
x∈D(KP )

||x− φ(x)||∞,

where φ is a matching between D(KP ) and D(KQ). Here, in order to avoid cardinality mismatches,
we allow any point in D(KP ) or D(KQ) to additionally be matched to its projection on the
diagonal. Let the optimal matching used to calculate the bottleneck distance be denoted Φ. Note
that any point from D(KP ) that is matched to its projection on the diagonal by optimal matching
Φ corresponds to a connected component in KP that is not actually matched to a component in
D(KQ). See Figure 3.19 for an example.

At this point, we can utilize the previous work on the stability of persistence diagrams. In
their work, Cohen-Steiner et al. [8] conclude the following. Let f, g : R −→ R be functions over
domain R, both of which have a finite number of critical points. Given corresponding persistence
diagrams D(f) and D(g), we have dB(D(f), D(g)) ≤ maxx∈X |f(x)− g(x)|. We use this result to
bound the bottleneck distance between D(KP ) and D(KQ). Recall that we construct KP and KQ

from functions KDEP and KDEQ, respectively. Given the notion of the bottleneck distance, we
can therefore use this result to conclude that

dB(D(KP ), D(KQ)) ≤ max
x∈R
|KDEP (x)−KDEQ(x)|

Since KDEQ is an ε-approximation of KDEP , this means that the bottleneck distance between
the persistence diagrams of KP and KQ satisfies dB(D(KP ), D(KQ)) ≤ ε.
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Observe that the persistence of an extremum corresponding to connected component γ in KP

is reflected in the persistence diagram D(KP ) as the distance of pγ to the diagonal, where pγ is the
point in D(KP ) corresponding to γ. More precisely, the persistence of γ is equal to 2 · ||pγ−p′γ ||∞,
where p′γ is the projection of γ on the diagonal. Since the bottleneck distance between D(KP )
and D(KQ) is dB(D(KP ), D(KQ)) ≤ ε, we know that any point pγ with ||pγ − p′γ ||∞ ≥ ε cannot
be matched to its projection on the diagonal by optimal matching Φ (otherwise, the bottleneck
distance would be larger than ε). Because the persistence of γ is equal to ||pγ − p′γ ||∞, this means
that Φ must match any point pγ with persistence ≥ 2ε to a point in D(KQ). Thus, if we take
optimal matching Φ and discard any matching of points in D(KP ) and D(KQ) to the diagonal,
we obtain an injection from the points in D(KP ) with persistence ≥ 2ε to the points in D(KQ).
Note that each point in D(KP ) represents a connected component in KP , and each connected
components represents the maximum at which it is born and the minimum at which it dies. This
means that we can find an injection of all maxima and minima in TP of persistence ≥ 2ε to the
maxima and minima in TQ, respectively.

The existence of such an injection shows that the extrema in TP are actually relatively well
approximated by the extrema in TQ. Since persistence provides a measure of relevance to the
extrema of TP , the fact that any extremum of persistence 2ε and higher are maintained in terrain
TQ implies that the most relevant extrema of TP are still present in TQ. Thus, while the use of
the sort-selection coreset may cause some loss of information, the most relevant extrema are still
maintained.

In summary, using the sort-selection coreset in the KDS in place of the original input point set
has both benefits and drawbacks. The most significant advantage of using the coreset is that the
number of processed events under linear motion is brought down from O(n2) to O(n

4
3 · 1

ε2 ). While
this may not be a big improvement in small data sets, in very large data sets this can actually
make a big difference. As we saw previously, we can achieve this improvement while losing little
information about the most relevant extrema of TP . There are two major drawbacks, however.
First of all, the use of the coreset means that the KDS is no longer local: the number of certificates
that depend on a single object is increased from O(1) to O(εn). This means that changes in the
trajectory of an entity may be relatively costly. Additionally, partially due to the loss of locality,
the KDS is also no longer responsive: repairing the KDS may take O(εn log n) time, which is quite
a lot of compared to the O(log n) time it previously took. The main trade-off to consider here is

therefore whether processing O(n
4
3 · 1

ε2 ) events that can take O(εn log n) time each is more efficient
than processing O(n2) events that can take O(log n) time each. Note that the loss in precision
presented by the coreset can be regarded as a benefit. Often, extrema of very low persistence
are not indicative of actual features of the data, but are merely an artifact of noise in the data.
Therefore, not maintaining such irrelevant extrema provides the benefit of filtering out noise from
the data.

In order to make the coreset more efficient, a number of extensions could be possible. For
example, Lemma 5 also allows for a less strict set of vertices to be selected. Even though this
would result in a 2ε-approximation, it may allows us to further reduce the number of events.
Another example of an improvement could be to use other kinetic data structures, such as kinetic
heaps [4], to maintain Q more efficiently. If we store a kinetic heap containing all points in P
for each point in Q, it may be possible to maintain Q more efficiently than using the coreset
certificates we proposed in this section. To check the feasibility of this approach, however, more
investigation is required.
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Chapter 4

Model-based group classification

This chapter investigates how we can use model-based movement analysis to classify behavioral
movement phases. In Section 4.1 we discuss the terminology for movement data used throughout
this chapter. In Section 4.2 we provide background on the movement model used in behavioral
change point analysis model [15], as well as the segmentation and classification algorithms by
Alewijnse et al. [2]. Additionally, we will describe in more detail how the segmentation approach
is extended to group segmentation by Mols [25] using the movement model used in behavioral
change point analysis. Then, in Section 4.3 we show how to apply the single-trajectory discrete
classification algorithm by Alewijnse et al. to segmented groups of trajectories, and provide
promising experimental results of a proof-of-concept implementation that demonstrates the utility
of this approach.

4.1 Terminology

The terminology we use is similar to that used in previous work [2, 25]. We start by discussing
the concept of the (sub-)trajectories themselves, then give a definition of a segmentation of a set
of trajectories, and finally discuss the concept of classification.

We define a trajectory τ as a discrete sequence of timestamped, two-dimensional coordinates
that represent a continuous motion through the sampled points. To visualize a trajectory, we
linearly interpolate the movement between each pair of subsequent observations. A trajectory τ of
length m can be represented by an ordered set containing the coordinates and the timestamps of
each observation: τ = {(z1, t1), (z2, t2), . . . , (zm, tm)}. Here, zi = (xi, yi) represents the coordin-
ates of the trajectory sampled at time ti. Let τ(ti) = zi denote the location zi of trajectory τ
at time ti. Additionally, let τ [ti, tj ] with 1 ≤ i < j ≤ m indicate the sub-trajectory of τ between
timestamps ti and tj . Formally, this means τ [ti, tj ] = {(zi, ti), (zi+1, ti+1), . . . , (zj , tj)}. We also
define the set of edges of τ as τ = {τ [ti, ti+1]|0 ≤ i < m}. We denote the set of input trajectories as
T . In many applications, since we are interested in the movement of a group, all input trajectories
in the group are sampled over a similar time interval. In this chapter we assume that, for an input
of multiple trajectories, all trajectories in the input are sampled at the same timestamps, but not
necessarily uniformly. This assumption is essential for the following definition of a segment.

A segment S is a set of sub-trajectories that have the same start- and end time. That is,
a segment S consisting of h sub-trajectories starting at time ti and ending at time tj is defined
as S = {τ1[i, j], . . . , τh[i, j]} where τ1, . . . , τh ∈ T . Each segment S has an associated segment
parameter x(S) that describes the movement characteristics of the (sub-)trajectories in the segment
S. The utility of this parameter will be discussed in the next section. A complete segmentation
S of an input set of trajectories T is then defined as a set of k segments S = {S1, . . . , Sk}, such
that for all trajectories τ ∈ T each edge e ∈ τ is in exactly one segment Si ∈ S .

Finally, we can define a class C as a set of segments from S , such that C ⊆ S . Each class
also has an associated class parameter x(C) that describes the movement characteristics of the
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(sub-)trajectories in the segments of class C. A complete classification C of a segmentation S is
then defined as a partition C = {C1, . . . , C`} of set S . As such, each segment Si ∈ S appears in
exactly one class Ci ∈ C .

Given a segmentation S of a set of trajectories T , the goal of this part is to find an optimal
classification C of S . We do so by investigating whether we can apply the discrete classification
algorithm by Alewijnse et al. directly to the segmentation of a group [2].

4.2 Background

The segmentation and classification approach by Alewijnse et al. [2] uses a model-based approach,
which fits a parameterized movement model to the data. To be able to use segmentation and
classification in statistical analysis of group movement, we need to be able to evaluate the quality
of these segmentations and classifications. That way, we can be sure that the proposed models
actually fit the data well before they are used to make inferences about the movements. In this
section, since many definitions hold for both segmentations and classifications, we use the term
partition when we refer to either a segmentation or a classification. Additionally, when we refer
to a segmentation or a classification as a partition, we will use the term part to refer to either a
segment in the segmentation or a class in the classification. The methods used to evaluate the
quality of partitions are discussed in this section; first we discuss how we can utilize the likelihood
functions of the fitted models to extract a quality measure, after which we will discuss how to use
these quality measures to obtain meaningful partitions.

4.2.1 Log-likelihoods

A number of models can be used to describe the movement data, such as the Brownian bridge
movement model (BBMM) and its variants [19], or behavioral change point analysis (BCPA) [15].
In these models, which are commonly used in ecology [2], a single movement parameter indicates
the characteristics of the movement, yet the characteristics described by the input parameter differs
per movement model. In this chapter, we will use BCPA to fit the model, since it is well-suited
to find phases in movement data.

In these models, each edge e ∈ τ has an associated log-likelihood function LLe(x) which
describes how well the model describes the movement in e using parameter x. We will later
discuss how we can compute these log-likelihood values. Using these log-likelihood values, we can
describe the log-likelihood of (sub-)trajectories τ , segments S, and partitions S or C as the sum
of the log-likelihoods of their parts as follows:

LLτ (x) =
∑
e∈τ

LLe(x)

LLS(x) =
∑
τ∈S

LLτ (x)

LLS =
∑
S∈S

LLS(x(S))

LLC =
∑
C∈C

∑
S∈C

LLS(x(C))

To find an optimal partition of the input data, we now want to maximize the log-likelihood of
the complete partition. However, if we exclusively use the log-likelihood as a quality measure, an
optimal partition will result in each edge getting assigned their own segment/class with the most
fitting parameter value.
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Information Criterion

To limit the number of parts in a partition, an Information Criterion (IC) is used [2,15]. The goal
of an IC is to assign each partition a quality value that is dependent mostly on the log-likelihood
of the fitted movement parameters, but also on the complexity of the partition. This way, an IC
can be used to implicitly limit the number of parts that can exist within an optimal partition.
Here, we exclusively consider ICs of the form

IC(P) = −2 · LLP(x) + |P| · p

where P is the partition we want to compute the IC for, |P| denotes the number of parts in
the partition, and p ≥ 0 is a variable penalty value. Two common values for penalty value p
are p = ln(k) (where k is the number of segments) in the Bayesian IC (BIC) [32] and p = 2 in
the Akaike IC (AIC) [1]. In order to ensure a reasonable number of classes, we will attempt to
minimize the value of the IC instead of trying to maximize the absolute likelihood of the partition.
Thus, we define an optimal partition to be the partition that minimizes the value of the IC.

4.2.2 Behavioral Change Point Analysis

Now that we know how to use the value of the log-likelihood function to obtain an optimal
partition, we will discuss how these log-likelihood functions are actually obtained. We will limit
this discussion to the modelswe use in the proof-of-concept implementation, which are the models
described in Behavioral Change Point Analysis (BCPA). We use these models since they are
specifically tailored to identify phases in movement behavior [15].

In the BCPA models, we require some type of descriptive parameter that is able to quantify
certain characteristics of the movement. As examples, we use the persistence velocity and the
turning velocity as defined in the original BCPA description by Gurarie et al. [15]. To this end,
let the absolute positions z and the absolute orientation φ of the raw data be processed into the
estimated speed V and turning angles Ψ of the data, obtained via

V (ti) = ||zi − zi1||/(ti − ti− 1),

Ψ(ti) = φi − φi−1.

These speed and turning angle estimates are then transformed into two variables Vp(ti) (persistence
velocity) and Vt(ti) (turning velocity) that describe the desired movement characteristics; Vp(ti)
describes the tendency of the movement to persist in a given direction, and Vt(ti) describes the
tendency of the movement to head in a direction perpendicular to the previous at any given time
interval. These features are calculated with

Vp(ti) = V (ti) cos(Ψ(ti)),

Vt(ti) = V (ti) sin(Ψ(ti)).

The assumption is made that the movement characteristics Vp and Vt can be described by a
Gaussian process with normal distribution wi =∼ N (µ, σ2). BCPA also heavily relies on the as-
sumption that there exists some correlation between subsequent data points that can be described
by auto-correlation coefficient ρτi such that observation wi can be described as

wi = µ+ ρTi(wi−1 − µ) + εi.

Here, Ti = ti − ti−1 and εi is an error term determined by the variance σ2 of the data as well as
auto-correlation coefficient ρTi . The error term εi can be shown to have a mean of 0 and variance
σ2(1− ρ2Ti) [15].

We can approximate the mean and standard deviation of the modeled Gaussian process that
describes Vp and Vt using the actual mean µ and the standard deviation σ of these variables. Since
the model has a Gaussian error structure (with error term εi), we can compute the likelihood of
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any auto-correlation coefficient between Vp or Vt of wi and wi−1 (for 1 ≤ i ≤ m) according to
the probability density function of conditional distribution wi|wi−1 (where wi models the variable
associated to trajectory sample zi):

Lzi =
1√

2πσ2(1− ρ2Ti)
· exp

[
−(wi − ρTi(wi−1 − µ)− µ)2

2σ2(1− ρ2Ti)

]
.

Note that this likelihood function deviates from the function given by Guraire at al. in the
initial description of the approach [15]. However, Guraire et al. also provide an implementation
of their algorithms in a later paper [16]. The provided implementation deviates from the original
paper and features this function, which is the function that results from reproducing the described
steps above.

Since the auto-correlation coefficient must be between 0 and 1, the likelihood of each observa-
tion can be maximized over 0 < ρ < 1 to find the auto-correlation most likely to fit the data at
each observation. We define the log-likelihood as LLzi(ρ) = log(Lzi(ρ)). Since each line segment
in a set of (sub-)trajectories is independent, we can take the sum of the log-likelihoods of all line
segments in the set to get a total log-likelihood LLS(ρ) for the auto-correlation of Vp or Vt of the
entire set.

4.2.3 Group segmentation

The group segmentation work by Mols [25] describes three separate heuristic group segmentation
methods. Of these three methods, we use the two-step approach, which first uses the grouping
structure to group sub-trajectories prior to segmenting them. First we discuss how the (sub-
)trajectories are grouped in a first pass using at method similar to the trajectory grouping struc-
ture [6], after which we discuss how these groups are segmented using model-based segmentation
algorithm by Alewijne et al. [2].

Grouping structure

The trajectory grouping structure is a model that attempts to capture, given an input set of
trajectories, when and which subsets of entities travel together for a sufficiently long time [6]. The
group segmentation work slightly alters this definition, using the original notion of “components”
in the input data to find which entities travel together for some amount of time [25].

Given an input set of trajectories T = {τ1, . . . , τn}, let two trajectories τi and τj be directly
connected at time t if the distance between τi(t) and τj(t) is smaller than some parameter ε. Two
trajectories are ε-connected at time t if there exists a sequence of trajectories τi = τ0, . . . , τk = τj
such that for all 0 ≤ i ≤ k− 1, τ i and τ i+1 are directly connected. A subset R ⊆ T of trajectories
is ε-connected at time t if all trajectories in R are pairwise ε-connected at time t. We call such
an ε-connected set R a component if and only if it is a maximal ε-connected set. It is each to see
that at any time t the set of all components D(t) forms a partition of the input trajectory set T .

In its original description, the trajectory grouping structure further describes the notion of
groups using the components D(t), along with two additional input parameters: a temporal para-
meter δ and a size parameter m that describe how long a component must exist and how many
trajectories it must contain for it to be considered a group. In the group segmentation work, these
two parameters are set to 0 and 1, respectively, such that the set of components D(t) directly
describe the grouping structure as they evolve through time [25]. To this end, in our applica-
tion we consider a group G to be described by a set of trajectories TG ⊆ T and a time interval
[ts(G), te(G)], where ts(G) and te(G) are the start and end times of group G, respectively. We aim
to find a set of groups G such that, at all times t, the groups G ∈ G for which ts(G) ≤ t ≤ te(G)
form a partition of the trajectories in T .

In the group segmentation work, this set of groups G is constructed by tracking the set of com-
ponents D(t) through time. Each component D describes a group G consisting of the trajectories
in D, where the start time ts(G) is the time at which component D first appears in D(ts(G)), and
the end time te(G) is the time at which the component D disappears from D(te(G)). Note that if
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τ1
τ2

τ3

(a) An input set of three input trajectories.

τ1τ2

τ3

τ1τ2τ3

τ1τ3

τ2

(b) The trajectories from (a) grouped into
groups.

Figure 4.1: An example of how trajectories are grouped in the group segmentation work [25]. The
directed edges in (b) represent the groups, labeled with the contained trajectories.

a component D appears in D(t) in more than one disjoint time intervals, it describes a separate
group for each disjoint time interval it appears in. An example of a partition of T using groups
in this manner can be found in Figure 4.1.

Model-based segmentation

The group segmentation work describes an approach to segment the groups found in the previous
section using the model-based approach for single trajectories [2,25]. The approach segments each
group G ∈ G separately and outputs the union of these segments as the segmentation S . Since
G describes a partition of T , this results in a complete segmentation. Let SG be a complete
segmentation of group G. Formally, we then get a complete segmentation S of T using

S =
⋃
G∈G

SG

Note that the information criterion (IC) for a segmentation is simply computed by taking the
sum of its parts. Therefore, to find optimal segmentation S all that is left to do is to compute an
optimal segmentation SG for each group G. For group G, the optimal segmentation is computed
using the discrete segmentation algorithm [2], slightly adapted to work with groups. Given a group
G consisting of trajectories TG ⊆ T in time interval [ts(G), te(G)], a set of candidate parameters
{x1, . . . , xm} and a penalty factor p, we aim to compute a segmentation SG of G that assigns each
segment S ∈ SG a parameter value x(S) such that we minimize some IC.

Since we assume all trajectories to be sampled at the same timestamps, the discrete segment-
ation algorithm by Alewijnse et al. can be directly applied to the group G [2]. The only slight
adjustment to the functioning of the algorithm is that, as opposed to using the log-likelihood of a
single trajectory to find the value of the IC for each segment, we take the sum of log-likelihoods of
all sub-trajectories in the segment. Once an optimal segmentation has been found for each group
G ∈ G , the union of these optimal segmentations describes the complete segmentation S of T .

4.3 Classifying segments

We now consider the problem of classifying a set of group segments. That is, given a set of
trajectories T = {τ1, . . . , τn}, a corresponding segmentation S = {S1, . . . , Sk} and a penalty
factor p, we aim to compute a classification C = {C1, . . . , C`} of S (that is, a partition of S) and
assign each class C a parameter value x(C) such that we minimize some information criterion.

The approach described here for group classification is similar by Alewijnse et al. to classify
single trajectory segments [2]. The group classification algorithm works in the same manner as
the discrete classification algorithm proposed by Alewijnse et al.; it uses a dynamic programming
approach to classify a set of trajectory segments, represented by their log-likelihood functions
as input, using a discrete set of candidate parameters. In order to investigate whether we can
directly apply the approach to groups of trajectories as well, we input a set of log-likelihood
functions representing segments as defined in the previous section.
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(a) Two bitonic curves, with unique maxima indic-
ated by ×.

(b) The sum of the two bitonic curves in (a), which
has two maxima (indicated with ×), and is thus not
bitonic.

Figure 4.2: The sum of the two bitonic curves in (a) is not bitonic, as it has two maxima.

The algorithm described by Alewijnse et al. requires the critical assumption that the input
log-likelihood functions are bitonic [2]. That is, each log-likelihood function LLi has a single
maximum Mi, are increasing before the maxmimum and decreasing after the maximum. Also,
the algorithm requires that the log-likelihood functions are provided in order of increasing Mi.
In practice log-likelihood functions for realistic input trajectories are often bitonic, as trajectories
with non-bitonic log-likelihood functions require large variations in sampling rate and speed. Even
if the log-likelihood functions are not strictly bitonic, parameter values of local maxima are often
quite close to each other, meaning that the algorithm will still produce results that are close to
optimal.

This bitonicity assumption presents an issue when the algorithm is applied to groups of tra-
jectories, since the log-likelihood function of a segment is defined as the sum of the log-likelihoods
of its parts (thus; sub-trajectories). As argued by Alewijnse et al., in a realistic setting the log-
likelihood functions of these sub-trajectories are likely to be bitonic [2]. However, the sum of two or
more bitonic functions is not necessarily bitonic; see Figure 4.2. This means that a log-likelihood
function LLi of a segment does not necessarily have a single maximum Mi, and the input functions
can therefore not be easily sorted by the value of their maxima.

In order to resolve this, observe that the group segmentation approach places sub-trajectories
into segments according to an information criterion [25]. This means that the log-likelihood
functions of the trajectories that make up a segment are very likely to have similar maxima that
lie within some small range, meaning that it is very likely that the log-likelihood function of the
segment reaches its maximum somewhere within that range. In order to approximate a suitable
value to sort the input segments, we take the median of the maxima of the log-likelihood functions
corresponding to the sub-trajectories in each segment. Since the maxima of the log-likelihood
functions of the sub-trajectories in a segment are likely to lie very close together, this median
value gives us a good approximation of a parameter value around which the maxima are centered.
As such, the algorithm is expected to yield near-optimal results.

Algorithm 1 DiscreteClassification((LL1, . . . , LLk), (x1, . . . , xm)) [2]

1: Opt0 = An array of length m with all elements set to NIL
2: C = An arbitrary (complete) classification of L1, . . . , Lk
3: for i = 1 to m do
4: for j = 0 to i=1 do
5: Oj = Optj
6: for LLj ∈ Lj,i do
7: Oj [l] = arg maxx∈{xj ,xi}(LLl(x))

8: Opti = arg min{Oj |0≤j<i} ICi(Oj)
9:
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Figure 4.3: A full overview of the used subset from the baboon data set. The data describes a set
of 15 baboons traveling through a wildlife reserve over a period of roughly 54 hours.

In order to classify a set of given input segments S = {S1, . . . , Sk} using a discrete set of
parameters, we assume the problem instance is given by (LL1, . . . , LLk), (x1, . . . , xm) where LLi
with 1 ≤ i ≤ k represents the log-likelihood function of segment Si. Here, we assume that both
(LL1, . . . , LLk) and (x1, . . . , xm) are sorted in ascending order. If not, they can simply be sorted
in a preprocessing step. If the input is given in this format, then the classification algorithm
by Alewijnse et al. [2], given in Algorithm 1, can be directly applied to group classification of
segments.

4.3.1 Application to real-life data

In order to demonstrate the utility of this approach, a proof-of-concept implementation was used
to obtain a classification for a segmented group of wildlife movement data. The data set that
is used describes the trajectories of 25 baboons in a troop moving through a wildlife reserve in
Laikipia, Kenya1. The locations of the baboons are sampled every second, over a time period of
multiple days using a high-resolution global positioning system.

A subset of this data was recently used in experiments for group segmentation [25]. Since our
approach extends the group segmentation approach, we will use the same subset of this data to
demonstrate how the classification of these segments can help classify different movement phases.
As such, 15 out of the 25 baboons in the original data set were selected by hand based on the
consistency of location reports. These 15 trajectories were further sampled to obtain 15 sub-
trajectories of 1000 observations each in such a way that the sub-trajectories describe a varied
set of group movement phases over a period of approximately 54 hours. A full overview of these
trajectories can be found in Figure 4.3.

The trajectories are first segmented using the two-step group segmentation method described
in Section 4.2.3 using the auto-correlation based models from BCPA as described in Section 4.2.2,
once using the persistence velocity Vp and once using turning velocity Vt as the describing para-
meters for the data. Afterwards, we classify the resulting segments of these output segmentations
using the same models with the persistence- and turning velocity according to the approach de-
scribed in Section 4.3.

In the visualizations of the classifications, we draw the movement trajectories of the input data

1Source: https://www.datarepository.movebank.org/handle/10255/move.405, obtained in May 2021.
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(b)

(a)

Figure 4.4: A full overview of the used subset from the baboon data set after classification with
BCPA using parameter Vp. Highlighted sections can be found in Figure 4.5. Darker colors indicate
higher auto-correlation values for the class the segment was assigned to.

as transparent black lines. Segments that describe a set of sub-trajectories are visualized as thick
lines between the average start- and the average end positions of the sub-trajectories it describes.
The color of these lines indicate the classes in which the segments are placed. The color palette we
use ranges from light yellow, which indicates a very low auto-correlation coefficient, to dark red,
which indicates a very high auto-correlation coefficient. Since the auto-correlation coefficient lies
within range [0, 1], additional colors are simply obtained by linearly interpolating between light
yellow and dark red.

The results from the group segmentation and classification using the auto-correlation model
with persistence velocity Vp can be seen in Figures 4.4 and 4.5, and the results using the auto-
correlation model with turning velocity Vt can be seen in Figure 4.6. For the creation of the
group segmentations, as well as for the group classification of these segmentations, the Bayesian
information criterion with a penalty factor p = 2 was used. The distance parameter ε used to find
the grouping structure prior to segmenting was set to ε = 300. The group classification algorithm
used a discrete set of values, uniformly sampled between 0 and 1 with step size 0.01, as candidate
parameter values. The group classification using the persistence velocity Vp produced a set of four
classes, whereas the use of the turning velocity Vt produces five classes. For both of these sets of
classes, the auto-correlation value assigned to the classes ranged between 0.01 and 0.95.

In order to analyze the output of the classification, it is worthwhile to more closely examine
certain sections of the movement. To this end, consider the highlighted sections in Figure 4.4,
of which close-ups can be found in Figure 4.5. The sub-trajectories displayed in Figure 4.5a
describe the movement of the troop alongside a road over a time-span of approximately four hours.
Intuitively, we can distinguish three phases during these four hours. First, the troop remains near
a single location for 1.5 hours; then, the troop moves approximately 400 meters northwards in 0.5
hours; lastly, the troop spends approximately 2 hours moving further north slowly, during which
individual baboons frequently stray somewhat far from the troop.

The group segmentation algorithm segmented this first phase in which the baboons remain
near a single location as a single, short segment, which was classified as a segment in the class
with the highest auto-correlation of 0.95. The fast, directed movement northward was classified in
the class with the very lowest auto-correlation coefficient of 0.01. The last part of the movement
that is slow-moving and exhibits more baboons straying from the group is segmented into multiple
different segments, most of which are classified as classes with auto-correlation coefficients between
0.4 and 0.8.
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(a) (b)

Figure 4.5: The two highlighted sections from Figure 4.4 after classification with BCPA using
parameter Vp.

Most segments in the input data seem to be classified along a similar pattern. As is clear
from Figure 4.4, segments that describe troop movement that remains near a single location for
longer periods of time get classified with relatively high auto-correlation coefficients, whereas long
stretches of directed movement get assigned a class with lower auto-correlation coefficients. It
is important to note, however, that the assigned classes seem mostly dependent on the velocity
of the movement rather than the directedness of the movement. Consider the sub-trajectories in
Figure 4.5b. There, a significant portion of the sub-trajectories is not directly moving from one
point to another, but taking rather large detours. However, these segments are classified in the
same class as other, more directed movement segments, which is likely due to the velocity of the
sub-trajectories in this segment being relatively high.

The group segmentation and classification using the turning velocity Vt can be seen in Fig-
ure 4.6. While the resulting classification using Vt has an additional class when compared to the
classification that resulted from BCPA using Vp, the general classification pattern is similar: move-
ment phases that exhibit compact, slower and less directed movement can mostly be differentiated
from more long distance and directed movement phases, with the prior being assigned to classes
with a higher auto-correlation and the latter being assigned to classes with lower auto-correlation
coefficients.

As we can see from Figures 4.4 and 4.6, the proof-of-concept implementation of the group
classification approach is generally able to distinguish fast and directed phases of movement in
this data set from slower and compact movement. As such, these first experiments are quite
promising. An important observation, however, is that the detection of the phases seems to be
influenced significantly more by the velocity of the movement than by the turning angle. This
is likely due to the fact that the values of the persistence velocity and the turning velocity are
computed by multiplying the velocity of the movement with the sine and the cosine of the turning
angle of the movement, respectively. While the value of the sine and the cosine of the turning
angle can at most differ by a value of 2, the velocity of the movement in one segment can be orders
of magnitude higher than the velocity in another segment. This means that the value of the
persistence velocity and the turning velocity are more dependent on the velocity of the movement
than they are dependent on the turning angle. This observation would justify why segments are
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Figure 4.6: A full overview of the used subset from the baboon data set after classification with
BCPA using parameter Vt. Darker colors indicate higher auto-correlation values for the class the
segment was assigned to.

generally classified according to the average velocity of their sub-trajectories. Therefore, it seems
that this bias toward the velocity is mainly an artifact of the persistence velocity and the turning
velocity. In order to verify this, more experiments would be necessary in which different movement
parameters are used in place of the persistence- and the turning velocity.
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Discussion

The analysis of movement data has long been an important tasks in a number of research areas. In
such movement data, related sets of entities can form coherent groups in the data. In such groups,
a number of entities remain close together for an extended period of time. Analyzing the shape of
such groups allows us to distinguish them from each other, and allows us to make inferences about
the underlying movement patterns. In this thesis, we characterize the shape of a group using its
density, and we propose methods that allow for the identification of the dense and sparse areas of
groups of one-dimensional entities. We achieve this by maintaining the extrema of a terrain TP
that represents an estimation of the probability density of a set of time-varying data points in one
dimension.

In Chapter 2, we discussed the tools that would ultimately be useful during the construction
of the data structure. We described how to use a concept from statistics called “kernel density
estimation” to estimate the probability density distribution of a set of points, and describe how
we will use this technique to construct a terrain TP of which the extrema estimate the locations
of dense and sparse areas in the data. We discussed a class of data structure called kinetic data
structures, which allow proofs of correctness for attributes of geometric systems to be animated
and maintained through time.

In Chapter 3 we utilized the tools described in the previous chapter to construct a kinetic data
structure that is able to maintain the extrema of the time-varying terrain TP through time. We
investigated how points in P can be analyzed to find extrema in the terrain without constructing
the kernel density estimation function in its entirety. After describing how to find these extrema
in the static setting, we investigated when and how these extrema would change if the underlying
point set was time-varying. We then described how to use these observations to build the kinetic
data structure to maintain these extrema. We analysed the quality of the kinetic data structure
using the common quality measures for kinetic data structures, and found it to be compact, local,
responsive and weakly efficient.

While the KDS described above is theoretically efficient, in the worst case it may require a
number of events that is quadratic in the input size. Therefore, we also investigated whether an
approximation technique for kernel density estimation, called coresets, could be used to improve
the efficiency of the kinetic data structure. We briefly described a small number of different
options to generate coresets, and describe how to use the sort-selection approach to find a coreset
with a fixed and guaranteed error bound. After discussing how to do so in a static setting, we
described how to maintain the generated coreset in an efficient manner in the kinetic setting. We
evaluated how this maintained coreset could be applied to our kinetic data structure, and what
the impact of the coreset would be on the quality of the kinetic data structure. Using coresets,
we were able to reduce the number of events processed by the KDS from O(n2) to O(n

4
3 · 1

ε ).
In doing so, we are able to show that the most relevant extrema of the terrain are maintained
after the application of the coreset. We measure the relevance of an extremum by its persistence:
if the coreset describes an ε approximation of the input point set, we were able to show that
any extremum with persistence equal to or higher than 2ε is maintained. This means that any
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low-persistence are not guaranteed to also appear in the estimated density function of the coreset.
This is not necessarily an issue, however, since it may actually be desirable to filter out extrema
of low relevance in some applications (to filter out noise, for example).

Using the approximation to improve the efficiency of the KDS, however, has some drawbacks.
While the efficiency of the KDS is improved, the locality and the responsiveness are negatively
impacted. While using the coreset, a single point may appear in at most O(εn) certificates, up
from O(1) in the KDS without the coreset. As a result, the responsiveness of the KDS is raised to
O(εn log n) from O(log n). Using a coreset to both increase the efficiency and reduce the number
of irrelevant information that is stored is a promising method to improve the KDS. There are
currently major drawback to this approach. Therefore, a promising direction for future work
could be to try to reduce these drawbacks. This could, for example, be achieved by attempting
different methods for generating the coreset. It would also be interesting to see whether the KDS
could be made more efficient and responsive by, for example, maintaining the 2ε-approximation
version of the sort-selection coreset. While this makes the coreset slightly less representative of
the original point set, perhaps relaxing the constraints on the points in the coreset allows us to
maintain it more efficiently. Also, as briefly discussed in Section 3.4, a promising direction for
maintaining the coreset more efficiently could be to use auxiliary kinetic data structures to track
each point in Q separately. This seems theoretically feasible, but more investigation is necessary
to analyze what the implications for the quality measures would be.

As briefly discussed in Chapter 2, tracking topological properties beyond the extrema of terrain
TP also remains an interesting research direction. Although the methods described in Chapter
3 would not suffice to track features like the persistence pairings of the extrema, perhaps the
described KDS can be extended to allow for the maintenance of these features as well. A major
obstacle here is that tracking and comparing the heights of vertices in the terrain is very expens-
ive, which is why our approach uses the slope of the terrain rather than the height of its vertices.
Another way to extend the work described in Chapter 3 could be to investigate how these ap-
proaches extend to different types of kernels. This thesis works with the linear kernel because it
allows us to maintain the extrema strictly using the slope of the terrain, which must then be an
integer multiple of a constant. Using, for example, the Gaussian kernel could complicate matters
somewhat, but it is not unlikely that the general structure of the kinetic data structure described
in Chapter 3 could also be used in a setting using different kernels.

Furthermore, a natural next step is to investigate how the techniques described in Chapter 3
generalize to higher dimensions. In particular the two dimensional setting is interesting, as it more
closely resembles the likely applications. This direction of research is likely to be more involved
than the prior two discussed above, as many of the observations made about the one dimensional
case either no longer hold or are significantly more complex to find and proof in higher dimensions.
For example, in two dimensions linear kernel boundaries consist of a two dimensional circle centered
around the data point rather than two separate points. This makes our definition of minima in
one dimension difficult to generalize. The general structure of the kinetic data structure and the
times at which events take place, however, may yet generalize to higher dimensions. In any case,
the observations made in this thesis provide insight into the one-dimensional case, which provides
a foundation from which to investigate changes in density in settings with more dimensions.

In addition to the work on group density, in Chapter 4 we investigated how different movement
phases in the movement of a group can be distinguished. Specifically, we demonstrated that the
single-trajectory classification algorithm by Alewijnse et al. can also be applied to groups of
trajectories. Given a set of trajectories, we find groups in the data and split them into segments
using the two-step segmentation approach by Mols [25]. Given these group segments, the single-
trajectory classification algorithm by Alewijnse et al. is directly applied to these group segments
to obtain a group classification. The classification algorithm attempts to fit a parameterized
model to the movement data. The model we use is based on a Gaussian process. For the model
parameter, we use the auto-correlation of the persistence velocity and the turning velocity. The
persistence velocity describes the tendency of the movement to persist in a given direction, whereas
the turning velocity describes the tendency of the movement to change its movement direction. We
demonstrated the utility of the approach by using a proof-of-concept implementation to classify
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different phases in a group movement data set of a troop of baboons moving through a wildlife
reserve. The results of the algorithm using the persistence velocity and the turning velocity
were quite similar. The results of the initial experiments look promising, and provide intuitive
classifications of the group of trajectories which are able to distinguish fast and directed phases
of movement from slower and more compact movement.

We observed that, in these experimental results, the detection of the movement phases seems to
be influenced significantly more by the velocity of the movement than by the movement direction.
We hypothesize that this is mainly an artifact of the persistence velocity and the turning velocity
rather than an issue with the approach itself. To verify this, it would indeed be useful to experiment
with using slightly different movement parameters in the fitted model. For example, a way to
produce a classification that is more sensitive to changes in the turning angle of the sub-trajectories
could be to normalize the velocity of the sub-trajectories prior to using them to compute the
persistence- and turning velocity. Alternatively, a completely different set of descriptive parameters
could be used. It would be interesting, for example, to use a quantified estimate of the density
around each entity as descriptive parameter in the group classification model. Such an estimate
could be quantified by the sum of the distance between the k nearest neighbors of each entity.
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Cabral. GRASP-UTS: an algorithm for unsupervised trajectory segmentation. International
Journal of Geographical Information Science, 29(1):46–68, 2015.

[23] Panos Kalnis, Nikos Mamoulis, and Spiridon Bakiras. On discovering moving clusters in
spatio-temporal data. Advances in Spatial and Temporal Databases, pages 364–381, 2005.

[24] Luis A. Leiva and Enrique Vidal. Warped k-means: An algorithm to cluster sequentially-
distributed data. Information Sciences, 237:196–210, 2013.

[25] Jorik Mols. Model-based segmentation of collective movement. Master’s thesis, TU Eind-
hoven, 2021.

[26] Anders Nilsson. Predator behaviour and prey density: evaluating density-dependent intraspe-
cific interactions on predator functional responses. Journal of Animal Ecology, 70(1):14–19,
2001.

[27] Tim Ophelders, Willem Sonke, Bettina Speckmann, and Kevin Verbeek. A KDS for discrete
Morse-Smale complexes. Computational Geometry: Young Researchers Forum, pages 3:1–3:2,
2018.

[28] Emanuel Parzen. On Estimation of a Probability Density Function and Mode. The Annals
of Mathematical Statistics, 33(3):1065 – 1076, 1962.

[29] Jeff M. Phillips. ε-samples for kernels. In Proceedings of the twenty-fourth annual ACM-SIAM
symposium on Discrete algorithms, pages 1622–1632. SIAM, 2013.
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Appendix A

Changes to colliding bends

For completeness, we provide arguments for each possible BB and BP collision, based on the types
of colliding bends.

A.1 BB collisions

To prove that, in a BB collisions, the colliding boundaries inherit each others type, we show that:

1. If blj is a starting or an ending h-bend at t−0 then bri is a starting or an ending h-bend at
t+0 , respectively;

2. If bri is a starting or an ending h-bend at t−0 , then blj is a starting or an ending h-bend at
t+0 , respectively;

3. If bri or blj is a regular bend at t−0 , then blj or bri will respectively be a regular bent at t+0 .

Since br/bl bends can only be starting h-bends, ending h-bends, or regular bends, this list is
exhaustive. The arguments for each of these cases is provided separately below.

1. Let blj be a starting h-bend at t−0 . Then, by Lemma 3, we have

|R`(lj(t−0 ))| = |Rr(lj(t−0 ))|+ 1

⇒ (By Eq. 3.12 & 3.13) |R`(ri(t−0 ))| = |Rr(ri(t−0 ))|+ 1

⇒ (By Eq. 3.14 & 3.15) |R`(ri(t+0 ))| = |Rr(ri(t+0 ))|

By Lemma 3, this means that bri is a starting h-bend at t+0 .

Now, let blj be an ending h-bend at t−0 . Then, by Lemma 3, we have

|R`(lj(t−0 ))| = |Rr(lj(t−0 ))|
⇒ (By Eq. 3.12 & 3.13) |R`(ri(t−0 ))| = |Rr(ri(t−0 ))|
⇒ (By Eq. 3.14 & 3.15) |R`(ri(t+0 ))|+ 1 = |Rr(ri(t+0 ))|

By Lemma 3, this means that bri is an ending h-bend at t+0 .

2. Let bri be a starting h-bend at t−0 . Then, by Lemma 3, we have

|R`(ri(t−0 ))| = |Rr(ri(t−0 ))|
⇒ (By Eq. 3.12 & 3.13) |R`(lj(t−0 ))| = |Rr(lj(t−0 ))|
⇒ (By Eq. 3.17 & 3.16) |R`(lj(t+0 ))| = |Rr(lj(t+0 ))|+ 1
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By Lemma 3, this means that blj is a starting h-bend at t+0 .

Now, let bri be an ending h-bend at t−0 . Then, by Lemma 3, we have

|R`(ri(t−0 ))|+ 1 = |Rr(ri(t−0 ))|
⇒ (By Eq. 3.12 & 3.13) |R`(lj(t−0 ))|+ 1 = |Rr(lj(t−0 ))|
⇒ (By Eq. 3.17 & 3.16) |R`(lj(t+0 ))| = |Rr(lj(t+0 ))|

By Lemma 3, this means that blj is an ending h-bend at t+0 .

3. Let bri be a regular bend at t−0 . Then, by Lemma 3, we have either

|R`(ri(t−0 ))| > |Rr(ri(t−0 ))|
⇒ (By Eq. 3.12 & 3.13) |R`(lj(t−0 ))| > |Rr(lj(t−0 ))|
⇒ (By Eq. 3.17 & 3.16) |R`(lj(t+0 ))| > |Rr(lj(t+0 ))|+ 1

or

|R`(ri(t−0 ))|+ 1 < |Rr(ri(t−0 ))|
⇒ (By Eq. 3.12 & 3.13) |R`(lj(t−0 ))|+ 1 < |Rr(lj(t−0 ))|
⇒ (By Eq. 3.17 & 3.16) |R`(lj(t+0 ))| < |Rr(lj(t+0 ))|

Thus, by Lemma 3, blj is a regular bend at t+0 in both of these situations.

Now, let blj be a regular bend at t−0 . Then, by Lemma 3, we have either

|R`(lj(t−0 ))| > |Rr(lj(t−0 ))|+ 1

⇒ (By Eq. 3.12 & 3.13) |R`(ri(t−0 ))| > |Rr(ri(t−0 ))|
⇒ (By Eq. 3.14 & 3.15) |R`(ri(t+0 ))| > |Rr(ri(t+0 ))|

or

|R`(lj(t−0 ))| < |Rr(lj(t−0 ))|
⇒ (By Eq. 3.12 & 3.13) |R`(ri(t−0 ))| < |Rr(ri(t−0 ))|
⇒ (By Eq. 3.14 & 3.15) |R`(ri(t+0 ))|+ 1 < |Rr(ri(t+0 ))|

Thus, by Lemma 3, bri is a regular bend at t+0 in both of these situations.

A.2 BP collisions

To show the possible events that can happen when a BP collision occurs, we distinguish six different
cases, each of which we prove separately. These six cases are:

1. If R`(pi(t
−
0 )) = Rr(pi(t

−
0 )), then bpi is a single-bend maximum at t−0 and becomes a starting

h-bend at t+0 . Also, blj is an ending h-bend at t−0 and becomes a regular bend at t+0 .

2. If R`(pi(t
−
0 )) + 1 = Rr(pi(t

−
0 )), then bpi is a starting h-bend at t−0 and becomes a regular

bend at t+0 . Also, blj is a regular bend at t−0 and becomes a starting h-bend at t+0 .

3. If R`(pi(t
−
0 )) = Rr(pi(t

−
0 ))+1, then bpi is an ending h-bend at t−0 and becomes a single-bend

maximum at t+0 . Also, blj is a starting h-bend at t−0 and becomes a regular bend at t+0 .
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4. If R`(pi(t
−
0 )) + 2 = Rr(pi(t

−
0 )), then bpi is a starting h-bend at t−0 and becomes a regular

bend at t+0 . Also, blj is a regular bend at t−0 and remains regular at t+0 .

5. If R`(pi(t
−
0 )) = Rr(pi(t

−
0 )) + 2, then bpi is a regular bend at t−0 and remains regular at t+0 .

Also, blj is a regular bend at t−0 and becomes an ending h-bend at t+0 .

6. Otherwise, both bpi and blj are regular at t−0 and remain regular at t+0 .

Since these cases cover all possible sizes of R`(pi(t
−
0 )) and Rr(pi(t

−
0 )), this list is exhaustive.

The arguments for each of these cases is provided below.

1. Assume R`(pi(t
−
0 )) = Rr(pi(t

−
0 )). By Equations 3.18 and 3.19, this also means R`(lj(t

−
0 )) =

Rr(lj(t
−
0 )). Thus, by Lemma 1 and 3, at t−0 bpi is a single-bend maximum and blj is an

ending h-bend. This implies

|R`(pi(t−0 ))| = |Rr(pi(t−0 ))|
⇒ (By Eq. 3.20 & 3.21) |R`(pi(t+0 ))|+ 1 = |Rr(pi(t+0 ))|

and

|R`(lj(t−0 ))| = |Rr(lj(t−0 ))|
⇒ (By Eq. 3.22 & 3.23) |R`(lj(t+0 ))| = |Rr(lj(t+0 ))|+ 2

This means, by Lemma 3.3 and 3, that at t+0 bpi will be a starting h-bend and blj will be a
regular bend.

2. Assume R`(pi(t
−
0 ))+1 = Rr(pi(t

−
0 )). By Equations 3.18 and 3.19, this also means R`(lj(t

−
0 ))+

1 = Rr(lj(t
−
0 )). Thus, by Lemma 2 and 3, at t−0 bpi is a starting h-bend and blj is a regular

bend. This implies

|R`(pi(t−0 ))|+ 1 = |Rr(pi(t−0 ))|
⇒ (By Eq. 3.20 & 3.21) |R`(pi(t+0 ))|+ 2 = |Rr(pi(t+0 ))|

and

|R`(lj(t−0 ))|+ 1 = |Rr(lj(t−0 ))|
⇒ (By Eq. 3.22 & 3.23) |R`(lj(t+0 ))| = |Rr(lj(t+0 ))|+ 1

This means, by Lemma 2 and 3, that at t+0 bpi will be a regular bend and blj will be a
starting h-bend.

3. Assume R`(pi(t
−
0 )) = Rr(pi(t

−
0 ))+1. By Equations 3.18 and 3.19, this also means R`(lj(t

−
0 )) =

Rr(lj(t
−
0 )) + 1. Thus, by Lemma 2 and 3, at t−0 bpi is an ending h-bend and blj is a starting

h-bend. This implies

|R`(pi(t−0 ))| = |Rr(pi(t−0 ))|+ 1

⇒ (By Eq. 3.20 & 3.21) |R`(pi(t+0 ))| = |Rr(pi(t+0 ))|

and

|R`(lj(t−0 ))| = |Rr(lj(t−0 ))|+ 1

⇒ (By Eq. 3.22 & 3.23) |R`(lj(t+0 ))| = |Rr(lj(t+0 ))|+ 3

This means, by Lemma 2 and 3, that at t+0 bpi will be a single-bend maximum and blj will
be a regular bend.
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4. Assume R`(pi(t
−
0 ))+2 = Rr(pi(t

−
0 )). By Equations 3.18 and 3.19, this also means R`(lj(t

−
0 ))+

2 = Rr(lj(t
−
0 )). Thus, by Lemma 2 and 3, at t−0 bpi and blj are both regular bends. This

also implies

|R`(pi(t−0 ))|+ 2 = |Rr(pi(t−0 ))|
⇒ (By Eq. 3.20 & 3.21) |R`(pi(t+0 ))|+ 3 = |Rr(pi(t+0 ))|

and

|R`(lj(t−0 ))|+ 2 = |Rr(lj(t−0 ))|
⇒ (By Eq. 3.22 & 3.23) |R`(lj(t+0 ))| = |Rr(lj(t+0 ))|

This means, by Lemma 2 and 3, that at t+0 bpi will be a regular bend and blj will be an
ending h-bend.

5. Assume R`(pi(t
−
0 )) = Rr(pi(t

−
0 ))+2. By Equations 3.18 and 3.19, this also means R`(lj(t

−
0 )) =

Rr(lj(t
−
0 )) + 2. Thus, by Lemma 2 and 3, at t−0 bpi and blj are both regular bends. This

also implies

|R`(pi(t−0 ))| = |Rr(pi(t−0 ))|+ 2

⇒ (By Eq. 3.20 & 3.21) |R`(pi(t+0 ))| = |Rr(pi(t+0 ))|+ 1

and

|R`(lj(t−0 ))| = |Rr(lj(t−0 ))|+ 2

⇒ (By Eq. 3.22 & 3.23) |R`(lj(t+0 ))| = |Rr(lj(t+0 ))|+ 4

This means, by Lemma 2 and 3, that at t+0 bpi will be an ending h-bend and blj will be a
regular bend.

6. In any other case, we must have either R`(pi(t
−
0 ))+2 < Rr(pi(t

−
0 )) or R`(pi(t

−
0 )) > Rr(pi(t

−
0 ))+

2. We handle both of these situations separately.

AssumeR`(pi(t
−
0 ))+2 < Rr(pi(t

−
0 )). By Equations 3.18 and 3.19, this also meansR`(lj(t

−
0 ))+

2 < Rr(lj(t
−
0 )). Thus, by Lemma 2 and 3, at t−0 bpi and blj are both regular bends. This

also implies

|R`(pi(t−0 ))|+ 2 < |Rr(pi(t−0 ))|
⇒ (By Eq. 3.20 & 3.21) |R`(pi(t+0 ))|+ 3 < |Rr(pi(t+0 ))|

and

|R`(lj(t−0 ))|+ 2 < |Rr(lj(t−0 ))|
⇒ (By Eq. 3.22 & 3.23) |R`(lj(t+0 ))| < |Rr(lj(t+0 ))|

This means, by Lemma 2 and 3, that at t+0 bpi and blj will both still be regular bends.

Now assume R`(pi(t
−
0 )) > Rr(pi(t

−
0 )) + 2. By Equations 3.18 and 3.19, this also means

R`(lj(t
−
0 )) > Rr(lj(t

−
0 )) + 2. Thus, by Lemma 2 and 3, at t−0 bpi and blj are both regular

bends. This also implies
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|R`(pi(t−0 ))| > |Rr(pi(t−0 ))|+ 2

⇒ (By Eq. 3.20 & 3.21) |R`(pi(t+0 ))| > |Rr(pi(t+0 ))|+ 1

and

|R`(lj(t−0 ))| > |Rr(lj(t−0 ))|+ 2

⇒ (By Eq. 3.22 & 3.23) |R`(lj(t+0 ))| > |Rr(lj(t+0 ))|+ 4

This means, by Lemma 2 and 3, that at t+0 bpi and blj will both still be regular bends.
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