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Abstract

Model-driven engineering (MDE) is a development methodology that advocates the usage of
models as primary software engineering artifacts. By exploiting domain knowledge, domain-
specific languages (DSLs) are often developed for MDE applications, enabling development
from a higher level of abstraction. In an MDE setting with DSLs, models developed in a DSL
are validated and transformed to general-purpose language (GPL) programs through a code
generator. Testing code generators is difficult, and is typically done manually, which increases
the efforts and reduces the precision of testing.

Model-based Testing (MBT) is an approach to automate aspects of testing. It is implemented
by inputting formal specifications of the software in an MBT tool, letting it generate tests, and
execute each trace against the implementation via an adapter. Based on the specifications,
the MBT tool predicts the output for the traces and checks for its conformance against the
implementation.

The ASOME developed by Altran and ASML is a family of DSLs, accompanied by a code
generator. This code generator reflects the static and dynamic semantics of the ASOME
DSLs. However, the semantics have been documented and presented informally. The aim in
this thesis is to explore the relevance of formal verification and MBT in the context of the
ASOME code generator. For a DSL that generates into C++ code, what are the possibilities
of verification with MBT? In this case, the formal semantics of the DSL are not given, so what
steps need to be taken? Finally, given a set of formal specifications, can it be verified with
model exploration software like Alloy, whether the intended specifications are consistent?

Considering the usage of the Alloy specification language as a formal verification approach,
this thesis concludes that the DMDSL semantics can be translated into Alloy and the dynamic
semantics can be verified. This thesis provides a starting point for formalizing the ASOME
language specifications and verifying its dynamic semantics. It also derives that incorporating
a formal verification, or an MBT-based approach, in development as early as possible (i.e. with
low complexity of semantics) can enable language developers to reflect on counter-intuitive
models that may be missed by manual testing.
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Acronyms

API Application Programming Interface. In the context of this thesis, this refers to generated
C++ code (functions) that can be called by the user in their code..

ASOME ASML Software Modeling Environment. Page 6.

DMDSL Domain-Interface Modeling Domain Specific Language. Page 6.

MBT Model-Based Testing. Page 3.

OOP Object-Oriented Programming. In the context of this thesis, Class and Instance/Ob-
ject, Relations, Inheritance are the relevant concepts..

SAT SAT, or SATISFIABILITY, is an NP-complete problem. Page 34. More information is
available on the Boolean Satisfiability wiki.

SUT/IUT System Under Test, or Implementation Under Test. Both terms are seen in
practice, referring to the software that is being tested. This text uses the term SUT..
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Chapter 1

Introduction

1.1 Context
Modern software systems are complex and based on large codebases. Such complex systems
are not easy to verify for correctness. Thus, abstracting on some aspects of development can
be beneficial and reduce the person-hours required in developing and maintaining systems. To
this extent, model-based techniques are a suitable tool facilitating software development from
a higher level of abstraction, allowing reduced complexity for developers.

In model-driven engineering (MDE), a model is the fundamental unit of structuring inform-
ation [14, 19]. Model-driven techniques are based on creating and exploiting domain models
for exchanging information. Domain-Specific Languages (DSLs) are often used in MDE to
define domain models in a simpler syntax [3]. This allows engineers having domain experience
to express designs in familiar languages. If the DSL can be parsed and compiled, then code
generation and verification is possible. DSLs are often integrated in language workbenches in
development environments (IDE) such as Eclipse [11].

Usually, models developed in a DSL are validated and transformed to a General-Purpose
Language (GPL), e.g. C++ or Java in order to execute them. This is done by developing
a code generator, which is a typical exogenous model transformation [16] – the same model
contents are expressed in a different language. Thus, a DSL user only needs to know the DSL
semantics, which is at a higher abstraction than the generated code. Additionally, models
may also be created via a graphical editor (within the IDE). In general, a DSL will always
have static semantics, and it may also have dynamic semantics. The static semantics include
the definition and intention of a model in the DSL, while the dynamic semantics maps the
DSL model to a corresponding execution (‘runtime’) behavior [23].

The reliability of a DSL for defining valid models depends on the correctness of the code
generator. Flaws in the model transformation can lead to uncompilable generated code; al-
ternatively, logical errors in syntactically correct generated code can lead to unforeseen runtime
inconsistencies. Typically, correctness of a code generator is verified manually: either by in-
specting the model transformation (M2M, M2T [5]); or by providing input models and either
inspecting generated code or running test cases on the built version of the generated code.
Inherently, manual testing leads to lower precision and requires more patches later. The pos-
sibility of improving testing so that it is more reliable, can later allow focusing on new features
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1.1. CONTEXT

as there are no bugs to be fixed.

Model-based testing (MBT) is a black-box testing approach that advocates for a formal model
of the software alongside the implementation, to provide higher precision in testing. The
term ’specifications’ is often used in place of formal models. In the specification, the intended
behavior of the software are defined. These are compared against the implementation, referred
to as the Implementation/System Under Test (IUT/SUT) in practice. There are two methods
of testing the IUT - Online, and Offline. In the offline method, all tests are generated first,
then the aggregated test suite is translated, and executed on the SUT. In the online testing
approach, test generation and execution is simultaneous, but an adaptor is required to translate
and execute test cases on the SUT.

The MBT setup in the online testing context involves three components, as shown in Figure
1.1. These are the formal model m, the tester suite, and the adaptor a. The formal model
m defines the formal specifications of the intended definition of the implementation. Then, a
tester component parses m and generates test cases for it, as a sequence of actions (‘traces’) in
m, starting from a valid initial state. Finally, an adapter a needs to be defined, which converts
a test case to a format recognized by the implementation and executes it against the IUT.
In the case of a DSL, this adapter generates the relevant GPL (e.g. C++) file. Note that,
as a consequence, MBT in the case of DSLs also requires that the DSL must have dynamic
semantics.

Figure 1.1: Model-based testing. (Ref. Figure 1 in [21])

In the model m, the formal specifications must be defined based on a relevant paradigm.
There are multiple paradigms for describing formal specifications [25]. The paradigms of
transition-based specifications and state-based specifications are commonly seen in model-
checking and model-based testing software. Transition-based specifications are suited for
reactive systems [7], that use labelled transition systems (LTS) [24] or statecharts [13] to
define the formal specifications. In essence, transition-based specifications are suitable when
the IUT behavior is based on input actions and system reactions, for example a vending
machine. Alternatively, state-based specifications [25] define the contents of a state as the
formal specification, for instance in the form of a sets or ordered sequences. In this case,
transitions between different states require changes to the states’ contents. An example would
be a file system with CRUD (Create, Retrieve, Update, Delete) operations on files and folders,
where a state is defined by the set of contents of the file system. While there are overlaps in
these paradigms, the emphasis is either on the SUT system contents (‘properties of system’),
or on the SUT reaction (‘what the system does’). (For a precise comparison of state-based and
transition-based paradigms, refer to [18, 22]). For testing a DSL and code generator, it may
be possible to use either state-based or transition-based formal specifications – this depends
on the DSL semantics and its runtime behavior.

Adding Formal Specifications To A Legacy Code Generator 3



1.2. INTRODUCTION TO ASOME

1.2 Introduction to ASOME
The ASML SOftware Modeling Environment ASOME, was developed as a software following
the ASML DCA Pattern (separation of Data, Control, Algorithms). The DCA pattern is based
on the assumption that algorithms, control, and data can better be verified in isolation and
then combined. This is based on the validity of tools like ASD1 and CoCo2. By using ASOME,
engineers can define the data and behavior in separate environments. ASOME has been in
development since 2015, and due to its practical usage, the implementation is developed but
the formal specifications are not defined.

The “Domain Interface Modeling DSL” (DMDSL) is a part of the ASOME family of DSLs,
to handle the Data aspect of the DCA pattern. Other DSLs exist for modeling Control,
Algorithms, and Systems, but they are not considered in this project. Here, the aim is
to discover the suitability of formal verification and MBT for ASOME, for a subset of its
semantics, and check the correctness of the code generator.

In the DMDSL, a user defines models that represent information in constructs like entities and
ValueObjects, across domain interfaces. According to the dynamic semantics, entities can
be instantiated and these instances can be stored to a repository and the repository content
is manipulated (retrieved, updated, deleted) at runtime. These are the CRUD+A operations
on entities and instances. With an Object-oriented programming (OOP) analogy, entities are
akin to classes, and instances at runtime are akin to class objects. The concept of multiplicity
is used to introduce bounds on the number of instances. Additionally, it is possible to create
relations between some constructs: these are binary relations with a domain and a range,
but the relations may also have properties. Static constraints are defined with the declarative
language OCL3. These constraints are used to enforce validity in DMDSL, so that inconsistent
models cannot be compiled into generated code.

Usually, when GPLs like C++ or Java are mentioned, the runtime is expected to mean ‘after
executing the bytecode’. In the context of DMDSL, runtime refers to actions and functions
written in the generated C++ files, which will later be compiled to bytecode and executed.
Briefly, the dynamic semantics of ASOME allow for operations such as creating, adding,
retrieving, updating, and deleting of instances in the repository. These are referred as
the CRUD+A operations. It is important to ensure that given a consistent behavior of the
repository, executing any of these operations still leads to consistent behavior. Therefore, the
precise definition of these operations in the form of a formal specification is necessary. The
DMDSL is explained in detail in Chapter 2.

1.3 Problem Statement
The static and dynamic semantics of the DMDSL are given informally in text and diagrams.
Usage of natural language for semantics discussion can cause misconceptions between language
engineers, which can lead to gaps in the implementation. This allows creating inconsistent
models that follow the defined static semantics of DMDSL, but lead to unexpected runtime
behavior. As the code generator in ASOME was tested manually, this suggests that some static
constraints on the model might be missed, or that the operations in the dynamic semantics

1https://verum.com/asd/
2https://www.cocosimulator.org/
3Chapter 7, The OCL Specification
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1.4. RESEARCH QUESTIONS

might need refinement. Consequently, it is possible to define inconsistent models. (The
definition of inconsistency is addressed later.)

Due to lack of the formal specifications of the DSL, a crucial step in this project is to under-
stand and formally specify the semantics. Due to time constraints and its inherent complexity,
the complete formal specification of ASOME cannot be documented. Only the subset of the
static semantics with relevant dynamic semantics for addressing repository consistency is ap-
plied. The primary goal is to consider the applicability of formal verification for the DMDSL,
which is a functional real-world industrial use case since 2016. Formal verification is applied by
specifying the DMDSL semantics in the formal specification tool Alloy. By defining Boolean
assertions for consistency, it is possible to explore the DMDSL specifications and discover mod-
els that violate the assertions. Then, either the formal specifications or the implementation
must be addressed to fix the context of the violation.

For the formal verification of the code generator with a tool, an appropriate MBT solution
must be selected. In this tool, the formal specifications can be modeled, and traces can be
generated. The requirements from a formal verification tool, for testing the DMDSL spec are
documented. In this thesis, Alloy4 is used to verify the specification of DMDSL. Considering
the maturity of ASOME and how its correctness (and complexity) have gradually increased,
the benefits and disadvantages of using Alloy on an industrial scale software can be discovered.
Considering the problem statement and approach, the following research questions are noted.

1.4 Research Questions
RQ1. How should the semantics of DMDSL be precisely specified, considering the informally
defined semantics?

RQ2. What is a suitable tool for formal verification of DMDSL semantics, and what is
required?

RQ3. What are the benefits and disadvantages of a formal verification approach in a real-world
industrial context like DMDSL?

1.5 Thesis outline
The structure of this thesis is as follows: Chapter 2 introduces the ASOME software and
DMDSL, with its static and dynamic semantics. Chapter 3 describes the formal specifications
of ASOME for the considered subset of semantics. Chapter 4 introduces Alloy as a specific-
ation language and the AlloyAnalyzer as a supporting tool in Section 4.2 and the DMDSL
specifications in Alloy are provided in Section 4.5. In Chapter 5, the results of the experiments
in Alloy are presented and validated against the C++ implementation. Chapter 6 discusses
related literature and also potential future tracks for the project. Chapter 7 concludes this
thesis.

4https://alloytools.org/
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Chapter 2

The ASML Software Modeling
Environment – ASOME

This chapter aims to introduce the reader to the static and dynamic semantics of the DMDSL
in ASOME. The version of ASOME used in this project was ASOME v3.6.0.20210316-1551,
and is approximately 5 years into development. An introduction to ASOME is given in Section
2.1. The static semantics used to define a model in ASOME are given in Section 2.2. The
dynamic semantics of DMDSL allow the user to execute operations on the generated code,
and this is explained in Section 2.3.

2.1 Introduction

ASOME is developed in the Eclipse IDE and includes static and dynamic semantics (also
referred to as runtime semantics) for the consisting DSLs. For creating models, textual and
graphical representations are provided. ASOME includes a family of DSLs developed in Altran
and ASML. These reflect the Data-Control-Algorithms (DCA) architecture pattern adopted by
ASML. This text only concerns the DMDSL. The Domain Interface Modeling DSL (DMDSL)
is used to define data models.

While a detailed explanation of the DMDSL semantics will follow in the next sections, a brief
introduction is given here, from a top-to-bottom approach. The first construct in a DMDSL
model is a Repository. This repository has a Service Specification and a Service Realization
(ref. SIRE - Section 2.2.7). Even for the most basic models, a default realization is always
generated. The repository specification service may specify at least 1 domain interface. A
Domain Interface can then specify a data model (Entities, ValueObjects, attributes, primitive
types, enumerations, and constants) and their relations (associations, specializations, and
compositions). The relations are as such: associations are unidirectional from a source entity to
a target entity, and an association multiplicity for both the source and target; specialization is a
unidirectional relation to define hierarchies and inheritance among entities; and Composition
is a relation that expresses the containment of a target ValueObject to a source Entity or
ValueObject.

If the defined repository service specification is valid then its code can be generated. In this
generated code, entities can be instantiated and added to a repository, which is a storage
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2.2. STATIC SEMANTICS

mechanism for entities. The CRUD operations can be done to manipulate the repository, i.e.
the instances in the repository. This is analogous to classes and instances in object-oriented
programming. After its creation, an entity instance is still not significant until it is added
and stored in a repository, after which other operations can be done on it. Among all the
data objects, the generated code includes identifiers for entity instances. Contrarily, value
objects do not have identifiers and are not stored in a repository, they are only contained
by entities. In the generated code, CRUD operations are used on entity instances, and their
associations. The entity multiplicity limits the number of instances of the entity that can be
created. The association multiplicities (having the same interpretation as in UML) require
a number of instances to participate in the association, so that the association relation is
satisfied. The entity and association multiplicities must be respected at runtime otherwise
an exception is returned. Note that if the minimum multiplicity for entity is non-zero, then
instances of this entity must be provided during construction of the repositories that contain
them (ref. Constructor Delegates, Sec 2.2.3).

Static constraints are used to enforce validity of a model, otherwise the runtime operations
can become inconsistent or erroneous. A model is valid if it violates no static constraints.
To enforce static constraints, the Object Constraint Language (OCL) [26] is used. OCL
is a declarative language, and is used for defining rules on Meta-Object Facility (MOF)1

metamodels, including UML. The Eclipse Modeling Framework (EMF) also provides an MOF,
on which the OCL constraints are applied. This way, DMDSL developers can prevent the users
from creating invalid models. The correctness of the OCL constraints significantly affects the
correctness of the DMDSL. Constraints are declarative and can be as simple as ensuring that
the maximum multiplicity is greater than the minimum multiplicity, but also complex recursive
calls such as an anti-cyclicity constraint that would need to check for closed paths of varying
length for binary (or higher order) relations.

If all OCL static constraints are satisfied by the model, then it may have the code generated
for it. This is known as a valid model w.r.t. the DMDSL semantics. A code generator compiles
the DMDSL model into C++ code, after which it is said to be in runtime, at which point the
dynamic semantics (runtime semantics) apply. It may be possible that a model is valid for
DMDSL, but it may never get initialized with dynamic semantics - concluding that maybe
more constraints are required to reject such a model during validation.

Section 2.2 explains the static constructs in the DMDSL, and Section 2.4 describes the con-
straints to ensure validity of models.

2.2 Static Semantics
2.2.1 Repository Service Specification

A repository service specification (‘RS’) is the first element created in a DMDSL model. An RS
defines all the repositories in a DMDSL model. There may be multiple RS in a model. Each RS
has a port, say p, that is used to connect to all Domain Interfaces provided on that port. Note
that an RS is only the specification of the contents. The Repository Realization (RR) handles
implementation-relevant functionalities (dynamic semantics and code generation, ref. Section
2.2.7). The RR enables variants of an interface to be realized by one repository realization
and allows for model evolution. An example of a specification (RS) is shown below. In

1www.omg.org/mof
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this example, the ‘p1’ port defines the domain interface iDomain1DM on the repository spec
sService1RS, and it has an implicit default repository realization, not visible on the diagram.

Figure 2.1: Repository Service Specification (RS)

2.2.2 Domain Interfaces

A repository service may provide or require domain interfaces via ports. A domain interface
(DI) in the DMDSL is where the basic static constructs are defined. In a DI, it is possible to
define entities, associations, value objects, etc. There can be multiple DI in a model and they
may be provided from the same port. The purpose of a domain interface is to enable model
evolution and separation of clients: An entity with some properties in a domain interface can
exist (with the same or different name) as an entity in another domain interface, with different
properties. This involves repository realizations, which is not in the scope of this text.

This text considers the context of a single domain interface, which means each entity is
distinct and has one representation. A domain interface can have a number of constructs
defined in it. The graphical editor ensures that all properties are visible onscreen with text
and icons as shown in Figure 2.2. Notice that different arrows indicate what type of relation
is defined. Entity1 and Entity2 have an association relation. Entity2 and Entity3 have a
specialization relation (Entity3 is the parent entity of Entity2, i.e. Entity2 inherits from
Entity2, with an OOP analogy). The value objects are contained within Entity1 by a
composition relation.

Figure 2.2: Example: contents within a domain interface.
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2.2.3 Entity

An entity in DMDSL is used to store data via attributes, constants, and ValueObjects. In the
UML analogy it is similar to a Class. It might be possible to instantiate an entity at runtime
(depending on its properties). Each instance of the entity is identified by a unique identifier
(two entity instances may be instantiated with the same properties and contents, but they are
distinct). An entity has the following properties:

1. Constructability: It takes values from { Constructable, Unconstructable }. An entity
with the Constructable property can be instantiated from the domain interface it is
defined in. However, if the Constructability property for an entity is Unconstruct-
able,then the entity cannot be instantiated via the interface, although depending on
the repository realization (Sec 2.2.7) it might be instantiated from another interface.

2. Mutability: It takes values from { Editable, Uneditable, Immutable }. If the Entity has
Mutability = Editable in an interface, then its instances can be updated at runtime by a
user accessing the instance via the interface. If Mutability =Uneditable in an interface,
entity instances cannot be updated by a user accessing it from this interface (however
other interfaces that provide the entity with the property as Editable, can still be used
to modify the instances). If Mutability = Immutable, instances of the entity cannot
be updated by anyone once they are stored in the repository. The static constraints o on
the repository realization enforce that the same entity cannot be simultaneously defined
as Editable and Immutable.

3. Deletability: It takes values from { Deleteable, Undeletable, Undestructable }. If the
Entity has property Deleteability = Deleteable, then its instances can be deleted from
the repository via the interface. If the property Deleteability = Undeleteable in an
interface, then its instances cannot be deleted via this interface (although users of an-
other interface where the property is Deleteable can delete an instance). However, if
Deleteability = Undestructable, then instances of the entity can never be deleted
once stored in the repository.

While the entity properties allow operations on them, the entity may have its entity multi-
plicity defined as well. The entity multiplicity defines a lower bound (LB/minimum) and an
upper bound (UB/maximum). The multiplicity constrains how many instances of the entity
may exist at a given time, and it must be verified that the dynamic semantics respsect this.

An example of an entity definition is given below, in graphical form:

Figure 2.3: An entity with attributes and properties
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The properties of the entity (and other DMDSL constructs) can be seen in the IDE:

Figure 2.4: Properties of the Entity construct

Repositories

Once created, instances of an entity may be stored in the entity repository. A repository is
created for each Entity type in the model. The term repository in general is used to refer
to combination of all the repositories of all entities. Entity instances can still exist outside
their repositories, thus the multiplicity is considered as such: For creation of an instance,
the maximum multiplicity is respected (regardless of repository). However, the minimum
multiplicity is always validated for instances in the repository. The association multiplicity is
always considered for instances in the repositories.

Constructor Delegates

The intended semantics is that at first, the repositories are empty. However, in case of a
minimum multiplicity that is non-zero, the repositories have to be populated by using con-
structor delegates. Observe the multiplicity (2..4) of Entity1 in Figure 2.3. In such cases,
before runtime, instances of this entity are expected to be populated in the repository, such
that the entity and association multiplicities are valid before runtime. A constructor delegate
allows creating instances and storing to repositories, and while this is still done by a user via
a software interface in the generated code, it is considered to be before runtime. When the
repository is initialized, it can be expected that the constructor delegates have provided entity
instances in their corresponding repositories so that all the entity and association multiplicities
are satisfied.

Note that, constructor delegates are essentially C++ APIs, like the other generated code.
These delegates are generated only for entities having a non-zero minimum multiplicity, but
in the delegates the user can still create instances of any entity, regardless of its minimum
multiplicity.

2.2.4 Value objects
Unlike entities, Value objects are in essence tuples of attributes, without an identifier. Con-
sequently, they are also not stored in a repository. However, ValueObjects can be instantiated
and contained by other constructs (i.e. Entities or other ValueObjects), and they inherit the
mutability property from their containing entity (Composition relation, ref Sec 2.2.5).
Two ValueObjects may be instantiated with the same values but then they are not distin-
guishable (in contrast to entities).

10 Adding Formal Specifications To A Legacy Code Generator
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An example model with ValueObject is given below. In this setup, ValueObject2 and
ValueObject3 contain some integer representations of components of a velocity vector, and
then ValueObject1 may be some algorithmic evaluation of its corresponding attributes, e.g.
netV elocity =

√
verticalV elocity2 + horizontalV elocity2, received from ValueObject2 and

ValueObject3.

Figure 2.5: The ValueObject construct

2.2.5 Relations in DMDSL
There are three relations in DMDSL, and they are all binary relations. These are Association,
Specialization, and Composition. The relation significant to this text is Association, as the
complexity of the relations given the limited time for the assignment makes it tough to include
all of these. The relations are described below.

Association

An association is a binary relation from an Entity to an Entity. It is unidirectional (source →
target). The semantics are similar to a UML association relation, except that an Entity cannot
be associated to itself (non-reflexive). An association also has properties: Multiplicity and
Cascade Delete. In the generated code, associations are addressed from the source entity
instance.

• At runtime, an association is instantiated/populated when a link from an instance (of the
source type) is created, to an instance of the target type. These links between instances
contribute to the source and target multiplicities of the association. The multiplicity of
an association is defined both at source and target ends, and it indicates the number of
instances that can participate in the association, linked to a given instance.

• The Cascade Delete property is defined for the purpose of explicit lifecycle modeling.
The Cascade Delete is theoretically defined for source and target ends of the association,
however the considered version of ASOME (v3.6.0) only considers the source cascade
delete (SCD). The SCD property indicates that, given an association that connects a
source instance to a target instance, if the target instance is deleted then whether the
source instance should also be deleted. The link between the source and target is deleted
regardless of the SCD property. But if the SCD property is true, the source instance is
also deleted. The formal specification in this text also considers Target Cascade Delete
(TCD) – the semantics for handling the deletion of a target instance if a source instance
in an association (with TCD enabled) is deleted.
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An example of an association is given below. Observe the Target multiplicity (1..3) - this
suggests that an instance of the Entity1 type cannot exist in the repository, without at least
w1 instance of the Entity2 type in the repository, as the association is violated otherwise.
Additionally, the trashcan icon at the source end of the association indicates that SCD property
for the association is enabled. So, if an instance Y of Entity2 is deleted, then all links of
associationExample where Y was a target, will have the source instance deleted as well.

Figure 2.6: Association relation: multiplicity and cascade

Referring to the model in Figure 2.6, the following is required for the association to be valid
in the definition of a consistent repository:

• For an instance x of Entity1 in the repository, there must be at least 1, and upto 3
links to some instance(s) of Entity2 for associationExample. Additionally, all these
instances must be in the repository.

• For an instance y of Entity2 in the repository, there can be at most 2 instances of
Entity1 for associationExample in the repository that link to y.

Navigating over an association, from a source instance, returns an unordered collection of
instances that allows duplicates, and this is known as the Bag semantics. In the implementa-
tion, ordered associations are also possible, pointing to a Sequence of instances. In both cases,
duplicates are allowed, i.e. the same target instance may occur multiple times as a target
of an association, and the association is considered valid. If the navigation of an association
returned a Set of instances, then duplicates would not be allowed. An example is given below
in Figure 2.7.

Figure 2.7 presents the comparison of bag semantics and set semantics for association validity.
Here, the minimum association target multiplicity is 2. In the Bag and Sequence semantics (as
the implementation provides), it is possible to create Instance2 and refer to it twice, pointing
from Instance1. This satisfies the minimum target multiplicity for Instance1. Alternatively,
in the set semantics, this would not be possible and another instance of Entity2 would be
required.

Specialization

A specialization relation is defined to introduce classification hierarchies among entities. It
is a binary relation where the domain and range is always an Entity, which must be within
the same interface. Now, a child entity cannot have more than one parent entity. The parent
is called the specialized entity and the child is called the specializing entity. Any specialized
entity is abstract in the implementation and cannot be instantiated. All the properties, at-
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Figure 2.7: Bag semantics against set semantics

tributes, associations are inherit by the specializing entity. The specialization relation has no
properties like multiplicity but it does introduce constraints on the multiplicities of particip-
ating entities: The minimum and maximum multiplicity of a parent entity, must be the sum
of all its specializing entities.

An example of the specialization relation is given below. Notice the association assoc0 that
is inherited in Entity1_Child. The upper bound of Entity1, 5, is the sum of all the child
entities = 5.

Figure 2.8: Specialization relation

Composition

A composition relation defines the containment relation of a ValueObject to an (Entity or
ValueObject), i.e. the target of a composition is a ValueObject. The composition from
an Entity to a VO essentially introduces the VO as an attribute of the containing Entity.
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Similarly, a ValueObject can contain another object. Thus, the target of a composition is
always a ValueObject. An example of composition has been given above in Figure 2.5.

2.2.6 Repository Orientation
In the DMDSL, repositories can be defined in two orientations: Reference orientation and
Clone orientation. When requested for an entity, a reference-oriented repository provides
a reference to the contents. The updating of contents is implicit and instantaneous, which
improves efficiency but can lead to interference between clients, moreover, rolling back is
complicated. In a clone-oriented repository, a clone of the instance is produced and returned,
this means that updates must be saved explicitly - This allows data to be prepared before
committing, rolling back, and keeping clients isolated. The orientation is set up for each entity
type in the implementation.

Given the available time and complexity of the semantics, all repositories are assumed to
provide reference oriented entities. This simplifies the retrieval of an entity since clones do
not have to be addressed.

2.2.7 SIRE - Separating Interface and Realization
As this work considers only the default/generated realization, this section is not relevant for
the formal specification.
A repository specification service may provide more than one domain interface. For example,
consider a case where one client may create or update entities from one interface, and another
client may only read the entities from another interfaces. Through the repository realization
(RR), a domain interface may expose only a part of the realization to the client. The RR is
defined for a given specification (RS), and provides a realization for all elements in all provided
interfaces. The realization contains all the elements of the domain interface. An RR realizes
ValueObjects, Entities, relations. However, a realization element may realize more than one
interface element, as evidenced in Figure 2.9.

Figure 2.9: Repository realization properties

In iDomain1DM, there are two entities and an association. In iDomain2DM, there is one entity,
which is also the source of the association in iDomain1DM. The realization specifies the prop-
erties for all the entities and the association discovered in the specification. Now, Entity1 in
iDomain2DM may be allowed to be Deleteable and the model would still be valid. However, a
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user with access to iDomain1DM cannot delete instances of Entity1 as for them, Entity1 is
Undeleteable.

In the Realization given above, Entity1 realizes iDomain1DM.Entity1 and iDomain2DM.Entity1.

Figure 2.10: The properties of realization

In the RR semantics, there is no Constructability property for Entity. The multiplicity must
have the same values in the interface and realization. The realization entity Mutability prop-
erty can only be Editable or Immutable, and realization entity Deleteability property can
only be Deleteable or Undestructable. Therefore, the Mutability property as Editable or Un-
editable in an interface, maps to Editable in the realization; and Immutable in an interface
maps to Immutable in the realization. Similarly, the Deleteability property as Deleteable or
Undeleteable in an interface maps to Deleteable in the realization, and Undestructable in in-
terface maps to Undestructable for realization. The association relation also has to be realized
- If an association has Cascade Delete enabled in the interface, it must have Cascade Delete
enabled in the realization. The aforementioned semantics are enforced with static constraints.

A repository specification with only one provided interface can always have a default realization
automatically generated for code generation. A default realization provides a 1-1 mapping
between interface and realization. For more than one provided interface, a default realization
is possible but might need to be modified.

2.2.8 Scope Of Constructs With Example
In this thesis, the scope is limited to within a Domain Interface, including Entities and As-
sociations with respect to all their properties and multiplicities. The specialization relation
and repository realizations are not addressed. A simple valid DMDSL model based on the in-
cluded semantics is given in graphical and textual form. This model will be used as a running
example.

Figure 2.11: Sample model of DMDSL features
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1 Model BasicModel {
2 RepositoryService sService1RS {
3 Provided DataPort p1 {
4 interfaces : iDomain1DM
5 }
6 }
7 DomainInterface iDomain1DM {
8 Entity Entity1 [0, inf] {
9 lifecycle : Constructable Immutable Undeletable

10 associations :
11 [0, 1] entity2 : Entity2 [1, 1] unordered {
12 lifecycle :
13 on source delete : target stays
14 on target delete : source dies
15 };
16 }
17 Entity Entity2 [0, inf] {
18 lifecycle : Constructable Immutable Undeletable
19 }
20 }
21 }

2.3 Dynamic Semantics
The code for a valid ASOME model can be generated with an Implementation Model - a
collection of recipes. This text only considers the default implementation recipes. The figure
below shows the model transformation of the code generator.

Figure 2.12: ASOME code generation transformation

The dynamic (runtime) semantics are applicable to the generated code, defining the logic that
is possible on the code by making C++ function calls. In these semantics, entities can be
created, added, retrieved, updated, and deleted, i.e. the CRUD+A operations. Following are
important constraints about the dynamic semantics:

• Entities can be added to repository only one at a time. There is no support for
transaction-like semantics (where multiple objects added to repository simultaneously)

• At any moment, any CRUD+A operation could be executed. It is expected that the
CRUD+A operations should respect the consistency of the repository. Briefly, the defin-
ition of repository consistency is the satisfied multiplicity of entities and associations.

• To preserve multiplicity of associations, keeping in mind that only one entity can be
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added to repository at a time, the minimum multiplicity of association source is forced
to be 0. (Though target multiplicity minimum can be non-zero). This way, a target can
always be added to repository first, then the source can be added, and consistency is
preserved.

Creation of Entity Instance

To create an entity, a reference to its factory class is required. Within a domain interface, this
is possible only if the Entity type is Constructable. For any outgoing associations that this
instance participates in, the association targets are also required, and satisfying the multipli-
city of this association is a precondition. The number of instances of this entity should not
exceed its maximum multiplicity - otherwise, a runtime exception error occurs.

Consider the BasicModel that is presented on Page 15. From the iDomain1DM interface, to
create an instance of Entity1, the following logic is required. Since Entity1 is a source of
an association, its instance cannot be created unless an instance of Entity2 exists. Note that
this is a simple example, using only a read-only repository.

1 SB = ServiceBundle (); // an sb is always required
2
3 E2Factory = SB -> getEntity2Factory (); // get the factory
4 Instance_E2 = E2Factory -> create (); // create an instance
5 E2_Repository = SB -> getForEntity2 (); // get repository access
6 E2_Repository -> add(Instance_E2 -> getID()); // Instance_E2 is added now
7
8
9 E1Factory = SB -> getEntity1Factory (); // gets the factory

10 Instance_E1 = E1Factory -> create(Instance_E2 -> getID ()); // 1 instance of
entity2 required

11 E1_Repository = SB -> getForEntity1(Instance_E1); // get repository access
for Entity1

12 E1_Repository -> add(Instance_E1 -> getID()); // store instance in
repository

Listing 2.1: DMDSL runtime semantics

Adding Instance to Repository

The addition to repository is shown in Listing 2.1 with E2_Repository. When an instance is
added to the repository, its associations have to be checked for (1) source multiplicity validity
(2) target multiplicity validity, and (3) all association targets of this instance must in their
repository. The violation of any of these conditions causes a runtime error.

Updating an Instance

An entity instance can be always be updated via any interface as long as it is not stored in the
repository. If it is stored in the repository, then it can be updated iff it has the Mutability
= Editable. There are two possible updates on an entity instance – attribute updates, and
association updates. Attribute updates are analogous to using get() and set() methods in
OOP to update class objects. These are not in the scope of the text. Association updates
are important: Using the update method, all the target instances for an instance can be
set, for a given association. In essence, for a given instance, only one association is allowed
to update in the update operation, and the new collection of targets for the association is
provided, overwriting the older association targets. With the update operation, validating the
association source and target multiplicities is important.
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Deleting an Instance from repository

An instance may be deleted if it is in the repository and the entity type has the Deleteable
property in the interface. An instance can still be deleted if the property is Undeleteable in
the interface, if it has a cascade deletion that is triggered outside the interface. However, if the
entity has the property as Undestructable, then it can never be deleted from the repository.
The following is observed in the deletion of an instance:

• The instance itself is deleted. The intended semantics is that the instance is removed
from the repository. The implementation differs from the specifications about this -
in the implementation, the instance is removed from the repository but still exists in
memory. Therefore, all the associations of the instance are preserved but they are not
counted in validating the association. In the formal specification, the deleted instance
and its links do cease to exist.

• If the instance is a target of an association link, then the source instance will be deleted
if the association has the Source cascade Delete (SCD) property enabled. Otherwise, the
source instance will be updated: its references to the target instance will be removed.

• Since the association source multiplicity is forced to have a minimum of 0, deletion never
violates the source multiplicity. However, it might violate target multiplicity, if the static
constraints and deletion function are not correctly specified. Thus, the cascaded deletion
semantics are important.
Cascade delete: The cascaded deletion of entity instances following the associations
introduces complexity in the deletion operation. Consider that the source cascade delete
(SCD) is enabled, then it must be verified that deleting an instance of the target entity
does not violate the multiplicity of the source entity. This is ensured by applying static
constraints, as in Section 2.4. If SCD and TCD are both enabled for an association,
then it is necessary to guarantee that the navigation over the association does not cause
a loop and always terminates.

2.4 Static Constraints
These constraints are define to exclude models that can cause inconsistencies at runtime. In
the DMDSL, there are many static constraints based on the semantics of realizations and
multiple interfaces. The considered subset of DMDSL semantics is within a single interface.
For this subset, the relevant static constraints are listed below in an informal language.

• Multiplicities: The minimum multiplicity must be non-negative, and the maximum must
be positive. The maximum must be greater than or equal to the minimum.

• Entities: In the Entity multiplicity, if the minimum is equal to the maximum, then the
entity must be Undestructable.

• Associations:

– The association source multiplicity must always have a minimum of 0.
As only one instance can be added to repository at a time, this constraint is neces-
sary to allow maintaining repository consistency – With this constraint, the target
instance may be added to the repository first, while zero source instances point to
it. No such constraint is applied on the target, however. Therefore, a source in-
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stance is in the repository may require > 0 target instances to be in the repository.
By the definition of association, and considering that only instance is added a time,
either the source or target minimum multiplicity must always be 0, otherwise the
consistency of associations is violated for non-zero minimum multiplicities). The
implementation enforces this on the source. Figure 2.13 shows an invalidated model
as the source minimum is set to be non-zero.

Figure 2.13: Invalid: Minimum association source multiplicity must be 0

– If the target entity of an association can be deleted, then, either the SCD should be
enabled, or the source entity must be made Editable. If SCD has been enabled, then
the source Entity must also have the Deleteable property. Additionally, the source
association multiplicity always has a minimum of 0, as the previous constraint
defines.

Figure 2.14: Invalid: SCD is enabled but the source entity is Undestructable
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Figure 2.15: Invalid: Target instances can be deleted but target multiplicity = 2, expected 0

– If the source entity of an association can be deleted, then the TCD may be made
enabled, which enforces the target entity to be Deleteable. Alternatively, if the
TCD is disabled, there are no concerns with static constraints. Since the source
instance is deleted, the association is vacuously satisfied: the source minimum is
0 and can never be violated, and the target minimum may be non-zero but as the
source instance ceases to exist, target multiplicity has no premise.
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Chapter 3

Formal Specification of DMDSL
Semantics

This chapter introduces the formal specification of DMDSL. Considering the complexity of the
DMDSL, only a portion of the formal specification is documented in this thesis. The main goal
is to check the correctness of the CRUD+A operations in terms of repository consistency. The
approach to define the specification is to first specify the contents within an interface (here, it
is the entities and associations) and the related CRUD+A operations. In this chapter, Section
3.2 introduces the syntax and sets required for representing the DMDSL semantics. Then, to
formalize the dynamic semantics, the notion of State and contents of a state are introduced.
Finally, the specification for the CRUD+A operations is given in Section 3.6.

3.1 Summary of assumptions

A summary of the assumptions of the semantics is given below:

• Only the default repository realization generated by ASOME is considered. This is
possible when there is only one domain interface. The formal model here does not
address repository realizations and multiple domain interfaces. (Introducing customized
repository realizations would be more convenient with the top-down approach where the
specifications for multiple domain interfaces can be defined first.)

• Bag semantics: The ASOME implementation uses Bag and Sequence semantics. There-
fore, duplicates are allowed and elements may be ordered (Sequence) or unordered (Bag).
For a given instance, navigating over the outgoing links of a particular association re-
turns a Bag. A bag is an unordered sequence of elements and allows duplicates. The
text assumes the unordered associations.

• Repository orientation: It is assumed that all entities are stored with reference-oriented
repositories. This simplifies the Retrieve() operation, as the instance is not duplicated,
updates are immediate, and the state of the repository does not change.

• The generalization/specialization relation is not addressed.
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3.2 Formal model
The first step here is to define the structure of an ASOME model. The formal model of the
DMDSL is presented as the model M : M is a tuple < Entity, Association >. Here, Entity is
the set of the entity types, and the Association is the set of the associations in the model.

3.2.1 Entity
Let Entity represent the set of entities. The definition of an element e ∈ Entity is a tuple:

e =< C,M,D,N >

This element e ∈ Entity is a tuple of properties: Constructability (C), Mutability (M),
Deleteability (D), and Multiplicity (N).
Constructability (C) = True means the Entity is Constructable.
Constructability (C) = False means the Entity is Unconstructable.
Mutability (M) = True means the Entity is Editable.
Mutability (M) = False means the Entity is Uneditable or Immutable.
Deleteability (D) = True means the Entity is Deleteable.
Deleteability (D) = False means the Entity is Undeleteable or Undestructable.
Multiplicity (N) = <minimum, maximum> is the entity multiplicity.

3.2.2 Association
First, a property of the association ends (source/target) is required. This is,

AssociationEndProperty = < Cascade, Multiplicity >

Cascade is a Boolean and represents the cascaded deletion property of that association end.
The Multiplicity is a multiplicity pair (min,max).

Now, let the set Association define the associations in DMDSL. The definition of an Association
element a ∈ Association is:

a = < source, target, SProperty, TProperty >

Here, a.source ∈ Entity and a.target ∈ Entity. Furthermore, SProperty ∈ Association-
EndProperty, and TProperty ∈ AssociationEndProperty. For reference, SProperty.Cascade
represents the Source Cascade Delete (SCD), and TProperty.Multiplicity is the association
target multiplicity.

3.2.3 Multiplicity
A multiplicity N is a pair (minimum, maximum), such that
Multiplicity = {(min,max) | min >= 0 ∧max >= min ∧max > 0}

Formal model: Syntax for dynamic semantics
For verification of the DMDSL, the semantics of the model M will be defined as a transition
system. A state in this system is the contents of the repositories and the instances not yet in
the repositories, and this state must also indicate links between the instances. The transitions
correspond to the CRUD+A operations that can be executed on the repository. The following
definitions assume a fixed model M (as defined in 3.2): the entities and associations in M do
not change once instantiated, and for the model M there is a transition system corresponding
to it that the specification defines.
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3.2.4 Instance

In the dynamic semantics, an entity can be instantiated. Let the set Instance be the universe
of all instances that can exist. Each instance x has an entity type, that it was created of.
Thus, type is a property of an instance. Let type : Instance → Entity be a function on an
instance x such that type(x) = y where y ∈ Entity is the entity of instance x. This function
is populated with the creation of an instance, and deleting an instance

3.2.5 Link

A link is an instance of an association. The Link is a multiset1 that captures all links at
runtime. A link l ∈ Link is a tuple:
l =< source, association, target >: Instance×Association× Instance. The well-formedness
of a link is given in Equation (3.9), so that an element in Link corresponds to valid instances
and associations.

Corresponding to the bag semantics that represent the intended specifications, there may be
two links p and q such that p.s = q.s, p.a = q.a, p.t = q.t.

3.2.6 Definition of a state

A State S is defined as the tuple S =< I,REPO,L, type, output >. Here, S.I ⊆ Instance is
the set of instances in the state S. Then, S.REPO is the set of instances that are stored in a
repository in state S. For an instance to be in the repository, it has to be defined as an instance
first, thus it must be in S.I. Thus, it follows that S.REPO ⊆ S.I. Finally, S.L ⊆ Link is
the set of links in the state S. Therefore, in a given state S, the created instances are in S.I,
the added instances are in S.REPO, and the association links are in S.L. The type function
maps the instances in state S to their corresponding entities in model M , and is updated with
the Create and Delete operations. The output is used to present the success or error from the
operation in the previous state. It takes values from an enumeration that defines all possible
outputs in the transition system, to represent the cases where a CRUD+A operation fails.

The transition corresponding to a successful CRUD+A operation will modify the contents of
a state, going into a distinct new state. In this text, the Create, Update, Add, Delete are the
relevant operations. Create will modify S.I and S.L; Add will modify S.REPO; Update will
modify S.L; Delete will modify S.I, S.REPO, S.L. Section 3.6 explains this in detail.

3.2.7 Outputs for CRUD+A operations

In the transition system for model M , from a state s, one of the CRUD+A operations can
make a transition to the next state s′ if the operation is successful. Alternatively, the operation
may fail due to a variety of possible errors, which would not change the contents of the state.
The purpose of the output property of a state is to indicate the status of the CRUD operation.
A transition indicating a failed CRUD+A operation has a non-successful output, should have
the target as s itself. A failure case does not mean that the transition cannot be
taken. The transition is still possible, but the result state is different.

The outputs can be represented with the following labels as an enumeration:

• Entity_MultiplicityMaximum: If the maximum multiplicity of an entity is violated, its
instances cannot be created.

1A multiset is a modification to the definition of set, that allows for multiple instances of the set elements
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• Entity_MultiplicityMinimum: If the minimum multiplicity of an entity is violated, its
instances cannot be deleted.

• Entity_Unconstructable: Attempt to create an entity that is unconstructable

• Entity_Immutable: Attempt to modify/update an entity that is immutable

• Entity_Undestructable: Attempt to delete an entity instance whereas its type is un-
destructable

• Entity_UnexpectedAssociation: Attempt to create links for an instance, for some
association where the entity is not a source.

• Entity_MissingAssociation: Attempt to create an entity instance where a required
association is not provided.

• Association_SourceMaximum: The maximum source multiplicity of the association is
violated (during create or update)

• Association_TargetMaximum: The maximum target multiplicity of the association is
violated (during create or update)

• Association_TargetMinimum: The minimum target multiplicity of the association is
violated (during update or delete)

• Link_TargetNotInRepository: For a link, the source instance is found in the repository
but the target instance is not.

• Instance_NotInRepository: Attempt to Update or Delete an instance not in the re-
pository.

• Instance_AlreadyInRepository: Attempt to add an instance to repository, after it
was already added.

3.3 Constraints for well-formed model
To create a specification corresponding to the intended semantics, the following constraints
are enforced on the formal model.

1. Entity: The constraints in Section 2.4 are formalized to:

∀e ∈ Entity | e.N.minimum = e.N.maximum =⇒ E.Deleteability = False (3.1)
∀e ∈ Entity | e.Deleteability = True =⇒ e.N.minimum = 0 (3.2)

Note: The implementation does not enforce a minimum multiplicity of 0 for a deleteable
entity. This is enforced only when an entity is a source entity in an association with
SCD enabled. In this case, the constraint would instead be:

∀e ∈ Association.source | a.SProperty.Cascade = True =⇒ e.N.minimum = 0
(3.3)

2. Acyclic model: Informally, this constraint requires that associations do not lead to
cyclicity, i.e. a source entity of an association is not reachable by following the association
targets. Given e ∈ Entity,
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Let targets(e) = {a.target | a ∈ Association ∧ a.source = e}.
Let ^ denote the transitive closure operator on the binary relation targets.

ACY CLIC :: ∀e ∈ Entity, e /∈ ∧targets(e) (3.4)

3. Association Source Multiplicity: The source multiplicity minimum is always 0.

∀a ∈ Association, a.SProperty.multiplicity.minimum = 0 (3.5)

4. Association Target Properties: For associations, if the target entity is deleteable
then the source entity should be cascade deleted, unless the association allows a source
instance to refer to 0 targets:

∀a ∈Association, a.target.Deleteability = True =⇒
(a.SProperty.cascade = True ∨ a.TProperty.multiplicity.minimum = 0)

(3.6)

5. Association Cascade Properties: For associations, the source or target cascade de-
lete being enabled requires that the corresponding entity is deleteable and forces a min-
imum entity multiplicity of 0. If the cascade is disabled, then the source instance must
be editable (mutable).

∀a ∈Association, a.SProperty.Cascade = True =⇒
(a.source.multiplicity.minimum = 0 ∧ a.source.Deleteability = True)

(3.7)

∀a ∈Association, a.SProperty.Cascade = False =⇒ a.source.Mutability = True
(3.8)

6. Link validity: For a link to be valid, the source and target must be of the corresponding
types from the association.

∀p ∈ Link, type(p.s) = p.a.source ∧ type(p.t) = p.a.target (3.9)

3.4 Auxiliary definitions and dot notation
Given: S: a state, and a model M =< Entity, Association > where E ∈ M.Entity: and
A ∈ M.Association, and Z =< s′, a′, t′ >: a set of links where Z.s′ ∈ Instance, Z.a′ ∈
Association, Z.t′ ∈ Instance; and Z is assumed to be well-formed. these definitions will be
frequently used.

Equation 3.1 finds all outgoing associations from an entity type. Equations 3.2 and 3.3 are
to find the number of instances in state S having entity type E. Equations 3.4 and 3.5 find
the instances in state S, for the source and target of an association, respectively. Equation
3.5 finds the outgoing links from a given source instance s′, in a set Z. Equation 3.6 finds the
incoming links to a target instance t′. Equations 3.5 and 3.6 are on an arbitrary set of links
Z as this set may be all the links in a state, or a set of links to delete.
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OUT (E) = {a ∈ Association | a.source = E} (3.10)
IE(S) = {i ∈ S.I | type(i) = E} (3.11)
RE(S) = {i ∈ S.REPO | type(i) = E} (3.12)

Rsource(S,A) = {i ∈ S.REPO | type(i) = A.source} (3.13)
Rtarget(S,A) = {i ∈ S.REPO | type(i) = A.target} (3.14)

LOUT (Z, s
′, a′) = {p ∈ Z | p.s = s′ ∧ p.a = a′} (outgoing in set Z) (3.15)

LIN (Z, a′, t′) = {p ∈ Z | p.a = a′ ∧ p.t = t′} (incoming in set Z) (3.16)

Dot notation: It is useful to have the dot notation for extracting all elements of a property in
the set. For example, the Link set has elements such as l =< s, a, t > where s, t are instances
and a is an association. Therefore, Link.a is used to extract all associations in the set, and is
of type Association. In set logic this is equivalent to:

Link.a = {p.a | p ∈ Link}

3.5 Repository Consistency and Desired Behavior
The contents of the state S, that is S.I, S.REPO, S.L are important in this specification,
and the dynamic semantics (CRUD+A operations) must ensure that the consistency of the
contents is maintained in all states. The repository consistency criteria are represented as
invariants, that must be respected in every state of the transition system. In essence, the
CRUD+A operations should not violate the consistency of the repository. If a
violation is observed, then the CRUD+A operations must be refined, or the model should be
invalidated by adding static constraints. The well-formedness properties are defined to assure
that over time, desired behavior is observed in the system. Here, the well-formedness checks
that at least one operation on the entity for its enabled properties can be executed, e.g. if an
entity is Constructable, it should have an instance created at least once, and if it is Deleteable,
it should have an instance deleted at least once.

3.5.1 Invariants: Repository Consistency
Let |X| be the representation of the cardinality of set X.

Entity Multiplicity

Given entity E, let min = E.multiplicity.minimum and max = E.multiplicity.maximum.
Then,

∀S ∈ State,min ≤ |RE(S)| ∧ |IE(S)| ≤ max (3.17)

Informally, this expresses that the number of created entities is within the minimum and
maximum for the entity defined in model M , for every state in the transition system.

Association Multiplicity

The association multiplicity is the conjunction of the source multiplicity and target multipli-
city, which can be independently evaluated.
Source Multiplicity :
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Given an association A,
Let max = A.SProperty.multiplicity.maximum

∀S ∈ State, y ∈ Rtarget(S,A) | |LIN (S.L,A, y)| ≤ max (3.18)

Informally, the source association multiplicity is validated by looking at each existing instance
of the target entity type, and counting the number of source instances that point to it. This
number must be less than the maximum source multiplicity. As the source minimum is always
0, the lower bound is always satisfied and need not be checked.

Target Multiplicity:
Given state S and association A,
Let min = A.TProperty.multiplicity.minimum and
max = A.TProperty.multiplicity.maximum.

∀x ∈ Rsource(S,A) | min ≤ |LOUT (S.L, x,A)| ≤ max (3.19)

Informally, the target association multiplicity is validated by looking at each instance of the
source entity type i.e. Rsource(S,A)), and counting the number of target instances that it
points to (LOUT ). This number must be greater than (or equal to) min and less than or equal
to max. Here, the target minimum multiplicity may be non-zero so the minimum must be
validated.

Link Validity

A link l is valid in state S iff both the source and target instances are in S.I. Furthermore,
if l.s ∈ S.REPO then l.t ∈ S.REPO

∀S ∈ State, l ∈ S.L | l.s ∈ S.I ∧ l.t ∈ S.I (3.20)
∀S ∈ State, l ∈ S.L | l.s ∈ S.REPO =⇒ l.t ∈ S.REPO (3.21)

3.6 Formal model: CRUD+A Operations
The CRUD+A operations in the DMDSL specification define the transition from the current
state to the next state. Each CRUD+A operation refers to a transition. The specifications of
the CRUD+A operations now follow.

3.6.1 Create Instance
Let s be a state in the transition system. Given e ∈ Entity, the entity to instantiate,
links ⊆ Link, for the target instances corresponding to associations of e

Let new ∈ I indicate the instance that is created by this operation. The output for Create, is
instance new such that type(new) = e and the set links is added to the s.L.

Hence, the operation in s has the signature Create(s, e, links). The next state s′ is derived
as follows.

Preconditions

The following preconditions must be met for successful creation

1. e.Constructability = True
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2. |Ie(s)| < e.multiplicity.maximum

3. type(new) = e ∧ new /∈ s.I

4. OUT (e) = {l.a | l ∈ links} (all associations should be in targets)

5. ∀l : links | l.s = new ∧ l.t ∈ S.I

6. Target multiplicity:

∀a ∈ OUT (e) | a.TProperty.multiplicity.min ≤ |LOUT (s.L, new, a)|
≤ a.TProperty.multiplicity.max

7. Source multiplicity:

∀a ∈ OUT (e), y ∈ Ia.target(s),

|LIN (s.L, a, y) + LIN (links, a, y)| ≤ A.SProperty.multiplicity.maximum

Relation to the next state

The relation between the next state s′ and the current state s in the creation:
s′.I = s.I ∪ new
s′.L = s.L ∪ links
s′.REPO = s.REPO
s′.output = Success
type[new → e] : The type function is updated for instance new. Let type′ : Instance →
Entity, such that type′(i) = type(i), ∀i ∈ s.I and type′(new) = e

Failure cases

Entity instance creation can fail due to a variety of reasons. The goal here is to consider all
possible cases where the creation can fail. The failure cases can be determined by applying
the negation of each precondition. In the failure cases, the other contents of the new state
retain the same contents, i.e. s′.I = s.I ∧ s′.REPO = s.REPO ∧ s′.L = S.L.

1. e.Constructability = False =⇒ s′.output = Entity_Unconstructable

2. |I(e)(S)| = e.multiplicity.maximum =⇒ s′.output = Entity_MultiplicityMaximum

3. links.a * OUT (e) =⇒ s′.output = Entity_UnexpectedAssociation

4. OUT [e] * links.a =⇒ s′.output = Entity_MissingAssociation

5. ∃a ∈ OUT (e), |LOUT (links, new, a)| > a.TProperty.multiplicity.maximum
=⇒ s.output = Association_TargetMaximum

6. ∃a ∈ OUT (e), |LOUT (links, new, a)| < a.TProperty.multiplicity.minimum
=⇒ s.output = Association_TargetMinimum

7. Source maximum multiplicity violation:

∃a ∈ OUT (e), x ∈ Ra.target(s) |
| LIN (S.L, a, x) ∪ LIN (links, a, x) | > A.SProperty.multiplicity.maximum

=⇒ s′.output = Association_SourceMaximum
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3.6.2 Add To Repository

Let s be a state in the transition system, and s′ is the next state. Let x ∈ s.I be the instance
to add to repository. Hence, the operation in s has the signature Update(s, s′, x).

Preconditions

The following preconditions must be met for successfully adding a created instance to repos-
itory:

1. x ∈ s.I

2. x /∈ S.REPO

3. ∀l : s.L, l.s = x =⇒ l.t ∈ s.REPO

Relation to the next state

The actions in addition to repository are:
s′.I = s.I
s′.L = s.L
s′.REPO = s.REPO ∪ x
s′.output = Success

Failure cases

Adding an instance to repository can fail if the association multiplicities for it are not already
satisfied. The source multiplicity is expected to not be violated since it is a precondition to
the instance creation. It may also be that a user tries to add an already added instance to
repository. These cases are handled here. In the failure cases, the other contents of the new
state retain the same contents, i.e. s′.I = s.I ∧ s′.REPO = s.REPO ∧ s′.L = S.L.

1. x ∈ s.REPO =⇒ s′.output = Instance_AlreadyInRepository

2. ∃p : s.L | p.s = x ∧ p.t /∈ s.REPO =⇒ s′.output = Link_TargetNotInRepository

3.6.3 Update Instance (Association Targets)

Let s be a state in the transition system, and s′ is the next state. Let x ∈ s.I be the instance
to update. In the association update, an instance can receive a new set of association targets,
for a single association. Thus, a required input is the association targets, links, corresponding
to the instance new. Hence, the operation in s has the signature Create(s, s′, x, links).

Preconditions

The following preconditions must be satisfied for successfully updating an association of an
instance:

1. type(x).Mutability = True

2. x ∈ s.I

3. |links.a| = 1 ∧ links.a ∈ OUT (x.type)

4. ∀l : links, l.s = x ∧ l.t ∈ S.REPO

5. Target multiplicity: For the instance to update, count the number of provided targets
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in the parameter.

∀a ∈ links.a, a.TProperty.multiplicity.min ≤ |links| ≤ a.TProperty.multiplicity.max

6. Source multiplicity: For all target instances, count the number of existing links pointing
to it and the number of times it occurs in the parameter links.

∀a ∈ links.a, y ∈ Ia.target(s),

|LIN (s.L, a, y) + LIN (links, a, y)| ≤ A.SProperty.multiplicity.maximum

Relation to the next state

The actions in updating an instance are (note the set difference − as all old links outgoing
from x are removed):
s′.I = s.I
s′.REPO = s.REPO
s′.L = s.L− LOUT (s, x, links.a) ∪ links
s′.output = Success

Failure cases

Updating an instance in the repository can fail for multiple reasons: Trying to update an
instance of an immutable entity type, or invalid association source/target multiplicities, or a
case where the updating instance is in the repository but the association target is not. These
cases are handled here. In the failure cases, the other contents of the new state retain the
same contents, i.e. s′.I = s.I ∧ s′.REPO = s.REPO ∧ s′.L = S.L.

1. type(x).Mutability = false =⇒ s′.output = Entity_UpdateImmutableType

2. ∃l : links|l.s = x ∧ l.t /∈ s.REPO =⇒ s′.output = Link_TargetNotInRepository

3. Target minimum multiplicity violation:

|links| < links.a.TProperty.multiplicity.minimum

=⇒ s′.output = Association_TargetMinimum

4. Target maximum multiplicity violation:

|links| > links.a.TProperty.multiplicity.maximum

=⇒ s′.output = Association_TargetMaximum

5. Source maximum multiplicity violation:

∃a ∈ OUT (e), x ∈ Ia.target(s) |
|LIN (S.L, a, x) ∪ LIN (links, a, x)| > A.SProperty.multiplicity.maximum

=⇒ s′.output = Association_SourceMaximum
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3.6.4 Delete Instance In Repository
Let s be a state in the transition system, and s′ is the next state. Let x ∈ s.REPO be
the instance to delete. The transitive closure operator ^ is again useful, to navigate over all
the links, looking for cascade deletion candidates. Due to the cascade delete, some auxiliary
relations will be useful to indicate the elements involved in deletion. The connectsSCD
relation maps an instance y to all the instances connected to it, via any association with SCD
enabled. In this case y is always a target of the link. Similarly the connectsTCD relation
maps instance x to all instances connected to x via an association with TCD enabled, wherever
x is the source of a link.

connectsSCD(y, S) = {l.s for l ∈ S.L | l.t = y ∧ l.a.SProperty.Cascade = True}
(3.22)

connectsTCD(x, S) = {l for ∈ S.L | l.s = x ∧ l.a.TProperty.Cascade = True}
(3.23)

markedForDeletion(x, S) = {x ∪ ∧connectsSCD(x) ∪ ∧connectsTCD(x)} (3.24)
deleteLinks(x, S) = {l ∈ S.L | p.s ∈ markedForDeletion(x, S)

∨ p.t ∈ markedForDeletion(x, S)} (3.25)

Preconditions

The following preconditions must be met for successfully updating an association of an in-
stance:

1. type(x).Deleteability = True

2. x ∈ s.REPO

3. Rx.type(s) > x.type.multiplicity.minimum

4. ∀y : markedForDeletion(x, S), y.type.Deleteability = True

5. Entity multiplicity of remaining entities:
∀e ∈ Entity, |Re(S)−markedForDeletion(x, S)| >= e.multiplicity.minimum

6. Target multiplicity of remaining links/associations:

∀a ∈Association, p ∈ {Ra.source(S)−markedForDeletion(x, S)},
|LOUT (S.L− deleteLinks(x, S), p, a)| ≥ a.TProperty.multiplicity.minimum

(3.26)

Relation to the next state

The preconditions and static constraints are expected to respect the repository consisten-
cies, and appropriately delete instances connected by the association cascade delete property
(source and target). The actions are:
s′.I = s.I −markedForDeletion(x, S)
s′.REPO = s.REPO −markedForDeletion(x, S)
s′.L = s.L− deleteLinks(x, S)
s′.output = Success
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The type function is updated to exclude all deleted instances: Let type′ : Instance→ Entity
such that type′(i) = type(i),∀i ∈ s′.I. In s′, let type = type′.

Failure cases

The static constraints are defined such that the deletion operation does not violate the mul-
tiplicity of an association. As mentioned in Equation (3.3), any entity that participates in
an association with the cascade enabled, is required to have a minimum multiplicity of 0.
Therefore, failure of deletion can happen only if entity multiplicity of the entity type(x) is
violated. In the failure cases, the other contents of the new state retain the same contents, i.e.
s′.I = s.I ∧ s′.REPO = s.REPO ∧ s′.L = S.L. Finally, the deletion can fail in the following
cases:

1. x /∈ s.REPO =⇒ s′.output = Instance_NotInRepository

2. ∃y ∈ markedForDeletion(x, S) | type(y).deleteability = false =⇒ s′.output =
Entity_DeleteOnUndestructable

3. Let e = type(x), then

|Re(s)− {y ∈ markedForDeletion(x) | type(y) = e}|
< e.multiplicity.minimum =⇒ s′.output = Entity_MultiplicityMinimum

3.7 Existence of multiple initial states
A DMDSL model is a valid model if it follows all static constraints, and there must always a
transition system corresponding to a valid DMDSL model. To define a transition system, an
initial state (or a set of initial states) is required.

A basic initial state for the transition system is one where the contents of the sets I, REPO,
and L are empty. This case is possible only if all the entities inM have a minimum multiplicity
of 0. However, the converse is not true: if all the entities in the model have a minimum
multiplicity of 0, it is still possible to populate the contents of the initial state, as long as the
maximum multiplicity is not violated. Therefore, the initial state may have ≥ 0 instances.

For the bag semantics and the static constraints of DMDSL, and the logical fact that any
number of instances (below the maximum multiplicity) can be created before runtime, an
initial state for the a valid model M in the DMDSL specification, will always exist. In this
text, a valid initial state of the transition system for a model M is specifying constraints for
an initial state in terms of entity and association multiplicities.

Figure 3.1: An example model in DMDSL

Consider Figure 3.1 - there are multiple initial states for this model. One of these has empty
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contents of the repositories. However, there are 8 more initial states in this model: the
repository may have 0 . . . 5 instances of Entity1 and 0 . . . 4 instances of Entity2.

Therefore, the requirements/constraints from the initial state are that:

• the entity multiplicities must be respected (Equation (3.17))

• the association multiplicities must be respected (Equation (3.18). (3.19))

• the links must be valid (Equation (3.20))

3.8 Properties of the transition system
Practically, the user of the DMDSL chooses the contents of the initial state. Thus, the goal
is to prove that given a valid initial state, every transition should lead to a state where
the invariants hold. If the invariants are violated, then one (or more) CRUD+A operations
have not specified correctly. If the CRUD+A operations are correctly specified, then the
specification is proven valid.

This proof can be done mathematically, or by using a tool. Here, the Alloy tool is used,
as discussed in Chapter 4. Furthermore, Alloy also provides other benefits like automatic
generation or completion of input models, and generation of test sequences. Therefore, the
problem to solve in Alloy is, “Given a valid initial state for the DMDSL specification, is
there some model M and corresponding sequence of transitions, that violates the repository
consistency invariants?” The Alloy Analyzer creates models for the DMDSL specification, and
looks for models and sequences of CRUD+A operations that invalidate the invariants. If no
such model is found, then the specification is proven correct.
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Chapter 4

Model exploration with Alloy

In this chapter, the semantics of DMDSL are defined in the Alloy specification language.
The DMDSL is specified in Alloy with the goal of checking the correctness of the CRUD+A
operations in terms of the repository consistency. Using specification tools to prove correctness
of specifications has various merits and demerits. A practical merit is that no mathematical
theorem proving is required, because using Alloy instead allows for explore the model and
proving the properties automatically. Therefore, the formal specification in Chapter 3 is now
translated into the Alloy syntax. For the reader unaware of Alloy, an introduction to the
Alloy specification language is given in Section 4.2. An example specification is given in
Section 4.2.6. Indeed, the textbook Software Abstractions [15] introduces Alloy with more
comprehensive examples. Sections 4.3 and 4.4 denote the advantages and disadvantages of
using Alloy for model exploration. The DMDSL specification in the Alloy syntax is presented
in Section 4.5 - the syntax (Sec 4.5.1), transition system (Sec 4.5.3), CRUD+A operations
(Sec 4.5.4), repository consistency (Sec 4.5.5), and model execution (Sec 4.5.6) are described.
Additional remarks about the exploring the model in different ways are given in Sections 4.6
(desirable behavior) and 4.7 (model-based testing).

4.1 Requirements for a formal specification tool
There are specification tools such as mCRL2 [12], Event-B [1], TLA+ [27], Z3 theorem prover
[6]. The requirements from the verification software are:

• Defining contents of states in the form of sets or lists, and the behavior of transition
systems.

• Support for parametric transitions in transition systems.

• Ease of use with familiar set theory notation.

• Proven usage and familiarity in verifying DSLs in industrial environments.

4.2 Alloy Semantics: A Primer
Alloy as a specification tool can be used for verification of DMDSL specifications. Alloy
has been used for verifying models and languages (practical Alloy usage, Section 6.1). It
is possible to define contents of signatures and static semantics, and parametric predicates.
The Alloy specification is expressed in relational logic and the syntax is generally easy This
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4.2. ALLOY SEMANTICS: A PRIMER

section summarizes the syntax and semantics of Alloy as described in the book Software
Abstractions [15].

4.2.1 Introduction
Alloy is a declarative formal specification language inspired by the Z-specification language and
relational calculus. Alloy is used to describe structures and execute a bounded exploration
of the structure through the Alloy Analyzer. An Alloy model1 is a collection of constraints
and equations, described on a set of structures.

In an Alloy model, signatures define the universe of the model, and each signature is a set. Each
set can be populated with atoms – the atoms are generated by Alloy, but their multiplicity
and relations are modeled by the user. A relation in Alloy maps a signature to one (or more)
signature(s). It can be defined as a property of the domain signature, and the range of the
relation may be the domain itself (e.g. the edge is a relation of the graph, and maps each
vertex in the graph to 0 or more vertices). The Alloy semantics support binary relations
out-of-the-box, and ternary relations can be implemented by using a library. The relations
also have multiplicities, as explained later. A signature can be made abstract to create child
signatures that inherit from the abstract signature.

Every statement in an Alloy model is a Boolean equation. A fact can be used to define
constraints on the signatures in the model (i.e. equations that will always be true). A
predicate can be used to define Boolean equations that can be referred to with an identifier, i.e.
predicates are named (whereas facts are not named). An assertion can also be used to define
Boolean equations, and may include references to predicates or other assertions. However,
the converse is not true, and assertions cannot be used in a run command. Assertions can be
referred to only with a check command (ref. Sec 4.2.4)

4.2.2 Signature and Relation Multiplicity
For addressing multiplicities, and quantifiers for predicate logic, Alloy includes quantifiers
that correspond to predicate logic. The quantifiers for predicate logic are no (@), one (∃,
unique), lone (@∪∃), some (∃, subset), all (∀). As expected from the keywords - no expects 0
atoms, to be returned from the logical equation. Similarly, one expects 1 atom, lone expects
0 or 1 atoms, some expects >0 atoms and all expects all possible atoms. These expected
multiplicities are translated into enforced multiplicities if used in a fact. Similarly, relations
and signatures in Alloy also have a multiplicity. For signatures, the multiplicities are lone,
one, set, some. The default is set, which ensures >= 0 atoms of the signature are created for
analysis. The upper bound for this multiplicity is provided by the user. For relations, there
are two multiplicities: one for the relation domain and one for the relation range. The former
is derived from the signature that contains the relation, and the latter is given explicitly (set
by default). For the range, the modeling can include any of the aforementioned signature
multiplicities may be used, but also seq - where the relation range is an ordered sequence.
Additionally, the disj keyword can be added, to make it disjoint among all atoms2.

4.2.3 The small scope hypothesis
If an assertion is invalid, it probably has a small counterexample.

The Alloy reference (Section 5.1.3, [15]) introduces the small-scope hypothesis. Jackson notes
1AlloyTools: About Alloy
2The Alloy reference explains signature and relation multiplicity in detail.
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in his text that most bugs have small counterexamples and that Alloy is useful for finding
subtle bugs which do not need a large state space to be found. Jackson also states that the
Alloy Analyzer works with a complementary role from a theorem prover – once the Analyzer
fails to find a counterexample to an assertion, the specification may be valid for the bounded
state space. Then, a theorem prover can be used to then prove the assertion correct for all
scopes. Jackson suggests in the text that model exploration like Alloy and theorem proving
should be used in a complementary way.

4.2.4 Executing Alloy models

Alloy treats a model as a conjunction of Boolean equations, which is possible only because
all Alloy statements are Boolean equations. During analysis, these equations are formed into
an SAT formula. SAT is the problem of determining if, for a given Boolean formula, there
is a set of assignments to all variables in it such that the result is TRUE. Contrarily, to find
a context where the formula is supposed to be always true, the formula can be negated, and
SAT can be applied to find variable assignments where the formula evaluates to FALSE. It is
well known that the SAT problem in predicate logic is undecidable3.

An instance of an Alloy model is defined as the collection of atoms of signatures, within
given bounds, that either satisfies or invalidates the SAT formula. Alloy is a bounded
model exploration tool and based on its small-scope hypothesis (Sec 4.2.3), Alloy only explores
models within the given bounds. To find any instance that satisfies the SAT formula, the run
command is used. To verify that no instance invalidates the model, the check command is
used. The check command, in essence, negates the SAT formula and tries to find any instance
that satisfies it. Thus, it verifies that there are no instances where the input equations are
violated.

The user might want to test the model for valid instances, or for (any) invalid instances. To
execute the model, either the run or check command is used, which requires the equations to
validate and the upper bounds for the model.
The run command finds any valid instance for which its input equations evaluate to TRUE.
If the SAT cannot be satisfied, the input equations to run are determined inconsistent, i.e.,
there is no possible instance of the model that satisfies the predicates in the run command.
The check command finds any invalid instance of the model, where the input equation eval-
uates to FALSE. If no instance is found here, then the assertion may be valid for the given
bounds. It might be possible that the input equations have contradictions. Such cases however,
are easily found and can be discarded, because here check terminates unreasonably quickly.
The successful termination of the check command does not guarantee that the specification
is valid: It is only guaranteed within the given bounds. However, it still builds confidence
about the specifications, due to the small context assumption. But this does not guarantee
the validity of the assertions an unbounded space.

4.2.5 Practical uses

Alloy is effective for exploring finite state spaces to find models, and is also suited for state-
based formal specifications. Tools similar to Alloy are TLA+ [27], mCRL2 [12], Event-B [1],
etc. The OCL4 is similar to Alloy in terms of expressiveness. Although OCL has first-order

3Wiki: Horn clause and theorem proving
4Object Constraint Language, OCL
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predicate logic, Alloy has a more powerful relational calculus and a simpler syntax5.

Modeling transition systems is not straightforward in Alloy. Transition systems cannot be
expressed as first class entities in Alloy but have to be modeled manually by using the Ordering
library. This is also referenced in well-known examples of Alloy, the River crossing game and
the Web attack. In both these examples, a state machine along with predicates specifying the
transitions/dynamic behavior is described. To explore the state ordering, first, next and last
keywords are available from the ordering library. The Alloy Java API is documented, which
can be used to process of the generated outputs in the Analyzer.

4.2.6 Example
A brief example to show the syntax (and its meaning informally) of the Alloy language follows.
In this example, a directed graph is defined. This graph has nodes and directed edges. There
are braces following the signatures (Lines 4, 11) - these are called implicit facts and are
applied on a signature itself. Implicit facts apply to each atom of the signature (keyword this
refers to the atom) and are useful for defining binary relations (Line 4). From Line 4, the
set target_nodes, for a given Node atom x, looks at the Edge signature where the source is
this=x, and from this set extracts the target element, which must be of the expected type
set Node as on Line 2.

The Edge signature (Lines 7-12) defines an edge, and also prohibits self-loops, i.e. a node may
not have an edge to itself. The Graph signature is not used in model verification, but the one
keyword here defines that only one graph is considered in model exploration. (Otherwise, the
graph signature explores all permutations of Nodes and Edges. For a bound of 3, there are 3!
= 6 graphs, of which 3 are explored!)

Consider that the goal is to ask Alloy to validate that the graph is acyclic. By definition, a
node must not reach, by any number of edges, itself. To do this, the NotCyclic predicate,
with the transitive closure operator ^, is defined on Line 22. It denotes that for all nodes, the
node n should not be found in the transitive closure of its target_nodes set. In this case,
the goal is to look for any invalid models, so the check command is used on Line 25 with a
signature upper-bound of 3. Alloy will explore models for signature sizes between 0 and 3,
but by using the exactly keyword before 3, only the signature size of 3 is considered.

1 sig Node{
2 target_nodes: set Node // relation
3 }{
4 target_nodes = { e: Edge | e.source = this }. target
5 }
6
7 sig Edge{
8 source: Node ,
9 target: Node

10 }{
11 source != target
12 }
13
14 one sig Graph{
15 nodes: set Node ,
16 edges: set Edge
17 }{

5https://alloytools.org/faq/how_is_alloy_related_to_ocl.html
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18 edges = Edge
19 }
20
21 pred NotCyclic{
22 all n: Node | n not in n.^ target_nodes
23 }
24
25 check { NotCyclic } for 3

Listing 4.1: A graph specification in Alloy, checked for acyclicity

Running this example in Alloy will generate a counterexample as given in Figure 4.1.

Figure 4.1: Counterexample for the graph cyclicity example

To troubleshoot the counterexample, the Evaluator feature of the Alloy Analyzer is used to
view information. It becomes clear that the violation is because Node 0 and Node 1 point
to each other, as verified by using the transitive closure in Figure 4.2. Note that the 3rd
command is using the ^ operator. Thus, there is a cycle of length 1 in this counterexample.

Figure 4.2: Example: Using Alloy Analyzer for checking cyclicity

38 Adding Formal Specifications To A Legacy Code Generator



4.3. ADVANTAGES OF SPECIFICATION WITH ALLOY

4.3 Advantages of specification with Alloy

Exploring models with Alloy has various practical benefits:

• Practical in software engineering: Alloy is useful to define specifications and for given
bounds, find valid models by using the run command. If it succeeds, the specification
exhibits desired properties.

• Alloy is written in Java and available as a single JAR distributable, so it is platform-
independent. The syntax of Alloy is simple to learn, and formal logic statements with
set theory and predicate logic are easily translated into Alloy statements.

• Expressiveness and Skolemization: The Alloy language defines operators for transitive
closure, ^ *, on binary relations. This is part of the higher-order logic [17] semantics,
that includes transitive closure, quantification over powersets, axioms on real numbers,
etc., all of which are relevant to this text.
Quantification over powersets must be enabled explicitly by configuring the 2nd-order
Skolemization setting. In the DMDSL specification, the transitive closure is used for
calculating cyclicity of associations, and for finding the connected instances in a set of
links.

• Although the default settings do not enable this, Alloy can be configured to enable
bounded recursion. This was also experimented with for the DMDSL formal semantics
– but the transitive closure operator provides the required semantics and always termin-
ates, while the recursion semantics do not.

4.4 Disadvantages of specification with Alloy

There are various limitations in verifying model specifications with Alloy:

• Exact length of traces: To get accurate results with Alloy, it is important to precisely
set the bounds for model checking. In the Ordering library, the transition system has
to be specified for an exact length. It can be possible that a long sequence of states ends
up in a deadlock and the Analyzer does not report this.

• Scalability: Alloy also suffers from state space explosion, and depending on the com-
plexity of the model, even increasing the state space bound by 1 can lead to significantly
longer verification times. Similarly, reducing it by 1 can lead to missed counterexamples.
Therefore, experimentation with the bounds is usually required and laboursome.

• In Alloy, type checking is evaluated globally, therefore the names of attributes, relations
and predicates have to be defined carefully, to avoid scope and type resolution errors.
Implementation hurdles like this can make it difficult to specify sets and relations, re-
quiring effort to learn the Alloy notation.

• A practical limitation of implementation with Alloy is the deduction of failing conditions
- if an assertion is violated and a counterexample is produced, which equation caused
the failure? The Alloy Analyzer shows some related information but but for complex
models, assertions in the Analyzer have to be manually checked.
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4.5 DMDSL Semantics with Alloy

Given the formal specification of the DMDSL (Chapter 3), validating the correctness of the
CRUD+A operations w.r.t. the repository consistency is the goal. Using a tool like Alloy
to automatically explore the model and validate the consistency, is more practical than using
theorem proving. Thus, here the the formal specification of DMDSL as expressed in Alloy.
With the knowledge that Alloy supports relational logic which is stronger than first-order
predicate logic and allows using transitive closure operator, the formal specification can be
translated with the following strategy:

1. Translate all sets into signatures: the Entity, Association, Instance, and Link. The
Multiplicity and AssociationEndProperty are also signatures here, that will be prop-
erties of the Entity and Association. For all these signatures, the well-formedness must
be ensured.

2. Translate the static constraints (Sec 2.4) as facts. These facts must be respected by the
Alloy Analyzer and will always hold true.

3. Then, define the State as a signature, so its contents (properties) can be modeled. As
the goal is to model transitions, the State is defined as a sequence. Therefore, the
ordering library is required to implement it – without using ordering, the atoms of
State are disjoint/exclusive.
The ordering library allows defining sequences between atoms a signature. The first,
last, next properties of an ordering are useful to define transitions between elements.
Therefore, a transition system can be defined and traversed by using the ordering
library.

4. Translate the CRUD+A operations into predicates. Each predicate is a collection of
Boolean equations, so the successful operations can be defined as predicates. In each
CRUD+A operation, the relation between the given state and its next state is explicitly
modeled.

5. To incorporate failure paths, another predicate may be used. This predicate is a logical
disjunction of the successful predicate and each failure condition with the corresponding
behavior of the transition system.

6. A fact traces can be specified, which defines the transitions between two states s and
s.next - using the next relation is possible because of the ordering library applied on the
State. The traces defines the transitions between states as the CRUD+A operations.

7. Define the conditions of the initial state as a fact. Given this fact forces a valid initial
state, the CRUD+A operations can be verified in terms of respecting the repository
consistency invariants.

8. Translate the repository consistency invariants into predicates over State - the para-
meter is a state, and all the entities/associations must be checked for their multiplicities
to be valid. If this predicate evaluates to true, then the repository in the valid in the
state.

9. Define the expected model execution. The command used is check{}, with the model-
checking bounds, and the exact length of the State. The input equations to check{} is
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the repository consistency invariants. Thus, the Alloy analyzer can verify the correctness
of the CRUD+A transitions from a valid initial state. With sufficiently well-defined
CRUD+A operations, this verification should ideally produce no counterexamples.

4.5.1 Static DMDSL Semantics and Well-formedness Constraints
Defining the DMDSL static semantics into Alloy is straightforward for the sets. The Multipli-
city, Entity, and Association constructs, as specified in the previous chapter, are translated as
signatures. Corresponding properties like the targets relation, have been added based on their
purpose. The targets is a relation mapping an entity to entities it can reach by associations, so
this relation will be used in Alloy to define that the models are acyclic. Notice the similarity
to the Acyclic Graph example in Listing 4.1 (Entity=Node, Association=Edge). To enforce
an acyclic model, the transitive closure operator ^ is used.

1 sig Multiplicity{
2 minimum: Int ,
3 maximum: Int
4 } {
5 minimum >= 0 and maximum > 0 and maximum >= minimum
6 }
7
8 sig Entity {
9 constructability: Bool ,

10 mutability: Bool ,
11 deleteability: Bool ,
12 multiplicity: one Multiplicity ,
13 targets: set Entity
14 } {
15 targets = { a: Association | a.source = this }. target
16 }
17
18 sig AssociationEndProperty{
19 cascade : Bool ,
20 multiplicity: Multiplicity
21 }
22
23 sig Association{
24 source: Entity ,
25 target: Entity ,
26 sourceProperty: AssociationEndProperty ,
27 targetProperty: AssociationEndProperty
28 }

Listing 4.2: DMDSL formal model in the Alloy syntax

To define static constraints, the following fact is used:

1 fact constraints{
2 StaticConstraints
3 }
4
5 pred StaticConstraints{
6 no e: Entity | e in e.^ associationTargets // no cycles
7
8 all e: Entity {
9 (e.multiplicity.minimum = e.multiplicity.maximum) implies e.

deleteability = False
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10 }
11 // association properties: each line is a static constraint
12 all a: Association
13 {
14 a.sourceProperty.multiplicity.minimum = 0
15
16 a.target.deleteability = True implies (a.sourceProperty.cascade = True

or a.targetProperty.multiplicity.minimum = 0)
17
18 a.sourceProperty.cascade = True implies (a.source.deleteability = True

and a.source.multiplicity.minimum = 0)
19
20 a.sourceProperty.cascade = False implies a.source.mutability = True
21 }
22 }

Listing 4.3: Static constraints on the DMDSL model

The runtime structures, which are Instance and Links, are translated into Alloy as given
below. The constraints defined under the signatures (on Lines 6,7,8,16,17), are used to enforce
the well-formedness of the signatures. In the Instance, the connectsSCD and connectsTCD
relations are used during deletion to build a graph of connected instances (exclusively for
SCD/TCD-enabled associations).

The multiset Link from the formal specification is naturally translated to the Link signature
(Line 11), and this definition in the default Alloy semantics allows distinct links to have the
same content. This way, the bag semantics is easily captured by Link.

1 sig Instance {
2 type: Entity , // the type() function
3 connectsSCD: set Instance ,
4 connectsTCD: set Instance
5 }{
6 type.constructability = True
7 connectsSCD = { L: Link | L.link_target = this and L.link_type.

sourceProperty.cascade = True }. link_source
8 connectsTCD = { L: Link | L.link_source = this and L.link_type.

targetProperty.cascade = True }. link_target
9 }

10
11 sig Link {
12 link_source: Instance , // L.s
13 link_type: Association , // L.a
14 link_target: Instance // L.t
15 } {
16 link_source.type = link_type.source
17 link_target.type = link_type.target
18 }

Listing 4.4: The signatures related to runtime

4.5.2 Definition of State in Alloy
The State in the Alloy model is defined as a signature. The transition system in Alloy is
encoded as a sequence of States, by using the ordering library. The contents of a state can
now be defined: the instances, repositories and links as a property of the state are defined
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first (Lines 4,5,6). The operation is a simple indicator of the operation executed in the
transition from the previous state, and the output relation presents the resulting success or
error indication. The fact for the State signature (Line 10) specifies that the repositories is a
subset of instances.

1 open util/ordering[State ][ language=Alloy , label=lst:AlloyInitState , caption ={
Definition of State in Alloy }]

2
3 sig State{
4 instances: set Instance , // S.I
5 repositories: set Instance , // S.REPO
6 links: set Link , // S.L
7 output: Output , // output of CRUD operation of previous state
8 operation: Operation , // CRUD operation of previous state
9 } {

10 repositories in instances
11 }

4.5.3 Initial State and Traces
To enforce the validity of an initial state, a fact is used. Here, the conditions in the initial state
will specify a valid repository, so that the entities and association multiplicities are respected.
The links in the initial state are forced to be valid as well.

The traces fact is significant: it allows defining the transitions possible in the transition system.
From any state s in the system, exactly one of the create, add, update, or delete predicates
can hold TRUE, so that a transition is made to the next state s′ = s.next. Removing any one
of the lines in the traces removes the CRUD+A operation from the possible transitions. Note
that each state in the Alloy model can perform a CRUD transition. This is often a requirement
in model-based testing with input-output transition systems (IOTS) [24].

1 fact traces
2 {
3 all s: State - last , s’: s.next
4 {
5 some e: Entity , targets: set Link | create [s, s’, e, targets]
6 or some x: Instance | add[s, s’, x]
7 or some y: Instance , targets: {set Link - y} | update[s, s’, y,

targets]
8 or some z: Instance | delete[s, s’, z]
9 }

10 }
11
12 fact first_state{ // ’first ’ is provided by the ordering library , as the

entry point of the ordering
13 first.operation = Initialize
14 first.output = Success
15
16 Entity.multiplicity.minimum = {0} implies (no first.instances)
17
18 all e: Entity | EntityMultiplicity[first , e]
19
20 all a: Association | AssociationMultiplicity[first , a]
21
22 all p: first.links {
23 p.link_source in first.instances and p.link_target in first.instances
24
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25 p.link_source in first.repositories implies p.link_target in first.
repositories

26 }
27 }

Listing 4.5: Defining initial state and traces with Alloy

4.5.4 CRUD operations
Based on the traces fact, it is specified that a CRUD+A operation is possible in a state s in
the Alloy model. The strategy to encode CRUD+A operations is: first, define a predicate that
encodes the happy flow - when the requested operation can be performed and succeeded. Then,
a predicate is defined for every possible violation of preconditions of the successful transition,
where the operation is performed but failed.

To encode a successful CRUD operation, the parameters are two states s and s′, which are
ensured to be the current state and next state by the fact traces. As a simple example, the
Add operation is given as a predicate. It expects that an instance is already created and its
associations should be satisfied, after which the instance can be added to repository. Note
that the definition of fact traces specifies add and not successful_add.

1 pred successful_add[s: State , s’: State , i_to_add: Instance ] {
2 // preconditions
3 i_to_add in s.instances
4 i_to_add not in s.repositories
5 all p: s.links | p.link_source = i_to_add implies p.link_target in s.

repositories
6
7 // relation of state s and s’ -- The traces ensures that s’ is the next

state of s
8 s’. instances = s.instances
9 s’. repositories = s.repositories + i_to_add

10 s’.links = s.links
11 }
12
13 pred add[s: State , s’: State , x: Instance ] {
14 s’. operation = Add
15 {
16 successful_add[s, s’, x]
17 s’. output = Success
18 }
19 or
20 {
21 x in s.repositories
22 states_are_equivalent[s, s’] // contents of states do not

change!
23 s’. output = AlreadyInRepository
24 }
25 or ...
26 }
27
28 pred states_are_equivalent[s: State , s’: State]{
29 s.instances = s’. instances
30 s.repositories = s’. repositories
31 s.links = s’.links
32 }

Listing 4.6: The add transition as a predicate in Alloy
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The successful (happy-flow) predicates to define the Create, Update, Delete operations are
given in Appendix A.

4.5.5 Repository Consistency
Following, are predicates to check the entity and association multiplicity for the respective
parameters (some given State and Entity/Association). The #(...) operator is used for
set cardinality, which is predefined in the Alloy syntax.

1 pred EntityMultiplicity[s: State , e: Entity] {
2 e.multiplicity.minimum <= #( instancesOfType[s.repositories , e]
3 #( instancesOfType[s.instances , e] <= e.multiplicity.maximum
4 }
5
6 pred AssociationMultiplicity[s: State , a: Association] {
7 am_source[s, a]
8 am_target[s, a]
9 }

10
11 pred am_source[s: State , A: Association ]{
12 all x: instancesOfType[s.repositories , A.target]
13 {
14 #( incomingLinksOfType[s.links , A, x]) <= A.sourceProperty.multiplicity

.maximum
15 }
16 }
17
18 pred am_target[s: State , A: Association ]{
19 all x: instancesOfType[s.repositories , A.source]
20 {
21 let target_links = outgoingLinksOfType[s.links , x, A]
22 {
23 target_links.link_target in s.repositories
24 #( target_links) >= A.targetProperty.multiplicity.minimum
25 #( target_links) <= A.targetProperty.multiplicity.maximum
26 }
27 }
28 }

Listing 4.7: Translating consistency predicates to Alloy

4.5.6 Executing the model
To run the Alloy model, the check command is used along with the repository consistency
invariants as the input. In this example, the signatures are limited to a bound of 3 and there
are 8 states in the transition system. The code here represents the intention of checking
the semantics of the CRUD+A operations. Given the transition system for some model m
(that the Alloy Analyzer determines), each transition is one of the CRUD+A operations. The
check {Consistency} command verifies that these transitions do not violate the invariants in
any state of the transition system. Thus, this code is used to answer the primary goal of this
work: Are the semantics specified correctly such that the invariants cannot be violated for any
modelm? If the check {Consistency} command does not produce any counterexamples, then
the intended semantics are specified correctly. In that case, no static constraints are required,
and no refinements to the CRUD+A operations are required. For every counterexamples
produced, the semantics are refined.
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1 pred Invariants{
2 all s: State {
3 all e: Entity | EntityMultiplicity[s, e]
4 all a: Association | AssociationMultiplicity[s, a]
5 all p: s.links {
6 p.link_source in s.instances and p.link_target in s.instances
7
8 p.link_source in s.repositories implies p.link_target in s.

repositories
9 }

10 }
11
12 pred Consistency{
13 Invariants
14 }
15
16 check { Consistency } for 3 but exactly 8 State

Listing 4.8: Model-checking DMDSL specification in Alloy

4.6 Checking for desired behavior with Alloy
The Alloy Analyzer only checks the explicitly provided equations for finding counterexamples.
Thus far, it has been the Invariants that define the repository consistency. However, it may
be useful to define predicates that reflect desirable behavior. This maybe something like: If an
Entity has the Constructable property, it should be successfully constructed at least once, and
vice versa for its deletion. Therefore, the Alloy Analyzer can query for this desirable behavior
in the DMDSL specification, and for this the following changes are added to the specification:

1 pred Liveness{
2 // all entities that are constructable or deleteable , will have the create

/delete operation happen at least once
3
4 all e: Entity {
5 e.constructability = True implies some s: State , links: set Link |

create[s, s.next , e, links] and s.next.output = Success
6
7 e.deleteability = True implies some s: State , x: Instance | x.type =

e and delete[s, s.next , x ] and s.next.output = Success
8 }
9 }

10
11 pred Consistency{
12 Invariants
13 Liveness // another property is added to the input
14 }
15
16 check { Consistency } for 3 but exactly 9 State // verification

Listing 4.9: Checking for desirable behavior with Alloy

4.7 Using Alloy for Model Testing
It is possible to have a more model-based approach to exploring the DMDSL semantics in
Alloy. In this context, input test models can be specified, and the run command can be used
instead of check. As a result, this enables testing of the DMDSL specifications (as a transition
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system), for a given model(s) that satisfy some properties. The properties can be specified in
Alloy with predicates, where one (or more) of the following can be applied on a model:

• Explore the model only if it has properties (model_test_properties) such as a number
of entities and associations.

• Explore the model only if it includes a set of expected CRUD+A operations (model_test_traces):
for example, at least two successful deletion operations.

• Explore the model only if it corresponds to an expected final ("last") state with some
properties: for example, the final state should have at least 2 repositories and links.

The run command can be used to see if the conjunction of the Invariants and the model_under_test
leads to a valid instance of the model. Thus, the Alloy Analyzer can find test sequences that
satisfy all the conditions, and these sequences can be translated to function calls over the
generated code. The sequence also represents the expected behavior of the implementation,
and it can be translated into C++ code and executed on the implementation.

An example is given below:
1 pred model_under_test{
2 model_test_properties
3 model_test_traces
4 model_test_last_state
5 }
6
7 pred model_test_traces{
8 some s: State | s.operation = Create and s.next.output = Success
9 }

10
11 pred model_test_properties{
12 #Entity >= 1 and #Entity <= 4
13 #Association >= 1 and #Association <= 2
14 #Instance >= 1 and #Instance <= 5
15 #Link >= 1 and #Link <= 5
16
17 some p, q: Association | p.target = q.source
18 }
19
20 pred model_test_last_state{
21 #(last.instances) >= 5 // last state should have >4 instances
22 #(last.prev.links - last.links ) >= 1 // delete 1 at least link in

last state
23 }
24
25 pred Consistency{
26 Invariants
27 }
28
29 run { Consistency and model_under_test } for 4 but exactly 8 State

Listing 4.10: Model-supported testing to seek valid instances with Alloy

4.8 Conclusions
This chapter introduces the DMDSL specification given in Alloy. There are various advantages
of using Alloy: it can automatically explore models possible in the specification and generate
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test sequences (traces), counterexamples (in theory) are of a small context. The disadvantage
is that the transition system has to be modeled manually, furthermore the length of the
transitions must be specific and the generated counterexample must be manually examined
for every assertion.

Defining the invariants of repository consistency allows using the check{} command and veri-
fying that there is no state where the entity or association multiplicities are violated. By
defining a fact that constraints the transitions between states to be one of the CRUD+A
operations, this verification validates that the CRUD+A operations do not violate the repos-
itory consistency. Alternatively, it is also possible to define model instances that should be
tested with Alloy, and generate test sequences on the models that can in the future used for
model-based testing.
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Chapter 5

Results

The semantics of the DMDSL have been specified in Alloy. These specifications can now be
checked for correctness (as in Section 4.5.6). To test the specification, two approaches were
taken. First, an initial state was not forced, with the goal to find models where there is no
initial state: These are models that should be invalidated from code generation, by adding
static constraints. The results are presented in Section 5.1. Then, the CRUD+A operations
are verified, for which the initial state conditions (as in Sec 4.5.3) are enforced. Given the
valid initial state, the CRUD+A operations, and the definition of repository consistency, the
dynamic semantics can be validated. The results are given in Section 5.2. Experimentally,
it was derived that including the Update operation as a transition significantly increases
verification time. This is explained in Section 5.2.2. Finally, another disadvantage of Alloy
is explained in Section 5.2.3, documenting deadlocks found in bounded model checking with
Alloy - these are not deadlocks in the transition system semantics, but only in the bounded
exploration of Alloy. This highlights the awareness required by the Alloy user to get a relevant
model exploration results.

5.1 Models without an initial state

In this analysis, the DMDSL specification is not forced to have an initial state. This provides
insights into additional constraints to evaluate validity of models. Once the initial state can
be ensured valid, the dynamic semantics can be verified. This section presents models without
an initial state. Note that these are reported for v3.6.0 of the ASOME DMDSL.

5.1.1 Cyclicity of Associations

The ASOME v3.6.0 implementation prohibits the user from creating an association to the
same Entity, but does not prevent cycles like the one shown in Figure 5.1. This model has a
valid initial state with 0 instances, but there is no next state since no CRUD+A operation
can be done on this model. This is because the creation of the instance of Entity0 requires
exactly 1 instance of Entity1 to exist following Association0, but Entity1 requires an instance
of Entity0, following Association1.

Adding Formal Specifications To A Legacy Code Generator 49



5.1. MODELS WITHOUT AN INITIAL STATE

Figure 5.1: Cyclic relations in the implementation

Solution: The cyclicity detection in the DMDSL implementation should be extended to detect
cycles of length n.

5.1.2 Association Targets
Consider Figure 5.2. This counterexample has no valid initial state because the creation of
the instance of Entity1 requires exactly 1 instance of Entity2 to exist following the association
‘entity2’. However, Entity1 is Unconstructable, so for the considered DMDSL specifications
that exclude Realization semantics, it will never be possible to instantiate Entity1. Therefore,
it will never be possible to instantiate Entity0.

Figure 5.2: Association that is never realized

Solution: A new constraint may be provided: A target of an Association should always be
Constructable, if it has a minimum multiplicity of 0.

5.1.3 Non-causal associations
The model given below should be invalid because the initial state expects at least 1 instance
of Entity1 via constructor delegates, but Entity1 has a target Entity2 which has 0 instances
initially. Therefore, the initial state is invalid since it cannot satisfy the invariants for entity
multiplicity.

Figure 5.3: Invalid due to multiplicity

Solution: In the constructor delegates, it is made possible to create instances of any entity
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that is Constructable. Therefore, the initial state can have >0 instances for any entity that is
Constructable.

5.1.4 Miscellaneous Counterexamples
Some counterexamples were discovered during the understanding of the DMDSL semantics of
inheritance, without the formal specification.

Specialization-Association (cycle of length 2)

In the figure below, there is an association from Entity1 to Entity2. There is also an
association from Entity2 to Entity3. This model is so far valid, but consider the relation
that Entity3 is a child of Entity1, and inherits the association to Entity2. This is again a
cyclic model that the validation should reject.

Figure 5.4: Specialization relation creates cycles

Solution: The cyclicity detection has to be modified, to check for loops after the evaluation
all the inheritance relations.

Association to specialized (cycle of length 1)

In the figure below, there is an association from Entity1 to Entity2. There is also a spe-
cialization from Entity1 to Entity2, so Entity2 is specialized and inherits all associations of
Entity1. This introduces cyclicity so the model is invalid.

Figure 5.5: A cyclic association-specialization

Solution: The cyclicity detection has to be modified if specialization is taken into account.
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5.2 Verifying dynamic semantics (Valid Initial State)
For verification of the repository consistency and dynamic semantics of DMDSL, the DMDSL
specification is forced to have a valid initial state respecting the repository consistency. Given
the valid initial state, the goal is to check with Alloy if there are any models (and corresponding
CRUD traces) which lead to an invalid state. Finally, bounded verification using the
Alloy analyzer in this text does not find a violation of repository consistency
invariants. The analyzer reports the number of primary vars and clauses in the SAT formula
that it will validate, which in this case, is the repository consistency equations.

Experimental Setup

The experiments in Alloy are executed on a laptop device (Lenovo Yoga) with Intel i7-8500U
(2.0GHz base, 3.8GHz turbo), having 8GB of memory. The Alloy Analyzer executable runs
tests on 1-core, 2 threads. The settings in Alloy are: maximum memory = 3072MB, maximum
stack: 32768K, solver: SAT4J, Skolem depth: 2.

5.2.1 CRUD Traces: Correctness
It was concluded by the Alloy check command that the intended specifications of the Create,
Add, Update, and Delete actions are correct with respect to repository consistency. That is,
given a valid initial state, carrying out any sequence of CRUD+A actions as defined in Alloy,
does not violate the repository consistency. This can be claimed with a level of confidence
that the testing is in a bounded state space.

In the table below, the bounds and the verification time for the Alloy experiments are presen-
ted. Evidently, increases in the bounds and state space explosion significantly increase the
verification time. This shows the lack of scalability in checking large models with Alloy.

Signatures bound State/Traces bound Primary Vars Clauses Verification time
3 6 708 129376 1132.98 seconds (19 minutes)
3 7 821 146211 6347.21 seconds (105 minutes)
3 8 946 163132 321 minutes
4 6 956 232322 92 minutes
4 7 1098 262616 9 hours
4 8 1256 293770 >12 hours

Table 5.1: Verification time for DMDSL in Alloy - CRUD+A operations

The lack of violations shows that the formulated well-formedness constraints ensure consistent
repository behavior at runtime. Given the correctness of the semantics, the specifications and
the CRUD+A operations defined in Alloy give the language engineers insights to the required
preconditions and semantics in the DMDSL implementation, so that the implementation guar-
antees repository consistency.

5.2.2 Traces without the Update operation
It was found by experiments that including the Update operation as a possible transition in
the traces significantly increased the time in verification. The model cannot be verified if the
Create or Add operation is removed as they are crucial. However, Update can be removed
from verification as it modifies an existing instance and this can be repeated ad infinitum.
The Delete operation also has an interesting case where the Alloy Analyzer finds sequences of
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create, add, and delete of the same instance as long as possible, thus both these operations
increase the model verification time significantly. To check the Update operation for correct-
ness, the Delete operation can be removed as a possible transition. After the Update operation
is verified to produce no counterexamples, it is removed as a possible transition so that the
Delete operation can be included, as it is much more significant to the specifications. This
step is also grounded in reality, since the recommended modeling practice for DMDSL users
is to use immutable entities wherever possible (thus the Update operation is not encountered
often).

Intuition and experiments show that it is likely due to the update operation that the CRUD+A
operations take significantly longer to verify for increases the time because of the repeatable
nature of an update. For example, refer the figure below. In State5, the link Link1, pointing
from source Instance1, has been existing. In State6, the Link1 is replaced with Link0 by an
update of instance1, i.e. the association gets updated. In State7, the link can be updated
to Link1 again and this can be repeated for the rest of the transitions.
Regardless of the contents of the links, such repeatable behavior may be causing the ana-
lyzer to take significantly longer, compared to Create-Add-Delete. Naturally, it also causes
Create-Add1Update-Delete to take significantly longer to verify, in fact the checker has to be
terminated after 12 hours for a small bound of 4 with 8 States (Table 5.1).

Figure 5.6: Update repeating sequences

Therefore, the specification is tested without the Update operation. In this case, only the
Create-Add-Delete operations are possible and the following verification times are recorded
corresponding to the bounds.
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Signatures bound State length Primary Variables Clauses Verification time
3 6 660 79760 16 minutes
3 7 773 90920 36 minutes
3 8 946 163132 58 minutes
4 6 956 232322 124 minutes
4 7 1098 262616 298 minutes
4 8 1256 261523 448 minutes

Table 5.2: Verification time for DMDSL in Alloy - Create/Add/Delete operations

As a direct comparison, Table 5.3 below shows the time difference in adding the Update and
Delete transitions.

Traces Signatures Bound State Space Primary Vars Clauses Verification Time
Create-Add-Delete 4 8 1256 264233 17,924.82 sec (5 hours)
Create-Add-Update 4 8 1256 289276 26,912.370 sec (7.5 hours)

Create-Add-Update-Delete 4 8 1256 297770 >12 hours (terminated)

Table 5.3: Comparing the CAD-CAU-CAUD operations in traces

5.2.3 Deadlock scenarios in Alloy with bounded verification
In some situations, it is possible to encounter deadlocks, especially so in bounded model
checking. If the traces include only the create-add operations then it is easy to encounter a
deadlock: a situation where a valid state is reached, but no successful create-add operation
is possible. Consider the bounded state space of 3. Therefore, the 3 instances can exist by
Create, and stored to repositories by Add. This is 6 operations. With an empty initial state,
this can allow for at most 7 states. If the Alloy analyzer is asked for a state space of 8, the
following can be seen:

Figure 5.7: Possibility of deadlocks in bounded checking

The verification for a length of 8 returns immediately and is a logical error not reported by

54 Adding Formal Specifications To A Legacy Code Generator



5.3. CONCLUSIONS AND INSIGHTS

Alloy, which the user needs to spot (or specify as a predicate in Alloy, i.e. deadlock detection).
Here, the Analyzer locates a deadlock after the 7th state: No more creations or additions are
possible. In this context, the initial state has empty contents, thus, once the 3 instances
have been created and stored in States 1-7, there is no possible operation to make into in the
last (8th) state, as deleting is not a possible transition, and the preconditions for successful
creation are not satisfied.

5.3 Conclusions and insights
The experimentation with Alloy and examining the counterexamples is a thorough and thought-
provoking process. Such an exercise forces the language developers to criticize and reflect on
the language: the formal syntax of models, well-formedness constraints, and the dynamic
semantics. The analysis coerces language developers to interpret counter-intuitive model
examples and traces generated by a formal verification tool, resulting in refinement of the
language semantics and fewer bugs.

In terms of testing DMDSL with Alloy, the issue of scalability is seen early. While there are
factors (hardware capability, other processes taking up resources, low number of samples) that
affect the confidence on the verification time with Alloy, the exponential increase in time taken
with the size of the transition system is evidence to the limited scalability of Alloy for verifying
dynamic semantics. Furthermore, increasing the bound of the signatures (from 3 to 4) already
introduces a verification time of >12 hours. The results from the experiments on DMDSL
specifications show that the CRUD+A operations have been specified correctly in Alloy - with
confidence in a bounded state space. The DMDSL implementation can manually be compared
to the Alloy specification by the language engineers, so that the implementation can conform
to the formal specification and thus be guaranteed to ensure the repository consistency.

In the real-world, there is a trade-off between man-hours and machine-hours invested in testing
a DSL. The DSL engineers involved in this text, agree that letting a formal verification tool
check the language specifications for correctness may cost machine-hours but as a result, man-
hours can be saved which is more valuable. Invalid models that appear later when the DSL
is tested manually, can already be found early-on in formal verification. Indeed, the language
development team would require a formal methods expert, but the automated verification of
the language specifications produces more value compared invested man-hours in testing. The
added value is reflection and criticism of the DSL semantics, and the early detection of invalid
models leading to confidence in the well-formedness constraints.
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Discussion

6.1 Related Work

There is work related to model-based testing of code generators in industry. Frenken et al. [9]
in a team of 3, focuses on verification of a DSL by using MBT and specifying the DSL as a
labeled transition system. In their work, the formal specifications of the language OIL at Océ
are translated in mCRL2 [12], and tested with JTorX [2]. The language models the control
behavior and transitions between states, i.e. it is a transition-based specification. Their work
uses an input-output transition system (IOTS) as proposed by Tretmans [24], that introduced
the input-output conformance (ioco) theory for model-based testing. An adapter converts the
MBT traces to C++ logic, and executes against the C++ implementation. The works of
Frenken and Tretmans were on a transition-based spec for a given DSL model, (and not on
finding invalid models).

Sijtema et al. [21] presents an experience of formal methods engineering in the industry, where
they define a model-based specification and testing of a software bus implementation. In their
work, the implementation is developed along with the formal specification in an Agile setting.
They conclude that this way of developing leads to fewer bugs in the implementation. They
specify the model in mCRL2 and apply model-based testing with JTorX. They report that
MBT is more comprehensive and discovers bugs that are not seen in conventional testing. Ad-
ditionally, model-checking reports that MBT can still be less optimized and even incomplete,
if requirements pertaining to bad-weather behavior (exceptions, unexpected inputs, etc.) are
missing. They report that adding model-checking is expensive in terms of time but leads to
almost 100% model coverage.

In this text, MBT was not applied although it was one of the goals of the project. The focus
was on formalizing the DMDSL semantics and checking some of its properties: namely, the
repository consistency, well-formedness constraints and the CRUD+A operations. It has been
shown how Alloy can be used for generating test input models and test traces. This is done
not in an exhaustive way like the MBT tools in related literature, and is a future work from
this project. Proving the consistency of the repositories given the formal specification can be
checked with a theorem prover but this require a different tool such as Z3 [6].

The work of Cunha et al. [4] provides insights into translating UML diagrams annotated with

56 Adding Formal Specifications To A Legacy Code Generator



6.2. FUTURE DIRECTIONS

OCL into Alloy specifications for verification. Shah et al. [20] as well introduces a model trans-
formation from Alloy instances to UML class diagrams with the UML2Alloy transformation.
This gives insights into translating static constraints in Alloy to OCL. Alloy has also been
used in practice, for supporting the development of domain-specific languages. Gammaitoni
et al. [10] illustrates the usage of Lightning and the F-Alloy model transformation language
(introduced by Lightning) to develop a domain specific language. They also present how using
Alloy for automatic analysis of the language allows the language developers to incrementally
validate it and get visual feedback of the language. The work of Erata et al. [8] introduces
AlloyInEcore, a tool to specify metamodels with their static semantics to facilitate automated
formal reasoning on models. Erata et al. [8] states that AlloyInEcore allows the user to specify
meta-models with their static semantics and automatically detect inconsistent models as well
as complete partial models. They apply Alloy on industrial use cases (DSL in automotive
domain), but on the static semantics of models. Furthermore, they conclude that verification
of static semantics With Alloy is viable, however the verification of dynamic semantics is left
as a future work, which is the direction that this thesis approaches.

6.2 Future Directions
This thesis aimed at introducing a subset of the formal specifications of the DMDSL static and
dynamic semantics, and developing a bounded-model checking solution for it with the Alloy
specification language. With the complete formal specifications of DMDSL, it is possible to
comprehensively assert the correctness of the implementation. However, for this purpose Alloy
may not be suited as it is evidently does not scale well for dynamic semantics of industrial
complexity use cases. More powerful software like mCRL2 might be beneficial. With this
direction, the complete formal specification of DMDSL can be specified and verified, which
would a beneficial trade-off for reduced man-hours against machine-hours.

From the Alloy Java API, it is possible to capture the information generated by the Analyzer.
In this case the required information would be the traces between states and the entities/as-
sociations. This can be used to introduce a more model-based testing approach with Alloy,
and this API can be useful to pass inputs to an adapter that can translate the CRUD traces
into C++ code.
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Conclusions

The DMDSL developed by Altran and ASML is a mature, and complex industrial use case.
The ASOME software has been in use since 2015 and the languages in it have evolved to
support new features. Because the ASOME is described informally in text and diagrams, its
precise semantics are unknown. Over the years, language developers have manually tested
ASOME and added well-formedness constraints to invalidate models that have inconsistent
behavior in the repository. From a software engineering perspective, the correctness of the
ASOME semantics is not guaranteed and requires verification.

This text helps in understanding the relevance of incorporating formal methods during the
development of languages. The DMDSL is a language in the ASOME software. It has static
and dynamic semantics that introduce data objects like entities having properties and re-
lations (associations) between them. The entity data objects are stored in repositories, to
commit them to memory. The entities and associations also have multiplicities which should
be respected. In the dynamic semantics, the entities and associations are instantiated by the
CRUD+A operations. Finally, the goal is to verify that the multiplicities are respected in
the dynamic semantics. This thesis addresses this by introducing the formal specification for
a subset of the DMDSL semantics (entities and associations); and it verifies the correctness
of the dynamic semantics (CRUD+A operations) in terms of the repository consistency. The
dynamic semantics is defined as a transition system where the states capture the content of
the repositories, and the transitions are the requested CRUD+A operations.

The static semantics are introduced as sets in the formal specification. Well-formedness con-
straints are used to define valid contents of the sets, and reject invalid models. The specific-
ation requires modeling the contents of a state - the set of created instances, set of instances
stored in repository, and set of links between existing instances. The dynamic semantics are
introduced that allow CRUD+A operations between neighboring states. The definition of an
invariant expresses the criteria for correctness: the repository consistency. These invariants
define that in every state, the entity and association multiplicities should be respected.

By using Alloy as a verification tool, this work explores the specifications of the DMDSL for
the repository consistency. A number of corner cases are uncovered with no initial state, and
no instances or links can be created in these transition systems. Static constraints are defined
so that a model should always be well-formed and possible to initialize. To verify the dynamic
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semantics (CRUD+A operations), constraints are introduced on the initial state. Through
Alloy, it was verified that the intended specifications of the CRUD+A operations are correct
w.r.t. the repository consistency.

A few limitations are also encountered in using the Alloy specification language. Of course,
SAT solving is a well-known undecidable problem, consequently larger state spaces cause Alloy
to suffer from state space explosion and limited scalability. Troubleshooting counterexamples
for complex models is difficult as it is done by manually inspecting predicates (although, using
the Alloy Java API can simplify troubleshooting). Significantly, the bounded model-finding
also requires an exact number of states in the transition system - considering the limited
scalability that the experiments show, the bounds for model finding have to be carefully
selected.

On the other hand, with the small state hypothesis, using Alloy provides higher precision in
testing for a limited investment in time and testing effort. Developing the intended formal
DMDSL specification, along with its implementation, would also mean initially a simpler
formal model that co-evolves with the implementation. In the context of Alloy, this would
likely still lead to a limited scalability situation very early. However, using a formal methods
way of developing leads to better quality software, as supported by literature [8–10,21]. In this
context, using formal methods for verification of DMDSL during its development would cause
the language developers to reflect on the semantics and handle counter-intuitive examples
early on, rather than discovering issues while testing the generated code.

7.1 Answers to the research questions
RQ1. How should the semantics of DMDSL be precisely specified, considering the informally
defined semantics?

Based on discussions with the language developers and informal references, the semantics of
the legacy code generator were formally specified. With such a process, the formal specific-
ations can be noted down and then specified in some tool. Simply noting down the formal
specification based on discussions already introduced new insights and various questions about
the intended semantics of DMDSL and the semantics in the implementation. In the general
perspective of software engineering, development of the formal specification along with the
implementation can allow for co-evolution of both, and tool-based verification can provide
benefits of automated model exploration and reduced man-hours in testing, while improving
the precision of the language semantics.

RQ2. What is a suitable tool for formal verification of DMDSL semantics, and what is re-
quired?

There are various tools suited for formal verification - Alloy, mCRL2, Event-B, Z3-prover
are some examples. The requirements are that, based on set theory and predicate logic, the
semantics of DMDSL can be specified and automatically explored. Additionally, it should be
possible to define a transition system. The contents of a state are significant and should be
defined, as well as the changes in the contents should only be possible by transitions between
distinct states. Alloy allows specifying parametric transitions, so that CRUD+A operations on
arbitrary objects is possible. Alloy satisfies most requirements, however the transition system
must be specified manually (as a positive, the model can be explored automatically). Alloy
has also been used in industrial context for developing and verifying DSLs, so it seems to be a
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suitable candidate to examine for this work. Thus, based on the requirements, Alloy is selected
as a tool for verification of DMDSL specifications. The translation of formal specifications
and CRUD operations into Alloy syntax is fairly straightforward and allows for verifying the
correctness of the CRUD+A operations in terms of repository consistency. Alloy also supports
deriving test cases for the code generator in two ways: (1) by automatically generating input
models for DMDSL (Section 4.5.6), and (2) by creating a sequence of transitions that can be
translated to C++ calls against the generated code (Section 4.7). This however, is different
from the way dedicated MBT tools function.

RQ3. What are the benefits and disadvantages of a formal verification approach in a real-world
industrial context like DMDSL?

Using a specification tool like Alloy introduces formal verification in the development cycle,
and enables the language developers to see cases of counter-intuitive models that the imple-
mentation might be considering valid. Often the counterexamples are small and can point to
fixable flaws in the semantics, such as cyclicity or multiplicity errors as seen in this work, or
by simply adding well-formedness constraints that prevent the model from validating.

Alloy is free and open-source, and has a readable but tricky syntax to adopt, translating from
set theory. Alloy usually provides small counterexamples with the small scope hypothesis.
The benefits of using Alloy are that by assuming a valid initial state the specified CRUD+A
operations can be proven correct. Alternatively, if an initial state is not forced, Alloy can
even produce counterexample models that cannot be initialized. Because of its small-scope
hypothesis, the counterexamples are often small and can be easily understood by examining
them. Therefore, using an automated model finding approach with Alloy allows trading off
machine-hours in favor of reduced man-hours.

The disadvantages of Alloy are limited scalability, limited presentation and visualization of the
assertions, and furthermore minor implementation or semantics-related issues in Alloy make
it tricky to master. Finally, the work in this text does conclude that while Alloy struggles in
verifying large state spaces of complex dynamic semantics (i.e. transition systems and multiple
invariants), a more suited tool for modeling transition systems can be useful to extend the
DMDSL specification and verification of dynamic semantics.

Experiences with learning Alloy: The Alloy specification language is easy to learn and start
using, especially for exploration of static models. However, it has a learning curve that,
with the hurdle of manually modeling transition systems, can be steep. (The curve might
have seemed steeper than normal because the author was struggled with formal spec and
declarative reasoning.) The tutorials in the Alloy documentation helped in adapting the
syntax and transition systems, and modeling the DMDSL specification allowed the author to
understand the intricacies of Alloy.

60 Adding Formal Specifications To A Legacy Code Generator



Bibliography

[1] Jean-Raymond Abrial. Modeling in Event-B: system and software engineering. Cambridge
University Press, 2010. 34, 36

[2] Axel Belinfante. Jtorx: A tool for on-line model-driven test derivation and execution. In
International Conference on Tools and Algorithms for the Construction and Analysis of
Systems, pages 266–270. Springer, 2010. 56

[3] Jesús Sánchez Cuadrado and Jesús García Molina. Building domain-specific languages
for model-driven development. IEEE Software, 24(5):48–55, Sep. 2007. 2

[4] Alcino Cunha, Ana Garis, and Daniel Riesco. Translating between alloy specifications
and uml class diagrams annotated with ocl. Software & Systems Modeling, 14(1):5–25,
2015. 56

[5] Krzysztof Czarnecki and Simon Helsen. Classification of model transformation ap-
proaches. In Proceedings of the 2nd OOPSLA Workshop on Generative Techniques in
the Context of the Model Driven Architecture, volume 45, pages 1–17. USA, 2003. 2

[6] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In International
conference on Tools and Algorithms for the Construction and Analysis of Systems, pages
337–340. Springer, 2008. 34, 56

[7] Doron Drusinsky. Modeling and verification using UML statecharts: a working guide to
reactive system design, Runtime Monitoring and Execution-based Model Checking. El-
sevier, 2011. 3

[8] Ferhat Erata, Arda Goknil, Ivan Kurtev, and Bedir Tekinerdogan. Alloyinecore: Embed-
ding of first-order relational logic into meta-object facility for automated model reasoning.
In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE
2018, page 920–923. Association for Computing Machinery, 2018. 57, 59

[9] Mark Frenken, Tim AC Willemse, Louis van Gool Océ, Olav Bunte, and Jasper Denkers.
Code generation and model-based testing in context of oil. Master’s thesis, Technische
Universiteit Eindhoven, 2019. 56, 59

[10] Loïc Gammaitoni, Pierre Kelsen, and Christian Glodt. Designing languages using light-
ning. In Proceedings of the 2015 ACM SIGPLAN International Conference on Software
Language Engineering, SLE 2015, page 77–82, New York, NY, USA, 2015. Association
for Computing Machinery. 57, 59

Adding Formal Specifications To A Legacy Code Generator 61



BIBLIOGRAPHY

[11] Richard C Gronback. Eclipse modeling project: a domain-specific language (DSL) toolkit.
Pearson Education, 2009. 2

[12] Jan Friso Groote, Aad Mathijssen, Michel Reniers, Yaroslav Usenko, and Muck VanWeer-
denburg. The formal specification language mcrl2. In Dagstuhl Seminar Proceedings.
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2007. 34, 36, 56

[13] David Harel. Statecharts: A visual formalism for complex systems. Science of computer
programming, 8(3):231–274, 1987. 3

[14] John Hutchinson, Mark Rouncefield, and JonWhittle. Model-driven engineering practices
in industry. In Proceedings of the 33rd International Conference on Software Engineering,
pages 633–642, 2011. 2

[15] Daniel Jackson. Software Abstractions: logic, language, and analysis. MIT press, 2012.
34, 35

[16] Tom Mens and Pieter Van Gorp. A taxonomy of model transformation. Electronic Notes
in Theoretical Computer Science, 152:125–142, 2006. Proceedings of the International
Workshop on Graph and Model Transformation (GraMoT 2005). 2

[17] Dale A Miller and Gopalan Nadathur. Higher-order logic programming. In International
Conference on Logic Programming, pages 448–462. Springer, 1986. 39

[18] Rocco Nicola and Frits Vaandrager. Action versus state based logics for transition sys-
tems. In Semantics of Systems of Concurrent Processes, pages 407–419. Springer Berlin
Heidelberg, 1990. 3

[19] Douglas C Schmidt. Model-driven engineering. Computer-IEEE Computer Society,
39(2):25, 2006. 2

[20] Seyyed MA Shah, Kyriakos Anastasakis, and Behzad Bordbar. From uml to alloy and
back again. In International Conference on Model Driven Engineering Languages and
Systems, pages 158–171. Springer, 2009. 57

[21] Marten Sijtema, Axel Belinfante, MIA Stoelinga, and Lawrence Marinelli. Experiences
with formal engineering: Model-based specification, implementation and testing of a
software bus at neopost. Science of computer programming, 80:188–209, 2014. 3, 56, 59

[22] Terje Sivertsen. State-based and transition-based specifications, Feb 2001. 3

[23] Ulyana Tikhonova. Reusable specification templates for defining dynamic semantics of
DSLs. Software & Systems Modeling, 18(1):691–720, March 2017. 2

[24] Jan Tretmans. Model based testing with labelled transition systems. In Formal methods
and testing, pages 1–38. Springer, 2008. 3, 43, 56

[25] Axel van Lamsweerde. Formal specification. In Proceedings of the conference on The
future of Software engineering - ICSE. ACM Press, 2000. 3

[26] Jos B Warmer and Anneke G Kleppe. The object constraint language: getting your models
ready for MDA. Addison-Wesley Professional, 2003. 7

[27] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model checking tla+ specifications.

62 Adding Formal Specifications To A Legacy Code Generator



BIBLIOGRAPHY

In Advanced Research Working Conference on Correct Hardware Design and Verification
Methods, pages 54–66. Springer, 1999. 34, 36

Adding Formal Specifications To A Legacy Code Generator 63



Appendix A

DMDSL specification in Alloy

A.1 Create

1 pred successful_create[s: State , s’: State , e: Entity , targets: set Link]
2 {
3 e.constructability = True
4 #( instancesOfType[s.instances , e]) < e.multiplicity.maximum
5 targets.link_type = outgoing_associations[e]
6
7 some new : Instance {
8 new.type = e
9 new not in s.instances

10
11 all p: targets | p.link_source = new and p.link_target in s.instances
12
13 // validate association target multiplicity
14 all A: outgoing_associations[e] {
15
16 // validate target multiplicity
17 let num_links_at_source = outgoingLinksOfType[targets , new , A]
18 {
19 #( num_links_at_source) >= A.targetProperty.multiplicity.

minimum
20 #( num_links_at_source) <= A.targetProperty.multiplicity.

maximum
21 }
22
23 // validate source multiplicity for all target instances
24 all target_instance: instancesOfType[s.instances , A.target]
25 {
26 let target_existing_links = #incomingLinksOfType[s.links , A,

target_instance]
27 {
28 let target_new_links = #incomingLinksOfType[targets , A,

target_instance]
29 {
30 plus[# target_existing_links , #target_new_links] <= A.

sourceProperty.multiplicity.maximum
31 }
32 }
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33 }
34 }
35 // define the contents of next state
36 s’. instances = s.instances + new
37 s’. repositories = s.repositories
38 s’.links = s.links + targets
39 }

Listing A.1: The Create transition as a predicate in Alloy

A.2 Update
1 pred successful_update[s: State , s’: State , i_to_update: Instance , new_links:

set Link] {
2 i_to_update in s.repositories
3 i_to_update.type.mutability = True
4
5 one new_links.link_type and new_links.link_type in outgoing_associations[

i_to_update.type]
6
7 all p: new_links | p.link_source = i_to_update and p.link_target in s.

repositories
8
9 // ensure association target multiplicity will hold

10 #( new_links) >= new_links.link_type.targetProperty.multiplicity.minimum
11 #( new_links) <= new_links.link_type.targetProperty.multiplicity.maximum
12
13 // ensure association source multiplicity will hold
14 all T: new_links.link_target
15 {
16 let new_links_at_target =
17 plus[ #( incomingLinksOfType[s.links , new_links.link_type , T]),
18 #( incomingLinksOfType[new_links , new_links.link_type , T])]
19 {
20 #( new_links_at_target) <= new_links.link_type.sourceProperty.

multiplicity.maximum
21 }
22 }
23
24 s’.links = s.links
25 - outgoingLinksOfType[s.links , i_to_update , new_links.link_type]
26 + new_links
27 s’. instances = s.instances
28 s’. repositories = s.repositories
29
30 }

Listing A.2: The Update transition as a predicate in Alloy

A.3 Delete
1 pred successful_delete[s: State , s’: State , x: Instance ] {
2
3 x in s.repositories and x.type.deleteability = True
4
5 #( instancesOfType[s.repositories , x.type]) > x.type.multiplicity.minimum
6
7 all instance_to_delete: markedForDeletion[s, x] {
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A.3. DELETE

8 instance_to_delete.type.deleteability = True
9 }

10
11 all del_links: toBeDeletedLinks[s, x] {
12 del_links.link_source.type.deleteability = True or del_links.

link_source.type.mutability = True
13 }
14
15 all e: Entity {
16 #instancesOfType [{s.instances - markedForDeletion[s, x]}, e] >= e.

multiplicity.minimum
17 }
18 all a: Association {
19 all src : instancesOfType[s.instances - markedForDeletion[s, x], a.

source]
20 {
21 let rem_links_src = outgoingLinksOfType[s.links - toBeDeletedLinks

[s, x], src , a]
22 {
23 #( rem_links_src) >= a.targetProperty.multiplicity.minimum
24 }
25 }
26 }
27
28
29 // actions
30 s’.links = s.links - toBeDeletedLinks[s, x]
31 s’. repositories = s.repositories - markedForDeletion[s, x]
32 s’. instances = s.instances - markedForDeletion[s, x]

Listing A.3: The Delete transition as a predicate in Alloy
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