
 Eindhoven University of Technology

MASTER

Capacitated Facility Location Problem on Graphs of Bounded Treewidth

Hospel, Roel Alexander

Award date:
2021

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/d09dc3c7-91be-41c1-8e2c-06c51324775c

Capacitated Facility
Location Problem on
Graphs of Bounded

Treewidth

Master Thesis

Roel Alexander Hospel

Department of Mathematics and Computer Science
Algorithms Group

Supervisors:
dr. Bart MP Jansen
ir. Flip van der Valk
ir. Arjan van den Boogaart

Eindhoven University of Technology, November 2021

Abstract

This thesis looks at the problem of planning fiber-optics networks. The research was done in
collaboration with ThePeopleGroup, where the company is searching for alternative methods in
network calculations in order to deliver better results to their respective customers.

We consider a graph G = (V,E) of potential edges, and a set of users/clients U ⊆ V (G). We wish
to place facilities on the vertex set V (G), that can each satisfy up to capDP user-demand, and
to determine what edges E(G) to include such that there exists a path between the appropriate
facilities and users.
The cost of such a solution consists of three factors: the cost of constructing facilities, the cost of
digging trenches along included edges, and the cost of each cable between facility and user.
A cost-efficient solution balances the cost of digging and equipment cost, so that the total cost is
minimized.

The planning of fiber-optics networks is closely related to the Capacitated Facility Location Prob-
lem (CFLP), which we know to be NP-hard on general and planar graphs. There exist algorithms
to help with automating the planning of these networks.
One such algorithm, which has been developed by A. van den Boogaart[1] in collaboration with
ThePeopleGroup, involves reducing the solution space to a Steiner tree on the general graph, and
then solving CFLP on the resulting Steiner tree in polynomial time. This method may be fast,
but the step of selecting which edges to include in the Steiner tree is completely blind to the
subsequent cost of constructing facilities and placing cables. This means that we may end up with
sub-optimal results in terms of total cost.

The goal of this paper is to seek an alternative method that finds solutions that are more cost-
efficient than the algorithm based on Steiner trees. We approach this goal by widening our solution
space. Instead of merely considering a tree on the general graph, we can significantly increase cost
efficiency if we considered a tree-like graph that includes appropriate additional ”edges of interest”.

To this end we propose a fixed parameter tractable algorithm for CFLP on graphs of a bounded
treewidth k. We have implemented a variant of this algorithm to serve as a proof-of-concept that
we can build a solution on the tree decomposition of a graph.
The results of the algorithm in this paper are very promising. However, more work is still needed
to improve the implementation of the algorithm, so that it is fast enough to run on larger datasets.

ii Capacitated Facility Location Problem on Graphs of Bounded Treewidth

Contents

1 Introduction 1
1.1 Background and Motivation . 2

1.1.1 Problem Description . 2
1.1.2 Existing Approach using Steiner Trees . 3
1.1.3 New Approach on Graphs of Bounded Treewidth 5

1.2 Results . 5
1.3 Related Work . 6

1.3.1 Fiber-Optics Network Planning using Steiner Trees 6
1.3.2 Facility-Location Problem . 6
1.3.3 Minimal Steiner Tree Problem . 7

1.4 Organization . 8

2 Preliminaries 9
2.1 Graph Theory . 9

2.1.1 Basic Definitions . 9
2.1.2 Special Graphs . 9

2.2 Tree Decomposition and Treewidth . 10
2.2.1 Tree Decomposition . 10
2.2.2 Treewidth . 11

2.3 Facility Location Problems . 12
2.3.1 p-Median Problem . 12
2.3.2 Facility Location Problem . 13
2.3.3 Facility Location / Network Design Problem 14

2.4 Steiner Tree Problem . 16

3 Problem Description 17
3.1 Problem Definition . 17
3.2 Subproblem Definition . 18
3.3 Elaboration . 19

4 Algorithm Description 20
4.1 Description of the Algorithm . 20

4.1.1 Overall Strategy . 21
4.1.2 ”Introduce Edge”-Node . 22
4.1.3 ”Introduce Vertex”-Node . 29
4.1.4 ”Forget Vertex”-Node . 32
4.1.5 ”Join Sub-Trees”-Node . 33
4.1.6 ”Leaf”-Node . 37
4.1.7 Examples . 38

4.2 Trim Function . 43
4.2.1 Goal of the Trim Function . 43
4.2.2 Trim Function . 44

Capacitated Facility Location Problem on Graphs of Bounded Treewidth iii

CONTENTS

4.2.3 Solution Bound . 44
4.2.4 Correctness of the Trim Function . 45

4.3 Running Time . 46

5 Evaluation & Discussion 47
5.1 Implementation of the Algorithm . 47
5.2 Evaluation of Results . 49

5.2.1 Experimental Setup . 49
5.2.2 General Synthetic Example . 50
5.2.3 Specific Synthetic Examples . 52

5.3 Discussion of Algorithm . 56
5.3.1 Limitations of Algorithm . 57
5.3.2 Future Work . 58

6 Conclusion 59

Appendix 62

A Linear Program 62
A.1 Mixed-Integer Linear Programming Definition . 62

A.1.1 Shortest Path Problem . 62
A.1.2 Shortest Path Between Multiple Sources and Sinks 63
A.1.3 Capacitated Facility-Location Problem . 65
A.1.4 Capacitated Facility-Location Problem with Distribution-Facilities 67
A.1.5 Comparison Between Edge Capacity-Based and Path-Based MILP 70

iv Capacitated Facility Location Problem on Graphs of Bounded Treewidth

Chapter 1

Introduction

The internet is a global system of interconnected computer networks. Many different mediums
can be used to connect up these computer networks with one another, ranging from phone-lines
to coaxial cables to cellular networks. Currently the most future-proof of these mediums is the
fiber-optic cable, which allows increased speeds and bandwidth compared to its contemporaries.

With the demand for speed and bandwidth rising, internet service providers are rolling out fiber-
optic networks to increasingly greater numbers of homes and businesses. Planning out these
networks in such a way that they balance out efficiency and cost can overall be a complicated and
time-consuming task.

Traditionally these networks would be drawn out by hand, by an engineer. However, since they
contain a lot of individual client/user-connections, this means that calculating such a network en-
tirely by hand is rather slow and inefficient. Preferably we’d like to use an algorithm to calculate
much of the network, so that the engineer can focus his attention on the more critical aspects of
planning out such a network.

ThePeopleGroup is a company that is involved in planning underground infrastructure, and has
previously developed algorithms using Steiner trees to aid in the calculation of these fiber-optic
networks. While these algorithms are great at quickly calculating decently efficient networks, there
still exist some common inefficiencies which need to be manually evaluated and fixed afterwards
by the engineer.

The goal of this thesis is to explore alternative methods that could be used for calculating these
fiber-optic networks, such that these common inefficiencies would occur less often.

Capacitated Facility Location Problem on Graphs of Bounded Treewidth 1

CHAPTER 1. INTRODUCTION

1.1 Background and Motivation

This section we will give a basic overview of the problem we are aiming to solve, followed by a
basic description of the pre-existing approach that is currently in use by ThePeopleGroup, as well
as an explanation why this approach does not necessarily find optimal solutions. We then describe
the motivation behind our alternative approach.

1.1.1 Problem Description

Fibre-optics networks consist of several different hierarchical levels, that need to be connected up
with one another:

• Fibre Termination Units (FTU):
FTUs are the places where a fibre-connection enters the building of a user/client (e.g. indi-
vidual homes and offices).

• Passive Distribution Points (DP):
DPs are the local, passive distribution points that serve a number of FTUs within a specific
neighbourhood. Typically these can serve up to 48 FTUs.

• Active Area Points of Presence (AP):
APs are larger, active distribution point that serve several DPs within an area. APs are
responsible for routing packets. Typically these are capable of serving 40 fully used DPs

• City Points of Presence (CP):
CPs are the highest level in the network hierarchy, and serve as the connection between APs
and the wider internet ”backbone”.

When planning out a fiber-optics network, typically we already know the location and demand of
users/clients, and therefore also their respective FTUs. Our goal is to plan out the location for
the DPs, APs (and potentially CPs), as well as the routes that the cables take to connect these
components.

Each constructed DP, AP and CP has a construction cost associated to it. The cost of connecting
these components with one another is split between the cost of digging trenches and the cost of
each individual cable that is run through these edges.
When planning out this network we wish to meet all required capacities, while minimizing the
total cost of construction as much as possible.

The problem of planning out fiber-optics networks is part of the family of facility-location prob-
lems. More specifically, it is a version of the Capacitated Facility Location Problem (CFLP),
which we know to be NP-hard on regular as well as on planar graphs. This means that we cannot
realistically solve the problem by comparing all potential solutions, and need to be more deliberate
in our approach.

For the scope of this thesis we will focus on the low-level infrastructure, meaning that we limit
ourselves to the placement of DPs and FTUs (facilities and users/clients). The higher-level infra-
structure of placing APs and CPs falls outside of the scope of this thesis.

2 Capacitated Facility Location Problem on Graphs of Bounded Treewidth

CHAPTER 1. INTRODUCTION

1.1.2 Existing Approach using Steiner Trees

The paper ”Efficient Computation of Fiber-Optic Networks” by A. van den Boogaart [1] describes
the algorithm that is currently used by ThePeopleGroup to efficiently calculate such fiber-optics
networks. It relies on the property that the facility location problem can be solved in polynomial
time if the underlying graph is a tree.

This approach first converts a geographical map to a simpler model graph, where each edge de-
notes a potential location to dig and place cables.

Calculating the fiber-optics network happens in two main steps:

(1) First, we approximate an optimal Steiner minimal tree on the general graph, with the set of
users/clients as terminals. This step must be approximated, since the Steiner tree problem
is also an NP-hard problem.

(2) Then we solve the facility location problem on the Steiner tree.
Any edges on the general graph that are not part of the Steiner tree are ignored.

Both of these steps can be solved in polynomial time, leading to an efficient algorithm that is able
to generate a decent solution to the facility location problem in O(k · n2) time, where k denotes
the maximum facility capacity.

Figure 1.1: Example network generated by the current approach using Steiner trees

Shortcomings of this Approach

While the solution to the facility location problem that is calculated on the Steiner tree is optimal
for that Steiner tree, there is no guarantee that that solution is also optimal on the underlying
overall graph.

The step in which the Steiner tree is calculated is blind to any decisions that will be made by
subsequent facility-location step. The only metric that can be used to determine the quality of
the Steiner tree is the cost of digging trenches. The cost of placing facilities, and the cost of laying
cables between facility and user/client is ignored.

Capacitated Facility Location Problem on Graphs of Bounded Treewidth 3

CHAPTER 1. INTRODUCTION

The facility location solver on trees can only consider edges that are part of that tree, and cannot
consider edges that were not included in the Steiner tree, even if they may lead to more optimal
solutions when accounting for cable- and facility-cost

There are a couple of common culprits for sub-optimal solutions, that stem from this inability to
deviate from the pre-determined underlying Steiner tree.

Figure 1.2: Example of a sub-optimal solution using Steiner trees

Figure 1.2 depicts an example of the ”inefficient crossing”-scenario, where the Steiner tree has
pre-determined a cheap place to cross the street, which is optimal if you account for digging costs,
but might not be optimal if you also need to account for the cost of placing facilities and cables.

In this example moving the crossing to the closer side of the street, from the perspective of the
facility, means that we save on cable-length by the entire length of the street for each house on
the opposite side of the street.

Inefficient Cover of Distribution Points

Figure 1.3: Example of a sub-optimal solution using Steiner trees

Figure 1.3 depicts an example of the ”inefficient facility mapping”-scenario, where some facilities
are not fully utilized to their maximum capacity. This happens because DP coverage areas are
not allowed to share edges.

The existing approach requires the graph on which the facility location problem is solved to be
a tree. Introducing new potential edges to be included as considerations would introduce cycles
into the tree, which breaks the properties of a tree. It would be very useful if we could somehow
efficiently solve the facility location problem on certain graphs that are not trees, but are somewhat
tree-like.

4 Capacitated Facility Location Problem on Graphs of Bounded Treewidth

CHAPTER 1. INTRODUCTION

1.1.3 New Approach on Graphs of Bounded Treewidth

For any graph we can make a tree decomposition, which allows us to solve problems such as the
facility location problem on the tree instead of on the underlying graph. However, the efficiency
of the tree decomposition algorithm is dependent on the size of the biggest bag in that tree de-
composition.

Treewidth is a parameter that helps indicate how tree-like any given graph is. It is commonly
used to determine the parameterised complexity of graph algorithms. For a graph of treewidth k
there must also exist a tree decomposition with a maximum bag size k + 1

This thesis looks into the feasibility of using the concepts of treewidth and tree decomposition to
help solve the CFLP problem in polynomial time, on a pre-determined tree-like graph that may
be based on the Steiner tree, but includes additional edges of interest.

1.2 Results

In this thesis we present a fixed parameter tractable algorithm to optimally solve CFLP on the
tree decomposition of a graph with a given treewidth k. If we assume that the treewidth, and
the maximum facility capacity are bounded by a given value, then this algorithm able to find an
optimal solution in polynomial time.

Given specific circumstances, our tree decomposition based approach is able to find solutions that
are significantly more optimal than the solutions found by the Steiner tree based approach. It
is however important to note that these improvements are largely dependent on the additional
potential edges that we choose to include in the graph of bounded treewidth.

The worst-case running time of the algorithm can be defined as:

O

(
|V (T)|O(1) ·

(
Bk+1 · (2 · capDP + 1)

k+1
)2

· (k + 1)
2

)
Here capDP denotes the maximum capacity of any facility, and k denotes the treewidth of the
input graph. If we assume that both capDP and k are bounded, then the running time is entirely
dependent on the size of the decomposition tree.

Capacitated Facility Location Problem on Graphs of Bounded Treewidth 5

CHAPTER 1. INTRODUCTION

1.3 Related Work

This section shortly discusses some relevant work in the area of fiber-optics network planning. In
subsection 1.3.1 we provide further details on the paper that this thesis is a continuation on. In
subsection 1.3.2 we reference some relevant work on the more generalized facility location problem.
And in subsection 1.3.3 we list some more relevant work on the area of calculating minimal Steiner
trees.

1.3.1 Fiber-Optics Network Planning using Steiner Trees

This thesis is a continuation on the paper ”Efficient Computation of Fiber-Optic Networks” by A.
van den Boogaart [1]. The paper describes an approach to generate a fiber-optics networks from
publicly available geographic data, using Steiner trees to speed up computation.

Using the available geographic data, a graph representation of potential edges is generated. The
fiber-optics network is then generated, on this graph representation, in two main steps:

(1) Approximate a Steiner minimal tree, with the set of users/clients as terminals.

(2) Calculate an optimal fiber-optics network on the Steiner minimal tree.

The paper already discusses some issues with this last step of the fiber-optics network calculation.
While the fiber-optics network that is calculated on the Steiner minimal tree is optimal for that
Steiner minimal tree, it may lead to suboptimal solutions on the general graph. This is because
when calculating the Steiner minimal tree, certain edges that might lead to an optimal solution
for the fiber-optics network on the general graph get discarded prematurely.

In this thesis we use tree decomposition to include some of these edges that would otherwise have
been discarded, leaving us with a potentially more optimal solution.

1.3.2 Facility-Location Problem

Planning an optimal fiber-optics network, in which we wish to optimally connect a set of users/cli-
ents to a set of (potential) distribution points/facilities, has a close similarity to the more general
family of facility-location problems.

There exist several versions of the facility location problem, each of which aim to solve slightly
different but ultimately similar problems. Some relevant ones are:

• The p-Median problem is at the core of the facility location problem family. It was first
described by S.L. Hakimi in 1964-1965 [2][3], and later shown to be NP-hard on general and
planar graphs by O. Kariv and S.L. Hakimi in 1979 [4]

• The Facility-Location Problems (FLP) are somewhat extended versions of the p-Median
problem, for which there exists both an uncapacitated version (UFLP) and a capacitated
version (CFLP). FLP was first described and shown to be NP-hard on general graphs, by
G. Cornuejols, G.L. Nemhauser, and L.A. Wolsey in 1983 [5].

• The Facility Location / Network Design Problems (FLNDP) are somewhat extended versions
of FLP, for which there exists both an uncapacitated version (UFLNDP) and a capacitated
version (CFLNDP). FLNDP was first described and shown to be NP-hard by S. Melkote
and M.S. Daskin in 1993, 2001 [6][7]

Each of these versions of the problem have been shortly elaborated in chapter 2, Preliminaries.

6 Capacitated Facility Location Problem on Graphs of Bounded Treewidth

CHAPTER 1. INTRODUCTION

Algorithms on General Graphs

The family of facility location problems is known to be NP-hard on general graphs. This means
that, if we assume that P 6= NP, there does not exist any algorithm capable of solving the facility
location problem on general graphs in polynomial time.

A 2006 bibliography by J. Reese [8] summarizes the literature on solution methods for problems
in facility location problem family

Approximation Algorithms A 1997 paper by D.B. Shmoys, É. Tardos, and K. Aardal [9]
details a 7-approximation algorithm to the facility location problem. This was later improved to
a 5-approximation algorithm in 2004 by R. Levi, D.B. Shmoys, and C. Swamy [10].

Algorithms on Trees

Even though the facility location problem is known to be NP-hard on general graphs, it is possible
to give polynomial time algorithms if we can assume certain properties to the underlying graph.

A.J. Goldman proved in 1971 [11] that the p-Median problem on trees is solveable in polynomial
time. In 1996, A. Tamir provided an O(pn2) algorithm to the p-Median problem on trees [12].
The approach proposed by A. van den Boogaart [1] uses this principle to efficiently calculate an
fiber-optics network on the pre-calculated Steiner tree.

Algorithms on Graphs of Bounded Treewidth

There has been some prior work on algorithms that aim to solve problems in the facility location
family, given a graph of bounded treewidth. In 1989 D. Skorin-Kapov [13] described an O(nk+2)
algorithm for solving the Single Facility Location Problem on an n-vertex partial k-tree.

1.3.3 Minimal Steiner Tree Problem

The Minimal Steiner Tree problem was described by E.N. Gilbert and H.O. Pollak in 1968 [14],
and is among the original set of NP-hard problems are described by R.M. Karp in 1972 [15]. In
1977 it was show by M.R. Garey, R.L. Graham, and D.S. Johnson that [16] that the Minimal
Steiner Tree problem is also NP-hard on planar graphs.

The Minimal Steiner Tree problem is shortly elaborated in chapter 2, Preliminaries.

Algorithms on General Graphs

The minimal Steiner tree problem is known to be NP-hard or general graphs. This means that, if
we assume that P 6= NP, there does not exist any algorithm capable of solving the facility location
problem on general graphs in polynomial time.

Exact Algorithms: For a long time, the fastest exact algorithm for the minimal Steiner tree
problem was the algorithm proposed in 1971 by S.E. Dreyfus and R.A. Wagner [17], slightly im-
proved upon by R.E. Erickson, C.L. Monma, and A.F. Veinott Jr. [18]
In 2006 a faster exact algorithm was proposed by D. Mölle, S. Richter, and P. Rossmanith [19].

Approximation Algorithms: L. Berman, L. Kou, and G. Markowsky proposed a fast 2-
approximation to the minimal Steiner tree problem in 1981. [20]. It was proven in 2008 by M.
Chleb́ıka and J. Chleb́ıková [21] that an approximation better than a 96

95 -approximation is NP-hard.

The current best approximation to the minimal Steiner tree problem is a 1.39-approximation as
described by J. Byrka, F. Grandoni, T. Rothvoss, and L. Sanità in 2010 [22].

Capacitated Facility Location Problem on Graphs of Bounded Treewidth 7

CHAPTER 1. INTRODUCTION

Algorithms on Graphs of Bounded Treewidth

Even though the minimal Steiner tree problem is known to be NP-hard on general graphs, it is
possible to produce polynomial time algorithms if we can assume certain properties to the under-
lying graph.

In 2012 it was shown by M. Chimani, P. Mutzel, and B. Zey [23][24] that the minimal Steiner tree
problem can be calculated in polynomial time on graphs of bounded treewidth.

1.4 Organization

The remainder of this thesis document is structured as follows:

In Chapter 2 we give a basic overview of some assumed preliminary knowledge. Specifically, we
touch on the subjects of graph theory and tree decomposition, as well as the definitions of the
facility location problem and the Steiner minimal tree problem.

In Chapter 3 we give a more exact definition of the problem that we are trying to solve, and how
this translates to a sub-problem definition that we can use to build up a solution to the overall
problem.

In Chapter 4 we describe in detail how the algorithm builds up towards an optimal solution along
each node on a decomposition tree. We also describe how we can use a trim function to speed up
the computation of the optimal solution by forgetting about partial solutions that are guaranteed
to not be part of any optimal solution.

In Chapter 5 we evaluate the solutions that our algorithm provides on some synthetic as well as
some realistic examples, and compare these to the solutions that are provided by the pre-existing
approach using Steiner Trees [1]. We also discuss these findings and provide some angles for future
work.
In Chapter 6 we summarize the findings of this paper.

As part of preliminary research for this paper, we have also looked into the feasibility of converting
the problem to a Mixed Integer Linear Program, and implementing this in a MILP-solver such as
SCIP. Sadly, this approach did not bear fruit, and we decided to shelve it and instead focus on
the tree decomposition approach.
For the sake of completeness, we have included these MILP definitions as part of Appendix A

8 Capacitated Facility Location Problem on Graphs of Bounded Treewidth

Chapter 2

Preliminaries

2.1 Graph Theory

2.1.1 Basic Definitions

An undirected graph G consists of a set of vertices V (G) and a set of edges E(G), where each
edge e ∈ E(G) is an unordered pair of vertices. An edge between u and v will be denoted as (u, v)
and is equivalent to the edge (v, u), since the graph is undirected.

A path of length k between two vertices u, v ∈ V (G) is a sequence of vertices x = v0, v1, . . . , vk = y
such that (vi, vi+1) ∈ E(G) for all 0 ≤ i < k. A path is simple if all its vertices are distinct.
A graph is connected if there exists a path between any pair of vertices.

A cycle is a sequence of vertices v0, v1, . . . , vk such that v0 = vk and such that (vi, vi+1) ∈ E(G)
for all 0 ≤ i < k. A cycle is simple if all vertices are distinct except for v0 = vk.
A graph is acyclic if it does not contain a simple cycle.

For a vertex set S of a graph G, the sub-graph of G induced by S, denoted G[S], is the graph on
vertex set S and edge set {(u, v) ∈ E(G) | u ∈ S ∧ v ∈ S}.
A graph H is a sub-graph of graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G).

2.1.2 Special Graphs

A tree is a connected acyclic graph.
A rooted tree is a tree in which a designated vertex has been chosen as the root. The choice of
the root uniquely determines parent/child relations in the tree in the natural way.

Given a set of terminal vertices T ⊆ V (G) in a graph G, a Steiner tree on terminal set T is a
sub-graph S of G such that S is a tree that contains all vertices of S.

A planar graph is a graph that can be embedded in the plane without crossing edges.
This means that there must exist a 2D representation of the graph such that edges only intersect
at their respective vertices. This 2D representation is called an ”embedding”. This concept is
particularly useful in geographical maps, or problems related to geographical maps.

An outer-planar graph is a stricter version of the planar graph, for which there must exist
an embedding such that each vertex is part of the outer face. In other words, there must exist
an embedding such that each vertex is reachable from the outside, without crossing over any edges.

Capacitated Facility Location Problem on Graphs of Bounded Treewidth 9

CHAPTER 2. PRELIMINARIES

2.2 Tree Decomposition and Treewidth

2.2.1 Tree Decomposition

The concept of a tree decomposition is defined as follows (Parameterized Algorithms, p.160 [25]):

A tree decomposition of a graph G is a pair T = (T, {Xt}t∈V (T)), where T denotes a rooted tree
such that every node t ∈ T is assigned a vertex subset Xt ⊆ V (G), referred to as a bag, such that
the following three conditions hold:

(T1)
⋃
t∈V (T)Xt = V (G).

In other words, for every vertex v ∈ V (G) there exists at least one node t ∈ T such that
v ∈ Xt.

(T2) For every edge (u, v) ∈ E(G), there exists at least one node t ∈ T such that u, v ∈ Xt.

(T3) For every vertex v ∈ V (G) the set Tv = {t ∈ V (T) : v ∈ Xt} induces a connected sub-graph
of T .
In other words, the set of nodes whose corresponding bags contain v, induces a connected
sub-graph of T .

A tree decomposition T is defined to be a ”nice” tree decomposition (with ”introduce edge”-nodes)
if and only if the following conditions are satisfied (Parameterized Algorithms, p.161 & p.168 [25]):

• Xr = ∅ and Xl = ∅ for the root r of tree T , and for every leaf l of tree T .
In other words, all leaves as well as the root contain empty bags.

• Every node t ∈ T is one of the following five types of nodes:

– ”Introduce edge”-node:
A node t ∈ T for which hold that:

- node t is labelled with an edge (u, v) ∈ E(G) such that u, v ∈ Xt, and

- node t has exactly one child t′, such that Xt = Xt′ .

We say that edge (u, v) is introduced at node t.

– ”Introduce vertex”-node:
A node t ∈ T with exactly one child t′, such that Xt = Xt′ ∪ {v} for some vertex
v 6∈ Xt′ . We say that vertex v is introduced at node t.

– ”Forget vertex”-node:
A node t ∈ T with exactly one child t′, such that Xt = Xt′/{w} for some vertex
w ∈ Xt′ . We say that vertex w is forgotten at node t.

– ”Join sub-trees”-node:
A node t ∈ T with exactly two children t1, t2, such that Xt = Xt1 = Xt2

We say that the sub-trees rooted at nodes t1, t2 are joined at node t.

– ”Leaf”-node:
A node t ∈ T with exactly zero children, such that Xt = ∅

• For each edge e ∈ E(G) there exists exactly one node t ∈ T such that e is introduced at t

10 Capacitated Facility Location Problem on Graphs of Bounded Treewidth

CHAPTER 2. PRELIMINARIES

Figure 2.1: Vertex sets At, Xt, Bt and sub-graph Gt at some node t ∈ T

We define the tree Tt ⊆ T to be the sub-tree of T rooted at node t ∈ T .
For each node t ∈ T we can derive two additional vertex sets At, Bt, besides the given vertex set
Xt, which are defined as follows (see figure 4.17):

• At =
⋃
t′∈V (Tt)

(
Xt′
)
\Xt

In other words, the vertex set At contains all vertices that have been introduced in the
sub-tree Tt rooted at node t, excluding the vertices in the vertex set Xt

• Bt = V (G)−
⋃
t′∈V (Tt)

(
Xt′
)

In other words, the vertex set Bt contains all vertices that have not been introduced at any
point in the sub-tree Tt rooted at node t.

With each node t ∈ T of the tree decomposition we associate a sub-graph Gt ⊆ G defined as
follows (Parameterized Algorithms, p.168 [25]):

Gt =
(
Vt = Xt ∪At;Et = {e : e is introduced in the sub-tree rooted at t}

)
The example as given in figure 4.17 shows the edges in E(Gt), for some node t ∈ T , as bold.
In this example, at node t, the edge (v2, v3) has been introduced in the sub-tree rooted at t, while
the edge (v1, v3) has not.

2.2.2 Treewidth

The treewidth of a graph is a fundamental tool used in various graph algorithms. It is a given
that for any graph of a certain treewidth k, there must exist a tree decomposition such that the
maximum bag size Xt for any node t ∈ T is k + 1. [25]

For any graph for which there exists a tree decomposition with a maximum bag size k + 1, there
also exists a ”nice” tree decomposition with a maximum bag size k + 1.

There is no guarantee on the treewidth of a general graph or a planar graph. However, if the
graph is considered to be outer-planar, then the treewidth k of that graph is at most 2. [26]

Capacitated Facility Location Problem on Graphs of Bounded Treewidth 11

CHAPTER 2. PRELIMINARIES

2.3 Facility Location Problems

The family of facility location problems refers to a collection of optimization problems concerned
with the optimal placement of facilities to satisfy demand of users/clients. What exactly defines
such an optimal placement, and other constraints that may be in place, is largely defined by the
specific flavour of facility location problem we are trying to solve.

Some relevant variants of the facility location problem are, but are not limited to:

• The p-Median Problem

• The Facility Location Problem (FLP), which can be split into:

– Uncapacitated Facility Location Problem (UFLP)

– Capacitated Facility Location Problem (CFLP)

• The Facility Location / Network Design Problem (FLNDP), which can be split into:

– Uncapacitated Facility Location / Network Design Problem (UFLNDP)

– Capacitated Facility Location / Network Design Problem (CFLNDP)

This section provides a short overview of each of these variants.

2.3.1 p-Median Problem

The p-Median problem aims to find a minimum cost solution, such that all user/client-demand
has been satisfied by building exactly p facilities. It can be considered the core problem of the
family of facility location problems.

Input: We consider two sets:

F The set of potential facilities that can be constructed
U The set of users/clients for which we need to satisfy the demand

For each user u ∈ U we know a value d(u) denoting the total demand that needs to be satisfied
to that user. For each pair f ∈ F, u ∈ U we know the cost cost(f, u) of serving exactly one unit of
demand from facility f to user/client u.

Goal: Find a minimum-cost solution, such that the demand d(u) of each user u ∈ U has been
satisfied, and exactly p facilities have been built.

Minimize:

∑
f∈F

∑
u∈U

(d(u) · cost(f, u) · xf,u)

Subject to:
∑
f∈F

(xf,u) = 1 For each user u ∈ U .∑
f∈F

(yf) = p

xf,u − yf ≤ 0 For each user u ∈ U , each facility f ∈ F .
xf,u ≥ 0 For each user u ∈ U , each facility f ∈ F .
xf,u ∈ {0, 1} For each user u ∈ U , each facility f ∈ F .
yf ∈ {0, 1} For each facility f ∈ F .

12 Capacitated Facility Location Problem on Graphs of Bounded Treewidth

CHAPTER 2. PRELIMINARIES

Decision Variables: We consider the following decision variables:

xf,u Denotes whether user u gets supplied by facility f
yf Denotes whether facility f gets constructed

It is important to note that in the p-Median variant of the facility location problem, facilities do
not have a cost of construction associated to them, nor do they have a maximum capacity.

2.3.2 Facility Location Problem

The Facility Location Problem (FLP) can be considered an extension on the p-Median problem.
Each potential facility that we can construct now has a cost associated to it.

There exist two variants of FLP:

• Uncapacitated Facility Location Problem (UFLP)

• Capacitated Facility Location Problem (CFLP)

Both of these problems are fairly similar. Their main difference is whether a facility can exceed a
set maximum capacity.

Input: We consider two sets:

F The set of potential facilities that can be constructed
U The set of users/clients for which we need to satisfy the demand

For each facility f ∈ F we know the cost costfacility(f) of constructing that facility. For each pair
f ∈ F, u ∈ U we know the cost costserves(f, u) of having the demand of user u serviced by facility f .

In the CFLP variant of the problem we also know a demand d(u) for each user u ∈ U , and a
maximum capacity capfacility(f) for each facility f ∈ F .

Uncapacitated Facility Location Problem

Goal: Find a minimum-cost solution, such that the each user u ∈ U is served by exactly one
facility f ∈ F .

Minimize:

∑
f∈F

(costfacility(f) · yf) +
∑
f∈F

∑
u∈U

(costserves(f, u) · xf,u)

Subject to:
∑
f∈F

(xf,u) = 1 For each user u ∈ U .

xf,u − yf ≤ 0 For each user u ∈ U , each facility f ∈ F .
xf,u ∈ {0, 1} For each user u ∈ U , each facility f ∈ F .
yf ∈ {0, 1} For each facility f ∈ F .

Decision Variables: We consider the following decision variables:

xf,u Denotes whether user u is serviced by facility f
yf Denotes whether facility f gets constructed

Capacitated Facility Location Problem on Graphs of Bounded Treewidth 13

CHAPTER 2. PRELIMINARIES

Capacitated Facility Location Problem

Goal: Find a minimum-cost solution, such that the demand of each user u ∈ U has been satisfied,
and the maximum capacity of each facility f ∈ F is not exceeded.

Minimize:

∑
f∈F

(costfacility(f) · yf) +
∑
f∈F

∑
u∈U

(costserves(f, u) · xf,u)

Subject to:
∑
f∈F

(xf,u) = 1 For each user u ∈ U .∑
u∈U

(d(u) · xf,u) ≤ capfacility(f) · yf For each facility f ∈ F .

xf,u ∈ {0, 1} For each user u ∈ U , each facility f ∈ F .
yf ∈ {0, 1} For each facility f ∈ F .

Decision Variables: We consider the following decision variables:

xf,u Denotes whether user u is serviced by facility f
yf Denotes whether facility f gets constructed

It is important to note that in the FLP variant of the facility location problem, the cost of satisfying
demand to one user is entirely independent to the cost of satisfying demand to another user.

2.3.3 Facility Location / Network Design Problem

The Facility Location / Network Design Problem (FLNDP) can be considered an extension of the
Facility Location Problem (FLP). Instead of assuming that a connection between a user and a po-
tential facility is entirely independent from other such connections, these connections are allowed
to share edges in an underlying network of potential edges.

There exist two variants of FLNDP:

• Uncapacitated Facility Location / Network Design Problem (UFLNDP)

• Capacitated Facility Location / Network Design Problem (CFLNDP)

Both of these problems are fairly similar. The main difference is whether a facility can exceed a
set maximum capacity.

Input: We consider a graph G = (V,E).

For each vertex v ∈ V (G) we know the cost costfacility(v) of constructing a facility on that vertex.
We also know the demand d(v) of any user that might be on that vertex v ∈ V

For each edge (u, v) ∈ E(G) we know the cost costdig(u, v) of including that edge in any path from
a facility to a user, as well as the cost costunit(u, v) of supplying a single unit of demand along
that edge.

In the CFLP variant of the problem we also know a maximum capacity capfacility(v) for each vertex
v ∈ V (G).

14 Capacitated Facility Location Problem on Graphs of Bounded Treewidth

CHAPTER 2. PRELIMINARIES

Uncapacitated Facility Location / Network Design Problem

Goal: Find a minimum-cost set of edges and facilities on G, such that the demand d(u) of each
user u ∈ U has been satisfied.[6]

Minimize:

∑
(u,v)∈E(G)

(costedge(u, v) · xu,v + costunit(u, v) · (yu,v + yv,u))

+
∑

v∈V (G)

(costfacility(v) · zv)

Subject to:
∑

v∈V (G)

(y(v,u)) + d(u) =
∑

v∈V (G)

(y(u,v) + wu) For each vertex u ∈ V (G).

wu ≤
∑

v∈V (G)

(d(v)) · zu For each vertex u ∈ V (G).

y(u,v) ≤
∑

v∈V (G)

(d(v)) · x(u,v) For each edge (u, v) ∈ E(G).

y(v,u) ≤
∑

v∈V (G)

(d(v)) · x(u,v) For each edge (u, v) ∈ E(G).

y(u,v), y(v,u) ≥ 0 For each edge (u, v) ∈ E(G).
y(u,v), y(v,u) ∈ Z For each edge (u, v) ∈ E(G).
x(u,v) ∈ {0, 1} For each edge (u, v) ∈ E(G).
wu ≥ 0 For each vertex u ∈ V (G).
wu ∈ Z For each vertex u ∈ V (G).
zu ∈ {0, 1} For each vertex u ∈ V (G).

Decision Variables: We consider the following decision variables:

wu Denotes the number of units supplied by the facility on vertex u
x(u,v) Denotes whether the edge (u, v) is included in the solution
y(u,v) Denotes the number of units moved from vertex u to vertex v
zu Denotes whether the facility at vertex u is included in the solution.

Capacitated Facility Location Problem on Graphs of Bounded Treewidth 15

CHAPTER 2. PRELIMINARIES

Capacitated Facility Location / Network Design Problem

Goal: Find a minimum-cost set of edges and facilities on G, such that the demand d(u) of each
user u ∈ U has been satisfied, without exceeding the maximum capacity of any facility.[7]

Minimize:

∑
(u,v)∈E(G)

(costedge(u, v) · xu,v + costunit(u, v) · (yu,v + yv,u))

+
∑

v∈V (G)

(costfacility(v) · zv)

Subject to:
∑

v∈V (G)

(y(v,u)) + d(u) =
∑

v∈V (G)

(y(u,v) + w(u)) For each vertex u ∈ V (G).

w(u) ≤ capfacility(u) · zu For each vertex u ∈ V (G).

y(u,v) ≤
∑

v∈V (G)

(d(v)) · x(u,v) For each edge (u, v) ∈ E(G).

y(v,u) ≤
∑

v∈V (G)

(d(v)) · x(u,v) For each edge (u, v) ∈ E(G).

y(u,v), y(v,u) ≥ 0 For each edge (u, v) ∈ E(G).
y(u,v), y(v,u) ∈ Z For each edge (u, v) ∈ E(G).
x(u,v) ∈ {0, 1} For each edge (u, v) ∈ E(G).
wu ≥ 0 For each vertex u ∈ V (G).
wu ∈ Z For each vertex u ∈ V (G).
zu ∈ {0, 1} For each vertex u ∈ V (G).

Decision Variables: We consider the following decision variables:

wu Denotes the number of units supplied by the facility on vertex u
x(u,v) Denotes whether the edge (u, v) is included in the solution
y(u,v) Denotes the number of units moved from vertex u to vertex v
zu Denotes whether the facility at vertex u is included in the solution.

2.4 Steiner Tree Problem

The family of Steiner Tree Problem (STP) refers to a collection of optimization problems con-
cerned with optimally connecting a set of terminals. In this thesis we are mainly concerned with
the Steiner Minimal Tree problem on graphs, where we wish to optimally connect a set of terminals
along the edges of the graph.

This problem can be defined as follows:

Input: We consider a graph G such that every edge (u, v) ∈ E(G) has a positive weight
weight(u, v) associated to it. We also consider a set of terminals T ⊆ V (G)

Goal: Find a minimum-weight connected sub-graph S ⊆ G, such that sub-graph S contains all
vertices from T .

16 Capacitated Facility Location Problem on Graphs of Bounded Treewidth

Chapter 3

Problem Description

In this chapter we will clearly define what the input to our algorithm will look like, and what
constitutes a valid solution to CFLP. Furthermore, we define what constitutes a partial solution
at any node in the tree decomposition.

3.1 Problem Definition

Input: An undirected connected graph G = (V,E) with a positive digging cost costdig(e) and
a cable cost costcable(e) for each edge e ∈ E(G). A subset of vertices U ⊆ V (G) denoting the
locations of users/clients on the graph G, with a positive demand d(u) for each user u ∈ U .
Some cost value costDP and maximum capacity capDP for any constructed facility.

Feasible Solution: Any valid solution l has the following structure l = (F, µ,Φ,Π), where:

• F denotes the set of all facilities to be constructed
Each facility f ∈ F is associated to some vertex v(f) ∈ V (G)

• µ : U → F denotes a mapping, indicating the facility f ∈ F each user u ∈ U is served by.
µ−1 is the inverse mapping, defined as µ−1(f) = {u ∈ U |µ(u) = f}, indicating the set of
users u ∈ U that each facility f ∈ F serves.
For each facility f ∈ F it holds that

∑
u∈µ−1(f)(d(u)) ≤ capacityDP.

• Φ = {Ψf}f∈F denotes the set ”facility trees” associated to their respective facilities.
Each facility tree Ψf ∈ Φ is a Steiner tree such that Ψf ⊆ G, with respective terminals
v(f) ∪ µ−1(f).
For any two facilities f, f ′ ∈ F such that f 6= f ′, it holds that E(Ψf) ∩E(Ψ′f) = ∅ and that
V (Ψf) ∩ V (Ψ′f) = ∅. In other words, Ψf ,Ψf ′ are edge- and vertex-disjoint.

• Π = {πu}u∈U denotes the set of all constructed paths between users and facilities.
For each user u ∈ U , the respective path πu ∈ Π runs from u to v(µ(u)) in the tree Ψµ(u)

Cost Measure: The costl of solution l is the sum of the following three items:

• |F | · costDP Total cost of constructing all facilities

•
∑
f∈F

∑
e∈Ψf

(costdig(e)) Total cost of digging the trenches for all facility trees

•
∑
u∈U

∑
e∈πu

(costcable(e) · d(u)) Total cost of cables between facility and user

Constraint:
Users and facilities cannot share a vertex: U ∩ {v(f) | f ∈ F} = ∅

Capacitated Facility Location Problem on Graphs of Bounded Treewidth 17

CHAPTER 3. PROBLEM DESCRIPTION

3.2 Subproblem Definition

Input: An undirected connected graph G = (V,E) with a positive digging cost costdig(e) and
a cable cost costcable(e) for each edge e ∈ E(G). A subset of vertices U ⊆ V (G) denoting the
locations of users/clients on the graph G, with a positive demand d(u) for each user u ∈ U .
Some cost value costDP and maximum capacity capDP for any constructed facility.

Additionally we are given a sub-graph G′ ⊆ G, and a partition of V (G) into the vertex subsets
A ∪X ∪B, such that:

• V (G′) = A ∪X

• V (G) = A ∪X ∪B

• There exist no edges (a, b) ∈ E(G) such that a ∈ A and b ∈ B.

We also define the subset of users U ′ ⊆ U to be U ′ = U ∩ (V (G′))

Partial Solution: Any valid partial solution l′ has the following structure l′ = (p, F ′, µ,Φ,Π):

• p : X → Z denotes a mapping, indicating the ”leftover capacity”-value for each vertex x ∈ X.
For each vertex x ∈ X it holds that −capacityDP ≤ p(x) ≤ capacityDP.

– If p(x) < 0 for some x ∈ X, we say that vertex x has ”leftover demand”
FP = {x |x ∈ X ∧ p(x) < 0} denotes the set of ”pseudo-facilities”.

– If p(x) > 0 for some x ∈ X, we say that vertex x has ”leftover supply”
UP = {x |x ∈ X ∧ p(x) > 0} denotes the set of ”pseudo-users/clients”.
For each pseudo-user x ∈ UP define the satisfied demand as d(x) = abs(p(x))

• F ′ denotes the set of all facilities to be constructed.
Each facility f ∈ F ′ is associated to some vertex v(f) ∈ V (G′)

• µ : (U ′ ∪UP)→ (F ′ ∪FP) denotes a mapping of (pseudo-) facilities serving (pseudo-) users.
µ−1 is the inverse mapping, defined as µ−1(f) = {u ∈ (U ′ ∪ UP) |µ(u) = f}, indicating the
set of (pseudo-) users that each (pseudo-) facility serves.
For each (pseudo-) facility f ∈ (F ′ ∪ FP) it holds that

∑
u∈µ′−1(f)(d(u)) ≤ capacityDP.

• Φ = {Ψf}f∈(F ′∪FP) denotes the set ”facility trees” associated to their respective facilities.
Each facility tree Ψf ∈ Φ is a Steiner tree such that Ψf ⊆ G′, with respective terminals
v(f) ∪ µ−1(f).
For any two facilities f, f ′ ∈ (F ′ ∪ FP) such that f 6= f ′, it holds that E(Ψf) ∩ E(Ψ′f) = ∅
and that V (Ψf) ∩ V (Ψ′f) = ∅. In other words, Ψf ,Ψf ′ are edge- and vertex-disjoint.

• Π = {πu}u∈(U ′∪UP) denotes the set of all constructed paths between users and facilities.
For each user u ∈ (U ′ ∪ UP), the path πu ∈ Π runs from u to v(µ(u)) in the tree Ψµ(u)

Cost Measure: The costl′ of solution l′ is the sum of the following three items:

• |F ′| · costDP Total cost of constructing all facilities

•
∑
f∈(F ′∪FP)

∑
e∈Ψf

(costdig(e)) Total cost of digging the trenches for all facility trees

•
∑
u∈(U ′∪UP)

∑
e∈πu

(costcable(e) · d(u)) Total cost of cables between facility and user

Constraint:
Users and facilities cannot share a vertex: U ∩ {v(f) | f ∈ F} = ∅

18 Capacitated Facility Location Problem on Graphs of Bounded Treewidth

CHAPTER 3. PROBLEM DESCRIPTION

3.3 Elaboration

The graph G = (V,E) denotes a predetermined set of potential locations to place facilities and
cables. The edge set E(G) denotes the potential locations to dig trenches through which cables
can be run. The vertex set V (G) denotes the potential locations where facilities can be built.
The set U ⊆ V (G) denotes the places where users/clients need to be serviced. It is important to
note that in a valid solution, facilities and users/clients cannot occupy the same vertex. In other
words, it has to hold that U ∩ F = ∅.

Given a valid solution, the set F denotes the set of all facilities that need to be constructed.
Each facility f ∈ F serves the set of users u ∈ µ−1(f), and does so with cables that follow the
path πu, which follows the set of dug trenches denoted by Ψf , referred to as the ”facility tree”.
It is a requirement that any facility tree Ψf must be both edge- and vertex-disjoint from any other
facility tree Ψ′f .

In a partial solution we also keep track of a ”leftover capacity”, which we can use in subsequent
nodes to attach additional users/facilities. The best way to visualize this, is by imagining that we
leave unconnected cables in the trench, that we can later use to connect user and facilities that
we have not yet seen or been able to connect.
There are two types of leftover capacity:

• Pseudo-facilities (with leftover demand) are vertices that pass through capacity in a facility
tree, but do not yet have a constructed facility to provide them with that capacity.
They still require a facility to be hooked in some subsequent step.

• Pseudo-users (with leftover supply) are vertices that are provided capacity to pass through,
but do not yet have any users to provide this capacity to.
They still require users to be hooked in some subsequent step.

Capacitated Facility Location Problem on Graphs of Bounded Treewidth 19

Chapter 4

Algorithm Description

4.1 Description of the Algorithm

This section elaborates how the algorithm uses the concept of tree decomposition to solve the
problem as defined in the problem definition of section 3.1.

Figure 4.1: An example-graph G, and (part of) some ”nice” tree decomposition T of G

Input: We consider an undirected connected graph G = (V,E) and set of users U ⊆ V (G) as
described in the input definition of the problem definition in section 3.1.

Additionally we also consider some ”nice” tree decomposition of graph G:

T = (T, {Xt}t∈V (T))

20 Capacitated Facility Location Problem on Graphs of Bounded Treewidth

CHAPTER 4. ALGORITHM DESCRIPTION

For the sake of visualizing and clarifying the algorithm, we will occasionally reference the example
graph G with the corresponding tree decomposition T , as shown in figure 4.1. The set of users in
this example is defined as U = {u1, u2, u3, u6, u7}, depicted in blue, with d(u) = 1 for each user
u ∈ U .

Goal: Given the graph G and decomposition tree T as input, we wish to find some solution
lOPT that is both a feasible and an optimal solution. This means that there should not exist any
solution l′OPT such that l′OPT is valid and costlOPT

> costl′OPT
.

4.1.1 Overall Strategy

We aim to build up such an optimal solution lOPT by iterating over the tree decomposition T
recursively, in a bottom-up fashion.

At each node t ∈ T we consider the sub-graph Gt, as well as vertex subsets At, Xt, Bt, as defined
in the tree decomposition definition in section 2.2. These correspond to the sub-graph G′ and the
vertex subsets A,X,B as defined in the sub-problem definition in section 3.2.
This means that we can consider partial solution lt, at any node t ∈ T , to be defined as the
corresponding partial solution l′ in the sub-problem definition.

We define the set Lt, for each node t ∈ T , to be a set of valid partial solutions lt on sub-graph
Gt. It must hold that there exists at least one partial solution lt,OPT ∈ Lt a such that lt,OPT is
the partial solution to some optimal solution lOPT on graph G.
The set Lt is referred to as the set of candidate partial solutions on sub-graph Gt.

At each node t ∈ T we only know about the viability of solutions on the sub-graph Gt. We do not
yet know what partial solution will result in the definite optimal solution on graph G. This means
we need to keep track of (at least) all candidate partial solutions lt ∈ Lt which could potentially
result in being the partial solution to some optimal solution lOPT.

At each node t ∈ T we are able to build Lt by considering the set of solutions Lt′ for each node
t′ ∈ children(t). Since we iterate over the tree T recursively bottom-up, this set Lt′ has been
pre-calculated.

Because T is a ”nice” tree decomposition of G, any node t ∈ T can be either of five types of nodes:

• ”Introduce edge”-node

• ”Introduce vertex”-node

• ”Forget vertex”-node

• ”Join sub-trees”-node

• ”Leaf”-node

Sections 4.1.2 through 4.1.6 elaborate how Lt is calculated at each type of node t respectively.
Section 4.1.7 details how the example graph G in figure 4.1 gets solved

Capacitated Facility Location Problem on Graphs of Bounded Treewidth 21

CHAPTER 4. ALGORITHM DESCRIPTION

4.1.2 ”Introduce Edge”-Node

We consider some node t ∈ T such that:

- node t is labelled with an edge (u, v) ∈ E(G) such that u, v ∈ Xt, and

- node t has exactly one child t′, such that Xt = Xt′ .

We say that edge (u, v) is introduced at node t.

Figure 4.2: Four different scenarios when introducing an edge (u, v) ∈ E(G)

We build up the partial solution set Lt at node t, by updating the partial solution set Lt′ at node
t′ such that the resulting set Lt contains the set of candidate partial solutions for Gt.

Given some partial solution lt′ = (pt′ , F
′
t′ , µt′ ,Φt′ ,Πt′) such that lt′ ∈ Lt′ , there are four possible

scenarios (as illustrated in figure 4.2):

(a) There exist some pair of trees Ψf ,Ψf ′ ∈ Φt′ such that u ∈ V (Ψf), v ∈ V (Ψf ′) and f 6= f ′.
In other words, both vertices u and v are part of the current partial solution lt′ , and are
covered by two distinct facility trees.

(b) There exist some tree Ψf ∈ Φt′ such that u, v ∈ V (Ψf).
In other words, both vertices u and v are part of the current partial solution lt′ , and are
covered by the same facility tree.

(c) There exist some tree Ψf ∈ Φt′ such that u ∈ V (Ψf).
There exist no tree Ψf ′ ∈ Φt′ such that v ∈ V (Ψ′f) with f 6= f ′. (or vice versa)
In other words, either vertex either u or v are not part of the current partial solution lt′

(d) There exist no tree Ψf ∈ Φt′ such that u ∈ V (Ψf) or v ∈ V (Ψf).
In other words, either vertex u and v are both not part of the current partial solution lt′

For each partial solution lt′ ∈ Lt′ there are two possibilities for what to do with the edge (u, v)
introduced at node t:

• We don’t include the edge (u, v) in the solution lt′ , making a set Llt′ ,excl.

This is possible in all four scenarios (a), (b), (c) and (d)

• We do include the edge (u, v) in the solution lt′ , making a set Llt′ ,incl.

This is possible in scenario (a), if leftover supply and demand allow.
This is also possible in scenarios (c) and (d), if leftover supply or demand allows.

In scenario (b) including edge (u, v) is impossible. This is because including the edge (u, v)
would mean that the resulting facility tree Ψf contains a loop, and is therefore no longer a
Steiner tree.

22 Capacitated Facility Location Problem on Graphs of Bounded Treewidth

CHAPTER 4. ALGORITHM DESCRIPTION

Excluding Edge (u, v): Scenarios (a), (b), (c), (d)

Not including the edge (u, v) into a solution lt′ does not require much of an explanation:

Llt′ ,excl. ← {l′t}

Including Edge (u, v): Scenario (a)

When including the edge (u, v) into a solution lt′ of scenario (a), we aim to merge the facility trees
Ψµt′ (u),Ψµt′ (v) into a singular facility tree.

There are three sub-scenarios in scenario (a):

(a-1) Vertex u has a leftover capacity pt′(u) > 0, and vertex v has a leftover demand pt′(v) < 0
In other words, the vertex u is a pseudo-user/client with leftover supply, and the vertex v is
a pseudo-facility with leftover demand. (or vice versa)

(a-2) Vertex u has a leftover capacity pt′(u) < 0, and vertex v has a leftover demand pt′(v) < 0
In other words, both vertex u and v are a pseudo-facility with leftover demand.

(a-3) Neither of the above cases hold

In sub-scenarios (a-1) and (a-2) we look into merging the facility trees Ψµt′ (u),Ψµt′ (v) into a sin-
gular facility tree with a shared (pseudo-) facility.
In sub-scenario (a-3) there is no such reason to include the edge (u, v).

It is possible that the scenario (a-1) holds in reverse, meaning that pt′(v) > 0 and pt′(u) < 0.
For simplicity in explaining the algorithm we will only describe the scenario such that pt′(u) > 0
and pt′(v) < 0 holds. However, the reverse scenario is solved in the exact same way by simply
swapping the places of u and v

Sub-scenario (a-1)

It is given that the vertex u and v have the leftover capacities pt′(u) > 0 and pt′(v) < 0.
This means that the vertex u is a pseudo-user/client with leftover supply, and the vertex v is a
pseudo-facility with leftover demand. We wish to satisfy the existing leftover demand on v with
the existing leftover supply on u, by joining the respective facility trees.

We are only able to merge the respective facility trees Ψµt′ (u) and Ψµt(v) iff the following property
holds:

abs(pt′(u)) ≥ abs(pt′(v))

In other words, vertex v must have a leftover supply, vertex u much have a leftover demand, and
the leftover supply at v must be greater than or equal to the leftover demand at u. This is because
if supply cannot meet demand, it is impossible for the two trees to be merged by connecting (u, v),
given the current solution lt′ .

Interestingly, since for any vertex x it cannot hold that both 0 > p(x) > 0, merging facility trees
Ψµt′ (u),Ψµt′ (v) can always be done in at most one direction.

Capacitated Facility Location Problem on Graphs of Bounded Treewidth 23

CHAPTER 4. ALGORITHM DESCRIPTION

We do this by extending the facility tree Ψµt′ (u) as follows:

V (Ψµt(u)) = V (Ψµt′ (u)) ∪ V (Ψµt′ (v))

E(Ψµt(u)) = E(Ψµt′ (u)) ∪ E(Ψµt′ (v)) ∪ {(u, v)}

For moving the supply from vertex v to vertex u, we define an ”edge-capacity” c for the edge (u, v).
This indicates the number of cables that will be placed on edge (u, v). This capacity cannot exceed
the leftover supply at u, but must also at least satisfy demand at v.

Therefor all valid values c ∈ Z are defined as follows:

abs(pt′(v)) ≤ c ≤ abs(pt′(u))

Moving the pseudo-facility from vertex v to the facility serving u, means that for each user v′ ∈
µ−1
t′ (v), i.e. every (pseudo-) user v′ that is served by the same (pseudo-) facility on v, we redefine

the mapping in lt as follows:
µt(v

′)← µt′(u)

Consequently we can drop facility µt′(v) from F ′t and Φt.

We use edge-capacity c to calculate the leftover capacities pt(u), pt(v) as follows:

pt(u)← pt′(u)− c pt(v)← c− abs(pt′(v))

The set Llt′ ,incl. contains the generated new solutions lt for each valid value c:

Llt′ ,incl. ←
⋃

abs(pt′ (v))≤c≤abs(pt′ (u))

{lt,c}

Sub-scenario (a-2)

It is given that the vertex u and v both have the leftover capacities pt′(u) < 0, pt′(v) < 0. This
means that both vertex u and vertex v are a pseudo-facility with leftover demand. We wish to see
if by merging the respective facility trees we can eliminate either pseudo-facility u or v

We are only able to merge the respective facility trees Ψu and Ψv iff the following property holds:

abs(pt′(u)) + abs(pt′(v)) ≤ capDP

In other words, merging the respective facility trees Ψu and Ψv must not result in a new singular
facility leftover supply greater than any facility is allowed to facilitate.

Including the edge (u, v) into a solution l′t in such a manner, can be done in two directions:

• Placing a pseudo-facility on vertex u and a pseudo-user/client on vertex v.

• Placing a pseudo-facility on vertex v and a pseudo-user/client on vertex u.

For simplicity we only describe the placing a pseudo-facility on vertex u and a pseudo-user/client
on vertex v. The inverse works in the exact same way, but by swapping the places of u and v.

We proceed by extending the facility tree Ψµt′ (u) as follows:

V (Ψµt(u)) = V (Ψµt′ (u)) ∪ V (Ψµt′ (v))

E(Ψµt(u)) = E(Ψµt′ (u)) ∪ E(Ψµt′ (v)) ∪ {(u, v)}

24 Capacitated Facility Location Problem on Graphs of Bounded Treewidth

CHAPTER 4. ALGORITHM DESCRIPTION

For moving the supply from vertex v to vertex u, we define an ”edge-capacity” c for the edge
(u, v). This indicates the number of cables that will be placed on edge (u, v). This edge-capacity
must at least satisfy demand at v, but cannot allow vertex u to exceed the maximum allowed
facility capacity capDP

Therefor all valid values c ∈ Z are defined as follows:

abs(pt′(v)) ≤ c ≤ capDP − abs(pt′(u))

Moving the pseudo-facility from vertex v to the facility serving u, means that for each user v′ ∈
µ−1
t′ (v), i.e. every (pseudo-) user v′ that is served by the same (pseudo-) facility on v, we redefine

the mapping in lt as follows:
µt(v

′)← µt′(u)

Consequently we can drop facility µt′(v) from F ′t and Φt.

We use edge-capacity c to calculate the leftover capacities pt(u), pt(v) as follows:

pt(u)← pt′(u)− c pt(v)← c− abs(pt′(v))

The set Llt′ ,incl. contains the new solutions lt,(u,v), lt,(v,u) in both directions for each c:

Llt′ ,incl. ←
⋃

abs(pt′ (v))≤c≤capDP−abs(pt′ (u))

{
lt,(u,v), lt,(v,u)

}

Including Edge (u, v): Scenario (c)

When including the edge (u, v) into a solution lt′ of scenario (c), we aim to offload any leftover
demand or supply on the included vertex u off to the excluded vertex v.

There are three sub-scenarios in scenario (c):

(c-1) The vertex u has a leftover capacity p(u) > 0
In other words, the vertex u is a pseudo-user/client, and has leftover supply.

(c-2) The vertex u has a leftover capacity p(u) < 0
In other words, the vertex u is a pseudo-facility, and has leftover demand.

(c-3) The vertex u has a leftover capacity p(u) = 0
In other words, the vertex u has neither leftover supply or demand.

In sub-scenarios (c-1) and (c-2) we wish to consider including the vertex v into the facility tree
Ψµt′ (u) to help offload/satisfy some leftover demand or supply from the vertex u.
In sub-scenario (c-3) there is no such reason to include the edge (u, v).

Capacitated Facility Location Problem on Graphs of Bounded Treewidth 25

CHAPTER 4. ALGORITHM DESCRIPTION

Sub-scenario (c-1)

It is given that the vertex u has a leftover capacity p(u) > 0, meaning that the vertex u is a
pseudo-user/client and has leftover supply. We wish to consider branching of some or all of this
leftover supply at vertex u onto the vertex v.

We do this by extending the facility tree Ψµt′ (u) as follows:

V (Ψµt(u)) = V (Ψµt′ (u)) ∪ {v}
E(Ψµt(u)) = E(Ψµt′ (u)) ∪ {(u, v)}

For branching off the supply to vertex v, we define an ”edge-capacity” c to the edge (u, v). This
indicates the number of cables that will be placed on edge (u, v). This capacity cannot exceed the
leftover supply at u, but must move at least some supply to v.

Therefor all valid values c ∈ Z are defined as follows:

0 < c ≤ pt′(u)

We use edge-capacity c to calculate mapping µt(v) and leftover capacities pt(u), pt(v) as follows:

µt(v)← µt′(u) pt(u)← pt′(u)− c pt(v)← c

The set Llt′ ,incl. contains the generated new solutions lt for each valid value c:

Llt′ ,incl. ←
⋃

0<c≤pt′ (u)

{lt,c}

Sub-scenario (c-2)

It is given that the vertex u has a leftover capacity p(u) < 0, meaning that the vertex u is a
pseudo-facility and has leftover demand. Including the edge (u,v) into a solution lt′ as such, can
be done in two directions:

• Moving the pseudo-facility located at vertex u onto the vertex v.

• Branching of additional leftover-supply at v, increasing left-over demand at u.

We will describe either method separately below. Both methods combined Ll′t,incl.,move, Ll′t,incl.,branch

will make up the total set Llt′ ,incl. as follows:

Ll′t,incl. ← Ll′t,incl.,move ∪ Ll′t,incl.,branch

Sub-scenario (c-2): Moving the Pseudo-Facility

It is given that the vertex u has a leftover capacity p(u) < 0, meaning that the vertex u is a
pseudo-facility and has leftover demand. We aim to move this pseudo-facility from vertex u to
vertex v

We do this by extending the facility tree Ψµt′ (u) as follows:

V (Ψµt(u)) = V (Ψµt′ (u)) ∪ {v}
E(Ψµt(u)) = E(Ψµt′ (u)) ∪ {(u, v)}

26 Capacitated Facility Location Problem on Graphs of Bounded Treewidth

CHAPTER 4. ALGORITHM DESCRIPTION

For moving the leftover demand from vertex u to vertex v, we define an ”edge-capacity” c to the
edge (u, v). This indicates the number of cables that will be placed on edge (u, v).
The edge capacity must at least meet the current leftover supply at u and might even need to
route back some capacity to u. It can also not exceed the maximum facility capacity capDP.

Therefor all valid values c ∈ Z are defined as follows:

abs(pt′(u)) ≤ c ≤ capDP

Moving the pseudo-facility from vertex u to vertex v, means that for each user u′ ∈ µ−1
t′ (u), i.e.

every (pseudo-) user u′ that is served by the same (pseudo-) facility on u, we redefine the mapping
in lt as follows:

µt(u
′)← v

We use edge-capacity c to calculate the leftover capacities pt(u), pt(v) as follows:

pt(u)← pt′(u) + c pt(v)← −1 · c

The set Llt′ ,incl.,move contains the generated new solutions lt for each valid value c:

Llt′ ,incl.,move ←
⋃

abs(pt′ (u))≤c≤capDP

{lt,c}

Sub-scenario (c-2): Branching off Additional Supply

It is given that the vertex u has a leftover capacity p(u) < 0, meaning that the vertex u is a
pseudo-facility and has leftover demand. We aim to branch off some additional supply from vertex
u to vertex v

We do this by extending the facility tree Ψµt′ (u) as follows:

V (Ψµt(u)) = V (Ψµt′ (u)) ∪ {v}
E(Ψµt(u)) = E(Ψµt′ (u)) ∪ {(u, v)}

For branching off the supply to vertex v, we define an ”edge-capacity” c to the edge (u, v). This
indicates the number of cables that will be placed on edge (u, v). This capacity must move at
least some supply to v but cannot exceed the maximum supply the facility at u can still supply.

Therefor all valid values c ∈ Z are defined as follows:

0 < c ≤ capDP − abs(pt′(u))

We use edge-capacity c to calculate mapping µt(v) and leftover capacities pt(u), pt(v) as follows:

µt(v)← µt′(u) pt(u)← pt′(u)− c pt(v)← c

The set Llt′ ,incl. contains the generated new solutions lt for each valid value c:

Llt′ ,incl.,branch ←
⋃

0<c≤capDP−abs(pt′ (u))

{lt,c}

Capacitated Facility Location Problem on Graphs of Bounded Treewidth 27

CHAPTER 4. ALGORITHM DESCRIPTION

Including Edge (u, v): Scenario (d)

When including the edge (u, v) into a solution lt′ of scenario (d), we aim to create a new pair of
pseudo-facility and pseudo-user/client.

Including the edge (u, v) into a solution l′t in such a manner, can be done in two directions:

• Placing a pseudo-facility on vertex u and a pseudo-user/client on vertex v.

• Placing a pseudo-facility on vertex v and a pseudo-user/client on vertex u.

For simplicity we only describe the placing a pseudo-facility on vertex u and a pseudo-user/client
on vertex v. The inverse works in the exact same way, but by swapping the places of u and v.

We create a new facility tree Ψu which is defined as follows:

V (Ψu) = {u, v} E(Ψf) = {(u, v)}

We define the mappings µt(u), µt(v) for facility tree Ψu as follows:

µt(u)← u µt(v)← u

When building a (pseudo-) facility f , we must determine the ”facility-capacity” c before we place
it. All valid values c∈Z are defined as follows:

0 < c ≤ capDP

We use facility-capacity c to calculate the leftover capacities pt(u), pt(v) as follows:

pt(u)← −1 · c pt(v)← c

The set Llt′ ,incl. contains the generated new solutions lt,(u,v), lt,(v,u) in both directions for each
valid value c:

Llt′ ,incl. ←
⋃

0<c≤capDP

{
lt,(u,v), lt,(v,u)

}

Cost Calculation and Overal Solution Set

These steps allow us to recalculate the cost for each solution lt as follows:

costlt,excl. ← costl′t
costlt,incl. ← costl′t + costdig(u, v) + c · costcable(u, v)

By calculating Ll′t,excl., Ll′t,incl. for each solution l′t ∈ L′t, we can calculate Lt as follows:

Lt ←
⋃
l′t∈L′t

(
Ll′t,excl. ∪ Ll′t,incl.

)

28 Capacitated Facility Location Problem on Graphs of Bounded Treewidth

CHAPTER 4. ALGORITHM DESCRIPTION

4.1.3 ”Introduce Vertex”-Node

We consider some node t ∈ T with exactly one child t′, such that Xt = Xt′ ∪{v} for some v 6∈ Xt′ .
We say that vertex v is introduced at node t.

Figure 4.3: Some possible scenarios for |Xt| = 3, when introducing a vertex v ∈ V (G)

We build up the partial solution set Lt at node t, by updating the partial solution set Lt′ at node
t′ such that the resulting set Lt contains the set of candidate partial solutions for Gt.

By property (T3) of a tree decomposition (see section 2.2) the set of nodes whose corresponding
bags contain the introduced vertex v, induces a connected sub-graph of T . Since node t′ is the
only child of t in T , and since v 6∈ Xt′ , it must therefore hold that v 6∈ V (Gt′).
In other words, prior to node t the introduced vertex v has never before been seen.

This means that for each partial solution lt′ = (pt′ , Ft′ , µt′ ,Φt′ ,Πt′) such that lt′ ∈ Lt′ , there
cannot exist a facility tree Ψf ∈ Φ′ such that v ∈ V (Ψf). (as illustrated in figure 4.3)
In other words, the introduced vertex v is by definition not part of any partial solution lt′ ∈ Lt′ .

We can distinguish solution lt′ into two distinct scenarios:

(a) The vertex v 6∈ U .
In other words, there exists no client/user on the vertex v in G.

(b) The vertex v ∈ U , and has a subsequent demand d(v).
In other words, there exists a client/user on the vertex v in G.

For each partial solution lt′ ∈ Lt′ there are two possibilities for what to do with the vertex v
introduced at node t:

• We don’t include the vertex v in the solution lt′ , making a set Llt′ ,excl.

This is possible only in scenario (a).

• We do include the vertex v in the solution lt′ , making a set Llt′ ,incl.

This is possible in both scenarios (a) and (b).

In either case we will have to calculate the leftover capacity pt(v). This is because v 6∈ Xt′ , which
means that pt′(v) does not exist, while pt(v) should exist for the solution to be a valid solution.

Capacitated Facility Location Problem on Graphs of Bounded Treewidth 29

CHAPTER 4. ALGORITHM DESCRIPTION

Excluding Vertex v: Scenario (a)

Not including the vertex v into a solution lt′ does not require much of an explanation:

Llt′ ,excl. ← {lt′} pt,excl.(v)← 0

Including Vertex v: Scenario (a)

When including the vertex v into a solution lt′ of scenario (a), we need to automatically also place
down a constructed facility. Placing a pseudo-facility on a vertex v with no neighbours and no
demand d(v) is not possible, because then the vertex v will have both leftover demand and leftover
supply at once.

The newly created facility tree Ψv is defined as follows:

V (Ψv) = {v} E(Ψv) = ∅

When building a facility f on v, we must determine the ”facility-capacity” c before we place it.
This facility-capacity c must be greater than zero, but must not exceed the maximum facility
capacity capDP.

Therefor all valid values c ∈ Z are defined as follows:

0 < c ≤ capDP

We use facility capacity c to calculate mapping µt(v) and leftover capacity pt(v) as follows:

µt(v)← v pt(v)← c

The set Llt′ ,incl. contains the solution lt for each valid value c:

Llt′ ,incl. ←
⋃

0<c≤capDP

{lt,c}

Including Vertex v: Scenario (b)

When including the vertex v into a solution lt′ of scenario (b), we need to automatically also place
down a pseudo-facility. Placing a constructed facility on a vertex v such that v ∈ U is not possible,
because then the vertex v will have an overlapping facility and user on the same vertex.

The newly created facility tree Ψf is defined as follows:

V (Ψf) = {v} E(Ψf) = ∅

When building a facility f on v, we must determine the ”facility-capacity” c before we place it.
This facility-capacity c must be equal to the user demand on v.

Therefore we define: c = d(v).

We use facility capacity c to calculate mapping µt(v) and leftover capacity pt(v) as follows:

µt(v)← v pt(v)← −1 · c

The set Llt′ ,incl. contains the generated solution lt:

Llt′ ,incl. ← {lt}

.

30 Capacitated Facility Location Problem on Graphs of Bounded Treewidth

CHAPTER 4. ALGORITHM DESCRIPTION

Cost Calculation and Overal Solution Set

These steps allow us to recalculate the cost for each solution lt as follows:

costlt,excl. ← costl′t
costlt,incl. ← costl′t + costDP

By calculating Ll′t,excl., Ll′t,incl. for each solution l′t ∈ L′t, we can calculate Lt as follows:

Lt ←
⋃
l′t∈L′t

(
Ll′t,excl. ∪ Ll′t,incl.

)

Capacitated Facility Location Problem on Graphs of Bounded Treewidth 31

CHAPTER 4. ALGORITHM DESCRIPTION

4.1.4 ”Forget Vertex”-Node

We consider some node t ∈ T with exactly one child t′, such that Xt = Xt′/{v} for some vertex
v ∈ Xt′ . We say that vertex v is forgotten at node t.

Figure 4.4: Some different scenarios when forgetting a vertex v ∈ V (G)

We build up the partial solution set Lt at node t, by updating the partial solution set Lt′ at node
t′ such that the resulting set Lt contains the set of candidate partial solutions for Gt.

When forgetting the vertex v we only want to keep track of solutions lt′ ∈ Lt′ for which the
resulting solution lt is a valid partial solution to the sub-graph Gt.

For each node x ∈ Xt we keep track of a mapping pt(x). This helps us determine the sets FP of
pseudo-facilities and UP of pseudo-users/clients.
Forgetting the vertex v, means Xt = Xt′/{v}. This means that any solution lt′ ∈ Lt′ for which
the forgotten vertex v has a leftover capacity p(v) 6= 0, i.e. v has a pseudo-facility or pseudo-
user/client, we ignore that solution lt′ .

Given some partial solution lt′ = (pt′ , F
′
t′ , µt′ ,Φt′ ,Πt′) such that lt′ ∈ Lt′ , there are three possible

scenarios (as illustrated in figure 4.4):

(a) There exist some facility tree Ψf ∈ Φt′ such that v ∈ V (Ψf) with pt′(v) = 0.
In other words, the forgotten vertex v is part of the current partial solution lt′ , and does
not leave any dangling leftover supply or demand for its respective tree Ψf .

(b) There exist some facility tree Ψf ∈ Φt′ such that v ∈ V (Ψf) with pt′(v) 6= 0.
In other words, the forgotten vertex v is part of the current partial solution lt′ , and does
leave some dangling leftover supply or demand for its respective tree Ψf .

(c) There exist no facility tree Ψf ∈ Φt′ such that v ∈ V (Ψf).
In other words, the forgotten vertex v is not part of the current partial solution lt′

Each solution lt′ ∈ Lt′ of scenario (a) or (c) we remember by adding lt′ to Lt.
Each solution lt′ ∈ Lt′ of scenario (b) we forget about, since it is incomplete.

The cost calculation of lt is simple, since we never alter the structure of the solution:

costlt ← costl′t

32 Capacitated Facility Location Problem on Graphs of Bounded Treewidth

CHAPTER 4. ALGORITHM DESCRIPTION

4.1.5 ”Join Sub-Trees”-Node

Consider some node t ∈ T with exactly two children t1, t2, such that Xt = Xt1 = Xt2

We say that the sub-trees rooted at nodes t1, t2 are joined at node t.

Figure 4.5: Two different scenarios when joining the solutions lt1 , lt2

We build up the partial solution set Lt at node t, by joining the partial solution sets Lt1 , Lt2 at
nodes t1, t2 such that the resulting set Lt contains the sets of candidate partial solutions for Gt.

We build a solution lt ∈ Lt by ”joining” together any pair of ”compatible” solutions lt1 , lt2 .

Property (T3) of a tree decomposition (see section 2.2) states that the set of nodes whose corres-
ponding bags contain the introduced vertex v, induces a connected sub-graph of T .

Considering any vertex v 6∈ Xt, one of the following two properties must hold:

• If vertex v ∈ At1 , then by property (T3) this means that v 6∈ Bt1 ∪At2 .

• If vertex v ∈ At2 , then by property (T3) this means that v 6∈ Bt2 ∪At1 .

This means that At1 ∩At2 = ∅.

This means that when joining the partial solutions lt1 , lt2 , we only have to make sure that these
solutions are ”compatible” (i.e. the resulting joined solution lt is valid) for facility trees overlap-
ping the vertex set Xt.

Given some pair of partial solutions lt1 = (p, F ′t1 , µt1 ,Φt1 ,Πt1), lt2 = (p, F ′t2 , µt2 ,Φt2 ,Πt2), there
are two possible scenarios (as illustrated in figure 4.5):

(a) The joined graph
⋃

Ψf∈(Φt1
∪Φt2

)(Ψf) of all facility trees is acyclic.

In other words, joining the solutions lt1 , lt2 does not create a new facility tree with a cycle.

(b) The joined graph
⋃

Ψf∈(Φt1
∪Φt2

)(Ψf) of all facility trees is not acyclic.

In other words, joining the solutions lt1 , lt2 creates some new facility tree with a cycle.

Any facility tree Ψf , as defined in the problem definition (section 3.1), must be a Steiner tree,
and must therefore be acyclic. In the case of scenario (b), joining the respective solutions lt1 , lt2
creates a new facility tree with a cycle, which is not a valid solution.

Thus only scenario (a) can result in a valid joined solution lt

Capacitated Facility Location Problem on Graphs of Bounded Treewidth 33

CHAPTER 4. ALGORITHM DESCRIPTION

Figure 4.6: Example joining the solutions lt1 , lt2 , and the resulting F

Joining together a pair of solutions lt1 , lt2 of scenario (a) works as follows:

For the solutions lt1 , lt2 we define the sets Ft1,X ⊆ Ft1 ∪FP,t1 and Ft2,X ⊆ Ft2 ∪FP,t2 , of facilities
that overlaps the vertex set Xt, as follows:

Ft1,X = {f | f ∈ Ft1 ∪ FP,t1 ∧ V (Ψf) ∩Xt 6= ∅}
Ft2,X = {f | f ∈ Ft2 ∪ FP,t2 ∧ V (Ψf) ∩Xt 6= ∅}

Using Ft1,X , Ft2,X we define forest of trees F as follows (example illustrated in figure 4.6):

V (F) = Ft1,X ∪ Ft2,X
E(F) = {(f1, f2) | f1, f2 ∈ (Ft1,X ∪ Ft2,X) ∧ V (Ψf1) ∩ V (Ψf2) 6= ∅}

For each edge (f1, f2) ∈ E(F) we associate the vertex v(f1, f2) such that:

V (Ψf1) ∩ V (Ψf2) = {v(f1, f2)}

Keep in mind that if it were the case that |V (Ψf1)∩V (Ψf2)| > 1, then the resulting joined facility
tree would contain a cycle. This would mean that we are not dealing with a scenario (a) but with
a scenario (b) situation, which we have previously determined to result in an invalid solution.

Each connected component in FC ⊆ F denotes the set of facility trees V (FC) that are to be
merged together into a new facility tree ΨC in order to join the two solutions lt1 , lt2 . For each
component tree FC we approach this merger as follows:

For each facility tree Ψf ∈ FC we create a directed version of the component tree F ′C,Ψf
, such

that the facility tree Ψf is the root of F ′C,Ψf
. This tree F ′C,Ψf

denotes the direction in which the

facility trees are to be merged (see figure 4.7)

34 Capacitated Facility Location Problem on Graphs of Bounded Treewidth

CHAPTER 4. ALGORITHM DESCRIPTION

Figure 4.7: Example joining lt1 , lt2 , and some possible set of trees {F ′C,Ψf2,2
,F ′C,Ψf1,3

}

Joining Connected Components

The solutions lt1 , lt2 can only be joined, if for each connected component FC ⊆ F there exists at
least one directed component tree F ′C,Ψf

that is considered ”valid”.

We consider a directed component tree F ′C,Ψf
to be ”valid” if for each edge (fchild, fparent) ∈

E(F ′C,Ψf
) there exists a valid way of merging the respective facility trees Ψfchild ,Ψfparent .

For each edge (fchild, fparent) ∈ E(F ′C,Ψf
) given the pair of solutions ltparent , ltchild (these solutions

are a re-definition of lt1 and lt2 , depending on whether the directed edge (fchild, fparent) runs from
lt1 to lt2 , or lt2 to lt1), there exist three potential sub-scenarios:

(a-1) For the overlapping vertex v(fchild, fparent) it holds that:

– ptparent
(v(fchild, fparent)) > 0, and

– ptchild
(v(fchild, fparent)) < 0.

In other words, on vertex v(fchild, fparent), the parent solution ltparent has a pseudo-user/client
with leftover supply, and the child solution ltchild has a pseudo-facility with leftover demand.

(a-2) For the overlapping vertex v(fchild, fparent) it holds that:

– ptparent
(v(fchild, fparent)) < 0, and

– ptchild
(v(fchild, fparent)) < 0.

In other words, on vertex v(fchild, fparent), the parent solution ltparent has a pseudo-facility
with leftover demand, and the child solution ltchild also has a pseudo-facility with leftover
demand.

(a-3) Neither of the above cases hold

In scenarios (a-1) and (a-2) we look into the validity of merging facility trees Ψfchild ,Ψfparent into
a singular facility tree. In sub-scenario (a-3) there is no such way to merge Ψfchild ,Ψfparent , so the
connected component tree F ′C,Ψf

is immediately ”invalid”.

Capacitated Facility Location Problem on Graphs of Bounded Treewidth 35

CHAPTER 4. ALGORITHM DESCRIPTION

Merging Facility Trees: Scenario (a-1)

When considering the merger of two facility trees of scenario (a-1) on edge (fchild, fparent) ∈
E(F ′C,Ψf

), we need to check whether the existing leftover demand on fparent satisfied the existing
leftover supply on fchild.

The merger is only ”valid” if the following holds:

abs(ptparent
(v(fchild, fparent))) ≥ abs(ptchild(v(fchild, fparent)))− d(v(fchild, fparent))

This check is similar to the leftover capacity check in the ”introduce edge”-node, as described
in section 4.1.2. The main difference is that we need to account for the user/client-demand
d(v(fchild, fparent)) that would otherwise be counted twice.

For each edge (fchild, fparent) ∈ E(F ′C,Ψfroot
) of scenario (a-1), such that F ′C,Ψfroot

is a valid directed

component tree, we can determine the leftover capacity pt(v(fchild, fparent)) as follows:

pt(v(fchild, fparent))← ptparent
(v(fchild, fparent))

− (abs(ptchild(v(fchild, fparent)))− d(v(fchild, fparent)))

Merging Facility Trees: Scenario (a-2)
When considering the merger of two facility trees of scenario (a-2) on edge (fchild, fparent) ∈
E(F ′C,Ψf

), we need to check whether merging the two facility trees Ψfchild ,Ψfparent would not ex-
ceed the maximum facility capacity capDP.

The merger is only ”valid” if the following holds:

capDP ≥abs(ptparent
(v(fchild, fparent)))

+ (abs(ptchild(v(fchild, fparent)))− d(v(fchild, fparent)))

This check is similar to the leftover capacity check in the ”introduce edge”-node, as described
in section 4.1.2. The main difference is that we need to account for the user/client-demand
d(v(fchild, fparent)) that would otherwise be counted twice.

For each edge (fchild, fparent) ∈ E(F ′C,Ψfroot
) of scenario (a-1), such that F ′C,Ψfroot

is a valid directed

component tree, we can determine the leftover capacity pt(v(fchild, fparent)) as follows:

pt(v(fchild, fparent))← ptparent(v(fchild, fparent))

+ (abs(ptchild(v(fchild, fparent)))− d(v(fchild, fparent)))

Finalizing Join

For each facility tree Ψf ∈ V (F ′C,Ψfroot
), such that F ′C,Ψfroot

is a valid directed component tree,

we define for each user u′ ∈ µ−1
t′ (f) the respective mapping as follows:

µt(u
′)← froot

For each possible permutation such that we pick exactly one valid directed component tree F ′C,Ψf

for each connected component FC ⊆ F . Joining these directed component tree will result in a set
of joined facility trees, which we refer to as ΦF .

36 Capacitated Facility Location Problem on Graphs of Bounded Treewidth

CHAPTER 4. ALGORITHM DESCRIPTION

Our ultimate goal at this step, is to create a set Llt1 ,lt2 ,valid joins, such that it contains all valid
ways of joining the solutions lt1 and lt2 .

We achieve this by expanding Llt1 ,lt2 ,valid joins with a solution lt for each valid permutation ΦF .
We define the set of facility trees Φt for each solution lt as follows:

Φt ← ΦF ∪ {Ψf | f ∈ (Ft1 ∪ FP,t1) \ Ft1,X} ∪ {Ψf | f ∈ (Ft2 ∪ FP,t2) \ Ft2,X}

These steps allow us to recalculate the cost for each solution lt as follows:

costlt ← costlt1 + costlt2

We calculate the set of solutions Lt as follows:

Lt ←
⋃

lt1∈Lt1

⋃
lt2∈Lt2

(
Llt1 ,lt2 ,valid joins

)

4.1.6 ”Leaf”-Node

For each leaf-node t ∈ T it is given that:

• Xt = ∅, and

• The number of children at node t is equal to zero.

Since Xt = ∅ and the number of children at node t is equal to zero, it holds for the sub-graph
Gt ⊆ G, that V (Gt) = ∅ and E(Gt) = ∅. In other words, sub-graph Gt is an empty graph.

This means that the only valid solution at any leaf-node t ∈ T is the empty solution.
Therefor Lt for each leaf-node t ∈ T contains only empty solutions

The cost calculation for each solution lt ∈ Lt is trivial:

costlt ← 0

Capacitated Facility Location Problem on Graphs of Bounded Treewidth 37

CHAPTER 4. ALGORITHM DESCRIPTION

4.1.7 Examples

We consider the example graph G with the corresponding tree decomposition T , as shown in both
figures 4.1 and 4.8. The set of users in this example is defined as U = {u1, u2, u3, u6, u7}, depicted
in blue, with d(u) = 1 for each user u ∈ U .

Figure 4.8: An example-graph G, and (part of) some ”nice” tree decomposition T of G

In this section we will show with examples for several nodes t ∈ T , in a bottom-up fashion, how
the solutions set Lt is built up given a certain partial solution l′t (or in the case of the ”join
sub-trees”-node, partial solutions lt1 , lt2):

• Node t4L
:

An ”introduce vertex”-node, introducing vertex v5

• Node t3:
An ”join sub-trees”-node, joining the sub-trees rooted at nodes t4L

, t4R

• Node t2:
An ”introduce edge”-node, introducing edge (v4, v5)

• Node t1:
An ”forget vertex”-node, forgetting vertex v4

38 Capacitated Facility Location Problem on Graphs of Bounded Treewidth

CHAPTER 4. ALGORITHM DESCRIPTION

Solving the node t4L

In the example graph G and corresponding decomposition tree T (see figure 4.8), the node t4L
is

considered to be an ”introduce vertex”-node. It introduces the vertex v5.

Figure 4.9: Sub-graph Gt5L ⊆ G, and some example solution lt5L ∈ Lt5L

We consider the solution lt5L ∈ Lt5L as depicted in figure 4.9. It contains two facility trees
Φ = {Ψv1 ,Ψv4}, such that the set of facilities F = {v1}, and the set of pseudo-facilities FP = {v4}.

The goal is to build a list of all valid candidate partial solutions for the sub-graph Gt4L as depicted
in figure 4.11, given the solution lt5L

Figure 4.10: The three possible ways of expanding example solution lt5L ∈ Lt5L

There are two possible ways in which we can extend the solution set Lt4L by updating the solution
lt5L , which are depicted in figure 4.10:

• We do not include the vertex v5, making the solution lt4L ,excl.

This is possible because v5 6∈ U , meaning that there is no user/client-demand on d(v5) that
needs to be satisfied directly. If there were a demand d(v5), not including v5 in the solution
would have cause the solution to be invalid

• We do include the vertex v5, making the solution lt4L ,incl.

We create such solutions for each facility-capacity c ∈ Z such that 0 < c ≤ capDP

We define the leftover capacity of v5 to be p(v5)← c.

Capacitated Facility Location Problem on Graphs of Bounded Treewidth 39

CHAPTER 4. ALGORITHM DESCRIPTION

Solving the node t3

In the example graph G and corresponding decomposition tree T , in figure 4.1, the node t3 is
considered to be an ”join sub-trees”-node. It joins the sub-trees rooted at t4L

and t4R
.

Figure 4.11: Sub-graphs Gt4L , Gt4R ⊆ G, and some pair of example solution lt4L , lt4R

We consider the solution lt4L ∈ Lt4L and lt4R ∈ Lt4R as depicted in figure 4.11:

• The solution lt4L contains two facility trees Φ4L
= {Ψv1 ,Ψv4}, such that the set of facilities

F = {v1}, and the set of pseudo-facilities FP = {v4}.
Interesting to note is that this solution lt4L is the same solution as lt4L ,excl. from the example
introducing the vertex v5 at node t4L

• The solution lt4R contains exactly one facility trees Φ4R
= {Ψv7}, such that the set of

facilities F = {v7}, and the set of pseudo-facilities FP = ∅.
Interesting to note is that this solution lt4L has left the vertex v5 unused.

The goal is to build a list of all valid candidate partial solutions for the sub-graph Gt3 as depicted
in figure 4.13, given the solutions lt4L , lt4R

Figure 4.12: The one possible way of joining example solutions lt4L , lt4R

40 Capacitated Facility Location Problem on Graphs of Bounded Treewidth

CHAPTER 4. ALGORITHM DESCRIPTION

There is exactly one way in which we can extend the solution set Lt4L by joining the solution
lt4L , lt4R , as depicted in figure 4.12. The two pseudo-facility trees Ψv4 get merged together.

This merge is only possible when the following properties hold:

• None of the joined trees is Φ3 = {Ψv1 ,Ψv3 ,Ψv7} can contain a cycle.

• At both vertices v4, v5 on which the solutions Xt4L
, Xt4R

overlap, it must either hold that
leftover demand matches leftover supply, or it must hold that the combined leftover demand
does not exceed the maximum facility capacity capDP

Solving the node t2

In the example graph G and corresponding decomposition tree T , in figure 4.8, the node t2 is
considered to be an ”introduce edge”-node. It introduces the edge (v4, v5).

Figure 4.13: Sub-graph Gt3 ⊆ G, and some example solution lt3 ∈ Lt3

We consider the solution lt3 ∈ Lt3 as depicted in figure 4.13. It contains three facility trees
Φ = {Ψv1 ,Ψv4 ,Φv7}, such that the set of facilities F = {v1, v7}, and the set of pseudo-facilities
FP = {v4}. Interesting to note is that this solution lt3 is the same solution as lt3 from the example
joining the sub-trees at node t3.

The goal is to build a list of all valid candidate partial solutions for the sub-graph G2 as depicted
in figure 4.15, given the solution lt3

Figure 4.14: The two possible ways of expanding example solution lt3

There are two possible ways in which we can extend the solution set Lt2 by updating the solution
lt3 , which are depicted in figure 4.14:

• We do not include the edge (v4, v5), making the solution lt2,excl.

• We do include the edge (v4, v5), making the solution lt2,incl.

We create such solutions for each facility-capacity c ∈ Z such that abs(p(v4)) ≤ c ≤
abs(p(v5)). We redefine the leftover capacities p(v4), p(v5) as follows:

pt2,incl.(v4)← c+ pt3(v4) pt2,incl.(v5)← pt3(v5)− c

Capacitated Facility Location Problem on Graphs of Bounded Treewidth 41

CHAPTER 4. ALGORITHM DESCRIPTION

Solving the node t1

In the example graph G and corresponding decomposition tree T , in figure 4.1, the node t1 is
considered to be an ”forget vertex”-node. It forgets the vertex v4.

Figure 4.15: Sub-graph Gt2 ⊆ G, and some example solution lt2 ∈ Lt2

We consider the solution lt2 ∈ Lt2 as depicted in figure 4.15. It contains three facility trees
Φ = {Ψv1 ,Ψv7}, such that the set of facilities F = {v1, v7}, and the set of pseudo-facilities FP = ∅.
Interesting to note is that this solution lt2 is the same solution as lt2,incl. from the example joining
the sub-trees at node t2.

The goal is to build a list of all valid candidate partial solutions for the sub-graph Gt1 , given the
solution lt2 . We do this by checking whether the solution lt2 is still valid after the vertex v4 is
removed from the vertex set Xt2 , making Xt1

The solution lt1 depicted in figure 4.16 is a valid candidate partial solution in Lt1 if p(v4) = 0.

Figure 4.16: Valid candidate partial solution lt1

42 Capacitated Facility Location Problem on Graphs of Bounded Treewidth

CHAPTER 4. ALGORITHM DESCRIPTION

4.2 Trim Function

The algorithm as described in section 4.1 is capable of correctly finding an optimal solution to the
problem definition as described in section 3.1.

However, in the current form, we keep track of the set of all valid partial solutions Lt at every
node along the tree t. As we iterate up the tree this becomes rather inefficient in terms of running
time, as it is akin to essentially brute-forcing our way to the solution.

For this reason we need to come up with a way of reducing the amount of solutions that we need
to keep track of.

4.2.1 Goal of the Trim Function

Given a sub-problem solution lt = (pt, Ft, µt,Φt,Πt) for some node t ∈ T , and a full solution
l = (F, µ,Φ,Π) on the corresponding graph G, then lt is a partial solution to l iff:

• It holds that Ft ⊆ F , meaning that any facility f ∈ Ft (but not necessarily any pseudo-
facility f ∈ FP) is also included in F

• It holds that for each Ψ′f ∈ Φt that there exists a Ψf ∈ Φ such that Ψ′f ⊆ Ψf .

• It holds that for each µt(f) ∈ µt that there exists a µ(f) ∈ µ such that µt(f) ⊆ µ(f).

It is not needed to keep track of every single possible partial solution in order to build up an op-
timal solution lOPT. At various points along the tree T we are already able to determine whether
some partial solution lt ∈ Lt is definitely not going to be partial to any optimal solution lOPT.

We wish to run a trim function after calculating Lt for each node t ∈ T , with which we trim down
the number of solutions we keep track of going forward. The resulting set Lt,trimmed ⊆ Lt will be
passed on to the next node in tree T .

However, we need to keep in mind that for each node t ∈ T , the set Lt is defined as a set of valid
partial solutions lt on sub-graph Gt, for which it must hold that there exists at least one partial
solution lt,OPT ∈ Lt such that lt,OPT is the partial solution to some optimal solution lOPT on
graph G.

This means that we need to make sure that we do not ”over-trim” in the trim function, such that
we forget about solutions that are essential to reaching a valid optimal solution lOPT on graph G.
The trick of a good trim function is to find a balance between picking enough solutions to be
trimmed off, and not trimming too many solutions.

Capacitated Facility Location Problem on Graphs of Bounded Treewidth 43

CHAPTER 4. ALGORITHM DESCRIPTION

4.2.2 Trim Function

Defining the Trim IDs

We consider a node t ∈ T and the corresponding vertex set Xt.
Qt denotes the set of all possible set partitions of vertex set Xt

We define a set of all possible trim permutations Mt.
Each trim permutation mt = (pt, qt), for mt ∈Mt, is defined as follows:

• pm,t : Xt → Z denotes a mapping indicating the ”leftover capacity” for each vertex x ∈ Xt

For each vertex x ∈ Xt it holds that −capDP ≤ p(x) ≤ capDP.

• Q′t ∈ Qt denotes a partition of the vertices in Xt into separate trees.

Trimming the Solutions by Trim ID

We define a mapping ξ : Lt →M which maps each partial solutions lt ∈ Lt to exactly one trim-IDs
m ∈M such that:

• For each vertex x ∈ Xt it must hold that: pm,t(x) = pt(x)

• For each component qt ∈ Q′t it must hold that there exists some facility f ∈ (F ∪ FP) such
that V (Ψf) ∩Xt = qt.

We then define the set of trimmed solutions Lt,trimmed as follows:

Lt,trimmed ←
⋃

mt∈Mt

(
argminlt∈ξ−1(mt)(costlt)

)
In other words, for each possible trim permutation we only keep track of the lowest cost solution.

4.2.3 Solution Bound

By trimming the solution set Lt for each node t ∈ T set by all possible trim permutations Mt, we
are able to guarantee an upper bound on the size of set Lt,trimmed for node t.

The size of Qt is defined by the Bell number Bn, which is recursively defined as follows:

B0 = 1 Bk+1 =

k∑
i=0

(
k

i

)
Bi

Since Qt contains all possible set permutations of Xt, it must hold that |Qt| = B|Xt|
We also know that for each vertex x ∈ Xt there are (2 · capDP + 1) possible values for pm,t

Together this means the bound on the size of solution set Lt,trimmed is:

B|Xt| · (2 · capDP + 1)|Xt|

As defined by the problem description in chapter 3, we know that the maximum facility capacity
capDP = 48. Additionally, if we assume that the underlying graph G of tree decomposition T is
an outer planar then there must exist a solution such that |Xt| ≤ 3 for each node t ∈ T .

Given these limitations, Lt,trimmed can never contain more than:

B3 · 973 = 5 · 973

= 4.56 · 106 solutions

44 Capacitated Facility Location Problem on Graphs of Bounded Treewidth

CHAPTER 4. ALGORITHM DESCRIPTION

4.2.4 Correctness of the Trim Function

In order for the trim function to be both correct and useful, it is essential that we trim enough
solutions to have a meaningful gain in running time, but it is also important that the solutions
are not over-trimmed.

Over-trimming the set of solutions means that we forget some partial solution that would have led
to a more cost-efficient solution than the most cost-efficient solution we can find with the partial
solutions that we keep. In other words, if we forget a partial solution, we must be certain that is
could not possibly be part of any optimal solution.

Figure 4.17: Vertex sets At, Xt, Bt and sub-graph Gt at some node t ∈ T

We consider a node t ∈ T , with the corresponding vertex sets At, Xt, Bt. By the definition of a
tree decomposition, there exist no edges between any vertices in set At and Bt. This means that
for any given solution, each facility tree that contains vertices in At and Bt, must also contain
vertices in Xt.

The trim function keeps track of a partial solution for each possible way to connect the ver-
tices in Xt, which each possible amount of ”leftover capacity”. The component that gets trimmed
is the structure that these partial solutions have in At. Only the cheapest partial solution remains.

We consider a partial solution lOPT[At ∪ Xt] that gets selected by the trim function. This
solution will lead to the lowest cost solution lOPT on the overall graph, out of all solutions in
Lt,trimmed. We also consider a different partial solutions l′[At ∪Xt] such that lOPT[Xt] = l′[Xt],
but lOPT[At] 6= l′[At].

Since lOPT[Xt] = l′[Xt], and since lOPT[At ∪ Xt] is the solution that gets accepted by the trim
function, this must mean that cost(lOPT[At ∪Xt]) ≤ cost(l′[At ∪Xt]).
Since the solutions lOPT[Xt] = l′[Xt], it must hold that for any optimal way to solve the remainder
on Bt for lGt,OPT must also be an optimal way to solve the remainder on Bt for l′Gt

. Therefor the
cost(lOPT[Xt ∪Bt]) = cost(l′[Xt ∪Bt])

This means that any solution that is forgotten by the trim function, cannot be more optimal than
the solution of the same trim permutation that is kept track of.

Capacitated Facility Location Problem on Graphs of Bounded Treewidth 45

CHAPTER 4. ALGORITHM DESCRIPTION

4.3 Running Time

In this section we will shortly elaborate on the running time of the algorithm, given a graph G, a
tree decomposition T = (T, {Xt}t∈V (T)) and a maximum capacity capDP.

Determining the running time, means we have to consider three elements:

• The number of nodes in the tree decomposition,

• The number of solutions (or pairs of solutions) that need to be checked at each node,

• The amount of time spent per (pair of) solutions.

This results in a running time that is build up as follows:

O(#nodes in tree ·#solution-(pairs) at node ·#time per solution-(pair))

We can define the number of nodes in the tree decomposition as follows:

O(V (T)O(1))

For each of the five different types of nodes, we can define the number of (pairs of) solutions, and
the number of operations as follows:

Node Type Max. #Solution-(pairs) Time/Solution-(pair)

”Introduce edge”-node B|Xt| · (2 · capDP + 1)|Xt| O(capDP)
”Introduce vertex”-node B|Xt| · (2 · capDP + 1)|Xt| O(capDP)
”Forget edge”-node B|Xt| · (2 · capDP + 1)|Xt| O(1)
”Join sub-trees”-node (B|Xt| · (2 · capDP + 1)|Xt|)2 O(|Xt|2)
”Leaf”-node 1 O(1)

This means that the ”join sub-trees”-node is by far the most impactful node in terms of running
time, which results in the following worst-case running time of our algorithm:

O

(
|V (T)|O(1) ·

(
B|Xt| · (2 · capDP + 1)

|Xt|
)2

· (|Xt|)2

)
Interestingly if we assume that our tree decomposition is in fact a path-decomposition P =
(P, {Xp}p∈V (P)), and thus does not contain any ”join sub-trees”-nodes, this would lower our
running time to be:

O
(
|V (P)|O(1) ·

(
B|Xp| · (2 · capDP + 1)

|Xp|
)
· capDP

)
As defined by the problem description in chapter 3, we know that the maximum facility capacity
capDP = 48. Additionally, if we assume that the underlying graph G of tree decomposition T is
outer-planar then there must exist a solution such that |Xt| ≤ 3 for each node t ∈ T .

This means what we can further simplify our running time to be dependent solely on the size of
the tree decomposition:

O

(
|V (T)|O(1) ·

(
B3 · (2 · 48 + 1)

3
)2

· (3)
2

)
= O

(
|V (T)|O(1) ·

(
5 · (97)

3
)2

· 9
)

= O
(
|V (T)|O(1) · 1.87 · 1014

)
= O

(
|V (T)|O(1)

)

46 Capacitated Facility Location Problem on Graphs of Bounded Treewidth

Chapter 5

Evaluation & Discussion

This section elaborates on how the algorithm has been implemented for experimental evaluation,
and how the results compare to the old approach using Steiner trees, as detailed by A. van den
Boogaart [1]. We will also discuss the implications of as well as the limitations of our approach
using tree decomposition.

5.1 Implementation of the Algorithm

For calculating the optimal solution to the capacitated facility location / network design problem
on graphs of bounded treewidth, we have implemented a proof-of-concept using Python (version
3.2) with the NetworkX package (version 2.5).

This proof-of-concept requires a pre-calculated graph G of bounded treewidth and a corresponding
tree decomposition T of graph G as input. Synthetic test-cases of graph G and tree decomposition
T can be created externally and loaded in using graphml-files.
If the tree decomposition has not been pre-calculated, it can optionally be generated using the
models treewidth.treewidth min degree() or treewidth.treewidth min fill in() from
the NetworkX package. These modules approximate a tree decomposition using the ”min degree”-
heuristic, or the ”min fill in”-heuristic respectively.

While the implementation of the algorithm uses the same concepts of tree-decomposition to build
up a solution, it is important to note that there is a key discrepancy between the theoretical
description of the algorithm from chapter 4 and the implementation in Python. This discrepancy
causes the Python implementation to be several orders of magnitude slower than the theoretical
algorithm description would be.

The reason for the existence of this discrepancy is that after the implementation was finished, we
managed to find a way to significantly speed up the algorithm. The algorithm as described in
Chapter 4 follows this improved version of the algorithm. However, due to time constraints we
were unfortunately unable to similarly improve the Python implementation.

Despite this discrepancy, we believe that this implementation, while unfortunately significantly
slower than it could have been, still functions as a proof-of-concept for the use of tree-decompositions
on graphs of bounded treewidth.

Capacitated Facility Location Problem on Graphs of Bounded Treewidth 47

CHAPTER 5. EVALUATION & DISCUSSION

Short Explanation of the Discrepancy

Between the algorithm as described in chapter 4, and the algorithm as implemented in Python,
there is a difference in the way leftover capacities are kept track of. This difference results in the
theoretical definition of the algorithm having a significantly faster running time than version of
the algorithm implemented in Python.

The algorithm as described in Chapter 4 keeps track of a singular leftover capacity p(x) for each
vertex x ∈ X. This value p(x) denotes the ”leftover supply” (p(x) > 0) or the ”leftover demand”
(p(x) < 0), but can never denote both at the same time.
The algorithm as implemented in Python keeps track of two separate values p(x) and q(x) for each
vertex x ∈ X, where p(x) denotes the ”leftover supply”, and q(x) denotes the ”leftover demand”.
Since p(x) and q(x) are independent from one another, this means that any vertex x ∈ X can
have both a leftover supply and a leftover demand at the same time.

Similar to the algorithm as described in chapter 4, the trim function in the Python implementation
needs to keep track of each unique leftover capacity for each vertex x ∈ X. However, since the
leftover capacity is now denoted by two distinct variables p(x) and q(x), this means we double the
amount of variables that we need to keep track of at any given node in the tree decomposition.

This significantly increases the bounded size of the set of trimmed solutions Lt,trimmed:

B|Xt| · ((capDP + 1)2)|Xt|)

If we assume capDP = 48, and |Xt| ≤ 3 for each node t ∈ T , then this means the size of trimmed
solution set Lt,trimmed can contain up to:

B3 · (482)3 = 5 · (492)3

= 5 · 24013

= 6.92 · 1010 solutions

If we compare this solution bound to the solution bound as defined for the theoretical algorithm in
chapter 4.2, it is very obvious that the Python implementation of the algorithm is several orders
of magnitude less efficient than the theoretical description algorithm.

48 Capacitated Facility Location Problem on Graphs of Bounded Treewidth

CHAPTER 5. EVALUATION & DISCUSSION

5.2 Evaluation of Results

In this section we will be experimentally evaluating our approach to solving the facility location
network design problem on graphs of bounded treewidth, and comparing this to the solutions that
the old approach using Steiner trees, as detailed by A. van den Boogaart [1], provides on those
same data sets.

The goal set out for this thesis is to explore approaches that come up with qualitatively better
solutions to the facility location problem. To this end we will be focusing our result evaluation on
the difference in quality between the solutions provided by the old approach using Steiner trees,
and our approach using tree decomposition.
Because the Python implementation is several orders of magnitude slower when compared to the
theoretical algorithm as described in Chapter 4, comparing the time it takes to complete these
experiments does not accurately reflect the running time of the approach described in this paper.

Section 5.2.1 describes the manner in which the results were obtained. Sections 5.2.2 and 5.2.3
show the results on several example graphs. The former focuses on a complex example graph that
is more representative of real world neighbourhoods, while the latter focuses on simple example
graphs that are each meant to showcase specific inefficiencies in the Steiner tree approach.

5.2.1 Experimental Setup

The graphs on which we will be comparing the Steiner tree approach to our tree decomposition
approach, are synthetic examples designed to showcase situations in which the Steiner tree ap-
proach does not provide an optimal result. They are scaled down examples that are modelled after
realistic scenarios.

Each graph is designed to be an outer-planar graph, which we know to have a treewidth of 2. This
means that there must exist a tree decomposition for this graph which has a maximum bag size of 3.

The graphs are represented as undirected NetworkX graphs, and are fed into the respective imple-
mentations based on Steiner trees and tree decomposition. In the case of the tree decomposition ap-
proach, a tree decomposition for the example graph is generated using the treewidth.treewidth
min degree() function in the NetworkX package.

In order to speed up the calculation process, each example graph has been treated with a simple
pre-processing step, which finds all users of degree 1, and moves the user vertex to the neighbouring
vertex (with the exception of situations where that would clash with another user). This should not
change the solution found by either approach, but does help reduce the number of slow join-nodes
that get generated by the default NetworkX package.

Capacitated Facility Location Problem on Graphs of Bounded Treewidth 49

CHAPTER 5. EVALUATION & DISCUSSION

5.2.2 General Synthetic Example

We consider the graph of potential edges as depicted in figure 5.1. It is a somewhat complex
example graph that is supposed to be a small-scale synthetic representation of what a real-world
neighbourhood might look like.

Edge costdig costcable Edge costdig costcable
agr 2.00 0.50 c 5.00 2.00
astr 6.00 1.00 dlow 1.00 0.50
b1 5.00 1.00 dmed 9.00 4.00
b2 1.00 1.00 dhigh 10.00 2.00
b3 2.00 1.00 u 1.00 0.10

Facilities
costDP 1000
capDP 6

Figure 5.1: General Synthetic Example

The left table details the specific digging cost costdig and cable cost costcable for each potential
edge. The right table details the cost costDP of constructing a singular facility, as well as the
maximum capacity capDP that each facility can serve. The blue vertices represent users, each
with a demand of d(u) = 1.

Figure 5.2 depicts the solutions on this graph, as found by the Steiner tree approach (left) and
our tree decomposition approach (right) respectively. Table 5.3 describes the total cost of both of
these solutions, broken down by digging cost, cable cost, and facility cost.

The tree decomposition approach results in a solution that is only 75.9% of the cost the solution
resulting from the Steiner tree approach. The reason for this reduced cost, is that the tree
decomposition tree approach is able to consider edges that have been previously discarded by
the Steiner tree approach for having a digging cost that is too high.

50 Capacitated Facility Location Problem on Graphs of Bounded Treewidth

CHAPTER 5. EVALUATION & DISCUSSION

Figure 5.2: Left: Steiner tree solution. Right: Tree decomposition solution

Approach Digging Cost Cable Cost Facility Cost Total Cost
Steiner tree 60.00 19.70 4000 4079.70
Tree decomposition 68.00 30.20 3000 3098.20

Figure 5.3: Cost calculation, broken down by digging-, cable-, and facility-cost

More specifically, there are two points in which the Steiner tree approach has selected an inefficient
edge, that ultimately results in a sub-optimal solution:

• In section A of the graph, there are 4 different places to cross the street. The three edges of
type astr have a higher digging cost than the edge of type b1, which means that the Steiner
tree approach will always picks the edge of type b1.

However, since facility trees are edge- and vertex- disjoint, this means that this locks the
Steiner tree approach in an inefficient solution, unless other crossing locations can be con-
sidered.

• In section D of the graph, there are two ways to reach user U14. The edge of type dmed has
a slightly cheaper digging cost compared to the edge of type dhigh. However, that benefit is
negated if you also include the cable cost of even a single cable. Then dhigh becomes cheaper
than dmed.

In the Steiner tree approach, the option of using the edge of type dhigh is locked out outright,
because dhigh was not part of the underlying Steiner tree.

The Steiner tree approach is a decent approach in most cases, but as shown in this example, there
exist scenarios in which significant gains can be made, simply by also considering edges that would
result in a more expensive digging cost.

Capacitated Facility Location Problem on Graphs of Bounded Treewidth 51

CHAPTER 5. EVALUATION & DISCUSSION

5.2.3 Specific Synthetic Examples

We will look at three smaller and more specific examples, which are designed to show of scenarios
in which the Steiner tree approach does not select the most optimal solution.

Using the tree decomposition approach on each example will result in a better solution. It is
interesting to note how significant the gains in each example really are.

Wheel and Spoke Example

We consider the graph of potential edges as depicted in figure 5.4. It is a simple example, in
which the cable cost along each edge is the same, but the cost of digging each edge along the

circumference is only a fraction cheaper than 6
5

ths
the digging cost of an edge along the spokes.

Edge costdig costcable
c 119.00 40.00
s 100.00 40.00
u 1.00 0.10

Facilities
costDP 1000
capDP 6

Figure 5.4: Wheel and Spoke Example

The left table details the specific digging cost costdig and cable cost costcable for each potential
edge. The right table details the cost costDP of constructing a singular facility, as well as the
maximum capacity capDP that each facility can serve. The blue vertices represent users, each
with a demand of d(u) = 1.

This is a synthetic example that is designed to showcase that pre-determining which edges have
to be dug, could result in a solution where you are wasting more money on cabling cost than you
gain on digging cost. It is important to note that when planning realistic fiber-optics networks,
such a circular layout would likely never occur

Figure 5.5: Left: Steiner tree solution. Right: Tree decomposition solution

52 Capacitated Facility Location Problem on Graphs of Bounded Treewidth

CHAPTER 5. EVALUATION & DISCUSSION

Approach Digging Cost Cable Cost Facility Cost Total Cost
Steiner tree 601.00 360.60 1000 1961.60
Tree decomposition 606.00 240.60 1000 1846.60

Figure 5.6: Cost calculation, broken down by digging-, cable-, and facility-cost

Figure 5.5 depicts the solutions on this graph, as found by the Steiner tree approach (left) and
our tree decomposition approach (right) respectively. Table 5.6 describes the total cost of both of
these solutions, broken down by digging cost, cable cost, and facility cost.

The tree decomposition approach results in a solution that is 94.1% of the cost the solution
resulting from the Steiner tree approach. This is a minor improvement, and may not be significant
enough to weigh up against the increased running time.

Edge costdig costcable
a 10.00 2.50
b 50.00 5.00

cstreet 30.00 2.50
cgrass 29.00 2.50
u 1.00 0.10

Facilities
costDP 1000
capDP 12

Figure 5.7: Street Crossing Example

Street Crossing Example

We consider the graph of potential edges as depicted in figure 5.7. It is a simple example, which
represents two dead-end streets, that can both be covered by exactly one facility. It is a fraction
cheaper to dig across the street at the end of the street, but that would involve routing all cables
via this edge.

The left table details the specific digging cost costdig and cable cost costcable for each potential
edge. The right table details the cost costDP of constructing a singular facility, as well as the
maximum capacity capDP that each facility can serve. The blue vertices represent users, each
with a demand of d(u) = 1.

This example is designed to showcase the real scenario of the Steiner tree approach picking ineffi-
cient street-crossing locations.

Capacitated Facility Location Problem on Graphs of Bounded Treewidth 53

CHAPTER 5. EVALUATION & DISCUSSION

Figure 5.8: Top: Steiner tree solution. Bottom: Tree decomposition solution

Approach Digging Cost Cable Cost Facility Cost Total Cost
Steiner tree 250.00 136.20 1000 1386.20
Tree decomposition 252.00 106.20 1000 1358.20

Figure 5.9: Cost calculation, broken down by digging-, cable-, and facility-cost

Figure 5.8 depicts the solutions on this graph, as found by the Steiner tree approach (left) and
our tree decomposition approach (right) respectively. Table 5.9 describes the total cost of both of
these solutions, broken down by digging cost, cable cost, and facility cost.

The tree decomposition approach results in a solution that is 97.9% of the cost the solution res-
ulting from the Steiner tree approach. This is an absolutely minuscule improvement, and in terms
of cost gained it might not weigh up against the increased running time.

However, it is important to note that this does bear closer resemblance to what engineers would
actually like to draw out by hand. Whether that is worth the additional running time is debatable.

Inefficient Facility Mapping Example

We consider the graph of potential edges as depicted in figure 5.10. It is a simple example, which
represents three streets laid out in such a way that each of them is just slightly too small to cover
a fully used facility. Since multiple crossings cannot be considered, it becomes impossible for the
Steiner tree approach to fully make use of each facility

The left table details the specific digging cost costdig and cable cost costcable for each potential
edge. The right table details the cost costDP of constructing a singular facility, as well as the
maximum capacity capDP that each facility can serve. The blue vertices represent users, each
with a demand of d(u) = 1.

This example is designed to showcase the real scenario of the Steiner tree approach not always
utilizing its facilities to the fullest extent.

54 Capacitated Facility Location Problem on Graphs of Bounded Treewidth

CHAPTER 5. EVALUATION & DISCUSSION

Edge costdig costcable
a 2.00 0.20
b 3.00 0.20
c 1.00 0.10
u 1.00 0.10

Facilities
costDP 1000
capDP 7

Figure 5.10: Example network generated by the current approach using Steiner trees

Figure 5.11 depicts the solutions on this graph, as found by the Steiner tree approach (left) and
our tree decomposition approach (right) respectively. Table 5.12 describes the total cost of both
of these solutions, broken down by digging cost, cable cost, and facility cost.

The tree decomposition approach results in a solution that is 67.4% of the cost the solution
resulting from the Steiner tree approach. This is a huge improvement, and the clearest practical
example of a scenario where the tree decomposition approach could be worth the additional time
required to calculate a solution.

Figure 5.11: Left: Steiner tree solution. Right: Tree decomposition solution

Approach Digging Cost Cable Cost Facility Cost Total Cost
Steiner tree 72.00 9.20 6000 6081.20
Tree decomposition 84.00 12.10 4000 4096.10

Figure 5.12: Cost calculation, broken down by digging-, cable-, and facility-cost

Capacitated Facility Location Problem on Graphs of Bounded Treewidth 55

CHAPTER 5. EVALUATION & DISCUSSION

5.3 Discussion of Algorithm

The algorithm proposed by A. van den Boogaart [1] calculates a Steiner tree on the underlying
graph, with edge-weight based on the digging cost of each edge, such that the users/clients are its
terminals. The solution to CFLP is then calculated in polynomial time on this Steiner tree.

However, the problem with this Steiner tree based-approach is that the step in which the Steiner
tree is pre-calculated can only account for the digging cost of the network. It is blind to how
the facility- and cable-cost in the subsequent step of solving CFLP will affect the total cost. This
causes the algorithm to potentially lock itself in on an inefficient network design, as potential edges
which might be part of a more optimal solution to CFLP get discarded in the Steiner tree step.

The key advantage of our tree decomposition algorithm, when compared to the Steiner tree al-
gorithm, is that these potential edges do not always need to be dropped from consideration.
Whereas the Steiner tree algorithm requires the underlying graph of potential edges to be a tree,
our tree decomposition algorithm is able to efficiently find an optimal solution to CFLP on graphs
of bounded treewidth.
This means that our underlying graph is allowed to contain some cycles, which allows us to
re-introduce some of these potential edges that would have been dropped by the Steiner tree al-
gorithm.

Being able to deviate from the Steiner tree provides us with two key opportunities to improve the
solution:

• We can consider more efficient ways to connect users/clients to their respective facilities.

Sometimes the cheapest edge to dig, does not result in a solution that efficiently routes
the cables from facility to user/client. By routing the cables via an edge (or collection of
edges) that has a slightly higher digging cost, we could save enough money in cabling cost
to outweigh the additional expense.

The benefit of this improvement is shown in the ”wheel and spoke” and ”street crossing”
examples of section 5.2.3

• We can reduce the total number of facilities that are required.

For any valid solution it is required that any two facility trees are both vertex- and edge-
disjoint. If the underlying tree on which CFLP gets solved is predetermined without taking
facility location into account, this can result in situations where facilities simply cannot be
utilized to their full capacity.

Being able to include some additional edges of interest could break us out of this sub-
optimal facility distribution, by considering additional different mappings between users and
facilities.

The benefit of this improvement is shown in the ”inefficient facility mapping” example of
section 5.2.3

If we can include the appropriate edges in the solution, then we can potentially find significantly
cheaper solutions than we could with the Steiner tree algorithm. It is important to note however
that this does come at the expense of a greater running time.

56 Capacitated Facility Location Problem on Graphs of Bounded Treewidth

CHAPTER 5. EVALUATION & DISCUSSION

5.3.1 Limitations of Algorithm

It is however important to note that the algorithm presented in this thesis is not perfect, and still
presents some limitations. In this section we will discuss some of these limitations.

Assumptions about Graph Input

One of the limitations of the algorithm as described in this paper, is that we make assumptions
about the graph of potential edges that we assume as an input.

In this paper it is not detailed how real-world geographical data is translated to a graph of poten-
tial edges. We assume that this work has already been taken care of, and that the resulting set of
potential edges is correct and does not exclude potentially optimal solutions.
Besides the Steiner tree algorithm, the paper by A. van den Boogaart [1] also explains an algorithm
for converting such real-life geographical data into a graph representing potential edges.

At minimum including the potential edges of the Steiner tree, that has been determined by the
Steiner tree approach, assures that the tree decomposition approach will always find a solution
that is at least as cost-efficient as the solution found by the Steiner tree approach. However,
picking any additional ”edges of interest” to include, becomes non-trivial when you consider that
the resulting graph must have a bounded treewidth.
This paper does not explain how to pick these ”edges of interest”. We just show that including
certain edges of interest as additions to the Steiner tree, could lead to more optimal solutions.

A potential metric to look into is the metric of dilation, in which we compare the distance between
two points on the Steiner tree, with those same two points on the graph of potential edges. If
the difference between these two metrics is high (if the dilation is high), then it might be worth
including that edge as an ”edge of interest”.
The applicability and usefulness of this approach does require further research, however.

Building the Tree Decomposition

Another limitation is that in this paper we do not describe how to build the tree decomposition
that is used by the algorithm. We assume that the tree decomposition has already been built, and
that the bag size is limited.

In the implementation of the algorithm, we utilize the treewidth.treewidth min degree()
function from the NetworkX package. This method uses the ”min-degree”-heuristic to approxim-
ate an optimal tree decomposition.

We could also apply further pre-processing steps on the generated tree decomposition, which could
help speed up the algorithm calculating CFLP on the tree decomposition:

• Reducing the number of complex join nodes from the tree decomposition could be one such
pre-processing step.

The join node is the node type that is by far the most inefficient node to solve in our proposed
algorithm. This is because it involves comparing all solutions from the left child with all
solutions from the right child.

As shown in the section on the trim function, the size of these partial solution sets are largely
dependent on bag-size at that node. If we could try to reduce join nodes t ∈ T with bags
|Xt| = 3, and instead replace them with join nodes with bags |Xt| = 2, this could potentially
speed up the algorithm by several orders of magnitude.

Capacitated Facility Location Problem on Graphs of Bounded Treewidth 57

CHAPTER 5. EVALUATION & DISCUSSION

• Another pre-processing step that could be applied is one we have actually manually applied
in the experimental evaluation.

It involves finding all users in the graph of degree 1, and moving the user to its neighbouring
vertex. This will still help find an optimal solution that can be easily converted back to
an optimal solution for the original graph, but cuts down significantly on the number of
(possibly inefficient) join-nodes when generating the tree decomposition.

Potentially there may exist other additional pre-processing steps that might help improve the time
required to find an optimal solution.

Fiber-Optics Network not Complete

It is also important to note that the algorithm as described in this paper does not find the solution
to an entire fiber-optics network. The scope has been limited to just calculating the connection
between DPs and users/clients. The connections between DPs and APs, and between APs and
CPs has been ignored in this algorithm.

These higher-level decision problems are in effect the same problem as CFLP, only one level up.
To that end, you could run the same algorithm multiple times to build up the solution layer by
layer. This however comes with a similar drawback as the Steiner tree approach has, in that each
layer being calculated is blind to any subsequent layers that might need to be calculated. This
has a high likelihood for one layer to lock subsequent layers into inefficient solutions.

Another way to tackle this limitation could be by considering the k-Level Facility Location Problem
on graphs of bounded treewidth. However, this may have the potential of having an exploding
running time, meaning that in practice it may not be quite as useful.
More future research may be required

5.3.2 Future Work

As discussed in the limitations of the algorithm, section 5.3.1, there still exist many extensions,
improvements and further additional work that that can be applied to the work presented in this
paper, and to the field of fiber-optics network planning.

Some interesting further areas of research might be:

• Speeding up the implementation of the algorithm, so that it can be used on larger networks.
This would be very useful for practical applications

• Defining methods to help determine ”edges of interest” in such a way that the resulting
graph remains of bounded treewidth.

• Improving upon the generation of the tree decomposition, such that the algorithm may be
able to run significantly faster.

Ultimately the goal of this thesis is to find a practical solution to the problem of planning fiber-
optics networks for ThePeopleGroup. To that end, implementing a proper version of the algorithm
as presented in this paper, rather than the currently existing sub-optimal solution, is still a task
that needs completing. Extending this implementation to include the additional hierarchical lay-
ers, such as the AP-to-DP layer and the CP-to-AP layer, are also some desirable additions.

58 Capacitated Facility Location Problem on Graphs of Bounded Treewidth

Chapter 6

Conclusion

In this thesis we have set out to improve upon a pre-existing algorithm for designing fiber-optics
networks based on Steiner trees, as proposed by A. van den Boogaart [1]. The algorithm proposed
in this paper widens the solution space from a Steiner tree to a graph of bounded treewidth.

The problem of designing fiber-optics networks is a form of the capacitated facility location prob-
lem. We know this problem to be NP-hard on general and planar graphs. A method to efficiently
find a solution to CFLP involves reducing the solution space upon which we are solving it to a
point where it can be solved in polynomial time.

In this paper we propose a fixed parameter tractable algorithm to solve CFLP on any graph G,
such that the parameter k defined to be equal to the treewidth of graph G. This means that for
any graph of bounded treewidth k we can solve CFLP in polynomial time.
This algorithm works by solving the CFLP on a tree decomposition T of graph G, and relies on
the principle that for any graph of a bounded treewidth k, there exists a tree decomposition with
a maximum bag-size k + 1.

Since our algorithm is able to solve CFLP on graphs containing cycles, whereas the Steiner tree
approach is limited to trees, we can selectively reintroduce certain potential edges that got dis-
carded in the Steiner step. This allows us to widen the solution space and potentially find a more
cost-efficient solution to CFLP than with the Steiner tree approach.
We do however have to be mindful that any edge that we reintroduce on the Steiner tree does not
significantly increase the treewidth of the graph. Outer-planar graphs are an example of such a
graph with a low treewidth, namely a treewidth of 2.

We have also implemented a variant of this algorithm using Python and NetworkX. This imple-
mentation is not as efficient as the theoretical algorithm described in this paper, but it does serve
as a proof of concept that it is possible to use tree decomposition to solve CFLP in polynomial
time on graphs of bounded treewidth.

Comparing the results found by our tree decomposition approach to the results found by the
Steiner tree approach is very promising. In certain scenarios the tree decomposition approach is
able to book results that are up to 24.1% more efficient than the Steiner tree approach.
It is however important to note that the size of this cost-reduction is largely dependent on the
specific type of inefficiency that we are attempting to solve, and whether the potential edges that
lead to a more optimal solution have been included in the graph of bounded treewidth.

Overall the tree decomposition algorithm is a significant step towards finding more optimal solu-
tions towards designing fiber-optics networks. However, more work is required on the implement-
ation in order to efficiently solve larger data sets.

Capacitated Facility Location Problem on Graphs of Bounded Treewidth 59

Bibliography

[1] A. van den Boogaart. Efficient computation of fiber optic networks. 2018. ii, 3, 6, 7, 8, 47,
49, 56, 57, 59

[2] S. L. Hakimi. Optimum locations of switching centers and the absolute centers and medians
of a graph. Operations Research, 12(3):450–459, 1964. 6

[3] S. L. Hakimi. Optimum distribution of switching centers in a communication network and
some related graph theoretic problems. Operations Research, 13(3):462–475, 1965. 6

[4] S. L. Hakimi O. Kariv. An algorithmic approach to network location problems II: The p-
medians. SIAM Journal on Applied Mathematics, 37(3):539–560, 1979. 6

[5] L. A. Wolsey G. Cornuejols, G. L. Nemhauser. The uncapacitated facility location problem.
1983. 6

[6] M. S. Daskin S. Melkote. An integrated model of facility location and transport network
design. Transportation Research Part A: Policy and Practice, 35(6):515–538, 2001. 6, 15

[7] M. S. Daskin S. Melkote. Capacitated facility location / network design problems. European
Journal of Operational Research, 129(3):481–495, 2001. 6, 16

[8] J. Reese. Solution methods for the p-median problem:an annotated bibliography. Networks,
48(3):125–142, 2006. 7

[9] K. Aardal D. B. Shmoys, É. Tados. Approximation algorithms for facility location problem.
STOC ’97, pages 265–274, 1997. 7

[10] C. Swamy R. Levi, D. B. Shmoys. LP-based approximation algorithms for capacitated facility
location. IPCO 2004. Lecture Notes in Computer Science, 3064, 2004. 7

[11] A.J. Goldman. Optimal center location in simple networks. Transportation Science, 5(2):212–
221, 1971. 7

[12] A. Tamir. An O(pn2) algorithm for the p-median and related problems on tree graphs.
Operations Research Letters, 19(2):59–64, 1996. 7

[13] D. Skorin-Kapov. On some problems on k-trees and partial k-trees. 1989. 7

[14] E. N. Gilbert and H. O. Pollak. Steiner minimal trees. SIAM Journal on Applied Mathematics,
16(1):1–29, 1968. 7

[15] Richard M Karp. Reducibility among combinatorial problems. Complexity of computer com-
putations, page 85–103, 1972. 7

[16] D. S. Johnson M. R. Garey, R. L. Graham. The complexity of computing Steiner minimal
trees. SIAM Journal on Applied Mathematics, 32(4):835–859, 1977. 7

[17] R.A. Wagner S.E. Dreyfus. The Steiner tree problem in graphs. Networks, 3:195–207, 1971.
7

60 Capacitated Facility Location Problem on Graphs of Bounded Treewidth

BIBLIOGRAPHY

[18] A. F. Veinott Jr. R. E. Erickson, C. L. Monma. Send-and-split method for minimum-concave-
cost network flows. Mathematics of Operations Research, 12(4). 7

[19] P. Rossmanith D. Mölle, S. Richter. A faster algorithm for the Steiner tree problem. STACS
2006. Lecture Notes in Computer Science, 3884:561–570, 2006. 7

[20] L. Berman L. Kou, G. Markowsky. A fast algorithm for Steiner trees. Acta Informatica,
15:141–145, 1981. 7

[21] J. Chleb́ıková M. Chleb́ık. The Steiner tree problem on graphs: Inapproximability results.
Theoretical Computer Science, 406(3):207–214, 2008. 7

[22] T. Rothvoß L. Sanità J. Byrka, F. Grandoni. An improved LP-based approximation for Steiner
tree. STOC ’10: Proceedings of the forty-second ACM symposium on Theory of computing,
page 583–592, 2010. 7

[23] B. Zey M. Chimani, P. Mutzel. Improved Steiner tree algorithms for bounded treewidth.
Journal of Discrete Algorithms, 16:67–78, 2012. 8

[24] S. Kratsch J. Nederlof H. L. Bodlaender, M. Cygan. Deterministic single exponential time
algorithms for connectivity problems parameterized by treewidth. Information and Compu-
tation, 243:86–111, 2013. 8

[25] Marek Cygan, Fedor V. Fomin, Lukasz Kowlik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Micha l Pilipscuk, and Saket Saurabh. Parameterized Algorithms. Springer Inter-
national Publishing, 2015. 10, 11

[26] H. L. Bodlaender. Planar graphs with bounded treewidth. Institute of Information and
Computing Sciences, 1988. 11

Capacitated Facility Location Problem on Graphs of Bounded Treewidth 61

Appendix A

Linear Program

A.1 Mixed-Integer Linear Programming Definition

In this section we define the problem statement mathematically.

A.1.1 Shortest Path Problem

At the core of the facility-location problem, we wish to find the shortest (minimal-cost) path
between some DP and some FTU. We define the following LP to the shortest path problem:

Given: We consider an undirected graph G = (V,E), with two nodes s, t ∈ V for which s 6= t.
For each edge 〈i, j〉 ∈ E, we know a given weight c〈i,j〉.

Goal: Find a minimum-cost path on G, running from s to t.

Minimize:
∑
〈i,j〉∈E

c〈i,j〉 · x′〈i,j〉

Subject to: x〈i,j〉, x〈j,i〉 ∈ {0, 1} for each edge 〈i, j〉 ∈ E.∑
j∈V :

∃(〈i,j〉∈E)

(
x〈i,j〉

)
−

∑
j∈V :

∃(〈j,i〉∈E)

(
x〈j,i〉

)
=

1 if i = s

−1 if i = t

0 otherwise

for each vertex i ∈ V .
x′〈i,j〉 · 2 ≥ (x〈i,j〉 + x〈j,i〉) for each edge 〈i, j〉 ∈ E
x′〈i,j〉 ∈ {0, 1} for each edge 〈i, j〉 ∈ E

Variables: For each edge 〈i, j〉 ∈ E, we define a two decision-variables x〈i,j〉, x〈j,i〉, as well as a
decision variable x′〈i,j〉.

The variable x〈i,j〉 determines whether the edge 〈i, j〉 is used to from a path from s to t, specifically
in the direction i to j. The variable x′〈i,j〉 determines whether the edge 〈i, j〉 is used to from a
path from s to t, in either direction i to j, or j to i.

This LP considers the shortest-path problem as a flow-problem, where s is the source generating
a flow of 1, and t is the sink releasing a flow of −1. Every other vertex v ∈ V/{s, t} serves as
neither a source or a sink, and thus must have the same in-flow as out-flow.

62 Capacitated Facility Location Problem on Graphs of Bounded Treewidth

APPENDIX A. LINEAR PROGRAM

For every edge 〈i, j〉 ∈ E, if it possible for the flow to run from i to j, from j to i, or in neither
direction (or in both directions, but that will never be a minimal-cost solution).

A.1.2 Shortest Path Between Multiple Sources and Sinks

The Capacitated Facility-Location Problem is sadly not as simple as running the shortest path
algorithm multiple times between each pair of nodes to find the most optimal paths. That approach
would not consider the shared costs between paths, like the cost of constructing edges. For that
reason the calculation of the shortest path between multiple sources and sinks is slightly more
complex, and can be approach as an LP in multiple different ways. In this section we consider
two potential approaches:

• The Edge Capacity-Based Approach

• The Path-Based Approach

Each of these approaches have their respective benefits and disadvantages.

Edge Capacity-Based Approach to Multiple Shortest Path

The capacity-based approach works by considering each edge in the graph individually, and not
considering each individual path that might run over this edge. Our responsibility is to make sure
that no paths end at a random edge, and we do that by making sure that the total number of
paths going in is equal to the total number of paths going out of each individual edge.

This approach introduces a maximum capacity to each edge, but if this maximum capacity
is set to the sum of the overall demand, then this capacity does not affect the calculation of the
optimal solution.

Given: We consider an undirected graph G = (V,E), with two sets of vertices S, T ⊆ V , such
that |S| = |T | and S ∩ T = ∅. For each edge 〈i, j〉 ∈ E, we know a given capacity s(〈i, j〉) and a
given weight c〈i,j〉.

Goal: Find a minimum-cost set of edges on G, such that there exists some ordering S =
{s1, ..., sk}, T = {t1, ..., tk} for which there exists a path between each pair of vertices sl, tl, for
any 1 ≤ l ≤ k.

Minimize:
∑
〈i,j〉∈E

c〈i,j〉 · x′〈i,j〉

Subject to: 0 ≤ x〈i,j〉 + x〈j,i〉 ≤ s(〈i, j〉) for every edge 〈i, j〉 ∈ E
x〈i,j〉, x〈j,i〉 ∈ N0 for every edge 〈i, j〉 ∈ E∑
j∈V :

∃(〈i,j〉∈E)

(
x〈i,j〉

)
−

∑
j∈V :

∃(〈j,i〉∈E)

(
x〈j,i〉

)
=

1 if i ∈ S
−1 if i ∈ T
0 otherwise

for each vertex i ∈ V
x′〈i,j〉 · s(〈i, j〉) ≥ x〈i,j〉 + x〈j,i〉 for every edge 〈i, j〉 ∈ E
x′〈i,j〉 ∈ {0, 1} for every edge 〈i, j〉 ∈ E

Variables: For each edge 〈i, j〉 ∈ E, we define a two variables x〈i,j〉, x〈j,i〉 denoting the total used
capacity in either direction along 〈i, j〉, as well as a decision-variable x′〈i,j〉 denoting whether that

edge 〈i, j〉 is used (has a used capacity x〈i,j〉, x〈j,i〉 greater than zero).

Path-Based Approach to Multiple Shortest Path

The path based approach works by assigning a decision-variable for each possible path, and a
decision variable for each possible pair of path and edge. We decide on a path by path basis

Capacitated Facility Location Problem on Graphs of Bounded Treewidth 63

APPENDIX A. LINEAR PROGRAM

whether they are included in the solution, and the used capacity along an edge is determined, not
by the flow flowing through it, but by the sum of the paths that choose to use that edge.

We first consider a simplified version of the problem, where we already know a pre-existing map-
ping between sources and sinks.

Given: We consider an undirected graphG = (V,E), with two sets of vertices S = {s1, ..., sk}, T =
{t1, ...tk}, such that S, T ⊆ V and S∩T = ∅. For each edge 〈i, j〉 ∈ E, we know a given weight c〈i,j〉.

Goal: Find a minimum-cost set of edges on G, such that there exists a path between each pair of
vertices sl, tl, for any 1 ≤ l ≤ k.

Minimize:
∑
〈i,j〉∈E

c〈i,j〉 · x′〈i,j〉

Subject to: x〈i,j〉,l, x〈j,i〉,l ∈ {0, 1}
for each edge 〈i, j〉 ∈ E, and
each variable 1 ≤ l ≤ k.∑

j∈V :
∃(〈i,j〉∈E)

(
x〈i,j〉,l

)
−

∑
j∈V :

∃(〈j,i〉∈E)

(
x〈j,i〉,l

)
=

1 if i = sl

−1 if i = tl

0 otherwise

for each vertex i ∈ V , and
each variable 1 ≤ l ≤ k.

x′〈i,j〉 · 2k ≥
∑

1≤l≤k

(x〈i,j〉,l + x〈j,i〉,l) for each edge 〈i, j〉 ∈ E

x′〈i,j〉 ∈ {0, 1} for each edge 〈i, j〉 ∈ E

Variables: For each edge 〈i, j〉 ∈ E and each variable 1 ≤ l ≤ k, we define a decision-variable
x〈i,j〉,l, x〈j,i〉,l. These decision variable indicate whether the edge 〈i, j〉 is used in either direction
to from a path from sl to tl.
For each edge 〈i, j〉 ∈ E we define a decision-variable x′〈i,j〉, which indicates whether the edge 〈i, j〉
is used in any direction, for any path sl to tl.

If we want to extend this LP to allow for any pair of source and sink, we need to introduce decision-
variables for each potential path, that determine whether these paths are used. The assigning of
edges to paths can then only happen if paths are actually being used.

Given: We consider an undirected graph G = (V,E), with two sets of vertices S, T ⊆ V , such
that |S| = |T | and S ∩ T = ∅. For each edge 〈i, j〉 ∈ E, we know a given weight c〈i,j〉.

Goal: Find a minimum-cost set of edges on G, such that there exists some ordering S =
{s1, ..., sk}, T = {t1, ..., tk} for which there exists a path between each pair of vertices sl, tl, for
any 1 ≤ l ≤ k.

64 Capacitated Facility Location Problem on Graphs of Bounded Treewidth

APPENDIX A. LINEAR PROGRAM

Minimize:
∑
〈i,j〉∈E

c〈i,j〉 · x′〈i,j〉

Subject to: αs,t ∈ {0, 1}
for each source s ∈ S, and
each sink t ∈ T .∑

t∈T
(αs,t) = 1 for each source s ∈ S.∑

s∈S
(αs,t) = 1 for each sink t ∈ T .

x〈i,j〉,s,t, x〈j,i〉,s,t ∈ {0, 1}
for each edge 〈i, j〉 ∈ E,
each source s ∈ S, and
each sink t ∈ T .

x〈i,j〉,s,t, x〈j,i〉,s,t ≤ αs,t
for each edge 〈i, j〉 ∈ E,
each source s ∈ S, and
each sink t ∈ T .∑

j∈V :
∃(〈i,j〉∈E)

(
x〈i,j〉,s,t

)
−

∑
j∈V :

∃(〈j,i〉∈E)

(
x〈j,i〉,s,t

)
=

1 if i = s

−1 if i = t

0 otherwise

for each vertex i ∈ V ,
each source s ∈ S, and
each sink t ∈ T .

x′〈i,j〉 ·
(

2 · (|S| · |T |))
)
≥

∑
s∈S,t∈T

(
x〈i,j〉,s,t + x〈j,i〉,s,t

)
for each edge 〈i, j〉 ∈ E

x′〈i,j〉 ∈ {0, 1} For each edge 〈i, j〉 ∈ E

Variables: For each pair of vertices s ∈ S, t ∈ T , we define a decision variable αs,t, indicating
whether a path from source s to sink t is considered in the mapping.
For each edge 〈i, j〉 ∈ E and each pair s, t, we define a decision-variable x〈i,j〉,s,t, x〈j,i〉,s,t. These de-
cision variable indicate whether the edge 〈i, j〉 is used in either direction to from a path from s to t.

A.1.3 Capacitated Facility-Location Problem

We create an MILP for the Capacitated Facility-Location Problem, by further extending the MILP
we have defined for the Multiple Shortest Path Problem.

Edge Capacity-Based Approach to Multiple Shortest Path

Given: We consider an undirected graph G = (V,E). We are given a set of facilities F ⊆ V and
a set of consumers/users U ⊆ V , such that F ∩ U = ∅ and

∑
f∈F (|s(f)|) ≥

∑
u∈U (|d(u)|).

For each edge 〈i, j〉 ∈ E, we know the initial cost of construction cconstr.(〈i, j〉), as well as the cost
to increase the capacity by one ccable(〈i, j〉). For each facility f ∈ F , we know the initial cost of
construction cconstr.(f). For each facility f ∈ F , we know a maximum supply/capacity s(f). For
each user u ∈ U , we know a given demand d(u)

Goal: Find a minimum-cost set of edges and facilities on G, such that the demand d(u) of each
user u ∈ U has to be satisfied, without exceeding the supply s(f) of any facility f ∈ F

Capacitated Facility Location Problem on Graphs of Bounded Treewidth 65

APPENDIX A. LINEAR PROGRAM

Minimize:

∑
〈i,j〉∈E

((
cconstr.(〈i, j〉) · x′〈i,j〉

)
+
(
ccable (〈i, j〉) ·

(
x〈i,j〉 + x〈j,i〉

)))
+
∑
f∈F

(
cconstr.(f) · y′f

)
Subject to: 0 ≤ x〈i,j〉 + x〈j,i〉 ≤ s(〈i, j〉) for every edge 〈i, j〉 ∈ E

x〈i,j〉, x〈j,i〉 ∈ N0 for every edge 〈i, j〉 ∈ E
0 ≤ yf ≤ s(f) for every facility f ∈ F
yf ∈ N0 for every facility f ∈ F∑
j∈V :

∃(〈i,j〉∈E)

(
x〈i,j〉

)
−

∑
j∈V :

∃(〈j,i〉∈E)

(
x〈j,i〉

)
=

yi if i ∈ F
−d(i) if i ∈ U
0 otherwise

for each vertex i ∈ V
x′〈i,j〉 · s(〈i, j〉) ≥ x〈i,j〉 + x〈j,i〉 for every edge 〈i, j〉 ∈ E
x′〈i,j〉 ∈ {0, 1} for every edge 〈i, j〉 ∈ E
y′f · s(f) ≥ yf for every facility f ∈ F
y′f ∈ {0, 1} for every facility f ∈ F

Variables: For each edge 〈i, j〉 ∈ E, we define a two variables x〈i,j〉, x〈j,i〉 denoting the total used
capacity in either direction along 〈i, j〉, and a variable x′e denoting whether the edge e is used.
For each facility f ∈ F , we define a variable yf denoting the total used capacity of f , and a
variable y′f denoting whether the facility f is used.

Path-Based Approach to Multiple Shortest Path

Given: We consider an undirected graph G = (V,E). We are given a set of facilities F ⊆ V and
a set of consumers/users U ⊆ V , such that F ∩ U = ∅ and

∑
f∈F (|s(f)|) ≥

∑
u∈U (|d(u)|).

For each edge 〈i, j〉 ∈ E, we know the initial cost of construction cconstr.(〈i, j〉), as well as the cost
to increase the capacity by one ccable(〈i, j〉). For each facility f ∈ F , we know the initial cost of
construction cconstr.(f). For each facility f ∈ F , we know a maximum supply/capacity s(f). For
each user u ∈ U , we know a given demand d(u)

Goal: Find a minimum-cost set of edges and facilities on G, such that the demand d(u) of each
user u ∈ U has to be satisfied, without exceeding the supply s(f) of any facility f ∈ F

Minimize:

∑
〈i,j〉∈E

(
cconstr. (〈i, j〉) · x′〈i,j〉

)
+
∑
f∈F

(
cconstr.(f) · yf

)

+
∑
f∈F,
u∈U

αf,u · ∑
〈i,j〉∈E

(
ccable (〈i, j〉) ·

(
x〈i,j〉,f,u + x〈j,i〉,f,u

))
Subject to: 0 ≤ αf,u ≤ d(u)

for each facility f ∈ F , and
each user u ∈ U .

αf,u ∈ N0
for each facility f ∈ F , and
each user u ∈ U .∑

u∈U
(αf,u) ≤ s(f) for each facility f ∈ F .∑

f∈F

(αf,u) = d(u) for each user u ∈ U .

α′f,u · d(u) ≥ αf,u
for each facility f ∈ F , and
each user u ∈ U .

α′f,u ∈ {0, 1}
for each facility f ∈ F , and
each user u ∈ U .

66 Capacitated Facility Location Problem on Graphs of Bounded Treewidth

APPENDIX A. LINEAR PROGRAM

x〈i,j〉,f,u, x〈j,i〉,f,u ≤ α′f,u
for each edge 〈i, j〉 ∈ E,
each facility f ∈ F , and
each user u ∈ U .

x〈i,j〉,f,u, x〈j,i〉,f,u ∈ {0, 1}
for each edge 〈i, j〉 ∈ E,
each facility f ∈ F , and
each user u ∈ U .∑

j∈V :
∃(〈i,j〉∈E)

(
x〈i,j〉,f,u

)
−

∑
j∈V :

∃(〈j,i〉∈E)

(
x〈j,i〉,f,u

)
=

α′fd,u if i = f

−α′fd,u if i = u

0 otherwise

for each vertex i ∈ V ,
each facility f ∈ F , and
each user u ∈ U .

x′〈i,j〉 ·
(

2 · (|F | · |U |)
)
≥

∑
f∈F,u∈U

(
x〈i,j〉,f,u + x〈j,i〉,f,u

)
for each edge 〈i, j〉 ∈ E

x′〈i,j〉 ∈ {0, 1} For each edge 〈i, j〉 ∈ E
yf · s(f) ≥

∑
u∈U

(αf,u) for each facility f ∈ F .

yf ∈ {0, 1} for each facility f ∈ F.

Variables: For each pair of vertices f ∈ F, u ∈ U , we define a variable αf,u indicating the total
capacity supplied from facility f to user u, and a decision variable α′f,u indicating whether facility
f supplies any capacity to user u.
For each edge 〈i, j〉 ∈ E and each pair f, u, we define a decision-variable x〈i,j〉,f,u, x〈j,i〉,f,u indic-
ating whether the edge 〈i, j〉 is used in either direction to from a path from f to u.
For each facility f ∈ F we define a decision-variable yf , indicating whether facility f gets built.

A.1.4 Capacitated Facility-Location Problem with Distribution-Facilities

The version of the Capacitated Facility-Location Problem that we aim to solve in this paper
is slightly more complex than the vanilla Capacitated Facility-Location Problem. We introduce
”distribution facilities”, which serve as a mandatory step between the actual supply-facility and
the consumer.

Edge Capacity-Based Approach to Multiple Shortest Path

Given: We consider an undirected graph G = (V,E). We are given a set of supply-facilities
Fs ⊆ V , a set of distribution-facilities Fd ⊆ V and a set of consumers/users U ⊆ V , such that
(Fs ∪ Fd) ∩ U = ∅ and Fs ∩ Fd = ∅.
Furthermore it also hold that

∑
fs∈Fs

(|s(fs)|) ≥
∑
fd∈Fd

(|s(fd)|) ≥
∑
u∈U (|d(u)|).

For each edge 〈i, j〉 ∈ E, we know the initial cost of construction cconstr.(〈i, j〉), as well as the
cost to increase the capacity by one ccable(〈i, j〉). For each facility f ∈ Fs, Fd, we know the initial
cost of construction cconstr.(f). For each facility f ∈ Fs, Fd, we know a maximum supply/capacity
s(f). For each user u ∈ U , we know a given demand d(u)

Goal: Find a minimum-cost set of edges and facilities on G, such that the demand d(u) of each
user u ∈ U has to be satisfied, without exceeding the supply s(f) of any facility f ∈ Fs, Fd.

Capacitated Facility Location Problem on Graphs of Bounded Treewidth 67

APPENDIX A. LINEAR PROGRAM

Minimize:

∑
〈i,j〉∈E

((
cconstr.(〈i, j〉) · x′〈i,j〉

)
+
(
ccable,Fd-to-U (〈i, j〉) ·

(
x〈i,j〉,Fd-to-U + x〈j,i〉,Fd-to-U

))
+
(
ccable,Fs-to-Fd

(〈i, j〉) ·
(
x〈i,j〉,Fs-to-Fd

+ x〈j,i〉,Fs-to-Fd

)))
+
∑
fd∈Fd

(
cconstr.(fd) · y′fd

)
+
∑
dd∈Fs

(
cconstr.(fs) · z′fs

)
Subject to: 0 ≤

(
x〈i,j〉,Fd-to-U + x〈j,i〉,Fd-to-U

)
+
(
x〈i,j〉,Fs-to-Fd

+ x〈j,i〉,Fs-to-Fd

)
≤ s(〈i, j〉)

for every edge 〈i, j〉 ∈ E
x〈i,j〉,Fd-to-U , x〈j,i〉,Fd-to-U , x〈i,j〉,Fs-to-Fd

, x〈j,i〉,Fs-to-Fd
∈ N0

for every edge 〈i, j〉 ∈ E
0 ≤ yfd ≤ s(fd) for every distribution-facility f ∈ Fd

yfd ∈ N0 for every distribution-facility f ∈ Fd

0 ≤ yfs ≤ s(fs) for every supply-facility f ∈ Fs

yfs ∈ N0 for every supply-facility f ∈ Fs∑
j∈V :

∃(〈i,j〉∈E)

(
x〈i,j〉,Fd-to-U

)
−

∑
j∈V :

∃(〈j,i〉∈E)

(
x〈j,i〉,Fd-to-U

)
=

yfd if i ∈ Fd

−d(i) if i ∈ U
0 otherwise

for each vertex i ∈ V∑
j∈V :

∃(〈i,j〉∈E)

(
x〈i,j〉,Fs-to-Fd

)
−

∑
j∈V :

∃(〈j,i〉∈E)

(
x〈j,i〉,Fs-to-Fd

)
=

yfs if i ∈ Fs

−yfd if i ∈ Fd

0 otherwise

for each vertex i ∈ V
x′〈i,j〉 · s(〈i, j〉) ≥

(
x〈i,j〉,Fd-to-FU

+ x〈j,i〉,Fd-to-FU

)
+
(
x〈i,j〉,Fs-to-Fd

+ x〈j,i〉,Fs-to-Fd

)
for every edge 〈i, j〉 ∈ E

x′〈i,j〉 ∈ {0, 1} for every edge 〈i, j〉 ∈ E
y′fd · s(fd) ≥ yfd for every distribution-facility fd ∈ Fd

y′fd ∈ {0, 1} for every distribution-facility fd ∈ Fd

y′fs · s(fs) ≥ yfs for every supply-facility fs ∈ Fs

y′fs ∈ {0, 1} for every supply-facility fs ∈ Fs

Variables: For each edge 〈i, j〉 ∈ E, we define two pairs of variables x〈i,j〉,Fs-to-Fd
, x〈j,i〉,Fs-to-Fd

,
and x〈i,j〉,Fd-to-U , x〈j,i〉,Fd-to-U denoting the total used capacity in either direction along 〈i, j〉 for
cables between supply-facilities and distribution facilities, and between distribution-facilities and
users respectively. Additionally, for each edge we define a variable x′〈i,j〉 denoting whether the
edge e is used for any capacity in any direction.
For each facility f ∈ Fs, Fd, we define a variable yf denoting the total used capacity of that facility
f , and a variable y′f denoting whether the facility f is used for any capacity.

Path-Based Approach to Multiple Shortest Path

Given: We consider an undirected graph G = (V,E). We are given a set of supply-facilities
Fs ⊆ V , a set of distribution-facilities Fd ⊆ V and a set of consumers/users U ⊆ V , such that
(Fs ∪ Fd) ∩ U = ∅ and Fs ∩ Fd = ∅.
Furthermore it also hold that

∑
fs∈Fs

(|s(fs)|) ≥
∑
fd∈Fd

(|s(fd)|) ≥
∑
u∈U (|d(u)|).

For each edge 〈i, j〉 ∈ E, we know the initial cost of construction cconstr.(〈i, j〉), as well as the
cost to increase the capacity by one ccable(〈i, j〉). For each facility f ∈ Fs, Fd, we know the initial
cost of construction cconstr.(f). For each facility f ∈ Fs, Fd, we know a maximum supply/capacity
s(f). For each user u ∈ U , we know a given demand d(u)

68 Capacitated Facility Location Problem on Graphs of Bounded Treewidth

APPENDIX A. LINEAR PROGRAM

Goal: Find a minimum-cost set of edges and facilities on G, such that the demand d(u) of each
user u ∈ U has to be satisfied, without exceeding the supply s(f) of any facility f ∈ Fs, Fd.

Minimize:

∑
〈i,j〉∈E

(
cconstr. (〈i, j〉) · x′〈i,j〉

)
+
∑
fs∈Fs

(
cconstr.(fs) · yfs

)
+
∑
fd∈Fd

(
cconstr.(fd) · yfd

)
+

∑
fs∈Fs,fd∈Fd

〈i,j〉∈E

(
ccable,Fs-to-Fd

(〈i, j〉) ·
(
x〈i,j〉,fs,fd + x〈j,i〉,fs,fd

))

+
∑

fd∈Fd,u∈U
〈i,j〉∈E

(
ccable,Fd-to-U (〈i, j〉) ·

(
x〈i,j〉,fd,u + x〈j,i〉,fd,u

))

Subject to: 0 ≤ αfd,u ≤ d(u)
For each distr.-facility fd ∈ Fd, and
each user u ∈ U .

0 ≤ αfs,fd ≤ s(fd)
For each supply-facility fs ∈ Fs, and
each distr.-facility fd ∈ Fd.

αfd,u, αfs,fd ∈ N0
For each facility fs ∈ Fs, fd ∈ Fd, and
each user u ∈ U .∑

u∈U
(αfd,u) ≤ s(fd) For each distr.-facility fd ∈ Fd.∑

fd∈Fd

(αfd,u) = d(u) For each user u ∈ U .∑
fd∈Fd

(αfs,fd) ≤ s(fs) For each supply-facility fs ∈ Fs.∑
fs∈Fs

(αfs,fd) =
∑
u∈U

(αfd,u) For each distr.-facility fd ∈ Fd.

0 ≤ x〈i,j〉,fd,u, x〈j,i〉,fd,u ≤ αfd,u
For each edge 〈i, j〉 ∈ E,
each facility fd ∈ Fd, each user u ∈ U .

0 ≤ x〈i,j〉,fs,fd , x〈j,i〉,fs,fd ≤ αfs,fd
For each edge 〈i, j〉 ∈ E,
each facility fs ∈ Fs, fd ∈ Fd.

x〈i,j〉,fd,u,x〈j,i〉,fd,u,

x〈i,j〉,fs,fd , x〈j,i〉,fs,fd
∈ N0

For each edge 〈i, j〉 ∈ E,
each facility fs ∈ Fs, fd ∈ Fd, and
each user u ∈ U .

∑
j∈V :

∃(〈i,j〉∈E)

(
x〈i,j〉,fd,u

)
−

∑
j∈V :

∃(〈j,i〉∈E)

(
x〈j,i〉,fd,u

)
=

αfd,u if i = fd

−αfd,u if i = u

0 otherwise

For each vertex i ∈ V ,
each facility fd ∈ Fd, user u ∈ U .∑

j∈V :
∃(〈i,j〉∈E)

(
x〈i,j〉,fs,fd

)
−

∑
j∈V :

∃(〈j,i〉∈E)

(
x〈j,i〉,fs,fd

)
=

αfs,fd if i = fs

−αfs,fd if i = fd

0 otherwise

For each vertex i ∈ V ,
each facility fs ∈ Fs, fd ∈ Fd.

x′〈i,j〉 ·
(

2 · (|Fs| · |Fd|) + 2 · (|Fd| · |U |)
)
·
∑
u∈U

(d(u)) ≥∑
fs∈Fs,
fd∈Fd

(
x〈i,j〉,fs,fd + x〈j,i〉,fs,fd

) ∑
fd∈Fd,
u∈U

(
x〈i,j〉,fd,u + x〈j,i〉,fd,u

)
for each edge 〈i, j〉 ∈ E

x′〈i,j〉 ∈ {0, 1} For each edge 〈i, j〉 ∈ E

Capacitated Facility Location Problem on Graphs of Bounded Treewidth 69

APPENDIX A. LINEAR PROGRAM

yfd · s(fd) ≥
∑
u∈U

(αfd,u) For each distr.-facility fd ∈ Fd.

yfs · s(fs) ≥
∑
fd∈Fd

(αfs,fd) For each supply-facility fs ∈ Fs.

yfs , yfd ∈ {0, 1} For each facility fs ∈ Fs, fd ∈ Fd.

Variables: For each pair of vertices fd ∈ Fd, u ∈ U , we define a variable αfd,u indicating the total
capacity supplied from distribution-facility fd to user u.
For each pair of vertices fs ∈ Fs, fd ∈ Fd, we define a variable αfs,fd indicating the total capacity
supplied from supply-facility fs to distribution-facility fd.
For each edge 〈i, j〉 ∈ E and each pair fd, u, we define a variable x〈i,j〉,fd,u, x〈j,i〉,fd,u indicating
the total capacity supplied from distribution-facility fd to user u, along edge 〈i, j〉 and 〈j, i〉 re-
spectively.
For each edge 〈i, j〉 ∈ E and each pair fs, fd, we define a variable x〈i,j〉,fs,fd , x〈j,i〉,fs,fd indicating
the total capacity supplied from supply-facility fs to distribution-facility fd, along edge 〈i, j〉 and
〈j, i〉 respectively.
For each edge 〈i, j〉 ∈ E, we define a decision-variable x′〈i,j〉 indicating whether the edge 〈i, j〉 is
used for any capacity in any direction.
For each facility fs ∈ Fs we define a decision-variable yfs , indicating whether facility fs gets built.
For each facility fd ∈ Fd we define a decision-variable yfd , indicating whether facility fd gets built.

A.1.5 Comparison Between Edge Capacity-Based and Path-Based MILP

Both the aforementioned Edge Capacity-Based and the Path-Based MILP approach to Capacit-
ated Facility-Location Problem will correctly find the solution to the cost-minimization question.
However, performance- and usability-wise both approaches do have some differences

Difference in Performance

While it is difficult to determine the effective performance for solving any linear program, it is
possible to estimate expected performance, based on the amount of decision-variables and the
amount of unique constraint-statements that encompass the LP.

Edge Capacity
Based Approach

Path
Based Approach

#unique variables O
(
|Fs|+ |Fd|+ |E|

)
O
(
|E| ·

(
|Fd| · (|Fs|+ |U |)

)
+ (|Fd|+ |F s|)

)
#constraints O

(
|V |+ |E|

)
O
(

(|V |+ |E|) ·
(
|Fd| · (|Fs|+ |U |)

))
#variables / constraint O

(
|E|
)

O
(
|E| ·

(
|Fd| · (|Fs|+ |U |)

))
In this table we can see that the path-based approach has a number of constraints and a number
of variables both reaching a factor of O(n3), whereas the edge capacity-based approach managed
achieve a similar result with merely a factor O(n) constraints and variables.

This likely means that performance-wise, the edge capacity-based approach will be significantly
faster than the path-based approach.

Difference in Ambiguity of Result

Even though the capacity-based approach might be faster to calculate, that does not mean that
the given solution is ultimately equality unambiguous.

70 Capacitated Facility Location Problem on Graphs of Bounded Treewidth

APPENDIX A. LINEAR PROGRAM

The edge capacity-based approach does not consider individual paths, and rather only considers
the total used capacity along each individual edge. There exist specific results where the path
of two different facility-to-user pairs, or facility-to-facility pairs, overlap. (See figure above). In
some of these cases the lack of distinction between paths might create ambiguity in interpreting
the result with regards to mapping facilities to users.
In the path based approach, this will not be the case, since it is always clearly defined which
facility is mapped to which user, as well as the specific path that that specific mapping follows.

Difference in Expandability of Problem

There is also a slight difference in the expandability on the problem between the two approaches.
Under the path based approach we are able to easy add additional requirements such as a maximum
total length of a path, that are not as easily to define in the edge capacity-based approach.

Conclusion

Which of the two approaches is most useful is largely dependent on what qualities you value most.

• if you value performance over unambiguity and expandability, then the edge-capacity based
approach might better suit your needs.

• if you value unambiguity and expandability over performance, then the path based approach
might better suit your needs.

Capacitated Facility Location Problem on Graphs of Bounded Treewidth 71

	Introduction
	Background and Motivation
	Problem Description
	Existing Approach using Steiner Trees
	New Approach on Graphs of Bounded Treewidth

	Results
	Related Work
	Fiber-Optics Network Planning using Steiner Trees
	Facility-Location Problem
	Minimal Steiner Tree Problem

	Organization

	Preliminaries
	Graph Theory
	Basic Definitions
	Special Graphs

	Tree Decomposition and Treewidth
	Tree Decomposition
	Treewidth

	Facility Location Problems
	p-Median Problem
	Facility Location Problem
	Facility Location / Network Design Problem

	Steiner Tree Problem

	Problem Description
	Problem Definition
	Subproblem Definition
	Elaboration

	Algorithm Description
	Description of the Algorithm
	Overall Strategy
	"Introduce Edge"-Node
	"Introduce Vertex"-Node
	"Forget Vertex"-Node
	"Join Sub-Trees"-Node
	"Leaf"-Node
	Examples

	Trim Function
	Goal of the Trim Function
	Trim Function
	Solution Bound
	Correctness of the Trim Function

	Running Time

	Evaluation & Discussion
	Implementation of the Algorithm
	Evaluation of Results
	Experimental Setup
	General Synthetic Example
	Specific Synthetic Examples

	Discussion of Algorithm
	Limitations of Algorithm
	Future Work

	Conclusion
	Appendix
	Linear Program
	Mixed-Integer Linear Programming Definition
	Shortest Path Problem
	Shortest Path Between Multiple Sources and Sinks
	Capacitated Facility-Location Problem
	Capacitated Facility-Location Problem with Distribution-Facilities
	Comparison Between Edge Capacity-Based and Path-Based MILP

