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Abstract

To implement machine learning, it is essential to first determine an appropriate algorithm for the dataset.
Different algorithms may produce a large number of different models with different hyperparameter
configurations, and it usually takes a lot of time to run the model on a large dataset when the model is
relatively complex. Therefore, how to predict the performance of a model on a dataset is an fundamental
problem to be solved. This thesis designs a prediction system based on matrix factorization to predict
the classification accuracy of a specific model on a particular dataset.

In this thesis, we conduct a comprehensive empirical research on more than fifty datasets that we collected
from the openml web site. We study the performance prediciton of three fundamental machine learning
algorithms, namely, random forest, XGBoost, and MultiLayer Perceptron(MLP). In particular, we obtain
the following results:

• Predictability of fine-tuned models using coarse-tuned variants:

Usually, training and testing complex machine learning models are time-consuming. Thus, we hope
to predict the complicate models by their simple ones. Three machine learning algorithms are
compared in experiments. We find that random forest and XGBoost have good predictability on
most datasets that is, as the model becomes more complex, the performance of the model becomes
better, and thus the accuracy of the complex model can be foreseen directly from its simple model.
Hence, we can decide efficiently which algorithm to utilize by comparing simple models.

• Predictability of MLP using feature extraction techniques:

Often, real datasets have quite numerous features, from a few hundred to a few thousand features.
Training models on fully-featured datasets is a very time-consuming task. We explore the idea of
training a model D on datasets that are projected on a few features and use this as a hint to predict
the performance of the model D when we consider all features of the dataset. We try different
feature extraction techniques including techniques based on permutation importance, gain-based
feature importance, hierarchical clustering based on Spearman correlation, and principal component
analysis. We study the performance of techniques on the multilayer perceptron (MLP) model and
observe that feature extraction with permutation importance and hierarchical clustering based on
Spearman correlation has better performance. That is, on most datasets, the accuracy of the MLP
improves as the number of features extracted by these techniques increases.

• Predict model performance using implicit feedback:

After researching the predictability of three algorithms, our goal is to discover a method that can
be used to predict the specific model performance on a particular dataset. In order to predict the
classification accuracy of different algorithms on different datasets with different hyperparameters,
a prediction system with matrix factorization is built to predict the performance of different models
on different datasets. With this system, the input accuracy’s can be seen as implicit feedback
because there is no more information about the cause of these performance. This system can best
achieve an mean absolute error of only 6.7% in the experiment.
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Chapter 1

Introduction

Machine learning (ML) is one of the major fields in computer science that studies self-improving algorithms
with the use of data [56]. Machine learning is everywhere to avoid explicit programming [24]. Engineers use
machine learning and related techniques in learning normal and abnormal behavior of social networks [7],
computer vision [21], speech recognition [83], medicine [16], and etc., where conventional algorithms
are difficult or impossible to develop to achieve the needed goals [35]. The focus of this thesis is on
classification algorithms, where a labeled dataset is given and the goal is to train a machine learning
model with it such that new data without labels can be classified. The implicit assumption here is if the
distribution of the labeled data that is given to the machine model is a good approximation or proxy
of the distribution of the unseen data, we may feed the labeled data to the model that in turn starts
training itself to improve its performance.

Concentrating on predicting by computers, the most area of machine learning(ML) is closely related
to computational statistics, even if not all machine learning(ML) is statistical learning [19]. It involves
computers learning from data provided so that they can carry out certain tasks. For simple assignments, it
is possible for a human to manually create the program required to solve the problem, which however can be
challenging for advanced tasks to instruct the machine how to execute all needed steps explicitly [2].

Hence, in most cases of machine learning(ML), one approach is to label some of the correct answers and
then use them as training data for the computer to improve the algorithms determining correct answers,
which is known as supervised learning (SL) [2]. In other words, supervised learning is based on example
input-output pairs to infer a function that can be used for mapping new inputs [67]. There are tremendous
number of supervised machine learning(ML) models used in the experiments of the thesis, including
the primary linear learner/linear model [86], multi-layer perceptron (MLP) [70], random forest [63], and
another seminal model XGBoost [13], all of which are introduced in chapter 3.

With ML models at hand, there are several potential questions raised by practitioners and engineers:

Question 1 Which one of the known learning models performs the best? Though with respect to the
accuracy, loss, or other learning measurements, one or more models may have the highest
value, it is the best model that only needs to meet the expected criteria, like accuracy,
and trains with less time. For example, a random forest with some particular parameters
performs best on a specific dataset with 0.80 accuracy and 0.2 seconds training time though
an MLP with some particular parameters hits 0.99 accuracy but 2 hours training time on
the same dataset.

Question 2 Is it possible to predict the performance of advanced ensemble or boosted models using
simple learners? Since learning tasks are often time-consuming [45], starting with simple
learners or shallow networks for a few rounds is a good choice if the performance of the
advanced counterpart can be predicted. For example, if the prediction shows that the
complex networks cannot improve the accuracy prominently comparing with the simple
ones, then there is no need to train complex ones.

Predictability of Machine Learning Algorithms and Related Feature Extraction Techniques 1



CHAPTER 1. INTRODUCTION

Question 3 How to efficiently extract important features of a dataset? Often datasets have quite a lot
features, thousands or even millions of features, thus training the machine learning models
using all the features of a dataset might be very time-consuming. An interesting research
direction is to employ efficient feature extraction algorithms [69] that can find the features
that are critical for learning and discovering the concealed correlations between features. In
this way, we might be able to train the models using the most important features of the
dataset and that could potentially speed up the process of learning.

Question 4 Is it possible to predict the performance of a specific model on a specific dataset with
some known results? For instance, suppose that there are reported accuracies for a few
known machine learning models for the dataset that we would like to analyze. Then, for a
new model, we can save time if it is possible to approximately predict the accuracy of the
dataset because the model will not be required training on the dataset if we ensure that the
predicted performance of the new model cannot meet the expected accuracy that we look
for. Similarly, is the performance of a model trained for different datasets predictable upon
a new dataset?

To answer these questions, a platform for empirical experiments is developed to study the popular machine
learning algorithms including linear model, multi-layer perceptron (MLP), random forest, and XGBoost
with various datasets. To this end, more than 50 datasets are collected, which have different numbers of
samples, features, and target labels and are trained with the four popular classification algorithms that
have been repeatedly reported to achieve good performance.

1.1 Datasets

54 datasets from openml web site are collected [76]. The number of instances in these datasets are from
a few hundred to hundred thousands. The number of features are from 3 features to a couple hundred
features among them the one with the most number of features is Fashion-MNIST dataset whose features
are black and white images consisting of 28× 28 pixels, that are 784 features.

Among all these datasets, 32 of datasets are binary classification tasks, 8 of them have 3 labels and the
other 14 datasets are multi-class classification tasks with more than 3 classifications. The categorical
features of the datasets are all one-hot encoded. The complete information about these datasets are given
in the table 1.1 and 1.2, divided based on the number of labels.

In two tables, the id of a dataset is the data id used in OpenML for download; the name is the data
name annotated in OpenML [76]; the size is the number of samples in the dataset; features and labels are
the number of features and labels of corresponding datasets respectively. The table is first arranged in
ascending order by the number of labels, then by the number of features if the labels are the same, and
finally by the size. In the table 1.1, the division is according to datasets with less than 40 features and
more than 100 features. In the table 1.2, the division is according to datasets with no more than 3 labels,
more than 3 labels but less than 10 labels, and more than 10 labels.

2 Predictability of Machine Learning Algorithms and Related Feature Extraction Techniques



CHAPTER 1. INTRODUCTION

Table 1.1: The attributes of datasets with binary classification

ID Name Size Features Labels

41025 random-teste 29 3 2
4534 [18] PhishingWebsites 11055 30 2
4154 CreditCardSubset 14240 30 2
833 bank32nh 8192 32 2
1452 PieChart2 745 36 2
1069 [72] pc2 5589 36 2
1443 PizzaCutter1 661 37 2
1451 PieChart1 705 37 2
1444 PizzaCutter3 1043 37 2
1453 PieChart3 1077 37 2
1049 [72] pc4 1458 37 2
1050 [72] pc3 1563 37 2
1056 [72] mc1 9466 38 2
979 waveform-5000 5000 40 2
734 ailerons 13750 40 2
1494 [53] qsar-biodeg 1055 41 2
40705 tokyo1 959 44 2
40999 [75] jungle chess 2pcs endgame elephant elephant 2351 46 2
41007 [75] jungle chess 2pcs endgame lion lion 2352 46 2
41005 [75] jungle chess 2pcs endgame rat rat 3660 46 2
904 fri c0 1000 50 1000 50 2
44 [18] spambase 4601 57 2
1487 [85] ozone-level-8hr 2534 72 2
718 fri c4 1000 100 1000 100 2
1479 [18] hill-valley 1212 100 2
316 [17] yeast ml8 2417 116 2
41048 ex1-features-holiday-person-es-201610 1809 132 2
41049 ex1-features-holiday-person-en-201610 2350 132 2
41050 ex2-features-holiday-person-event-es-201610 1809 144 2
41051 ex2-features-holiday-person-event-en-201610 2350 144 2
41052 ex3-features-holiday-all-es-201610 1809 299 2
41053 ex3-features-holiday-all-en-201610 2350 299 2

Predictability of Machine Learning Algorithms and Related Feature Extraction Techniques 3



CHAPTER 1. INTRODUCTION
Table 1.2: The attributes of datasets with multi classification

ID Name Size Features Labels

41027 [75] jungle chess 2pcs raw endgame complete 44819 6 3
60 [18] waveform-5000 5000 40 3
40668 [18] connect-4 67557 42 3
41004 [75] jungle chess 2pcs endgame lion elephant 4704 46 3
40997 [75] jungle chess 2pcs endgame panther lion 4704 46 3
41000 [75] jungle chess 2pcs endgame panther elephant 4704 46 3
1548 autoUniv-au4-2500 2500 100 3
40670 [18] dna 3186 180 3
4538 [18, 50, 79, 78] GesturePhaseSegmentationProcessed 9873 32 5
182 [18] satimage 6430 36 6
180 covertype 110393 54 7
1549 autoUniv-au6-750 750 40 8
1555 autoUniv-au6-1000 1000 40 8
22 [18] mfeat-zernike 2000 47 10
14 [18] mfeat-fourier 2000 76 10
1501 [18] semeion 1593 256 10
40996 [81] Fashion-MNIST 70000 784 10
313 spectrometer 531 101 44
41014 qType 2prev 188290 4 55
1493 [52] one-hundred-plants-texture 1599 64 100
1492 [52] one-hundred-plants-shape 1600 64 100
1491 [52] one-hundred-plants-margin 1600 64 100

1.2 Contribution

With an extensive empirical study, a comprehensive result of their performance is given, such as when
these models perform well and what is the suitable feature extraction technique for these models. The
work sheds light upon the performance and applicability of these algorithms for various datasets. In
particular, the experiments reveal:

(1) When accuracy is taken as the standard of performance evaluation, multi-layer perceptron (MLP)
and XGboost outperforms random forest for majority of datasets in experiments.

(2) The time consumption of random forest is significantly less than MLP and XGboost though its
performance is often worse than XGboost and MLP.

(3) With deep networks of MLP, most classification tasks can be achieved decently. However, for a large
number of datasets, shallow networks can accomplished the accuracy that is very close to the highest
known accuracy as well. As an example, a network with only 1 layer but 512 nodes can achieve the
best performance for the Fashion MNIST dataset.

(4) For most models of random forest and XGBoost, there are obviously increasing patterns of accuracy
with the increase of the number of trees and the max depth of each tree respectively, whereas such
approximately monotonic patterns are not frequently seen in the model of the MLP. That is no
matter increasing the number of layers or nodes, the accuracy of the MLP model cannot be always
guaranteed to improve.

(5) The features of data can be sorted by random forest and XGBoost because the feature importance
can be given by the models, which can be utilized for the function of feature extraction and/or
dimension reduction. In the perspective of predictability, with the performance of principal component
analysis (PCA) as the baseline, the performance of permutation feature importance in random forest
is more predictable than PCA, worse than which gain-based feature importance of XGBoost performs.
Moreover, hierarchical clustering of the features based on Spearman correlations has the best result.
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CHAPTER 1. INTRODUCTION

Beyond these observations about the basis of experiments, there are further innovations to predict the
accuracy of these algorithms. Especially, according to the finding (4), it is difficult to predict the accuracy
of MLP models because of the lack of patterns within the algorithm, which emphasizes the value of
performance prediction. What is accomplished is that, in accordance with the idea of matrix factorization,
a complete accuracy matrix can arise from a primal matrix with a number of entries left to be predicted,
whose rows are specific models, columns are different datasets. Each entry (i, j) in the matrix corresponds
to the accuracy of the model i for the dataset j. Hence, if the accuracy of the model i for the dataset j is
unknown, the entry (i, j) will be missing. With the final complete matrix, all missing entries, namely
unknown accuracy, are predicted. The forecast results are so low that they are acceptable, which are
measured by root mean square error (RMSE) between all predictions and actual values.

Overall, in this thesis, through a series of experiments, not only the predictability of several traditional
machine learning algorithms and related feature extraction techniques are investigated, but a specific
prediction method for the accuracy of the algorithms is also proposed. Chapter 2 introduces the previous
related work to show how research has evolved and what is the innovation in the paper. It is in chapter
3 that the detail of machine learning models, feature extraction techniques, and matrix factorization
is illustrated. The specific experimental results and the intuitive explanation are shown in chapter 4.
chapter 5 Further Discussion includes further analysis of results, limitations and the direction of future
work. Finally, chapter 6 Conclusions concludes all of achievements and answers questions.

Predictability of Machine Learning Algorithms and Related Feature Extraction Techniques 5



Chapter 2

Previous Work

In the area of machine learning, there were extensive works comparing neural networks with decision
trees in specific application domains. E.Brown, Corruble, and Pittard [10] compared neural networks
using backpropagation with decision trees to study emitter classification and digit recognition, which were
multi-modal problems. Chang [12] made a comparison between models produced by different methods,
such as neural networks(NN), decision trees, and the hybrid method, for the forecast of stock price, which
were applied on 10 different stocks in 320 data sets empirically, and found that NN achieved a more
reliable result. Khemphila and Boonjing [40] studied the difference between classification techniques,
including logistic regression, decision tree, and neural network (NN), in the perspective of predicting the
patients with heart disease, which also draws the conclusion that NN was the best technique.

In addition to these studies on data sets in the specific area, there were researches on some general or
even randomly generated datasets, which could draw some more general conclusions. Kim [41]compared
output of different techniques like NN, decision trees and linear regression on different dataset with
varying independent variables and sample size, during which he found that linear regression had less
error on pure continuous independent variables no matter how many samples while NN improved with
increasing the number of categorical variables and had the lowest error when there were no less than 2
categorical variables. Dr. Berkman Sahiner et al. [68] compared the performance of decision tree with
linear discriminant analysis and NN under different conditions influenced by training sample size, class
distributions, and feature space dimension, in which a bagging method was investigated to improve the
accuracy of decision tree as well.

Furthermore, some researchers broadened experiments into large-scale empirical studies which were
conducted to draw more general results. To present a benchmark, Balaji and Allen [5] assessed on the
most mature open source solutions including dense random forests, generalized linear models, and basic
deep learning models in auto ML systems, for 57 classification tasks and 30 regression tasks of diverse
datasets. Fernández-Delgado, Cernadas, Barro, and Amorim [20] evaluated 179 classifiers including
neural networks, support vector machines(SVM), random forests, and other methods over 121 datasets
to achieve significant conclusions about the classifier behavior that random forest was likely to be the
best among all classifiers and SVM with Gaussian kernel was the second best with an insignificant
difference. Leite, Brazdil, and Vanschoren [47] proposed a technique to select finite cross-validation tests
for the best algorithm on a specific dataset and evaluated through 292 classification algorithm-parameter
combinations on 76 datasets, which showed that the model output by the technique was very close to the
optimum.

Some of these studies, especially comparing within large-scale experiments, suggested that tree ensembles
were the best method to use in many classification tasks. However, neural network models in most of
these investigations were considered without recent advances in training and architectural decisions, such
as ReLU activation, Adam optimization, batch normalization, dropout regularization, and etc. Besides,
XGBoost was supposed to show superiority as well according to a number of machine learning and data
mining challenges. For example, among the 29 published top solutions in challenges in 2015 hosted by
the Kaggle, a machine learning competition website, there 17 solution using XGBoost [13]. Hence, the

6 Predictability of Machine Learning Algorithms and Related Feature Extraction Techniques



CHAPTER 2. PREVIOUS WORK

achievable performance among recently popular and advanced algorithms may be understated and the
relative performance of random forest was overestimated.

Moreover, these studies mainly focused on the best performance, which was only researched in a
static idea namely lack of hyperparameter tuning and tendency prediction. Filling this gap, Rijn and
Hutter [74] experimented on hyperparameter tuning with 100 datasets to propose a method for selecting
hyperparameters. Unfortunately, the chosen algorithms only included random forest, support vector
machine(SVM), and Adaboost, namely lacked recently advanced algorithms like MLP and XGBoost.
In addition, like other studies through static thinking, the work of Rijn et al. only expounded the
importance of some hyperparameters by the correlation between them and model performance but lacked
the prediction of particular model performance with changing hyperparameters.

There were explorations for further prediction of model performance. Denil et al. [15] demonstrated
several different architectures to predict model parameters/weights trained by a number of weights and
were able to predict more than 95% of the weights keeping most performance. They kept the performance
unchanged as much as possible and predicted the weights in models during experiments, which is followed
some flaws. On the one hand, there was a lack of research on the changes of models performance. As
mentioned in question 1 of section Introduction, what is necessary most of the time for accuracy is to
reach an acceptable value. On the other hand, engineers pay more attention to hyperparameters than to
specific weights inside models. In addition, their experiment scope is relatively small, only for 3 kinds of
NNs, including MLP, convolutional network, and independent component analysis on 5 data sets.

Beyond these papers, Hestness et al. [30] empirically presented characterization of generalization error and
model size growth with increasing training sets and introduced a methodology to measure, through which
power-law generalization error scaling was discovered across various factors. But what the prediction gave
is only the scaling of accuracy caused by model size or data size because they were only state-of-the-art
architectures at that time that they used to experiment in different domains separately. Based on the
same reason, their research also lacked hyperparameters tuning.

Considering the results of these prior works, this paper integrates advantages and conducts large-scale
and general research on different kinds of algorithms from a new perspective that is to examine the
predictability of machine learning algorithms and construct a framework to predict the performance of
algorithms on different datasets, which can also give the algorithms suitable for a specific dataset, and
the related hyperparameter tuning. Meanwhile, experiments also regard the scaling the data but in a
different way from the work of Hestness et al. [30] that related feature extraction techniques of different
algorithms are used and compared.

Predictability of Machine Learning Algorithms and Related Feature Extraction Techniques 7



Chapter 3

Models and Methodology

In this section, firstly, four models selected for experiments are introduced in detail, namely linear classifier,
multilayer perceptron (MLP), random forest and XGBoost. Afterwards, feature extraction methods used
with different algorithms are explained including permutation feature importance measured by random
forest, gain-based feature importance measured by XGBoost, hierarchical clustering based on spearman
correlations, and principal component analysis (PCA). Finally, the matrix factorization is covered, which
is the tool used to predict the performance of models on different datasets.

3.1 Linear Classifier

It is the goal of classification to use the features of an object to identify its category. Linear classifiers
have achieved considerable success in the field of classification though it is one of the simplest models
in machine learning [82, 86, 3, 28, 84]. A linear classifier classifies data into labels based on a linear
combination of input features [38].

Linear classifiers work well for practical problems such as document classification, and even for problems
with many variables/features, they can result accuracy comparable to non-linear classifiers, however with
less time consumption to train and use [84]. Hence, a linear classifier is often used in situations where
the speed of classification is an issue, especially when input is sparse or the number of its dimensions is
large.

In experiments, linear model from TensorFlow library is used [1]. The model approximates the function
in which there is the output y based on N input features xi :

y = β +

N∑
i=1

wi ∗ xi

where β is the bias and wi is the weight for each feature.

It can be seen as a single-layer perceptron, of which functioning is similar to the functioning of a single
neuron in our brain [60]. Figure 3.1 is a schematic for the perceptron. It takes weighted linear combination
of input features and passes it through a thresholding or activating function, which usually outputs 1 or 0
for binary classification.

As shown in figure 3.1, for binary classification, the activation function is:

output =

{
1, y ≥ 0

0, y < 0

Since then, the problem is to find a set of weights fitting the most of training data into their correct
labels, which is an optimization problem.

8 Predictability of Machine Learning Algorithms and Related Feature Extraction Techniques



CHAPTER 3. MODELS AND METHODOLOGY

Figure 3.1: Schematic of Perceptron

Perceptron, the algorithm implemented as a linear classifier, was invented in 1958 by Frank Rosenblatt [66].
There were many years for researching and improving before it became the basis of the neural network,
especially of Multilayer Perceptron (MLP). It is recognized that feedforward neural networks with two or
more layers, namely multilayer perceptrons, have greater processing power [57].

3.2 Multilayer Perceptron

A multilayer perceptron (MLP) is a class of feedforward artificial neural network(ANN), which is the first
and simplest type of artificial neural network devised [70]. In this paper, MLP is used strictly to refer to
networks composed of multiple layers of perceptrons with threshold activation. An MLP consists of at
least three layers of nodes: an input layer, at least one hidden layer and an output layer. And these layers
are interconnected in a feed-forward way, that is, of each layers, nodes are connected to all outputs of the
previous layer and all inputs for nodes in the next layer. This means that all hidden layers implemented
are dense layers, also called fully-connected layers. Figure 3.2 shows a simple sample model structure
with one input layer, one hidden layer and one output layer.

Figure 3.2: Schematic of MultiLayer Perceptron

MLP uses back-propagation as the learning technique, where the output is compared with the correct
answer to gain the error based on a predefined function. With the error feeding back, the weights of each
connection will be updated to reduce the error. This process can be repeated until the training of MLP is
finished, which usually means that the model converges to some state.

The activation function of a single perceptron, namely the linear classifier, is usually discontinuous due to
its thresholding function. However, according to the learning technique, it should be necessary to use a
continuous differentiable activation function. Then, Rectified Linear Unit (RELU) is used as activation
function for each layer, except the output layer, for which softmax or sigmoid is used. RELU is defined
as the non-negative part of its argument:

f(x) = max(0, x)

Predictability of Machine Learning Algorithms and Related Feature Extraction Techniques 9



CHAPTER 3. MODELS AND METHODOLOGY

It works empirically well and is very popular because it has strong biological motivations and mathematical
justifications and enables better training of deeper networks [26, 27, 25, 46] though it is not mathematical
differentiable at 0. In experiments, MLP is implemented by building sequential model of TensorFlow
library [1]. In the library, to solve the problem of indifferentiable activation function RELU, the derivative
when x = 0 is set to 0 as default.

As for the output layer of MLP, the activation function is set to softmax function for multi-classification
or sigmoid function for binary classification. The softmax function is used to normalize input into a
probability distribution, that is a function σ : RK → [0, 1]K defined by formula:

σ(z)i =
ezi∑K
j=1 e

zj

for i = 1, 2, ...,K and z = (z1, z2, ..., zK) ∈ RK . Through this normalization, the sum of the output vectors
σ(z)i are ensured to be 1. Therefore, the output can be seen as possibilities of different classes, according
to which the classification can be decided. Another is sigmoid function, which has a characteristic
”S”-shaped curve, used for binary classification. It is defined as by:

S(x) =
1

1 + e−x
=

ex

1 + ex

Due to its characteristic ”S”-shaped curve, it can flatten low and high values of inputs, which suits many
natural processes that exhibit a progression from small beginning to a climax over time but may cause
the gradient vanishing problem if it is used in hidden layers. The problem will prevent the weight from
changing its value and make model training very slow [33, 34].

3.3 Random Forest

To solve regression and classification problems, random forest model is a frequently-used machine learning
technique. A technique named ensemble learning is utilized in the model, which combines many classifiers
to provide solutions for complex problems [63]. Hence, a random forest algorithm consists of many
decision trees.

As an ensemble learning method for classification, regression and other tasks, random forest operates
by constructing a multitude of decision trees at training time. Namely, the ‘forest’ generated by the
random forest algorithm is trained through bagging or bootstrap aggregating [64]. Bagging is an ensemble
meta-algorithm that improves the accuracy of machine learning algorithms [8]. The algorithm establishes
the outcome based on the predictions of the decision trees. By taking the average or mean, it outputs the
prediction from various trees.

For classification tasks, the class that is selected by most trees becomes the output of the random forest [32].
For regression tasks, the model returns the mean or average prediction of all individual trees [31]. Random
decision forests correct for decision trees’ habit of overfitting to their training set [22].

The general technique of bootstrap aggregating or bagging is applied to tree learners in the training
algorithm for random forests. Given a training set X = x1, x2, ..., xn, with responses Y = y1, y2, ..., yn,
bagging repeatedly selects a random sample with replacement of the training set B times and fits trees to
these samples: for b = 1, 2, .., B

1. Sample, with replacement, n training examples from X, Y , call these Xb, Yb

2. Train a classification or regression tree fb on Xb, Yb.

After training, predictions for unseen samples x′ can be made by averaging the predictions from all the
individual regression trees on x′:

f̂ =
1

B

B∑
b=1

fb(x
′)

or by taking the majority vote in the case of classification trees, as shown in figure 3.3 [37].
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Figure 3.3: Schematic of Random Forest [37]

With this bootstrapping procedure, there could be better model performance because it decreases the
variance of the model, even though without increasing the bias. This means that, as long as the trees are
not correlated, the average of many trees is not sensitive to noise in its training set while the predictions
of a single tree are highly sensitive. To avoid strongly correlated trees, which are given by simply training
many trees on a single training set or even training the same tree many times with the deterministic
training algorithm, it is necessary to use bootstrap sampling to decorrelate the trees by showing them
different training sets.

For trees, the original bagging algorithm can be described by above procedure. There is another type of
bagging scheme for random forests as well: there can be an improved tree learning algorithm that selects
a random subset of features at each candidate split in the learning process. This process is sometimes
referred to as ”feature bagging”. The reason for this is the correlation of the tree in the common bootstrap
sample: if one or several features are very strong predictors of the response variable, namely target output,
the algorithm will select these features among many B-trees, making them relevant.

3.4 Gradient Boosted Decision Trees

Gradient boosting is a machine learning technique for tasks such as classification and regression, which
produces a prediction model in the form of an ensemble of weak prediction models, typically decision
trees [62]. The algorithm is called gradient boosted trees when a decision tree is the weak learner, of
which the performance is usually superior to random forest [29]. The model is built by the algorithm in
a stage-wise fashion like other boosting methods do, and such models can be generalized by allowing
optimizing an arbitrary differentiable loss function [49].

Like other boosting methods, weak ”learners” are combined iteratively into a single strong learner in the
gradient boosting algorithm [48]. In the least-squares regression setting, the goal is to ”teach” a model F
to predict values of the form

ŷ = F (x)

by minimizing the mean squared error
1

n

∑
i

(ŷi − yi)2

where i indexes over some training set of size n of actual values of the output variable y, ŷi is the predicted
value of F (x), yi is the observed value and n is the number of samples in y.

Predictability of Machine Learning Algorithms and Related Feature Extraction Techniques 11
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For a gradient boosting algorithm with M stages, at each stage m (1 ≤ m ≤M) of gradient boosting,
suppose a imperfect model Fm. In order to improve Fm, the algorithm should add some new estimator
h(m) such that

Fm+1(x) = Fm(x) + hm(x) = y

namely,
hm(x) = y − Fm(x)

Then, with gradient boosting, h will be fitted to this residual.

In the field of learning to rank, gradient boosting is very popular [14]. It can be also utilized for data
analysis in High Energy Physics [44]. However, it somehow sacrifices intelligibility and interpretability
while boosting can increase the accuracy of a base learner, such as a decision tree [80]. Furthermore, due
to the higher computational demand, it may be more difficult to implement the algorithm.

3.4.1 XGBoost

Among all variants of gradient boosting tree algorithm, XGBoost is a scalable end-to-end tree boosting
system, which data scientists is using widely on many machine learning challenges to achieve state-of-
the-art results [13]. In the XGBoost model, a given dataset with n samples and m features is defined
as

D = {(xi, yi)}

for which |D| = n, xi ∈ Rm and yi ∈ R. Then, with K additive functions, a tree ensemble model is used
to predict the output

ŷi = φ(xi) =

K∑
k=1

f(xi), fk ∈ F

where F = {f(x) = wq(x)| q : Rm → T, w ∈ RT } is the space of trees. The structure of each tree is
represented by q, which maps an example to the corresponding leaf index. T is the number of leaves in
the tree. Each fk corresponds to an independent tree structure q and leaf weights w. To learn the set of
functions used in the model, the regularized objective function can be minimized

L(φ) =
∑
i

l(yi, ŷi) +
∑
k

Ω(fk)

where Ω(fk) = γT + 1
2λ‖w‖

2. A differentiable convex loss function is represented by l that measures the
difference between the target yi and the prediction ŷi. As for the complexity of the model, it is penalized
by the second term Ω.

To guarantee traditional optimization methods in Euclidean space, the model is trained in an additive
manner that is

L(t) =

n∑
i=1

l(yi, ŷ
(t−1)
i + ft(xi)) + Ω(ft)

where ŷ
(t)
i is the prediction of the i-th instance at the t-th iteration.

After mathematical deviation, for which readers can check the citation [13], what determines the objective
function is

L̃(t)(q) = −1

2

T∑
j=i

(
∑

i∈Ij gi)
2∑

i∈Ij hj + λ
+ γT

where Ij = {i| q(xi) = j} defined as the instance set of leaf j, gi = ∂ŷ(t−1) l(yi, ŷ
(t−1)) and hi =

∂2
ŷ(t−1) l(yi, ŷ

(t−1)) are first and second order gradient statistics on the loss function. With this function,

calculation of the corresponding optimal value can be seemed as the measurement of the quality of a tree
structure q.

Afterwards, a greedy algorithm that starts from a single leaf and iteratively adds branches to the tree can
be used instead of enumerating all the possible tree structures q, which is almost impossible in practice.
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Using IL and IR to represent the instance sets of left and right nodes after the split, the loss reduction
after the split can be given by

Lsplit =
1

2

[
(
∑

i∈IL gi)
2∑

i∈IL hj + λ
+

(
∑

i∈IR gi)
2∑

i∈IR hj + λ
−

(
∑

i∈I gi)
2∑

i∈I hj + λ

]
− γ

With this, the algorithm can evaluate the split candidates, find the best one and therefore decide the
model.

3.5 Feature Extraction

Not only in the area of machine learning, feature extraction, also known as feature/variable selection
in pattern recognition and image processing, starts with an initial dataset to build derived values or
features, which are designed to provide information and simplicity. With this procedure facilitating the
subsequent learning and generalization steps, it is always easier to interpret for human. On this basis,
feature extraction is related to dimensionality reduction [69].

When some input data is too large to process for an algorithm, and it is suspected to be redundant, it
can be converted into a subset with extracted features. For example, the input data includes the same
measurement in both feet and meters, then the feature extraction will drop the redundant information like
the data measured in feet. The process of determining such a subset is called feature extraction/selection [2].
The extracted features should contain relevant information from the initial dataset so that this simplified
representation can be used as the alteration of the full original dataset to perform the required task
shown as figure 3.4 [58].

Figure 3.4: Example of utilizing feature extraction [58]

The main task involved by feature extraction is to reduce the resource which are necessary to describe
large amounts of data. When analyzing or learning with massive complex data, which usually requires a
lot of memory and computational power, one of the main problems are caused by the number of variables
involved. Besides, with the original dataset, a classification algorithm or model is inclined to overfit
training samples and may be generalized poorly afterwards. In general, feature extraction is a generic term
for methods combining features or variables to solve these problems with performing sufficient accuracy
comparing with the initial dataset. It is commonly believed for many machine learning researchers that
the key to effectively construct a model is properly optimized feature extraction [6].

In the experiments, except for the classic dimensionality reduction technique Principal Component
Analysis (PCA), several feature extraction methods are used such as permutation importance,feature
importance and hierarchical clustering based on Spearman correlations.

3.5.1 Permutation Importance

Permutation feature importance measures the increase in the prediction error of the model after we
permuted the feature’s values, which breaks the relationship between the feature and the true outcome. In
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other words, the importance of a feature is measured by calculating the increase in the model’s prediction
error after permuting the feature values. If shuffling the values of that feature increases the model error,
the feature will be recognised as important because this phenomenon means that the model is relying on
that feature to predict [9].

The permutation feature importance measurement is introduced for and also experimented based on
random forests, which has some advantages. Permutation importance has a rather decent interpretation
that feature importance is the increase in model error when the information of the feature is destroyed which
provides global insight for the model behavior. Moreover, feature importance considers all interactions
with other features automatically because shuffling the feature values will also destroy the interactions
between that feature with other features.

However, considering all interactions with other features is a disadvantage because, when features are
correlated, permuting one feature will also influence the performance in an adding-up way with other
correlated features. Then the sum of drop is much larger when it should be for that exact feature.
Meanwhile, a correlated feature may decrease the permutation importance of the aim feature because it
may weaken the influence caused by the aim feature. For example, the temperature at 8:00 AM of the
day may be the important feature to predict the probability of rain until another strongly correlated
feature, like the temperature at 9:00 AM, is added. After introducing the temperature at 9:00 AM, one
of the possibilities is that the temperature at 8:00 AM may become less important because the model
can also rely on the temperature at 9:00 AM now. These disadvantages may make the result difficult to
interpret.

3.5.2 Gain-Based Feature Importance

An XGBoost model for a classification problem can produce the importance for features, which is based
on the relative contribution of the corresponding feature to the model calculated by the contribution of
each feature for each tree in the model that is the gain of a feature. A higher value of this metric implies
more importance of a feature for generating the prediction.

The idea of measuring the gain of a feature is to observe how much model performance improved when
adding a new split based on this feature. Hence, gain-based feature importance is the most relevant
interpretation of each feature in the XGBoost model [71].

3.5.3 Hierarchical Clustering Based on Spearman Correlations

Hierarchical clustering is widely used when the actual number of clusters is unknown or the relationships
between objects are interesting for researchers, which is also the reason why it is preferred to non-
hierarchical clustering. The unweighted pair group method using arithmetic average (UPGMA) method
is the most popular hierarchical clustering method, which starts from single element clusters which are
successively fused together until there is only one single cluster [39, 55].

In detail, the first step of the clustering is to construct a similarity matrix based on the Spearman
correlations between each pair of features in the experiments because it is difficult to use traditional
method, like Euclidean distance, to measure the similarity between features. The Spearman correlation
can be calculated by the formula ∑

i(xi − x̄)(yi − ȳ)√∑
i(xi − x̄)2

∑
i(yy − ȳ)2

where xi and yi are observations, x̄ and ȳ are the mean value, and i = paired score. The formula is
utilized when there are tied ranks.

Then the most correlated features are selected and joined in one new cluster. This process is repeated
until there is only one cluster including all objects. Hence, a dendrogram can always be used to represent
the hierarchy that is a nested set of clusters. Here is an instance result in experiments shown in the figure
3.5, where, based on different height, different number of clusters can be decided.
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Figure 3.5: An example dendrogram for dataset 1479

With the preservation of the hierarchical cluster, selected feature subset can eliminate redundant features
while the complete structure that represent the correlation between features is unaltered. Therefore,
hierarchical clustering based on Spearman correlations between features is easy to perform feature
extraction by choosing one feature per cluster [43].

3.5.4 Principal Component Analysis

In experiments, a method using singular value decomposition (SVD) of the data for linear dimensionality
reduction, is called principal component analysis (PCA) used to project the data to a lower dimensional
space, which can be considered as feature extraction as well. In real coordinate space, a sequence of p unit
vectors is the principal components of the set of data points, where the i-th vector is the line direction
orthogonal to the first i− 1 vectors and best fits the data, which means that the average squared distance
from the points to the line is minimized. An orthonormal basis can be constructed from these directions
so that there is no linear correlation between different individual dimensions of the data [54]. It is PCA
that calculates the principal components and uses them to perform a change of basis on the data that
can be seen as dimensionality reduction or feature extraction.
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3.6 Matrix Factorization

In the mathematical discipline, a matrix factorization, also known as matrix decomposition, means that a
matrix is factorized into a product of matrices. There are many different useful matrix decomposition
methods available for a specific class of problems. To introduce the matrix factorization model, taking
The example of recommendation systems, especially for user-item recommendation, is much clear and
easy to understand.

For the recommendation system, matrix factorization algorithms, which can be seen as a class of
collaborative filtering algorithms, decompose the user-item interaction matrix into the product of two
lower dimensionality rectangular matrices [42]. In terms of recommendation systems, it is a common
task to improve customer experience by personalized recommendations, which have to be based on prior
implicit feedback. Hence, to model user preferences, different sorts of user behavior, such as browsing
activity, watching habits and purchase history, can be passively track by these systems. After the
effectiveness of matrix factorization approach is reported by Simon Funk in a 2006 blog post, it became
widely known [23]. However, unlike the explicit feedback, which is researched much more broadly, there
is no direct input from the users about their preferences. It is proposed that the data is treated as an
indication of positive and negative preference associated with vastly different confidence level, which leads
to a factor model which is specifically tailored for implicit feedback recommenders [36].

Different types of input are relied on by recommender systems. Most convenient is the high quality
explicit feedback, which includes explicit input by users regarding their interest in products. However,
explicit feedback is not always available. Thus, recommenders can infer user preferences from the more
abundant implicit feedback, which indirectly reflect opinion through observing user behavior [59].

The task of matrix factorization is to approximate the true original matrix R by

R̂ = W ·HT

namely the approximated matrix is the product of two feature matrices W and H. Take recommender
system for online customer as an example, W : |U | × k means that the the i-th row wi of W contains k
features that describe the i-th user, and H: |I| × k means the j-th row hj of H contains k corresponding

features for the j-th item. Hence, R̂ = W ·HT is equivalent to the following

r̂(i,j) = 〈wi, hj〉 =

k∑
f=1

w(i,f) · h(j,f)

In order to center the approximation, a bias term is added to guarantee that only residuals are
learned:

r̂(i,j) =

k∑
f=1

w(i,f) · h(j,f) + b(i,j)

Normally, b(i,j), the bias term, is the global average, the user average, or the item average, but the result
of another prediction algorithm could be an alternation as well [65].

3.6.1 Implicit model

Once the user gives approval to collect usage data, an implicit model requires no additional explicit
feedback, such as ratings, which, from users’ view, is much more convenient than to feedback explicitly.
The recommender system with matrix factorization model used in experiments can be seen as implicit
model because it was designed almost with no explicit feedback. Here are the two prime characteristics of
inputs for the current model [36]:

1. All inputs are non-negative. In the experiments, the input matrix is the accuracy of each algorithms
on different datasets. Hence, it is impossible with the model to utilize any negative inputs.

2. There is inherent noise in the inputs. For example, some algorithms may produce overfitting results,
which does not necessarily indicate a better performance for the algorithm.
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Usually, the implicit-feedback system needs appropriate measurements for evaluation. However, for the
experimented matrix decomposition model, clear metrics such as mean squared error are available and
easy to interpret just like in the traditional setting.

3.6.2 Distance between different algorithms and datasets

After factorizing the input matrix with R̂ = W ·HT , it is possible to split each row for both W and H
as wi and hj . The wi can be seen as the coordination of the i-th algorithm. In the same way, the hj
can be seen as the coordination of the j-th dataset. The figure 3.6 shows the coordination of different
algorithms.

As shown in the figure, the x-axis is the dimension of coordinates, which is originally equal to the number
of models we use, and the y-axis is the name of models. We use abbreviation in the figure that RF max,
XGB max, and MLP max mean the best performance of model random forest, XGBoost, and MLP,
respectively. Besides, RF 6 512 and XGB 6 512 symbolize the accuracy of model random forest and
XGBoost with 512 trees and max depth 6 for each tree in the model, which can be seen as the most
complex model. Similarly, MLP 7 512 150 stands for the accuracy of the model MLP trained for 150
epochs with 7 layers and 512 nodes per layer. Also, with the heatmap, we can visualize the value of the
coordination.

Figure 3.6: The visualization for coordinates of different algorithms

In this figure, we can see that the coordinate of linear model is (0.345, 0.000, 0.008, 0.621, 0.865, 0.000, 0.222).
That is (0.420, 0.183, 0.147, 0.293, 0.368, 0.443, 0.460) for the model of random forest with 512 trees
and each tree with max depth equal to 6. As for the model random forest with the best performance, that
is (0.403, 0.153, 0.310, 0.359, 0.166, 0.395, 0.715). And we can read other coordinates similarly.

Based on the coordination, the similarity of algorithms and datasets can be calculated. The results are
shown in the figure 4.28 in the section 4.0.3. We will describe it in detail in that part.
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Chapter 4

Results of Experiments

In this section, the whole process and results of experiments are stated. First of all, it is necessary to
check whether each algorithm has a clear, stable, and reasonable trend of change due to the change of
hyperparameters. What is expected for a selected algorithm is to observe the monotonically increasing
accuracy in most datasets, as the model becomes more complex because of hyperparameter tuning. If
such a pattern exists, a prediction framework for algorithms can be built simply according to this pattern.
Therefore, a set of heatmaps for each algorithm are presented to intuitively show whether there is a certain
change pattern in the performance of different algorithms with the change of hyperparameters.

While experimenting with each algorithm, it is also found possible to scale the data by changing the
dimension of the data, namely the features. In particular, random forest and XGBoost both have a
function to rank features, in accordance with which feature extraction can be done. Considering the lack
of experiments with feature extraction in previous studies, various techniques are empirically studied and
the related patterns changing with the number of features are compared. The ultimate goal is to test the
predictability of these technologies as well.

Finally, the framework supported by matrix factorization is built to forecast the accuracy of an algorithm
on a given dataset. With this framework, it is feasible to analyze the similarity among algorithms or
datasets.

4.0.1 Heatmap

Heatmaps are used for the experiments that are with one kind of model alone. In specific, for random
forest models and XGBoost models, the experiments traverse all combinations with max depth of each
tree from 1 to 6 and trees number of each model equal to 2n where n is from 1 to 9. As for multi-layer
perceptron, the experiments go through all combinations with layer numbers from 1 to 6 and nodes
number of each layer equal to 2n where n is from 1 to 9. Meanwhile, the density of the color shows the
level of accuracy of the model on that dataset, where dark blue is for the low accuracy and dark red is for
the high accuracy. Moreover, unless otherwise stated, the training set ratio is 0.33, which means 33% of
dataset is utilized to train the model.

Using heatmaps can give an instant overview of all results and latent patterns of how accuracy changes with
different combinations of hyperparameters. For readability, only two groups of representative heatmaps
are selected for each algorithm. The results of other pictures can be found in the appendix.

Since linear classifier does not need a lot of hyperparameters tuning like the other three types of models,
we start from random forest to describe the results obtained and give out summery of all results at the
end of this subsection.

Random Forest

Firstly, consider dataset 4538 for example, which is for gesture phase segmentation[18, 79, 50, 51, 78]
and related attributes of the dataset are given in the table1.2. The overall pattern can be seen from the
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heatmap 4.1, where the x-axis represents the max depth of each tree and the y-axis represents the number
of trees. According to the result, the performance of random forest models is usually affected more by
the max depth of each tree used in the model than the number of trees because it can be observed that a
vertical line divides the heatmap into left and right parts. In particular, for a random forest model with
only two trees, when the max depth is 4, the performance is 0.483, which is better than that of the model
with 512 trees but the max depth only is equal to 1, which is 0.463.

Figure 4.1: The performance of Random Forest on dataset 4538

The experiments are using the function sklearn.ensemble.RandomForestClassifier from the library
scikit-learn, where other hyperparameters are set as default that is only n estimators, representing the
number of trees, and max depth, namely the max depth of each tree, are changed during implementation[11,
61]. As for the detail of other hyperparameters, please check the reference and this link.

After experimenting with amounts of datasets, partly shown in figure 4.2 and 4.3, the performance can
be found improved with increasing the max depth of each tree and the number of trees, usually more
influenced by the former. Such a pattern is found to be common, that is for 43 out of 54 datasets showing
this pattern, which can be found in the table 4.1 and 4.2. With this extensively existed reasonable
tendency, the predictability is proved good enough so that, for most datasets, increasing the max depth
of each tree and/or the number of trees in random forest models can improve the performance.

(a) 22 (b) 44 (c) 60 (d) 180

Figure 4.2: Part of results of random forest
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(a) 182 (b) 734 (c) 833 (d) 904

(e) 4534 (f) 40668 (g) 40670 (h) 40997

(i) 40999 (j) 41000 (k) 41004 (l) 41048

Figure 4.3: Part of results of random forest

XGboost

The pattern appearing in random forest models that is the performance is increased with adding up the
number of trees and/or the max depth of each tree. For the same dataset 4538, an XGBoost model with
only two trees, when the max depth is 4, the performance is 0.492, which is better than that of the model
with 512 trees but the max depth only is equal to 1, which is 0.452. It means the phenomenon that
performance with a few but deep trees can be pretty well can be found in XGBoost models as well. The

20 Predictability of Machine Learning Algorithms and Related Feature Extraction Techniques



CHAPTER 4. RESULTS OF EXPERIMENTS

overall pattern can also be observed from the heatmap 4.4, where the x-axis represents the max depth of
each tree and the y-axis represents the number of trees.

Figure 4.4: The performance of XGboost on dataset 4538

The experiments are using the function tf.estimator.BoostedTreesClassifier from the library Tensor-
Flow, where other hyperparameters are set as default that is only n trees, representing the number of
trees, and max depth, namely the max depth of each tree, are changed during implementation[1]. Besides,
the hyperparameter n classes is always set equal to the number of different labels in the dataset. To
look into the detail of other hyperparameters, please check the reference and this link.

After experiments, the pattern can be found over half of the datasets that are for 29 out of 54 datasets,
except 6 datasets cannot run XGBoost because of the limit of machine, showing performance enhanced
with the growth of the max depth of each tree and/or the number of trees, which can be found in the table
4.1 and 4.2. Such patterns are shown in figure 4.5 and 4.6. The vertical bound that divides the heatmap
into left and right parts can be seen in some figures as well. With this existed reasonable tendency, which
unfortunately is not an overwhelming majority, XGBoost can be considered to have the predictability but
not as prominent as random forest. Hence, it is not reliable to anticipate the performance of XGBoost
via these pattern.

(a) 22 (b) 44 (c) 60 (d) 180

Figure 4.5: Part of results of XGBoost
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(a) 182 (b) 734 (c) 833 (d) 904

(e) 4534 (f) 40668 (g) 40670 (h) 40997

(i) 40999 (j) 41000 (k) 41004 (l) 41048

Figure 4.6: Part of results of XGBoost

Multi-Layer Perceptron

In random forest and XGBoost experiments, the performance is increased by adding up the number
of trees and/or the max depth of each tree. In the experiment of multi-layer perceptron(MLP), two
hyperparameters are mainly focused on, the number of layers and the number of nodes per layer. Similarly,
first taking dataset 4538 as an example, it can be found that accuracy also improves with the increase
of the number of nodes in each layer, which means that even the shallow network with enough neural
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nodes can perform as well as the deep network or even better. In specific, in an MLP model with only 1
layer, when the number of nodes per layer is 8, the performance is 0.504, which is better than that of the
model with 6 layers but the number of nodes per layer is only equal to 2, which is 0.4607. The overall
performance pattern of multi-layer perceptron on dataset 4538 can also be observed from the heatmap
4.7, where the x-axis represents the number of layers, namely the depth of the network, and the y-axis
represents the number of nodes in each layer.

Figure 4.7: The performance of multi-layer perceptron on dataset 4538

The experiments are using the function tf.keras.layers.Dense from the library TensorFlow, where
hyperparameters units representing the number of nodes in each layer is changed during experiments,
activation namely the activation function to use is set to relu, and kernel initializer namely the
initializer for the kernel weights matrix is set to he normal and other hyperparameters are set as default
except for the last layer of the model. In the last layer, if there are only 2 classes in the dataset, units is
set to 1, activation is set to sigmoid, otherwise, units is equal to the number of different labels and
activation is assigned softmax. Besides, during the implementation, the function tf.keras.Sequential

is also used to construct MLP models. When using tf.keras.Sequential.compile, optimizer is always
settled to adam, if the dataset has only 2 classes, loss is settled to binary crossentropy, otherwise
sparse categorical crossentropy [1]. Moreover, MLP models are all trained 150 epochs. To look into the
detail of other hyperparameters, please check the reference, the link for the first function, and the link for
the second function.

(a) 4534 (b) 40668 (c) 40670 (d) 40997

Figure 4.8: Part of results of multi-layer perceptron
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Through plenty of experiments, it is pervasive that shallow networks can perform as well as complicated
networks or even better. About the influence of two hyperparameters, the number of layers and the
number of nodes per layer, accuracy changes with these two changes in 42 of the 54 datasets as shown in
figures 4.9 and 4.8. In some data sets, a horizontal line can be vaguely observed dividing the heatmap
into upper and lower parts, which also indicates that the number of nodes per layer has a greater impact
on accuracy.

However, in addition to this discovery, many patterns are not as reasonable as random forest and XGBoost,
namely the performance is foreseen increasing with the number of nodes and layers increasing. As shown
in Figure 4.9, accuracy decreases with the increase of two hyperparameters, especially the number of
layers, on many data sets. Such counterintuitive patterns accounted for 25 of the 42 datasets with
patterns, while the pattern shown in Figure 4.8 is relatively consistent with the ideal situation, accounting
for only 17 datasets. See table 4.1 and 4.2 for detailed results, where the expected patterns are denoted
by 1 and unexpected patters are denoted by 0. This may be related to the problem of overfitting, which
needs further discussion. But in any case, should we assume that MLP hardly has predictability due to
the inconsistent and mostly counterintuitive patterns. Therefore, it seems not feasible to estimate the
performance of MLP via these patterns.

(a) 182 (b) 734 (c) 833 (d) 904

(e) 22 (f) 44 (g) 60 (h) 180

Figure 4.9: Part of results of multi-layer perceptron

Summary

Here the summary tables are given. The entire summary is divided into two tables based on the classifier
with the highest accuracy on the dataset. In the table 4.1 and 4.2, not only the occurrence of pattern is
summarized, but also the optimal performance corresponding to each algorithm, so as to compare which
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algorithm may have the best performance. Tables are arranged in ascending order by the ID column
within the partition.

The first column ID is the id of datasets, which can be found in OpenML using the data id[76], and the
corresponding attributes can be viewed in table 1.1 and 1.2. The whole row is various results for the
dataset.

The second column RF corresponds to the occurrence of pattern about random forest (RF) on the
dataset, and 1 indicates that patter exists in the corresponding dataset. Similarly, the third column XGB
represents XGBoost(XGB) case, where labeled null means that the XGBoost cannot run on that dataset
because of the machine limitation. In the fourth column MLP, in order to distinguish different patterns, 1
is used to indicate that the existing pattern is prospective, that is, accuracy increases with the increase of
node number and layer number, and on the contrary, 0 is used to indicate the opposite pattern. Besides,
if there is no pattern, the entry will be empty like other two columns.

The fifth, sixth, seventh, and eighth columns indicate the highest accuracy of linear classifier, random
forest, XGBoost, and MLP on each dataset, respectively. The last column indicates the best performing
algorithm on this dataset. As shown in table 4.2, there are only 3 datasets, on which random forest has
the best performance, including the dataset 313 which should be seen as the abnormal one because all
other three classifiers cannot work properly on it. Then, dataset 40999 and 41005 can be seen as simple
datasets since, on these two datasets, the accuracy of three classifiers, random forest, XGBoost, and MLP,
is equal to 1. Similarly, dataset 40997, 41000, and 41004 are easy to classify as well. Apart from these,
XGBoost and MLP show comparable excellent performance, each achieving the highest accuracy on 23
out of 54 datasets, respectively. However, it is worth mentioning that there are 5 datasets that XGBoost
cannot run on because of the limited machine and it is on these 5 datasets that MLP achieves the best
performance.

Table 4.1: Summary of performance patterns only with datasets MLP performs best

ID RF XGB MLP Linear Random Forest XGBoost MLP Best
14 1 1 0 0.195455 0.821212 0.757576 0.830303 mlp
22 1 1 0 0.166667 0.769697 0.707576 0.807576 mlp
44 1 1 0 0.85451 0.931534 0.923634 0.946675 mlp
60 1 1 0 0.38 0.858182 0.788485 0.86 mlp
180 1 1 0 0.011419 0.666676 0.67535 0.861351 mlp
182 1 1 0 0.215834 0.880302 0.850141 0.921772 mlp
734 1 1 0 0.860952 0.830101 0.866681 0.881666 mlp
833 1 1 0 0.796228 0.796228 0.798447 0.821746 mlp
979 1 1 0 0.816364 0.867273 0.846061 0.893939 mlp
1479 0.5925 0.5575 0.5625 0.705 mlp
1491 1 null 0 0.005682 0.537879 null 0.831439 mlp
1492 1 null 0 0.011364 0.416667 null 0.704545 mlp
1493 1 null 0 0.017045 0.642045 null 0.829545 mlp
1494 1 1 0 0.802292 0.876791 0.853868 0.896848 mlp
1501 1 1 0.117871 0.901141 0.735741 0.948669 mlp
4534 1 1 1 0.890107 0.939161 0.929022 0.976706 mlp
4538 1 1 1 0.101565 0.540657 0.509972 0.664314 mlp
40668 1 1 1 0.245896 0.675877 0.70759 0.852023 mlp
40670 1 1 1 0.398289 0.945817 0.914449 0.958175 mlp
40705 1 0 0.905363 0.914826 0.946372 0.952681 mlp
40996 1 null 1 0.120866 0.799957 null 0.89697 mlp
41014 1 null 1 0.010091 0.866567 null 0.935239 mlp
41027 1 1 1 0.226219 0.748158 0.742411 0.979582 mlp
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Table 4.2: Summary of performance patterns and the best classifier for each dataset excluding MLP only

ID RF XGB MLP Linear Random Forest XGBoost MLP Best Classifier
313 1 null 0 0.551136 null 0 rf
904 1 1 0 0.812121 0.863636 0.842424 0.833333 rf
4154 1 0.999362 0.999787 0.999787 0.999362 rf
316 0.983709 0.989975 0.991228 0.986216 xgb
718 1 0 0.666667 0.8 0.89697 0.657576 xgb
1049 1 0.906639 0.894191 0.919087 0.906639 xgb
1050 0 0.895349 0.901163 0.932171 0.893411 xgb
1056 1 1 0.993598 0.995519 0.997119 0.995839 xgb
1069 0 0.996206 0.995122 0.997832 0.996206 xgb
1443 1 0.917808 0.936073 0.945205 0.936073 xgb
1444 0 0.843478 0.881159 0.913043 0.866667 xgb
1451 0 0.922747 0.914163 0.939914 0.922747 xgb
1452 0 0.971545 0.97561 0.987805 0.98374 xgb
1453 0 0.88764 0.879213 0.904494 0.882023 xgb
1487 0.92951 0.936679 0.949821 0.934289 xgb
1548 1 1 0.553939 0.595152 0.62303 0.552727 xgb
1549 1 0 0.104839 0.262097 0.33871 0.241935 xgb
1555 1 0 0.090909 0.266667 0.321212 0.221212 xgb
41007 1 1 1 0.861004 0.978121 1 0.993565 xgb
41025 0 0.6 0.8 0.9 0.6 xgb
41048 1 1 1 0.976549 0.984925 0.99665 0.994975 xgb
41049 1 0.984536 0.990979 0.993557 0.984536 xgb
41050 1 1 0.867672 0.889447 0.934673 0.909548 xgb
41051 1 1 0.896907 0.921392 0.947165 0.940722 xgb
41052 1 1 0.932998 0.860972 0.969849 0.954774 xgb
41053 1 1 1 0.904639 0.899485 0.926546 0.923969 xgb
40999 1 1 1 0.841495 1 1 1 rf, xgb, mlp
41005 1 1 1 0.792219 1 1 1 rf, xgb, mlp
40997 1 1 1 0.423052 0.994205 1 1 xgb, mlp
41000 1 1 1 0.356729 0.990341 1 1 xgb, mlp
41004 1 1 1 0.507405 0.984546 1 1 xgb, mlp

4.0.2 Feature Extraction

Firstly, it is essential to clarify what is the expectation for a well predictable technique of feature extraction.
That is for a dataset D, via some technology, k features are selected to train a specific model M and
based on the performance, it is possible to approximate the performance of the model M on the whole
dataset D with all features. There is one reasonable situation for the feature extraction technique that
the accuracy of the model will increase as the number of features that are selected by the technology
increases. Hence it is fundamental to define this situation strictly. Before the formal definitions, it is
essential to elaborate on some symbols:

• D is a dataset that has d features.

• FE is an algorithm of feature extraction that can select k features of the dataset D

• M is the machine learning classification model used on the dataset D.

• Accuracy(M,D) represents the test accuracy of the model M for the dataset D.

• Di
FE means D with only ki features that are selected at the ith time by the algorithm FE .

Suppose FE extracts features n times and each time the number of selected features increases δ, sometimes
δ = d

n (rounding up), until it equals to d. Therefore, the number of features selected at the ith time is
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ki = ki−1 + δ and 1 ≤ ki ≤ d, where i is an integer and 1 ≤ i ≤ n. On top of this, the following definition
1, 2 and 3 are given.

Definition 1 (Monotone Increasing Feature Extractor) An algorithm FE for feature extraction is
called a monotone increasing feature extractor for the modelM and the dataset D, if Accuracy(M,Di

FE) ≥
Accuracy(M,Di−1

FE ), ∀ i ∈ {2, · · · , n}, which is the number of times to run FE.

This definition may be too strict to allow most feature extraction algorithms to satisfy the conditions.
Therefore, a loose definition is preferred. Beforehand, a new parameter ti is introduced to count the cases
where the more features are selected and the higher accuracy is given, that is ∀ i ∈ {2, · · · , n}

ti =

{
1 , if Accuracy(M,Di

FE) ≥ Accuracy(M,Di−1
FE )

0 , otherwise

Hereafter, an alternative definition is given.

Definition 2 (ρ–Increasing Feature Extractor) An algorithm FE for feature extraction is called a
ρ–increasing feature extractor for the model M and the dataset D, for some 0 < ρ < 1, where

ρ ≤
∑n

i=2 ti
n

Ideally, having a monotone increasing feature extractor or a ρ-monotonic feature extractor for which
ρ is close to one is helpful to estimate, with what features, the satisfactory accuracy can be achieved.
Furthermore, in order to draw a comprehensive conclusion about a feature extraction technique, here is
another definition.

Definition 3 ((α, ρ)–Increasing Feature Extractor) Let A be a repository of datasets. FE is an
(α, ρ)–increasing feature extractor for the modelM and repository A if FE is ρ–increasing feature extractor
for more than α of all datasets in A with M that is for some α < 1,

α =
number of times FE is ρ− increasing feature extractor

number of datasets

With these definitions, especially definition 2 and 3, it is practicable to decide if a technology for feature
extraction is predictable. That is, for a feature extraction algorithm, the closer (α, ρ) is to (1, 1), the
more predictable it is, and the easier it is to select features that are used to train the model achieving
satisfactory accuracy, which can be used to answer question1 in Introduction. All datasets are used as A
in experiments listed in Table 1.1 and 1.2, and the classifier MLP with 4 layers and 128 nodes per layer is
used as M. Besides, there are table 4.4 and 4.3 in section 4.0.2 to summarize ρ values for all datasets.
Another table 4.5 is also put in Summary to show if there is an observed pattern.

Permutation Importance of Random Forest

To decide feature importance, a popular method is through permutation importance, which shows the
drop in the score when the feature would be replaced with randomly permuted values. Firstly, still
consider dataset 4538 as an instance shown in figure 4.10, where x-axis is the number of selected features
and y-axis is the accuracy of MLP with 4 layers and 128 nodes per layer trained and tested with the
dataset 4538 with only selected features. According to the definition 2 for ρ–Increasing Feature Extractor,
feature extraction by permutation importance is a 7

8–increasing extractor, which is the best it can be
because the supremum of ρ is 7

8 under this situation. The given definition is consistent with what is
observed.

During the experiment, the function sklearn.inspection.permutation importance is used, where the
parameter n repeats is set to 5 to guarantee the robustness of the results[11, 61]. Then, with the sorted
importance, which is averaged, features are selected by increasing the 10% of the total amount each time,
namely for dataset 4538, there are 4, 8, 12, · · · , 32 features extracted in sequence. Through this method,
the feature extractor is implemented and the MLP model is trained and tested over the dataset with
different number of features.
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Figure 4.10: The performance of feature extraction based upon permutation importance on dataset 4538

This ranking method works fairly well that is out of 54 datasets, there are 23 datasets, on which this
extractor has highest ρ value, part of them are shown in figure 4.11 and 4.12. Combined with direct
observation of the experimental results, there are both times when the observation conforms to the
definition and times when it does not.

(a) 180 (b) 979 (c) 4534

(d) 40668 (e) 41014 (f) 41027

Figure 4.11: Part of increasing results for extractor with permutation importance and highest ρ values

(a) 1049 (b) 1050 (c) 1453

(d) 1479 (e) 1492 (f) 40705

Figure 4.12: All non-increasing results of extractor with permutation importance and highest ρ values
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Generally speaking, if the feature extractor has the highest ρ value on a data set, the monotonically
increasing pattern will be discovered by observing the behavior of it on this dataset like results shown in
figure 4.11. However, there are some exceptions, including datasets 1049, 1050, 1453, 1479, 1492, and
40705, shown in figure 4.12, where the pattern can be hardly observed even though the technique has the
highest ρ value on them. Vice versa, on 13 datasets, part of which are shown in figure 4.13, the pattern
can be perceived even though the highest ρ value on the dataset is not achieved by this method.

(a) 60 (b) 904 (c) 4154 (d) 40999

Figure 4.13: Part of increasing results of extractor with permutation importance but not highest ρ values

Overall, we observed a total of 30 datasets on which the feature extractor using permutation importance
has monotonically increasing pattern, which can be inferred that this extraction technology is reasonable.
Other than that, datasets that neither have significant ρ value nor can be observed in increasing pattern
are out of the scope of discussion in the paper.

Gain-Based Feature Importance of XGBoost

Another method to decide feature importance is using gain-based feature importance based on XGBoost
algorithm. Take dataset 4538 as an illustration shown in figure 4.14, which is considered as an increasing
pattern but does not have the highest ρ value. Due to the definition2 of ρ–Increasing Feature Extractor,
feature extraction with gain-based importance is a 4

7–increasing extractor.

Figure 4.14: The performance of feature extraction based upon gain-based importance on dataset 4538

In the course of experiments, what is utilized to select features is the method from TensorFlow,
experimental feature importances of the function tf.estimator.BoostedTreesClassifier, where
the parameter normalize is set to True to normalize the feature importance[1]. For detailed information,
please check this link. The following steps are as same as experiments of the extractor using permutation
features, stated in section 4.0.2 Permutation Importance of Random Forest.

According to empirical results, this method is far less interpretable than method with permutation
importance as a kernel because there is only one dataset, 41000 illustrated in figure 4.15, on which the
extractor has the highest ρ value and can be observed having a increasing pattern. Besides, except 41000,
there are only 6 other datasets 1069, 1487, 1548, 40999, and 41005 having the highest ρ value, which
however cannot be regarded as having reasonable pattern because the lines are either strongly wavy or
deadly waveless. These results are shown in figure 4.16.
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Figure 4.15: Only dataset 41000 increasing for extractor with gain-based importance and highest ρ value

(a) 1069 (b) 1487 (c) 1548

(d) 40999 (e) 41005

Figure 4.16: All non-increasing results of extractor with gain-based importance and highest ρ values

Even if it is not judged by the number of highest ρ values it has, only 8 out of 54 datasets, including 180,
4534, 4538, 40668, 40997, 41000, 41004, and 41027, are observed increasing performance with the increase
of feature number, all revealed in figure 4.14, 4.15, and 4.17.

(a) 180 (b) 4534 (c) 40668

(d) 40997 (e) 41004 (f) 41027

Figure 4.17: All increasing results of extractor with gain-based importance but not highest ρ values
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In general, the feature extraction technique with gain-based feature importance of XGBoost algorithm is
very weak in the aspect to predictability and interpretability because most extractors are not with high ρ
values and cannot cause an increasing tendency when increasing the number of features.

Hierarchical Clustering Based on Spearman Correlation

In addition to two methods mentioned in 4.0.2 Permutation Importance of Random Forest and 4.0.2
Gain-Based Feature Importance of XGBoost, there is a method to extract features decided by hierarchical
clustering based upon Spearman correlation. As a convention, 4538 is still introduced as an example,
shown in figure 4.18, which can be regarded as a predictable pattern though with only ρ = 3

7 , which
means that in less than half the time, increasing the number of features can increase the accuracy.

(a) Feature extraction

(b) Dendrogram

Figure 4.18: The performance of feature extraction based upon Spearman correlation on dataset 4538
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Through experiments, function scipy.stats.spearmanr and scipy.cluster.hierarchy.ward from
scipy are utilized for the calculation of Spearman correlation and the generation of hierarchical
clustering[77]. The parameters of these functions are not changed. Usually, to select features by
hierarchical clustering, it is essential to look through related dendrograms and decide which features
should be selected with the level of dendrograms, some of which are exampled in figure 4.19, where
x-axis is the name of features, y-axis is the level, and colours symbolize different clusters. However, for
automatic processing, going through the level from 0.5 to 3 plus 0.5 each time and from 3 to 12 plus 1
each time is enough to cover most possible level, that is selecting suitable numbers in each step. with this
method the result of clustering is stable so that it is not necessary to repeat. After selection, experimental
steps are as same as mentioned in section 4.0.2.

(a) 22 (b) 60 (c) 41007

Figure 4.19: Three examples of dendrogram

From the view of definition 2, the extractor with Spearman correlation is the second best, which achieves
the highest ρ–value on 21 out of 54 datasets. On dataset 22, it is a 10

11–increasing extractor, the best one
among all extractors no matter with permutation importance, gain-based importance, or PCA, which
is illustrated in section 4.0.2. Hence, it can be seen as the smoothest increasing pattern as well. Other
results with highest ρ values are partly shown in figure 4.20 and 4.21.

(a) 22 (b) 60 (c) 904 (d) 1491

(e) 1501 (f) 40997 (g) 41007 (h) 41048

Figure 4.20: Part of increasing results for extractor with Spearman correlation and highest ρ values
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In figure 4.21, there are only 6 datasets including 313, 316, 1050, 1056, 1444, and 1451 that cannot be
observed as increasing pattern but with the highest ρ value, namely that it is hardly to see the observation
opposing to the definition.

(a) 313 (b) 316 (c) 1050

(d) 1056 (e) 1444 (f) 1451

Figure 4.21: All non-increasing results for extractor with Spearman correlation and highest ρ values

Additionally, it can be detected that the accuracy of the MLP model on 37 out of 54 datasets has an
increasing pattern with the increase of the number of features used in the model, which are extracted
by the extractor utilizing hierarchical clustering based on Spearman correlation. Hence, regarding the
observation, this extractor is the best one with over 68% of datasets showing an increasing pattern even
though it does not have the highest ρ value on these datasets, some of which can be scrutinized in figure
4.22.

(a) 180 (b) 979 (c) 4534 (d) 40668

(e) 40996 (f) 41000 (g) 41027 (h) 41052

Figure 4.22: Part of increasing results for extractor with Spearman correlation but not highest ρ values

To sum up, although feature extractor with Spearman correlation is not as satisfying as that with
permutation importance in terms of definition 2 ρ–Increasing Feature Extractor, it cannot be inferred
that the former is worse than the latter. There are two main reasons. Firstly, even if the ρ values of
extractor with Spearman correlation and permutation importance are very similar, there can only be
one highest value, which is always unique. Secondly, the overall trend should be considered as well, for
example, it is possible that technique of permutation importance has fewer declined segments but the
drop is large, while that with Spearman correlation is just the opposite, so that the observation makes
the latter better than the former. This will be analyzed in detail in section 5 Further Discussion. In a
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word, feature extraction with hierarchical clustering by Spearman correlation has the best interpretability
among all studied techniques according to the results of experiments

Principal Component Analysis

Moreover, principal component analysis(PCA), a popular dimension reduction method, is also introduced
into comparison in experimental implementation. Eventually, dataset 4538 has its final use, to first
show how this last method PCA behaves in figure 4.23. The performance of PCA on this dataset can
be supposed with a interpretable pattern though with only ρ = 6

11 , which still means that there are
increasing segments during the experimental process in more than half the time.

Figure 4.23: The performance of PCA on dataset 4538

It is sklearn.decomposition.PCA from the library sklearn that the core function for PCA is deployed
before training and testing the MLP model[11, 61]. The only parameter that needs to be changed is
n components, which is determined by the number of features to keep each time. Hence, the dataset
is projected into the specified number of dimensions, which increases 10% of total amount as well,
then train and test the classifier upon the new dataset, as described in section 4.0.2. It should be
especially emphasized that PCA, as an ’extractor’, unlike the previous three schemes can maintain
the original features, it will map the entire dataset to new dimensions as introduced in section 3.5.4.
However, considering the end result, they are highly similar in function, which is thought of regarding to
dimensionality reduction. This is the reason why they are compared with each other.

According to the experiments, PCA is only better than extractor using gain-based feature importance
based on XGBoost. Corresponding to the latter, PCA only once shows consistency of definition and
observation on dataset 41027 presented in figure 4.24, where both PCA has ρ = 5

6 reaching the supremum
at the same time with the extractor based upon permutation importance.

Figure 4.24: PCA with the highest ρ value only increasing on dataset 41027
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Similarly, except dataset 41027, there are also other 5 datasets 718, 833, 1549, 1555, and 4154 having the
highest ρ values but no stable increasing patterns, shown in figure 4.25.

(a) 718 (b) 833 (c) 1549

(d) 1555 (e) 4154

Figure 4.25: All non-increasing results for PCA with highest ρ values

Although by strict definition the two techniques are almost identical, through the investigation of
the experimental results, PCA is actually slightly stronger than the extractor with gain-based feature
importance because on 16 our of 54 datasets a general upward trend can be discovered, which is better
than the case of the extractor with gain-based feature importance with only 8 datasets. Part of results
are shown in figure 4.26. Hence, it is advisable to assume that interpretibility of PCA is slightly stronger
than the extractor based on XGBoost algorithm.

(a) 180 (b) 4534 (c) 40668 (d) 40999

Figure 4.26: Part of increasing results for PCA not having highest ρ values

Summary

To summarize the experimental results, three tables are given here. At first, table 4.3 and 4.4 recapitulate
the performance of different feature extraction techniques on all datasets and highlight the best one,
which are divided by the best technology and ranked ascendingly by data id in each partition. Besides
remarking the best extractor for each dataset, two tables summarize not only the ρ value but also the
number of trials for each dataset and extractor. Concretely speaking, the first column ID still denotes the
id of each dataset that can be exploited to download the dataset from OpenML and the corresponding
attributes are showing in table 1.1 and 1.2. Since similar abbreviations are used, it is necessary to specify
their meanings once again:

• RF means feature extraction technique exploiting permutation importance of random forest;

• XGB indicates feature extractor based on gain-based feature importance from XGBoost;

• SP stands for feature extraction with hierarchical clustering based upon Spearman correlation;

• PCA represents principal component analysis;
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• ρ implies the ρ value in accordance with the definition; 2 that is calculated by the number of
accuracy growth each time features are selected divided by total number of selections and is set to
decimal for the convenience of comparison;

• n suggests the total number of selections for a dataset.

To enhance the interpretation of each piece in the row, dataset 22 is taken as an instance, which is listed
in the first position of table 4.3. It can be read from it that extractor with permutation importance of
random forest is experimented on dataset 22 RF n times, which equals to 9, and the ρ value of this
extractor is RF ρ = 0.667, namely 6

9 experiments demonstrates rising with increasing the number of
features on dataset 22. Likewise, the extractor with gain-based feature importance from XGBoost is
a 0.625–increasing extractor, because XGB ρ = 0.625 namely 5

8 , on dataset 22 after 8 experimental
feature selections namely XGB n = 8. The feature extraction technique with hierarchical clustering
based on Spearman correlation is a 0.909–feature extractor with extracting features 11 times and PCA is
a 1

2 -feature extractor with 12 experiments. Therefore, the best extractor that is with the highest ρ value
is the extractor with Spearman correlation and is shown in the last column Best.

According to the definition, that is deciding on the number of highest ρ values for each extractor, the
sequence is RF > SP > XGB ≥ PCA due to that RF has the highest ρ value on 23 out of 54 dataset, 21
of which are exclusive. In contrast, SP performs best only on 21 dataset including a shared one. XGB
and PCA accounted for 6 datasets, though PCA had one that tied for the highest ρ value. It is also worth
mentioning that there are still two datasets 40996 and 41014 cannot run XGBoost for feature extraction
hence they are set to null.

Table 4.3: Summary of ρ for techniques on datasets with Clustering and PCA scoring highest

ID RF ρ RF n XGB ρ XGB n SP ρ SP n PCA ρ PCA n Highest ρ
22 0.667 9 0.625 8 0.909 11 0.5 12 SP ρ
60 0.7 10 0.556 9 0.875 8 0.2 10 SP ρ
313 0.333 9 0.375 8 0.538 13 0.364 11 SP ρ
316 0.444 9 0.5 8 0.545 11 0.455 11 SP ρ
904 0.5 10 0.222 9 0.667 3 0.4 10 SP ρ
1056 0.444 9 0.375 8 0.556 9 0.462 13 SP ρ
1444 0.556 9 0.375 8 0.667 9 0.385 13 SP ρ
1451 0.444 9 0.5 8 0.625 8 0.538 13 SP ρ
1491 0.667 9 0.375 8 0.889 9 0.455 11 SP ρ
1493 0.667 9 0.25 8 0.833 12 0.455 11 SP ρ
1494 0.625 8 0.571 7 0.7 10 0.455 11 SP ρ
1501 0.778 9 0.375 8 0.846 13 0.182 11 SP ρ
40997 0.556 9 0.625 8 0.818 11 0.667 12 SP ρ
41007 0.667 9 0.5 8 0.727 11 0.667 12 SP ρ
41048 0.444 9 0.5 8 0.769 13 0.545 11 SP ρ
41049 0.556 9 0.5 8 0.75 12 0.273 11 SP ρ
41050 0.667 9 0.375 8 0.786 14 0.636 11 SP ρ
41051 0.556 9 0.375 8 0.75 12 0.182 11 SP ρ
41052 0.556 9 0.625 8 0.643 14 0.545 11 SP ρ
41053 0.667 9 0.5 8 0.846 13 0.455 11 SP ρ
1050 0.556 9 0.5 8 0.462 13 0.556 9 RF ρ, SP ρ
41027 0.833 6 0.8 5 0.833 6 0.5 2 RF ρ, PCA ρ
718 0.4 10 0.222 9 0.5 10 0.167 6 PCA ρ
833 0.5 8 0.429 7 0.636 11 0.4 5 PCA ρ
1549 0.5 10 0.444 9 0.6 10 0.333 3 PCA ρ
1555 0.4 10 0.444 9 0.5 10 0.333 3 PCA ρ
4154 0.6 10 0.444 9 0.7 10 0.333 6 PCA ρ
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Table 4.4: Summary of techniques with permutation importance and gain-based importance scoring

highest

ID RF ρ RF n XGB ρ XGB n SP ρ SP n PCA ρ PCA n Highest ρ
14 0.778 9 0.5 8 0.556 9 0.545 11 RF ρ
44 0.889 9 0.625 8 0.75 8 0.667 12 RF ρ
180 0.889 9 0.5 8 0.714 7 0.636 11 RF ρ
182 0.667 9 0.625 8 0.5 4 0.25 12 RF ρ
734 0.6 10 0.444 9 0.571 7 0.5 10 RF ρ
979 0.8 10 0.556 9 0.625 8 0.4 10 RF ρ
1049 0.556 9 0.375 8 0.444 9 0.462 13 RF ρ
1443 0.667 9 0.375 8 0.5 8 0.538 13 RF ρ
1452 0.556 9 0.5 8 0.375 8 0.5 12 RF ρ
1453 0.667 9 0.5 8 0.5 8 0.462 13 RF ρ
1479 0.6 10 0.333 9 0 1 0.3 10 RF ρ
1492 0.667 9 0.5 8 0.571 7 0.273 11 RF ρ
4534 0.9 10 0.778 9 0.75 8 0.6 10 RF ρ
4538 0.875 8 0.571 7 0.429 7 0.545 11 RF ρ
40668 0.875 8 0.714 7 0.667 6 0.818 11 RF ρ
40670 0.7 10 0.333 9 0.571 7 0.5 10 RF ρ
40705 0.625 8 0.571 7 0.5 10 0.364 11 RF ρ
40996 0.889 9 null null 0.786 14 0.182 11 RF ρ
41004 0.889 9 0.75 8 0.818 11 0.667 12 RF ρ
41014 0.75 4 null null 0 2 0.5 4 RF ρ
41025 0.667 3 0.5 2 0.5 2 0.333 3 RF ρ
1069 0.556 9 0.625 8 0.5 8 0.417 12 XGB ρ
1487 0.444 9 0.625 8 0.3 10 0.455 11 XGB ρ
1548 0.4 10 0.444 9 0.333 3 0.4 10 XGB ρ
40999 0.556 9 0.875 8 0.8 10 0.667 12 XGB ρ
41000 0.222 9 0.625 8 0.6 10 0.5 12 XGB ρ
41005 0.556 9 0.875 8 0.7 10 0.583 12 XGB ρ

Table 4.5: Summary of observations

ID RF XGB SP PCA ID RF XGB SP PCA ID RF XGB SP PCA

14 1 1 1444 40670 1 1
22 1 1 1 1451 40705 1
44 1 1 1 1452 1 40996 1 null 1
60 1 1 1453 40997 1 1 1 1
180 1 1 1 1 1479 40999 1 1 1
182 1 1 1487 41000 1 1
313 1491 1 1 41004 1 1 1 1
316 1492 1 41005 1 1 1
718 1493 1 1 41007 1 1
734 1 1 1 1494 1 1 41014 1 null 1
833 1 1 1501 1 1 41025 1 1 1
904 1 1 1 1548 1 41027 1 1 1 1
979 1 1 1549 41048 1
1049 1555 41049 1
1050 4154 1 41050 1
1056 4534 1 1 1 1 41051 1
1069 4538 1 1 1 1 41052 1
1443 1 1 40668 1 1 1 1 41053 1 1
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Apart from the definition, slightly different conclusion can be drawn from the visual observation. Table
4.5 summarizes all results from observation, where same abbreviations with same meanings are used. For
each entry in the table, if there is an rising pattern can be detected, a number 1 will be filled in. Still, to
denote the two datasets 40996 and 41014 that XGBoost cannot run on, null is filled. Follow the table, a
new sequence is produced that SP > RF > PCA > XGB. On 37 out of 54 datasets, the pattern of SP
can be discovered and RF closely follows, with 30 observed patterns on different datasets while PCA and
XGB have rather bad results with 16 and 8 datasets seen patterns, respectively.

From what has been mentioned above, on the whole, the observed results are different from what is
defined, and often the observed results are a little bit looser than the definition. This may be due to
several reasons. One is the criteria that only considers extractor with the highest ρ value, which seems
unfair to the other candidates. Other possible reasons for this situation will be analyzed in section 5
Further Discussion.

4.0.3 Prediction Based on Matrix Factorization

A recommendation/prediction system is built with matrix factorization as the kernel, whose rows are
machine learning models with different parameters and columns are datasets, where the entry (i, j) of this
matrix corresponds to the accuracy of a specific model i for a dataset j. For example, a matrix is given
in table 4.6 and 4.7, where the different accuracy of linear classifier, random forest(RF), XGBoost(XGB),
and multi-layer perceptron(MLP) on 48 datasets are given. To make it easier to read the table, a line is
drawn every 10 rows and the whole table is ascending with the data id.

RF max, XGB max, and MLP max mean the best performance of model RF, XGB, and MLP, severally.
RF 6 512 and XGB 6 512 symbolize the accuracy of model RF and XGB with 512 trees and max depth 6
for each tree in the model, which can be seen as the most complex model. Similarly, MLP 7 512 150
stands for the accuracy of the model MLP trained for 150 epochs with 7 layers and 512 nodes per
layer.

Table 4.6: A matrix of all models with the highest accuracy and the most complex structure

ID Linear RF 6 512 RF max XGB 6 512 XGB max MLP 7 512 150 MLP max
14 0.195455 0.813636 0.821212 0.710606 0.757576 0.828788 0.830303
22 0.166667 0.760606 0.769697 0.674242 0.707576 0.769697 0.807576
44 0.85451 0.929559 0.931534 0.895326 0.923634 0.939434 0.946675
60 0.38 0.853939 0.858182 0.778182 0.788485 0.829091 0.86
180 0.011419 0.662586 0.666676 0.67244 0.67535 0.857535 0.861351
182 0.215834 0.877945 0.880302 0.828464 0.850141 0.921772 0.921772
316 0.983709 0.989975 0.989975 0.987469 0.991228 0.984962 0.986216
718 0.666667 0.790909 0.8 0.845455 0.89697 0.618182 0.657576
734 0.860952 0.825915 0.830101 0.862494 0.866681 0.859189 0.881666
833 0.796228 0.796228 0.796228 0.784763 0.798447 0.800296 0.821746
904 0.812121 0.857576 0.863636 0.793939 0.842424 0.8 0.833333
979 0.816364 0.866667 0.867273 0.836364 0.846061 0.867879 0.893939
1049 0.906639 0.887967 0.894191 0.873444 0.919087 0.892116 0.906639
1050 0.895349 0.895349 0.901163 0.877907 0.932171 0.858527 0.893411
1056 0.993598 0.995519 0.995519 0.994238 0.997119 0.995519 0.995839
1069 0.996206 0.995122 0.995122 0.99729 0.997832 0.99458 0.996206
1443 0.917808 0.926941 0.936073 0.945205 0.945205 0.917808 0.936073
1444 0.843478 0.869565 0.881159 0.837681 0.913043 0.826087 0.866667
1451 0.922747 0.892704 0.914163 0.935622 0.939914 0.866953 0.922747
1452 0.971545 0.97561 0.97561 0.987805 0.987805 0.97561 0.98374
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Table 4.7: A matrix of all models with the highest accuracy and the most complex structure

ID Linear RF 6 512 RF max XGB 6 512 XGB max MLP 7 512 150 MLP max
1453 0.88764 0.870787 0.879213 0.848315 0.904494 0.851124 0.882023
1479 0.5925 0.5175 0.5575 0.4675 0.5625 0.4825 0.705
1487 0.92951 0.934289 0.936679 0.949821 0.949821 0.930705 0.934289
1494 0.802292 0.87106 0.876791 0.816619 0.853868 0.882522 0.896848
1501 0.117871 0.889734 0.901141 0.69962 0.735741 0.93346 0.948669
1548 0.553939 0.595152 0.595152 0.596364 0.62303 0.506667 0.552727
1549 0.104839 0.245968 0.262097 0.217742 0.33871 0.173387 0.241935
1555 0.090909 0.263636 0.266667 0.3 0.321212 0.20303 0.221212
4154 0.999362 0.999574 0.999787 0.999362 0.999787 0.999149 0.999362
4534 0.890107 0.934229 0.939161 0.913949 0.929022 0.975062 0.976706
4538 0.101565 0.536668 0.540657 0.483584 0.509972 0.664314 0.664314
40668 0.245896 0.667265 0.675877 0.70759 0.70759 0.852023 0.852023
40670 0.398289 0.939163 0.945817 0.898289 0.914449 0.95057 0.958175
40705 0.905363 0.905363 0.914826 0.927445 0.946372 0.899054 0.952681
40997 0.423052 0.993561 0.994205 1 1 0.999356 1
40999 0.841495 1 1 0.755155 1 1 1
41000 0.356729 0.980039 0.990341 1 1 1 1
41004 0.507405 0.971024 0.984546 0.996136 1 0.995493 1
41005 0.792219 1 1 1 1 1 1
41007 0.861004 0.97426 0.978121 0.998713 1 0.989704 0.993565
41025 0.6 0.6 0.8 0.5 0.9 0.3 0.6
41027 0.226219 0.74667 0.748158 0.738895 0.742411 0.977081 0.979582
41048 0.976549 0.981575 0.984925 0.991625 0.99665 0.994975 0.994975
41049 0.984536 0.990979 0.990979 0.987113 0.993557 0.940722 0.984536
41050 0.867672 0.889447 0.889447 0.921273 0.934673 0.907873 0.909548
41051 0.896907 0.916237 0.921392 0.917526 0.947165 0.938144 0.940722
41052 0.932998 0.812395 0.860972 0.953099 0.969849 0.954774 0.954774
41053 0.904639 0.898196 0.899485 0.916237 0.926546 0.916237 0.923969

In experiments, function BaselineModel of library matrix factorization is employed to implement
matrix factorization with alternating least squares(ALS), which alternately fix one of the desired matrices
and solve another one[65]. Hence, parameter method is settled to ALS and reg, that is the lambda
parameter for L2 regularization, is set to 0.5. Besides, n epochs is equal to 1000 namely the model is
trained one thousand times.

(a) Mean Absolute Error (b) Root-Mean-Square Error

Figure 4.27: The performance of prediction with matrix factorization

Then, both mean absolute error(MAE) and root-mean-square error(RMSE) are the measurement of the
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performance, that it the less error the better performance. To guarantee the robustness of this system,
models are trained and tested 5 times and the results are averaged. To examine the accomplishment of
the system, the ratio of test data is changed from 0.1 to 1 increasing 0.2 each time, which means that a
variety of scenarios are went through, from a few missing values in the matrix to most of the data being
unknown.

Results are in figure 4.27, where MAE is at least 0.067 when the ratio of test data is 12%. That is, when
the data to be predicted is about 12% of the obtained data, the prediction error is less than 7% on
average. Moreover, the MAE is kept less than 10% until the ratio of test data is more than 70% as well
as less than 15% until the ratio reaches 95%. The result with RMSE shows similar regularity.

Furthermore, what is recognized is that there is also an explicable inclination that, with training data
expanding, the prediction accuracy is growing. This is a perspective by analogy with definition 2, from
which the system scaling ability is tested.

Distance Between Different Algorithms and Datasets

Along with the prediction of accuracy from the system, another application will be useful that is to
compare the similarity of specific models or two datasets as pointed in figure 4.28, 4.29, and 4.30. Figure
4.28 displays an instance using the matrix decomposition to calculate the irrelevance or distance between
different models, where both x-axis and y-axis are the abbreviations of different models.

Figure 4.28: The distance between different models according to matrix factorization

As same as the abbreviations used in table 4.6 in section 4.0.3, RF max, XGB max, and MLP max
indicate the best performance of model RF, XGB, and MLP as RF 6 512 and XGB 6 512 symbolize the
accuracy of model RF and XGB with 512 trees and max depth 6 for each tree in the model. Similarly,
MLP 7 512 150 stands for the accuracy of the model MLP trained for 150 epochs with 7 layers and 512
nodes per layer. Furthermore, color shows the level of correlation between models, where dark green is
for the high correlation, namely short distance, while dark red is on the contrary.

Obviously, the correlation within random forest and XGBoost algorithm is very strong that the distance
between RF max and RF 6 512 is 0.140, the closest one as well as RF max and XGB max plus XGB max
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and RF 6 512 are less than 0.5. This is logical because the principal of these two algorithms are comparable
like introduced in section 3.3 and 3.4. At the same time, it also confirms previous experimental results in
section 4.0.1 and 4.0.1, that is, performance will be improved after models become complicated in many
cases, equivalently, the most complex model is similar to the model with the largest accuracy. It is the
same explanation that can interpret why MLP max and MLP 7 512 150 are rather far away, which is
consistent to results in section 4.0.1. Moreover, figure 3.6 visualizes the example of vectors produced by
the system, based upon which the distance between models is calculated.

(a) Detail of Left-up Corner (b) Detail of Left-bottom Corner

(c) Detail of Right-bottom Corner

Figure 4.29: The detail of the distance between different datasets according to matrix factorization

The results of datasets produced by the system are shown in figure 4.29 and 4.30. Figure 4.29 provides
the detail of figure 4.30, which does not include the detail of right-up corner because it has the same
content as the left-bottom corner due to the symmetry. Color can also be utilized to quickly determine
the similarity between different datasets. Theoretically, the closer two data ids are, the more similar these
two datasets will be. In other words, there should be more green alongside the diagonal, which is obvious
before id 1548 and after id 4538.
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Figure 4.30: The overall results of distance between different dataset according to matrix factorization
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Further Discussion

In the section 4 Results of Experiments, the experimental process and relevant results obtained are shown
and summarized. This chapter is mainly about the further discussion about the above content. First,
it is a fundamental task to supplement the statement of the previous experimental results with further
analysis about the possible causes of these results. Then, the limiting factors are explained, which exist in
the whole research process, both for the experimental process and the research results. Finally, possible
future directions for the research are proposed.

5.0.1 Results Analysis

First of all, it is important to explain why the MLP sometimes has a counterintuitive behavior, that is,
as the number of neural layers and the number of ganglion nodes in each layer increases, the accuracy of
classification decreases. This may be the result of over-fitting. Overfitting means that it performs well on
the training dataset and becomes worse on the validation dataset. The overfitting model may even learn
noise during training. This is why MLP needs regularization to constrain the entire neural network during
training. In addition, in more complex models, the neural network avoids overfitting by adding dropout
layers[73]. Besides, heatmaps of MLP are dominated by red areas, which accentuates blue areas that
may be occasional, giving the impression that performance is declining and exaggerating the situation of
accuracy drop. This involves the limitation of the research method, that is, subjective observation.

Second, it is possible to consider different evaluation criteria for feature extraction technique. In this
experiment, what is focused on is the predictability and interpretability of extractor according to its
performance, but in practical applications, perhaps extractors with the poor predictability is what
engineers actually want to use. Contrary to the definition of ρ–Increasing Feature Extractor, there is
a possibility that the fewer features are used, the more accurate the prediction is, which means the
better performance can be achieved by consuming fewer resources, which is of course what is expected in
practical application. However, with technology like this, it is demanded of verification if this is a fluke or
if it’s always the case.

In these two cases, no matter increasing the number of features increases or decreases the accuracy of
model prediction, which may be caused by the data itself because, when features actually related the
response rather than noise features are added, the performance should be improved and vice versa[4]. This
means that most of the time considering the attributes of the data features themselves is fundamental,
and if features are correlated, which is quite common, extra attention and caution is necessary. Therefore,
adding features related to labels usually leads to more accurate model prediction, while adding features
related to noise degrades the model performance. This is why the conclusion is drawn that perhaps feature
extraction with hierarchical clustering based on Spearman correlations is better than with permutation
importance, although by definition the latter is a little better.

Finally, it is still the discussion about feature extraction. Although the same growth pattern exists,
perhaps an image similar to convex function or log function is more preferable than that of concave
function for the same reason mentioned above. The patter is increasing like a convex function or a log
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function means that the performance can reach the up-bound with fewer features than a concave function.
From this perspective, according to Figure 4.11 and 4.20 in section 4.0.2 and 4.0.2, feature extraction
with hierarchical clustering can also be considered better than with permutation importance.

5.0.2 Limitation

In the course of the study, there are also some limiting factors. First of all, the limitation of machine for
experiments has the greatest impact. Experiments are mainly run on the personal computer, which uses
a 2070 graphics card with 8 gigabytes of GPU memory, plus 16 gigabytes of computer memory. This size
of memory is still relatively limited for experiments, especially when dealing with XGBoost tasks, there
can be an error message for resourcehaustederror says OOM when allocating tensor . . . , which means out
of memory. This is the reason why there are some null in the results for XGBoost.

Another confine is that there are too many influence factors to fully study in one project. When dealing
with a machine learning task, it is usually divided into the following steps: data acquisition, data
preprocessing, model construction, hyperparameter optimization, and application. Therefore, it is not
only required to consider the problem of the model architecture and feature extraction, but also necessary
to carry out other work such as feature engineering from the data itself. Due to only thinking about
the problem within these two areas, this project is regarded as the study of predictability rather than
AutoML. Even so, there are still a lot of hyperparameters that haven’t been researched yet, such as
learning rate and initializer for the bias vector for MLP and regularization for XGBoost. As for the study
of feature extraction, though there are not so many hyperparameters as model construction, performance
can also be more detailed classified and investigated.

The last point is that human observation is too subjective. Just as the explanation of why MLP has
counterintuitive patterns, one possible reason is that perception of viewing images may be misleading.
Similar problems will also be encountered by observing the patterns of feature extraction. In the absence
of definition, when can a pattern be considered as increasing despite slight fluctuations? That is why
definitions are introduced to help decide.

5.0.3 Future Work

First of all, combined with the analysis of results and limitation, there are several directions can be drawn
for further research. One is to incorporate more models and parameters into the study by improving the
computational power or crawling existing results from platform like OpenML. The second is to establish
a more rigorous definition for model predictability, as what have done for feature extraction. For this, it
is also worthy to further consider whether there are other judging criteria besides the monotonic increase
of accuracy. For example, for feature extraction, the definition 2 ρ–Increasing Feature Extractor can be
further refined by adding a consideration of the variation range of accuracy so that if accuracy decreases
but within an acceptable range, the ti will still equal to 1. This can be considered as a relaxation of the
definition of ρ.

Additionally, we can summarize a criterion for the ρ value, for instance, the predictability of the extractor
can be regarded as acceptable when the ρ value is greater than a specific value, like 0.5. Further, it is
feasible to fit a function to the pattern of the changing accuracy value for relatively predictive techniques
and decide how many features should be extracted such that the performance of the model will maintain
acceptable. Once the criterion for the ρ value is established, the definition 3 (α, ρ)–Increasing Feature
Extractor has a purpose. This definition can, on the one hand, cover a specific family of datasets to
determine whether the technique performs well for that class of datasets, such as image classification,
speech recognition, nature language processing, and other areas. On the other hand, the definition can be
used to visualize how the ρ and α values change and in what way they interact with each other, such as
log growth or exponential growth.

Finally the study results can be integrated into the autoML process, where the system based on matrix
factorization, which is used to predict accuracy, can be the alternative method for deciding models and
parameters, and the study results of feature extraction can partially complete the function of feature
engineering. In particular, extractor with hierarchical clustering based upon Spearman correlation can
be combined with permutation importance, sorting the features within the same cluster according to
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permutation importance, and selecting features from each cluster in accordance with the rank. The
regression function of the variation of accuracy and the number of features can determine how many
clusters are selected.
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Conclusions

In the whole article, the following accomplishments are trying to answer the questions posed in section1
Introduction. First, a platform is built to mainly study the performance of three algorithms, random forest,
XGBoost and MLP, in terms of both the highest test accuracy and the predictability of classification
performance. It is believed that random forest is a good choice when time and computational power
are very limited because it is fast and the accuracy is usually in an acceptable range. But when two
main limitations are loosed, XGBoost and MLP can be considered, especially MLP, because some
shallow networks can achieve good results. This is our answer to question 1 of how to choose a best
algorithm.

For the second question, from the point of view of predictability, both random forest and XGBoost are
significantly better than MLP because of the overfitting problem that exists in MLP with models becoming
more complex. Thus for random forest or XGBoost, it is possible to predict complex learners directly
from simple learners, whereas for MLP, this is infeasible or at least requires more considerations.

Then, the predictability of four dimension reduction techniques is compared, including that based on
permutation importance of random forest, gain-based feature importance of XGBoost, hierarchical
clustering based upon Spearman correlation, and PCA. It is proposed to find efficient methods for
dimensionality reduction of datasets by highly predictable feature extraction techniques, namely to
achieve the highest possible performance with the smallest possible number of features. If a technique
is highly predictable, it should come with a growth pattern that is pervasive in multiple datasets such
that a regression function can match it. It is found that extractors with permutation importance and
hierarchical clustering have high predictability, and features can be extracted efficiently by these two
schemes afterward. Thus for question 3, a specific method can be derived by continuing to study these
two methods in depth.

As for the last problem, a novel prediction system is offered, by which either a new dataset or an new
algorithm can be predicted the final result with an average error of at least 6.7% from the true value. As
long as the tested data does not exceed 70% of the total data, the system can guarantee that the average
error is less than 10%. Hence, if there is a new algorithm on the hand, it is easy and low-time-consumption
to train and test some simple models of the algorithms on a family of datasets, then the highest accuracy
of the algorithm can be given by the system with known results of all models and datasets. Similarly, if
there is a new dataset, after training and testing with all simple models, the best performance and the
corresponding model can be given.

In conclusion, the main achievements of this project are to examine the predictability of three classification
algorithms and four feature extraction techniques as well as design a system to predict the performance
of a specific model on a particular dataset.
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Appendix A

Heatmaps

A.1 Random Forest

(a) 316 (b) 1050 (c) 1069 (d) 1443

(e) 1444 (f) 1451 (g) 1452 (h) 1453

Figure A.1: Part of results of random forest without obvious pattern
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(a) 1479 (b) 1487 (c) 41025

Figure A.2: Part of results of random forest without obvious pattern

(a) 41007 (b) 41014 (c) 41027 (d) 41049

(e) 41050 (f) 41501 (g) 41052 (h) 41053

Figure A.3: Part of results of random forest with a pattern
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(a) 14 (b) 313 (c) 718 (d) 979

(e) 1049 (f) 1056 (g) 1491 (h) 1492

(i) 1493 (j) 1494 (k) 1501 (l) 1548

Figure A.4: Part of results of random forest with a pattern
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(a) 1549 (b) 1555 (c) 4154

(d) 40705 (e) 40996 (f) 41005

Figure A.5: Part of results of random forest with a pattern
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A.2 XGBoost

(a) 14 (b) 979 (c) 1494 (d) 1501

(e) 1548 (f) 41005 (g) 41007 (h) 41027

(i) 41050 (j) 41051 (k) 41052 (l) 41053

Figure A.6: Results of XGBoost with patterns
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(a) 1487 (b) 1549 (c) 1555 (d) 4154

(e) 40705 (f) 41025 (g) 41049

Figure A.7: Part of results of XGBoost without obvious pattern
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(a) 316 (b) 718 (c) 1049 (d) 1050

(e) 1056 (f) 1069 (g) 1443 (h) 1444

(i) 1451 (j) 1452 (k) 1453 (l) 1479

Figure A.8: Part of results of XGBoost without obvious pattern
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A.3 MLP

(a) 1056 (b) 1443 (c) 40996 (d) 41005

(e) 41007 (f) 41014 (g) 41027 (h) 41053

Figure A.9: Results of multi-layer perceptron with expected patterns

(a) 1494 (b) 1549 (c) 1555 (d) 40705

Figure A.10: Part of results of multi-layer perceptron with unexpected patterns
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(a) 313 (b) 316 (c) 1049 (d) 1479

(e) 1487 (f) 1501 (g) 1548 (h) 4154

(i) 41049 (j) 41050 (k) 41051 (l) 41052

Figure A.11: Results of multi-layer perceptron without pattern
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(a) 14 (b) 718 (c) 979 (d) 1050

(e) 1069 (f) 1444 (g) 1451 (h) 1452

(i) 1453 (j) 1491 (k) 1492 (l) 1493

Figure A.12: Part of results of multi-layer perceptron with unexpected patterns
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Figure A.13: Multi-layer perceptron with unexpected pattern on dataset 41025
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Appendix B

Feature Extraction

B.1 Permutation Importance

(a) 14 (b) 182 (c) 734 (d) 1443

(e) 1452 (f) 4534 (g) 40670 (h) 40996

(i) 41004 (j) 41025

Figure B.1: Increasing results for extractor with permutation importance and highest ρ values
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(a) 22 (b) 833 (c) 1491

(d) 1493 (e) 1494 (f) 1501

(g) 40997 (h) 41005 (i) 41053

Figure B.2: Increasing results for extractor with permutation importance but not highest ρ value

(a) 313 (b) 316 (c) 718 (d) 1056

(e) 1069 (f) 1444 (g) 1451 (h) 1487

(i) 1548 (j) 1549 (k) 1555 (l) 41000

Figure B.3: Part of non-increasing results for extractor with permutation importance
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(a) 41007 (b) 41048 (c) 41049

(d) 41050 (e) 41051 (f) 41052

Figure B.4: Part of non-increasing results for extractor with permutation importance
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B.2 Gain-Based Feature Importance

(a) 14 (b) 22 (c) 44 (d) 60

(e) 182 (f) 313 (g) 316 (h) 718

(i) 734 (j) 833 (k) 904 (l) 979

(m) 1049 (n) 1050 (o) 1056 (p) 1443

(q) 1444 (r) 1451 (s) 1452 (t) 1453

(u) 1479 (v) 1491 (w) 1492 (x) 1493

Figure B.5: Non-increasing results of extractor with gain-based importance
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(a) 1494 (b) 1501 (c) 1549 (d) 1555

(e) 4154 (f) 40670 (g) 40705 (h) 41007

(i) 41025 (j) 41048 (k) 41049 (l) 41050

(m) 41051 (n) 41052 (o) 41053

Figure B.6: Non-increasing results of extractor with gain-based importance
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B.3 Hierarchical Clustering Based on Spearman Correlation

B.3.1 Dendrogram

(a) 14 (b) 44 (c) 180 (d) 182

(e) 313 (f) 316 (g) 718 (h) 734

(i) 833 (j) 904 (k) 979 (l) 1049

Figure B.7: Dendrograms
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(a) 1050 (b) 1056 (c) 1069 (d) 1443

(e) 1444 (f) 1451 (g) 1452 (h) 1453

(i) 1479 (j) 1487 (k) 1491 (l) 1492

Figure B.8: Dendrograms
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(a) 1493 (b) 1494 (c) 1501 (d) 1548

(e) 1549 (f) 1555 (g) 4154 (h) 4534

(i) 40668 (j) 40670 (k) 40705 (l) 40996

Figure B.9: Dendrograms
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(a) 40997 (b) 40999 (c) 41000 (d) 41004

(e) 41005 (f) 41014 (g) 41025 (h) 41027

(i) 41048 (j) 41049 (k) 41050 (l) 41051

Figure B.10: Dendrograms
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(a) 41052 (b) 41053

Figure B.11: Dendrograms

B.3.2 Feature Extraction

(a) 14 (b) 44 (c) 182 (d) 734

(e) 833 (f) 1443 (g) 1492 (h) 1548

(i) 40670 (j) 40705 (k) 40999 (l) 41004

(m) 41005 (n) 41025

Figure B.12: All increasing results for extractor with Spearman correlation but not highest ρ values
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(a) 1493 (b) 1494 (c) 41049 (d) 41050

(e) 41051 (f) 41053

Figure B.13: All increasing results for extractor with Spearman correlation and highest ρ values

(a) 718 (b) 1049 (c) 1069 (d) 1452

(e) 1453 (f) 1479 (g) 1487 (h) 1549

(i) 1555 (j) 4154 (k) 41014

Figure B.14: Non-increasing results for extractor with Spearman correlation
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B.4 Principal Component Analysis

(a) 22 (b) 44 (c) 734 (d) 904

(e) 40997 (f) 41004 (g) 41005 (h) 41007

(i) 41014 (j) 41025

Figure B.15: All increasing results for PCA

(a) 14 (b) 60 (c) 182 (d) 313

(e) 316 (f) 979 (g) 1049 (h) 1050

(i) 1056 (j) 1069 (k) 1443 (l) 1444

Figure B.16: Non-increasing results for PCA
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(a) 1451 (b) 1452 (c) 1453 (d) 1479

(e) 1487 (f) 1491 (g) 1492 (h) 1493

(i) 1494 (j) 1501 (k) 1548 (l) 40670

(m) 40705 (n) 40996 (o) 41000 (p) 41048

(q) 41049 (r) 41050 (s) 41051 (t) 41052

(u) 41053

Figure B.17: Non-increasing results for PCA
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