
 Eindhoven University of Technology

MASTER

Robustness of discriminative and generative classifiers

Meeuwisse, Thijs P.

Award date:
2021

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/fefeb17a-0b91-4de3-a768-12f083e6e93d

Department of Mathematics
and Computer Science
Uncertainty in Artificial
Intelligence Group

master’s thesis

Robustness of discriminative
and generative classifiers
Thijs P. Meeuwisse

Supervisors: Cassio de Campos & Alvaro Correia

eindhoven, december 2021

So I appear to be wiser, at least than him, in just this
one small respect: that when I don’t know things, I don’t
think that I do either.

— Plato, Apology 21d

Abstract

As machine learning (ML) is becoming more ubiquitous, the demands
placed on ML models are increasing too. We expect models to be
robust, that is, insensitive to small irrelevant perturbations in the
input. If models are not robust, an adversary can alter the model
output to his advantage by perturbing the input. These perturbations
are typically undetectable by humans.

In classification problems, we can either use a discriminative or
generative approach. In the generative approach, the model captures
the joint distribution of input and class. Interest in generative models
is growing, since they are more powerful than discriminative models.
For instance, they can fill in missing data and generate new examples.
In this project, I investigate if generative models are more robust than
discriminative models. I consider robustness to corruptions in the
input and robustness to adversarial attacks. In the latter, an adversary
deliberately perturbs the input. The experiments are performed using
the formalism of probabilistic circuits (PCs), which can be trained
both discriminatively and generatively. This makes them suitable for
carrying out comparisons. The first results indicate that generative
models are more robust than discriminative models, but only if the
model was trained on a sufficient amount of data. The observation
that differences in robustness between discriminative and generative
models only become apparent as sample size grows, is novel.

Acknowledgements

This project would not have come to fruition if it wasn’t for the
tremendous support I received from the people around me. I would
like to thank my supervisors, Cassio de Campos and Alvaro Correia,
for their valuable insights and feedback on my work. Without your
help, I would have been at a complete loss. I would like to thank
my friends, who were incredibly supportive and provided the much
needed distractions. I am also grateful to my housemates, who on
many days during these confusing times were the only people I saw.
They reminded me that there is more to life than writing a thesis.

Graduating while in lockdown was not easy for me. Stripped
down of things to look forward to, I sometimes lost the motivation to
continue with the project. Above all, I would like to thank my parents,
Mieke and Annet, who were always there for me when I was having
a hard time. Without your support, not just during the project, but
my whole lifetime, I would not have been where I am now.

Thijs Meeuwisse
5 December 2021

Contents

List of figures 11

List of tables 13

Notational conventions 15

1 Introduction 17
1.1 Motivation 17

1.2 Research questions 20

1.3 Outline 21

2 Probabilistic circuits 23
2.1 What is a probabilistic circuit? 24

2.2 Probabilistic circuit structures 30

2.3 Classification with probabilistic circuits 32

2.4 Training a probabilistic circuit 34

3 Robustness 37
3.1 Robustness to corruptions 37

3.2 Adversarial attacks 38

3.3 Attack algorithms 41

3.4 Measuring adversarial robustness 43

4 Experimental setup 45
4.1 Datasets 45

4.2 Models 46

4.3 Corruptions 49

4.4 Attacks 49

4.5 Practicalities 50

4.6 Summary of independent variables 50

5 Results 53
5.1 Corruptions 53

5.2 Attacks and adversarial distance 55

6 Conclusions and discussion 59
6.1 Main conclusions 59

6.2 Difficulties 60

6.3 Limitations 61

6.4 Future work 61

10

References 65

Glossary 69

A Model translation table 71

B Models on image data 73

C Models on empirical tabular data 81

D Models on synthetic tabular data 83

E Accuracy on noisy datasets 85

F Adversarial distance for empirical tabular datasets 87

11

List of figures

1.1 Robustness in autonomous driving 18

1.2 Discriminative vs. generative modelling 19

2.1 Example PC 24

2.2 Latent variable interpretation of sum node 24

2.3 Einsum operations 29

2.4 Poon–Domingos structure 30

2.5 Convolutional SPN 30

2.6 DGC-SPN 31

2.7 RAT-SPN 32

2.8 Class-selective SPN 33

3.1 Corruptions in MNIST-C 38

3.2 An adversarial example 39

3.3 First order vs. zeroth order optimisation 43

5.1 Relative classification accuracy on noisy data 53

5.2 Classification accuracy on MNIST-C 54

5.3 Distribution of adversarial accuracy 55

5.4 Adversarial MNIST examples 55

5.5 Adversarial distance for image data 56

5.6 Distribution of adversarial distances 56

5.7 Adversarial distance for tabular data 57

5.8 Adversarial distance for synthetic data 58

E.1 Absolute classification accuracy on noisy data 85

13

List of tables

4.1 Non-synthetic datasets 45

4.2 Configurations for synthetic datasets 46

4.3 Models for image data 47

4.4 Independent variables 51

5.1 Adversarial distance for tabular datasets 56

15

Notational conventions

• Events are labeled with capital letters, e.g. A, B, C.
• A random variable (RV) is capital X and takes values small x. The

connection between values and events: ‘X = x’ is the event that X
takes the value x.

• An indexed set of random variables (X1, X2, . . .) is bold capital X
and takes values small bold x. The connection between values and
events: ‘X = x’ is the event that X takes the value x.

• The random variables and assignments within a set are indexed
with a subscript, e.g. Xi and xi.

• The probability of an event is capital P(A).
• For conciseness, P(X = x) is shortened to P(x), if this does not

lead to ambiguity.
• The domain/state space of a random variable X is denoted as

val(X).
• The state space val(X) of a set of n random variables X consists of

all possible states val(X1)× . . .× val(Xn)

These conventions are adapted from Orloff and Bloom, 2014 and

Y. Choi et al., 2020, p. 1.

introduction 17

1
Introduction

1.1 Motivation

Humans perceive differently than machines. If we see an image, and
it is perturbed by noise, we are quite capable of ignoring the noise, as
long as the signal to noise ratio is not too bad. Machines on the other
hand may have great difficulty in drawing the right conclusions under
a wide range of conditions; we say that their methods of inference are
not robust. In other words, we can easily fool the machine.

Perceptual tasks, such as vision and auditory perception, are not
the only tasks prone to manipulation. Other tasks, such as inference
from tabular data, can be manipulated as well, in ways that fool the
machine—but not the human.

Ideally, we would want to understand the phenomenology of the
machine. With this I mean: we would like to understand how the
machine experiences the data it is fed. Unfortunately, we will never be
able to know what it is like to be a bot.1 What we can do however, 1 With a nod to Thomas Nagel, who

wrote the seminal paper ‘What Is It
Like to Be a Bat?’ (1974).

is try to make the systems we use more robust, so that for practical
purposes, the machine performance is comparable to that of humans.

Robustness in machine learning (ML) is important for two reasons.
First of all, we would like models to perform well under sub-optimal
conditions. Think of situations where the input data is noisy. It is
undesirable if machine learning models are very sensitive to small
perturbations in the input data, because these perturbations are mean-
ingless to a human observer, and should be meaningless to the model
too. Secondly, the lack of robustness can be exploited by an adversary.
In adversarial attacks, a very small variation in the input leads to a
completely different outcome. By attacking a model, the objectives of
the model can be compromised. For instance, if a model designed for
spam detection is attacked, it may no longer be able to detect spam.

There are many real-world situations that show the importance
of robust models. As an example, consider the case of autonomous
driving. An autonomous car should be able to learn about its envir-
onment in order to drive safely. This includes recognising traffic signs
and road markings. Eykholt et al. (2018) succeeded in physically per-
turbing traffic signs, so that the computer vision model misclassified
the signs. Figure 1.1a displays an example where the authors have

18 robustness of discriminative and generative classifiers

(a) (b)

Figure 1.1: Illustrations of importance
of robustness in autonomous driving.
(a) Left: a stop sign sprayed with real
graffiti. Right: a physical adversarial
perturbation applied to a stop sign that
mimics graffiti. From Eykholt et al.,
2018, p. 2.
(b) ‘Autonomous Trap 001’, an art
project by James Bridle. From Mufson,
2017.

successfully introduced an adversarial perturbation to a traffic sign.
While the perturbation would not yield suspicion with the human
operator, the car can no longer interpret the stop sign, which can
lead to dangerous situations. Artist James Bridle has created a pro-
ject (see figure 1.1b) in which a car is trapped inside road markings.
Although the car is not an actual self-driving vehicle, the presented
image speaks volumes: by modifying the built environment, someone
with nefarious intent can fool machines in ways that humans would
never be fooled.

1.1.1 The classification problem

The example presented in the previous section is an instance of the
classification problem. It can be defined as follows:

Definition 1.1 (Classification). Classification is the problem of identi-
fying which of a set of categories an observation belongs to.

The categories are commonly called ‘classes’. The simplest scenario
is binary classification. In this scenario, there are two classes and an
observation always belongs to a single class. We can however extend
the problem to multiclass settings, where there are multiple classes.
An observation is then assigned to one of several classes. The problem
can be extended further by allowing an observation to be assigned
to multiple classes at the same time. We then speak of multilabel
classification.

The classification problem is common in ML, and in the remainder
of this thesis, this is the problem I focus on. The toolkit of classification
algorithms that have been developed is large. I will not try to give
an overview of all classification methods, but I will pick out two and
discuss their most important properties.

First there is naive Bayes, which is a simple version of the (much
larger) class of Bayesian network (BN) models. In this approach,
each explanatory variable of the observation—also called ‘feature’ in
machine learning—is treated as independent from all other explan-
atory variables. For an instance x = (x1, . . . , xn), the model assigns a
probability

P(Yk | X = x)

introduction 19

for each of the K classes Yk, with k = 1, . . . , K. By assuming independ-
ence of the features, and using Bayes rule, the problem can be greatly
simplified to ∝ indicates proportionality. In order to

get the actual probability, we would
need a scaling factor. But for the
purpose of classification the actual
probabilities are not that important;
only the relative differences are.

P(Yk | x1, . . . , xn) ∝ P(Yk)
n

∏
i=1

P(xi | Yk).

The naive Bayes model is performant and highly explainable. A prob-
lem however is its limited expressiveness. Not every probabilistic dis-
tribution can be encoded by a naive Bayes model.

Another classification method is by using artificial neural networks
(ANNs). Neural networks are universal approximators.2 This means 2 Cybenko, 1989.

that in principle, they can model any distribution. This is an enormous
advantage over methods like naive Bayes. The advantage comes at a
price, though: ANNs are very hard to interpret. We need to develop
elaborate methods in order to explain why a neural network came to
certain conclusion. Methods like ANNs exhibit deep opacity, because
their processes are opaque not just to laypeople, but to experts as
well.3 3 Müller, 2021.

1.1.2 Generative and discriminative models

There are two main approaches to the classification problem: the
generative approach and the discriminative approach. In this section, I
will explain these approaches and discuss their properties.

Classifiers like ANNs use the discriminative approach. In the con-
text of classification, this means that they aim to learn a direct map
from input X to a class Yk.4 In other words: the conditional distribu- 4 Ng and Jordan, 2001.

tion P(Yk | X) is modelled directly. Generative approaches, on the other
hand, try to recover the data-generating distribution; they model
the joint distribution P(X, Yk) and then make predictions using the
Bayes rule.5 If we were able to recover the data-generating distribu- 5 Ng and Jordan, 2001.

tion perfectly, we could answer any question we may have about the
data-generating process. Figure 1.2 gives an intuition of the difference
between learning a decision boundary (discriminative) and learning
the data-generating distribution (generative).

Figure 1.2: Discriminative vs.
generative modelling. From
https://dataisutopia.com/blog/
discremenet-generative-models/.

Because generative approaches model the joint distribution, the
range of queries we can pose to the model is far larger. Whereas
a discriminative model can only yield predictions about the class,
in a generative model, the class variable is treated in the same way
as the input features in X. This opens up new possibilities, such as
generating new observations—hence the term ‘generative’—, perform-
ing outlier detection, or filling in missing parts of an observation.6 6 Correia et al., 2020, p. 2.

Because of these capabilities, generative models can do classification
even if the value assignment in feature vector x is incomplete. These
additional capabilities entail that, from the outset, the comparison
between discriminative and generative models is not straightforward.
Taking ANNs and BNs as examples, we should note that a neural
network computes a function which we can interpret as a conditional
probability distribution, whereas a Bayesian network is a model that

https://dataisutopia.com/blog/discremenet-generative-models/
https://dataisutopia.com/blog/discremenet-generative-models/

20 robustness of discriminative and generative classifiers

can answer many different (types of) queries.7 If we are to make 7 A. Choi and Darwiche, 2018.

a comparison, then, we should compare the queries of a Bayesian
network, because we can interpret those as functions.

1.1.3 Tying it together: the robustness of generative models

The additional capabilities of generative approaches over discriminat-
ive approaches are nice and all, but if all we want to do is classification,
one might ask: what is benefit do generative models bring over dis-
criminative models? This sentiment is expressed succinctly by Vapnik
(1998, p. 12), who states that one should “solve the problem directly
and never solve a more general problem as an intermediate step.”
And indeed, many recent approaches in classification, such as the
typical ANN, adhere to this principle. Discriminative approaches also
tend to yield higher accuracy in classification tasks than generative
approaches.8 8 Ng and Jordan, 2001.

An aspect of generative models that has not received widespread
attention, is their robustness. While it has been shown that some
generative models are better calibrated, that is, the model “knows that
it does not know”,9 this result does not necessarily imply that gener- 9 Peharz et al., 2018, p. 2.

ative models are more robust. The aim of my thesis is to investigate
the robustness of generative classifiers, compared to discriminative
classifiers. The intuition is as follows. Because of their data-generating
properties, generative models ‘know more’ about the probability dis-
tribution of their input. If the input is perturbed somewhat, the model
is less easily fooled. I therefore formulate the following hypothesis:

Generative models are more robust to noise and attacks than discrimin-
ative models.

If this hypothesis is confirmed, we will have an additional reason for
preferring them over their discriminative counterparts.

There are many approaches to generative modelling and I cannot
consider them all. Therefore, in the remainder of this work, I limit
myself to probabilistic circuits (PCs). A PC is a promising formalism
that aims to combine the strong aspects of both probabilistic graphical
models (PGMs) such as Bayesian networks and computation-oriented
approaches such as ANNs. In chapter 2, I will further explain the PC
formalism.

1.2 Research questions

The research questions are aimed to find evidence to either reject or
accept the hypothesis formulated in the previous section:
• How can we compare the robustness of different models?
• How do generative models perform compared to discriminative

models, w.r.t. corruptions in the input?
• How do generative models perform compared to discriminative

models, w.r.t. adversarial robustness?
• In what conditions are generative models more robust than dis-

criminative models?

introduction 21

1.3 Outline

In chapter 2, I present the state of the art in the field of probabilistic
circuits, the formalism used to answer the research questions. In the
next chapter, I will discuss what is meant by ‘robustness’, and how we
can quantify robustness. I will also here discuss the field of adversarial
attacks, which are strongly related to robustness.

In chapter 4, I explain the experimental setup used for answering
the research questions. I will present the datasets and models used
for running experiments, as well as the methods for assessing the
robustness of the models. The results of the experiments are presented
in chapter 5. Finally, in chapter 6, I will draw conclusions and I will
discuss the limitations and difficulties faced during the project. I will
touch upon future work that can be done to corroborate my findings.

probabilistic circuits 23

2
Probabilistic circuits

In contemporary machine learning, deep learning is all the craze.1 1 See e.g. Goodfellow et al., 2016.

Whereas the field of artificial intelligence (AI) traditionally focussed
on symbolic, model-based approaches, the availability of larger data-
sets and greater computing power contributed to a shift of focus
toward function-based approaches.2 This shift is exemplified by the 2 A. Choi and Darwiche, 2018.

advent of artificial neural networks (ANNs) and deep learning. The
popularity of models such as ANNs is understandable, given their
astounding performance in areas like computer vision. Probabilistic
graphical models (PGMs) on the other hand, with Bayesian networks
as the prime example, nowadays seem to enjoy more popularity in
cognitive science than in engineering.

Recently attempts have been made to combine the best of both
worlds. Probabilistic circuits (PCs) are computational graphs, like ANNs,
but have a full probabilistic interpretation of the nodes, unlike ANNs.
A PC encodes a probability distribution over the input (X, Y). Poon
and Domingos (2011) did seminal work in the field of PCs with their
introduction of sum–product networks (SPNs).3 Poon and Domingos 3 In the remainder of this paper, I will

treat PCs and SPNs as synonyms.
Strictly speaking this is inaccurate,
because SPNs are a subset of PCs. For
the purposes of my thesis, however,
the SPN formalism provides all
the ingredients I need, and other
formalisms such as arithmetic circuits
(ACs) can be converted into an SPN
representation.

(2011, p. 1) motivated their work on SPNs by the observation that
“models with multiple layers of hidden variables allow for efficient
inference in a much larger class of distributions”, and wondered
how we could create deep architectures that take advantage of this,
while providing tractable inference. SPNs are directed acyclic graphs
(DAGs) that, under some structural constraints, guarantee tractable
inference. This is a clear advantage over Bayesian networks, which are
typically intractable. PCs combine the advantages of artificial neural
networks, especially their deep structure, and Bayesian networks, viz.
their probabilistic interpretation.

For the purposes of comparing discriminative and generative clas-
sifiers, PCs are ideal for two reasons. First, they can be trained both
discriminatively and generatively. This allows for a more controlled
comparison, because all other factors—which can potentially con-
found the result—are kept constant. Secondly, they can be trained
relatively fast and, depending on the chosen structure, they are struc-
turally similar to ANNs. This enables a comparison with a baseline
ANN model.

In this chapter, I will first introduce the PC formalism. I will in-
troduce the main ‘ingredients’ and then give them an appropriate

24 robustness of discriminative and generative classifiers

interpretation. Using this formalism, I will then explain how adding
certain structural constraints to the graph leads to tractability guaran-
tees. I will then shift my attention to structure of PCs. Finally, I will
investigate how PCs can be trained.

2.1 What is a probabilistic circuit?

A probabilistic circuit (PC) over random variables X consists of a
computational graph G, also known as the circuit structure, and is
parameterised by θ, the circuit parameters. The circuit structure G =

(V, E) is a rooted DAG. Let in(v) denote the set of all input nodes for
some node v ∈ V, that is, all nodes {u ∈ V : (u, v) ∈ E}. An example
of a PC is drawn in figure 2.1.

Figure 2.1: Example of a PC over two
binary RVs X1, X2. The sum weights
are printed along the edges. Note that
arrowheads are not drawn but left
implicit; we should understand all
edges going upwards. From Poon and
Domingos, 2011, p. 2.

There are three types of nodes:
• A leaf node encodes some probability distribution. A leaf node

takes as input some observed state and outputs the corresponding
probability density function (PDF) for continuous distributions, or
the probability mass function (PMS) for discrete distributions. A
node v ∈ V is a leaf node iff in(v) = ∅. So the leaves of the circuit
structure represent the random variables (RVs) X.

• A product node v ∈ V computes the product over its input nodes
in(v). We can understand a product node as encoding a decomposi-
tion of a joint distribution into smaller factors. This is comparable to
how Bayesian networks (BNs) capture the independencies between
RVs.4 4 Y. Choi et al., 2021.

• A sum node v ∈ V computes a weighted sum over its input nodes
in(v). The weights are parameterised by θ1, . . . , θ|in(v)|. The mix-
ture density that results from this summation is more expressive
than the original components. We can interpret a sum node as
encoding a categorical latent variable (LV) Z.5 The weights θi then 5 Peharz et al., 2017.

represent the probability that Z takes value i. An example of the
LV interpretation is shown in figure 2.2.

Furthermore let φ(v) ⊆ X denote the scope of some node v ∈ V. For a
leaf node, the scope corresponds to the RV associated with that leaf
node. For a non-leaf node, the scope is defined as the union of the
scopes of its input nodes: φ(v) = ∪u∈in(v)φ(u).

The root node of a PC is the node vr ∈ V that has no outgoing
edges. It captures the joint distribution over all RVs in X. For the root,
we always have φ(vr) = X. Note that this definition of a PC lays down
a recursive scheme. We can interpret each input node of the root node
as a sub-PC, rooted in that node. The base case of the recursion is

Figure 2.2: The latent variable inter-
pretation of a sum node. The mixture
model marginalises out the LV Z,
which can take values 1 or 2. From
Y. Choi et al., 2021, p. 14.

probabilistic circuits 25

always a leaf node, because leaf nodes are the only nodes that have
no children.

With these simple ingredients, we can build surprisingly powerful
and expressive models. PCs may seem similar to PGMs, but there are
some important differences. While both are probabilistic models that
capture some joint distribution, the semantics are entirely different.6 6 Y. Choi et al., 2021, p. 32.

A node in a PGM represents a random variable whereas a node in
a PC represents a unit of computation. An edge in a PGM stands
for a dependency whereas an edge in a PC stands for the order
of execution. The method of inference is different, too. PGMs use
conditioning, elimination, and/or message passing for inference. PCs
on the other hand make use of a feedforward pass and, depending
on the query, a backward pass.

It seems that PCs are more similar to ANNs than to PGMs, as both
PCs and ANNs are computational graphs. This intuition is correct.
Like ANNs, PCs can also fit non-linear functions. In ANNs, the non-
linearity stems from non-linear activation functions; in PCs the non-
linearity stems from leaf distributions that potentially have non-linear
behaviour, and from the product nodes. Martens and Medabalimi
(2015) show that PCs are universal approximators of distributions if
we allow the size of the model to be exponential to the dimensionality
of the input.7 7 In order to capture the probability

distribution efficiently, however, the
marginals and normalisers of the
density function must be tractable.
This is not the case for all distributions.
Hence there is a class of distributions
that can be tractably represented by a
neural net, but not by a PC (Martens
and Medabalimi, 2015).

But there are important differences with ANNs too. Most notably,
ANNs have no probabilistic interpretation whereas PCs do. PCs also
typically have a sparser computational graph than ANNs. This makes
efficient tensorised GPU computation more difficult.8 Finally, the set

8 Work is being done to close this
gap, however. Einsum Networks for
instance, by Peharz et al. (2020) make
computations on PCs more efficient.
See § 2.1.3.

of available computation units is heavily constrained. There are no
activation functions for the internal nodes, and we cannot perform
operations such as max-pooling. Convolution in PCs is possible but
non-trivial, because of some structural constraints we usually enforce
on the circuit structure.9

9 Examples of convolution in PCs can
be found in Butz et al., 2019 and van
de Wolfshaar and Pronobis, 2020.See
§ 2.2.

2.1.1 Query classes

In order to assess the tractability of PCs and the structural constraints
required to attain tractability guarantees, it is useful to distinguish
between different query classes. A query is a ‘question’ we ask to a
probabilistic model.10 Not all queries are alike. We can distinguish 10 Y. Choi et al., 2021, p. 6.

different query classes, based on two questions. First, what do we
already know? Do we have a value for all, some, or none of the RVs
in X? Secondly, what do we want to know? Do we want to find a
probability of a certain state, or do we want to find the most probable
state given a partial value assignment to the RVs in X?

In some cases, we know the value assignment for all RVs, and want
to find the probability of this state. This is the complete evidence class,
defined as follows.

Definition 2.1 (Complete evidence query class). The class of complete
evidence queries consists of all queries that compute P(X = x), where
P is a joint probability distribution over RVs X, and x ∈ val(X) is a

26 robustness of discriminative and generative classifiers

complete state. 11 11 Adapted from Definition 1 in Y. Choi
et al., 2021, p. 7.

Typically, however, we do not know the complete state. If we are
interested in the probability of a partial state, we are dealing with a
marginal query, defined as follows:

Definition 2.2 (Marginal query class). For a joint distribution P(X)
over RVs X, the class of marginal queries computes the following:

P(E = e, Z) =
∫

val(Z)
P(e, Z)dZ

where e ∈ val(E) is the observed evidence for some subset of RVs,
E ⊆ X, and Z = X \ E. Note that the integration is over a Cartesian
product of |Z| intervals.12 12 Adapted from Definition 11 in Y.

Choi et al., 2021, p. 20.

Finally, we can consider queries where we are not interested in the
probability of an event, but rather in the state that is most likely, given
the partial evidence. This is known as inference to the best explanation
(IBE). In the context of PGMs, IBE can be formalised as the maximum
a posteriori (MAP) problem. The corresponding query class is defined
as follows.

Definition 2.3 (Maximal a posteriori query class). For a joint dis-
tribution P(X) over RVs X, the class of MAP queries computes the
following:

arg max
q∈val(Q)

P(Q = q | E = e, Z) = arg max
q∈val(Q)

∫

val(Z)
P(q, e, Z)dZ

where Q, E, and Z form a partitioning of RVs X, and e ∈ val(E) is the
observed evidence.13 13 Adapted from Definition 37 in

Y. Choi et al., 2021, p. 46. Note the
difference in terminology: the authors
call this class marginal MAP instead of
MAP. What the authors call ‘MAP’, I
call ‘MPE’.

The right-hand side follows by noting that the arg max operation
is not affected by the normalisation constant P(E = e, Z) of the
conditional probability. We are not interested in the values of Z, so
we marginalise these out. Again, the integral sign actually stands for
a |Z|-dimensional integral.

In the special case where Z = ∅, the MAP problem is known as
most probable explanation (MPE). The corresponding query class is as
follows:

Definition 2.4 (Most probable explanation query class). For a joint
distribution P(X) over RVs X, the class of MPE queries computes the
following:

arg max
q∈val(Q)

P(Q = q | E = e) = arg max
q∈val(Q)

P(q, e)

where Q and E form a partitioning of RVs X, and e ∈ val(E) is the
observed evidence.14 14 Adapted from Definition 26 in Y.

Choi et al., 2021, p. 37.

Naturally, the MPE query class is a subset of the MAP query class.

probabilistic circuits 27

2.1.2 Structural constraints and tractability

Our goal is that the PC correctly computes the probability of evidence.
A PC is ‘valid’ if it satisfies this goal. Formally:

Definition 2.5 (Validity). A PC S is valid iff it correctly computes the
unnormalised probability of evidence Φ, that is, S(e) = Φ(e) for all
evidence e.15 15 Adapted from Definition 2 in Poon

and Domingos, 2011, p. 3.

Note that the probability distribution Φ is unnormalised. This
means that there is some constant Z such that ∑x

Φ(x)
Z = 1.16 It is 16 Van de Wolfshaar, 2019.

possible to normalise the PC for each node. If we do so, the PC is
locally normalised. The advantage of a locally normalised PC is in
its interpretation: we can then understand the PC as computing a
normalised probability distribution. It is not immediately obvious
that a locally normalised PC has the same expressive power as an
unnormalised PC. Peharz et al. (2015) show that normalising a PC
does not affect the modelled distribution. We can thus safely assume
locally normalised sum weights without hurting expressiveness. In
the remainder of this report, I assume the PCs are normalised.

In a PC, evaluating the joint probability for a complete state x ∈ val(X)
can be done in linear time w.r.t. model size. After all, we only need
to execute the computation graph and read out the value in the root.
This is no different from the tractability of BNs for complete evidence.

Things get interesting, however, if we consider other query classes,
such as marginal probability. As can be seen in definition 2.2, comput-
ing the marginal probability involves a multiple integral. Computing
a multiple integral over some function is often a very expensive oper-
ation. Generally this problem is #P-hard.17 But the ingenuity of PCs 17 Baldoni et al., 2010.

lies in the imposing of structural constraints on the circuit structure, so
that we can answer marginal queries in linear time, while guaranteeing
validity.

First we note that for a fully factorised probabilistic model, we can
break the multivariate integral into a product of simpler integrals.
This only works however if the children of a product node depend on
disjoint sets of variables. Otherwise, the factors are not independent
and the decomposition would be invalid. The following equation
illustrates the decomposition of an integral into a product of integrals,
for some sets of random variables X and Y:

∫

val(X)

∫

val(Y)
P(X, Y)dXdY ∗

=
∫

val(X)

∫

val(Y)
P(X)P(Y)dXdY

=
∫

val(X)
P(X)dX

∫

val(Y)
P(Y)dY,

where the star indicates that this equality only holds if X and Y are
conditionally independent given the latent variables in the PC. In a
PC, we can apply this trick recursively, as long as the scopes of the
children of a product node do not overlap. This brings us to the first
structural constraint:

28 robustness of discriminative and generative classifiers

Definition 2.6 (Decomposability). A product node v is decomposable
if the scopes of its input units do not share variables: φ(ui) ∩ φ(uj) =

∅, ∀ui, uj ∈ in(v), i 6= j. A PC is decomposable if all of its product
nodes are decomposable.18 18 Adapted from Definition 15 in Y.

Choi et al., 2021, p. 24

Next, we should note that a mixture model, as encoded by a sum
node, only makes sense if the components range over the same set of
random variables. If they are not, summing them together would lead
to mistakes. For instance, it makes no sense to add an RV representing
people’s height with an RV representing people’s weight. If the set of
random variables is equal, the integral of a sum equals the sum of the
integrals of the components. If we write this out, using the definition
of a sum node (wi represents the weight for component i), we get the
following:

∫

val(X)
P(X)dX =

∫

val(X)
∑

i
wiPi(X)dX

= ∑
i

wi

∫

val(X)
Pi(X)dX

This observation leads to the second structural constraint:

Definition 2.7 (Smoothness). A sum node v is smooth if its inputs all
have identical scopes: φ(u) = φ(v), ∀u ∈ in(v). A PC is smooth if all
of its sum nodes are smooth.19 19 Adapted from Definition 16 in Y.

Choi et al., 2021, p. 25. Some authors,
including Poon and Domingos (2011),
call this property ‘completeness’
instead.

If a PC is smooth and decomposable, this means that we can always
‘push down’ the integrals toward the leaf nodes. The integral of any
valid normalised PDF or PMF is 1. From this it follows that we can
perform marginal queries on PCs in time linear to the model size. We
set the output of all leaf nodes for RVs in Z to 1, and then execute the
computational graph. The result is a valid marginal probability for
the given query. To summarise, we can formulate theorem 2.1.

Theorem 2.1. A PC is valid if it is smooth and decomposable.20 20 Formal proof given in Poon and
Domingos, 2011, p. 3

Note that the constraints presen-
ted here differ from those in Poon
and Domingos (2011). The authors
originally specified smoothness
(‘completeness’) and consistency as
constraints. Consistency is a strictly
weaker requirement than decompos-
ability, but Peharz et al. (2015) show
that every smooth and consistent SPN
can be transformed into a complete
and decomposable SPN in polynomial
time.

One can wonder if MAP inference in PCs is tractable too, if the
PC satisfies the smoothness and decomposability constraints. On first
sight, it seems that MPE queries, at least, can be computed in linear
time. In their original paper, Poon and Domingos (2011, p. 8) indeed
state that MPE inference can be achieved exactly and in linear time.
The authors’ approach works by pushing the maximisation problem
down to the leaves, just like in answering marginal queries. More
precisely, we replace the sum operations with max operations, and
replace the distributions of the leaf nodes with their modes. In a
bottom-up evaluation, we compute maxq∈val(Q) P(q, e), that is, the
probability of the MPE state. With some additional backtracing, for
instance by means of the Viterbi algorithm, we can recover the state
of the evidence variables too.21 21 Peharz et al., 2017.

MPE inference in linear time! This almost sounds too good to be
true. And as it turns out, it is.22 The problem boils down to this: max 22 Peharz et al., 2014; Peharz et al.,

2017.

probabilistic circuits 29

and ∑ do not commute. With the described algorithm, we do the
following in the sum nodes:

max
q∈val(Q)

P(q, e) = max
q∈val(Q)

P(q, e)

= max
q∈val(Q)

∑
i

wiPi(q, e)

?
= max

q∈val(Q)
max

i
wiPi(q, e)

= max
i

wi max
q∈val(Q)

Pi(q, e)

The equality on the third line, marked with the question mark, only
holds if at most one of the elements of the sum is non-zero. The
smoothness constraint of a PC does not guarantee this. We need an
additional constraint, next to smoothness, in order to have tractable
MPE inference, called determinism:

Definition 2.8 (Determinism). A sum node v is deterministic if, for
any fully-instantiated input, the output of at most one of its chil-
dren is nonzero. A circuit is deterministic if all of its sum nodes are
deterministic.23 23 Taken from Definition 30 in Y. Choi

et al., 2021, p. 40.

To summarise, the MPE algorithm in Poon and Domingos (2011) is
correct, but only if the SPN is deterministic.24 24 Peharz et al., 2017.

Finally, I would like to quickly consider (partial) MAP inference in
PCs, although not directly relevant for the classification task. MAP is
inherently harder than MPE.25 The structural constraints that allow 25 Kwisthout, 2011.

for tractable MPE are insufficient for tractable MAP.26 It is possible to 26 Y. Choi et al., 2021.

formulate even stronger structural constraints, as is shown in Y. Choi
et al. (2021), but these constraints introduce a dependency on query
set Q. This dependency hurts the expressiveness of the model.

2.1.3 Tensorised PCs

As noted in § 2.1, PCs typically have a sparser computational graph
than ANNs. For instance, the distance from leaf to root can differ
greatly across leaf nodes. This makes GPU-optimised computations
with PCs challenging.

Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits

Figure 1. Basic einsum operation in EiNets: A sum node S, with a
single child P, which itself has 2 children. All nodes are vectorized,
as described in Section 3.1, and here illustrated for K = 5.

3.2. The Basic Einsum Operation

The core computational unit in EiNets is the vectorized
PC excerpt in Fig. 1, showing a sum node S with a single
product child P, which itself has two children N and N0

(shown here as sum nodes, but they could also be leaves).
Nodes N and N0 compute each a vector of K densities,
the product node P computes the outer product of N and
N0, and the sum node S computes a matrix-vector product
Wvec(P). Here, W is an element-wise non-negative K ⇥
K2 matrix, whose rows sum to one, and vec(P) unrolls P
to a vector of K2 elements.

Previous PC implementations (Pronobis et al., 2017; Peharz
et al., 2019), are also based on this core computational unit.
However, for numerical stability, they use a computational
workaround in the log-domain: The outer product is trans-
formed into an “outer sum” of log-densities (realized with
broadcasting), the matrix multiplication is implemented us-
ing a broadcasted sum of log W and vec(log P), to which
then a log-sum-exp operation is applied, yielding log S. This
workaround introduces significant overhead and needs to al-
locate the products explicitly. Mathematically, however, the
PC excerpt in Fig. 1 is a simple multi-linear form, naturally
expressed in Einstein notation:

Sk = WkijNiN
0
j . (2)

Here we have re-shaped W into a K ⇥ K ⇥K element-
wise non-negative tensor, normalized over its last two di-
mensions, i.e. Wkij � 0,

P
i,j Wkij = 1. The signature in

(2) mentions three indices i, j and k labeling the axes of
N, N0, and W. Axes with the same index get multiplied.
Furthermore, any indices not mentioned on the left hand
side get summed out. General-purpose Einstein summations
are readily implemented in most numerical frameworks, and
usually denoted as einsum operation.

However, applying (2) in a naive way would quickly lead
to numerical underflow and unstable training. In order to
ensure numerical stability, we develop a technique similar to
the classical “log-sum-exp”-trick. We keep all probabilistic
values in the log-domain, but the weight-tensor W is kept

in the linear domain. Consequently, we need a numerically
stable computation for

log Sk = log
X

i,j

Wkij exp(log Ni) exp(log N0
j). (3)

Let us define a = maxi log Ni and a0 = maxj log N0
j .

Then, we can show that log Sk can be computed as

a+a0+log
X

i,j

Wkij exp(log Ni�a) exp(log N0
j�a0). (4)

To see that (4) is correct, note that for the last term we have

log
X

i,j

Wkij exp(log Ni � a) exp(log N0
j � a0)

= log
X

i,j

Wkij exp(�a� a0) exp(log Ni) exp(log N0
j)

=� a� a0 + log
X

i,j

Wkij exp(log Ni) exp(log N0
j).

Substituting the last line into (4) yields (3), so our log-
einsum-exp trick delivers the correct result. A sufficient con-
dition for numerical stability of (4) is that all sum-weights
Wkij are larger than 0, since in this case the maximal values
in vectors exp(log N� a) and exp(log N0 � a0) are guaran-
teed to be 1, leading to a positive argument for the log. This
is not a severe requirement, as positive sum-weights are
commonly enforced in PCs, e.g. by using Laplace smooth-
ing or imposing a positive lower bound on the weights.

Given two K-dimensional vectors N, N0 and the K⇥K⇥K
weight-tensor W, our basic einsum operation (4) requires
2K exp-operations, K log-operations, O(K3) multiplica-
tions and O(K3) additions. We need to store 3K values for
N, N0, S, while the product operations are not stored explic-
itly. In contrast, the indirect implementations of the same
operation in (Pronobis et al., 2017; Peharz et al., 2019) need
O(K3) additions, K3 exp-operations and K log-operations.
These implementations also store 3K values for N, N0, S,
and additional K2 values for the explicitly computed prod-
ucts. While our implementation is cubic in the number of
multiplications, the previous implementations need a cu-
bic number of exp-operations. This partially explains the
speedup of EiNets in our experiments in Section 4. However,
the main reasons for the observed speedup are i) an opti-
mized implementation of the einsum operation, ii) avoiding
the overhead of allocating product nodes, and iii) a higher
degree of parallelizm, as discussed in the next section.

3.3. The Einsum Layer

Rather than computing single vectorized sums, we can do
better by computing whole layers in parallel. To this end, we
first organize the PC in a layer-wise structure: We traverse
the PC top-down, and construct a topologically sorted list of

Figure 2.3: Basic einsum operation in
EiNets: A sum node S, with a single
child P, which itself has 2 children.
All nodes are vectorised. In this
illustration, K = 5. From Peharz et al.,
2020, p. 4.

In 2020, Peharz et al. (2020) introduced a new implementation for
SPNs, called Einsum networks (EiNets). In this novel implementation,
nodes are vectorised into vectors of length K. This leads to a denser
(hence more efficient) layout for the PC. More precisely, EiNets work
by redefining the leaf nodes as vectors of K densities over the scope of
the node, instead of just a single density. Sum nodes and product are
also redefined accordingly; sum nodes become vectors of K weighted
sums and product nodes become outer products. These redefinitions
are illustrated in figure 2.3. The arithmetic operations performed in the
network can be combined into a single, monolithic einsum-operation,
which makes the computations faster and more memory-efficient. The

30 robustness of discriminative and generative classifiers

authors report speedups of up to two orders of magnitude compared
to previous implementations.

Independently from Peharz et al., van de Wolfshaar and Pronobis
(2020) have introduced libspn-keras, a layer-centred implementation
of PCs.27 This implementation builds upon the open-source Keras 27 Source code available at https:

//github.com/pronobis/libspn-keras.library for creating ANNs. In libspn-keras, PCs are built up layer-
by-layer. By using padding, a tree structure is obtained that is fully
balanced and homogenous. This enables GPU parallellisation. The
authors have created a benchmark, comparing libspn-keras with
EiNets.28 They claim that libspn-keras is more flexible than EiNets, 28 See https://git.io/JGoBB.

and twice as fast.

2.2 Probabilistic circuit structures

Image-tailored (handcrafted) structures
“Recursive Image Slicing”

Poon and Domingos, “Sum-Product Networks: a New Deep Architecture”, 2011 116/159

⇒ Smooth & Decomposable
⇒ Tractable MAR

Figure 2.4: Poon–Domingos structure.
From From Vergari et al., 2020, p. 116.

In PCs, different circuit structures can be used. Three main approaches
can be distinguished. First, there are predefined structures. These are
based on the shape of the input data, and possibly some hyperpara-
meters. Secondly, there are random structures. These are comparable to
predefined structures, but their structure is not deterministic; at least
part of the structure is built randomly. Again, the structure depends
on the shape of the data and possibly some hyperparameters. Thirdly,
there are structures learned from data. These are distinct from the other
two approaches, in that the structure is based not only on the shape
of the input data, but also on the input data itself.

In the remainder of this section, I give examples for each of the
approaches.

2.2.1 Predefined structures

DEEP GENERALIZED CONVOLUTIONAL SUM-PRODUCT NETWORKS

and product layers preserve within-cell homogeneity, across-cell heterogeneity, completeness and
decomposability, we can derive valid convolutional SPN architectures. We now elaborate on how
to implement and parameterize such spatial layers.

4.2 Spatial Sum Layers

A sum is complete if it has children with identical scopes. The within-cell homogeneity and across-
cell heterogeneity dictate that at each level, sums should only be connected to a single input cell.
Yet, multiple single-cell sums can be added to form an arbitrary amount of output channels. Hence,
the spatial layout of the scopes remains unchanged and the validity propagates up the network.

4.3 Spatial Product Layers

Products are decomposable if they are connected to children with pairwise disjoint scopes. As
a result, products at each level can have children from at most one channel per cell, but cover
two or more input cells. At the input layer, it is trivial to see that neighboring cells are not only
heterogeneous, but also pairwise disjoint. Hence, the products on top of an input layer can join
scopes by taking small patches of several cells while selecting only one input channel per cell.

Product Node
Sum Node
Leaf Node

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0,1 2,3 4,5 6,7

0,1 2,3 4,5 6,7

0,1 2,3 4,5 6,7

0,1 2,3 4,5 6,7

0,1 2,3 4,5 6,7

0,1 2,3 4,5 6,7

0-3 4-7

0-3 4-7

0-3 4-7

0-3 4-7

R

Layer 3 (Products)

Layer 2 (Sums)

Layer 0 (Leaves)

Layer 1 (Products)

Cell

Layer 6, Root (Sum)

0-3

0-3

0-3

0-3

0-3 4-7

0-3 4-7

Layer 4 (Sums)

Layer 5 (Products)

Figure 2: An example of a ‘vanilla’ convolutional SPN. As opposed to the more general DGC-SPNs
depicted in Figure 3, such architecture does not allow for spatially overlapping patches.
Node types are indicated by different colors and some connections are highlighted to
improve readability.

5

Figure 2.5: Example of a ‘vanilla’
1-dimensional convolutional SPN.
This architecture does not allow for
spatially overlapping patches. Some
connections are highlighted to improve
readability. Adapted from van de
Wolfshaar and Pronobis, 2020, p. 5.

In their original paper on SPNs, Poon and Domingos (2011) used a
predefined structure, optimised for image data. It works by recursively
decomposing the image into sub-rectangles using axis-aligned splits,
displaced by a certain step-size ∆. Figure 2.4 illustrates the process.
Horizontal splits are alternated by vertical splits, until we are left with
single pixels. Note that each rectangular subregion is decomposed
in all possible ways.29 This leads to a PC with very high depth; for a

29 Poon and Domingos, 2011, p. 7.

d× d image, the corresponding PC has 2(d− 1) layers.

In ANNs, it is common to use convolution. Convolutional layers in
an ANN make use of a filter that slides over the input. This way,
parameters can be shared, leading to a vast reduction of the number
of parameters needed in the network. Convolutional neural networks
(CNNs) are very successful in image recognition tasks. One can won-
der if it is possible to build a convolutional structure in PCs too. The
first work on convolutional PCs was done by Sharir et al. (2018) and
Butz et al. (2019). They were faced with the following challenge: how
to implement a convolutional structure, while maintaining validity
of the PC? In particular, satisfying the decomposability requirement
(see definition 2.6) is tricky, because the scopes of the input of a

https://github.com/pronobis/libspn-keras
https://github.com/pronobis/libspn-keras
https://git.io/JGoBB

probabilistic circuits 31

JOS VAN DE WOLFSHAAR, ANDRZEJ PRONOBIS

Product Node
Sum Node
Leaf Node
Padding Node

0 1∅ 2 3 4 5 6 7 ∅

0 1∅ 2 3 4 5 6 7 ∅

0 0,1 1,2 2,3 3,4 4,5 5,6 6,7 7

0 0,1 1,2 2,3 3,4 4,5 5,6 6,7 7

0 0,1

∅

1,2 2,3 3,4 4,5 5,6 6,7 7

∅ ∅∅

0 0,1

∅

1,2 2,3 3,4 4,5 5,6 6,7 7

∅ ∅∅

0 0,1 1,2 2,3 3,4 4,5 5,6 6,7 7

0 0,1 1,2 2,3 3,4 4,5 5,6 6,7 7

6,70 0,1 0-2 0-3 1-4 2-5 3-6 4-7 5-7 7

6,70 0,1 0-2 0-3 1-4 2-5 3-6 4-7 5-7 7

6,70 0,1 0-2 0-3 1-4 2-5 3-6 4-7 5-7 7

6,70 0,1 0-2 0-3 1-4 2-5 3-6 4-7 5-7 7

6,70 0,1 0-2 0-3 1-4 2-5 3-6 4-7 5-7 7

6,70 0,1 0-2 0-3 1-4 2-5 3-6 4-7 5-7 7∅∅

∅∅

∅∅

∅∅

∅∅

∅∅

∅∅

∅∅

2-70 0,1 0-2 0-3 0-4 0-5 0-6 0-7 1-7 3-7 4-7 5-7 6,7 7

2-70 0,1 0-2 0-3 0-4 0-5 0-6 0-7 1-7 3-7 4-7 5-7 6,7 7

2-70 0,1 0-2 0-3 0-4 0-5 0-6 0-7 1-7 3-7 4-7 5-7 6,7 7

2-70 0,1 0-2 0-3 0-4 0-5 0-6 0-7 1-7 3-7 4-7 5-7 6,7 7

0 0,1 0-2 0-3 0-4 0-5 0-6 0-7 1-7 2-7 3-7 4-7 5-7 6-7 7

0 0,1 0-2 0-3 0-4 0-5 0-6 0-7 1-7 2-7 3-7 4-7 5-7 6-7 7

∅

∅

0-7 0-7 0-7 0-7 0-7 0-7

0-7 0-7 0-7 0-7

0-7 0-7

0-7 0-7

0-7 0-7 0-7 0-7

0-7 0-7 0-7 0-7 0-7 0-7

0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7

R

Layer 7 (Products)

Layer 6 (Sums)

Layer 8 (Root Sum)

Layer 5 (Products)

Layer 4 (Sums)

Layer 3 (Products)

Layer 2 (Sums)

Layer 0 (Leaves)

Layer 1 (Products)

Cell 0

Cell 3

Channel 0

Channel 1

Channel 2

Channel 3

Figure 3: An illustration of a DGC-SPN simplified to 1D. Connections for only one cell per layer
are highlighted for readability. Layer 0 contains leaf distributions, where each channel
corresponds to an indicator for discrete variables or a distribution component (e.g. Gaus-
sian) for continuous variables. Every product layer doubles the dilation rate, starting at
the rate of 1. The scopes are indicated by the numbers within each node. Padding nodes
have a fixed probability of 1 (or 0 in log-space). The nodes of a single cell share the same
scope. All children of the root node R have a scope that contains all input variables.

4.4 Convolutional Log Products

SPNs are implemented to propagate log-probabilities to avoid underflow. Hence, the local patches
of products become local patches of sums. In previous works, such local products in log-space
were computed through sum pooling (Sharir et al., 2016; Butz et al., 2019), so that the number of
input channels equals the number of output channels. We propose a more general alternative that
implements local products in log-space through convolutions using kernels with one-hot weights
per cell. One-hot weights are needed so that only one channel per cell has a coefficient of 1, while
all other channels have a zero coefficient. We refer to such products realized using convolutions as
convolutional log-products (CLP). In Section 4.5, we describe an even more general view of CLPs.

6

Figure 2.6: Example of a 1-dimensional
DGC-SPN. Some connections are
highlighted to improve readability.
Layer 0 contains leaf distributions,
where each channel corresponds to
an indicator for discrete variables or
a distribution component (e.g. Gaus-
sian) for continuous variables. Every
product layer doubles the dilation rate,
starting at the rate of 1. The scopes
are indicated by the numbers within
each node. Padding nodes have a fixed
probability of 1 (or 0 in log-space). The
nodes of a single cell share the same
scope. All children of the root node
R have a scope that contains all input
variables. As opposed to the vanilla
convolutional SPN in figure 2.5, this
architecture does allow for spatially
overlapping patches. From van de
Wolfshaar and Pronobis, 2020, p. 6.

product node may not overlap. The sliding filter in a convolutional
layer typically does have overlap in scope, unless the stride is at least
as large as the filter. Sharir et al. (2018) and Butz et al. (2019) solved
this issue by using non-overlapping image patches in the product
layers.30 See figure 2.5 for an example. This solution however leads

30 van de Wolfshaar and Pronobis, 2020

to a loss of feature resolution. Furthermore, many spatial relations
are lost in the input, because the convolutional filter may never be
correctly positioned to detect them.

Van de Wolfshaar and Pronobis (2020) address this lack of generalis-
ability in their proposed structure, called deep generalised convolutional
sum–product networks (DGC-SPNs). DGC-SPNs do make use of overlap-
ping image patches in the product layers. Decomposability is satisfied
by using exponentially growing dilation rates for the product nodes.
This way, a compromise is reached where the convolutional filters
use partially overlapping input, but the decomposability constraint is
maintained. See figure 2.6 for an example.

32 robustness of discriminative and generative classifiers

Figure 1: Example RAT-SPN over 7 RVs {X1 . . . X7}, using parameters C = 3, D = 2, R = 2, S = 2, and I = 2 in
Algorithm 2 and Algorithm 1.

Algorithm 2 Random Region Graph
1: procedure RANDOMREGIONGRAPH(X, D, R)
2: Create an empty region graph R
3: Insert X in R
4: for r = 1 . . . R do
5: SPLIT(R,X, D)

1: procedure SPLIT(R,R, D)
2: Draw balanced partition P = {R1,R2} of R
3: Insert R1,R2 in R
4: Insert P in R
5: if D > 1 then
6: if |R1| > 1 then SPLIT(R,R1, D � 1)

7: if |R2| > 1 then SPLIT(R,R2, D � 1)

equal size and proceed recursively down to depth D, re-
sulting in an SPN of depth 2 D. This recursive splitting
mechanism is repeated R times. Figure 1 shows an ex-
ample SPN with C = 3, S = 2, and I = 3, follow-
ing Algorithm 2 and subsequently Algorithm 1. Note
that this construction scheme yields SPNs where input
distributions, sums, and products can be naturally orga-
nized in alternating layers. Similar to classical multilayer
perceptrons (MLPs), each layer takes inputs from its di-
rectly preceding layer only. Unlike MLPs, however, lay-
ers in RAT-SPNs are connected block-wise sparsely in a
random fashion. Thus, layers in MLPs and RAT-SPNs
are hardly comparable; however, we suggest to under-
stand each pair of sum and product layer to be roughly
corresponding to one layer in an MLP: sum layers play

the role of (block-wise sparse) matrix multiplication and
product layers as non-linearities (or, more precisely, bi-
linearities of their inputs). The input layer, containing
the SPN’s leaf distributions, can be interpreted as a non-
linear feature extractors.

3.1 TRAINING AND IMPLEMENTATION

Let X = {(x1, y1), . . . , (xN , yN)} be a training set of
inputs xn and class labels yn. Furthermore, let Sc be the
cth output of the RAT-SPN and w all SPN parameters.
We train RAT-SPNs by minimizing the objective

O(w) = �CE(w) + (1 � �) nLL(w), (1)

where CE(w) is the cross-entropy

CE(w) = � 1

N

X

n

log
Syn(xn)P
y0 Sy0(xn)

(2)

and nLL(w) is the normalized negative log-likelihood

nLL(w) = � 1

N |X|
X

n

log Syn
. (3)

When setting � = 1, we purely optimize cross-entropy
(discriminative setting), while for � = 0 we perform
maximum likelihood training (generative setting). For
0 < � < 1, we have a continuum of hybrid objectives,
trading off the generative and discriminative character of
the model.

We implemented RAT-SPNs in Python/TensorFlow,
where the nodes of a region are represented by a ma-
trix with rows corresponding to samples in a mini-batch

Figure 2.7: Example RAT-SPN over 7

RVs {X1, . . . , X7}, using parameters
C = 3, D = 2, R = 2, S = 2, and I = 2.
From Peharz et al., 2018, p. 4.

2.2.2 Random structures

Peharz et al. (2018) have introduced random tensorised sum–product net-
works (RAT-SPNs). RAT-SPNs are designed for classification problems.
In RAT-SPNs, the random variables in the input set X are recursively
split into a 2-partition D times. The resulting hierarchy of partitions,
which is a DAG, is then used to construct a corresponding SPN. The
root of the hierarchy is equipped with C sum nodes, one for each class.
The leaves of the hierarchy are equipped with I leaf nodes. Finally,
the remaining partitions in the hierarchy are equipped with S sum
nodes. The sum nodes are tied together by using cartesian products
of the nodes in the connecting partitions in the hierarchy. This entire
procedure is repeated R times, each with a different random partition-
ing of the random variables. Figure 2.7 shows an example RAT-SPN.
Since RAT-SPNs offer 5 hyperparameter at our disposal, the number
of parameters in the model can be precisely controlled.

2.2.3 Structures learned from data

For completeness, I would like to mention that it is also possible
to learn the structure of a PC based on the data. This approach
was introduced by Gens and Domingos (2013). Their method, called
LearnSPN, works by first clustering the instances in the input data
X. Each cluster is assigned a sum node. Then, the algorithm search
for independent groups of random variables. Within the identified
clusters, the RVs are split in independent groups, which are given a
product node. The procedure is repeated recursively until splitting is
no longer possible; then a leaf is created for the single variable.

I will not pursue the topic of structure learning further in this
thesis.

2.3 Classification with probabilistic circuits

There are two main ways of solving the classification problem with
PCs. The first option is the approach used in RAT-SPNs, as explained
in the previous section. The root node is a sum node with K children,

probabilistic circuits 33

Towards Scalable and Robust Sum-Product Networks 5

. . .

...
...

C1

...
...

. . . C2

. . .

. . .

...
...

. . . Cn

Fig. 1. Illustration of a class-selective SPN. In the graph, Cn is a leaf node applying
the indicator function �c,n(xE).

In a class-selective CSPN, the computation of expectation of a function of
the class variable can be achieved as e�ciently as in standard SPNs:

min
!

X

xc

f(xc)P!(Xc = xc, XE = xE) = min
wr

X

xc:f(xc)�0

f(xc)wr,xc
min
!xc

Sxc
!xc

(xc, xE)

+
X

xc:f(xc)<0

f(xc)wr,xc
max
!xc

Sxc
!xc

(xc, xE) ,

where r is the root node index with children Sxc for each value xc. Note that each
of these internal optimisations can be obtained by independent executions which
take altogether time O(|S|) by Corollary 1 (as each execution runs over non-
overlapping sub-CSPNs corresponding to di↵erent class labels xc). Moreover,
note that in a non-credal class-selective SPN, finding the class label of maximum
probability (and its probability) takes time O(|S|) in the worst case. That is more
e�cient than general SPNs, where |S| · |Xc| nodes may need to be visited.

Let us turn our attention to the CSPN robustness estimation in a classifica-
tion problem. Given input instance XE = xE for which we want to predict the
class variable value, we say that the classification using a CSPN C is robust if
the class value xc = arg maxxc

P(xc|xE) predicted by an SPN S! that belongs to
C = {S! : ! 2 C} is also the prediction of any other S!0 2 C (hence it is unique
for C), which happens if and only if

min
!

E!(Ixc
� Ix0

c
|XE = e) > 0 for every x0

c 6= xc . (3)

In the case of class-selective CSPNs, this task equates to checking whether

min
!

P!(Xc = xc, XE = xE) > max
x0

c 6=xc

max
!

P!(Xc = x0
c, XE = xE) ,

that is, regardless of the choice of weights w 2 C, we would have P!(xc|xE) >
P!(x0

c|xE) for all other labels x0
c.

General CSPNs may require 2 · |S| · (|Xc|� 1) node evaluations in the worst
case to identify whether a predicted class label xc is robust for instance XE = xE ,

Figure 2.8: Illustration of a class-
selective SPN. In the graph, Cn is a leaf
node applying the indicator function.
From Correia and de Campos, 2019,
p. 5.

one for each of the K classes. The model should then be configured
to output a vector of size K with the probabilities for each of the
classes—one value for each child. This output is fed to a loss function
that is used during training. If we use this approach, we can interpret
the sum weights of the root sum as the prior probabilities P(Y = k)
of an instance belonging to class k, k = 1, . . . , K. Each child of the root
sum computes the likelihoods P(X | Y = k) of the instance belonging
to class k. Note that k is also the index of the child. The outputs of the
root sum are the joint probabilities

P(X, Y = k) = P(X | Y = k)︸ ︷︷ ︸
likelihood
(inputs)

P(Y = k)︸ ︷︷ ︸
prior

(sum weights)

,

for each k. Finally, to get the conditional probabilities, the joint prob-
abilities are normalised:

P(Y = k | X) =
P(X, Y = k)

P(X)
=

P(X, Y = k)

∑K
i=1 P(X, Y = i)

The other way is by constructing a class-selective SPN, as introduced
by Correia and de Campos (2019). Here the model outputs a single
joint probability P(X, Y = k). The root sum has K product nodes as
its children. Each of these product nodes has a leaf node attached
to it, applying an indicator function: 1 if Y = k and zero otherwise.
Using this approach, we are in fact training a different SPN per
class, possibly with non-identical structures. Figure 2.8 illustrates a
class-selective SPN.

2.3.1 Tractability of classification

Is classification in PCs tractable? In order to answer this question, we
need to know which query class classification belongs to.31 31 The different query classes are

discussed in § 2.1.1.Most generally, we can consider classification as a special case of
MPE, as defined in definition 2.4. Q then is the set of indicator vari-
ables for each of the K classes. As discussed in § 2.1.2, that would im-
ply that the PC needs to satisfy the determinism constraint. However,
the structures in § 2.2 are valid but not (necessarily) deterministic.

Does that mean we cannot do tractable classification with these
structures? Not quite. Recall from the beginning of this section how
PCs can be used for classification. In both ways discussed, we can
understand the model as getting the probabilities for the K classes by

34 robustness of discriminative and generative classifiers

running K marginal queries. By comparing these scores, a verdict of
most likely class can be made. Typically in classification, the number
of classes is very small compared to model size. Therefore, classific-
ation in PCs can still be done in linear time w.r.t. model size, even
though the general classification problem is an instance of the MPE
problem.32 32 This also means that if K does grow

very large, it may be interesting to look
at MAP/MPE algorithms for solving
the problem. Since this is not the case
for the datasets used in this thesis, I set
aside discussion on these algorithms.

2.4 Training a probabilistic circuit

As stated in the chapter introduction, PCs can be trained both discrim-
inatively and generatively, making them very suitable for answering
the formulated research questions. Whether the model is trained dis-
criminatively or generatively depends on the loss function chosen. A
loss function L : RK ×Z+ → R+ maps the model predictions and
true label a non-negative number that is minimised during optimisa-
tion.

For generative training, negative log–likelihood (NLL) loss is used:

Definition 2.9 (Negative log likelihood loss). For a K-sized vector ŷ of
predicted (joint) probabilities, and true class y, the NLL loss computes

LNLL(ŷ, y) = −
K

∑
k=1

log(ŷk)1{y = k},

where 1{A} is the indicator function which takes a value of 1 if
the logical condition A is true and zero otherwise. That is, the loss
function selects the predicted probability of the correct class and
returns the negative log.

The log transformation is included to penalise predictions that are
close to zero and reward those that are close to one. For discriminative
training, cross-entropy (CE) loss is used:

Definition 2.10 (Cross-entropy loss). For a K-sized vector ŷ of pre-
dicted (joint) probabilities, and true class y, the cross-entropy loss
computes

LCE(ŷ, y) = LNLL(σ(ŷ), y),

where σ : RK → [0, 1]K is the softmax function:

σ(z) =
1

∑K
k=1 ezk

ez, for z = (z1, . . . , zK) ∈ RK.

In other words, CE loss is identical to NLL loss, except that the input
is normalised first, so that the sum of the values in ŷ is 1.

The addition of the softmax function in the CE loss is crucial,
because it entails that the loss function does not maximise the actual
joint probability P(x, y) that the model outputs. Instead, a model
trained with CE loss maximises the conditional probability P(y | x),
leading to a discriminative model. In discriminative training, there is
no incentive for P(y) or P(x | y) to be accurate in themselves.

probabilistic circuits 35

For optimising the model, different strategies are available de-
pending on the chosen loss function. Stochastic gradient descent
(SGD) is always available whereas expectation maximisation (EM)
is only available for models trained generatively. This is because
EM algorithms need to compute the expectations of conditional dis-
tributions. These expectations can only be computed accurately if
P(y) and P(x | y) are accurate, which is only the case in models
trained generatively. EM can be used for models that estimate the
likelihood function directly, such as PCs, but also variational autoen-
coders (VAEs), flow-based generative models, and BNs. Generative
adversarial networks (GANs) on the other hand, while trained gener-
atively, cannot be trained with EM, because they do not represent the
likelihood function explicitly.

robustness 37

3
Robustness

The goal of this thesis is to investigate the robustness of generative
versus discriminative classifiers. In the previous chapter, I introduced
the PC modelling formalism used for running the experiments. I will
now turn my attention to what it means for a model to be robust.
The importance of robustness was illustrated in the introduction. In
this chapter, I only consider notions of robustness with respect to the
classification problem (§ 1.1.1).

On the most general level, I consider two kinds of robustness: non-
adversarial and adversarial. With non-adversarial robustness, I mean
robustness to perturbations in the input, without ill intent. I call these
corruptions of the input data. A typical example is the presence of
random noise in the data. I address this topic in § 3.1 From § 3.2
onwards, I turn my attention to adversarial robustness, in which
an adversary deliberately alters the input, typically in a way that is
(nearly) imperceptible to humans.

3.1 Robustness to corruptions

A straightforward method for assessing the robustness of a model,
is by corrupting the test input and assessing the model performance.
This way the model can be tested against known perturbations that
might occur. The perturbations are not necessarily imperceptible, but
might arise in the data collection phase. Think for instance of noisy
sensors that are used as the input to a model.

Mu and Gilmer (2019) have introduced MNIST-C, a corrupted
version of the original MNIST dataset by Lecun et al. (1998). The
fifteen corruptions available in MNIST-C, shown in figure 3.1, can be
used to benchmark out-of-distribution (OOD) robustness. The authors
show that several approaches to defend models against adversarial
attacks in fact degrade performance on MNIST-C. This is a strong
argument for considering performance on corrupted datasets when
assessing model robustness.

An even simpler way of assessing robustness is by introducing
random noise to the test dataset. In this approach, the amount of
noise can be precisely controlled, so that the effect of different noise
levels on model performance can be plotted.

38 robustness of discriminative and generative classifiers

Figure 3.1: Randomly sampled applica-
tions of all 15 corruptions comprising
MNIST-C. From Mu and Gilmer, 2019,
p. 2.

3.2 Adversarial attacks

In an attack, an adversary tries to change the output of a model for his
benefit. This is distinct from robustness to corruptions, where there is
no a priori goal of changing the output. Before discussing different
types of attacks, it is useful to make the following distinctions: (1)
What is the goal of the adversary? And (2) What are the capabilities
of the adversary?

Regarding (1) we can identify the following attack goals: 1 1 Based on Qiu et al., 2019

• Confidence reduction: reducing the confidence of prediction for the
target model, e.g., an adversarial sample of a ‘5’ digit is predicted
with lower confidence.

• Non-targeted misclassification: changing the classification to any class
distinct from the true class, e.g., an adversarial sample of a ‘5’ digit
is predicted to be some other digit.

• Targeted misclassification: changing the classification to a specific
target class, e.g., any adversarial sample is classified as a ‘7’ (altern-
atively, we could even have source–target mappings).

Regarding (2) we can identify the following capabilities:
• Testing stage: the adversary can manipulate either training data

or the learning algorithms. This type of attack I will not consider
further.

• Training stage: the adversary cannot manipulate training stage, but
can manipulate testing stage. There are two main types: white-box
and black-box attacks.2 In a white-box attack, the adversary has full 2 In § 3.3, I provide examples for both

white-box and black-box attacks.knowledge about the target model hθ . Typically, the gradients are
exploited. In a black-box model, the adversary has no knowledge
about hθ , but can manipulate input–output pairs. In the non-adaptive
setting, a substitute model h′θ is trained. In the adaptive setting, the
adversary can only access hθ as an oracle and knows nothing else
about the model.3 He can however change the inputs to observe 3 Qiu et al., 2019, p. 7.

robustness 39

changes in outputs. Within the adaptive setting, we can further
distinguish between soft-label attacks, in which the adversary can
obtain probability outputs for the model for all classes, and hard-
label attacks, in which the adversary only knows the final decision
(e.g. top-1 predicted class).4 4 Cheng et al., 2018, pp. 1–2.

Black-box attacks are harder for the adversary than white-box attacks,
because he has access to less information. They however have the
great advantage that they are model-agnostic. This means that the
same attack strategy can be used on different types of models (of
course, the performance of this attack may differ across models).

Published as a conference paper at ICLR 2015

+ .007⇥ =

x sign(rxJ(✓, x, y))
x +

✏sign(rxJ(✓, x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let ✓ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(✓, x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of ✓, obtaining an optimal max-norm
constrained pertubation of

⌘ = ✏sign (rxJ(✓, x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y 2 {�1, 1} with P (y = 1) = �
�
w>x + b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

Ex,y⇠pdata⇣(�y(w>x + b))

where ⇣(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/
papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.

3

Figure 3.2: A demonstration of a
generated adversarial example. The
right image looks like a panda to us,
but is classified as a gibbon. From
Goodfellow et al., 2015, p. 3.

What does an attack look like? A domain in which attacks are easy
to explain, is image classification. Figure 3.2 shows an example in
which an attack is employed. In this example by Goodfellow et al.
(2015), we see an example of a (white-box) attack on an image classifier.
By introducing some noise—for visualisation purposes, the noise in
the middle image has been greatly amplified—we can find an image
that still looks like a panda to us, but is classified by the machine
as a gibbon, with very high confidence. Naturally the possibility of
such adversarial examples is undesirable: the semantic content of
the adversarial example is unchanged (we still see a panda), so the
computer should be able to ignore this noise.

3.2.1 Formalisation of adversarial robustness

Every adversarial attack and defence strategy is a method for (approx-
imately) solving the following problem:5 5 Kolter and Madry, 2018.

min
θ

R̂adv(hθ, Dtrain) ≡ min
θ

1
|Dtrain| ∑

(x,y)∈Dtrain

max
δ∈∆(x)

L(hθ(x + δ)), y)

(3.1)
Where
• hθ : X → RK is the hypothesis function, i.e. the model (K represents

the number of classes being predicted).
• θ is a vector representing the parameters of the model.
• R̂adv is the empirical adversarial risk.
• Dtrain is some training set consisting of (x, y) tuples, for input

x ∈ X and true class y ∈ Z.

40 robustness of discriminative and generative classifiers

• δ is the perturbation applied to create the adversarial example
x̃ = x + δ.

• ∆(x) is the set of allowable perturbations. Note that ∆ explicitly de-
pends on x, i.e., the allowable perturbations may differ depending
on the input. A trivial situation where we can see this depend-
ence, is when we need to ensure the resulting perturbed input
x̃ = x + δ is a valid point in X (e.g. ensure all values are bounded
in some interval [a, b]), but we could also change the set of allowed
perturbations based on other criteria.

• L : RK ×Z+ → R+ is a loss function, i.e. a mapping from the
model predictions and true labels to a non-negative number.6 6 Loss functions are further discussed

in § 2.4.While this equation may look daunting at first, we can intuitively
understand it as follows: we try to find the best adversarial example
within the allowed set of perturbations (the inner maximisation func-
tion, which maximises the loss of the true label), and then we try to
minimise the empirical risk, i.e. find the parameters θ such that the
overall loss is as low as possible. From this follows that there are two
main tasks within the field of adversarial robustness: (1) finding good
adversarial examples, i.e. good attack methods, and (2) finding good
defence strategies.

In solving the first task, a common approach is to find a lower
bound on the inner optimisation objective.7 This means that one tries 7 Kolter and Madry, 2018.

to find some adversarial example. There may be better examples, but
as long as we solve the inner maximisation problem well enough, we
can work with it.

Closely related to the inner maximisation problem is the concept
of adversarial robustness. Adversarial robustness is defined as the min-
imum adversarial perturbation δ ∈ ∆(x) that enables hθ(x + δ) 6=
hθ(x).8 In order to quantify adversarial robustness, we need some 8 Qin et al., 2020. Note that access to

the loss function L used by the model
is not required in order to find an
adversarial example, although it may
help to have this access, such as in
white-box attacks (see § 3.2).

distance measure for δ, of the form X → R. A common distance
measure is the `p-norm, which is defined as

‖δ‖p :=
(n

∑
i=1
|δi|p

)1/p

, (3.2)

but in principle any other distance measure can work too. For p = 1,
the `p-norm is equal to the taxicab norm (Manhattan distance), for
p = 2, the `p-norm is equal to the Euclidean norm, and for p = ∞, it
is equal to the maximum norm.

3.2.2 Why are adversarial examples possible?

A lot of research is being done on adversarial attacks on artificial
neural networks. It would be interesting to step back and ask: how
come adversarial attacks exist? Carlini and Wagner (2017) offer the
following:
• A possible explanation is that due to the highly non-linear nature

of artificial neural networks, they are likely to have blind spots.
Adversarial examples may lie in these blind spots. Defensive dis-
tillation is a strategy to reduce overfitting on the training data,

robustness 41

thereby removing these blind spots. This strategy works by using
label smoothing.

• But defensive distillation does not work well at all. Carlini and
Wagner (2017) devised new attack strategies that are practically
immune to defensive distillation. So it appears that these blind
spots do not provide a (full) explanation of adversarial examples.

• As an alternative, Goodfellow et al. (2015) introduce an explanation
based on the locally linear nature of neural networks. This is the
so-called linearity hypothesis and appears to be supported by
evidence.

3.3 Attack algorithms

In this section, I discuss some of the attack techniques used for solving
the inner maximisation problem in eq. (3.1).

3.3.1 Fast gradient method

One of the earliest white-box attack methods was proposed by Good-
fellow et al. (2015). This technique, called fast gradient method (FGM),
works by taking the gradient of the loss function L, and then taking
a step of size ε in the direction that maximises the loss.9 FGM is a 9 The authors use the term fast gradi-

ent sign method (FGSM) instead.
Nicolae et al. (2018) generalise the
method to other norms than `∞, hence
the term FGM is more appropriate.

non-targeted attack, because the goal is misclassification without a
specific target class. For the `∞ norm, the perturbation δ is given by
the formula:

δ = ε sign(∇xL(hθ(x), y)), (3.3)

or for an `p norm where p 6= ∞:

δ = ε
∇xL(hθ(x), y)
‖∇xL(hθ(x), y)‖p

. (3.4)

The main advantage of the fast gradient method is that it is, well,
fast. While iterative approaches may find a better lower bound on the
inner optimisation problem in eq. (3.1), they need far more computa-
tional resources. The method is surprisingly effective too. Goodfellow
et al. (2015, p. 3) find that with ε = 0.25, they can achieve an error rate
of 89.4% on MNIST. These properties make FGM suitable for quickly
assessing the adversarial robustness of a model.

In practical settings, using the FGM attack is often unfeasible,
because the attack needs access to the model gradients, which are
typically unavailable.

3.3.2 Carlini–Wagner method

A more advanced, iterative version of the FGM is the Carlini–Wagner
(C&W) method.10 This attack is considered the state of the art in 10 Carlini and Wagner, 2017.

white-box attacks.11 The authors reformulate the problem of finding 11 Nicolae et al., 2018; Chen et al., 2020.

42 robustness of discriminative and generative classifiers

an adversarial example as follows:

minimise ‖δ‖p + c · f (x + δ)

such that x + δ ∈ [0, 1]n
(3.5)

where n is the number of features of input x, c > 0 is a suitably chosen
constant, and f is a chosen objective function.12 For image input, the 12 The authors consider different

objective functions and choose the
best one; see Carlini and Wagner, 2017,
pp. 44–45.

box constraint ensures that the resulting adversarial example is a
valid image. The optimisation problem is then solved iteratively.

Like the FGM attack, the C&W attack is white-box, limiting its use-
fulness in practical settings. Still, because of its very high performance,
it is a relevant attack to consider when assessing model robustness.
Furthermore, one can intuit that a white box offers a better lower
bound on the inner optimisation objective in eq. (3.1). After all, it is
unlikely that an adversary without access to the model parameter
performs a more effective attack than an adversary with this access.
This is an additional consideration for studying white-box attacks,
despite their limited usefulness in real-life settings.

3.3.3 Gradient estimation methods

The attack methods discussed in the previous subsections need access
to the gradients of the model in order to find an adversarial example.
While this is feasible in experimental settings, in real-life situations it
is rather uncommon to have full access to the model f . Instead we can
only access the model as an oracle and observe the prediction for a
given input. To make things even harder for the adversarial, typically
only the top-1 prediction is returned. Hence we are in the black-
box hard-label setting. In this project I consider black-box attacks
for two reasons. Firstly, they are more realistic in real-life settings.
Secondly, they more easily allow for the model to be swapped by
another model. After all, the model is only ever accessed as an oracle.
This latter property is desirable, given that I aim to compare different
models.13 13 There is another practical consid-

eration. Some models under test are
trained with EM in libspn-keras (see
§ 2.1.3 and § 4.2). The EM implement-
ation in this framework makes use
of custom gradients in TensorFlow.
Due to this, existing implementations
of white-box attacks do not work on
these models out of the box. Black-
box attacks do not suffer from this
problem because the gradients are not
requested.

Why is the hard-label setting so hard? The main difficulty is that
in this setting, the decision boundary is discrete and discontinuous,
not continuous as in the soft-label setting.14 This means we cannot

14 Cheng et al., 2018.

use strategies for solving continuous optimisation problems, such as
gradient descent. A strategy that does work is performing a random
walk on the decision boundary.15 Unfortunately this approach suffers

15 See e.g. Brendel et al., 2018

from exponential search time, and lacks convergence guarantees.
Cheng et al. (2018) have developed a new black-box attack that

addresses these issues, dubbed ‘Opt attack’. By reformulating the
attack problem as an optimisation problem, they define an objective
function g(φ) that represents the distance from the original input x
to the nearest adversarial example in the direction φ:

g(φ) = arg min
λ>0

hθ(x + λ
φ

‖φ‖) 6= y, (3.6)

robustness 43

where λ is the smallest possible distance in direction φ to arrive at an
adversarial example. The optimisation problem then is given by

min
φ

g(φ), (3.7)

i.e., finding the direction for which an adversarial example is closest.
Even if the classifier function is not continuous, like in the hard-label
setting, g(φ) is continuous.

Figure 3.3: First order vs. zeroth order
optimisation. From Liu et al., 2020.

The adversarial example x̃ becomes

x̃ = x + g(φ∗)
φ∗

‖φ∗‖ ,

where g(φ∗) is the optimal solution of eq. (3.7).
Now the optimisation problem can be solved. Because we do not

have access to the gradients, we need to use zeroth order optimisation.
Figure 3.3 gives an illustration in which first order and zeroth order
optimisation is compared. The zeroth order optimisation strategy only
needs access to the function value, not the gradient.16 16 Liu et al., 2020 provide a primer on

how zeroth order optimisation works.Cheng et al. (2018) add some refinements, by first finding a general
direction, then performing a binary search to find a solution within
the region identified in the first step. The authors then go on to prove
some properties of their proposed attack method. In particular they
prove that their lower bound for an adversarial example is within an
adjustable ε-precision, and the algorithm has guaranteed convergence.

Improving on the work by Cheng et al. (2018), Chen et al. (2020)
have introduced the HopSkipJump (HSJ) attack. Their approach im-
proves query efficiency over Opt attack. That is, the method can
attain similar results with fewer calls to hθ. Each iteration of the HSJ
algorithm involves three steps. First, the direction of the gradient
is estimated. Then the step size is determined. Finally, a boundary
search is performed via a binary search. For mathematical details, I
refer to the original paper.

HSJ is considered the state of the art in black-box attacks, with
performance similar to the C&W attack.17 17 Chen et al., 2020, p. 2.

3.4 Measuring adversarial robustness

In § 3.2.1 I introduced a quantification for adversarial robustness, viz.
a norm that measures the minimum distance in the input needed to
alter the model’s classification. Next to this distance measure, there
are some related measures, proposed by Qin et al. (2020):
• Calibration measures the alignment between predicted probability

and accuracy. Informally, we would like the model to be confident
about samples it can predict well, and have low confidence for
for samples it has difficulty to predict. It is typically measured in
expected calibration error (ECE). This approach divides the data
in buckets, sorted by predicted probability (i.e. confidence) of the
predicted class. ECE is low if accuracy and confidence are close.
Hence for ECE, a lower score is better.

44 robustness of discriminative and generative classifiers

• Model uncertainty measures how random initialisation affects train-
ing. It can be quantified by the variance in predictions of n inde-
pendently trained models. A lower variance is better. For generative
models, we could alternatively look at the density of a data point,
and reject points that have a density below a threshold, since such
data points are unlikely to have come from the same distribution
as the training data.

Calibration is especially interesting here. When a model is miscalib-
rated, the “predicted confidence is not indicative of the true likelihood
of the model being correct”.18 This is problematic in practical applic- 18 Qin et al., 2020, p. 1.

ations where the input is never seen by the model before. In these
situations there may a distributional shift, which means that the input
samples come from a different distribution than the training samples.
Ideally the model should be able to predict these as well, or at least
be honest in its confidence of predictions.

While the three metrics are distinct and measure different concepts,
Qin et al. (2020) found that they are strongly aligned. This suggests
that in order to improve model calibration, we could explicitly address
examples that are adversarially unrobust and train them differently.

experimental setup 45

4
Experimental setup

In this chapter, I explain the methodology used for answering the
research questions (§ 1.2). I take an empirical, experimental approach
in this project. By training a large family of models, varying relevant
independent variables, I aim to discover what factors influence model
robustness. In addition, the models are attacked in different ways. I
monitor several dependent variables for quantifying robustness.

4.1 Datasets

I train models on three types of datasets: (1) image data, (2) empirical
tabular data, and (3) synthetic tabular data. I choose a mix of image
and tabular datasets in order to assess if differences in robustness arise
between the two. The inclusion of synthetic dataset in my experiments
allows for precisely controlling the characteristics of the dataset, and
assessing the impact of these characteristics on model robustness.

For an overview of the non-synthetic datasets used, see table 4.1.
For image data, I pick the MNIST1 dataset because it is relative small 1 Lecun et al., 1998.

compared to other commonly used image datasets in the field, such
as CIFAR-10 and ImageNet; small both in number of input features
and in number of training examples. This allows for faster training
and attacking with limited computational resources. In addition I use
the Fashion-MNIST2 dataset, for which the same model architectures 2 Xiao et al., 2017.

can be reused.
For tabular datasets, I select a subset of the UCI3 datasets, as 3 Dua and Graff, 2019.

provided by the OpenML4 dataset library.5 The selected datasets 4 Vanschoren et al., 2013.
5 See https://openml.org/search?
type=data.

are a subset of those used by Correia et al. (2020). I only consider

Dataset name |x| K |Dtrain| |Dval| |Dtest| Balanced

MNIST 784 10 54 000 6 000 10 000 X
Fashion-MNIST 784 10 54 000 6 000 10 000 X
authent 4 2 960 206 206
diabetes 8 2 537 115 116
gesture 32 5 6 911 1 481 1 481
jungle 6 3 31 373 6 723 6 723
robot 24 4 3 819 818 818
segment 18 7 1 617 346 347 X
texture 40 11 3 849 826 825 X
vehicle 18 4 592 127 127 X
wdbc 30 2 398 85 85

Table 4.1: Overview of non-synthetic
datasets. |x| is the number of input
features (flattened) and K is the
number of classes.

https://openml.org/search?type=data
https://openml.org/search?type=data

46 robustness of discriminative and generative classifiers

Configuration # samples
informative

features
redundant

features
useless
features

Default 10 000 5 3 12

Fewer samples 1 000 5 3 12
More samples 30 000 5 3 12
More informative ft. 10 000 17 3 0
No redundant ft. 10 000 5 0 15
More redundant ft. 10 000 5 15 0

Table 4.2: Overview of configurations
for the synthetic tabular datasets.
Note that given the number of classes
(K = 10), reducing the number of
informative features is not possible—
then there would be too few features
to put each cluster on a distinct corner
of the hypercube.

tabular datasets where all input features are continuous and there is
no missing data.

I generate synthetic tabular datasets with the sklearn method
datasets.make_classification.6 I use six named configurations, lis- 6 Pedregosa et al., 2011.

ted in table 4.2. For each configuration, I vary one parameter w.r.t. the
default configuration. The number of classes K is fixed at 10 and the
number of features is fixed at 20. The classes are balanced and each
class has a single cluster on a hypercube with sides of length 4. All
features have a mean of zero and standard deviation of one. There are
no repeated features. For 1 percent of samples, the class is assigned
randomly.

For image data, I use the train–test split as provided in the original
dataset. The original training partition is randomly split in a training
(90%) and validation (10%) dataset. For tabular data, both empirical
and synthetic, I use a random split of train (70%), validation (15%),
and test (15%) dataset.

4.1.1 Preprocessing

All input features are standardised to have zero mean and unit vari-
ance. For image datasets, standardisation is performed globally over
all input features. For tabular datasets, standardisation is performed
per input feature. The synthetic datasets do not need to be standard-
ised, because their input features have zero mean and unit variance
by definition. Standardisation allows adversarial distance measures
across datasets to be compared to each other.

For the empirical tabular datasets, I drop features with near-zero
variance, since they are not informative. The number of features
reported in table 4.1 is after these features are dropped.

4.2 Models

I train two families of models: baseline models and PCs. The baseline
models are ANN classifiers. For image data I use CNNs as a baseline.
For tabular data I use multi-layer perceptrons (MLPs) instead. The
baseline models are only trained discriminatively, whereas the PCs
are trained both discriminatively and generatively. While not directly
relevant for comparing discriminative and generative classifiers, the
baseline models serve as a check to assess if the PCs were trained
correctly. Additionally, these models serve as a ‘zero measurement’
for adversarial robustness. All baseline models are built with Keras, as

experimental setup 47

Fashion-MNIST MNIST

parameters Baseline Discriminative Generative Baseline Discriminative Generative

Architecture ANN PC Acc. Loss Acc. Loss Acc. Loss Acc. Loss Acc. Loss Acc. Loss

Reference CNN 34 826 — 0.908 0.257 — — — — 0.992 0.024 — — — —
Conv. SPN (large) 1 008 394 25 579 674 0.912 0.253 0.875 0.357 0.742 594 0.986 0.047 0.975 0.085 0.905 412
Conv. SPN (small) 48 414 175 262 0.881 0.324 0.889 0.324 0.679 639 0.978 0.074 0.962 0.114 0.881 445
DGC-SPN (large) 50 234 1 214 498 0.893 0.299 0.890 0.306 0.685 948 0.982 0.071 0.978 0.071 0.905 987
DGC-SPN (small) 102 430 230 050 0.893 0.294 0.878 0.342 0.701 636 0.985 0.058 0.967 0.109 0.893 444
RAT-SPN 918 490 922 250 0.891 0.350 0.852 1.565 0.784 139 0.981 0.086 0.970 0.472 0.895 -119

Table 4.3: Overview of models for
image data. Reported accuracy and
loss are on the test datasets.

provided in Tensorflow v2.5.0 7. All PCs are built with libspn-keras.8

7 Abadi et al., 2015

8 Van de Wolfshaar and Pronobis, 2020.
4.2.1 Model training

All models are trained on a high number of epochs (1 000), but with
an early stopping stopping rule to prevent overfitting. If after 3 epochs
the loss on the validation dataset has not decreased by at least 0.005,
training is halted. An additional callback ensures that when a plateau
is reached, the learning rate is decreased. Specifically, the original
learning rate is multiplied by 0.5. For this callback too, validation loss
is monitored.

Discriminative models are trained using SGD with an initial learn-
ing rate of 0.001 for ANNs and 0.01 for PCs. Generative models with
a convolutional structure (for image datasets) are trained using EM
with an initial learning rate of 0.05. Generative RAT-SPNs are trained
using SGD with an initial learning rate of 0.01.9 9 I chose the values for learning rates

and optimisation methods by testing
different different values, and selected
the values that yield the highest model
performance.

ANNs are initialised with the default initialisation offered by Keras.
For dense layers, this is a Xavier uniform initialiser for the weights and
zeros for the biases. For PCs, I tested different initialisers, both for the
leaf distributions and for the sum weights. I found best performance
by initialising the location and scale of the distributions in the leaf
nodes with truncated normal distributions. The weights of the sum
nodes are initialised with truncated normal distributions as well.

For PCs trained on image data, the fact that classes are balanced is
leveraged: the weights of the root sum are uniformly initialised and
are marked as non-trainable. For tabular datasets, the weights of the
root sum are trainable.

4.2.2 Models for image datasets

I train five different PC architectures for image data. Two architectures
use a convolutional structure without partially overlapping scopes; a large
model and a smaller model. I call these ‘Conv. SPN (large)’ and ‘Conv.
SPN (small)’. These architectures are comparable to those used in
Sharir et al. (2018) and Butz et al. (2019). Two architectures use a DGC-
SPN structure as introduced by van de Wolfshaar and Pronobis (2020).
These models do have partially overlapping scopes. Again I create a larger
and a smaller model with this structure: ‘DGC-SPN (large)’ and ‘DGC-
SPN (small)’.10 Finally, I add one RAT-SPN structure as introduced 10 See § 2.2.1 for more information on

these structures.by Peharz et al. (2018). Contrary to the convolutional structures, the

48 robustness of discriminative and generative classifiers

RAT-SPN “do not exploit the neighbourhood correlations present
in images”.11 For all models, I manually tweak the details of the 11 Peharz et al., 2018, p. 5.

structure—such as the number of layers and layer types—in order
to attain acceptable performance with generatively trained PCs on
MNIST.12 With ‘acceptable’ I mean a classification accuracy of at leat 12 I do not tweak model structure based

on performance on Fashion-MNIST.
Instead I take the model structure
found with the MNIST dataset and
train it on Fashion-MNIST too.

85%. Attaining such performance is not trivial, because generative
models are not naturally good classifiers.

For each PC, I train a baseline ANN that is structurally similar to
the PC. For the PCs with convolutional structures, this is a CNN. For
the RAT-SPN, this is an MLP. In order to structurally match convo-
lutional PCs and CNNs, I use a translation table which is included
in appendix A.13 The precise structures used for each model are laid 13 Note that this method of structure

matching may still lead to large
differences between the models in
number of parameters. I decided
structural similarity to be more
important than similarity in number of
parameters.

out in appendix B.
Finally, I include a single reference CNN for each dataset that is

not structurally matched to any PC. It merely serves as a check to
benchmark model performance against.

Naturally, each PC is trained both discriminatively and generatively.
In total, there are 3 ‘modes’ (baseline, discriminative, generative) × 5

architectures × 2 datasets + 2 reference CNNs = 32 models for image
data. See table 4.3 for an overview of these models.

4.2.3 Models for tabular datasets

For tabular datasets, I use RAT-SPNs for the PCs and MLPs for the
baseline ANNs.14 I vary: (1) the learning mode, (2) the depth of the 14 See § 2.2.2 for more information on

RAT-SPNs and their hyperparameters.model, and (3) the dataset on which the model is trained.
In total, there are 3 ‘modes’ (baseline, discriminative, generative) ×

3 depth levels × 9 datasets = 81 models trained on empirical tabular
datasets. The actual number of trained models is slightly lower, viz.
69. The discrepancy arises because in RAT-SPNs, the decomposition
into D layers must satisfy the decomposability criterion. At some
point, all leaf partitions contain only a single random variable, so they
cannot be split further. Therefore, depth D is bounded by the number
of input variables |x| in the following way: D ≤ O(log |x|). More
precisely, 2D−1 must not exceed |x|. The datasets ‘jungle’, ‘diabetes’
and ‘authent’ have too few input features to build a RAT-SPN of
depth 4. The dataset ‘authent’ also has too few input features to build
a RAT-SPN of depth 3.

Following Peharz et al.’s (2018) approach, I performed a grid
search in order to find the hyperparameters that yield highest ac-
curacy for generative models. For each D ∈ {2, 3, 4}, I tested every
combination of R ∈ {10, 20, 30, 40, 50}, I ∈ {4, 6, 8, 10, 12, 14, 16, 18},
and S ∈ {6, 9, 12, 15, 18, 21}. In case of draws in accuracy, I selected
the model with fewest params. For each selected model, I then trained
the same model discriminatively, and I constructed an MLP with
same depth and similar number of parameters. I list the selected
hyperparameters along with their performance in appendix C.

For the synthetic datasets, I take a different approach. I do not

experimental setup 49

perform a grid search for finding optimal parameters. Instead, I keep
the RAT-SPN hyperparameters fixed at R = 32, I = 10, S = 6.15 For 15 I took this decision because for syn-

thetic data, model accuracy can be
more easily controlled by changing
the dataset hyperparameters. This ap-
proach needs far fewer computational
resources than performing a grid
search.

MLPs I keep the number of hidden units H fixed at 256.
I do vary model depth D ∈ {2, 3, 4}. I also train the models on

synthetic tabular data with 3 different random seeds. This decision
is informed by the results of the attacks run on the empirical tabular
datasets; see chapter 5. In total, there are 3 ‘modes’ (baseline, discrim-
inative, generative) × 3 depth levels × 6 dataset configurations × 3

random seeds = 162 models trained synthetic tabular datasets. For
model performance, see appendix D.

4.3 Corruptions

I consider two types of corruptions for assessing non-adversarial
robustness. For all empirical datasets I look at the effects of adding
Gaussian noise to the test dataset. I vary the amount of noise by
setting the scale parameter σ of the Gaussian distribution. I use values
σ ∈ {2i | i ∈ Z∧−2 ≤ i < 3}. This way of perturbing the input data
makes sense, because all input features are standardised (see § 4.1.1).

For models trained on MNIST, I additionally consider performance
on MNIST-C. This dataset is introduced in § 3.1.

I measure classification accuracy on the corrupted datasets.

4.4 Attacks

In order to assess adversarial robustness, I run different attack al-
gorithms on the trained models. All attacks are non-targeted, i.e., the
goal of the adversary is to misclassify, not to change the output
classification to a specific target class.

For running the attacks, I use the implementations as provided in
the Adversarial Robustness Toolbox, by Nicolae et al. (2018). I use
default settings unless noted otherwise.

For models trained on empirical tabular data, I run the FGM attack,
C&W attack, and the HSJ attack, as introduced in § 3.3. The first
two attacks are white-box whereas the latter is black-box. Running
white-box attacks for these models is possible, because all are fully
differentiable. Hence the gradients, which are needed for these white-
box attacks, are accessible. All attacks are run with both an `2 and
`∞ minimisation objective, in order to assess if robustness differences
arise between the two. I set the step size ε in FGM to 0.3. For `∞ C&W
attacks ε is set to 0.3 too, but for this attack ε is an upper bound for the
adversarial perturbation. HopSkipJump and `2 C&W have no notion
of an ε step size/upper bound.

For models trained on image data, I use the same settings but
only use the black-box HopSkipJump attack. This is because most
generative models on image data are trained with the EM algorithm
in libspn-keras, which uses custom gradients in TensorFlow. Due
to this, the FGM and C&W implementations in the Adversarial Ro-
bustness Toolbox cannot be used, because these white-box attacks

50 robustness of discriminative and generative classifiers

need access the original gradients—something libspn-keras does
not presently offer.

For models trained on synthetic tabular data, I only perform the `2

HopSkipJump attack, in order to save computational resources.16 16 The rationale is that in the results,
no significant differences were found
between`2 and `∞ attacks.

The total number of attacks is:

Image data 32 models × 2 norms = 64
Empirical tabular data 3 attacks × 69 models × 2 norms = 414
Synthetic tabular data 162 models = 162

Total 640

For all attacks, I measure the mean `p distance of the adversarial
examples, where p is the norm used as the objective when running
the attack. I also save the generated adversarial examples. I measure
running time as well. Finally, I measure loss and accuracy of the
model on the adversarial test set, to assess the successfulness of the
attack.

Following the approach by Chen et al. (2020, p. 8), I limit the
number of adversarial examples generated, in order to speed up
the attacks. I take the test dataset, which the model has not seen
during training, for generating the adversarial examples. I only attack
examples in the test set which are correctly classified by the model.
After all, if the model already misclassifies the example, there is
no need to attack. If there are fewer than 1 000 correctly classified
examples in the test dataset, all are used for generating adversarial
examples. If there are more, I take a stratified sample of the test set
of size 1 000. Stratification ensures that in the adversarial test dataset,
the classes are balanced.17 17 For the Fashion-MNIST dataset,

I generate 100 instead of 1 000 ad-
versarial examples, to speed up
computation.4.5 Practicalities

4.5.1 Computational resources

I trained and attacked the models in using different computational
resources. I ran most experiments in a virtual machine rented from
Google Cloud Platform with a dedicated GPU.18 Additional exper- 18 See https://cloud.google.com.

iments which required fewer resources were run on a 2015 laptop
with a four-core 2.2 GHz CPU and no dedicated GPU.

4.5.2 Data management

For managing the large ensemble of models and attacks, I used the
open source platform MLFlow.19 With this platform, I store trained 19 See https://mlflow.org.

models including the model weights, the parameters used for the
experiments, and the metrics monitored during training and attacking.
I also store the generated adversarial test sets.

4.6 Summary of independent variables

For an overview of the independent variables (IVs) used, see table 4.4.

https://cloud.google.com
https://mlflow.org

experimental setup 51

Dataset type IV # levels Levels

Image Mode 3 Baseline, discriminative, generative
Dataset 2 MNIST, Fashion-MNIST
Model architecture 6 Reference CNN(1), conv. SPN

(large), conv. SPN (small),
DGC-SPN (large), DGC-SPN
(small), RAT-SPN

Attack norm 2 `2, `∞
Attack algorithm 1 HSJ

Empirical tabular Mode 3 Baseline, discriminative, generative
Dataset 9 Authent, diabetes, gesture, jungle,

robot, segment, texture, vehicle,
wdbc

Model depth 3 2, 3, 4(2)

Attack norm 2 `2, `∞
Attack algorithm 3 FGM, C&W, HSJ

Synthetic tabular Mode 3 Baseline, discriminative, generative
Configuration 6 Default, fewer samples, more

samples, more informative
features, no redundant features,
more redundant features

Model depth 3 2, 3, 4
Model random seed 3 1, 2, 3
Attack norm 1 `2
Attack algorithm 1 HSJ

Table 4.4: Overview of independent
variables used in the experiments.
Notes: (1) The reference CNN is not
attacked. (2) Some datasets lack a
model with depth 3 or 4; see § 4.2.3 for
explanation.

results 53

5
Results

In this chapter, I present the results of the experimental setup outlined
in the previous chapter.

5.1 Corruptions

5.1.1 Random noise

As expected, adding noise to the test data degrades classification
performance. Classification performance on the clean test datasets
varies depending on dataset and ‘mode’; see appendix C. In order
to make a fairer assessment, I look at relative classification accuracies
instead.1 This value is computed by dividing the accuracy on the 1 The interested reader can consult a

plot of the original, absolute accuracies
in appendix E.

noisy datasets by the model accuracy on the clean dataset. The results
are plotted in figure 5.1.

For all modes, the plots reveal a trend of decreasing accuracy
as the noise level increases. When comparing the modes with each
other, however, no unambiguous trend can be detected. For most
datasets, accuracy on generative models is lower than accuracy on
discriminative models (authent, diabetes, gesture, segment, texture).
The jungle and Fashion-MNIST datasets reveal an opposite trend.
For the other datasets (robot, vehicle, wdbc, MNIST), the difference

0.25

0.50

0.75

1.00

re
la

tiv
e

ac
cu

ra
cy

dataset = authent dataset = diabetes dataset = gesture dataset = jungle dataset = robot

0.0 0.25 0.5 1.0 2.0 4.0
noise_level

dataset = segment

0.0 0.25 0.5 1.0 2.0 4.0
noise_level

0.25

0.50

0.75

1.00

re
la

tiv
e

ac
cu

ra
cy

dataset = texture

0.0 0.25 0.5 1.0 2.0 4.0
noise_level

dataset = vehicle

0.0 0.25 0.5 1.0 2.0 4.0
noise_level

dataset = wdbc

0.0 0.25 0.5 1.0 2.0 4.0
noise_level

dataset = mnist

0.0 0.25 0.5 1.0 2.0 4.0
noise_level

dataset = fashion_mnist

Relative accuracy for noisy datasets

mode
discriminative
generative
baseline

Figure 5.1: Relative classification
accuracy on noisy datasets. The error
bars represent the 95% confidence
interval on the observations.

54 robustness of discriminative and generative classifiers

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

corruption = brightness corruption = canny_edges corruption = dotted_line corruption = fog

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

corruption = glass_blur corruption = identity corruption = impulse_noise corruption = motion_blur

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

corruption = rotate corruption = scale corruption = shear corruption = shot_noise

disc. gen. basel.
mode

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

corruption = spatter

disc. gen. basel.
mode

corruption = stripe

disc. gen. basel.
mode

corruption = translate

disc. gen. basel.
mode

corruption = zigzag

Accuracy on MNIST-C corruptions

architecture
DGC-SPN (large)
RAT-SPN
Convolutional SPN (small)
Convolutional SPN (large)
DGC-SPN (small)
CNN for reference

Figure 5.2: Classification accuracy on
MNIST-C, split based on corruption
type, architecture, and mode.is unclear: at some noise levels, the discriminative model performs

better whereas at other noise levels the generative model has highest
relative accuracy.

How can we explain the absence of a clear trend? A possible
explanation is the effect of sample size. The datasets where accuracy
on generative models is lower than on discriminative models, all have
train sample sizes smaller than 7 000. For the larger datasets on the
other hand (> 30 000 training samples), jungle, MNIST, and Fashion-
MNIST, generative models do seem to perform better—although this
effect is not unambiguous for MNIST, where there is large variance
between different models, as can be seen from the large error bars.

5.1.2 MNIST-C

The results for the MNIST-C corruptions are mixed too. It appears
that model accuracy is highly dependent on the type of corruption
applied to the input data. For the corruption canny_edges, the gen-
erative models have better performance than the discriminative and
baseline models. For the other corruptions, the direction is reversed
or the direction is unclear. It does appear that the different model

results 55

architectures generally agree on the direction (and often also mag-
nitude) of the effect of the corruptions. The most notable exception
is the impulse_noise corruption for the DGC-SPN (large) architec-
ture; the generatively trained DGC-SPN shows higher performance
than its discriminative counterpart. This is different from all other
architectures, which show a reverse effect.

It is possible that each model architecture has different inductive
biases. That is, each architecture makes different assumptions that
are used to predict the class for unobserved inputs. If this is so, it
can explain why each model responds differently to each type of
perturbation.

5.2 Attacks and adversarial distance

0.00 0.25 0.50 0.75 1.00
Adversarial accuracy

0

100

200

C
ou

nt

Distribution of adversarial accuracy

Figure 5.3: Distribution of adversarial
accuracy for the attacks on empirical
(image and tabular) datasets.

The attacks are generally successful. Figure 5.3 shows a histogram
of the adversarial accuracy for the attacks run on empirical datasets.
Half of the attacks (233 out of 478) result in an adversarial accuracy
of lower than 10%. The remaining attacks are distributed evenly over
attack norms, attack algorithms, learning modes, and datasets. For
attacks on the synthetic tabular datasets, all adversarial datasets result
in an accuracy below 10%. In figure 5.4, some example adversarial
examples for the MNIST dataset are shown, along with their predicted
classes. These are generated with the HopSkipJump (HSJ) attack.

From the examples shown, it already seems that the adversarial
examples for the generative model need more perturbation in order
to achieve misclassification. In other words, the generative model
appears more adversarially robust than the discriminative model.
This conjecture is confirmed when assessing the average adversarial
distance, compared to the baseline models. In figure 5.5, I compare
mean adversarial distances for the generative and discriminative
models with the baseline models. For all models, norms and datasets,
the generative model has a higher mean adversarial distance than the
discriminative model.2 There are differences between architectures in 2 There is one exception: for the RAT-

SPN on MNIST with norm `2, the
discriminative model has higher
mean adversarial distance. But this
difference is small compared to the
other differences.

magnitudes of the effect, but the direction of the effect is clear. From
this experiment it seems that indeed, generative models are more
adversarially robust than discriminative models.

Discriminative

Generative

Predicted=7 Predicted=3 Predicted=8 Predicted=5 Predicted=9 Predicted=8 Predicted=5 Predicted=1 Predicted=3 Predicted=4

Predicted=2 Predicted=7 Predicted=0 Predicted=2 Predicted=9 Predicted=3 Predicted=0 Predicted=8 Predicted=3 Predicted=4

Figure 5.4: Adversarial examples for
the MNIST dataset, generated with
the HopSkipJump attack with `2
norm objective. These examples were
generated while attacking DGC-SPN
(small) models.

56 robustness of discriminative and generative classifiers

2.5 0.0 2.5 5.0 7.5

Conv. SPN (large)

Conv. SPN (small)

DGC-SPN (large)

DGC-SPN (small)

RAT-SPN

ar
ch

ite
ct

ur
e

attack_norm = 2 | dataset = fashion_mnist

6 4 2 0 2

attack_norm = 2 | dataset = mnist

0.2 0.0 0.2 0.4 0.6
Difference from baseline

Conv. SPN (large)

Conv. SPN (small)

DGC-SPN (large)

DGC-SPN (small)

RAT-SPN

ar
ch

ite
ct

ur
e

attack_norm = inf | dataset = fashion_mnist

0.4 0.2 0.0 0.2
Difference from baseline

attack_norm = inf | dataset = mnist

Difference in mean adversarial distance for generative and discriminative models on image datasets

discriminative generative

Figure 5.5: Difference in mean `2 and
`∞ adversarial distance for generative
and discriminative models on image
datasets, using the HopSkipJump
attack.

0 5 10 15 20 25
0

50

100

150

C
ou

nt

L_2

0 10 20 30 40
0

50

100

150

200

250

C
ou

nt

L_inf

discriminative generative baseline

Distribution of adversarial distances Figure 5.6: Histogram of the ad-
versarial distances, for a DGC-SPN
(small) trained on MNIST and at-
tacked with HSJ (same models as in
figure 5.4).

As the mean adversarial distances only provide point estimates, it
can be worthwhile to look at the distribution of distances too. In fig-
ure 5.6, I plot these distributions, both for an `2 and an `∞ attack norm.
The difference in mean of the discriminative and generative model is
highly significant; for the `2 attack norm, t(999) = −36.92, p < 0.001.
This histogram is for a DGC-SPN (small) architecture, but other archi-
tectures exhibit similar distributions.

For models trained on empirical tabular datasets, the
results are less clear-cut. In figure 5.7, I plot the differences in mean
adversarial distance between discriminative and generative models
trained on empirical tabular data. The results are further split out by

`2 attack norm `∞ attack norm

Attack M SD t(22) p M SD t(22) p

CW 0.231 1.408 0.771 0.449 -0.068 0.049 -6.551 <0.001
FGM 0.002 0.021 0.400 0.693 <0.001 <0.001 5.752 <0.001
HSJ 0.279 0.513 2.548 0.018 0.070 0.216 1.521 0.143

Table 5.1: t tests for difference in mean
adversarial distance for models on
empirical tabular datasets. A positive
value indicates that the generative
model has higher adversarial distance
than generative model. Significant
results for α = 0.05 after Bonferroni
correction are boldfaced.

results 57

2 0 2
Diff. in mean adv. distance

authent
diabetes
gesture

jungle
robot

segment
texture
vehicle

wdbc

da
ta

se
t

attack_name = CarliniWagner

0.050 0.025 0.000 0.025 0.050
Diff. in mean adv. distance

attack_name = FastGradient

0.5 0.0 0.5 1.0
Diff. in mean adv. distance

attack_name = HopSkipJump

Difference in mean L_2 distance for generative and discriminative models

depth
2.0
3.0
4.0

(a)

0.15 0.10 0.05 0.00 0.05
Diff. in mean adv. distance

authent
diabetes
gesture

jungle
robot

segment
texture
vehicle

wdbc

da
ta

se
t

attack_name = CarliniWagner

0.0 0.5 1.0
Diff. in mean adv. distance1e 8

attack_name = FastGradient

0.25 0.00 0.25 0.50
Diff. in mean adv. distance

attack_name = HopSkipJump

Difference in mean L_inf distance for generative and discriminative models

depth
2.0
3.0
4.0

(b) Figure 5.7: Difference in mean (a) `2
and (b) `∞ adversarial distance for
models on empirical tabular datasets,
plotting the difference in adversarial
distance between discriminative and
generative model. Interpretation: if
point is on the left side (<0): discrim-
inative model has higher adversarial
distance than generative model. If
point is on the right side (>0): gener-
ative model has higher adversarial
distance than discriminative model.

model depth. For the raw adversarial distances, consult appendix F.
The results for adversarial distance appear near-random. For some
combinations of dataset, attack algorithm, attack norm, and model
depth, the generative model is more robust (positive values) whereas
for other combinations the effect is reversed. In order to assess the
main effect of learning mode, I present the t tests in table 5.1. Only
for CW and FGM attacks with an `∞ attack norm, the difference is
statistically significant. For FGM there is no practical significance,
because the mean and standard deviation of the effect is close to
zero. Hence the only (statistically and practically) significant effect can
be found for the CW attack with `∞, where discriminative models
on average have higher adversarial distance than generative models.
Since this effect is not present in the other combinations of attack
norm and attack algorithm, I conclude that for models on empirical
tabular data, there is no main effect of learning mode (discriminative
vs. generative) on adversarial robustness.

There is also no main effect of model depth.
For some specific attacks and datasets, consistent results can be

found. For the fast gradient method (FGM) attack, the difference
in adversarial distance is always close to zero. This result is to be
expected, because the FGM algorithm takes a single step of fixed size
in the direction that most likely leads to misclassification. Further-
more, for the jungle dataset, generative models either outperform
discriminative models, or the difference is very close to zero.

58 robustness of discriminative and generative classifiers

Considering the challenges interpreting the results for the empirical
tabular datasets, I run a subset of the experiments for synthetic tabular
datasets too. This opens up additional IVs that can be manipulated, in
order to assess the effects. The configurations used for the synthetic
datasets were already outlined in § 4.1. Since the results for image
datasets do not reveal significant differences between attack norms, I
only consider the `2 norm. I also limit myself to HSJ attacks, as these
black-box attacks are most versatile and allow for comparison with
the models trained on image data. Since the results for the empirical
tabular datasets appear near-random, I use different random seeds
when training the models, to assess variance between independently
trained models.

0.4 0.2 0.0 0.2 0.4
Difference from baseline MLP

Default

Fewer samples

More samples

More informative features

No redundant features

More redundant features

co
nf

ig
ur

at
io

n

Diff. in mean adv. distance for gen. and disc. models on synthetic data

discriminative generative

Figure 5.8: Difference in mean `2
adversarial distance for generative and
discriminative models on synthetic
tabular datasets.

In figure 5.8, the differences in mean adversarial distance for syn-
thetic datasets are shown, relative to the baseline MLPs. The results
for the synthetic datasets reveal again that there is no main effect of
model depth on adversarial robustness. I therefore do not distinguish
between them in this plot.

For all configurations, the difference between is statistically signi-
ficant (p < 0.001), except for the configuration ‘fewer samples’. For
this configuration, t(8) = 0.93, p = 0.38. These observations confirm
the results found with the image datasets: generative models are
generally more adversarially robust than discriminative models. The
finding that the difference in robustness disappears when the dataset
size decreases is insightful too. It can serve as a candidate explanation
for the results with empirical tabular datasets. These datasets are
typically small, in the order of magnitude |Dtrain| ≈ 103. It is possible
that the differences in adversarial robustness only appear as the train
dataset grows. This finding is in concordance with the results for
random noise experiments too, where generative models outperform
discriminative models only if sample size is large (see § 5.1.1).

conclusions and discussion 59

6
Conclusions and discussion

In this chapter, I review the results from the previous chapter in light
of the research questions formulated in the introduction, and draw
my conclusions. Furthermore, I discuss the difficulties encountered
during the study. Finally, I point out limitations of my work and
indicate directions for future research.

6.1 Main conclusions

Recall the hypothesis formulated in the introduction:

Generative models are more robust to noise and attacks than discrimin-
ative models.

I compared the robustness of discriminative and generative models
using two methods: (1) corrupting the input data and assessing clas-
sification accuracy, and (2) attacking the model and assessing mean
adversarial distance.

The results for robustness to corruptions are inconclusive. In the
random noise experiments, the different datasets show different re-
lative accuracy curves. Properties of the dataset are likely to affect
robustness to noise.

The type of corruption applied has an effect on accuracy too. The
MNIST-C experiments reveal that typically, classification performance
with generative models is worse than with discriminative models. But
there are corruptions for which the direction of this effect is reversed.

The attacks provide a clearer picture. Generative models are more
robust, confirming the hypothesis, but only if the model was trained
on a sufficient amount of data. The empirical tabular datasets are
typically small. Hence for these, a main effect of learning mode could
not be demonstrated.

The other independent variables I manipulated next to learning
mode, namely model architecture, model depth, attack norm and
attack algorithm, may influence the magnitude, but do not seem to
influence the direction of the main effect on robustness (measured as
either classification accuracy or adversarial distance). This result is
satisfying, because it indicates that factors that should not influence
(the direction of) robustness, indeed do not do so.

60 robustness of discriminative and generative classifiers

All in all, it seems that the robustness of discriminative vs. gener-
ative classifiers is more intricate than initially thought. In particular,
the dependence on dataset size is striking.

6.2 Difficulties

During programming, I encountered several issues. In this section, I
would like to point out four of these.

First, I discovered that finding a structure for generative models
that achieves satisfactory classification performance is very hard. It
took far more effort than for a discriminative model, for instance. This
constrained the choice of models. After all, if I could not obtain ad-
equate performance on a generative model whereas its discriminative
counterpart was acceptable, the comparison would not be fair. One
consequence of this difficulty is that some generative models on image
data use a different optimisation method than all other models (viz.
EM instead of SGD), for the reason that only with EM satisfactory
performance could be achieved. It is known that EM converges faster
than SGD for PCs and leads to more stable learning, because the
log-likelihood is guaranteed to be non-decreasing during training.1 1 Zhao et al., 2016, p. 7.

So it is not surprising that I could achieve better results with EM than
with SGD. What is surprising, however, is that I could not manage
to train RAT-SPNs with satisfactory performance using EM. I made
efforts to explain this phenomenon. I tried a large number of different
initialisation strategies, as these are known to influence the quality
of the solution dramatically.2 Among them are truncated normal and 2 París et al., 2020, p. 10.

Dirichlet distributions for the sum weights and Poon–Domingos and
truncated normal distributions for the Gaussian leaves. This was to
no avail; I did not find a way to properly train RAT-SPNs with EM.

Secondly, some model architectures were not available in the
libspn-keras framework I used. The most striking omission is the
Poon–Domingos structure. It is theoretically possible to implement
this structure in libspn-keras, as I conferred with the framework
author, but I lacked the expertise and time to implement the structure
myself.

Thirdly, I had difficulty managing the large number of models
and attacks. There are over 250 models, 600 attacks, and 750 noise
experiments incorporated in this report. The total number of experi-
ments is far larger, considering that most models and attacks did not
even make it into the report.3 Good data management is key when 3 Think only of the models considered

in the grid search while finding the
optimal RAT-SPNs.

dealing with such quantities of results. Logging the results is not very
challenging, but querying these logs is. For example: what paramet-
ers did I use when running this model? Eventually, I mitigated this
difficulty by using MLFlow, which manages recording and tracking of
experiments. I only made this decision late into the project, however,
so a lot of refactoring was required in order to use MLFlow in my
experiments.

Fourthly, I faced computational limitations while conducting the
experiments. My personal computer is not fast enough for generating

conclusions and discussion 61

the millions of adversarial examples I needed. Therefore, I looked for
other high-performance solutions. The high performance computing
(HPC) cluster of the university satisfied my computing requirements,
but the queueing times were prohibitively long, sometimes over a
week. I ended up renting a virtual machine with Google Cloud Plat-
form. The trial period lasted only 90 days, however. After that time, I
could not afford to continue using this platform, so in the final months
of my thesis, I was unable to run new experiments that required many
computations.

6.3 Limitations

6.3.1 Experimental design

In testing my hypothesis, I chose a single formalism when comparing
discriminative and generative classifiers, viz. probabilistic circuits
(PCs). This inherently limits the representativeness of the results. One
can wonder if results for PCs are valid for other types of (generative)
models too. It is highly likely that the model type chosen influences
robustness results.

On a related note, I only considered a limited set of attack al-
gorithms for estimating adversarial distance. From my results, it is
already apparent that the attack algorithm greatly affects the ad-
versarial distances found.4 Broadening the palette of attacks used may 4 This is particularly clear in the results

for FGM attacks, where a single step
of fixed size is taken. Therefore, in this
simple white-box approach, distances
are always very close.

uncover new insights that remain hidden in my experimental design,
improving generalisability of results.

6.3.2 Confounds

As addressed in the previous section, training well-performing gen-
erative classifiers is not straightforward. I aimed to train all models
with stochastic gradient descent (SGD), as this optimisation method
is available for both discriminative and generative models. Since even-
tually some models on image data were trained with EM instead,
this introduces a potential confound. After all, choice of optimisation
method may influence adversarial robustness. In my study, I cannot
rule out the presence of this effect.

6.4 Future work

My first suggestions for future work align with the points raised in the
previous sections. In order to generalise beyond the particular models
and attacks used in this study, it is advisable to extend the range
of models and attacks. One could extend to different PC structures,
in particular Poon–Domingos and class-selective SPNs. It is even
possible to move beyond the PC formalism and consider other model
types as well. Furthermore additional (black-box or white-box) attacks
can be taken into account, to assess how different attack algorithms
influence the results.

62 robustness of discriminative and generative classifiers

Secondly, the results of this study are not exhausted; they could
be analysed further. For instance, in my study, I only looked at the
hard-label output of the classifiers, that is, I looked at the top-1
predicted class. New insights may be uncovered, however, by looking
at the predicted soft labels too. By considering the soft labels, we
can gain information about the confidence the models have for the
different classes. Perhaps for poorly performing PCs, the distribution
of probabilities over the different classes was close to uniform, which
may explain why the model performed poorly: the confidence of the
model was low to begin with. Measurements worth considering here
are expected calibration error (ECE) and top-k accuracy for k > 1.

Another interesting question to explore if what happens if we feed
adversarial examples generated for one model into another model.
This way we could perform some cross-check to see if the adversarial
examples work for different models, or instead are strongly tied to a
specific model.

My research has been mostly explorative, in the sense that I try to
get a better understanding on the relation between learning mode
and robustness. A logical follow-up question is: how can we make
(generative) classifiers more robust? This question has been asked
before in literature on adversarial robustness, but is seldom asked
for PCs specifically. In future work, we can try to develop ways to
robustify PCs against noise in the input and adversarial attacks. Some
ideas that spring to mind are the use of regularisation in PCs, training
on corrupted datasets (also known as adversarial training’), and the
use of label smoothing. These things have been done before, but not
in the specific setting of generative classifiers and PCs.

conclusions and discussion 63

conclusions and discussion 65

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E.,
Chen, Z., Citro, C., Corrado, G. S., Davis, A.,
Dean, J., Devin, M., Ghemawat, S.,
Goodfellow, I., Harp, A., Irving, G., Isard, M.,
Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., . . .
Zheng, X. (2015). TensorFlow: Large-scale
machine learning on heterogeneous systems.
https://www.tensorflow.org/

Baldoni, V., Berline, N., De Loera, J. A., Köppe, M. &
Vergne, M. (2010). How to integrate a
polynomial over a simplex. Mathematics of
Computation, 80(273), 297–325. https:
//doi.org/10.1090/S0025-5718-2010-02378-6

Brendel, W., Rauber, J. & Bethge, M. (2018, February
16). Decision-Based Adversarial Attacks: Reliable
Attacks Against Black-Box Machine Learning Models.
arXiv: 1712.04248 [cs, stat]. Retrieved January
29, 2021, from http://arxiv.org/abs/1712.04248

Butz, C. J., Oliveira, J. S., Dos Santos, A. E. &
Teixeira, A. L. (2019). Deep Convolutional
Sum-Product Networks. Proceedings of the AAAI
Conference on Artificial Intelligence, 33, 3248–3255.
https://doi.org/10.1609/aaai.v33i01.33013248

Carlini, N. & Wagner, D. (2017). Towards Evaluating
the Robustness of Neural Networks. 2017 IEEE
Symposium on Security and Privacy (SP), 39–57.
https://doi.org/10.1109/SP.2017.49

Chen, J., Jordan, M. I. & Wainwright, M. J. (2020,
April 27). HopSkipJumpAttack: A Query-Efficient
Decision-Based Attack. arXiv: 1904.02144 [cs,

math, stat]. Retrieved August 7, 2021, from
http://arxiv.org/abs/1904.02144

Cheng, M., Le, T., Chen, P.-Y., Yi, J., Zhang, H. &
Hsieh, C.-J. (2018, July 12). Query-Efficient
Hard-label Black-box Attack: An Optimization-based
Approach. arXiv: 1807.04457 [cs, stat].
Retrieved January 8, 2021, from
http://arxiv.org/abs/1807.04457

Choi, A. & Darwiche, A. (2018). On the relative
expressiveness of bayesian and neural networks.
In V. Kratochvíl & M. Studený (Eds.), Proceedings
of the ninth international conference on probabilistic
graphical models (pp. 157–168). PMLR. http:
//proceedings.mlr.press/v72/choi18a.html

Choi, Y., Vergari, A. & Van den Broeck, G. (2020).
Probabilistic Circuits: Representation and
Inference. http:
//starai.cs.ucla.edu/papers/LecNoAAAI20.pdf

Choi, Y., Vergari, A. & Van den Broeck, G. (2021).
Probabilistic Circuits: A Unifying Framework for
Tractable Probabilistic Models. http:
//starai.cs.ucla.edu/papers/ProbCirc20.pdf

Correia, A. H. C. & de Campos, C. P. (2019).
Towards Scalable and Robust Sum-Product
Networks. In N. Ben Amor, B. Quost &
M. Theobald (Eds.), Scalable Uncertainty
Management (pp. 409–422). Springer
International Publishing.
https://doi.org/10.1007/978-3-030-35514-2_31

Correia, A. H. C., Peharz, R. & de Campos, C. P.
(2020). Joints in random forests. In H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan & H. Lin
(Eds.), Advances in neural information processing
systems (pp. 11404–11415). Curran Associates,
Inc. https://proceedings.neurips.cc/paper/
2020/file/8396b14c5dff55d13eea57487bf8ed26-
Paper.pdf

Cybenko, G. (1989). Approximation by
superpositions of a sigmoidal function.
Mathematics of Control, Signals and Systems, 2(4),
303–314. https://doi.org/10.1007/BF02551274

Dua, D. & Graff, C. (2019). UCI machine learning
repository. http://archive.ics.uci.edu/ml

Eykholt, K., Evtimov, I., Fernandes, E., Li, B.,
Rahmati, A., Xiao, C., Prakash, A., Kohno, T. &
Song, D. (2018, April 10). Robust Physical-World

https://www.tensorflow.org/
https://doi.org/10.1090/S0025-5718-2010-02378-6
https://doi.org/10.1090/S0025-5718-2010-02378-6
https://arxiv.org/abs/1712.04248
http://arxiv.org/abs/1712.04248
https://doi.org/10.1609/aaai.v33i01.33013248
https://doi.org/10.1109/SP.2017.49
https://arxiv.org/abs/1904.02144
https://arxiv.org/abs/1904.02144
http://arxiv.org/abs/1904.02144
https://arxiv.org/abs/1807.04457
http://arxiv.org/abs/1807.04457
http://proceedings.mlr.press/v72/choi18a.html
http://proceedings.mlr.press/v72/choi18a.html
http://starai.cs.ucla.edu/papers/LecNoAAAI20.pdf
http://starai.cs.ucla.edu/papers/LecNoAAAI20.pdf
http://starai.cs.ucla.edu/papers/ProbCirc20.pdf
http://starai.cs.ucla.edu/papers/ProbCirc20.pdf
https://doi.org/10.1007/978-3-030-35514-2_31
https://proceedings.neurips.cc/paper/2020/file/8396b14c5dff55d13eea57487bf8ed26-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/8396b14c5dff55d13eea57487bf8ed26-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/8396b14c5dff55d13eea57487bf8ed26-Paper.pdf
https://doi.org/10.1007/BF02551274
http://archive.ics.uci.edu/ml

66 robustness of discriminative and generative classifiers

Attacks on Deep Learning Models. arXiv:
1707.08945 [cs]. Retrieved November 3, 2021,
from http://arxiv.org/abs/1707.08945

Gens, R. & Domingos, P. (2013, May 26). Learning
the Structure of Sum-Product Networks. In
Sanjoy Dasgupta & David McAllester (Eds.),
Proceedings of the 30th International Conference on
Machine Learning (pp. 873–880). PMLR. https:
//proceedings.mlr.press/v28/gens13.html

Goodfellow, I., Bengio, Y. & Courville, A. (2016).
Deep learning. MIT Press.
http://www.deeplearningbook.org

Goodfellow, I., Shlens, J. & Szegedy, C. (2015, March
20). Explaining and Harnessing Adversarial
Examples. arXiv: 1412.6572 [cs, stat].
Retrieved December 9, 2020, from
http://arxiv.org/abs/1412.6572

Kolter, Z. & Madry, A. (2018). Adversarial Robustness
- Theory and Practice. Retrieved December 9, 2020,
from http://adversarial-ml-tutorial.org/

Kwisthout, J. (2011). Most probable explanations in
Bayesian networks: Complexity and tractability.
International Journal of Approximate Reasoning,
52(9), 1452–1469.
https://doi.org/10.1016/j.ijar.2011.08.003

Lecun, Y., Bottou, L., Bengio, Y. & Haffner, P. (1998).
Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11),
2278–2324. https://doi.org/10.1109/5.726791

Liu, S., Chen, P.-Y., Kailkhura, B., Zhang, G.,
Hero, A. & Varshney, P. K. (2020, June 21). A
Primer on Zeroth-Order Optimization in Signal
Processing and Machine Learning. arXiv:
2006.06224 [cs, eess, stat]. Retrieved January
8, 2021, from http://arxiv.org/abs/2006.06224

Martens, J. & Medabalimi, V. (2015, January 22). On
the Expressive Efficiency of Sum Product Networks.
arXiv: 1411.7717 [cs, stat]. Retrieved March
12, 2021, from http://arxiv.org/abs/1411.7717

Mu, N. & Gilmer, J. (2019, June 5). MNIST-C: A
Robustness Benchmark for Computer Vision. arXiv:
1906.02337 [cs]. Retrieved January 29, 2021,
from http://arxiv.org/abs/1906.02337

Mufson, B. (2017). Meet the Artist Using Ritual
Magic to Trap Self-Driving Cars [magazine]. Vice.
Retrieved November 3, 2021, from https:
//www.vice.com/en/article/qkmeyd/meet-
the-artist-using-ritual-magic-to-trap-self-
driving-cars

Müller, V. C. (2021). Deep Opacity Undermines Data
Protection and Explainable Artificial Intelligence.
In C. Zednik & H. Boelsen (Eds.), Overcoming
Opacity in Machine Learning (pp. 18–21).

Nagel, T. (1974). What Is It Like to Be a Bat? The
Philosophical Review, 83(4), 435–450.

Ng, A. & Jordan, M. (2001). On discriminative vs.
generative classifiers: A comparison of logistic
regression and naive bayes. Advances in neural
information processing systems, 14, 841–848.

Nicolae, M.-I., Sinn, M., Tran, M. N., Buesser, B.,
Rawat, A., Wistuba, M., Zantedeschi, V.,
Baracaldo, N., Chen, B., Ludwig, H., Molloy, I. &
Edwards, B. (2018). Adversarial robustness
toolbox v1.0.0. CoRR, 1807.01069.
https://arxiv.org/pdf/1807.01069

Orloff, J. & Bloom, J. (2014). Notational conventions.
https://ocw.mit.edu/courses/mathematics/18-
05-introduction-to-probability-and-statistics-
spring-
2014/readings/MIT18_05S14_Reading13b.pdf

París, I., Sánchez-Cauce, R. & Díez, F. J. (2020, April
2). Sum-product networks: A survey. arXiv:
2004.01167 [cs]. Retrieved December 8, 2020,
from http://arxiv.org/abs/2004.01167

Pedregosa, F., Varoquaux, G., Gramfort, A.,
Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V.,
Vanderplas, J., Passos, A., Cournapeau, D.,
Brucher, M., Perrot, M. & Duchesnay, E. (2011).
Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research, 12, 2825–2830.

Peharz, R., Gens, R. & Domingos, P. (2014).
Learning Selective Sum-Product Networks.
Proceedings of the 31st International Conference on
Machine Learning, 32. https://pure.tugraz.at/ws/
portalfiles/portal/2673084/selSPN.pdf

Peharz, R., Gens, R., Pernkopf, F. & Domingos, P.
(2017). On the latent variable interpretation in
sum-product networks. IEEE Transactions on
Machine Intelligence and Pattern Analysis (TPAMI),
39(10), 2030–2044.
https://doi.org/10.1109/TPAMI.2016.2618381

Peharz, R., Lang, S., Vergari, A., Stelzner, K.,
Molina, A., Trapp, M., Van den Broeck, G.,
Kersting, K. & Ghahramani, Z. (2020). Einsum
Networks: Fast and Scalable Learning of Tractable
Probabilistic Circuits. arXiv: 2004.06231 [cs,

stat]. http://arxiv.org/abs/2004.06231

https://arxiv.org/abs/1707.08945
http://arxiv.org/abs/1707.08945
https://proceedings.mlr.press/v28/gens13.html
https://proceedings.mlr.press/v28/gens13.html
http://www.deeplearningbook.org
https://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
http://adversarial-ml-tutorial.org/
https://doi.org/10.1016/j.ijar.2011.08.003
https://doi.org/10.1109/5.726791
https://arxiv.org/abs/2006.06224
http://arxiv.org/abs/2006.06224
https://arxiv.org/abs/1411.7717
http://arxiv.org/abs/1411.7717
https://arxiv.org/abs/1906.02337
http://arxiv.org/abs/1906.02337
https://www.vice.com/en/article/qkmeyd/meet-the-artist-using-ritual-magic-to-trap-self-driving-cars
https://www.vice.com/en/article/qkmeyd/meet-the-artist-using-ritual-magic-to-trap-self-driving-cars
https://www.vice.com/en/article/qkmeyd/meet-the-artist-using-ritual-magic-to-trap-self-driving-cars
https://www.vice.com/en/article/qkmeyd/meet-the-artist-using-ritual-magic-to-trap-self-driving-cars
https://arxiv.org/pdf/1807.01069
https://ocw.mit.edu/courses/mathematics/18-05-introduction-to-probability-and-statistics-spring-2014/readings/MIT18_05S14_Reading13b.pdf
https://ocw.mit.edu/courses/mathematics/18-05-introduction-to-probability-and-statistics-spring-2014/readings/MIT18_05S14_Reading13b.pdf
https://ocw.mit.edu/courses/mathematics/18-05-introduction-to-probability-and-statistics-spring-2014/readings/MIT18_05S14_Reading13b.pdf
https://ocw.mit.edu/courses/mathematics/18-05-introduction-to-probability-and-statistics-spring-2014/readings/MIT18_05S14_Reading13b.pdf
https://arxiv.org/abs/2004.01167
http://arxiv.org/abs/2004.01167
https://pure.tugraz.at/ws/portalfiles/portal/2673084/selSPN.pdf
https://pure.tugraz.at/ws/portalfiles/portal/2673084/selSPN.pdf
https://doi.org/10.1109/TPAMI.2016.2618381
https://arxiv.org/abs/2004.06231
https://arxiv.org/abs/2004.06231
http://arxiv.org/abs/2004.06231

conclusions and discussion 67

Peharz, R., Tschiatschek, S., Pernkopf, F. &
Domingos, P. (2015). On Theoretical Properties
of Sum-Product Networks. Proceedings of the 18th
International Conference on Artificial Intelligence
and Statistics, 744–752.

Peharz, R., Vergari, A., Stelzner, K., Molina, A.,
Trapp, M., Kersting, K. & Ghahramani, Z. (2018).
Probabilistic Deep Learning using Random
Sum-Product Networks. arXiv: 1806.01910 [cs,

stat]. http://arxiv.org/abs/1806.01910

Plato. (2015). Socrates’ defence (C. J. Rowe, Trans.).
Penguin Books.

Poon, H. & Domingos, P. (2011). Sum-product
networks: A new deep architecture. 2011 IEEE
International Conference on Computer Vision
Workshops (ICCV Workshops), 689–690.
https://doi.org/10.1109/ICCVW.2011.6130310

Qin, Y., Wang, X., Beutel, A. & Chi, E. H. (2020, June
29). Improving Uncertainty Estimates through the
Relationship with Adversarial Robustness. arXiv:
2006.16375 [cs, stat]. Retrieved December 3,
2020, from http://arxiv.org/abs/2006.16375

Qiu, S., Liu, Q., Zhou, S. & Wu, C. (2019). Review of
Artificial Intelligence Adversarial Attack and
Defense Technologies. Applied Sciences, 9(5), 909.
https://doi.org/10.3390/app9050909

Sharir, O., Tamari, R., Cohen, N. & Shashua, A.
(2018, March 25). Tensorial Mixture Models. arXiv:
1610.04167 [cs, stat]. Retrieved November 8,
2021, from http://arxiv.org/abs/1610.04167

van de Wolfshaar, J. (2019, June 11). Tensor-Based
Sum-Product Networks: Part I. Retrieved July 8,
2021, from https://jostosh.github.io/spn01/

van de Wolfshaar, J. & Pronobis, A. (2020,
September 22). Deep Generalized Convolutional
Sum-Product Networks. arXiv: 1902.06155 [cs,

stat]. http://arxiv.org/abs/1902.06155

Vanschoren, J., van Rijn, J. N., Bischl, B. & Torgo, L.
(2013). OpenML: Networked science in machine
learning. SIGKDD Explorations, 15(2), 49–60.
https://doi.org/10.1145/2641190.2641198

Vapnik, V. N. (1998). Statistical learning theory. Wiley.
Vergari, A., Choi, Y., Peharz, R. &

Van den Broeck, G. (2020, September 14).
Probabilistic Circuits: Representations, Inference,
Learning and Theory. Ghent, Belgium.
https://www.youtube.com/watch?v=2RAG5-
L9R70&t=5639s

Xiao, H., Rasul, K. & Vollgraf, R. (2017, September
15). Fashion-MNIST: A Novel Image Dataset for
Benchmarking Machine Learning Algorithms. arXiv:
1708.07747 [cs, stat]. Retrieved November 13,
2021, from http://arxiv.org/abs/1708.07747

Zhao, H., Poupart, P. & Gordon, G. J. (2016). A
unified approach for learning the parameters of
sum-product networks. In D. Lee, M. Sugiyama,
U. Luxburg, I. Guyon & R. Garnett (Eds.),
Advances in neural information processing systems.
Curran Associates, Inc. https:
//proceedings.neurips.cc/paper/2016/file/
6c9882bbac1c7093bd25041881277658-Paper.pdf

https://arxiv.org/abs/1806.01910
https://arxiv.org/abs/1806.01910
http://arxiv.org/abs/1806.01910
https://doi.org/10.1109/ICCVW.2011.6130310
https://arxiv.org/abs/2006.16375
http://arxiv.org/abs/2006.16375
https://doi.org/10.3390/app9050909
https://arxiv.org/abs/1610.04167
http://arxiv.org/abs/1610.04167
https://jostosh.github.io/spn01/
https://arxiv.org/abs/1902.06155
https://arxiv.org/abs/1902.06155
http://arxiv.org/abs/1902.06155
https://doi.org/10.1145/2641190.2641198
https://www.youtube.com/watch?v=2RAG5-L9R70&t=5639s
https://www.youtube.com/watch?v=2RAG5-L9R70&t=5639s
https://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747
https://proceedings.neurips.cc/paper/2016/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/6c9882bbac1c7093bd25041881277658-Paper.pdf

glossary 69

Glossary

AC arithmetic circuit. 23

AI artificial intelligence. 23

ANN artificial neural network. 19, 20, 23, 46–48

BN Bayesian network. 18, 19, 24, 35

C&W Carlini–Wagner. 41–43, 49

CE cross-entropy. 34

CNN convolutional neural network. 30, 46, 48

DAG directed acyclic graph. 23, 24, 32

DGC-SPN deep generalised convolutional
sum–product network. 31, 47

distributional shift Input samples come from a
different distribution than the training samples.
44

ECE expected calibration error. 43, 62

EiNet Einsum network. 29, 30

EM expectation maximisation. 35, 47, 49, 60, 61

FGM fast gradient method. 41, 42, 49, 57, 61

FGSM fast gradient sign method. 41

GAN generative adversarial network. 35

HPC high performance computing. 61

HSJ HopSkipJump. 43, 49, 55, 58

IBE inference to the best explanation. 26

IV independent variable. 50, 58

LV latent variable. 24

MAP maximum a posteriori. 26

ML machine learning. 5, 17, 18

MLP multi-layer perceptron. 46, 48

MPE most probable explanation. 26, 33

NLL negative log–likelihood. 34

OOD out-of-distribution. 37

PC probabilistic circuit. 5, 20, 23, 24, 29, 30, 46, 47, 61

PDF probability density function. 24

PGM probabilistic graphical model. 20, 23, 25, 26

PMS probability mass function. 24

RAT-SPN random tensorised sum–product network.
32, 47, 48

RV random variable. 15, 24, 25

SGD stochastic gradient descent. 35, 47, 60, 61

SPN sum–product network. 23, 29

VAE variational autoencoder. 35

model translation table 71

Appendix A
Model translation table

For SPNs with a convolutional structure, I create a CNN that is
structurally similar. This table explains which CNN equivalent layer I
use for each SPN layer.

SPN layer CNN layer

NormalLeaf Dense

Conv2DProduct with depthwise
convolutions, followed by
Conv2DSum

SeparableConv2D

Conv2DProduct with depthwise
convolutions, otherwise

DepthwiseConv2D

Conv2DProduct without depthwise
convolutions

Conv2D

Local2DSum LocallyConnected2D with kernel
size 1

Conv2DSum —1

LogDropout Dropout

DenseSum Dense

SpatialToRegions Flatten

RootSum —

1. There is no CNN equivalent for Conv2DSum, but this is unproblematic because

Conv2DSum is always preceded by Conv2DProduct, which has an equivalent.

Constructing matching CNNs for the SPN with similar structure
and similar number of parameters is very hard. It turns out that
models with LocallyConnected2D layers, which would be the sensible
equivalent for DenseSum layers, converge very poorly. Hence in the
source base, I use Dense instead of LocallyConnected2D. But Dense
only operates on the final dimension of the tensor—the number of
channels—which leads to far fewer params.

models on image data 73

Appendix B
Models on image data

Reference CNN

Layer (type) Output Shape Param #

===

conv2d_3 (Conv2D) (None, 26, 26, 32) 320

max_pooling2d_2 (MaxPooling2 (None, 13, 13, 32) 0

conv2d_4 (Conv2D) (None, 11, 11, 64) 18496

max_pooling2d_3 (MaxPooling2 (None, 5, 5, 64) 0

flatten_5 (Flatten) (None, 1600) 0

dropout_2 (Dropout) (None, 1600) 0

dense_18 (Dense) (None, 10) 16010

===

Total params: 34,826

Trainable params: 34,826

Non-trainable params: 0

Convolutional SPN (large)

Layer (type) Output Shape Param #

===

normal_leaf_29 (NormalLeaf) (None, 28, 28, 4) 6272

conv2d_product_88 (Conv2DPro (None, 14, 14, 256) 4096

local2d_sum_68 (Local2DSum) (None, 14, 14, 256) 12845056

conv2d_product_89 (Conv2DPro (None, 7, 7, 256) 4

local2d_sum_69 (Local2DSum) (None, 7, 7, 512) 6422528

zero_padding2d_8 (ZeroPaddin (None, 8, 8, 512) 0

conv2d_product_90 (Conv2DPro (None, 4, 4, 512) 4

local2d_sum_70 (Local2DSum) (None, 4, 4, 512) 4194304

conv2d_product_91 (Conv2DPro (None, 2, 2, 512) 4

local2d_sum_71 (Local2DSum) (None, 2, 2, 1024) 2097152

conv2d_product_92 (Conv2DPro (None, 1, 1, 1024) 4

74 robustness of discriminative and generative classifiers

log_dropout_5 (LogDropout) (None, 1, 1, 1024) 0

dense_sum_44 (DenseSum) (None, 1, 1, 10) 10240

root_sum_29 (RootSum) (None, 10) 10

===

Total params: 25,579,674

Trainable params: 25,575,552

Non-trainable params: 4,122

CNN equivalent:

Layer (type) Output Shape Param #

===

conv2d_2 (Conv2D) (None, 14, 14, 256) 1280

dense_10 (Dense) (None, 14, 14, 256) 65792

depthwise_conv2d_9 (Depthwis (None, 7, 7, 256) 1280

dense_11 (Dense) (None, 7, 7, 512) 131584

zero_padding2d_8 (ZeroPaddin (None, 8, 8, 512) 0

depthwise_conv2d_10 (Depthwi (None, 4, 4, 512) 2560

dense_12 (Dense) (None, 4, 4, 512) 262656

depthwise_conv2d_11 (Depthwi (None, 2, 2, 512) 2560

dense_13 (Dense) (None, 2, 2, 1024) 525312

depthwise_conv2d_12 (Depthwi (None, 1, 1, 1024) 5120

flatten_3 (Flatten) (None, 1024) 0

dropout_1 (Dropout) (None, 1024) 0

dense_14 (Dense) (None, 10) 10250

===

Total params: 1,008,394

Trainable params: 1,008,394

Non-trainable params: 0

Convolutional SPN (small)

Layer (type) Output Shape Param #

===

normal_leaf_14 (NormalLeaf) (None, 28, 28, 4) 6272

conv2d_product_49 (Conv2DPro (None, 14, 14, 4) 4

local2d_sum_37 (Local2DSum) (None, 14, 14, 32) 25088

conv2d_product_50 (Conv2DPro (None, 7, 7, 32) 4

local2d_sum_38 (Local2DSum) (None, 7, 7, 64) 100352

zero_padding2d_5 (ZeroPaddin (None, 8, 8, 64) 0

conv2d_product_51 (Conv2DPro (None, 4, 4, 64) 4

models on image data 75

conv2d_sum_28 (Conv2DSum) (None, 4, 4, 128) 8192

conv2d_product_52 (Conv2DPro (None, 2, 2, 128) 4

conv2d_sum_29 (Conv2DSum) (None, 2, 2, 256) 32768

conv2d_product_53 (Conv2DPro (None, 1, 1, 256) 4

dense_sum_14 (DenseSum) (None, 1, 1, 10) 2560

root_sum_14 (RootSum) (None, 10) 10

===

Total params: 175,262

Trainable params: 175,232

Non-trainable params: 30

CNN equivalent:

Layer (type) Output Shape Param #

===

depthwise_conv2d_29 (Depthwi (None, 14, 14, 4) 20

dense_33 (Dense) (None, 14, 14, 32) 160

depthwise_conv2d_30 (Depthwi (None, 7, 7, 32) 160

dense_34 (Dense) (None, 7, 7, 64) 2112

zero_padding2d_19 (ZeroPaddi (None, 8, 8, 64) 0

separable_conv2d_8 (Separabl (None, 4, 4, 128) 8576

separable_conv2d_9 (Separabl (None, 2, 2, 256) 33536

depthwise_conv2d_31 (Depthwi (None, 1, 1, 256) 1280

flatten_9 (Flatten) (None, 256) 0

dense_35 (Dense) (None, 10) 2570

===

Total params: 48,414

Trainable params: 48,414

Non-trainable params: 0

DGC-SPN (large)

Layer (type) Output Shape Param #

===

normal_leaf_20 (NormalLeaf) (None, 28, 28, 16) 25088

conv2d_product_66 (Conv2DPro (None, 14, 14, 16) 4

local2d_sum_49 (Local2DSum) (None, 14, 14, 16) 50176

conv2d_product_67 (Conv2DPro (None, 7, 7, 16) 4

local2d_sum_50 (Local2DSum) (None, 7, 7, 32) 25088

conv2d_product_68 (Conv2DPro (None, 8, 8, 32) 4

local2d_sum_51 (Local2DSum) (None, 8, 8, 32) 65536

conv2d_product_69 (Conv2DPro (None, 10, 10, 32) 4

76 robustness of discriminative and generative classifiers

local2d_sum_52 (Local2DSum) (None, 10, 10, 64) 204800

conv2d_product_70 (Conv2DPro (None, 14, 14, 64) 4

local2d_sum_53 (Local2DSum) (None, 14, 14, 64) 802816

conv2d_product_71 (Conv2DPro (None, 8, 8, 64) 4

spatial_to_regions_11 (Spati (None, 1, 1, 4096) 0

dense_sum_35 (DenseSum) (None, 1, 1, 10) 40960

root_sum_20 (RootSum) (None, 10) 10

===

Total params: 1,214,498

Trainable params: 1,201,920

Non-trainable params: 12,578

CNN equivalent:

Layer (type) Output Shape Param #

===

depthwise_conv2d_16 (Depthwi (None, 14, 14, 16) 80

dense_19 (Dense) (None, 14, 14, 16) 272

depthwise_conv2d_17 (Depthwi (None, 7, 7, 16) 80

dense_20 (Dense) (None, 7, 7, 32) 544

zero_padding2d_10 (ZeroPaddi (None, 9, 9, 32) 0

depthwise_conv2d_18 (Depthwi (None, 8, 8, 32) 160

dense_21 (Dense) (None, 8, 8, 32) 1056

zero_padding2d_11 (ZeroPaddi (None, 12, 12, 32) 0

depthwise_conv2d_19 (Depthwi (None, 10, 10, 32) 160

dense_22 (Dense) (None, 10, 10, 64) 2112

zero_padding2d_12 (ZeroPaddi (None, 18, 18, 64) 0

depthwise_conv2d_20 (Depthwi (None, 14, 14, 64) 320

dense_23 (Dense) (None, 14, 14, 64) 4160

zero_padding2d_13 (ZeroPaddi (None, 16, 16, 64) 0

depthwise_conv2d_21 (Depthwi (None, 8, 8, 64) 320

flatten_6 (Flatten) (None, 4096) 0

dense_24 (Dense) (None, 10) 40970

===

Total params: 50,234

Trainable params: 50,234

Non-trainable params: 0

DGC-SPN (small)

Layer (type) Output Shape Param #

models on image data 77

===

normal_leaf_26 (NormalLeaf) (None, 28, 28, 4) 6272

conv2d_product_76 (Conv2DPro (None, 14, 14, 4) 4

local2d_sum_58 (Local2DSum) (None, 14, 14, 32) 25088

conv2d_product_77 (Conv2DPro (None, 7, 7, 32) 4

local2d_sum_59 (Local2DSum) (None, 7, 7, 64) 100352

conv_overlapping_1 (Conv2DPr (None, 8, 8, 64) 4

conv2d_sum_51 (Conv2DSum) (None, 8, 8, 64) 4096

conv_overlapping_2 (Conv2DPr (None, 10, 10, 64) 4

conv2d_sum_52 (Conv2DSum) (None, 10, 10, 64) 4096

conv_overlapping_3 (Conv2DPr (None, 14, 14, 64) 4

conv2d_sum_53 (Conv2DSum) (None, 14, 14, 128) 8192

conv_overlapping_final (Conv (None, 8, 8, 128) 4

spatial_to_regions_17 (Spati (None, 1, 1, 8192) 0

dense_sum_41 (DenseSum) (None, 1, 1, 10) 81920

root_sum_26 (RootSum) (None, 10) 10

===

Total params: 230,050

Trainable params: 230,016

Non-trainable params: 34

CNN equivalent:

Layer (type) Output Shape Param #

===

depthwise_conv2d_22 (Depthwi (None, 14, 14, 4) 20

dense_25 (Dense) (None, 14, 14, 32) 160

depthwise_conv2d_23 (Depthwi (None, 7, 7, 32) 160

dense_26 (Dense) (None, 7, 7, 64) 2112

zero_padding2d_14 (ZeroPaddi (None, 9, 9, 64) 0

separable_conv2d_5 (Separabl (None, 8, 8, 64) 4416

zero_padding2d_15 (ZeroPaddi (None, 12, 12, 64) 0

separable_conv2d_6 (Separabl (None, 10, 10, 64) 4416

zero_padding2d_16 (ZeroPaddi (None, 18, 18, 64) 0

separable_conv2d_7 (Separabl (None, 14, 14, 128) 8576

zero_padding2d_17 (ZeroPaddi (None, 16, 16, 128) 0

depthwise_conv2d_24 (Depthwi (None, 8, 8, 128) 640

flatten_7 (Flatten) (None, 8192) 0

dense_27 (Dense) (None, 10) 81930

78 robustness of discriminative and generative classifiers

===

Total params: 102,430

Trainable params: 102,430

Non-trainable params: 0

RAT-SPN (large)

Layer (type) Output Shape Param #

===

flatten_5 (Flatten) (None, 784) 0

flat_to_regions_5 (FlatToReg (None, 784, 10, 1) 0

normal_leaf_35 (NormalLeaf) (None, 784, 10, 32) 501760

permute_and_pad_scopes_rando (None, 1024, 10, 32) 10240

reduce_product_10 (ReducePro (None, 128, 10, 32) 0

dense_sum_60 (DenseSum) (None, 128, 10, 8) 327680

reduce_product_11 (ReducePro (None, 16, 10, 8) 0

dense_sum_61 (DenseSum) (None, 16, 10, 8) 10240

dense_product_20 (DenseProdu (None, 8, 10, 64) 0

dense_sum_62 (DenseSum) (None, 8, 10, 8) 40960

dense_product_21 (DenseProdu (None, 4, 10, 64) 0

dense_sum_63 (DenseSum) (None, 4, 10, 8) 20480

dense_product_22 (DenseProdu (None, 2, 10, 64) 0

dense_sum_64 (DenseSum) (None, 2, 10, 8) 10240

dense_product_23 (DenseProdu (None, 1, 10, 64) 0

dense_sum_65 (DenseSum) (None, 1, 10, 1) 640

undecompose_5 (Undecompose) (None, 1, 1, 10) 0

root_sum_35 (RootSum) (None, 10) 10

===

Total params: 922,250

Trainable params: 912,000

Non-trainable params: 10,250

MLP equivalent:

Model: "sequential"

Layer (type) Output Shape Param #

===

flatten (Flatten) (None, 784) 0

dense (Dense) (None, 356) 279460

dense_1 (Dense) (None, 356) 127092

dense_2 (Dense) (None, 356) 127092

dense_3 (Dense) (None, 356) 127092

models on image data 79

dense_4 (Dense) (None, 356) 127092

dense_5 (Dense) (None, 356) 127092

dense_6 (Dense) (None, 10) 3570

===

Total params: 918,490

Trainable params: 918,490

Non-trainable params: 0

models on empirical tabular data 81

Appendix C
Models on empirical tabular data

In the grid search explained in § 4.2.3, these are the optimal paramet-
ers I found:

MLP RAT-SPN

Baseline Discriminative Generative

Dataset D H # params Acc. Loss R I S # params Acc. Loss Acc. Loss

authent 2 215 47 947 1.000 0.007 30 4 21 48 182 1.000 0.029 1.000 3.073
3 — — — — — — — — — — — —
4 — — — — — — — — — — — —

diabetes 2 391 157 575 0.750 0.457 40 14 9 158 162 0.776 0.472 0.784 9.291
3 183 69 359 0.750 0.452 10 8 12 69 842 0.724 0.513 0.784 8.920
4 — — — — — — — — — — — —

gesture 2 150 28 355 0.559 1.133 10 12 6 28 365 0.534 1.179 0.436 14.528
3 356 267 717 0.594 1.124 50 4 12 268 005 0.544 1.157 0.446 11.438
4 1 368 5 670 365 0.599 1.150 50 18 21 5 675 755 0.544 1.157 0.447 11.544

jungle 2 194 39 773 0.875 0.245 20 12 6 40 243 0.864 0.285 0.685 9.104
3 235 113 273 0.889 0.188 10 8 15 113 933 0.858 0.308 0.696 9.227
4 — — — — — — — — — — — —

robot 2 668 466 268 0.938 0.173 50 18 12 466 804 0.949 0.137 0.806 0.333
3 767 1 200 359 0.946 0.182 50 12 18 1 201 204 0.944 0.169 0.783 0.525
4 627 1 199 455 0.933 0.190 50 16 9 1 201 304 0.949 0.149 0.748 0.778

segment 2 233 60 587 0.942 0.168 40 6 9 60 927 0.937 0.231 0.876 -2.287
3 699 996 781 0.960 0.184 40 6 21 997 807 0.954 0.222 0.844 -2.066
4 926 2 599 289 0.954 0.204 40 6 21 2 600 847 0.951 0.194 0.850 -1.820

texture 2 682 501 281 0.999 0.005 50 10 21 502 561 0.995 0.033 0.898 6.238
3 672 939 467 0.999 0.003 50 16 12 940 411 0.993 0.070 0.886 6.602
4 1 173 4 192 313 0.999 0.004 40 16 21 4 196 531 0.895 0.172 0.891 5.563

vehicle 2 341 124 469 0.819 0.311 50 8 12 124 604 0.787 0.469 0.701 8.343
3 847 1 455 997 0.858 0.282 50 10 21 1 457 104 0.780 0.495 0.693 8.792
4 1 110 3 725 164 0.858 0.310 50 10 21 3 729 704 0.748 0.516 0.677 8.628

wdbc 2 303 102 113 0.977 0.151 30 14 6 102 482 0.965 0.121 0.977 24.627
3 645 854 627 0.977 0.132 50 16 12 857 202 0.977 0.138 0.977 23.717
4 617 1 164 281 0.977 0.261 30 12 15 1 165 562 0.965 0.168 0.965 24.300

The number of hidden units H is set in order to closely match the
number of parameters in the RAT-SPN. RAT-SPN hyperparameters
are explained in § 2.2.2. Empty lines denote models that cannot be
built due to there being too few input features.

models on synthetic tabular data 83

Appendix D
Models on synthetic tabular data

For models trained on synthetic data, the following hyperparameters
are used:

MLP RAT-SPN

D H # params R I S # params

2 256 73 738 32 10 6 65 930
3 139 530 118 282
4 205 322 222 986

This yields the following performance:

Baseline Discriminative Generative

Configuration D Acc. Loss Acc. Loss Acc. Loss

Default 2 0.935 0.243 0.928 0.267 0.901 25.698
3 0.936 0.239 0.930 0.268 0.904 25.524
4 0.936 0.251 0.926 0.276 0.906 25.420

Fewer samples 2 0.891 0.334 0.898 0.424 0.753 26.742
3 0.889 0.396 0.900 0.387 0.744 26.714
4 0.887 0.409 0.871 0.441 0.740 26.864

More samples 2 0.961 0.171 0.951 0.182 0.894 25.748
3 0.962 0.169 0.953 0.179 0.897 25.824
4 0.963 0.171 0.950 0.190 0.898 25.817

More informative features 2 0.981 0.116 0.959 0.162 0.930 25.234
3 0.982 0.119 0.962 0.153 0.936 25.063
4 0.981 0.127 0.960 0.156 0.929 25.065

No redundant features 2 0.945 0.237 0.944 0.211 0.889 13.186
3 0.946 0.223 0.944 0.212 0.876 12.729
4 0.948 0.216 0.946 0.208 0.886 12.625

More redundant features 2 0.920 0.309 0.906 0.340 0.875 28.054
3 0.918 0.322 0.907 0.340 0.878 28.024
4 0.912 0.333 0.911 0.329 0.839 28.074

accuracy on noisy datasets 85

Appendix E
Accuracy on noisy datasets

0.25

0.50

0.75

1.00

m
et

ric
s.

no
is

e_
ac

cu
ra

cy

dataset = authent dataset = diabetes dataset = gesture dataset = jungle

0.25

0.50

0.75

1.00

m
et

ric
s.

no
is

e_
ac

cu
ra

cy

dataset = robot dataset = segment dataset = texture

0.0 0.25 0.5 1.0 2.0 4.0
noise_level

dataset = vehicle

0.0 0.25 0.5 1.0 2.0 4.0
noise_level

0.25

0.50

0.75

1.00

m
et

ric
s.

no
is

e_
ac

cu
ra

cy

dataset = wdbc

0.0 0.25 0.5 1.0 2.0 4.0
noise_level

dataset = mnist

0.0 0.25 0.5 1.0 2.0 4.0
noise_level

dataset = fashion_mnist

Absolute accuracy for noisy datasets

mode
discriminative
generative
baseline

Figure E.1: Absolute classification
accuracy on noisy datasets. The error
bars represent 95% confidence interval
on the observations.

adversarial distance for empirical tabular datasets 87

Appendix F
Adversarial distance for empirical tabular datasets

These are the adversarial distances found for the empirical tabular
datasets, for different model depths D.

CarliniWagner FastGradient HopSkipJump

Dataset D Base. Disc. Gen. Base. Disc. Gen. Base. Disc. Gen.

authent 2 1.14 1.16 1.43 0.29 0.30 0.30 0.84 0.97 0.90
diabetes 2 1.23 1.34 0.88 0.30 0.30 0.30 1.36 1.95 1.09

3 1.20 1.44 0.84 0.30 0.30 0.30 1.30 1.74 1.22
gesture 2 0.55 1.62 1.80 0.30 0.30 0.30 0.79 0.90 1.47

3 0.54 1.08 2.04 0.30 0.30 0.30 0.67 0.85 1.23
4 1.01 0.67 2.58 0.29 0.29 0.30 0.72 0.75 1.30

jungle 2 0.51 0.50 0.96 0.27 0.28 0.23 0.61 0.61 1.26
3 0.46 0.54 0.98 0.23 0.29 0.23 0.55 0.59 1.18

robot 2 0.84 0.47 2.77 0.30 0.30 0.30 0.83 0.66 1.72
3 0.92 0.83 3.12 0.27 0.29 0.30 0.83 0.62 1.34
4 1.08 0.82 0.37 0.29 0.30 0.30 0.83 0.72 0.69

segment 2 1.15 2.62 2.61 0.30 0.30 0.30 1.42 1.25 1.09
3 3.13 5.91 6.65 0.26 0.29 0.30 1.36 1.13 1.13
4 3.24 4.20 6.16 0.20 0.29 0.30 1.44 1.15 1.77

texture 2 4.75 2.33 2.40 0.26 0.29 0.30 1.36 1.29 1.81
3 5.91 3.81 3.45 0.21 0.27 0.30 1.36 1.25 2.06
4 5.91 4.46 3.74 0.18 0.25 0.30 1.24 1.18 1.61

vehicle 2 0.91 1.74 1.20 0.30 0.30 0.30 0.68 0.90 1.51
3 1.69 1.45 1.77 0.30 0.30 0.30 0.70 0.95 0.85
4 1.98 1.25 2.02 0.27 0.30 0.30 0.67 0.81 0.57

wdbc 2 4.57 7.39 4.84 0.23 0.30 0.30 1.80 2.94 2.42
3 2.39 4.70 6.77 0.16 0.29 0.30 1.42 2.61 3.77
4 2.42 6.77 3.08 0.09 0.28 0.30 1.37 3.08 3.36

Note that for FastGradient, the results are consistently very close
to 0.3. This is explained by the nature of the attack algorithm (see
§ 3.3.1), in which a single step of size ε is taken. In my experiments,
ε = 0.3 (see § 4.4).

	List of figures
	List of tables
	Notational conventions
	Introduction
	Motivation
	Research questions
	Outline

	Probabilistic circuits
	What is a probabilistic circuit?
	Probabilistic circuit structures
	Classification with probabilistic circuits
	Training a probabilistic circuit

	Robustness
	Robustness to corruptions
	Adversarial attacks
	Attack algorithms
	Measuring adversarial robustness

	Experimental setup
	Datasets
	Models
	Corruptions
	Attacks
	Practicalities
	Summary of independent variables

	Results
	Corruptions
	Attacks and adversarial distance

	Conclusions and discussion
	Main conclusions
	Difficulties
	Limitations
	Future work

	References
	Glossary
	Model translation table
	Models on image data
	Models on empirical tabular data
	Models on synthetic tabular data
	Accuracy on noisy datasets
	Adversarial distance for empirical tabular datasets

