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Abstract

With the tremendous growth of the Internet, recommendation systems have become increas-
ingly significant since they assist consumers in efficiently filtering out products that match
their preferences. The core of the sequential recommendation is to use the user’s history of
interactions and additional information to model the user’s preferences and provide them with
a list of recommendations that match their preferences. In real life, users’ interests and prefer-
ences fluctuate over time, and the majority of current sequential recommendation algorithms
only consider long- or short-term user preferences, and most of them only consider the order
of sequences and ignore the time interval between items and items. Although some proposed
models, such as TiSASRec [21], has managed to take advantage of temporal information,
there is still a great deal of features contained in the timestamps that can be exploited, and
the algorithm itself actually only model the long-term preference.

Therefore, in this project, in order to capture the dynamical user interests, we propose
a model, Ti-SACNN, which takes both temporal information and long- and short-term pref-
erences into consideration based on SASRec [18]. Different from [21], we design an en-
hanced temporal self-attention module which further explores the features hidden inside the
timestamps. And for the short-term preference, we utilize the vertical filter in the convolu-
tional layer to capture users’ recent intention based on the last few interactions. We conduct
comprehensive experiments on three public datasets, and the results show that our proposed
model can effectively capture users’ dynamic preferences and it outperforms the comparison
baseline methods on common evaluation metrics.
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Chapter 1

Introduction

Nowadays, people can no longer live without the wealth of services offered by the Internet and
mobile App, and the personalized service provided by the recommendation system plays a
key role. The function of the recommendation system is to recommend to users the products
they are most interested in. In the field of e-commerce such as Amazon and Alibaba, or in
the field of social networks such as Facebook and Twitter, or in the field of videos such as
YouTube, Netflix, and TikTok, they all rely heavily on their own recommendation systems
for their content distribution strategies, for example, 80% of movies watched on Netflix came
from recommendations [10]. In today’s world of massive amounts of data, users’ needs are
often uncertain when it comes to accessing information, or search engines do not provide
good feedback on the keywords that users are searching for. At this time, the recommend-
ation system can build a model to explore the potential interests of the user based on the
user’s history of interaction with the website or app, as well as information about the user’s
social attributes and friend network, and then provide personalized recommendations for each
user based on the potential interests. This can not only satisfy the user’s needs and enhance
the user experience but also increase the conversion rate of the product or information, thus
increasing the revenue of the app or website.

The core of a recommendation system is the recommendation algorithm. One of the early
representative recommendation algorithms is the collaborative filtering-based recommenda-
tion algorithm [31], it is quite popular in the time mainly because of its simplicity and good
effects. The core idea of collaborative filtering is clustering, for example, users with similar
histories are used as references for recommendation systems. Because early recommendation
systems relied heavily on user ratings of items, in many cases the recommendation problem
could be transformed into a user rating prediction problem for items, using a user-item rating
matrix to compute, hence the methods that use matrix factorization [19] to predict ratings is
proposed. This type of approach maps users and goods onto a low-dimensional space and in-
troduces the concept of hidden vectors, but the limitations of matrix factorization algorithms
are gradually exposed as the scale of recommendation system increases and the problem of
cold-starting. Today’s web servers basically record user history behaviour through sequences
or sessions, as the traditional recommendation algorithms mentioned above are heavily de-
pendent on user purchase behaviour, so the performance of the algorithm suffers in this
scenario. Hence, algorithms for sequence is designed. Sequential recommendation systems
attempt to discover and predict sequential user behaviors, user-item interactions, and the
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CHAPTER 1. INTRODUCTION

change of item popularity and user preferences overtime [38]. Most of the algorithms that
were first used for sequential recommendations were relatively simple machine learning al-
gorithms, such as Markov chain [30]. Sequential recommendation based on Markov chain
usually only take the last click or good into account to predict the next item, so it performs
well when the sequence is short. However, when the sequence become relatively long, the
performance of the model can become worse significantly because it neglects the majority
information of the sequence.

In recent years, with the continuous development of deep learning, recommendation sys-
tem based on deep learning has attracted the attention of many researchers. The last few
years have witnessed the remarkable success of deep learning technique in numerous ap-
plication fields, including computer vision and natural language processing. Deep learning
has the advantage of extracting and identifying effective latent feature representation from
complex data. Because in the real environment, there always exists some non-trivial and non-
linear relationships between users and items, by using deep learning, these kind of complex
relations can be captured. In addition, complex relationships that exist between the data
itself in massive amounts of data, for example context information, can also be uncovered by
deep learning techniques. According to Zhang et al.[46], deep learning based recommenda-
tion systems can be divided into following subcategories: the Multi-Layer Perceptron(MLP),
the Autoencoder(AE), the Convolutional Neural Network(CNN), the Recurrent Neural Net-
work(RNN), the Restricted Boltzmann Machine(RBM), the Neural Autoregressive Distribu-
tion Estimation (NADE), the Adversarial Network(AN), the Attention Model(AM), Deep
Reinforcement Learning(DRL) and hybrid models. In sequential recommendation, the com-
mon deep learning based algorithms are CNN, RNN, GNN and Attention Model. Methods
such as RNN and attention mechanisms are widely used for the extraction of information
within sequences. They can extract the complete sequence information of the user and model
the sequential pattern of the sequence, thus providing a large improvement over traditional
methods. However, RNNs alone cannot learn the relevance information between items within
a sequence well, which often expresses users’ true preferences more effectively. The attention
mechanism in recommendation system can learn this relevance information very effectively
and distinguish between the importance of features. Furthermore, it allows direct inspection
of the inner workings of the mechanism, by visualising the attention weights of the inputs and
corresponding outputs [22]. Hence, not only the performance but also the interpretability of
the recommendation system can be improved. In this project, our research is mainly based
on the attention mechanism based recommendation system.

In many past studies about sequential recommendation, researchers have generally con-
sidered only the order in the sequence, and also the temporal factor has often been ignored.
As we all know, temporal information often contains a wealth of useful information, and tem-
poral information is quite critical in some fields, such as time series forecasting. Therefore, we
assume that including the temporal elements can help improve the recommendation model’s
effectiveness, and in recent works, such as TiSASRec [21], has incorporated the temporal
information and has proven to be effective. Fig 1.1 shows a simple example to illustrate the
importance of the time factor. We can see that there are instances in real life where the
order of sequence is same but the user’s interests change at different time intervals. If the
purchase interval in the sequence is long, then the next item the model recommends for that
user will be another type of biscuit, as biscuits appear most frequently in that user’s shop-
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CHAPTER 1. INTRODUCTION

ping sequence and long-term preference plays an more important role. However, if the time
interval between the purchased last item (the chocolate in the figure) and the previous one
is relatively close, then the next recommended item will most likely be a different chocolate
because recent interests has a greater impact.

Figure 1.1: Same commodity sequence with different time intervals

Previous research has either focused on long-term preferences or short-term preferences.
However, as we all know that the user preference is dynamic and complex, and neither long-
term nor short-term preferences can accurately reflect users’ true preferences. Hence, recom-
mendation algorithms that use a fusion of long- and short-term preferences to model users’
dynamic interests have become a relatively new research direction.

As far as we currently know, although lots of researchers have conducted research in this
direction of long- and short-term fusion, few studies have combined long- and short-term pref-
erences together with temporal information to model the sequential recommendation system.
Hence, In this project, we propose a robust self-attention based sequential recommendation
model which incorporates both long- and short-term preferences, as well as temporal in-
formation. By combining the advantages of these two approaches, our proposed sequential
recommendation model can provide better recommendations to consumers.

Extensive experiments show that our model perform well on real-world datasets. Our
main contributions are summarized as follow:

1. We introduce the time interval and its transformation as additional input in embed-
ding, and we propose an enhanced temporal self-attention mechanism to capture the
user’s long-term preferences. It can not only extract features from items and absolution
position embeddings, but also capture those features hidden inside the relative positions.

2. We utilize a special convolutional neural network to capture the user’s short-term pref-
erences. By combining users’ long-term preferences with their short-term preferences,
our approach will be able to better model their true preferences.

3. We conduct comprehensive experiments based on our proposed method, and we also
examined the influence of the various components. Two assessment measures indicate
that our model outperforms comparable methods and achieves satisfactory results.
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CHAPTER 1. INTRODUCTION

The remainder of this thesis is organized as follows. In Chapter two, we conduct a review of
the literature on recommendation systems, ranging from traditional methods to deep learning
techniques. This chapter will discuss in full detail several state-of-the-art algorithms and
methods that are relevant to this thesis. In Chapter three, we go into detail about the
background of the techniques that we utilize in our algorithm. Chapter four provides an
overview of the proposed model and then delves into detail about each part. Chapter five
describes the experimental setup used to evaluate our models and summarizes the findings
and conclusions from our experiments. At last, in Chapter six, we draw conclusions from our
experiments and findings and outline several directions that can be improved in the future
for research based on the observations and conclusions in this thesis.

4 Long- and Short-term Sequential Recommendation with
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Chapter 2

Literature Analysis

Over the past few decades, researchers have developed a variety of recommendation algorithms
to improve the performance of recommendation systems. From traditional algorithms such as
collaborative filtering to today’s deep learning-based recommendation algorithms, the number
is large enough to drive recommendation systems research forward. In this section, a selection
of previous related works from conventional recommendation systems to deep learning-based
recommendation systems, and especially the state-of-the-art algorithms in the sequential re-
commendation, are introduced.

2.1 Recommendation System Based on Traditional Methods

2.1.1 Collaborative Filtering

Collaborative filtering can efficiently filter out valid information from massive amounts of
data, and it is one of the most effective recommendation algorithms available. Collaborative
filtering relies only on the relation between user and item, based on the assumption that users
with the same rating for the same item may have similar preferences. Collaborative filtering
will recommend items based on the interests of other users with similar interests. It can also
make recommendations by identifying items similar to items previously rated by the target
user and calculating a similarity value by counting the frequency of simultaneous user or item
occurrences.

Figure 2.1: User-Item Matrix in Collaborative Filtering
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CHAPTER 2. LITERATURE ANALYSIS

In the matrix of fig.2.1, users are used as matrix row coordinates, and items are used as
column coordinates, with green thumbs-up being high ratings and red thumbs-down being
low ratings. With this matrix, the problem of recommendation is converted into predicting
the question mark.

Linden et al. [25] proposed an item-to-item collaborative filtering method, which calculates
information about the similarities between products based on their purchase history and then
personalizes recommendations for each user from the product’s perspective. Park Y et al. [27]
proposed a rapid CF algorithm that utilizes a k-nearest neighbor graph. The idea is to reverse
the process of finding k neighbors, and instead of finding k similar neighbors of unrated items,
the model finds the k-nearest neighbors of rated items. The principle and implementation of
collaborative filtering are simple, it does not require loss functions and gradient descent, but
collaborative filtering algorithms have several drawbacks:

1. weak representation:Only the user’s rating data is used as a feature. No other
features (such as user age, gender, product attributes, etc.) can be added to the model
to increase the power of representation.

2. cold start problem:It is difficult for new users and new products to guarantee the
quality of recommendations due to the lack of data.

3. Hard to find similar users accurately: Due to the extreme sparsity of historical
user data in today’s Internet scenario, the collaborative algorithm is not suitable for the
case without rating data.

2.1.2 Matrix Factorization

Although collaborative filtering is recognized as the most classic recommendation algorithm,
it has the obvious drawbacks mentioned above. Netflix has improved on collaborative filtering
by proposing a matrix factorization algorithm [19] that enhances the model’s ability to handle
sparse matrices. Matrix factorization is actually equivalent to an Embedding method. The
main process of matrix factorization is first to decompose the co-occurrence matrix generated
by collaborative filtering to generate the hidden vectors of users and items and then make
recommendations by the similarity between the hidden vectors of users and items. Fig.2.2
demonstrates an simple example of matrix factorization.

Figure 2.2: Matrix Factorization Example

FISM [17] is an item-based Top-N recommendation algorithm. It utilizes the idea of
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CHAPTER 2. LITERATURE ANALYSIS

matrix factorization to decompose the item-item similarity matrix to the product of two
low-dimensional latent factor matrices.

2.1.3 Factorization Machine

Factorization Machine(FM) [29] was firstly proposed by Steffen Rendle in 2010. The model
solves the classification problem of large-scale sparse data mainly through feature combina-
tion. The equation for FM is as follows, where n is the number of features in sample, xi is
the ith feature’s value, θ0 and θ1 are the parameters of the model, and < θ0, θ1 > is the inner
product of two vectors. This formulation allows the FM model to automatically combine
features to generate non-linearities by introducing a second-order cross-feature combination
term into the logistic regression model, which allows for more effective mining of non-linear
information within the first-order features and increases the model’s fitting ability and gen-
eralisability. The model also uses hidden vector dot product to learn the weights of the
second-order cross terms, which can effectively avoid the problem caused by sparse data.

ŷ = hθ(x) = θ0 +
n∑
i=1

θ1xi +
n−1∑
i=1

n∑
j=i+1

< θi · θj > xixj (2.1)

DeepFM [12], similar to Wide&Deep [7] model, is also obtained from the joint training
of the shallow and deep models. The difference is that the Wide part is replaced by LR with
FM, which has the ability to learn cross features automatically, avoiding the manual feature
engineering work in the shallow part of the original Wide&Deep model. The DeepFM model
contains DNN model. The FM can extract low-order features, while the DNN can extract
high-order features.

FM can be seen as an extension of MF, dealing with user and item in addition to integrat-
ing other features. All features are converted to low-dimensional vectors, and the combination
of weights occurs between any two features. If FM uses only user and item, the process is the
same as MF. FM inherits the features of the embedding mechanism and extends them with
other features. This makes FM more flexible and can be applied in a wider range of scenarios.

2.1.4 Markov Chain

In sequential recommendation, in order to capture the user’s dynamic interests, the Markov
Chain model is firstly introduced. This model assumes that the next click or item is only
related to the previous one or several actions. FPMC [30] combines matrix factorization and
Markov Chain together and combines the strengths of both approaches, providing a separate
transition matrix for each user, capturing time-series data while dealing with highly sparse
data, and modeling users’ long-term preferences. Shani et al. [33] proposed a recommenda-
tion algorithm named Markov decision process (MDP). The simple MDP algorithm can be
reduced to a first-order Markov chain, modeling the transfer probabilities between items and
using the conditional probabilities calculated by the model to generate the recommendations.
Chen et al. [5] utilized latent Markov embedding to predict music playlists.

Markov Chain-based recommendation system performs well when the data is sparse. How-
ever, when the sequence becomes complex, it has the problem of information loss and low
scalability.

Long- and Short-term Sequential Recommendation with
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2.2 Recommendation System Based on Deep Learning

2.2.1 Conventional Method & Deep Learning Hybrid Model

Much previous work combines a neural network with traditional recommendation algorithms
to get better recommendations. The DeepFM model, as mentioned in the previous section,
is a combination of FM and DNN to obtain better results. In this subsection, more hybrid
recommendation algorithms will be introduced.

CF & Deep Learning Methods

NCF(Neural Collaborative Filtering) [14] provides a generic framework for solving collaborat-
ive filtering problems using neural networks on the basis of implicit feedback. After inputting
user and item embedding to a fully connected layer and multi-layer perceptron, the user-item
interaction function can be learned. He et al. [13] presented the ConvNCF, which proposed
employing CNNs to improve NCF. It models user and item interaction patterns using the
outer product rather than the dot product. CNNs are applied to the outer product result
and can capture high-order correlations between embedding dimensions.

AutoRec [32], an autoencoder-based collaborative filtering model, successfully applied
autoencoder in collaborative filtering. By adding a two-level attention mechanism to a latent
factor model, Chen et al. [3] created an attentive collaborative filtering model. It is made
up of attention at the item and component levels. To characterize users, item-level attention
is employed to identify the most representative objects, and component-level attention tries
to extract the most useful information for each user. Additionally, several researchers have
experimented with merging RNN and collaborative filtering. Devooght [9] explored the use of
the LSTM for the collaborative filtering problem. The authors innovatively propose that the
collaborative filtering method commonly used for traditional recommendations can be viewed
as a time series prediction problem.

FM & Deep Learning Methods

Lian et al. [24] proposed xDeepFM, which is based on DeepFM. Because while in DeepFM,
ordinary DNNs generate feature interactions implicitly and at the bit-wise level, in xDeepFM,
a novel Compressed Interaction Network (CIN) is paired with a classic DNN with the goal of
explicitly and vector-wise generating feature interactions. Not only can the xDeepFM learn
certain bounded-degree feature interactions, but also low- and high-order feature interaction.
However, because xDeepFM has high complexity and it is easy to overfitting, a more express-
ive but lightweight model called the High-order Attentive Factorization Machine (HoAFM)
is proposed [35]. The model explicitly accommodates for higher-order sparse feature interac-
tions.

Because in the previous work, which combined FM with the neural network, the em-
bedding dimensions are assumed to be independent and high-order interactions are modeled
implicitly. Due to these limitations, Convolutional Factorization Machine (CFM)[40] is pro-
posed. CFM generates image-like data by modeling second-order interactions through outer
products, capturing correlations between the embedding layers. All generated image data is

8 Long- and Short-term Sequential Recommendation with
Enhanced Temporal Self-attention



CHAPTER 2. LITERATURE ANALYSIS

then stacked to form a collection of interaction matrices on which convolution is applied to
learn higher-order interaction signals.

2.2.2 Deep Learning Based Model

In this subsection, We will demonstrate several representative recommendation models that
are entirely based on a single deep learning algorithm or on a combination of various hybrid
algorithms.

MLP Based Model

MLP(Multi-Layer Perceptron) is an essential part of deep learning. Wide&Deep [7] is a
classic and general model which consists of a shallow(or single-layer) neural network-Wide
part and deep multi-layer neural network-Deep part, with the output layer using softmax
or logistic regression to combine the outputs of the Wide and Deep parts. The Wide part
uses cross-products to produce features with good results and good interpretability, while the
Deep part converts sparse features into dense features to further explore higher-order feature
combinations, which has a strong generalization capability in the case of sparse data. By
combining these two parts, the performance of the recommendations becomes better.

Figure 2.3: Taxonomy of deep reinforcement learning in recommendation systems

RNN Based Model

RNN(Recurrent Neural Networks) is a famous neural network that is quite effective when the
input data is dependent and sequential. Session and cookie techniques enable web servers to
obtain a user’s short-term preferences. Due to the severe sparsity of data, this is a largely
underappreciated task in recommendation systems. Recent advancements have proved RNNs’
usefulness in resolving this problem.

Hidasi et al. [16] proposed a session-based recommendation model, GRU4Rec, based
on GRU. The model begins by taking each item clicked by the user individually as an input
to GRU4Rec, then goes through the embedding layer to obtain the item’s embedding, then
through several layers of GRU, then several layers of MLP, and finally predicts the item
that the consumer is most likely to click next time. Another highlight of this paper is that
the authors proposed a session-parallel mini-batches algorithm to effectively train the model.

Long- and Short-term Sequential Recommendation with
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Because the GRU4Rec does not consider the side information, Hidasi et al.[15] proposed a
session-based recommendation algorithm based on parallel architecture, which exploits the
features from image feature, identity one-hot, and text feature vectors.

CNN Based Model

CNN(Convolutional Neural Networks) is a well-known deep learning model whose name comes
from the fact that convolutional operations were introduced into this model. It has been very
widely used in the field of computer vision, and in recent years, researchers have utilized
CNNs for feature extraction in recommendation systems and find that it can perform well.
According to Zhang et al. [46], applications of CNNs in recommendation systems can mainly
be divided into three parts: image, text, and audio/video feature extraction.

Wang et al.[39] utilized CNN to examine the effects of visual elements on point-of-interest
(POI) recommendation and presented a visual content enhanced POI recommendation sys-
tem(VPOI). The model is based on the relationship between the address the image is tagged
with, the relationship between the user posting the image, and the relationship between the
user checking in at the address. In order to fully mine the features inside the text, Deep-
CoNN [47] models user behaviors and item attributes from review texts using two concurrent
CNNs. This model overcomes the sparsity issue and improves the model’s interpretability by
utilizing CNNs to create rich semantic representations of review texts. The outputs of the
user network and item network are concatenated to form the prediction layer’s input, where
the FM is used to capture their interactions for rating prediction.

Deep Reinforcement Learning

Figure 2.4: Taxonomy of deep reinforcement learning in recommendation systems [6]

Deep reinforcement learning has recently received greater attention in the field of recommend-
ation systems because the preferences of some users are likely to change rapidly, resulting in
some deep learning models based on existing datasets not being able to capture these changes
effectively. Because the goal of deep reinforcement learning is to combine the power of deep
learning and reinforcement learning to train an agent that can learn from the interaction
trajectories provided by the environment, DRL is particularly well suited to learning from in-
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teractions because the agent in DRL can actively learn from real-time feedback from the user
and thus infer the user’s dynamic preferences. Deep reinforcement learning can be divided
into several types as shown in the fig 2.4.

Deep learning based recommendation systems reflect user interest and update the recom-
mendation item by receiving feedback from the user (e.g. ratings or clicks), while deep re-
inforcement learning based recommendation systems update the policy by receiving rewards
from the environment. Researchers in YouTube [4] utilized the reinforce recommendation
system to get the most out of annual revenue optimisation. They apply the policy-based
reinforcement algorithm to the recall session. The problem of how to utilize scene samples
is addressed by a jointly trained model that predicts the selection probability of item for
importance-sampling, transforming the on-policy algorithm into an off-policy. The probabil-
ity of action space is also smoothed by a top-k correction, and the effect of this correction is
demonstrated in simulations and online experiments.

Attention Based Model

In recent years, the attention mechanism has been extensively applied in the fields of im-
age and natural language processing, and recommendation system based on the attention
mechanism has emerged as a new avenue. The attention mechanism is motivated by human
visual attention. It can distinguish the importance of each potential feature to improve the
interpretability and the performance of the recommendation system.

The attention mechanism is often combined with neural networks such as DNNs, CNNs,
RNNs, and GNNs. Based on the hidden features learned by these neural networks, the atten-
tion mechanism calculates their respective weights and then makes a better recommendation.
Gong et al. [11] proposed a hashtag recommendation system based on attention mechanism
and CNNs in a micro-blog. The model consists of a global channel that uses CNN to pro-
cess all words and a local channel that employs an attention mechanism to process trigger
words. CNN is utilized primarily to eliminate hand-crafted characteristics in this model, while
the attention mechanism is employed to select informative words. Li et al. [23] proposed a
hashtag recommendation algorithm based on an attention-based LSTM model. This study
uses both RNNs and attention mechanisms to extract sequential characteristics and identify
important terms from microblog data. The attention mechanism can be used to avoid some
of the problems associated with RNNs, such as information loss owing to excessively long
inputs.

2.3 Sequential Recommendation

In contrast to the recommendation systems discussed previously, sequential recommendation
systems attempt to comprehend and model sequential user behaviors, user-item interactions,
and the evolution of users’ preferences over time. As a result, sequential recommendation
systems generate more precise, customized, and dynamic recommendations. This subsection
will introduce and discuss sequential recommendation systems that are based on various
techniques.
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Markov Chain

Markov chain is a traditional sequential recommendation algorithm. According to Wang et
al. [38], There are two types of Markov chain-based recommendation systems: one is basic
Markov chain and it calculates the transition probability directly, whereas the other one is
latent Markov embedding which calculates between interactions based on Euclidean distance
in Euclidean space. As mentioned above, FPMC [30] uses a combination of matrix factoriz-
ation and decomposed first-order Markov chains to recommend. Due to the assumption that
the current interaction is dependent on only the most recent interactions, Markov proper-
ties capture only short-term dependencies and ignore long-term dependencies and user-item
interactions.

RNN

Due to RNN’s inherent advantage in sequence modeling, RNNs are the most frequently used
deep neural networks for sequential recommendations. As mentioned above, GRU4Rec [16]
which is based on GRU has been proposed to capture the long-term dependencies in a se-
quence. Apart from the basic RNN structure, HRNN [28], a hierarchical RNN model which
is based on GRU4Rec is proposed. This algorithm utilizes an additional GRU layer to better
model user’s preferences.

As mentioned above, RNN also has disadvantages. For example, because the depend-
ency assumptions of RNNs do not exactly match the relationships between data in real-life
sequences, there is a possibility that RNNs will produce invalid dependencies.

CNN

Recently, CNN has also been applied in sequential recommendation systems. Unlike RNNs,
CNNs treat the input embedding as an image matrix and learn local features by convolu-
tional filtering. Caser [34] is a model which is inspired by the application of CNN in text
classification to capture users’ short-term preference because the author emphasizes the im-
pact of short-term information. The highlight of the Caser is that it presents three different
sequential modes in a sequence, especially a skip mode, which represents the interactions
among nonadjacent items, which is quite creative. For the filters in the convolutional layer,
the model uses two approaches: horizontal filters and vertical filters to extract different se-
quence pattern information. The final output is the probability that user u will interact with
each candidate item at the moment t. Different from Caser, CosRec [42] utilized the 2-D
convolutional filter to better capture the skip mode, which is mentioned above.

Due to the filter size constraint inherent in CNNs, CNN-based sequential recommenda-
tion systems struggle to capture long dependencies. Hence, to be able to capture long-term
dependencies, CNNs are often combined with other models, such as LSTM, to better capture
the dynamic changes in the sequence. RCNN[41] is a model that combines the respective
advantages of LSTM and CNN. It first obtains the hidden states from LSTM, then uses CNN
to grasp the local features in these hidden states, and finally concatenates the output of CNN
with the hidden states of LSTM to perform relevance calculation on the candidate items.
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Deep Reinforcement Learning

Deep reinforcement learning is essentially a method that use neural networks as estimators
of value functions, the main advantage of which is that it can use deep neural networks to
automatically extract state features, avoiding the inaccuracy of manually defined state fea-
tures and allowing the Agent to learn on more primitive states.

In sequential recommendation, although the current attention mechanism can already
distinguish the contribution of different historical items to the recommended item, when
a historical interest sequence contains a large number of different interests, the effect of
the items that contribute to the recommended item will be influenced by other items with
different interests, resulting in poor performance of the attention mechanism. Hence, in
order to efficiently remove irrelevant items from the sequence, Zhang et al. [44] proposed a
hierarchical reinforcement learning model. This model consists of two important components:
the profile reviser and the basic recommendation model. The profile reviser allows for the
correction of sequence information without expert annotation. By training the two modules
jointly, the model can effectively remove the noisy items from the original sequence.

Attention Mechanism

In recent years, the attention mechanism has become a hot spot and plays a more and more
important role in the current research field of sequential recommendation because it over-
comes several of the drawbacks associated with other neural network methods and achieves
performance over those recommendation algorithms based on CNN, RNN, etc. Several repres-
entative sequential recommendation algorithms based on attention mechanisms are presented
in this section.

AttRec [45] is a model which is different from other models because it utilizes attention
mechanisms to capture short-term preference while using metric learning to get long-term
preference. Unlike the attention mechanism in other models, AttRec’s attention mechanism
is unique in that the Query and Key use shared embedding, and the value is not transformed
non-linearly. This is because the author finds that the use of constant mappings is effective.
In this model, Euclidean distance is used to model both short-term interests and long-term
preferences, and then the final recommendation scores for candidate items are obtained by
weighted summation.

STAMP [26] is a short-Term attention/memory priority model. The model also uses the
same idea of long- and short-term preference modeling, capturing the user’s generic interests
from long-term memory of the session context while considering the user’s current interests
from short-term memory of the last click. However, if a false click occurs at the final click,
current interest is likely to have a negative effect on the model. Ying [43] proposed a two-layer
hierarchical attention network. In this algorithm, the first attention layer captures long-term
dependencies through the main part of the input sequence, and the second attention layer
generates the prediction by fusing the output of the first attention layer with the embedding
of the last few interactions.

The advent of the Transformer [37] has made the self-attention mechanism the dominant
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modeling approach to sequence recommendation, starting with the more recent classic SAS-
Rec [18]. It is a model that is based primarily on the encoder part of the Transformer, and
the encoder portion’s heart is the self-attention mechanism. Thus, despite the simplicity of
SASRec’s architecture, it outperforms the majority of previous state-of-the-art models. Self-
attention is defined in this paper as follows: for the next item recommendation, the weights
of the individual items vary according to the user’s behavioral sequence, which is relevant for
the recommendation scenario. Because sequence recommendation algorithms such as SASRec
only consider the sequential relationships inside the sequence and do not consider the use of
features such as relative time intervals of timestamps to mine out the hidden features in the
sequence. Hence, on the basis of SASRec, by incorporating timestamp-related features into
the embedding layer, TiSASRec [21] presents better performance.
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Chapter 3

Background

In this chapter, the background knowledge which is involved in this thesis will be presented
in detail.

3.1 Attention Mechanism

A rough description of the attention mechanism is ”whatever you are doing, you concen-
trate on it.” This mechanism is identical to what occurs when the human brain considers a
problem. Bahdanau et al. [2] employ an Attention-like mechanism to perform simultaneous
translation and alignment on machine translation tasks, and this is the first time the Atten-
tion mechanism has been applied to the field of natural language processing. The Google
Machine Translation team published Attention is All You Need [37] in 2017, which heavily
relies on self-attentive mechanisms to learn text representation. The self-attention mechanism
has become a hot research topic in recent years.

Due to the fact that the attention mechanism is widely used in encoder and decoder
models, the following provides an overview of how the attention mechanism works in this
model. The workflow is depicted in Fig3.1. The sentence ”I am a student” is fed into an
LSTM encoding layer, which is then fed into another LSTM decoding layer. When the model
is translating, the first output is the ht in the diagram, because we want the model to think
like our human brain, when the first word is decoded, the model can only focus on the word ”I”
and ignore the other words as much as possible. ht is the implicit state at the first decoding
moment, and the most relevant part of ht should be the encoding state h1 corresponding to
”I”, so the network needs to focus on h1 when decoding the first word. Since the implicit
states of the ht and encoding parts are in the same embedding space, the similarity can be
used to know which implicit state is most similar to the ht. In this way, when decoding, the
network can focus its attention as much as possible on the corresponding implicit state in the
encoder. The formula for calculating the similarity coefficient is as follows. The sum of all
encoded states is then weighted to obtain the context vector, which is then combined with ht
to obtain the output at the current decoding moment.

αts =
exp (score (ht, hs))∑

s′ = 1S exp (score (ht, h′s))
(3.1)

ct =
∑
s

αtsh̄s (3.2)

Long- and Short-term Sequential Recommendation with
Enhanced Temporal Self-attention

15



CHAPTER 3. BACKGROUND

αt = f (ct, ht) = tanh (Wc [ct;ht]) (3.3)

Figure 3.1: Attention mechanism

Attention mechanisms can be divided into three different categories as follows:

1. Soft attention: Soft attention is more focused on regions or channels. It is determ-
inistic attention that can be generated through the network directly after the learning
is completed. The key point is that soft attention is differentiable, and attention that
can be differentiated can then be used to calculate the gradient through the neural
network and then learn to get the weight of the attention through forward propagation
and backward feedback.

2. hard attention: Hard attention is more point-focused, meaning that every point in
an image has the potential to extend attention, while hard attention is a stochastic
prediction process with more emphasis on dynamic change. Crucially, hard attention is
non-differentiable and its training process often relies on reinforcement learning.

3. self-attention: It is widely used in the field of NLP for text processing. The self-
attention mechanism is a variant of the attention mechanism, which relies less on ex-
ternal information and is better at capturing the internal relevance of data or features.

3.1.1 Self-attention

Because the attention mechanism utilized in this thesis is self-attention, this subsection will
present the principle of self-attention in detail.
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Self-attention mechanisms are a special form of attention mechanism in which the atten-
tion weights are related to their own sequence. Whereas the basic attention mechanism learns
the attention of the entire contextual knowledge, the self-attention mechanism preserves the
sequential information of the context and captures the relationships between sequence ele-
ments. As shown in the Fig3.2 and equation below, three matrices of the same dimension
comprise the input: Query, Key, and Value. First, Query and Key are multiplied. To avoid
the result being too large, the matrix is scaled by dividing it by the constant value of the
dimension. The normalized weight vector matrix is obtained using the softmax function, and
then matrix multiplication with Value is performed to obtain the weighted matrix.

Figure 3.2: The architecture of self-attention

Attention (Q,K, V ) = softmax

(
QKT

√
dk

)
V (3.4)

Using translated text as an example, the self-attention mechanism can capture the cor-
relation between the next word and the previous part. In the fig3.3 below, the next word is
in red, and the shade of blue indicates the degree of association. The darker the color, the
greater the association and vice versa.

Figure 3.3: The visualization of the correlations between words by self-attention[8]

In the field of recommendation systems, the principle of using self-attentive mechanisms
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to make recommendations is similar to the principle of text translation mentioned above.
The next recommended item can be seen as the next word to be translated, and therefore the
relevance of this item to previous items in the sequence can be calculated by a self-attentive
mechanism. An item with a high relevance will have a greater influence on the recommended
item. Therefore, the use of the self-attentive mechanism leads to better recommendation
results than other methods, and at the same time, the results are better interpretable.

Due to the absence of serial training, the self-attentive mechanism can parallelize the
computation of the attention weight matrix, significantly reducing the training time of the
model when compared to RNN-like models. Simultaneously, because each sequence element’s
attention weights are computed in conjunction with all other sequence elements, the path
length can be considered to be 1, regardless of how far apart the two elements are in the
sequence, allowing the attention mechanism to effectively solve the long-term dependency
problem in long sequences.

3.2 Transformer

Before the emergence of Transformer [37], the mainstream algorithm for sequence data
processing was RNN, which processed one node in a sequence at a time and came with a hidden
vector to remember the previously processed nodes and other information, and modify the
hidden vector when processing the current node. While the RNN is well-suited to processing
sequential data on its own, its limitations are self-evident: Firstly, it is difficult to parallelize
the nodes in the sequence because the RNN processes them sequentially; secondly, it is difficult
to retrace the information of nodes that are far away from the current node, a problem referred
to as the long path dependency problem. The proposal of the transformer solves both of
these problems, and at the heart of the transformer is the self-attention mechanism. Fig3.4
demonstrates the architecture of the Transformer.

The first is the embedding of the Transformer, which uses not only word embedding but
also positional embedding to represent the position of the word in the sentence. Because the
Transformer does not use the structure of an RNN, it uses global information and cannot make
use of the sequential information of words, which is important for NLP. Therefore, position
embedding is used in the Transformer to preserve the relative position or absolute position of
words in a sequence. The following formula is used in Transformer to calculate the position,
where pos denotes the position, and i represents the dimension. Each position’s dimension
corresponds to a sinusoidal curve whose wavelengths form a geometric series ranging from 2π
to 10000 · 2π. It makes it simple for the model to learn relative position easily since for any
fixed offset k, PEpos can be expressed as a linear function of PEpos+k.

PE(pos,2i) = sin
(
pos/100002i/d

)
(3.5)

PE(pos,2i+1) = cos
(
pos/100002i/d

)
(3.6)

The next is the main part of the Transformer. This part of the Transformer consists of an
encoder, which converts the input sequence into a hidden representation, and a decoder, which
converts the hidden representation into an output sequence. Inside the encoders, there are six
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Figure 3.4: The architecture of Transformer[37]

small encoders. Similarly, inside the decoders, there are also six small decoders. The input of
each small encoder is the output of the previous small encoder, while the input of each small
decoder is not only the output of its previous decoder but also the output of the encoder.
Each small encoder has a multi-head self-attention layer and a feed-forward network, and
they are each followed by an Add&Norm layer. The Add&Norm layer and the feed-forward
layer can be represented by the following formula, where X is the input embedding.

X = LayerNorm(X +MultiHeadAttention(X)) (3.7)

X = LayerNorm(X + FeedFoward(X)) (3.8)

Add stands for Residual Connection to prevent multi-layer network degradation and the
issue of vanishing gradients, and Norm stands for Layer Normalization to normalize the ac-
tivation values at each layer to speed up convergence. The Feed Forward layer is relatively
simple, being a two-layer fully connected layer with Relu as the activation function for the
first layer and no activation function used for the second layer. Different from the encoder,
each small decoder has two multi-head attention layers and a feed-forward network, but each
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part, like the encoder, also uses an Add&Norm layer. After the last decoder has processed
the features, the result is then fed into a linear transformation layer and a softmax layer,
where the linear transformation layer transforms the dimensionality of the decoder output
vector to the dictionary length, a step similar to the initial word embedding operation. This
vector is then probabilised by a subsequent softmax layer, and the result is the probability
distribution of each input word over the target word.

Figure 3.5: Scaled Dot-Product Attention[37]

As introduced in the previous section, the structure of self-attention can also be repres-
ented by fig 3.5. Self-attention is computed using the matrices Query, Key and Value. In
practice, the input of the self-attention part is a matrix consisting of the word representation
vectors, or the output of the previous encoder block. The Query, Key and Value are obtained
by linear transformation of the input to the self-attention part.

Figure 3.6: Multi-Head Attention[37]
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To further refine the self-attentive mechanism layer, the researchers introduced the concept
of a multi-headed attention mechanism, which provides multiple representation sub-spaces for
the self-attentive layer. In fig 3.6 We have not just one set of Q,K,V weight matrices for the
multi-headed self-attentive mechanism, but multiple sets, which means that each encoder
and decoder uses multiple non-interfering self-attentive mechanism operations, each with a
different Q,K,V . Following that, multiple distinct weight matrices Z are obtained, each of
which is used to project the input vector into a distinct representation subspace. Following
the multi-headed attention mechanism, we obtain multiple weight matrices Z, and we stitch
the multiple Z’s together to obtain the output of the self-attention layer.

Figure 3.7: Mask matrix

As can be seen in Fig 3.7, the first multi-head attention layer of decoder adopts the op-
eration of Mask because the translation process is sequential. For example, the si word is
translated before the si+1 word can be translated. Hence, the Mask operation prevents the
ith word from knowing information after the i+ 1th word. The second multi-Head attention
in the decoder is very similar to the one in the encoder. The primary difference is that the
decoder calculates the K, V matrices using the encoder’s encoded information matrix C.
Then, Q is calculated using the previous decoder block’s output Z, or the input matrix in
the case of the first decoder. This has the advantage that when the encoder is decoded, each
item can make use of the information contained in all of the encoder’s items.

3.3 Convolutional Neural Network

Convolutional Neural Network (CNN) is a type of feed-forward neural network that incorpor-
ates convolutional computation and has a deep structure. Research on CNN dates back to
the 1990s, and LeNet-5 [20] is often considered to be the first convolutional neural network
to emerge. Fig 3.8 demonstrates the structure of LeNet-5. In recent years, with the rapid
development of deep learning, CNN has become one of the most representative algorithms.
CNN was initially used extensively in image processing, but has now found applications in
a variety of other fields, including computer vision, natural language processing, and recom-
mendation systems.
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Figure 3.8: A full convolutional neural network [20]

Prior to the advent of CNN, image processing was a difficult problem for two reasons: first,
the amount of data to be processed in images is too large, resulting in high costs and ineffi-
ciency. Second, it is difficult to retain the image’s original characteristics during digitization,
resulting in poor image processing accuracy. CNN solves the first problem by down-scaling
a large number of parameters into a small number of parameters and then performing the
processing. CNN addresses the second issue by preserving the image’s features in a vision-
like manner. Additionally, it is effective at recognizing similar images that have been flipped,
rotated, or shifted in position.

As shown in fig 3.8, CNNs are multi-layer neural networks, with each layer consisting
of multiple 2D planes, each of which in turn contains multiple independent neurons. A
complete CNN model can be constructed using a combination of convolutional, pooling and
fully connected layers. The convolutional and pooling layers are the two most critical network
layers in a CNN, and they are described below.

1. Convolutional Layer: Convolution is used in CNNs to extract specific features. The
fig3.9 depicts a simple convolution kernel performing a convolution operation on an
input image to generate an output feature map.

Figure 3.9: A simple operation of convolution in CNN

The CNN’s convolutional layer is the most critical component. Each element in the
output feature map is calculated from the pixels in each blue region of the input image
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and the convolution kernel in fig 3.9. Thus, the convolution kernel can be seen as a
filter. Typically, a convolutional layer typically has multiple convolutional kernels, and
the features extracted vary in size from one convolutional kernel to another. The most
important feature of convolutional layers is their ability to learn features. In general,
the first convolutional layer extracts only a few low-level features from the original data,
after which the network’s deeper layers can iteratively extract more complex features
from the low-level features.

2. Pooling Layer: Due to the fact that the feature maps extracted from the convolutional
layer contain a great deal of redundant information, the pooling operation is used to
remove the redundant data and retain the most fundamental and important information.
This not only reduces the size of the feature map, but also enables the reduction of its
dimensionality. Similar to convolution, pooling is accomplished through window sliding,
except that no windows overlap during pooling. Max pooling, average pooling, and
sum pooling are three basic types of pooling. Fig 3.10 depicts a simple max pooling
procedure.

Figure 3.10: A simple operation of pooling in CNN

To avoid the issues associated with traditional neural networks, such as excessive para-
meters, loss of inter-pixel information, and limited network depth development, CNNs are not
fully connected but rather organized as image matrices, and concepts such as local receptive
fields, shared weights, and spatial sub-sampling have been introduced to significantly boost
their performance:

1. Local Receptive Fields: Rather than connecting each neuron in CNNs to all neuron
nodes in the subsequent layer, as is the case with traditional neural networks, each
neuron is connected to only a subset of them, resulting in a much smaller weighting
parameter. This is because, in images, it is typically the local pixels that are more con-
nected to one another, while the pixels further away are less significant. As the network
levels increase in depth, the deeper network continues to extract local information about
the image’s previous layer, eventually yielding global information about the image.

2. Shared Weights: A group of connections or multiple groups of connections in CNNs
can each share the same weight parameter or the same convolutional kernel, rather than
each connection having a separate weight.
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3. Spatial Sub-sampling: In CNNs, Spatial sub-sampling techniques are used to com-
press the image data that would otherwise be input to the larger convolutional layer,
resulting in a reduction in the total number of pixels in the output. This eliminates
the possibility of overfitting due to an excessive number of weighting parameters and
increases computational speed further by compressing the image space.

In conclusion, CNNs have several distinct advantages due to their unique structure of
local weights sharing. Local receptive fields can help preserve the correlation information
between image pixels, facilitate the extraction of higher-dimensional features, and perceive
more information in the image, and then, after weight sharing and sub-sampling, the number
of network parameters can be further reduced and the model’s robustness improved.

CNN has also been utilized by researchers in recommendation systems. As mentioned
above, Caser [34] is a classic CNN-based sequential recommendation algorithm. This model
treats the input item embedding as an image, and utilizes both vertical and horizontal kernels
to extract different features. In fig 3.11, the basic structure of Caser is demonstrated. The
grey rectangle represents the vertical convolution filter and the red, green and blue rectangles
denotes horizontal convolution filters of different sizes. After the operation of Max Pooling
on the output of different filters, the output features will be concatenated, and then the
probability of the next recommended item can be obtained through the fully connected layer.

Figure 3.11: The basic structure of Caser [34]

3.4 Wavenet

Although recurrent neural networks (RNNs) and convolutional neural networks (CNNs) have
yielded good results for time series modelling problems, they both have their limitations.
Wavenet [36] was originally used in the field of raw audio wave-forms generation. The
main component of this model is the casual convolution network, and it can be seen as
a representative of CNNs applied to time series because it follows the order of the data.
Compared to CNN and RNN, Wavenet has the following advantages:
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1. Unlike RNNs, where subsequent time steps’ predictions must wait for previous time
steps’ predictions to be completed, convolution can be performed in parallel because
the same filter is used for each layer.

2. Compared to standard CNNs, Wavenet has the flexibility to adjust the size of its
perceptive field.

3. The back-propagation of Wavenet is significantly different compared to RNN, and
it can effectively mitigate and avoid the gradient explosion and gradient vanishing by
introducing residual connections and skip connections.

Figure 3.12: Causal convolution Figure 3.13: Dilated causal convolution

Fig 3.12 and fig 3.13 show the diagram of causal convolution, it ensures that the model
output follows the order of data. That is, the model’s output at time t will not depend on
data from any future time step. However, if the standard causal convolution shown in fig 3.12
is used, in order to process long range sequence, the model should have a sufficiently large
perceptive field, which can only be achieved by increasing the depth of the network and the
size of the convolution kernel linearly, however this will bring a rapid increase in the number
of parameters. Hence, the dilated causal convolution shown in fig 3.13 can solve this problem
easily by adjusting the dilation factor d. When the d = 1, the dilation causal convolution
equals to the standard causal convolution, and when d is larger than 1, the convolution kernel
is spaced d− 1 positions apart when finding the next convolution position, which allows the
perceptive field to grow exponentially. Because the dilated convolution is utilized, each layer
will use padding and the size of padding is (k − 1) ∗ d, where k denotes the size of kernel.

Although adding layers increases the richness of the CNN’s ability to capture features
at different levels, simply increasing the number of layers can lead to degradation of the
network. Therefore, Wavenet solves this problem by introducing residual connection and skip
connection. Residual connection converts learning a constant mapping function to learning
a residual function F (x) = H(x) − x by incorporating a constant mapping across layers of
connectivity, which is a good solution to the problem of gradient and network degradation.
Finally, Wavenet uses convolutional layers instead of fully connected layers, making the
input and output dimensions consistent.
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Chapter 4

Method

In this Chapter, we first introduce and formulate our proposed model Ti-SACNN, and then
each component of the model is described in detail.

4.1 Proposed method

In this project, in order to capture users’ dynamic preferences, we proposed a long- and
short-term sequential recommendation model based on time-aware self-attention mechanism,
Ti-SACNN. As shown in fig 4.1, the architecture of Ti-SACNN can be divided into three
main modules:

Figure 4.1: The overall network architecture of Ti-SACNN

The first module is the embedding module, in this part, we not only model the absolute
position, but also take time intervals into account. The blue and yellow rectangles in the
diagram represent the item embedding and the timestamp embedding respectively. Based on
the time interval matrix, we create two different relative position embeddings. The first one
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makes direct use of the time interval matrix, while the second one is a time interval vector after
applying log transformation and scaling. The second module is the self-attention part based on
the time-aware multi-layer self-attention structure, this module mainly focuses on capturing
the long-term preferences of users in the mixture embedding of items and different temporal
representations. The last module is the CNN module, which utilizes the characteristic of the
convolutional filter to capture the user’s short-term preference from the recent interactions,
and we use the green rectangle to represent the vertical convolutional filter in the diagram. In
the last step, we concatenate the output of the self-attention module and CNN module with
the user embedding, and then input it into the prediction layer to generate the top scoring
recommendation items.

4.2 Problem formulation

The related notation is introduced in Table 4.1. Let U be the users’ set, and I be the items’
set. Given an user u ∈ U , his/her historical interaction sequence is denoted as Su. Each inter-
action Sui in the sequence consists of the interaction item Iui and the corresponding timestamp
T ui . In each time step t during our training process, the model generates the recommended
items based on the previous t items, and absolute and relative positions. For the self-attention
module, the input are the whole sequence Su = [Su1 , S

u
2 , ..., S

u
|Su|−1], the time interval matrix

M t, the absolute position matrix P u and relative position matrix V u, while for the CNN
module, the input are the latest L interactions Su = [Su|Su|−L, S

u
|Su|−L+1, ..., S

u
|Su|−1]. We ex-

pect the model’s output to be Su = [Su2 , S
u
3 , ..., S

u
|Su|].

Table 4.1: Notation

Notation Description

U, I User and item set
Su History sequence for user u
Iu Interaction sequence of user u corresponding to Su

T u Timestamp sequence of user u corresponding to Su

P u Absolute position matrix
d Dimension of latent vector
n Maximum length of Su

M I , EI Item matrix and input item embedding
M t, Et Time interval matrix and time matrix embedding
V u Relative position matrix
dT Maximum scaling range of the time interval

EPK , E
P
Q Position embedding for key and query

EAbsoluteK , EAbsoluteQ Absolute position embedding for key and query

ERelativeK , ERelativeQ Relative position embedding for key and query

L The number of interactions in CNN module
m The number of vertical filters
c The output of the vertical filter

Fa, Fc The outputs of the self-attention and CNN module
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4.3 Self-attention with temporal information

In many previous works, they have incorporated absolute position into the self-attention
mechanism. For example, in Transformer [37], because it does not utilize the RNN’s struc-
ture but rather global information, it is unable to to use the sequential information contained
in words, which is essential for NLP. As a result, positional embedding enables the Trans-
former to determine the sequence’s order. As mentioned in Chapter 1, relative position is
also a critical factor for sequential recommendation. Hence, in this project, we propose an
enhanced version of self-attention that takes into account not only the absolute position but
also the relative position.

4.3.1 Position modelling

Assume the input sequence is denoted as Su = [Su1 , S
u
2 , ..., S

u
|Su|−1], Sui can also be represented

by (Iui , T
u
i ), where Iui denotes the ith interaction item of the user and T ui is the corresponding

timestamp. Since the length of different sequences varies, we need to set a hyper-parameter
to regulate the length of the longest input sequence, and it is denoted as n in our experiment.
Then, we convert the input sequence into the sequence which has a fixed length of n. If the
length of the sequence exceeds n, then the last n interactions of the sequence are considered.
If the length of the sequence is less than n, then padding items are added repeatedly to the
left of the sequence. For Iu, the padding item is zero while for T u, the timestamp of the first
interaction is considered as the padding item.

Following SASRec [18], in order to help the model identify the order of the items, we
define the absolute position for each sequence as P u = [1, 2, ..., n]. Inspired by TiSASRec
[21], we model the time interval as follows. First, for each pair of adjacent interactions, the
interval is denoted as ∆tui = tui+1 − tui . Then, we take the minimum interval as ∆tumin, and
divide each interval by it. Hence, we can get the time interval matrix M t ∈ Rn×n of the user
u, where mt

ij ∈ N. We keep the first row of M t and denote it as Rt ∈ Rn, and then we use
the same method as in TiSASRec to process M t.

Mt =


mt

11 mt
12 . . . mt

1n

mt
21 mt

22 · · · mt
2n

. . . . . . . . . . . .
mt
n1 mt

n2 . . . mt
nn

 (4.1)

In the next step, for each interval in Rt, we perform a logarithmic operation on it. In our
analysis, by transforming the temporal information in different ways, the model can capture
more useful patterns from the user’s sequence. At last, we map the value of each time interval
to the range [0, dT ] and get the scaled time interval sequence Vu = [v1, v2, ..., vn], where dT is

the maximum value after mapping and vi denotes Scaled(log(
∆tui

∆tumin
)).

4.3.2 Embedding layer

Fig 4.2 shows the structure of the self-attention part of our model. We define the embedding
of the items as M I ∈ R|I|×d, where d is the size of the latent dimension. Hence, for each
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input sequence, the embedding can be denoted as EI ∈ Rn×d. For Query and Key embed-
ding, we create two additional learnable positional embeddings EPK ∈ Rn×d and EPQ ∈ Rn×d

respectively. EPK is generated by concatenating the corresponding absolute position embed-
ding EAbsoluteK ∈ Rn×d/2 and relative position embedding ERelativeK ∈ Rn×d/2. Similarly, EPQ
is made up of EAbsoluteQ ∈ Rn×d/2 and ERelativeQ ∈ Rn×d/2, where EAbsoluteQ , EAbsoluteK and

ERelativeQ , ERelativeK are the linear transformation from P u and Vu, respectively. For the relat-

ive time interval embedding matrix, we get embedding Et ∈ Rn×n×d.

Figure 4.2: Architecture of the mixture self-attention

4.3.3 Temporal self-attention:

As described in section 3.1, the input to the self-attention module consists of query, key and
value, and the output is calculated from the weighted sum of values. In our model, firstly,
as with original self-attention, the same item embedding EI = [ems1 , ems2 , ..., emsn ], where
emsi ∈ Rd, is fed into these three components. Then, concatenating the embeddings of the
transformed relative position and absolute position, and adding them to the key and query
embeddings, respectively. Next, we compute the sum of the dot product of the key and query
embeddings and the time interval matrix. Finally, we add them together and after softmax,
we can get the output Z = [z1, z2, ..., zn], where zi ∈ Rd.

zi =
n∑
j=1

αij
(
emsjW

V
)

(4.2)

where W V ∈ Rd×d is the parameter matrix for value, and the coefficient αij and the
output of the dot product eij is calculated as follows:
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αij =
exp eij∑n
k=1 exp eik

(4.3)

eij =

(
emsiW

Q + rqij + pqi

)(
emsjW

K + rkij + pkj

)T
√
d

(4.4)

where WQ ∈ Rd×d and WK ∈ Rd×d are the parameter matrices for the query and key,
respectively. Scaling factor

√
d is utilized to avoid the value of inner product becoming too

large.

4.3.4 Feed-forward network:

Inspired by Transformer [37], following the self-attention module, we use two linear trans-
formations with a ReLU activation function to introduce non-linearity to the model, where
W1,W2 ∈ Rd×d and b1, b2 ∈ Rd×d.

FFN(zi) = ReLU(ziW1 + b1)W2 + b2 (4.5)

For simplicity, we define the whole self-attention network as a block F . Though a self-
attention block F is capable of handling all input embeddings, it is typically the case that a
multi-layered network structure captures a more diverse range of features. Hence, we stack
the self-attention block, and the kth(k > 1) block is defined as:

F k = SAN(F k−1) (4.6)

Where F k ∈ Rn×d. In addition, Like [18], we employ LayerNorm, Dropout, and
Residual Connection to optimize our self-attention module:

1. LayerNorm: According to [1]. LayerNorm is a strategy that benefits network training
by consolidating and accelerating it.

2. Residual Connection: Because deeper networks may have problems such as gradient
vanishing and network degradation. Hence, in order to make the training process more
stable, we utilize the residual connection following the feed-forward network to convey
low-layer features to higher layers via residual connection.

3. Dropout: During training, we employ the Dropout technique on the embedding layer,
etc., to address concerns about overfitting in deep neural networks.

f(zi) = zi +Dropout(FFN(LayerNorm(zi)) (4.7)

where f(zi) represents a set of operations inside a self-attention block. In each block, we
firstly employ the LayerNorm on zi before feeding into the feed-forward network, then the
Dropout is applied on the output, and residual connection is utilized by adding zi.
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4.3.5 Wavenet

Inspired by the characteristic of Wavenet which is introduced in Chapter 3, we propose
another solution to better optimise the model. Because the feed-forward network is simply
a two-layer network, it is limited in its ability to fuse and extract features. Hence, in this
solution, we innovatively utilize Wavenet to replace the feed-forward network.

Figure 4.3: The layout of Wavenet

Fig.4.3 shows the layout of Wavenet. As described in Chapter 3, the core of Wavenet
is the casual convolution network and dilated convolution network. By using the dilated
convolution, the perceptive field of the model becomes larger, thus escaping the limitations
of the fixed size of the standard CNN filter. At the same time, the model has the ability to
handle longer sequences. Linked after the causal convolution are the gated activation units:

y = tanh (Wf,k ∗ x)� σ (Wg,k ∗ x) (4.8)

where ∗ and σ represents the convolution operation and element-wise multiplication op-
eration, respectively. k denotes the layer, and W is the weight matrix. f and g are filter and
gate, respectively. The value domain of the activation function is required from -1 to +1, so
the tanh is adopted here, and sigmoid is utilized to control the wave amplitude. In the end,
the output of the Wavenet can be represented by the following formula, where the input
z = [z1, z2, ..., zn].

f(z) = Softmax(ReLU(
l∑

k=1

WaveNet(LayerNorm(zk)))) (4.9)

4.4 Short-term preference modelling

Recall our previous introduction about Caser [34], which utilises the convolutional neural
network to treat item embedding as ’image’. Unlike the 3× 3 and 5× 5 convolutional kernels
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that are widely used in images processing, Caser is designed with two special filters, a vertical
filter and a horizontal filter. They have the same height and width as the embedding, so that
the whole embedding can be covered by sliding the filters to capture the different features.
However, experiment reveals that the horizontal filter of Caser not only contributes little to
the final result, but also greatly increases the model’s computing cost. It is assumed that
because the horizontal filter employed max-pooling to uniform the dimension of the final fea-
ture map, some critical features had their positions ignored.

Although in Caser the model can only capture the user’s short-term preferences based on
their last few interactions due to filter size limitations, this is exactly what our model needs.
By combining the long-term preferences captured by the self-attention module with the con-
volutional neural network’s short-term preferences, and with the help of temporal features,
our model is well suited to modelling the dynamic preferences of users.

Figure 4.4: The architecture of the convolution module

Due to the drawbacks of horizontal filters, our model uses only vertical filters to capture
users’ short-term preferences. Fig 4.4 depicts the architecture of our convolution module.
Suppose that we denote the vertical filter as fmv ∈ RL×1, where L and m are hyper-parameters
to set the number of recent interactions and the number of filters, respectively. Each vertical
filter has a size of L × 1 because each column of EI is implicit, hence, dealing with several
subsequent columns together is pointless. The filter fv slides from left to right on the item
embedding EI column by column to generate the result c:

cm = [cm1 c
m
2 ...c

m
d ] (4.10)

Therefore, with m different vertical filters the model can aggregate the L previous item
embeddings. According to [34], these vertical filters can extract point-level sequential patterns
from items’ latent representations. Unlike the horizontal filter, because we need to preserve
aggregated values for each hidden dimension, we don’t employ max-pooling here. Therefore,
the output of our CNN module is Fc ∈ Rm×d.
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Fc = [c11c2...cm] (4.11)

4.5 Prediction layer

After getting the output F a ∈ Rn×d of the self-attention module and the output F c ∈ Rnv ·d of
the CNN module respectively, we concatenate them together with user embedding Eu ∈ Rd.
For the self-attention module, because our goal is to recommend the next item, hence we only
need output’s last dimension F an ∈ Rd to compute the score for long-term preference. Because
the CNN module is designed to capture user’s recent intentions, so Fc is used to compute
the score the short-term preference. The incorporation of user embedding Eu can make the
recommendations more personalized.

rI = Concat([F an ;F c;Eu])MT
I′ (4.12)

where rI is the score of the candidate item I. In conclusion, after training the model,
we take the item and user embeddings, as well as relative and absolute position embeddings,
and split the latest L item embedding as the model input, and then provide N recommended
items with the highest values in the output layer for the user u at time step t.

4.6 Network training

In this project, we adopt negative sampling to optimize the output score ri. For example,
we take a sequence Sutrain of user u from the training set, and then we take the last n +
1 interactions to generate the input sequence and the positive sequence, where the input
sequence is the first n interactions and the positive sequence is the last n interactions. Next,
we generate a negative sampling sequence of size n, in which each item never appears in this
sequence. Hence, we can provide a pair of positive sample op and negative sample on to train
each input item at time step t, and we utilize the binary cross entropy loss as the loss function
and employ Adam optimizer to optimize our model:

−
∑

Su
train∈S

∑
t∈[1,2,...,n]

[
log
(
σ
(
rop,t

))
+ log (1− σ (ron,t))

]
+ λ‖Θ‖22 (4.13)

In the above equation, Θ = {EI , Et, EPK , EPQ} represents model parameters. σ(·) is the
sigmoid function, and λ is the regularization parameter. We utilize l2 norm to limit the
model’s complexity.
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Experiment and Result Discussion

In this project, we conduct comprehensive experiments to gain a better understanding of
the model’s performance in various scenarios. In this chapter, we will firstly introduce our
experimental setup and then perform a thorough analysis of the experimental results based
on the research questions that we designed.

1. Q1: How does the model with the improved temporal self-attention mechanism that
we propose perform compared to the baseline model?

2. Q2: How does our model which considers both long- and short-term preferences perform
compared to the baseline model?

3. Q3: How does our model with Wavenet instead of feed-forward network perform com-
pared to the baseline model?

4. Q4: What effect would changes in the parameters have on the model’s efficiency? For
example, the number of the self-attention blocks.

5.1 Experiment setup

5.1.1 Dataset

In our experiments, because the temporal information is necessary, hence, four datasets which
contain timestamp attribute from three real-world domains are used to evaluate our ap-
proaches. Brief description about the datasets is listed as follows:

1. MovieLens: It is a famous and widely used benchmark in the field of recommendation
systems. MovieLens mainly keeps a large database of user reviews of movies, as well as
information about the movies themselves. Here we adopt Movielens-1M to evaluate our
model.

2. Amazon: This is a dataset from the well-known online e-commerce platform Amazon.
This dataset comprises a large number of product reviews written by users. Here we
adopt two sub-categories, ‘Beauty’ and ‘Video Games’.

3. Gowalla: This is a check-in dataset from the gowalla website, which records a large
amount of geolocation-based social information about users and is often used in the
field of recommendation systems.
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In all datasets, we treat the review or rating part as implicit feedback and sort the items
by timestamps. For the MovieLens datasets, we follow the same preprocessing method from
[18], and for the Amazon dataset, we filter out users with at least 10 interaction items and
the items with no fewer than 5 interactions for experiments. For the Gowalla dataset in our
experiment, we take the data in the last three months, and remove items with fewer than 20
interactions. Table 5.1 summarizes the statistics for all datasets after preprocessing. From
the statistics in Table 5.1, we can infer that the Amazon Beauty and Game are two sparse
datasets and compared with these two datasets, the MovieLens is much denser.

Following [18], for all datasets, we use the last interaction of the user’s sequence to be the
test set, and we take the penultimate interaction as the validation set. The remaining part
in the sequence is considered to be the training set.

Table 5.1: Basic dataset statistics

Dataset #users #items
avg.

actions
/user

#actions

MovieLens-1M 6040 3416 163.50 0.97M
Amazon Beauty 51071 18784 5.81 0.30M
Amazon Game 30866 11212 8.04 0.25M

Gowalla 6161 4440 18.95 0.12M

5.1.2 Baselines

To demonstrate the efficacy of our proposed algorithm in this project, it is compared with
the following two baselines:

1. SASRec [18]: It is the first sequential recommendation model that only based on self-
attention mechanism, and it outperform a number of well-known algorithms at the time
it was proposed. The key to SASRec’s success is the adoption of a similar structure
to Transformer.

2. TiSASRec [21]: It is actually an improved algorithm that based on SASRec. The
most significant improvement is the incorporation of temporal information in the self-
attention mechanism.

Both SASRec and TiSASRec can be viewed as the algorithms that only consider long-
term preference. Here we don’t perform the comparison with other baseline models in sequen-
tial recommendation such as Caser [34], because they have been outperformed by SASRec
[18], as well as TiSASRec [21] in the previous studies.

5.1.3 Evaluation Metrics

We evaluate the performance of the models using the following metrics, which are extensively
utilized in related studies.
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1. HR@k : The Hit-Ratio(HR) is a commonly used metric for recall and it observes
whether the expected item exits in the top-k list generated by the recommendation
system. The HR@k is calculated as follows:

HR@k =
1

| U |
∑
u∈U

1 (ru ≤ k) (5.1)

where ru denotes the rank of the user u and 1(x) is an indicator function. When x is
true, the result of the function will be 1, otherwise 0.

2. NDCG@k : The normalized discounted cumulative gain(NDCG) calculates hit posi-
tions by assigning higher scores to the top rankings. In simple terms, this metric is
mainly concerned with whether the expected items are in a more prominent position
among all recommended items for the user, emphasizing the importance of the order.
Hence, if the expected item ranks higher in the recommended list, the score of NDCG@k
will be higher.

NDCG@k =
1

| U |
∑
u∈U

2ru≤k − 1

log2(ru + 1)
(5.2)

where the denominator of the equation log2(ru + 1) gets closer to 1 when the ranking
gets higher.

5.1.4 Parameter Settings

In our experiment, for fair comparison, we use the author’s open source code for both two
baselines, and we follow the same parameter setting reported in the corresponding papers.

Table 5.2: Hyper-parameter settings

Dataset
max

sequence
length

regularization

MovieLens-1M 50 0.00005
Amazon Beauty 20 0.00005
Amazon Game 20 0.00005

Gowalla 25 0.00005

We implement Ti-SACNN with pytorch based on NVIDIA Tesla P100. We select the
size of latent vector in {20, 40, 60, 80, 100}, and the regularization rate is tuned amongst
{0.0001, 0.001, 0.01, 0.1}. The learning rate is from {0.1, 0.01,..., 0.0001} and we set it to
0.001. The batch size and dropout rate are set to 128 and 0.2, respectively. The number of
self-attention layer is 5, and the remainder of the parameter configurations are listed in Table
5.2. We utilize the validation set to tune hyper-parameters, and stop training after 20 epochs
if the performance does not improve.
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5.2 Result discussion

In our experiments, we first implement the model with enhanced self-attention mechanism,
and then apply CNN module based on this model. Hence, we can observe the effectiveness
of the two methods mentioned above, and compare their improvements. The results and
analysis of the experiment are as follows:

5.2.1 General performance of Ti-SAN

Table 5.3: Recommendation performance with temporal self-attention

Dataset Metrics SASRec TiSASRec Ti-SAN Improvement

MovieLens-1m

NDCG@5 0.5170 0.5386 0.5539 2.76%
NDCG@10 0.5524 0.5706 0.5887 3.17%

HR@5 0.6804 0.7101 0.7189 1.24%
HR@10 0.7929 0.8038 0.8101 0.78%

Gowalla

NDCG@5 0.7709 0.7718 0.7723 0.06%
NDCG@10 0.7911 0.7911 0.7912 0.01%

HR@5 0.8724 0.8732 0.8733 0.01%
HR@10 0.9420 0.9430 0.9417 -0.14%

Amazon Beauty

NDCG@5 0.2538 0.2678 0.2738 2.24%
NDCG@10 0.2877 0.3016 0.3079 2.09%

HR@5 0.3385 0.3492 0.3601 3.12%
HR@10 0.4416 0.4500 0.4617 2.60%

Amazon Game

NDCG@5 0.4252 0.4307 0.4375 1.58%
NDCG@10 0.4629 0.4717 0.4787 1.49%

HR@5 0.5585 0.5701 0.5803 1.79%
HR@10 0.6743 0.6862 0.6967 1.53%

Table 5.3 demonstrates the summary of the best results of the two comparison methods, and
Ti-SAN, which denotes the Ti-SACNN without applying CNN module. The data with best
performance of each metric is highlighted in boldface. The data in the improvement column
is computed with the best comparison baseline. To answer Q1, our first observation is that,
the experimental results show that TiSASRec can effectively improve the effectiveness of
recommendations by introducing relative time intervals on the basis of SASRec. Except for
Gowalla dataset, Ti-SAN outperforms the best baseline on both metrics, which represents
that not only have more target items been selected for the recommendation list, but they are
placed in better positions. In particular, our proposed approach achieves the most significant
improvement on the Amazon Game dataset among all the datasets. This indicates that some
features hidden in the temporal information can be further explored by some transformation
methods, and these features will be beneficial in improving the performance of the model.
However, the experimental results indicate that both TiSASRec, and our improved method
are not applicable for the Gowalla dataset. Although the temporal factor may not have an
impact on some data sets, it exposes the shortcomings of our approach that the scalability is
insufficient.
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5.2.2 Influence of the self-attention block

To answer Q4, we examine the impact of the number of self-attention blocks by NDCG@10.
Fig 5.1 shows NDCG@10 for various number of blocks while keeping other settings unchanged.
From the figure we can clearly find that the NDCG@10 of TiSASRec(red line) rises and
then falls as the number of blocks increases, and reaches a maximum when the number of
blocks equals 5. This is because the model achieve the best performance when the number of
blocks is set properly, and the worse performance afterwards is due to over-fitting. However,
according to the NDCG@10 of Ti-SAN(blue dotted line), it rises as the number of blocks
increases and eventually tends to saturate. And it exceeds TiSASRec at the beginning due
to the addition of the user embedding and when the number of the blocks is set to 6, it can
approach the maximum. This is because our enhanced self-attentive mechanism introduces
more additional temporal features, hence the model requires a deeper network to extract these
features.

Figure 5.1: Influence of the self-attention block

5.2.3 Influence of the user

In [18], according to the experiments, the researchers claim that the addition of user em-
bedding has no effect on the results because the model is strong enough to include the user
features in its item embeddings. However, from our experiments, the user embedding plays
an important role in the model. From fig. 5.1, it can be clearly seen that the introduction
of the user embedding(green dotted line) can effectively improve the effectiveness of recom-
mendations. Presumably this is because the user embedding contains personalized features
that have not yet been learned by the model.

Another function of user embedding is to prevent overfitting of the network as the number
of layers grows. Because from our observation in fig. 5.1, after adding user embedding, the
overfitting in TiSASRec can be alleviated as the number of layers increases. Also, the results
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of Ti-SAN prove this well. The model becomes easier to overfitting when additional temporal
information is introduced, but this problem can be solved by adding user embedding.

5.2.4 Influence of the Wavenet

As introduced in Chapter 4, Wavenet can be be considered as the CNN applied to time series.
The introduction of hole can significantly increase the size of receptive field without requiring
more layers. Therefore the fixed size of the convolution filter will not limit the algorithm’s
ability to process longer input sequences. At the same time, by combining features from each
layer allows the algorithm to learn a more comprehensive range of features. Hence, to answer
Q3, here we use Wavenet instead of the original feed-forward network to endow the model
with non-linearity.

Table 5.4: Recommendation performance with Wavenet(SASRec)

Dataset Metrics SASRec
SASRec-
Wavenet

Improve

MovieLens-1M

NDCG@5 0.5170 0.5276 2.05%
NDCG@10 0.5524 0.5640 2.10%

HR@5 0.6804 0.6869 0.96%
HR@10 0.7920 0.7984 0.81%

Gowalla

NDCG@5 0.7709 0.7769 0.78%
NDCG@10 0.7911 0.7972 0.77%

HR@5 0.8724 0.8778 0.62%
HR@10 0.9420 0.9489 0.73%

Amazon Beauty

NDCG@5 0.2538 0.2548 0.39%
NDCG@10 0.2877 0.2901 0.83%

HR@5 0.3385 0.3394 0.27%
HR@10 0.4416 0.4424 0.18%

Amazon Game

NDCG@5 0.4252 0.4270 0.42%
NDCG@10 0.4629 0.4650 0.45%

HR@5 0.5585 0.5516 0.56%
HR@10 0.6743 0.6763 0.30%

Table 5.4 illustrates the results after replacing the feed-forward network with Wavenet in
SASRec. Overall, the improved model achieved better performance on all datasets. In par-
ticular, on the MovieLens-1M dataset, this model achieves 2.10% improvement on NDCG@10,
which is quite significant. However, on the other three datasets, there is only a slight im-
provement in the model’s recommendation performance. We think this is due to two main
reasons. The first reason is that the average length of the sequences in the MovieLens-1M
dataset is much longer than in other datasets, and Wavenet has the advantage of handling
long sequences, so this method performs better on the MovieLens-1M dataset than the other
datasets. The second reason is that the other datasets are more sparse compared to the
MovieLens-1M dataset. Therefore, this method also has some limitations.

In table 5.5, we demonstrate the results after replacing the feed-forward network in the
two baseline algorithms and our proposed Ti-SAN with Wavenet. From the results we find
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that the improvement on TiSASRec is very slight, and there is even a drop on Ti-SAN. So, we
can conclude that although this method performs well on SASRec, its performance decreases
significantly when the model becomes more complex. Hence, we finally decide not to use this
method in our model.

Table 5.5: Recommendation performance with Wavenet

Dataset Model NDCG@10 Improve

MovieLens-1M
SASRec-Wavenet 0.5640 2.1%

TiSASRec-Wavenet 0.5740 0.6%
Ti-SAN-Wavenet 0.5835 -0.9%

5.2.5 Influence of maximum sequence length

Figure 5.2: Influence of maximum sequence length

In this subsection, we discuss the influence of maximum sequence length. Fig 5.2 shows the
NDCG@10 for maximum sequence length {25,50,75,100,125}, and we keep the other hyper-
parameters unchanged. We can find that recommendation performance improves when the
sequence becomes longer and gradually converges. And the longer the length, the longer the
computation takes, so we select 50 as the default maximum sequence length.

5.2.6 General performance of Ti-SACNN

To answer Q2, we summarize the best results of Ti-SASRec, Ti-SAN, and Ti-SACNN.
Because Ti-SASRec has outperformed the another comparison baseline mentioned above,
here we omit it and only keep Ti-SASRec. At the same time, we also keep the best result
of Ti-SAN to see whether the incorporation of the CNN module would make the model
generate better recommendations or not. Because the operation of concatenation will change
the number of the hidden units in item embedding, hence, for fair comparison, we use two
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independent item embeddings instead of shared item embeddings in all the models. While
the technique of shared embeddings can be effective in improving the performance of the
model, our emphasis here is to examine the effectiveness after incorporating the CNN module.
Here we set two columns to show the improvement from the CNN module and the total
improvement compared to TiSASRec, respectively. According to the results, we can find that
although there is a slight decrease in one row, there is still an improvement for most of them.
For the Gowalla dataset, although the introduction of temporal features is not helpful, the
CNN module improve the performance significantly. The NDCG@5 and NDCG@10 of the
Gowalla dataset increases 1.66% and 1.47%, and this means that more recommended items
have better positions. However, this method also has some limitations. Compared to the
other datasets, the improvement of the MovieLens dataset is relatively slight, and the this
is due to the fact that in this dataset, users’ preferences are mainly long-term preferences.
Also the improvement of the two Amazon datasets is not ideal, mainly because the short-
term preferences are already dominant and adding CNN module does not make much sense.
We find that the enhanced temporal attention mechanism that dominates the improvement
in recommendation performance. Although the two methods we propose both have their
limitations, by combining them we can obtain a more robust sequential recommendation
model.

Table 5.6: Recommendation performance with short-term preference

Dataset Metrics TiSASRec Ti-SAN
Ti-

SACNN
Improve

Improve
(Total)

MovieLens-1M

NDCG@5 0.5070 0.5221 0.5218 -0.06% 2.91%
NDCG@10 0.5440 0.5569 0.5599 0.54% 2.92%

HR@5 0.6604 0.6745 0.6780 0.52% 2.67%
HR@10 0.7747 0.7864 0.7944 1.02% 2.54%

Gowalla

NDCG@5 0.7269 0.7275 0.7398 1.66% 1.77%
NDCG@10 0.7471 0.7472 0.7582 1.47% 1.49%

HR@5 0.8424 0.8425 0.8468 0.51% 0.52%
HR@10 0.9120 0.9102 0.9121 0.01% 0.01%

Amazon Beauty

NDCG@5 0.2272 0.2321 0.2347 1.12% 3.30%
NDCG@10 0.2548 0.2580 0.2615 1.26% 2.87%

HR@5 0.3021 0.3061 0.3077 0.52% 1.85%
HR@10 0.3832 0.3941 0.3993 1.32% 2.84%

Amazon Game

NDCG@5 0.3782 0.3924 0.3928 0.10% 3.86%
NDCG@10 0.4140 0.4257 0.4287 0.70% 3.55%

HR@5 0.5020 0.5149 0.5189 0.78% 3.26%
HR@10 0.6129 0.6294 0.6304 0.16% 2.86%
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Chapter 6

Conclusion and Future Work

In this chapter, we provide a summary of this project and possible directions for future
improvement are listed.

6.1 Conclusion

In this project, our goal is to propose a robust sequential recommendation algorithm to cap-
ture the user’s dynamic preference in a better way. Inspired by TiSASRec [21] and Caser
[34], we propose Ti-SACNN, which combines the advantages of both long- and short-term
preferences, and additional temporal information to generate more accurate recommendations
for the user.

In the first step, we use three public datasets from different domains and preprocess these
data according to the previous works. Unlike other studies, we keep the timestamp data, and
we set a fixed length for both item and timestamp sequences. Depending on the order of the
items, we set the absolute position of the items. Also, based on the timestamp corresponding
to the item, we build the time interval matrix and time interval vector. We concatenate the
log-transformed interval vector and the absolute position vector, then add them to the item
embedding and input them to the Key and Query of the self-attention block respectively.
Then we multiply the time interval embedding with the newly obtained Query and Key re-
spectively, and add up their results. The remainder of the calculation process is the same as
the standard self-attention. Although we find that using Wavenet instead of the feed-forward
network has better performance on SASRec, it is found through experimentation that this
method is not applicable to our model. Because of the introduction of the transformed time
interval vector, the input embedding has more features compared with [21], hence we utilize
five self-attention layers here to fully capture those features.

In the second step, we use the vertical convolutional filter in [34] to capture the recent
preferences of the user in the last few interactions. In the last step, we concatenate the output
of the self-attention module with the output of the CNN module and the user embedding as
the final output. This output and the candidate item embedding are then used to calculate
the top scoring recommended items. Extensive experiments have demonstrated the effect-
iveness of our proposed model. On the Amazon Game dataset, our model achieved 3.55%
improvement in NDCG@10 and also obtain satisfactory results on other datasets as well.
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By combining the advantages of both methods, our approach is also proved to have greater
applicability.

6.2 Future Work

Although our proposed model achieves satisfying performance, it still has a number of points
that could be improved. From the perspective of the model, because it incorporates temporal
features, preprocessing and calculation of temporal data also increases the time complexity
of the model, resulting in a significant increase in computational cost. Therefore, in future
study, we can explore some new methods to improve the model’s effect without sacrificing too
much computational cost. Also, it is worth researching how the Wavenet can be improved
to make it more suitable for our model. Another drawback of our model is that we only
implement the incorporation for short-term preferences based on different item embeddings.
Hence, in future research we can work on utilizing the same shared embedding technique as
in [18].

From a data perspective, we will test our model against as many different domain data-
sets as possible to evaluate its robustness. And since our current model considers only one
transformation of the data, there are more aspects in the temporal information that we may
explore further to aid the model in improving its efficiency. Also, we should define ’recent
interactions’ in a more rational way, for example by separating user sequences by days to get
the last one or few days as ’recent interactions’. In addition, because most of the items in
the current dataset have category attributes or can be classified, and user-category interac-
tions are always denser than user-item interactions, hence, we can take full advantage of this
finding, and more helpful additional features may be inferred from them.
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