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Abstract

Given a stream of edges in a dynamic graph, how can we detect anomalous edges in near

real-time with constant memory? In this thesis, we propose algorithms with link prediction

measures to detect anomalies and leverage these measures to implement the performance

of the baseline algorithm. Reservoir sampling is used to ensure the time and memory

complexity of our approach. Experimental results on five real-world datasets show that our

algorithms outperform the baseline approach.
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Chapter 1

Introduction

Anomalies [28], also referred to outliers [42, 37], imply something that deviates from what

is standard, normal, or expected. An example could be the red fish in Figure 1.11. The

idea behind anomaly detection is to find patterns in data that deviate significantly from

expected behavior and these nonconforming patterns could represent a detrimental event or

a positive opportunity, which might have great importance but are hard to find. In reality,

one common type of anomalies are anomalies in graph and network structures. Typical

examples of this kind of anomalies are intrusion detection [20], financial fraud [41], scan

emails [29], fake ratings [27], etc.

Figure 1.1: An example of anomalies

Anomaly detection in graphs has been a well-explored research field and several proposed

algorithms focus on static graphs [6, 45, 26, 14, 16, 40]. However, these approaches require a

large amount of memory to store the entire graph for analysis, which is sometimes impossible

since edges and nodes are drawn from the real world and the graph is rapidly evolving and

expanding2 [19]. Furthermore, anomaly detection algorithms for static graphs are ineffective

1https://www.analyticsvidhya.com/blog/2021/04/dealing-with-anomalies-in-the-data/
2https://sproutsocial.com/insights/social-media-changes/
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CHAPTER 1. INTRODUCTION

in capturing changes in real-world data because many real-world graphs are dynamic and

evolve over time, and methods relying on static graphs may represent only a single snapshot

and miss the temporal characteristics of the graph [5].

Since real-world networks are rapidly changing, dynamic graph models (that allow and

track updates to the structure of evolving graphs) have become popular techniques for

modeling real-world networks. Typically, in dynamic graph models, we assume that edges

(e.g., interactions or connections among nodes) of an underlying dynamic network is given in

a streaming fashion and that is why in dynamic graph models, we often model the dynamism

as a stream of updates to an underlying dynamic network [7].

Many domains of science could benefit from graph anomaly detection techniques and

algorithms. Here some concrete examples are given.

• Social networks [42, 43]: Twitter3, Facebook4, and Tiktok5 are well-known examples.

These online social networking services build enormous social networks that allow

users to connect with others based on various types of interactions, e.g., friendships,

follows, likes, messages, posts, and so on. In these large networks, vertices represent

the users and edges simulate their interactions, while anomalies can be the discovery

of new trending topics, bot users, attacks, and abnormal behaviors.

• Intrusion attacks [20, 11]: This system can be modeled as a dynamic graph where

nodes representing machines and edge representing connections between machines.

The typical anomalous behaviors are that a group of attackers pose as normal machines

and then connect to a set of targeted devices multiple times in order to restrict access

or search for potential vulnerabilities.

• Financial fraud [41, 54]: A realistic graph of all entities in a financial system might

have millions of linked nodes. Take the bank system as an example. The nodes can

be regarded as bank accounts and the edges are the transactions, while the anomalous

behaviors can be fraudulent credit, or a large number of transactions in a short time.

In dynamic graph algorithms, we often aggregates edges into graph snapshots and then

process the graph stream over time [49, 44, 10, 53, 50, 9, 22]. However, these algorithms tend

to aggregate edges in a short time period as a snapshot, resulting in anomalies that may

not be detected in real-time, whereas to capture and recover from the malicious activities

in a timely manner, we are supposed to detect anomalous behavior in real-time or near

real-time, that is, to determine whether a coming edge is anomalous or not as soon as it

arrives. Moreover, the global comparison of graphs often has subtle changes that cannot be

noticed and thus a more granular analysis of the changes may be needed.

Anomaly detection in edge streams, i.e. the objects in the stream are individual edges

in the graph and are processed independently, has also gained great attention recently [55,

3https://twitter.com/
4https://www.facebook.com
5https://www.tiktok.com
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CHAPTER 1. INTRODUCTION

42, 48, 21, 12, 13]. However, many of these existing methods focused on assigning anomaly

scores based on the occurrence of edges or changes in structural patterns. They rarely

take advantage of connectivity patterns of link prediction in graphs and networks and thus

completely ignore combining the information from link prediction with structural patterns.

Many approaches, such as [32, 52, 56], have introduced the importance of link prediction

on predicting the future changes of evolving graphs. Link prediction is usually used to

find anomalous edges that should appear do not [31], while in this paper, we utilize link

prediction to determine whether the incoming edges is expected to occur or not, i.e. estimate

the likelihood of the occurrence of the incoming edges, and then update the anomaly scores,

thus reducing or increasing the anomaly probability of the edges.

In this paper, we focus on graph anomaly detection in edge streams and intend to process

the edges in constant time and memory, regardless of the stream size. Importantly, we

leverage the link prediction method to implement the performance of the baseline algorithm,

that is, combine the information of connectivity patterns with other patterns.

1.1 Problem Statement

Before discussing the structure of the algorithm, it is essential to to present the details of

the data we use for modeling. Given a time-evolving graph G, there is a stream of edges

E = {e1, e2, e3, ...}. Every coming edge is a tuple ei = (ui, vi, ti) consisting of a source node

ui ∈ V , a destination node vi ∈ V and its time occurrence ti ∈ T which is assumed as a

discrete variable.

Here we define V as the set of all nodes which is not assumed to be known as a priori,

that is, this set can grow as this dynamic graph G evolves. For each node in the set V , it is

supposed to have a unique label that does not change over time, such as a user ID, an IP

address, or a bank account, thus label(u) = label(v) iff u = v. E is the set of all edges in the

stream and every edge inside represents the connection of two nodes in the graph. Edges

are allowed to arrive simultaneously, i.e., for ei = (ui, vi, ti) and ei+1 = (ui+1, vi+1, ti+1), we

have ti+1 ≥ ti (equal is allowed). The edges in the graph can be modeled as either directed

or undirected since undirected edges can simply be regarded as two directed edges coming

at the same time, in different directions. The dynamic graph G can be multigraph, that is,

there is no limit to the number of times an edge can appear between the same pair of nodes

and two nodes can be linked multiple times in the stream. However, since we only focus on

some specific measures of link prediction which introduced in section 3.3, we attach more

importance on the neighbors of two nodes of the arriving edge, rather than the number of

that edge. Therefore we do not use the weight option to store the occurrences of the edge.

Then we define our research question as

Given a stream of edges in a dynamic graph, in order to detect anomalous behavior, how

can we assign anomaly scores to edges in an online manner using constant memory and

near real-time processing time, regardless of the size of the stream?

To implement this algorithm to meet the above requirements, we maintain a fixed-size
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CHAPTER 1. INTRODUCTION

sample to represent the edges seen so far and update it for every arriving edge, then leverage

this sample to score these edges. Thus this research question can be further divided into

the problem of edge sampling and scoring function.

1.2 Outline

Following the introduction, chapter 2 begins with the review of related works on graph

anomaly detection. Then chapter 3 focuses on the background knowledge on which this

research is based. Chapter 4 are the main section that describe the construction of our

algorithms in detail. Next chapter 5 present our experiments and results. Finally, the

conclusions are given in chapter 6.
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Chapter 2

Related Works

Since the 19th century, the statistics society has conducted substantial research on spotting

anomalies or outliers [37]. As time goes by, various graph anomaly detection approaches

have been developed. In this chapter, a selection of previous researches from the literature

is introduced and a brief statement is given for each category.

2.1 Static Graphs

Anomaly detection in static graphs is performed on static graphs or snapshots of a changing

graph at a certain time, and anomalies such as nodes, edges, and subgraphs are found based

on the structural and node information of the graph.

Anomalous node detection. The features of nodes mainly include node outness,

inness, betweenness centrality, eigenvector centrality, and clustering coefficient, etc. The

representative method is OddBall [6] published by Akoglu et al. in 2010, a feature-based an-

omaly detection method, introduces egonet features, such as density, ranks, egonet weights,

and eigenvalues. This algorithm observes the distribution pattern of egonet-based features

and finds anomalous nodes that deviate from the pattern, but it is only applicable to an-

omaly detection in weighted graphs, which are essentially heuristic rules without explicit

test statistics and decision rules. Sengupta et al. [45] propose a statistical decision rule for

detecting anomalous clusters using the P-value of egonet and can identify the nodes that

form the clusters.

Anomalous edge detection. The edge that is connected between nodes or graphs

with different properties might be defined as an anomaly. Gyongyi et al. [26] implement

TrustRank, a spam detection algorithm for spam web pages, which assumes that the con-

nection represents the trust of the two web pages. Chakrabarti at al. [14] propose their

algorithm based on graph partitioning, which can detect anomalous edges that deviate from

the large clusters of the graph. The core idea of this method is that if removing an edge

makes the graph easier to partition, then the two connected nodes of the removed edge are

Graph Anomaly Detection with Link Prediction 5
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anomalous.

Anomalous subgraph detection. The characteristics of graphs are mainly about the

number of connected components, the distributions, the principal eigenvalues, the minimum

spanning tree weights, the average node depth, global concentration factor, etc. Charikar

et al. [16] propose to define the density of a subgraph using the average degree of the

subgraph. Perozzi et al. [40] implement an algorithm to detect anomalous neighborhoods

in attribute graphs. A measure called normality is introduced to quantify the quality of

attributed neighborhoods with their internal consistency, and external separability on the

boundaries.

Static graphs not only have to process the entire graph in a large memory or offline

method, but also ignore the temporal dimension when modeling data, i.e., the graph data in

the real world always changes over time. Therefore, to address the limitations in static graph

anomaly detection, dynamic graph anomaly detection techniques are further developed.

2.2 Dynamic graphs

In the real world, graphs are constantly changing while dynamic graphs can serve as a power-

ful way to model an evolving stream. Thus, anomaly detection in dynamic graphs requires

real-time detection of anomalous behavior or anomalous time points, where anomalous be-

havior includes anomalous vertices, edges, subgraphs, or features of the graph.

2.2.1 Graph Streams

For anomaly detection on graph streams, the input is a stream of graph snapshots over time.

When modeling the data, many methods process the arriving edge into the graph snapshots

and then detect anomalies.

Anomalous node detection. For each time snapshot, features in the nodes are extrac-

ted as evaluation metrics and nodes that exhibit irregular behavior compared to most other

nodes are detected as anomalies. Sun et al. [49] propose the dynamic tensor analysis method

called DTA and its variants with streaming tensor called STA, which could summarize the

hidden correlations of high-order and high-dimensional data and then detect nodes with high

reconstruction error. Rossi et al. [44] introduce a dynamic behavioral mixed-membership

model called DBMM to detect anomalous nodes in large-scale, dynamic attribute graphs.

This method uses a feature-based representation to capture temporal behavioral transition

patterns of anomalous nodes and then extrapolate to unobserved nodes.

Anomalous subgraph detection. The graph structure of anomalous subgraphs usu-

ally differs from normal subgraphs and when a set of subgraphs is obtained, anomalous

subgraphs can be identified based on the anomaly scores assigned to adjacent time-step sub-

graphs. Beutel et al. [10] propose CopyCatch to analyze the bipartite graph with timestamps

for every edge that forms this graph. This algorithm searches for near-bipartite cores with

certain edge constraints and then checks temporal coherence within these cores for the beha-
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vior to be considered anomalous. Wang et al. [53] detect anomalies in dynamic graphs from

both node-based and subgraph-based approaches. Two models for subgraphs are developed

to track the structural changes of graphs and reduce the amount of false-positive results ob-

tained from the node-based model. This combination of multiple anomaly detection methods

to detect outliers in dynamic graphs is one of the research directions.

Anomalous event detection. Event anomaly detection is to find the time points that

deviate from the normal distribution in the time series data, and then leverage the static

graph anomaly detection method to investigate the cause of the anomaly. To detect anom-

alies in temporal data, the features are extracted from each time snapshot, and the adjacent

data are evaluated using different similarity methods. Sun et al. [50] propose the Compact

Matrix Decomposition method call CMD to compute sparse low-rank approximations for

high-dimensional matrix. They further extend this method to analyze dynamic graphs and

spot event anomalies with the estimation of the reconstruction error. Berlingerio et al. [9]

introduce NetSimile to extract the structural features and compute network similarity for

every given two graphs that may have no common nodes or edges. Eswaran et al. [22]

present a randomized sketching-based algorithm called SPOTLIGHT to sketch a sequence

of weighted, directed or bipartite graphs. This approach exploits the distance gap in the

sketch space and identifies anomalies as the sudden appearance (or disappearance) of a large

dense directed subgraph.

2.2.2 Edge Streams

Anomaly detection in graph stream usually focuses on the comparison of the entire graph

objects which may ignore some subtle changes. Thus it is necessary to find more fine-

grained methods, i.e., transfer to the analysis of edge streams. For anomaly detection on

edge streams, the input is a stream of edges over time. In contrast to graph streams, there

are relatively few methods that focus directly on the edge streams, but much attention has

been attracted in this area and some approaches have achieved significant performance.

Anomalous node detection. This focuses on the dynamic properties of the nodes over

time when every edge comes and many methods provide scoring functions to summarize the

behavior of each node. Onat et al. [38] introduce a node-based algorithm to observe the

arrival processes of each node and maintain short-term dynamic statistics so as to detect

anomalous changes in their arrival process. Yu et al. [55] present a localized principal com-

ponent analysis algorithm called HOTSPOT to analyze the eigenvectors related to local edge

correlation patterns. This approach identifies anomalies by detecting the sudden structural

pattern changes and significant activity level changes corresponding to any particular node.

Anomalous subgraph detection. Since subgraphs are often related to unusual beha-

vior, some methods process a series of edges coming over time as a subgraph and leverage

temporal information for further analyzing structural patterns. Shin et al. [48] propose two

incremental algorithms to maintain a dense subtensor in continuous changes in a tensor and

then detect the sudden appearances of dense subtensors. Bhatia et al. [13] implement the

Graph Anomaly Detection with Link Prediction 7
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algorithms by leveraging dense subgraph search. These methods first map the graphs to

a higher-order sketch and then iteratively make use of dense subgraph search to find the

densest submatrix and spot graph anomalies.

Anomalous edge detection. Usually anomalous edges show unusual evolving trends

compared with most edges in the graph and can be detected based on the scoring function of

evolving attributes, such as edge occurrence, edge weights or the addition/removal of edges.

Ranshous et al. [42] introduce a high-level model for anomaly detection based on global and

local structural properties of a given edge stream. They sketch these structural properties

and they make use of edge outlier scoring functions for every coming edge on its historical

evidence as well as connectivity patterns, such as edge occurrence, preferential attachment

and common neighbors. Eswaran et al. [21] implement a principled randomized algorithm

called SEDANSPOT to identify anomalous edges that occur as bursts of activity or con-

nect sparsely parts of a graph. When scoring the anomalousness of an edge, this method

leverages the whole graph in the edge stream. Bhatia et al. [12] propose an anomaly detec-

tion algorithm called MIDAS, which focuses on detecting microcluster anomalies or sudden

groups of suspiciously similar edges in graphs. Bases on edge occurrence after sketching,

this paper uses the chi-squared goodness-of-fit test to assign an anomalous score for every

edge and takes into account the temporal and spatial relations inside the stream.

Several deep learning based algorithms for graph anomaly detection have also been pro-

posed recently. [15, 30, 34] provide the comprehensive survey in this area. However, most

of these methods can not discover anomalies in an online manner and require supervised

information to optimize the hyperparameters.

8 Graph Anomaly Detection with Link Prediction



Chapter 3

Preliminaries

In this chapter, we will introduce the concepts and the background knowledge used in this

thesis. To start with, remind that it is essential to maintain the historical information of

the graph and satisfy the constant memory constraints in an online manner. In data stream

mining, two common approaches to solve these problems are sampling and sketching [4],

thus we introduce the two techniques used in this thesis. Then we present the concept of

link prediction in graph theory and the related measures used for further analysis. Next,

we discuss the definition of power law distribution which is found to be pervasive in many

fields [25] and this may provide a theoretical explanation for link prediction. After that, we

explain the baseline algorithm in detail, since we aim to combine link prediction with its

detection and thus improve the performance. We also reproduce the relevant code and give

the pseudo code here. At the end of this chapter, we introduce the evaluation criteria that

is used to measure the performance of algorithms.

3.1 Reservoir Sampling

A sample is a subset of the target stream, selected to be representative of the larger stream

[1]. Since we cannot store the whole information of the graph given the large universe where

nodes and edges grow from, sampling retains a selection but important data in the data

stream for future analysis. The main problem is how to sample the data in a single pass

while remaining agnostic about the order in which the data is viewed. Here we employ

reservoir sampling.

Reservoir sampling is a family of randomized algorithms for randomly selecting a small

sample of k items from a set with unknown size n in one single process over the items [51, 3].

The size of the population n is a large or unknown number and is particularly suitable for

situations where all n items cannot be stored in the main memory. The algorithm sketches

the items over time, and cannot look back at previous items.

Assume there is a sequence of items and it comes over one at a time. We want to choose

Graph Anomaly Detection with Link Prediction 9
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k items randomly from the sequence and store them in memory. If the total number of items

n is known to the algorithm and can be accessed arbitrarily, the solution is simple which

can be that choose k distinct indexes i from 1 to n with the same probability. However,

the problem is that the exact number n is not always known in advance and the k samples

cannot be updated if more items come later. Thus, the main task of this algorithm is

How to take an element at random from a set of unknown size n?

How to remove an element when the number of samples reaches the threshold k?

Since the size n of the data stream may be unknown, to ensure that each sample is ex-

tracted with equal probability, the probability of each number being extracted should be 1
p .

Moreover, the probability of deleting any sample from the reservoir is supposed to be the

same or follow a specific strategy in the process. Later we give the detail of our reservoir

sampling algorithm in section 4.2.

3.2 Count-Min Sketch

The Count–Min sketch was first proposed in 2003 by Graham Cormode and S. Muthu

Muthukrishnan [18]. It is a probabilistic data structure capable of summarising a high-

dimensional vector and answering queries on this vector, especially frequency queries in

data streams, with a strong accuracy guarantee. The main purpose of this sketch is to

process a data stream, one at a time, and compute the frequency of different elements in

the data stream. Then the frequency of any given element can then be queried from the

sketch at any time and an estimated frequency in approximation to the true result will be

obtained with a certain probability. Since this data structure efficiently processes updates in

additions or subtractions of the vector, it can work at high speeds in the updating stream.

Figure 3.1: The structure of Count-Min Sketch

As can be seen in Figure 3.1, the data structure for Count-Min sketch is a two-dimensional

array with width w and depth d, i.e., w columns and d rows, from CMS[1, 1] to CMS[d,w].

These two parameters w and d are fixed when constructing the sketch which also determines

the fixed memory space of the structure. Initially, each element in the array starts with a

10 Graph Anomaly Detection with Link Prediction
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value of zero. There are d distinct hash functions,

∀i∈{1,...,d}hi : {1, ..., n} → {1, ..., w}

each associated with a row, and these hash functions must be pairwise independent.

Figure 3.1 also shows the procedure of the update operation. Consider a stream of

objects. When a new object o comes, the sketch will be updated. The hash function hj

corresponding to each row is applied to obtain a column index k = hj(o), where j ∈ d, k ∈ w.

Set CMt−1 to the number of this object before time t. Then, in row j, column k,

CMt[j, k] = CMt−1[j, k] + 1.

Similar to update procedure, the query operation accesses the array cells indicated by each

hash function and returns the minimum value of the result. Since each hash function requires

O(1) computational time, the total time for an update or query is O(d), regardless of the

width w. Thus these operations can be efficient.

However, since the space used for this sketch is usually much smaller than the space

required for a precise representation, there are some approximations bound to the estimation.

Graham Cormode [18] proves that if w =
⌈
e
ε

⌉
and d =

⌈
ln 1

δ

⌉
, the estimate âi has the

following guarantees for ai ≤ âi, with probability at least 1− δ,

âi ≤ ai + ε‖a‖1

where e is the base of the natural logarithm, i.e., 2.71828..., ε is an additive factor, and ‖a‖1
is the stream size, i.e. the total number of items seen by the sketch.

Moreover, this sketch employs hash functions to map events to frequencies, but it uses

only sub-linear space, which means that certain events might be overcounted due to colli-

sions. Thus the Count-Min sketch is a biased estimator, i.e., they may overestimate but

never underestimate the true frequency. This is why we choose the minimum count when

obtaining the result.

3.3 Link Prediction

In graph theory, link prediction is to identify the existence of a link between two nodes

in the future [52]. Graphs could be highly dynamic objects that develop and alter rapidly

over time as the addition or elimination of the edge, indicating the change of the underlying

structure. The mechanism behind this evolution remains a tough problem and the potential

information obtained from the graph structure is vital for further analysis.

As has been mentioned before, we intend to identify anomalous edges by leveraging link

prediction to estimate the likelihood of the emergence of the incoming edges. However, to

what extent can we model the graph and capture the potential information, and how to

calculate this likelihood based on the potential information of the graph are key questions.

To address these issues, we need to find which proximity measures lead to more accurate link
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predictions. Liben et al. [31] discover that a variety of proximity measures make predictions

that outperform chance by factors of forty to fifty, implying that future interactions can

be inferred from the latent information in the graph structure. Moreover, they mention

that some measures that involve infinity sums over graph paths usually outperform the

direct measures, such as neighborhood-based link prediction measures. Zhao et al. [56]

design different sketches for neighborhood-based link prediction measures and achieve both

theoretically guaranteed accuracy and highly accurate empirical results

Therefore, in this paper, we focus on three representative neighborhood-based proximity

measures, which are introduced below. More measures can be analyzed and implemented in

further researches. To start with, let Γ(x) denote the set of neighbors of x in the graph and

|Γ(x)| defines the number of neighbors of x. Any node x can have zero or infinity neighbors,

that is |Γ(x)| ∈ [0,+∞).

Common neighbors This is a standard method for calculating the number of com-

mon neighbors in link prediction but it does not take into account the relative number of

common neighbors. Entities that have more neighbors in common are more likely to have a

connection, which can be defined as

CN(x, y) = |Γ(x) ∩ Γ(y)|.

Similar to the number of neighbors of any node, the range of common neighbors is [0,∞).

Jaccard coefficient It addresses the common neighbor problem by measuring the

relative number of common neighbors and the formula is

JC(x, y) =
|Γ(x) ∩ Γ(y)|
|Γ(x) ∪ Γ(y)|

.

Since the number of common neighbors of two vertices is always less than or at most equal

to the total number of neighbors, the range for jaccard coefficient is [0, 1].

Preferential attachment Instead of considering common neighbors, this measure

focuses on the total number of neighbors of nodes, which means that nodes with more

neighbors are more likely to generate new connections and its formula can be defined as

PA(x, y) = |Γ(x)| · |Γ(y)|.

Since link prediction is used for newly arriving edge ei = (ui, vi, ti), it is natural that ui

and vi are connected, i.e., neighbors of each other. Thus ui and vi both have at least one

neighbor, then the range for preferential attachment is [1,+∞).

3.4 Power Law Distribution

Power law distributions (also knowns as heavy-tail distributions, Pareto distributions, Zip-

fian distributions, etc.) are currently found to be pervasive in computer science and have

attracted extensive research interest [2, 23]. It is a distribution of some variable whose
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probability density function is a power function and displays as a linear line in logarithmic

coordinates with a slope of the negative of the power exponent.

The earliest discovery of the power-law distribution was in the 19th century, which was

summarized by Pareto [39], in the economy domain. Pareto, an Italian economist, studied

the statistical distribution of individual income and found that the income of a minority was

much higher than that of the majority, proposing the famous 80/20 rule, which states that

20% of the population occupies 80% of the wealth of society. However, it was not until the

1940s that Zipf et al. [57]. discovered this phenomenon in words frequency domain and gave

a preliminary mechanical explanation that it was noticed by the academic community. The

linguist Zipf, while studying the frequency of English words, found that only a few words

were used frequently, and most words were rarely used. A similar rule has been rediscovered

in the Internet era. For example, the number of followers of all users on Facebook and

Twitter is roughly power-law distributed, i.e., celebrities are only a small number of people

but own most of the followers.

Figure 3.2: Power Law Distribution

Figure 3.2 shows an example of power law distribution. On the right is the long tail,

while on the left are the few but dominant ones. For the definition, a nonnegative random

variable X is said to have a power law distribution if its probability density function is

defined as

f(x) ∼ cx−α−1,

and its complementary cumulative distribution is defined as

Pr[X ≥ x] ∼ cx−α,

where constants c > 0 and α > 0. In general, the tails fall according to the power α and

would be much heavier in the power low distribution when compared with other distributions

such as normal distribution.

As has been mentioned before, this paper focuses on graph anomaly detection. Many

studies found that in random graphs, indegrees and outdegrees of vertices are pow-law

distributed. Barabasi et al. [8] discover that large networks with a complex topology tend
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to follow a scale-free power-law distribution for the vertex connectivities. Cooper et al. [17]

describe that a general random graph model whose proportional degree sequence obeys a

power law.

For a random graph, let us start with a single node. A new node with outdegree 1

appears at each time step. With probability α < 1, the edge connects with a node chosen

uniformly at random. With probability 1 − α, this new edge connects with a node chosen

according to the indegree of the nodes. This model could be an example of the preferential

attachment which we have discussed in section 3.3. That is, a new node is more likely to

connect with nodes with higher indegree [35].

3.5 Midas Algorithm

There are many important anomaly detection algorithms in past decades, but here we will fo-

cus on MIDAS and introduce this algorithm in detail, as our algorithm aims to combine graph

theory with its detections and then improve the performance. In 2020, Bhatia et al.[11] pro-

posed an anomaly detection algorithm called MIDAS, which stands for Microcluster-Based

Detector of Anomalies in Edge Streams. As the name suggests, MIDAS paper focuses on

detecting microcluster anomalies or sudden groups of suspiciously similar edges in graphs.

This algorithm stores the occurrence of edges in the stream and them use this statistical

information to compute anomaly scores for every edge. As a recent algorithm, it outper-

forms many state-of-the-art approaches and thus could serve as a new baseline for anomaly

detection.

Data structure This algorithm is online, which means processing each edge in constant

time and constant memory. To ensure the real-time performance of the algorithm, it is

impossible to store all the graphical data information, as this would take up large of memory

and computation time. Thus Count-Min sketch (CMS) data structures, which introduced

in section 3.2, are used to store the statistical information in MIDAS and can be updated in

constant time when processing the stream. Assume time is a discrete variable, then at any

time, an approximate count can be obtained from the data structure. Specifically, it uses

suv to store the total number of edges from u to v up to the current time and auv to store

the number of edges from u to v in the current time.

Distribution assumption The common idea would be to assume the normal data

follow a specific distribution and account for a large proportion, while the anomaly data

has a relatively large deviation in comparison. Then, the distribution likelihood can be

computed with the number of edge occurrences in the current timestamp and be defined

as an anomaly if this likelihood is beyond its threshold. However, this would require data

following a strict distribution, but different anomalies tend to have different distributions

and even data in the same type could have different distributions over time. Therefore,

MIDAS adopts a weaker assumption in the process, that is, the mean level (i.e. the average

rate at which edges appear) remains the same for the current time and all past time, which

avoids a strict distributional assumption and can be adapted to different data types.
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Recall that the data structures and the time variable is assumed to be discrete, this

assumption means that processed edges can be divided into two parts, the number of edges

that come in time t = ti which can be represented by auv; the number of edges that come

before time t < ti which can be regarded as the number of edges in time ti−1 and represented

by suv − auv.
Anomaly scores As has been mentioned before, it maintains two CMS data structures

to store the number of past edges, the current time and the time before. Then under the

chi-squared goodness-of-fit test, the chi-squared statistic is defined as

(observed(t=ti) − expected(t=ti))
2

expected(t=ti)
+

(observed(t<ti) − expected(t<ti))
2

expected(t<ti)
.

Combining this statistic with the mean level assumption, for any new coming edge ei =

(ui, vi, ti), anomaly scores could be computed as

score(ei) =

(
âuivi −

ŝuivi

ti

)2
t2i

ŝuivi(ti − 1)
,

where âuivi and ŝuivi are the approximate count obtained from CMS structures auv and

suv. Note that the score indicates the extent to which the observation deviates from the

expectation, i.e. mean level, so the higher the score, the more anomalous it is.

In their algorithms, the anomaly score is computed under the chi-squared goodness-of-fit

test. They first introduce the basic algorithm MIDAS and then further implement MIDAS-R

which incorporates temporal and spatial relations.

MIDAS This algorithm computes anomaly scores for every edge, but this score does not

determine whether the edge is an anomaly or not. Instead, a threshold is usually required

to make a binary determination. Besides, its probabilistic guarantee can be viewed in the

original paper for proof and details.

Algorithm 1: MIDAS

input : An edge stream E over time

output: Anomaly scores for every edge

1 Initialize CMS data structures for the total count suv and the current count auv;

2 Initialize a time variable t;

3 for every coming edge ei = (ui, vi, ti) in the stream do

4 if ti > t then

5 Initialize the CMS data structure for current count auv;

6 Update the CMS data structures for suv and auv;

7 Retrieve ŝuivi and âuivi for this edge ei;

8 output midas(ei) =
(
âuivi −

ŝuivi

ti

)2
t2i

ŝuivi
(ti−1)

MIDAS-R This approach takes spatial and temporal relationships into account, which

means that it does not only consider the occurrence of the coming edge as in the previous
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algorithm, but also other edges associated with the nodes of this edge, while also considering

the temporal factor.

Temporal relations In the previous algorithm, auv only represents the occurrence of

the coming edge in the current timestamp. However, if taking the time factor into account,

the edges occurring in the past time, while not as important as the edge of the present, may

also have some impact. Thus they use a reduced weight α ∈ (0, 1) to modify the sketches.

That is, whenever each new timestamp arrives, instead of initializing the data structure auv,

a fixed α will be multiplied on the sketch auv as the decay factor. Then, a range from 0 to

1 determines its decay weight, where 0 represents the removal of all previous effects and 1

represents no decay applied.

Spatial relation Instead of just considering the coming edges, spatial relationships mean

that possible anomalies are also taken into account, i.e. observe the sudden appearance of

a large group of edges nearby. They assume that nodes of the coming edge could be used

as observations of anomalies nearby, e.g. a node suddenly having connections with many

other nodes. To store information about the nodes, they create new CMS data structures

su and au to estimate the total number of edges and the current number of edges associated

with node u. Then the chi-square test can be applied in three pairs, (auv, suv) for the edge

occurrence, (au, su) for the for the source node u and (av, sv) for the source node v. In the

end, three anomaly scores are computed and the maximum is selected.

Complexity For memory constraint, since these two algorithms only maintain the CMS

data structures when processing edges over time, the requirement of memory is O(wb), where

w and b are the numbers of the hash functions and buckets in the CMS data structures,

respectively. See section 3.2 for more information. In terms of time complexity, the update

and query steps in the algorithms would take O(w), while other operations only require

constant time, resulting in total time complexity of O(w).

Weakness Like other algorithms, MIDAS only focuses on the occurrence of the edges

and uses this information to find anomaly microclusters, but this CMS data structure may be

hard to store the connective relationships in the graph, e.g., the information of their neigh-

bors. Therefore, we intend to utilize this baseline score and then leverage graph information,

i.e. link prediction, to further update this score and improve the performance.
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Algorithm 2: MIDAS-R

input : An edge stream E over time

parameter: A decay factor α

output : Anomaly scores for every edge

1 Initialize CMS data structures for the total count suv and the current count auv;

2 Initialize CMS data structures for the total count su, sv and the current count

au, av;

3 Initialize a time variable t;

4 for every coming edge ei = (ui, vi, ti) in the stream do

5 if ti > t then

6 Updated the CMS for current count auv, au, av with the decay factor α;

7 Update the CMS data structures for the edge suv and auv;

8 Update the CMS data structures for two nodes su, sv and au, av;

9 Retrieve edge counts ŝuivi and âuivi ;

10 Retrieve node counts ŝui
, svi and âui

, âvi ;

11 Compute score(ei), score(ui), score(vi) for edge ei and nodes ui, vi;

12 score(ei) =
(
âuivi −

ŝuivi

ti

)2
t2i

ŝuivi
(ti−1) ;

13 score(ui) =
(
âui
− ŝui

ti

)2
t2i

ŝui
(ti−1) ;

14 score(vi) =
(
âvi −

ŝvi
ti

)2
t2i

ŝvi (ti−1) ;

15 output midas(ei) = max{score(ei),score(ui),score(vi)};

3.6 Evaluation

Performance measurement is an essential task when evaluating our algorithm and analyzing

the results. In order to estimate and compare the performance of all these anomaly detection

algorithms, a unified metric is needed. In this paper, we apply Area Under the Curve (AUC)

of Receiver Operating Characteristics (ROC) curve. Before introducing this metric, we first

introduce some measures.

TP: the number of predictions that are correctly classified as positive classes by the

model, known as true positive.

TN: the number of predictions that are correctly classified as positive classes by the

model, known as true negative.

FP: the number of predictions that are wrongly classified as positive classes by the model

but belong to the negative class, known as false positive.

FN: the number of predictions that are wrongly classified as positive classes by the

model but belong to the positive class, known as false negative.

TPR: the proportion of the positive class that is correctly classified by the model, known
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as true positive rate and defined as
TP

TP + FN
.

FPR: the proportion of the positive class that is wrongly classified by the model, known

as false positive rate and defined as

FP

FP + TN
.

For calculation, we define the positive class as the outliers and the rest are the negative

class. According to the definition, AUC is the area under the ROC curve, and the x-axis of

the ROC curve is FPR while the y-axis is TPR, representing a comprehensive analysis of

how the model tradeoff between TP and FP. An example can be seen in Figure 3.3.

Figure 3.3: ROC Curve

ROC/AUC score This score ranges from 0 to 1 and good classifiers should achieve

higher scores. A completely random classifier is expected to get a half score, which is 0.5.

Thus if a score is below 0.5, the classifier could simply reverse its prediction to get a score

above 0.5. This calculation method of AUC takes into account the classification ability of the

classifier for both positive and negative cases, and is able to make a reasonable evaluation

of the classifier in the case of class imbalance.

18 Graph Anomaly Detection with Link Prediction



Chapter 4

Algorithms

In this chapter, the anomaly detection algorithms developed in our research are described

in detail. First, we present an offline approach to find how the three selected measures

of link prediction affect the baseline algorithm. Then, we switch to online approaches. A

basic online algorithm without sampling is presented, which can determine the impact of

the sample on performance, and then reservoir sampling is used to address the limitation of

the memory constraint.

4.1 Offline Approach

This algorithm is our first approach to gain an intuition about how link prediction performs

and affects accuracy. For observation, it is assumed that the edges in the datasets and the

ground labels of these edges are known in advance, because we intend to use this information

to construct a graph without anomalous edges and then obtain information from the graph

for link prediction later. Sampling is also not applied in this approach. Therefore, this

algorithm can not process the edge streams in an online manner, but we can gain some

insights for our later algorithms.

To start with, we assume that the input is a set of edges E. Each edge ei ∈ E is a tuple

ei = (ui, vi, ti) where ui and vi are nodes and ti is the timestamp (i.e. occurrence time).

Based on the timestamps T , we first divided the dataset into training and testing datasets.

The graph is then constructed using the training dataset. Since we assume the edges and

their ground labels are known, when constructing the graph G, normal edges in the training

dataset are added sequentially, while the anomalous edges are discarded and not added to

the graph. This graph G is fixed and will not be updated after the training dataset has

been processed. In the testing dataset, we obtain a link prediction score pred(ei) for each

new coming edge and combine it with the baseline score midas(ei) to get the final anomaly

score.

Our goal is to analyze the underlying information from the dynamic graph so as to
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estimate the likelihood of the occurrences of the coming edges. That is, if this edge has

a high link prediction score, which implies a higher probability that these two nodes are

related, then this coming edge is more likely to be a normal edge. Recall the measures

mentioned in section 3.3, we define the algorithm for calculating the link prediction score

pred(ei) as algorithm 3.

Algorithm 3: LinkPrediction(G, ei)

input : an graph G, an edge ei = (ui, vi, ti)

output: link prediction score pred(ei) for the input edge ei

1 Let Γ(x) denote the set of neighbors of node x in the graph G;

2 procedure Retrieve the set of neighbors;

3 Retrieve the neighbor set Γ(ui) of ui from graph G;

4 Retrieve the neighbor set Γ(vi) of vi from graph G;

5 procedure Compute the measures in link prediction;

6 if Common Neighbors then

7 pred(ei) = |Γ(ui) ∩ Γ(vi)|;
8 else if Jaccard Coefficient then

9 pred(ei) = |Γ(x)∩Γ(y)|
|Γ(x)∪Γ(y)| ;

10 else if Preferential Attachment then

11 pred(ei) = |Γ(x)| · |Γ(y)|;

12 output pred(ei);

Then we formally define our offline approach as algorithm 4. This algorithm can be

divided into three parts, split the edge stream into training and testing dataset based on

the timestamp, build the graph from the training dataset and compute the anomaly scores

for edges in the testing dataset. For the input, the edge stream E can be any dataset for

anomaly detection in which the records are processed in the form ei = (ui, vi, ti), while the

timestamp t is served as a boundary to divide the dataset and can be any number within

the interval of the dataset, but for the experiments we choose to divide the timestamps of

the dataset into the same ten parts, i.e., first ten percent for training and ninety percent for

testing, then twenty percent for training and eighty percent for testing, and so on.

After spliting the dataset, the fixed graph G used to obtain link prediction score is

constructed in the training dataset, then the anomaly score is computed by combining these

two scores midas(ei) and pred(ei). Note that midas(ei) represents the the extent to which

the observation deviates from the expectation, while pred(ei) indicates the likelihood of the

occurrences of the coming edges, which means the arriving edge with higher midas(ei) and

lower pred(ei) is more likely to be anomaly. Therefore the inverse of pred(ei) is used to

reduce the corresponding anomaly score of this edge.
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Algorithm 4: Offline Approach

input : an edge stream E containing edges ei = (ui, vi, ti)

parameters: the split timestamp t

output : anomaly scores for each edge

1 procedure Split the edge stream into training and testing dataset

based on the timestamp;

2 for every edge ei = (ui, vi, ti) in the dataset do

3 if ti <= t then

4 Add ei to the training dataset;

5 else

6 Add ei to the testing dataset;

7 procedure Build a graph G from the training dataset;

8 Initialize an empty graph G;

9 for every edge ei = (ui, vi, ti) in the training dataset do

10 if ei is not anomaly then

11 Add ei to the graph G;

12 procedure Compute the anomaly scores for edges in the testing

dataset;

13 for every edge ei = (ui, vi, ti) in the testing dataset do

14 Retrieve the score pred(ei) from G using LinkPrediction (G, ei);

15 Retrieve the baseline score midas(ei) for this edge ei;

16 output score(ei) = midas(ei)/pred(ei);

4.2 Online Approach

The purpose of graph anomaly detection is to detect anomalous behavior in the real world,

thus in terms of time feature, i.e., in near real-time, it is crucial to our detection. The value

of a newly discovered intrusion attack or credit fraud is in the moment and needs to be fixed

as soon as possible, not a week later. Moreover, since the nodes and edges will be updated

in the real universe, we need to update and query the information in sublinear memory,

instead of storing a counter for every edge and node. Therefore, we implement an online

approach and its variants to answer the research question posed in chapter 1.

We first present a basic online algorithm, which can process arriving edges and store their

information in real-time. Although the graph is not sampled at this point, its performance

can be compared with the subsequent algorithm to determine the impact of the sample on

performance. The detail is shown in algorithm 5, which can be divided into three procedures,

update the graph, retrieve the scores and compute the final anomaly score for every arriving
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edge.

Algorithm 5: Online Approach without Sampling

input : an edge stream E over time

output: anomaly scores for each edge

1 Initialize an empty graph structure G;

2 for every edge ei = (ui, vi, ei) in the stream do

3 procedure Update the graph;

4 Add ei to graph G;

5 procedure Retrieve the scores;

6 Retrieve the prediction score pred(ei) from LinkPrediction(G, ei);

7 Retrieve the baseline score midas(ei) for this edge ei;

8 procedure Compute the anomaly score in two ways;

9 1) score(ei) = 1/pred(ei);

10 2) score(ei) = midas(ei)/pred(ei);

11 output score(ei)

When updating the graph, we simply add the edge to the modeled graph without

sampling. Then the link prediction score can be obtained from algorithm 3 and the baseline

score will be computed from algorithm 1 or algorithm 2. As for computing the anomaly

score, we provide two ways, one only considers the influence of link prediction, that is, the

likelihood of the occurrence of the coming edge, and uses its inverse, which means an edge

with a higher score is more likely to have less possibility to occur. While the other one

is similar to the offline approach, combined with baseline score, thus this can detect the

sudden microcluster anomalies and also take the connectivity patterns into account. Take

preferential attachment as an example, if at one moment, an edge suddenly occurs many

times but the two nodes of this edge have relatively more neighbors, then we will reduce the

baseline score using the connectivity information because of the relatively high probability

that this edge appears.

Next, to address the limitation of the offline approach, we use reservoir sampling to meet

the memory constraint, which is introduced in section 3.1. Here we defined the algorithm

with reservoir sampling as algorithm 6, containing three procedures, reservoir sampling,

retrieve the scores and compute the anomaly score. The last two parts are the same with

the previous algorithm. Therefore we focus on the first procedure, reservoir sampling.

The algorithms starts with an initialized graph G with the sample size k and the prob-

ability p where k and p are fixed for every edge in one edge stream, and then each edge

ei is entered into the algorithm in sequence. The s and p should be an integer, greater

than or equal to 1. If p = 1, this means that no sampling is applied, just a graph with

the most recent k edges is maintained. Then for reservoir sampling, when processing each

edge ei, a number r is first randomly obtained from (1, ..., p) where the probability of each

number selected should be the same. In the conditional statement about random number

r in this algorithm, we should make r = 1 (1 can be replaced by any number from 1, ..., p)
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Algorithm 6: Online Approach with Reservoir Sampling

input : an edge stream E over time

parameters: the sample size k, the probability p

output : anomaly scores for each edge

1 Initialize an empty graph structure G with sample size k and the probability p;

2 for every edge ei = (ui, vi, ei) in the stream do

3 procedure Reservoir Sampling (G, ei);

4 Randomly obtain a number r from (1, ..., p);

5 if r = 1 then

6 Retrieve the current size s of the graph G;

7 while s >= k do

8 Delete a sample from the graph G;

9 1) Random deletion;

10 2) Temporal deletion;

11 Update the current size s;

12 Add the edge ei to the sample graph G;

13 procedure Retrieve the scores;

14 Retrieve the prediction score pred(ei) from LinkPrediction(G, ei);

15 Retrieve the baseline score midas(ei) for this edge ei;

16 procedure Compute the anomaly score in two ways;

17 1) score(ei) = 1/pred(ei);

18 2) score(ei) = midas(ei)/pred(ei);

19 output score(ei)

consistent throughout the processing of the whole data stream, so that each edge has the

same probability 1/p of being sampled. Then in line 8, there is a delete step if the graph G

reaches the sample size k. We define two deletion methods:

• Random Deletion Randomly delete an edge in the graph, ensuring that the prob-

ability of each edge being selected is the same.

• Temporal Deletion Take into account the time factor, i.e., edges appearing at an

earlier time may have relatively little relevance to the present. Delete according to

time, removing the edge that was added to the graph earliest.

After reservoir sampling, the remaining two parts are the same as the previous algorithm

and we do not introduce them in detail here.
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4.3 Time and Memory Complexity

Here we only discuss the time and memory complexity of the online algorithm with reservoir

sampling and without combining the baseline algorithm, because of its representativeness.

In terms of time complexity, the reservoir sampling procedure for updating the graph

takes O(1) for every update step, and the last score computing part also takes O(1). How-

ever, for the second procedure to retrieve the link prediction scores, these three measures are

not the same. For preferential attachment, only the degree (i.e. the number of neighbors) of

nodes is required. The query step for obtaining the degree of each node take O(1), thus pref-

erential attachment takes O(1) in total. Then for common neighbors and jaccard coefficient,

the query step for obtaining the set of neighbors takes O(m), where m is the number of

neighbors. Since we sample the graph with size k and probability p, the maximum number

of neighbors would be k−1. Also there are many more comparison steps to find the number

of common neighbors and distinct neighbors for common neighbors and jaccard coefficient,

these two measures may need perhaps O(k2) at worst. Then for memory complexity, only a

sample graph is maintained over time, which takes O(k), where k is the size of the sample

graph.
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Experiment

In this section, we begin with the details of the datasets and experiment setup. Then we

evaluate the performance of our algorithm compared to the baseline method. Moreover, we

discuss the scalability of our algorithm. Importantly, how accurate is our algorithm in de-

tecting anomalies in datasets with ground truth labels? How well do our algorithms improve

on the baseline? How does accuracy depend on the parameters of reservoir sampling? How

is the scalability of our algorithms? We will answer these questions in the following.

5.1 Datasets

We use five real world datasets in our experiments to evaluate the performance of our ap-

proaches compared to the baselines. All these datasets have ground labels, i.e., to determine

whether this edge is anomalous or not, so we can use the evaluation metric mentioned in

section 3.6 to calculate the ROC/AUC of algorithms and thus compare the performance.

Table 5.1 shows the statistical information of the datasets, where |V | represents the

number of unique nodes and |E| is the total number of edges that occur in all timestamps

|T |. For all the datasets, timestamps are modified to start from 1 to simplify the processing,

and the same timestamp is used for edges that arrive at the same time.

Datasets |V | |E| |T | Anomalies

CIC-DDoS2019 [47] 1,290 20,364,525 12,224 99.72%

DARPA [33] 25,525 4,554,344 46,572 60.10%

CIC-IDS2018 [46] 33,176 7,948,748 38,478 7.27%

CTU-13 [24] 371,076 2,521,286 33,090 4.64%

UNSW-NB15 [36] 50 2,540,047 85,348 0.64%

Table 5.1: Statistical information of the datasets
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5.2 Experimental setup

All the algorithms are implemented in Python and experiments are performed on macOS

Catalina with a 2.9 GHz Intel Core i5 processor and 8GB main memory.

5.3 Performance

Here we would like to show the performance of our algorithms compared to the baselines.

In the order of chapter 4, the performance of the offline method is presented first, followed

by the online approach and its variants.

To start with, recall the offline algorithm introduced in section 4.1, the dataset will be

divided into the training dataset and the testing dataset. Then a graph is constructed on

the training dataset and the link prediction score is computed from the constructed graph

for every edge in the training dataset. The final anomaly score is obtained based on the

baseline score and the link prediction score, where the baseline score is from algorithm 2

and the link prediction score is from algorithm 3.

Figure 5.1 shows the ROC/AUC of the offline approach for the four datasets. For each

dataset, the figure above indicates the accuracy and the blue horizontal line represents

the accuracy of the baseline itself without combing link predictions, and then the bottom

figure indicates the percentage of anomaly edges in the testing dataset. The percentage of

anomaly edges in the training dataset is not given because the anomaly edges are not used

to construct the graph and do not influence the result. As has been mentioned before, we

divide the timestamps of the dataset into the same ten parts, thus for the x-axis, 0:10 means

there is no training dataset, 1:9 means first ten percent for training and ninety percent for

testing, 2:8 means twenty percent for training and eighty percent for testing, and so on.

As can be seen in Figure 5.1, in some datasets, the accuracy line for common neighbors

seems invisible, and that is because it largely overlaps with the line of jaccard coefficient.

Since the computing formulas for common neighbors and jaccard coefficient are similar, i.e.,

both require the number of common neighbors, it is understandable that they are similar

in accuracy. This may also mean that the total number of distinct neighbors of two nodes,

which is additionally required by jaccard coefficient, has little effect on accuracy.

Apart from that, preferential attachment performs best among three measures, exceeding

the baseline score in most cases and remaining over 0.8 even in the worst case. We believe

that the power law distribution may serve as an explanation for why this measure performs

well in the graph. The detail is given in section 3.4. If the preferential attachment of an edge

is large, it means that the two nodes of this edge have many neighbors. Take social networks

as an example. If two people have many friends respectively, then their social circles are

very likely to intersect and there is a high probability that the two people will meet later.

This also follows the idea of the power law distribution, i.e., a small group of nodes will

occupy the most connections, and thus the more neighbors it has, the higher probability it

will have new connections.
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Figure 5.1: The ROC/AUC of the offline approach
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As for the percentage of anomalous edges, it seems to have some correlation with ac-

curacy. Although the trend is roughly opposite in the last dataset, they go very similarly

in most of the datasets. However, we did not find a relevant reason for this, which could

perhaps be studied as a follow-up.

There is no figure for dataset CTU13 here because we did not finish the running part. For

each splitting method, it may take several hours for one measure, i.e., common neighbors

or jaccard coefficient. Referring to the time complexity of common neighbors and jaccard

coefficient in section 4.3, dataset CTU13 has 0.37M nodes and even we can store the graph

of the whole dataset, it is slow to go through the graph to compute common neighbors or

jaccard coefficient for so many nodes. Given the large universe, there may even be more

nodes and edges. This also explains the importance of sampling the graph.

Next, we discuss the performance of our online approaches introduced in section 4.2. It

mainly contains three procedures when processing the arriving edge, updating the graph

with or without sampling, retrieving the scores, and then computing the anomaly score. In

reservoir sampling, two deletion methods are used, i.e., random deletion and temporal dele-

tion. In terms of retrieving the scores, the link prediction score is retrieved from algorithm 3

and the baseline score is retrieved from algorithm 1 or algorithm 2. As for the anomaly

score, two computing formulas are given, thus we will try different permutations for the

baseline score and the measure scores. Since preferential attachment outperforms other two

measures and common neighbors and jaccard coefficient would take much more time to be

computed, here we only show the results related to preferential attachment.

Figure 5.2: The ROC/AUC of the online approach for dataset DDOS

Figure 5.3: The ROC/AUC of the online approach for dataset DARPA
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Figure 5.4: The ROC/AUC of the online approach for dataset IDS

Figure 5.5: The ROC/AUC of the online approach for dataset CTU13

Figure 5.6: The ROC/AUC of the online approach for dataset NB15

Figures 5.2, 5.3, 5.4, 5.5, 5.6 show the ROC/AUC of the online approach for each dataset,

separately. The points in the figures indicate the accuracy of each method in the experi-

ment, denoted by different colors, and the blue line represents the accuracy of the baseline

algorithms, as the comparisons of our improved algorithm. In the figure legend, the methods

in the experiment are given. Note that the ′+′ refers to the combination of two scores defined

in the algorithm, and does not represent addition in mathematical operations. Moreover,

(k, p, d) is used to describe the parameters of the reservoir sampling algorithm, where k

represents the size of the sampling graph, 1/p represents the probability of the arriving edge

being sampled, and d represents the deletion method. Take PA(1024, 1024, RandomDelete)

as an example, the size of the sample graph is 1024, the probability of sampling for new

coming edge is 1/1024 and random deletion is used.

As can be seen in these figures, after combining the baseline score with preferential at-

tachment, the accuracy is always better than the original ones, which means that preferential
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attachment indeed plays an important role in the graph and thus can be useful for graph

anomaly detection. Meanwhile, even without combining the baseline algorithm, preferential

attachment itself achieves high accuracy in the real world datasets, which also validates the

significance of preferential attachment. As for after reservoir sampling, the accuracy of the

two deletion methods is similar, thus it seems that there is no difference in the effect of ran-

dom deletion and temporal deletion. In some datasets, even after sampling, our algorithm

can also improve the performance of the baseline, and although it reduces the accuracy for

some datasets, it still maintains a high level. But still, we can tell that the performance

of combining baseline and link prediction is the best and this also confirms our claim that

preferential attachment as a measure in link prediction reflects the the possibility of the

arriving edge appearing, i.e., what we expect to occur, and thus the anomaly score of this

edge should be reduced accordingly.

Recall the meaning of preferential attachment, which is the product of the number of

neighbors of the two vertices of the coming edge. After we find the meaning of preferential

attachment, we also try to extend preferential attachment to the 2 degrees, that is, find the

number of neighbors of the neighbors of the two vertices of the arriving edge, because we

want to know whether this extension is meaningful for the performance. The result is not

good. This could indicate that similar extensions may not make sense.

Next, we study the parameters k and p to determine if they have an effect on performance,

where k is the size of the graph and p is the probability of the arriving edge being sampled.

The method of MIDAS + PA(k, p,RandomDelete) is used in this experiment and we use

control variates, i.e., keep one parameter unchanged and vary the other one to compare the

results. The results are shown in Figure 5.7 and Figure 5.8. In Figure 5.7, we keep the size

k as 1024 unchanged, and change p from 21(2) to 210(1024). In Figure 5.8, we keep the

probability p as 1024 unchanged, and change k from 25(32) to 214(16384). There is no clear

uniform pattern in the figure, so we may conclude that the change of these two parameters

has little effect on the final performance, at least at the scale of the dataset we tested. This

means that our experiments can be scaled to much larger datasets by using different sample

size k or different probability p.
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Figure 5.7: The ROC/AUC of different probability
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Figure 5.8: The ROC/AUC of different size
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5.4 Scalability

Here we discuss the scalability of our algorithms to determine whether it is suitable for

scaling to larger datasets.

Figure 5.9 shows the running time of different size in our online approaches. In the

figure legend, PA is an abbreviation of the method PA(k, 1024, RandomDelete), where the

probability is 1024 and the sample size k is range from 25(32) to 214(16384), and ′+′ means

combining preferential attachment with the baseline algorithm MIDAS or MIDAS−R. We

can see that the runtime is not affected by the sample size in any of the three approaches,

thus the sample size is not an influencing factor of time complexity, at least not at the

current scale of the datasets. This could prove our discussion about the time complexity of

preferential attachment, which takes O(1) for every arriving edge, regardless of the sample

size.

Figure 5.10 presents the scalability of edge records. We test the required time to process

the first 104 to 106. The three methods in the illustration are very similar in meaning to

the previous ones, except that PA(1024, 1024, RandomDelete) is used to represent PA. It

shows that the running time of our algorithms is linear to the number of the arriving edges

on the five datasets. Thus we can confirm that the time complexity of our approaches to

process any individual edge is constant.
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Figure 5.9: The running time of different size
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Figure 5.10: The running time of input edges
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Conclusions

In the last chapter, all the results achieved from the previous chapters are summarized. At

first, we present the extent to which we have answered the research question mentioned in

section 1.1, as well as the performance of our algorithms. Then, we discuss the possible

future research directions.

We consider the problem of graph anomaly detection given a stream of edges, where

anomalies are edges with a low probability of occurrence as determined by link prediction.

Moreover, it is essential to process the newly arriving edges in constant time and memory,

given the unbounded number of edges and vertices in the real world. To meet the above

requirements, we implement our algorithms with link prediction measures to detect anom-

alies, which can run in an online manner with constant memory and update the arriving

edge in constant time. We ensure the time and memory complexity by reservoir sampling.

Experimental results on five real-world datasets show that our algorithms outperform the

baseline approach and demonstrate the scalability effectiveness, i.e, the time complexity of

processing an individual edge remains constant with respect to the data scale.

However, we only use some measures from the link prediction. Since the importance

of link prediction in the graph is also demonstrated in this thesis, more measures could be

considered for future research. In addition, different sampling or sketching techniques can

be used to store the information for link prediction to balance complexity and performance.

Furthermore, link prediction measures can be combined with more baseline algorithms, so

to incorporate with other representations for anomaly detection.
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