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Abstract

In this thesis we study two types of constrained paths in different polygonal settings, namely
self-approaching paths and paths with increasing chords. A directed path is self-approaching if
the distance between a point traveling along the path and a point that has not been traversed
yet is not decreasing; more specifically for any points a, b, and c that lie in that order on the
path, |ac| ≥ |bc|. Furthermore, a path has increasing chords if the path is self-approaching in both
directions, that is for any points a, b, c, and d that lie in that order on the path, |ad| ≥ |bc|.

Existing literature on this subject describes an algorithm for finding a shortest self-approaching
path inside a simple polygon. In this thesis, we show that finding the shortest path with increas-
ing chords is similar to finding the shortest self-approaching path. Furthermore, we propose
an algorithm that can find the shortest self-approaching path in a polygon with holes, albeit
inefficiently. Lastly, we show that if any two points in the polygon can be connected by a self-
approaching path, the holes must have all centers of curvatures internal to the holes. If any two
points can be connected by a path with increasing chords, the holes must be of constant width.
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Chapter 1

Introduction

In the area of theoretical computer science, finding an obstacle-avoiding path between two points
in a geometric domain has long been a prominent question. Whilst obstacle avoidance can be
a constraint imposed on path finding problems, sometimes the path has to conform to more
constraints to meet specific requirements. For example, with beacon and greedy routing radially
monotone paths appear. Radially monotone paths are directed curves such that the distance
between a point traversing the path and the destination is never increasing [4, 3, 8].

A more restricted version of radially monotone paths are self-approaching paths: a directed
path such that the distance between a point traversing the path and any point on the remainder of
the path is decreasing. More formally, a path π is self-approaching if and only if for any points a, b,
and c that appear in that order on π, the Euclidean distance between a and c is greater or equal
than the Euclidean distance between b and c [13]. Trivially, self-approaching paths are radially
monotone (let c be the destination of the path). Moreover, every subpath of a self-approaching
path is radially monotone, which can be beneficial for situations where the destination is unknown.
Furthermore, the length of a self-approaching path is bounded in comparison with the Euclidean
distance between the start and destination of the path, which is not the case for radially monotone
paths.

A strengthening of self-approaching paths are paths with increasing chords; a path has increas-
ing chords if and only if the path is self-approaching in both directions. Again more formally, a
path σ has increasing chords if and only if for any points a, b, c, and d that appear in that order on
σ, the Euclidean distance between a and d is greater or equal than the Euclidean distance between
b and c [14]. Therefore, a path with increasing chords can be used when an agent has to greedily
route to an endpoint and thereafter be greedily routed back to the start point. Moreover, the
length of a path with increasing chords is bounded even more than with self-approaching paths
when compared with the Euclidean distance between the start and destination of the path.

Having an improved understanding of self-approaching paths and paths with increasing chords
might help in finding better solutions to questions in sensor networks, graph drawings, and
constrained path problems in general. There are still plenty of open questions concerning self-
approaching paths and paths with increasing chords. We aim to answer four of these open ques-
tions.

• Given two points s and t in a simple polygon P , find the shortest path with increasing chords
inside P if it exists.

• Given two points s and t in polygon P with holes, find a shortest self-approaching path
inside P if it exists.

• Given a polygon P with holes, test if there exists a self-approaching path between any two
points in P .

• Given a polygon P with holes, test if there exists a path with increasing chords between any
two points in P .

Self-Approaching Paths and Paths with Increasing Chords in Polygonal Domains 1



CHAPTER 1. INTRODUCTION

1.1 Related work

From the more complicated paths described above we first revisit the arguably simplest type
of constrained paths which is the geodesic inside a polygon. A geodesic is the shortest path
connecting two points that lie inside a polygon. Finding the geodesic is a problem that can be
solved in O(n), given a triangulation of a simple polygon P with n vertices [10]. The triangulation
of a simple polygon can be found with a running time of O(n) [7]. Furthermore, finding a geodesic
in a polygon P with holes with n vertices costs O(n logn), making this problem slightly harder
to solve. Trivially, as long as two points s, t ∈ P belong to the same connected component, a
geodesic connecting s and t exists.

A more intricate type of constrained paths are the aforementioned self-approaching paths as
were introduced by Icking et al. [13]. Bose et al. [5] provided an algorithm that can find a shortest
self-approaching path in a simple polygon P connecting points s and t. However, the problem of
finding a self-approaching path in a polygon P with holes remains open. Furthermore, Bose et al.
proposed an efficient algorithm that tests whether in a simple polygon between any two points a
self-approaching path can be constructed. Testing whether in a polygon with holes between any
two points a self-approaching path can be constructed remained open.

Paths with increasing chords are closely related to self-approaching paths. However, at the
time of writing no algorithm existed that finds the shortest path with increasing chords in a simple
polygon. Therefore, also no algorithm exists that finds the shortest paths with increasing chords
in a polygon with holes. If a self-approaching path between any two points in a simple polygon
P exists, then between any two points a path with increasing chords also must exist [5]. Hence,
to test if it is possible to construct a path with increasing chords between any two points in a
simple polygon P , testing if between any two points a self-approaching path can be constructed
is sufficient.

Some research has focused on finding the stretching factor, i.e. the maximum ratio between
the length of a constrained path γ and the Euclidean distance between the endpoints of γ. Since
the only constraint on a geodesic is that it must fully lie inside a polygon P , the stretching factor
does not exist. For self-approaching paths a stretching factor of approximately 5.3331 exists [13].
Later, Aichholzer et al. [1] extended on this work by providing a function c(ϕ) that gives the
stretching factor for ϕ-self-approaching path. A ϕ-self-approaching path is a path such that the
entire remainder after any point p always falls in a wedge with angle ϕ and apex p. For paths
with increasing chords, the stretching factor was proven to be 2π/3 [21]. Yet, no function is found
that gives the stretching factor for paths that are ϕ-self-approaching in both directions.

Furthermore, some research has been done that is more application focused. A field closely
related to self-approaching paths and paths with increasing chords is greedy routing in geometric
networks, which has received a considerable amount of attention [2, 9, 22, 15, 18]. The goal in such
problems is to send a packet between any two vertices s and t in a network, such that the path
can be greedily constructed. Paths with increasing chords were introduced to put an upper bound
on the ratio of the aforementioned 2π/3 between the length of a path and the Euclidean distance
between the start and end points. Another field closely related to self-approaching paths is the
field of beacon based routing and kernel searching [4]. For example, self-approaching paths can
be used for analysing the strategy of mobile robots searching for a kernel as is shown by Icking et
al. [12]. Finally, Biro et al. [3] showed that finding the minimal set of beacons that cover a simple
polygon is NP-hard. This problem can be directly translated into finding the minimum number
of target points, such that any point in a simple polygon can be connected by a self-approaching
path to one of the target points.

Paths with increasing chords can also be studied in graph settings. For example, when given
a point set with n points, a drawing with increasing chords with O(n) Steiner points can be
constructed that spans all points [19]. A drawing of a graph has increasing chords if any pair
of vertices can be connected by a path along the edges of the graph with increasing chords.
Furthermore, Nöllenburg et al. [17] show how to construct planar increasing-chord drawings for
planar 3-trees.

2 Self-Approaching Paths and Paths with Increasing Chords in Polygonal Domains



CHAPTER 1. INTRODUCTION

1.2 Contributions
In Chapter 3, we prove that given a polygon P and points s, t ∈ P , a shortest s-t path with
increasing chords can be calculated using methods proposed by Bose et al. [5]. In Chapter 4,
we discuss why finding a shortest self-approaching path in a polygon with holes is not trivial.
Furthermore, we propose an algorithm that can find the shortest self-approaching path in a polygon
with holes, albeit inefficiently. In Chapter 5, we show that if any two points in a polygon with
holes can be connected by a self-approaching path, the holes must have all centers of curvatures
internal to the holes. If any two points can be connected by a path with increasing chords, the
holes must be of constant width.

Self-Approaching Paths and Paths with Increasing Chords in Polygonal Domains 3



Chapter 2

Preliminaries

In this section we will provide definitions and properties that will prove to be useful later. The
concepts described in this section will remain central for the remainder of the thesis. All definitions
and concepts are for the two dimensional setting.

Paths
An s-t path ζ is a directed curve that starts in point s and ends in point t, such that ζ lies entirely
inside of polygon P , i.e. ζ ⊆ P . For any two points p and q on path ζ, we use p ≤ζ q to denote
that either p comes before q on ζ or p = q. We use ζ(p, q) to denote the subpath of ζ between
points p and q. Furthermore, |pq| gives us the Euclidean distance between points p and q.

Paths in an Euclidean space can make smooth turns and sharp turns. In order to differentiate
between these types of turns, we use the standard concept of a bend point (Figure 2.1).

Definition 1. A bend point b of piecewise smooth curve ζ is a point where the first derivative of
ζ is discontinuous.

We define a normal hp to ζ at point p to be the line through a given point p ∈ ζ such that this
line is perpendicular to the tangent of ζ in p. If p is a bend point, we use the normal definition as
proposed by Icking et al. [13]. This definition states that the normal to p is the set of lines that are
included in the double wedge of the perpendiculars to the tangents of the smooth pieces meeting at
p (Figure 2.1). A normal hp to path ζ defines two half-planes, if p is a bend point every line in the
wedge defines two half-planes which can all be considered separately. Let the negative half-plane
h−p be the closed half-plane that is defined by hp and congruent with the opposite direction of ζ
in p. Furthermore, let the positive half-plane h+

p be the closed half-plane that is defined by hp and
congruent with the direction of ζ in p (Figure 2.2).

p

hp

Figure 2.1: The normal hp of p, where p is
a bend point

p

hph−p

h+p

Figure 2.2: Example figure showing the nor-
mal hp at point p and the corresponding half
planes h−p and h+

p
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CHAPTER 2. PRELIMINARIES

s t

P

Figure 2.3: A self-approaching s-t path in-
side polygon P

a

b

c

Figure 2.4: Three points on a directed path
such that |ac| ≥ |bc|.

Self-approaching paths An often used intuitive definition for self-approaching paths is a path
π that, whilst traversing along π, one gets closer to each point of the curve that has not yet
been passed. Figure 2.3 shows an example of a self-approaching path in polygon P . The formal
definition for self-approaching paths was given by Icking et al. [13].

Definition 2. An s-t path π is self-approaching if and only if for any three sequential points
a, b, c ∈ π, such that a ≤π b ≤π c, |ac| ≥ |bc|, i.e. the Euclidean distance between a and c is greater
or equal than the Euclidean distance between b and c (Figure 2.4).

Icking et al. also proved the normal property for self-approaching paths. For any point p on a
self-approaching path π, the remainder of the path after p does not intersect the normal to π at p.

Lemma 1 (Normal property [13]). An s-t path π is self-approaching if and only if any normal hp
to π at any point p ∈ π does not intersect with π(p, t).

The normal property can be reformulated to a notation using half planes. We can reformulate
Lemma 1 as follows:

Lemma 2 (Half-plane property). An s-t path π is self-approaching if and only for any positive
half-plane h+

p at point p ∈ π, π(p, t) lies completely in h+
p .

A perpendicular bisector of a line segment is the line which intersects that line segment through
its midpoint perpendicularly. A self-approaching s-t path π has the property that the perpendic-
ular bisector of the line segment between two sequential points p and q does not intersect the
remaining subpath π(q, t).

Lemma 3 ([5]). For any two points p <π q on a self-approaching s-t path π in R2, the perpen-
dicular bisector of the straight-line segment pq does not intersect the subpath π(q, t).

Paths with increasing chords A strengthening on the restriction of self-approaching paths
is the restriction upon paths with increasing chords. Figure 2.5 shows an example of an s-t path
with increasing chords in polygon P . The formal definition of a path with increasing chords is:

Definition 3. An s-t path π has increasing chords if and only if for any four sequential points
a, b, c, d ∈ π, such that a ≤π b ≤π c ≤π d, |ad| ≥ |bc|, i.e. the Euclidean distance between a and d
is greater or equal than the Euclidean distance between b and c (Figure 2.6).

It is well known that a path has increasing chords if and only if that path is self-approaching
in both directions, for completeness we provide the proof here.

Lemma 4. An s-t path σ has increasing chords if and only if σ is a self-approaching s-t and t-s
path.

Self-Approaching Paths and Paths with Increasing Chords in Polygonal Domains 5
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s t

P

Figure 2.5: An s-t path with increasing
chords inside polygon P

a

b c

d

Figure 2.6: Four points on a directed path
such that |ad| ≥ |bc|.

Figure 2.7: The red involute is the evolute of the blue involute and the black circle is the evolute
of the red involute. The black circle is an involute of order 0, the red involute is of order 1 and
the blue involute is of order 2.

Proof. If σ has increasing chords, then for any four points a, b, c, d ∈ σ, that appear in that order
on σ, |ad| ≥ |bc| must hold. Therefore, when c = d the inequality must still hold and we get the
property |ac| ≥ |bc|. Hence, σ is a self-approaching s-t path. Furthermore, when a = b, we see
that |bd| ≥ |bc| must hold, and therefore σ must be also a self-approaching t-s path.

If σ is a self-approaching s-t and t-s path, then for points a, b, c, d ∈ σ and a ≤σ b ≤σ c ≤σ d,
|ac| ≥ |bc| and |ad| ≥ |ac| must hold. Therefore, |ad| ≥ |bc| holds and σ has increasing chords.

Often the normal and half-plane properties are used for paths with increasing chords. These
properties follow almost directly from the normal property of self-approaching paths and Lemma 4.
Again, for completeness we provide the proof for the normal property of paths with increasing
chords.

Lemma 5 (Normal property). An s-t path σ has increasing chords if and only if any normal to
σ at any point p ∈ σ does not intersect with σ(s, p) and σ(p, t).

Proof. This normal property follows almost directly from Lemma 4 and the normal property of a
self-approaching path. At any point p ∈ σ, the normal properties of the self-approaching s-t and
t-s paths state that σ(p, t) and σ(s, p) cannot cross the normal to σ through p.

This normal property can be rewritten into the half-plane property for paths with increasing
chords.

Corollary 6 (Half-plane property). An s-t path σ has increasing chords if and only if, for any
line h normal to σ at any point p ∈ σ, the subpath σ(s, p) lies completely in the negative half-plane
h−p and the subpath σ(p, t) lies completely in the positive half-plane h+

p .

Involutes
This thesis will also often use the notion of an involute. Intuitively, an involute is obtained by
following a point on a piece of string that is either being wrapped or unwrapped around a given

6 Self-Approaching Paths and Paths with Increasing Chords in Polygonal Domains
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t

Pv

I

Figure 2.8: For any point s on involute I (red) of the convex hull of shortest self-approaching v-t
path π (blue), I(s, v)⊕ π is the shortest self-approaching s-t path.

curve (Figure 2.7). The formal definition is as follows:

Definition 4 ([16]). An involute I of a smooth curve ζ is a curve such that point p ∈ I lies on
the tangent line to ζ at point q ∈ ζ and a vector in the direction of the first derivative of p is
perpendicular to that of q. An evolute of a curve ζ is the locus of all centers of curvatures of ζ.
Moreover, ζ is the evolute of I.

Since every normal of an involute I of a curve ζ touches ζ these types of curves are excellent
for finding shortest self-approaching paths. For example, let π be a shortest self-approaching v-t
path and I an involute of the convex hull of π that goes through v. For any point s ∈ I the
concatenation I(s, v)⊕ π is the shortest self-approaching s-t path [5] (Figure 2.8).

Furthermore, we will use the notion of involutes of th kth order as was introduced by Bose et
al. [5]. We say that an involute is of order k if it is an involute of a smooth involute of order k− 1
(Figure 2.7). Furthermore, we say circular arcs are involutes of order 0. Thus, an involute of a
circular arc is of order 1 and so forth. An involute Ik of order k is defined as:

Ik(θ) =
b k

2 c∑
i=0

(−1)ia2i(θ)
(

cos θ
sin θ

)
−
d k

2 e∑
i=1

(−1)i−1a2i−1(θ)
(
− sin θ
cos θ

)
, (2.1)

where
ai(θ) = r0

θi

i! + c1
θi−1

(i− 1)! + c2
θi−2

(i− 2)! + · · ·+ ci (2.2)

for some constants c1, c2, · · · , ci. Given a point pi(ri, ϕi) where ri and ϕi are the polar coordinates
for pi, the center of this coordinate center is the center of the involute of order 0, i.e. the circular
arc. For every order of involute i we can calculate constant ci with the following formulas:

ri cos(θi − ϕi) = a0(θi)− a2(θi) + · · ·
ri sin(θi − ϕi) = a1(θi)− a3(θi) + · · · (2.3)

When i ≥ 2, Equation 2.3 can no longer be solved analytically as these equations are tran-
scendental. Therefore, to solve such an equation, numerical methods can be applied to find an
approximation of a higher order involute. An example of such an approximation can be seen in
Appendix A.

Dead regions
Next, we introduce the notion of dead regions [5]. These regions can be constructed with the
aforementioned involutes. Furthermore, dead regions will help us in finding the shortest self-
approaching path in a simple polygon.

Definition 5. Let dead region Dt for point t be the set of points, such that for any point s ∈ Dt
no self-approaching s-t path exists (see Figure 2.9).

Self-Approaching Paths and Paths with Increasing Chords in Polygonal Domains 7
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t

Figure 2.9: Dead region Dt (red) for some point t in a simple polygon.

s

t

P

Figure 2.10: Example of the shortest path tree SPTt (blue) containing the union all shortest paths
between vertices of simple polygon P and t.

Bose et al. describe how to build dead region Dt given a point t that lies inside simple polygon
P . First, we define SPTt to be the shortest-path tree of t in P , i.e. the union of all shortest paths
between t and every vertex of P (Figure 2.10). Every interior node pi of SPTt is reflex towards the
interior of P . Let πpit be the shortest self-approaching path from pi to t, if this path exists, and
CH(πpit) the convex hull of πpit. We can start constructing the involute I of CH(πpit) starts in pi
and rotates into the same direction as the rotation of the shortest path through pi. We construct
I until it intersects some edge of P . Let S(pi) be the area on the concave side of the involute that
is cuts off of the polygon P . We call S(pi) the shadow of pi. Lemma 7 shows that indeed for any
point v in shadow S(pi) of a point pi, there does not exist a self-approaching v-t path.

Lemma 7 ([5]). S(pi) ⊆ Dt.

Moreover, Lemma 8 tells us that we can find whole dead region Dt by only calculating the
shadows of interior nodes of the shortest-path tree SPTt of t.

Lemma 8 ([5]). Dt =
⋃
S(pi) over all interior nodes pi of the shortest-path tree SPTt of t.

Shortest self-approaching path
Most of the aforementioned lemmas and definitions were used to obtain Theorem 9 that gives us
a description on how to find the shortest self-approaching s-t path.

Theorem 9 ([5]). A shortest self-approaching s-t path in a simple polygon P is the geodesic path
between s and t inside the region P \ Dt.

Furthermore, Bose et al. [5] showed that a shortest self-approaching path in a simple polygon
consists of straight line-segments, circular arcs, and involutes of some order k. A segment of a path
that is defined by one function, i.e. any of the three aforementioned parts of a path are separate
segments. The number of segment in a shortest self-approaching s-t in a simple polygon P can be
bounded to the number of vertices of P .

Lemma 10 ([5]). A shortest self-approaching s-t path in a simple polygon P with n vertices
consists of Θ(n2) segments.

Using Theorem 9 and 10 Bose et al. [5] proposed an algorithm that can find the shortest self-
approaching s-t path in a simple polygon P in O(n · f(k) + n · g(k)), where n is the number of

8 Self-Approaching Paths and Paths with Increasing Chords in Polygonal Domains



CHAPTER 2. PRELIMINARIES

s t

(a) The simple 1-path.

s t

(b) The simple 2-path.

s t

(c) The simple 3-path.

s t

(d) The simple 4-path.

s t

(e) The simple 5-path.

Figure 2.11: Every shortest simple k-path in a polygon with holes.

vertices of P and k the order of the highest involute that appears in the solution. Since involutes
of order higher than 2 cannot be solved analytically, f(k) and g(k) represent the computing time
for solving and evaluating Equation 2.3, respectively.

Holes
Finally, we introduce the notion of holes. A hole H is a connected open set of points that lies
interior to P but does not belong to polygon P . Therefore, the boundaries of H and P cannot
intersect, i.e. there always exists a path around H inside P .

We say two s-t paths are homotopically equivalent if one path can be continuously deformed
into the other path without intersecting the boundary of polygon P . When a polygon has holes
multiple paths can exist between two end points. To identify these paths we use the definition for a
simple k-path provided by Hershberger et al. [11]. The simple 1-path is the shortest path between
s and t. The simple 2-path is the shortest path which does not cross itself and is not homotopically
equivalent to the 1-path. Thereafter, the simple k-path is defined recursively (Figure 2.11). To
better match the terminology used in this thesis, we will use the term k-geodesic instead of a
simple k-path. Finally, we say that a curve ζ is shortest in its homotopy group if there does not
exist another curve that is shorter and homotopically equivalent to ζ.

Self-Approaching Paths and Paths with Increasing Chords in Polygonal Domains 9



Chapter 3

Paths with Increasing Chords in
Simple Polygons

In this chapter we will propose an algorithm that can find a path with increasing chord if it
exists. Recall that a path with increasing chords is a path such that the Euclidean distance
between two points is greater or equal than the Euclidean distance between two other points that
lie on the subpath between the two former points. Paths that have increasing chords are closely
related to self-approaching paths. As a consequence, we will often use the proprieties from self-
approaching paths to prove properties of paths with increasing chords. Using the normal and
half-plane property we can start drawing conclusions about shortest paths with increasing chords.

We will first show that a shortest s-t path with increasing chords is unique in a simple polygon
P , therefore we only need to search for one shortest s-t path with increasing chords. The following
two proofs are extensions from the analogous propositions about self-approaching paths given by
Bose et al. [5].

Lemma 11. A geodesic path γ between two distinct paths with increasing chords σ1 and σ2 also
has increasing chords (Figure 3.1).

Proof. First of all, we will use the fact that the geodesic must lie in both convex hulls of both
paths, i.e. γ ⊆ CH(σ1) and γ ⊆ CH(σ2). Furthermore, any point p ∈ γ either lies on one of the
paths σ1 or σ2 or on a straight line that is bitangent to σ1, σ2 or both σ1 and σ2.

First, we consider the case that p is not a bend point but lies on a smooth section of σ1 or
σ2. Let, w.l.o.g., p ∈ σ1. The positive half-plane h+

p of the normal to σ1 at p contains subpath
σ1(p, t) and the negative half-plane h−p of the normal at p contains subpath σ1(s, p). Therefore,
h+
p also contains the convex hull of σ1(p, t) and h−p contains the convex hull of σ1(s, p). Hence, h+

p

contains the subpath γ(p, t) and h−p contains the subpath γ(s, p) of the geodesic.
Now let p be a bend point lying on σ1. Subpath σ1(p, t) must be fully contained in the two

positive half-planes, which are defined by the normals of the smooth pieces of σ1 meeting at p.
Analogously σ1(s, p) is fully contained in the two negative half-planes. The two normals of the
geodesic path at this point must also lie in between the two normals to the boundary path. Thus,

s t

σ1

σ2
γ

Figure 3.1: Geodesic γ (purple) that lies between paths σ1 (blue) and σ2 (red) with increasing
chords.
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p
q

p′

hp′

hp

s

t

Figure 3.2: Geodesic σ (purple) where the
normal property does not hold in p′, normal
hp touches point q that lies on subpath s
(orange) of σ.

q

h′′b

h′b
b

s

t

Figure 3.3: Geodesic σ (purple) where the
normal property does not hold in p′, line h′b
touches point q that lies on subpath s (or-
ange) of σ.

the intersection of the two positive half-planes of the normals to the geodesic contains the convex
hull of the subpath σ1(p, t), and, therefore, the rest of the geodesic path γ(p, t). Analogously, the
intersection of the two negative half-planes of the normals to the geodesic contains the convex hull
of the subpath σ1(s, p), and, therefore, the geodesic subpath γ(s, p).

Finally, let p lie on a segment of γ that is bitangent to σ1, σ2 or both σ1 and σ2. Let us
consider one of the end-points p∗ of this bitangent. Assume, that p∗ ∈ γ(p, t). The normal to γ at
p is parallel to the normal to γ at p∗. By one of the cases considered above, the positive half-plane
at p∗ will contain γ(p∗, t), and, therefore, the positive half-plane of the normal to γ at p will also
contain the subpath γ(p, t). If p∗ ∈ γ(s, p), we can follow analogues steps to show that γ(s, p) lies
in the negative half-plane of p.

Thus, γ has increasing chords.

Using the property from Lemma 11 we can now prove the following theorem.

Theorem 12. A shortest s-t path with increasing chords in a simple polygon is unique.

Proof. Assume there exist two distinct shortest s-t paths with increasing chords σ1 and σ2 in a
polygon P . Then, by Lemma 11, there exists a shorter path that is a geodesic path enclosed
between σ1 and σ2.

Recall that Dt for point t is the set of points, such that for any point s ∈ Dt no self-approaching
s-t path exists in polygon P . In the next theorem we will show that if we subtract the union of
Dt and Ds from simple polygon P , the geodesic shortest s-t path in this space is the shortest path
with increasing chords, i.e. the region for which from every point a self-approaching path to s and
t exists. The theorem is proven by contradiction. In more detail, we show that if there is a point
where the normal property is violated, some self-approaching path cannot exist.

Theorem 13. Geodesic σ between points s and t inside the region P \ (Dt ∪ Ds) is the shortest
s-t path with increasing chords in simple polygon P .

Proof. Assume that σ does not have increasing chords. Let point p ∈ σ be such that p is the
last point along σ for which the normal property holds if p exists. If p exists, there also exists
point p′ ∈ σ(p, t) such that p′ lies in the ε-neighborhood of p for arbitrary small ε and the normal
property does not hold in p′. Since in p′ the normal property does not hold, there is some subpath
ρ of σ(s, p′) or σ(p′, t) that either lies in the positive or negative half-plane defined by the normal
through h′p, respectively. Furthermore, the normal hp touches σ at some point q ∈ ρ (Figure 3.2).
On the contrary if p does not exist, there exists a bend point b such that there are two lines
h′b, h

′′
b ∈ hb among the set of lines in the normal hb, such that h′b touches σ at some point q ∈ σ

and h′′b intersect σ (Figure 3.3). All cases where p does not exist are simply analogous to the cases
where p exists. Therefore, we will only cover the cases where p exists.

We assume, w.l.o.g, that line segment pq is horizontal, p lies to the right of q, and σ(s, p) lies
above hp. Let e be the segment of σ p lies on and f be the segment of σ q lies on. We must

Self-Approaching Paths and Paths with Increasing Chords in Polygonal Domains 11
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s
q

t

p
p′

(a) The point of curvature of σ at point p lies
to the right of p.

s

q

t

pv

p′

(b) The point of curvature v of σ at point p lies
to the left of p. The green path is the shortest
self-approaching p-t path.

s

q, w′

t

pv
w

(c) The point of curvature v of σ at point p lies to the left of p.
The orange path is the shortest self-approaching v-s path, that
intersects with hp in w and w′.

Figure 3.4: Geodesic σ (purple) where point q ∈ σ(s, p), p lies on a boundary of Dt (red), and q
is a vertex of P .

consider the cases where q ∈ σ(s, p) and q ∈ σ(p, t). Furthermore, the segments e and f can be
straight line segments, or boundaries of a dead region of Dt or Ds. If f is a straight line segment,
since σ is a geodesic, q must be an end point of f and thus be a vertex of polygon P . We will go
over every case separately and show that these cases are not possible.

Once we have shown that no point exists where the normal property is violated, σ indeed has
increasing chords by Lemma 5. Furthermore, σ must be the shortest path with increasing chords.
Any path that is shorter than σ must go through either of the dead regions Dt or Ds. Therefore,
any path shorter than σ cannot have increasing chords and σ must be the shortest path with
increasing chords. We will now consider all different cases:

Case 1: q ∈ σ(s, p), e is a boundary of Dt, and q is a vertex of P (Figure 3.4)
The center of curvature of σ at p must lie in the direction of q. Otherwise the normal hp′ to σ
cannot intersect σ(s, p), as is depicted in Figure 3.4a. Let πpt be the shortest self-approaching path
from p to t. Segment e is part of Dt, therefore e is an involute of πpt by construction. Hence, there
must be a point v ∈ πpt touched by normal hp (Figure 3.4b). Because πpt goes through v, hv⊥hp,
i.e. hv is perpendicular to hp (if v is a bend point, there must be a line which is perpendicular hp
in the set of normals hv). Furthermore, πpt(v, t) lies completely in the positive half-plane h+

v by
the half-plane property. We will now show that in the region between pv and πpt(p, v) there are
vertices of P . The straight line segment pv concatenated to πpt(v, t) would be self-approaching.
However, p′ lies below hp, thus polygon P must intersect with vp. Therefore, the shortest self-
approaching v-s path πvs must first intersect or touch hp to the right of v at point w and later to
the left of v at point w′ (Figure 3.4c). Thus, |vw′| < |ww′| which contradicts the self-approaching
property of πvs. Hence, this case is not possible if the geodesic between s and t exists.

Case 2: q ∈ σ(s, p), e is a boundary of Dt, and f is a boundary of Ds (Figure 3.5)
This case is analogous to Case 1 (Figure 3.4).

Case 3: q ∈ σ(s, p), e is a boundary of Dt, and f is a boundary of Dt (Figure 3.6)
Since q is touched by hp and q lies on a boundary of Dt, normal hq is perpendicular to hp.
Furthermore, consider shortest self-approaching q-t path πqt. Because q lies on a boundary of Dt

12 Self-Approaching Paths and Paths with Increasing Chords in Polygonal Domains
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s

q

t

pv

p′

Figure 3.5: Point q ∈ σ(s, p), p lies on a
boundary of Dt (red), and q lies on a bound-
ary of Ds (blue). The green path is the
shortest self-approaching p-t path.

s

q
p

v

t

Figure 3.6: Point q ∈ σ(s, p), and both p
and q lie on a boundary of Dt (red). The
green path is the shortest self-approaching
q-t path.

s

q

t

p

p′

Figure 3.7: Point q ∈ σ(s, p) and p lies on a
straight line segment (orange).

s

q
p

p′ t

Figure 3.8: Point q ∈ σ(s, p), p lies on a
boundary of Ds (blue), and q is a vertex of
P .

there is a point v ∈ πqt touched by hq with hv⊥hq. Path πqt(p, t) or πqt(v, t) must lie both in h+
v

and in h+
p , however the intersection of these half-planes is empty; h+

v ∩ h+
p = ∅. Hence, path πqt

cannot exist.

Case 4: q ∈ σ(s, p) and e is a straight line segment (Figure 3.7)
Since the normals hp and hp′ are parallel it is impossible for hp′ to be able to intersect with σ(s, p).

Case 5: q ∈ σ(s, p), e is a boundary of Ds, and q is a vertex of P (Figure 3.8)
Normal hp touches σ(s, p) at point q. Point q does not lie in the positive half-plane h+

p′ of the
shortest self-approaching p′-s path πp′s. Since q is a vertex of P , hp′ intersects with P . Therefore,
s and p′ must lie in different connected components in the intersection of P and the positive
half-plane h+

p′ of the path πp′s. Hence, no p′-s path can exist including πp′s.

Case 6: q ∈ σ(s, p), e is a boundary of Ds, and q is a boundary of Ds (Figure 3.9).
Normal hp touches σ(s, p) at point q. Point q does not lie in the positive half-plane h+

p′ of the
shortest self-approaching p′-s path πp′s. Since q lies on a boundary of Ds, hp′ intersects with this

s

q
p

p′ t

Figure 3.9: Point q ∈ σ(s, p), and both p
and q lie on a boundary of Ds (blue).

s

q
p

p′

t

v

Figure 3.10: Point q ∈ σ(s, p), p lies on
a boundary of Ds (blue), and q lies on a
boundary of Dt (red). The green path is the
shortest self-approaching q-t path.
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s

t

p

p′

q

Figure 3.11: Point q ∈ σ(p, t), p lies on a
boundary of Dt (red), and q is a vertex of
P .

s

t

p

p′

q

Figure 3.12: Point q ∈ σ(p, t), and both p
and q lie on a boundary of Dt (red).

s

pq

v

t

Figure 3.13: Point q ∈ σ(p, t), p lies on a
boundary of Dt (red), and q lies on a bound-
ary of Ds (blue). The orange path is the
shortest self-approaching q-s path.

s

pq

wt

q′

Figure 3.14: Point q ∈ σ(p, t), both p and q
lie on a straight line segment (orange), and
point w lies on boundary d of Ds (blue) with
hp ‖ hw. The green path is the shortest self-
approaching p-t path.

boundary. Therefore, s and p′ must lie in different connected components in the intersection of
P \ Ds and the positive half-plane h+

p′ of the path πp′s. Hence, πp′s cannot exist.

Case 7: q ∈ σ(s, p), e is a boundary of Ds, and f is a boundary of Dt (Figure 3.10)
This case is analogous to Case 3 (Figure 3.6).

Case 8: q ∈ σ(p, t), e is a boundary of Dt, and q is a vertex of P (Figure 3.11)
This case is analogous to Case 5 (Figure 3.8).

Case 9: q ∈ σ(p, t), e is a boundary of Dt, and f is a boundary of Dt (Figure 3.12)
This case is analogous to Case 6 (Figure 3.9).

Case 10: q ∈ σ(p, t), e is a boundary of Dt, and f is a boundary of Ds (Figure 3.13)
Point s must lie above hp as in p the normal property is not yet violated. Furthermore, the point
of curvature v of σ at point q must lie below hq. The shortest self-approaching q-s path πqs must
travel through v and because hq touches this point, there is a normal hv that is parallel to hp.
Point s cannot lie above hp and below hv at the same time, hence this construction cannot exist.

Case 11: q ∈ σ(p, t), e is a straight line segment, and q a vertex of P (Figure 3.14)
The normal hp touches σ(p, t) at point q which is a vertex of P . The shortest self-approaching
p-t path πpt must intersect or touch hp at least once in point q′ that lies between p and q. By
definition we know that |pq′| ≥ |vq′| for every point v of πpt(p, q′). Therefore, |pq| ≥ |vq|, i.e. every
point of the subpath πpt(p, q′) lies in a disc centered at q with radius |pq| (Figure 3.15). Thus,
the straight line segment e is not part of πpt and e is a part of σ due to a boundary d of Ds.
Segment e can only be part of σ if there is a point w ∈ d ⊂ σ with a normal hw that is parallel
to hp and σ(p, w) only contains straight line segments and boundaries of Ds. Otherwise, at the
end of e there is either a bend point where σ turns to the right or e is tangent to a boundary of
Dt. In either option, no self-approaching p-t path can exist. Since w lies on a boundary of Ds,
there must be a point w′ on the shortest self-approaching w-s path πws touched by hw. Therefore,
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pq q′

Figure 3.15: The disc with radius |pq′| centered at point q′ which lies on the straight line segment
pq is fully contained in the disc with radius |pq| centered at q.

s

p′
pq

w
t

q′

Figure 3.16: Point q ∈ σ(p, t), p lies on a
straight line segment (orange), and q lies on
a boundary of Dt (red). The green path is
the shortest self-approaching p-t path.

v

s

p′
pq

t

Figure 3.17: Point q ∈ σ(p, t), p lies on a
straight line segment (orange), and q lies on
a boundary of Ds (blue). The orange path
is the shortest self-approaching q-s path.

σ(s, w) must intersect or touch hw too. However, σ(s, w) cannot intersect hw as in hp the normal
property is not violated, thus σ cannot exist.

Case 12: q ∈ σ(p, t), e is a straight line segment, and f a boundary of Dt (Fig-
ure 3.16)
This case is analogous to Case 11 (Figure 3.14).

Case 13: q ∈ σ(p, t), e is a straight line segment, and f a boundary of Ds (Fig-
ure 3.17)
Point s must lie above hp as in p the normal property is not yet violated. Furthermore, the center
of curvature v of σ at point q must lie below hp. The shortest self-approaching q-s path πqs must
travel through v and because hq touches this point, there is a normal hv that is parallel to hp.
Point s cannot lie above hp and below hv at the same time, hence this construction cannot exist.

s

p

p′
q

t

w′ w

(a) The point of curvature of σ at p lies in the
direction of q. The orange path is the shortest
self-approaching q-s path.

s

pq

wt

q′

(b) Point of curvature of σ at p lies in the oppos-
ite direction of q. The green path is the shortest
self-approaching p-t path.

Figure 3.18: Point q ∈ σ(p, t), q is a vertex of P , and p lies on a boundary of Ds (blue).
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t

Figure 3.19: Point q ∈ σ(p, t), q lies on a
boundary of Dt (red), and p lies on a bound-
ary of Ds (blue).
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s

p

p′

q

t

Figure 3.20: Point q ∈ σ(p, t), q lies on
a boundary of Ds (blue), and p lies on a
boundary of Ds (blue). The orange path is
the shortest self-approaching q-s path.

Case 14: q ∈ σ(p, t), e is a boundary of Ds, and q is a vertex of P (Figure 3.18)
There are two cases that need to be considered, either the point v of σ at point p lies in the
direction of q with respect to p or not. First we consider the case where v lies in the direction of q
(Figure 3.18a). Since q lies in the negative half-plane h−p′ , the center of curvature of σ at point p
must lie to the left of q. Therefore, the shortest self-approaching q-s path πqs must first intersect
or touch hp to the right of q at point w and later to the left at point w′. Thus, |qw′| < |ww′|
which contradicts the self-approaching property of πvs.

The case where v does not lie in the direction of q with respect to p (Figure 3.18b) is analogous
to Case 11 (Figure 3.14).

Case 15: q ∈ σ(p, t), e is a boundary of Ds, and f is a boundary of Dt (Figure 3.19)
This case is analogous to Case 14 (Figure 3.18).

Case 16: q ∈ σ(p, t), e is a boundary of Ds, and f is a boundary of Ds (Figure 3.20)
Point s must lie above hp as in p the normal property is not yet violated. Furthermore, the point
of curvature v of σ at point q must lie below hq. The shortest self-approaching q-s path πqs
must travel through v and because hq touches this point, there is a normal hv that is parallel to
hp. Point s cannot lie above hp and below hv at the same time, hence this construction cannot
exist.

3.1 An algorithm for paths with increasing chords

s

t

Figure 3.21: Polygon P with dead regions Ds (red) and Dt (blue), the geodesic (purple) of the
remaining area is the shortest path with increasing chords.

16 Self-Approaching Paths and Paths with Increasing Chords in Polygonal Domains



CHAPTER 3. PATHS WITH INCREASING CHORDS IN SIMPLE POLYGONS

s t

(a) The s-t geodesic σ inside P .

v

s t

(b) Path σ goes through a dead
region before and after vertex v.

v

s t

(c) The sections of σ before and
after v are updated to avoid the
dead regions.

v

s t

(d) Path σ still goes through a
dead region before new vertex v.

v

s t

(e) The section of σ before v is
updated to avoid the dead re-
gions.

s t

(f) No vertex v exist such that γ
goes trough a dead region before
or after v, thus γ is the shortest
s-t path with increasing chords.

Figure 3.22: The calculation of the shortest s-t path with increasing chords inside a simple polygon
P .

In this section we propose an algorithm that computes the shortest path with increasing chords.
As discussed in Chapter 2 whenever a path contains involutes of an order higher than 1, the exact
path cannot be calculated. However, we will assume it is possible to solve the equations of involutes
of a higher order. First we will give an overview of the algorithm and, subsequently, go over the
steps of the algorithm in more detail.

1. Construct all dead regions for s and t and subtract these from P .
2. Find the geodesic σ in P \ (Dt ∪ Ds), report σ.

By Theorem 13 we know that σ will be the shortest self-approaching s-t path in P . Figure 3.21
shows an example of a shortest s-t path with increasing chords inside a simple polygon P .

Constructing dead regions We can construct the dead regions as described by Bose et al. [5].
The construction of the dead regions is also described in Chapter 2.

Geodesic Finding the geodesic in polygon P without the dead regions Dt and D∫ is almost
analogous to finding the shortest self-approaching path π as described by Bose et al. [5]. The
self-approaching algorithm starts with the s-t geodesic γ′ and moving backward from t to s, the
algorithm updates γ′ if some section of γ′ passes through the dead region Dt. Whilst this does
not immediately work for paths with increasing chords we can do something very similar. Let σ
be the s-t geodesic in polygon P (Figure 3.22a). Select any vertex v of P that is in σ and update
σ if it passes through one of the dead regions right before or after vertex v such that these dead
regions are avoided (Figure 3.22b). The self-approaching algorithm describes how this step can be
calculated. The only additional step that might need to be performed is calculating the bitangent
between two dead regions of Dt and Ds, for which we can use the bitangent calculation of the
self-approaching algorithm [5]. Next, we mark vertex v as processed and choose new vertex v of P
that is in σ and not yet marked as being processed. Thereafter, repeat the aforementioned steps
(Figures 3.22d and 3.22e) until no vertices exist in σ that have not been processed. If at some
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point σ cannot be updated or no bitangent exists, return that no s-t path with increasing chords
exists. If all vertices in σ are marked as being processed we can return σ which is the shortest s-t
path with increasing chords (Figure 3.22f).

Theorem 14. The algorithm finds the shortest s-t path with increasing chords in a simple polygon
P in O(n2 · g(n) + n2 · f(n)), where f(k) and g(k) are the number of steps required to solve and
evaluate, respectively, the equations of an involute of order k.

Proof. The algorithm constructs a dead region for every internal node of SPTs and SPTt. By
Lemma 8 this union of these dead regions is equal to Ds∪Dt. Thereafter, the algorithm simply con-
structs the geodesic around the dead regions Dt and Ds. By Theorem 13, this geodesic constructed
is the shortest self-approaching path.

In the worst case, whilst computing the shortest self-approaching s-t path the entire set of
dead regions Dt and Ds must be calculated. Given a polygon P with n vertices, the running
time complexity of the shortest self-approaching path algorithm is O(n · g(k) + n · f(k)), where
k is the order of the highest involute that appears in the solution. Bose et al. [5] showed that
k can be bound to n in a simple polygon. Therefore, computing all dead regions has a running
time complexity that is similar to the complexity of the shortest self-approaching path algorithm:
O(n · g(n) + n · f(n)).

The update step of the geodesic can occur at most n times, as that is an upper bound on the
number of vertices that can be marked as processed. The update step entails running the shortest
self-approaching path algorithm (O(n · g(n) + n · f(n))) and an additional bitangent calculation
(O(g(k) logn+ f(k))).

Therefore, combining all these running times, our algorithm finds the shortest s-t path with
increasing chords in O(n2 · g(n) + n2 · f(n)).

With this algorithm we conclude this chapter. We have proven that the shortest s-t path with
increasing chords is unique in a simple polygon. Moreover, the shortest s-t path with increasing
chords is the s-t geodesic in polygon P without the dead regions Dt and Ds. Finally, we have
shown that the shortest s-t path with increasing chords can be calculated using the shortest
self-approaching path algorithm.
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Chapter 4

Self-Approaching Paths in
Polygonal Domains with Holes

s t

Figure 4.1: Two distinct shortest self-approaching s-t paths.

The algorithm for the shortest self-approaching s-t path only works for simple polygons. A logical
next step is therefore to try and calculate the shortest self-approaching s-t path in a polygon with
holes. In a simple polygon there exists only one unique shortest self-approaching path [5]. In a
polygon with holes, however, multiple shortest self-approaching paths can coexist as is shown in
Figure 4.1. In this chapter we will first give a number of examples that show that finding the
shortest self-approaching path in a polygon with holes is not trivial. Furthermore, we will give an
algorithm that can compute a shortest self-approaching s-t path polygon with holes, admittedly
the running time of this algorithm is unbounded.

4.1 Exploration for trivial self-approaching algorithms
First, we will explore some polygons in which finding the shortest self-approaching path is not as
trivial as might be initially expected.

4.1.1 Shortest geodesic
An intuitive idea for finding a self-approaching path, would be to construct a self-approaching path
that is homotopically equivalent to the 1-geodesic, i.e. the shortest s-t path. However, Figure 4.2
shows a polygon where there is no self-approaching path that is homotopically equivalent to the
1-geodesic. However, there exists a self-approaching path that is homotopically equivalent to the
2-geodesic.
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s t

Figure 4.2: There is no self-approaching path that is homotopically equivalent to the 1-geodesic
(red). However, for the 2-geodesic (blue) a self-approaching path (turquoise) exists that is homo-
topically equivalent.

h

w

2k

Figure 4.3: Rectangular section of a polygon where white is the only path through this rectangle.
The path is constructed out of cycloids generated by circles with diameter k, such that k = 2h/π.

4.1.2 Shortest geodesic with self-approaching path

Even if we can find a k-geodesic, for smallest possible k, where a self-approaching path π exist
that is homotopically equivalent, there is no guarantee that π would actually be the shortest self-
approaching path in the polygon. First we introduce a jagged structure as described by Icking et
al. [13] and which is depicted in Figure 4.3. The jagged structure lies in a w by h rectangle and is
constructed out of pieces of cycloids that are generated by circles of diameter k, where k = 2h/π.
With this choice of k the length of a path around one piece of a cycloid is exactly 2k. Therefore,
not only is a path going through a jagged structure self-approaching, the length of this path is
exactly 2w. Furthermore, if we let the number of cycloids approach infinity, h approaches 0 which
makes this structure particularly useful for our example.

tp

Figure 4.4: Point t lies enclosed in a hole, such that both geodesics connecting p and t that go
around the hole (blue) and trough the jagged section (red) are approximately of the same length.
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t s

(a) The s-t 1-geodesic γ1 (blue) and the s-t 2-
geodesic γ2 (red), the part where γ1 and γ2 over-
lap is in purple.

t s

(b) The self-approaching s-t paths π1 and π2
that are homotopically equivalent to γ1 and γ2,
respectively. Path π1 is significantly longer than
π2.

Figure 4.5: Polygon P such that the self-approaching s-t path is not homotopically equivalent to
the s-t 1-geodesic.

t

s qτ

Figure 4.6: Path π2 (red) and path π1 (blue), point s is the intersection of the involute of π1 and
the tangent τ to the involute of π2 at point q.

We aim to construct a polygon P where both a k-geodesic γ1 and a k′-geodesic γ2 exist, such
that k < k′. Furthermore, for both geodesics a homotopically equivalent self-approaching path
must exist and the shortest self-approaching path π1 equivalent to the k-geodesic is longer than
the shortest self-approaching path π2 equivalent to the k′-geodesic. We try to make |π1|/|π2| as
large as possible. This ratio tells us that if there exists an algorithm that can find the k-geodesic,
such that k is minimal and there exists a self-approaching path homotopically equivalent to the
k-geodesic, this algorithm is at least a |π1|/|π2|-approximation.

Figure 4.4 shows an exaggerated view of our construction of P . Let point p be at the entrance
of the jagged structure and t at the exit, furthermore let the Euclidean distance between p and
t equal 2 (Figure 4.4). If the number of cycloids approaches infinity and the thickness of the
hole approaches 0, the path connecting p and t going through the jagged structure approaches
length 4 + ε, for arbitrary small ε. Furthermore, the path going around the jagged structure also
approaches a length of 4. We can then choose point s such that the s-t 1-geodesic γ1 and the s-t
2-geodesic γ2 both go through point p and γ1(s, p) = γ2(s, p). Therefore, γ1 will go around the
hole and γ2 goes through the jagged section (Figure 4.5a). Moreover, we want that there exist
self-approaching s-t paths π1 and π2 that are homotopically equivalent to γ1 and γ2, and such
that π1 is longer than π2. ( (Figure 4.5b)).

With the hypothetical structure of polygon P , we look for the point s such that the ratio
between π1 and π2 is as high as possible. To compute this ratio, a grid search is performed on the
location of s. Path π2 is made out of the jagged structure followed by an involute I. We construct
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Figure 4.7: The ratio between the lengths of two self-approaching s-t paths π1 and π2 such that
the geodesic homotopically equal to π1 is shorter than the geodesic homotopically equal to π2.

I piecewise, after every piece we compute the tangent τ to the involute I at point q (Figure 4.6).
As we know exactly at which angles the segments of I start and end, we can calculate the exact
length of I constructed so far. Thereafter, we need to know where τ intersects with π1. As π1 is
also constructed of involutes of a high order it is not possible to find this intersection analytically.
Therefore, a binary search is applied in order to find the intersection of τ and π1 with relative high
accuracy. Once the intersection point is determined we have a clear definition of π1 and π2 and we
can calculate their lengths by integrating their individual segments. The results obtained by the
script given in Appendix A shows that if we continuously increase the size of π2, |π1|/|π2| ≈ 1.98.
Figure 4.7 shows the progression of the ratio between π1 and π2 with respect to how much τ
has rotated during construction, i.e. if τ made a full rotation, we say that we have constructed
approximately 2 · 3.1415 of I.

4.2 Self-approaching algorithm for holes
The algorithm presented in this section returns a shortest self-approaching s-t path in a polygon P
with holes, given that such a path exists. Whilst this path returned by the algorithm is indeed the a
shortest self-approaching path, the algorithm is not efficient. Before we propose our new algorithm,
we need to generalize the following lemma that was given by Bose et al. [5] for simple polygons.
The lemma can simply be lifted from its simple polygon constraint without any modifications.

Lemma 15. Bends of a shortest self-approaching path π in a polygon P form a subset of vertices
of P .

As we have shown in Section 4.1 an algorithm for finding the shortest self-approaching s-t
path is not as trivial as one might expect. Therefore, this algorithm explores all possible shortest
self-approaching paths whilst ignoring subpaths that will not contribute to the output. The idea
of this algorithm is to simulate a wavefront originating from t that expands in all regions for which
a self-approaching path to t exists, as was inspired by the work of Hershberger et al. [11]. Once
the wavefront reaches s we have found a shortest self-approaching s-t path. Let V be the set of
vertices of P and vertex s. We will first give a high level overview of the algorithm:

1. The algorithm first finds every vertex v ∈ V that is directly visible from t and stores the line
segments vt in a priority queue Q.

2. This step will expand the shortest path π constructed so far to every vertex w ∈ V . There-
fore, we are guaranteed to explore every possible path going to t, and eventually explore a
shortest self-approaching s-t path. More specifically, we test if we can append π by a straight
line segment, involute, or involute and straight line segment obtaining π∗ such that π∗ is a
self-approaching w-t path. If π∗ exists without intersecting with P , this path can be added
to Q.
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CH(π)
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w

Figure 4.8: The case such that vw ⊕ π is a self-approaching w-t path.
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Figure 4.9: The case such that wIv(θ) ⊕ Iv(θ, v) ⊕ π is a self-approaching w-t path. The green
region lies to the right of τp′′ , the left of hp′ , and outside the dead region of CH(π). The yellow
region lies to the right of τp′′ and hp′ , and to the left of τp′ .

3. Next, we want to ignore all paths that will not be part of the shortest self-approaching s-t
path πst. Let π1 and π2 be two paths in Q such that π1 and π2 both start in the same
vertex, π1 is shorter than π2, and the convex hull of π1 lies in the convex hull of π2. Path π2
could never be part of πst as π1 can always replace π2 and make the resulting path shorter.
Therefore, if π1 and π2 both exist in Q, π2 can be removed.

4. Thereafter, we repeat Steps 2 and 3 until π is an s-t path or Q gets empty. If π is an s-t
path the algorithm returns π, otherwise, the algorithm reports that no self-approaching s-t
path exists.

The algorithm can be divided into three sections: initialization (1), propagation (Steps 2 and 3),
and termination (Step 4). We will now provide a more detailed overview of the algorithm.

Initialization Let priority queue Q store self-approaching v-t paths for arbitrary vertex v, sorted
on the length of these paths in increasing order. Furthermore, let SAPM be a self-approaching
path map that holds a set of self-approaching paths connecting arbitrary vertex w to t. All vertices
that are directly visible by t can reach t by a self-approaching path, which is a simple straight
line. These paths are added to SAPM and Q.

Propagation Let π be the path that is at the front of Q which starts in vertex v, remove π from
Q and SAPM(v). We loop over every vertex w ∈ V that is not in the shadow of v with respect to
π. If the angle between vw and the tangents to CH(π) at v in both directions are less than 90°,
we need no involute to connect to w as is shown in Figure 4.8. If wv does not intersect with P we
append wv to π, obtaining path π∗. Path π∗ can be added to SAPM(w) and Q.

If the angle between wv and the tangent to CH(π) in both directions is not less than 90° or
wv intersects with P , we cannot append π with a straight line segment (Figure 4.9). When this is
the case we test is we can append π with an involute of CH(π) and a straight line segment to this
involute that does not intersect with P . First we test if we can append π with a clockwise involute
and thereafter if we can append π with a counterclockwise involute. We start by constructing the
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clockwise involute Iv of CH(π) that starts in v piece by piece. We keep constructing Iv until we
find segment Iv(p′, p′′), where the curve orientates from p′ to p′′. Let τp′ and τp′′ be rays that are
in the opposite direction of the tangent to Iv at p′ and p′′, respectively (Figure 4.9). Furthermore,
hp′ is the ray perpendicular to τp′ which points outwards. We keep constructing Iv until we find
segment Iv(p′, p′′), such that w lies to the right of τp′′ and either w lies to the left of hp′ or to the
right of hp′ and to the left of τp′ (Figure 4.9). Thereafter, we find the line segment qw between
Iv(p′, p′′) and w, such that qw is tangent to Iv at point q. If qw does not intersect a boundary of
P we can extend π to π∗ such that π∗ = wq⊕ Iv(q, v)⊕π, otherwise we move to the next segment
of Iv. We can stop the construction of Iv if either Iv(p′, p′′) intersects with a segment of P or we
have found a proper tangent wIv(θ). If π∗ exists we can add it to SAPM(w) and inserted it into
Q. Finally we take analogous steps in computing the counterclockwise involute and extending
path π into π∗.

Thereafter, we check in SAPM(w) whether it is possible to remove a path from Q and
SAPM(w). Assume there are two paths π1 and π2 in SAPM(w) such that |π1| ≤ |π2| and
CH(π1) ⊆ CH(π2), i.e. π1 is not longer than π2 and the convex hull of π1 is contained in the
convex hull of π2. Then we remove π2 from both Q and SAPM(w).

Termination Whenever path π, taken from the front of Q, is a path going from s to t the
algorithm can terminate and report π as a shortest path. If Q gets empty at some point, no
self-approaching path exist connecting s to t which can be returned.

Running time The proposed algorithm is greatly inefficient as the running time cannot be
bounded in terms of the input or output. Even if the algorithm could have been bounded in terms
of the input or output we still could have to search trough a number of different paths that is equal
to the number of k-geodesics that exist in P which is at least exponential in terms of the number
of holes. Moreover, as these self-approaching paths again contain involutes, we have to solve and
evaluate their equations which is not possible analytically. Therefore, the running time analysis
is omitted and the algorithm should be seen as a proof of concept which could be improved upon
in the future.

Theorem 16. The algorithm finds a shortest self-approaching s-t path in a polygon with holes P .

Proof. The proposed algorithm is a fairly trivial algorithm that tests all paths possible. The
removing of paths is safe, as the w-t path π2 is only removed if a w-t path π1 exists such that the
convex hull of π1 is contained in the convex hull of π2 and length of π1 is less or equal than the
length of π2. Therefore, for any extension α such that α⊕π2 is self-approaching, α⊕π1 must also
be self-approaching. Furthermore, the length of α ⊕ π2 cannot be longer than α ⊕ π1. Hence, it
suffices to only take π1 into account remove π2.

The algorithm terminates once the path π at the front of priority queue Q is an s-t path. Path
π is the shortest self-approaching s-t path in polygon P . If there is a shorter self-approaching
path π′, then this path cannot be an extension of any self-approaching path ending in a vertex v
extended with a straight line segment, involute, or involute and straight line segment as such an
option would have been explored by the algorithm. Therefore, π′ must be a straight line segment
or have a bend point that is no vertex of P . If π′ was a straight line segment the path would
have been found in the initialization step and π would not have been the first s-t path in Q.
Furthermore, π′ cannot have a bend point that is no vertex of P by Lemma 15. Hence, π is the
shortest self-approaching s-t path in P .
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Chapter 5

Characterization of Strongly
Connected Polygons

A polygon P is strongly connected if and only if any two points in P can be connected by a
constrained path. The curve constrained paths we are interested in for this chapter are again self-
approaching paths and paths that have increasing chords. Bose et al. [5] described an algorithm
that is able to determine if a simple polygon is strongly connected in terms of self-approaching
paths and paths with increasing chords. However, Stefan Langerman proposed the question how
to characterize polygons with holes that are strongly connected.

In this chapter we will look at how holes influence strongly connected polygons and characterize
the shape of holes when they are part of a strongly connected polygon. Furthermore, we will show
that a polygon can be determined to be strongly connected in case of self-approaching paths and
paths with increasing chords by first ignoring all holes and testing the resulting simple polygon
and thereafter by separately testing if the holes match our characterizations.

5.1 Self-approaching polygons
A self-approaching polygon P is a polygon where for any points s, t ∈ P a self-approaching s-t
path exists. In this section we will characterize how the shapes of holes can be characterized when
they are part of a self-approaching polygon. A self-approaching hole H is a hole such that for
any points s, t ∈ U \H, where U is an infinitely large convex polygon completely containing H, a
self-approaching s-t path exists. Bose et al. proved Theorem 17, which will be used often in the
following proofs.

Theorem 17 ([5]). Polygon P is self-approaching if and only if for any disk D centered at any
point p ∈ P , the intersection D ∩ P has exactly one connected component.

First we will prove that if any number of self-approaching holes are added to a self-approaching
polygon the polygon will remain self-approaching. Therefore, we can later solely focus on char-
acterizing the shape of a self-approaching hole without taking into account the polygon this hole
lies in.

Lemma 18. Polygon P is self-approaching if and only if every hole H in P is self-approaching
and the simple polygon P ′, that is defined by the outer boundary of P , is self-approaching.

Proof. Assume there is a self-approaching polygon P , but there is some hole H in P that is not
self-approaching or simple polygon P ′ is not self-approaching. If there is a hole H that is not
self-approaching, there is a disc D centered at point p ∈ U \H such that D ∩ (U \H) has more
than one connected component (Figure 5.1). Let q be a point that lies in a different connected
component than p. For every disc D′ centered at p′ that lies on segment pq and radius |p′q|. D′∩P
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p

q

p′

Figure 5.1: If a disc centered at point p that has more than one connected component, the disc
centered at p′ such that p′ ∈ pq and with radius |pq| also has more than one connected component.

Figure 5.2: A concave hole (grey) that
separates a disk (red) into two connec-
ted components.

c q p

Figure 5.3: A hole (grey) with a partially external
evolute (blue) and a disk (red) that is separated into
two connected components.

will also have more than one connected component. Therefore, since H is interior to P there must
be a disc D′ for some point p′ ∈ P with radius |p′q|, such that D′∩P has more than one connected
component. Hence P cannot be self-approaching. Furthermore, an analogous contradiction can
be reached for when P ′ is not self-approaching. Thus, if P is self-approaching, every hole H in P
and simple polygon P ′ are self-approaching.

Now assume instead that every hole in P and simple polygon P ′ are self-approaching, but
polygon P is not self-approaching. There must be a disk D centered at point p ∈ P , such that
D ∩ P has more than one connected component. Neither a hole in P or the boundary of P ′ can
divide D in more than one connected component. Disc D can only exist if two holes or a hole and
the boundary of P ′ intersect. However, this is not allowed as that would mean that the two holes
would actually be one hole or the hole is not interior to P . Hence, P must be self-approaching.

With Lemma 18 we can now solely focus on the shape ofH without considering the surrounding
polygon. Recall that the evolute of a curve is the locus of all centers of curvatures of the curve,
Figure 5.3 shows the evolute of an ellipse.

Theorem 19. A hole H is self-approaching if and only if the boundary is convex and the evolute
of the boundary is entirely contained inside H.

Proof. If the boundary of H is not convex, it is easy to see that such a hole is not self-approaching.
A disc centered across the concave part clearly does not have one connected component, an example
is shown in Figure 5.2.

If the evolute is not fully contained in H, consider point p on the boundary of H for which
the center of its curvature c lies outside of H (Figure 5.3). Let disk D be centered at point q
somewhere on line segment cp but still outside H with a radius of |qp| + ε for small ε. Because
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Figure 5.4: A boundary defined by curves and arcs that is not self-approaching. Point c is the
center of curvature to the boundary at point b.

D has a smaller curvature than the section p lies on, D \H must have more than one connected
component and hence, H is not self-approaching.

Next, assume H is not self-approaching, but is convex and the evolute is contained inside H.
Then, there must be some disc D centered outside H such that D\H is divided into two connected
components. Therefore, the boundary of D must intersect the boundary of H at least twice. H
is convex, thus there must be some section of H with a curvature that is larger than D. Since D
is centered outside of H, the center of curvature from this section must lie even farther outside of
H and therefore the evolute cannot be contained inside H.

Therefore, if one desires to test if a polygon with holes is self-approaching, they can simply
test the polygon whilst ignoring the holes using the algorithm proposed by Bose et al. [5] and
test if every hole is convex and the evolute is internal to the hole. However, a polygon with holes
cannot be self-approaching if the holes are defined by straight line segments. Hence, holes must
be defined by arcs and curves instead of straight line segments. If holes can be defined by arcs and
curves, there is no reason to not allow this for the outer boundary of the polygon. Even though the
algorithm proposed by Bose et al. operates on a polygon with vertices and straight line segments,
testing if a polygon B defined by curves and arcs is self-approaching is analogous to testing if a
hole is self-approaching (Lemma 20).

Lemma 20. Polygon B that is defined by curves and arcs instead of straight line segments is
self-approaching if and only if for every point b on the boundary of B with center of curvature c,
no points p and p′ exist such that both points lie on segment bc, p lies inside B, p′ lies outside B,
and p′ lies between p and b (Figure 5.4).

Proof. This proof is analogous to the proof of Theorem 19.

5.2 Polygons with increasing chords
In the previous subsection we characterized the shapes of holes that lie inside a self-approaching
polygon. The natural next question is to characterize the shapes of holes that lie in polygons with
increasing chords. A polygon with increasing chords P is a polygon where for all points s, t ∈ P
an s-t path with increasing chords exists. We say that a hole with increasing chords H is a hole
that for every points s, t ∈ U \H, where U is again an infinitely large convex polygon, a path with
increasing chords exists.

First we will prove Lemma 21 using similar techniques that Bose et al. [5] used for proving
part of Theorem 17. A vesica piscis Vpq is the intersection of discs Dp and Dq centered at points
p and q with radius |pq|.
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s t

Figure 5.5: A self-approaching s-t path (blue) and self-approaching t-s path (red) exist, but no
s-t path with increasing chords exists.

Figure 5.6: Two supporting lines (green) of a shape with constant width (gray).

Lemma 21. If polygon P has increasing chords, then any points p, q ∈ P must lie in the same
connected component of Vpq ∩ P , where Vpq is the vesica piscis defined by p and q.

Proof. Assume that P has increasing chords, but there exists p and q such that they do not lie in
the same connected component in Vpq ∩ P . If p and q are not in the same connected component,
any path γ connecting p and q must exit Vpq at some point. Let r be a point on γ that lies outside
Vpq. Either |pq| < |pr| or |pq| < |qr|, this inequality always contradicts the increasing chords
property of P .

Now assume that P does not have increasing chords and for any points p, q ∈ P , p and q lie
in the same connected component of Vpq ∩ P . Therefore, there exists points s, t ∈ P that cannot
be connected by a path with increasing chords. However, we know that P is self-approaching.
Otherwise there is some disc D centered at p′ ∈ P such that D∩P has two connected components.
If we then choose q′ to be in a different connected component than p′, clearly p′ and q′ do not lie
in the same connected component in Vp′q′ ∩ P . Hence, for points s and t both a self-approaching
s-t path πst and a self-approaching t-s path πts exist. Recall that a path with increasing chords
is self-approaching in both directions. Therefore, πst must leave the disc with radius |st| that is
centered at s and πts must leave the disc with radius |st| that is centered at t on different sides of
the line passing through s and t (Figure 5.5). However, then the points s and t do not lie in the
same connected component of Vst ∩ P , resulting in a contradiction.

As with self-approaching polygons we can say that holes with increasing chords can be added
to polygons with increasing chords without violating the increasing chords property.

Lemma 22. Polygon P has increasing chords if and only if every hole H in P has increasing
chords and the simple polygon P ′ that is obtained by filling in the holes of P has increasing chords.

Proof. This proof is analogous to the proof of Lemma 18.
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With Lemma 22 we can now again focus on the characterization of the shape of hole. If we
know all holes in polygon P have increasing chords and that P without holes has increasing chords,
P also has increasing chords. Before we characterize holes with increasing chords we require an
extra definition: two distinct lines are supporting lines of a shape if they are parallel and touch,
but never intersect, the shape (Figure 5.6).

p

q′

p′

q

r

Figure 5.7: A hole (gray) that is not contained in vesica piscis Vpq and points p′ and q′ that lie in
the ε-neighborhoods of p and q, respectively.

Lemma 23. If a hole H has increasing chords then H ⊆ Vpq, where p and q are points touched
by any pair of supporting lines of H and Vpq is a vesica piscis defined by p and q.

Proof. Let H have increasing chords and assume supporting lines that touch H in p and q exist
such that H 6⊆ Vpq. Assume, w.l.o.g, that H 6⊆ Dp, where Dp is a disc centered at p with radius
|pq|. Consider the points p′ and q′ that lie in the ε-neighborhoods of p and q and towards point
r that lies on the boundary of H outside Dp (Figure 5.7). Since H cannot have straight lines
and p and q touch the supporting lines, |p′q′| < |pq′|. Furthermore, since p′ and q′ lie in the
ε-neighborhood of p and q respectively, |p′q′| < |p′r|. Since p and r lie on opposite sides of the
line going through p′ and q′, p′ and q′ lie in two different connected components in Vp′q′ ∩ (U \H),
where Vp′q′ is the vesica piscis defined by p′ and q′, and U is an infinitely large convex polygon
that fully contains H. Therefore, by Lemma 21 hole H cannot have increasing chords.

Using Lemma 23 we can prove Theorem 24 that shows a hole has increasing chords if and only
if the shape of the hole has constant width. A shape is of constant width if and only if the distance
between every pair of supporting lines is equal (Figure 5.6). Furthermore, a shape is of constant
width if and only if all supporting lines are orthogonal to the line connecting the points touched
by these supporting lines [20].

Theorem 24. Hole H has increasing chords if and only if the shape of H has constant width.

Proof. Assume that H is of constant width but does not have increasing chords. By definition,
a supporting line cannot touch H twice, therefore H is convex and does not contain straight-line
segments. If H does not have increasing chords, there exist points p and q outside of H that lie
not in the same connected component of vesica piscis Vpq that is defined by p and q. We can
therefore select point p′ and q′ that lie on segment pq and on the boundary of H (Figure 5.8).
Therefore, the distance between the supporting lines that are perpendicular to the segment pq is
larger than |p′q′|. However, since H is convex when the supporting lines are rotated towards p′
and q′ the distance between the lines must decrease. Therefore, H cannot be of constant width.
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Figure 5.8: If p and q do not lie in the same connected component in Vpq ∩ P , p′ and q′ also do
not lie in the same connected component in Vp′q′ .

p

q

`p

`q

p′

q′

(a) p′ and p′ lie in the ε-neighborhoods of p and
q respectively and between the perpendicular
lines (green) through p and q.
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(b) p′ and q′ do not lie in the same connected
component in Vp′q′ \H (blue).

Figure 5.9: A hole (gray) such that pq 6⊥ `p.
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Assume that H has increasing chords but is not of constant width. Let `p and `q be any
supporting lines that touch H in p and q, but where pq 6⊥ `p, i.e. the line segment connecting
p and q is not orthogonal to `p. Since H has increasing chords, by Lemma 23, H ⊆ Vpq where
Vpq is the vesica piscis defined by p and q. Furthermore, we know that H must lie in between `p
and `q. Any hole that has increasing chords is also self-approaching by definition. Therefore, the
centers of curvatures for H must be contained in H by Theorem 19. Assume, w.l.o.g., that `p is
horizontal and p lies to the left of q (Figure 5.9a). Because H is contained in between `p and `q,
the center of curvature for p must lie to the left of the perpendicular to `p that goes through p.
Analogously, the center of curvature for q must lie to the right of the perpendicular to `q that
goes through q. Let p′ and q′ be points that lie on the boundary of H, in the ε-neighborhood of
p and q respectively, and between the two perpendiculars. Let Vp′q′ be the vesica piscis defined
by p′ and q′. Because of the curvature of H, p and q both fall outside Vp′q′ on opposite sides of a
line going through p′ and q′, as is demonstrated in Figure 5.9b. Therefore, p′ and q′ are not in the
same connected component in Vp′q′ \H and by Lemma 21 hole H cannot have increasing chords.

Thus, Hole H has increasing chords if and only if the shape of the hole has constant width.

Analogous to the self-approaching polygons, to determine whether a polygon P has increasing
chords the problem can be divided into two subproblems. First we can test if the simple polygon
P ′ defined by the outer boundary of P has increasing chords with the algorithm described by Bose
et al. [5]. Secondly, the holes can be tested to be of constant with. Only if both tests are positive
the original polygon has increasing chords. Of course, as with the self-approaching holes, holes
with increasing chords must be defined by curves and arcs instead of straight line segments. We
know that P ′ has increasing chords if P ′ is self-approaching [5]. Thus, if P ′ also is defined by
curves and arcs, we can simply use Lemma 20 to test whether P ′ has increasing chords.
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Chapter 6

Discussion

In this thesis two types of constrained paths are explored in different settings. We discussed
how to construct a path with increasing chords in a simple polygon assuming that transcendental
equations can be solved. Furthermore, we discussed how a self-approaching path in any polygonal
domain can be constructed and why this is not a trivial task. Finally, we characterized the shapes
of holes in polygons that are strongly connected in terms of self-approaching paths and paths with
increasing chords.

In Chapter 2 we started by exploring the definitions of self-approaching paths and paths with
increasing chords and how these types of paths are related. We discussed the behavior of shortest
self-approaching paths in simple polygons and how these paths can be defined. Additionally, we
introduced the notion of holes and what it means for paths to be shortest in their homotopy group.

In Chapter 3 we first explored some useful properties of paths with increasing chords in simple
polygons. With these properties we were able to show that the shortest s-t path in a polygon minus
the dead regions for self-approaching paths going to s and t is the shortest path with increasing
chords. Therefore, the algorithm for finding the shortest path with increasing chords is analogous
to finding a shortest self-approaching path.

Chapter 4 we discussed why some trivial algorithms for finding a self-approaching path in
a polygon with holes might not work. Therefore, an algorithm is proposed that can find the
shortest self-approaching path, albeit with an unbounded running time. This algorithm can act
as a baseline for future research.

Finally, Chapter 5 characterizes the shape of self-approaching holes and holes with increasing
chords. The evolute of the boundary of a self-approaching hole must be internal to the hole.
Furthermore, the shape of a hole with increasing chords is always a shape of constant width.
Additionally, we show that testing the holes separate from the polygon is sufficient for testing if a
polygon with holes is strongly connected.

6.1 Future work
There are a number of interesting directions for work related to this thesis in the future. First of
all, the question remains open for whether an efficient algorithm exists that can find a shortest
self-approaching s-t path in a polygon with holes. Perhaps the algorithm proposed in Section 4
can be improved in having a polynomial bounded running time or the problem could be proven
to be NP-hard.

Another natural next step could be to find an algorithm that finds a shortest s-t path with
increasing chords in a polygon with holes. Furthermore, for both types of constrained paths an
interesting direction could be in looking into settings where the number of dimensions exceeds
two. Although, this will likely be hard as even finding the geodesic in a 3D space is NP-hard [6].

Another direction for future research could be in seeing if the results from this thesis can be
applied on angle monotone constrained paths. Recall that an ϕ-self-approaching s-t path πϕ is a
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path where for any point p, subpath πϕ(p, t) falls entirely in a wedge with angle ϕ and apex p. An
s-t ϕ-path with increasing chords is simply a path that is an ϕ-self-approaching s-t path and a ϕ-
self-approaching t-s path. For example, it could be interesting to see the influence changing ϕ has
on the characterization of the holes in strongly connected polygons. Similar questions can be asked
for ϕ-increasing-chord paths, which are ϕ-self-approaching in both directions. Additionally, the
stretching factor for ϕ-self-approaching paths is still unknown and could therefore be an interesting
topic.
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Appendix A

Finding the ratio between two
distinct shortest self-approaching
paths

b0

r0

g0

o0

g1

b1
r1

b2

Figure A.1: Self-approaching paths γ (green & orange) and π (blue & red). For two sequential
sections, the larger section is the involute of the smaller section, for example b2 is an involute of
b1.

In this appendix we will describe how we calculate the ratio of the two self-approaching paths as
described in Section 4.1.2 (Figure A.1). We will go over the Mathematica code that calculates the
proper ratio. First we need some function definitions.
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SELF-APPROACHING PATHS

In[1]:=(* Assume that 0^0=1 *)
p[0,0]=1;
p[a_,b_]:=ab;

(* returns true iff point m lies to the left of a line going through points a and b *)
isLeft[a_,b_,m_] := (b[[1]]-a[[1]]) (m[[2]]-a[[2]])-(b[[2]]-a[[2]]) (m[[1]]-a[[1]]) ≥ 0

(* retuns true iff a line and a line segment intersect *)
lineSegIntersect[lineA_,lineB_,segA_,segB_] := (isLeft[lineA,lineB,segA]

&& !isLeft[lineA,lineB,segB]) || (isLeft[lineB,lineA,segA] && !isLeft[lineB,lineA,segB]);

(* returns true iff two line segments intersect *)
SegSegInter[segA_,segB_,segC_,segD_] := lineSegIntersect[segA,segB,segC,segD]

&& lineSegIntersect[segC,segD,segA,segB];

(* returns true iff a function f intersects with a line segment *)
brokenSegFunIntersect[n_,segA_,segB_,ri_,ci_,offset_,start_,step_] :=

SegSegInter[segA,segB,f[n,ri,start+
0 step

8
,ci,offset],f[n,ri,start+

1 step
8

,ci,offset]]

|| SegSegInter[segA,segB,f[n,ri,start+
1 step

8
,ci,offset],f[n,ri,start+

2 step
8

,ci,offset]]

|| SegSegInter[segA,segB,f[n,ri,start+
2 step

8
,ci,offset],f[n,ri,start+

3 step
8

,ci,offset]]

|| SegSegInter[segA,segB,f[n,ri,start+
3 step

8
,ci,offset],f[n,ri,start+

4 step
8

,ci,offset]]

|| SegSegInter[segA,segB,f[n,ri,start+
4 step

8
,ci,offset],f[n,ri,start+

5 step
8

,ci,offset]]

|| SegSegInter[segA,segB,f[n,ri,start+
5 step

8
,ci,offset],f[n,ri,start+

6 step
8

,ci,offset]]

|| SegSegInter[segA,segB,f[n,ri,start+
6 step

8
,ci,offset],f[n,ri,start+

7 step
8

,ci,offset]]

|| SegSegInter[segA,segB,f[n,ri,start+
7 step

8
,ci,offset],f[n,ri,start+

8 step
8

,ci,offset]];

Next we need to initialize values that define the involutes, first the ratios for the involute of
order 0 is given for the different colored sections (Figure A.1). Thereafter, the constants for every
colored section up to order 14 are provided, which were computed with enough signficance using
Equation 2.3.

In[2]:=rb = 1;
rr = 2;
rg = 2;
ro = 4;

cb = {-5.141592653589793, 19.501172814903853, -71.1046800598083, 259.0312364968812,
-943.9509152267383, 3439.9357249349987, -12535.723161211947, 45682.34967342297,
-166474.41610226588, 606661.6846328818, -2210780.538675379, 8056468.232744515,
-29359169.420233447, 106989912.22261253};

cr = {-17.707963267948966, 91.28516983579917, -377.8085380089388, 1433.1738201726052,
-5278.356390637179, 19280.503350533123, -70292.80199770152, 256178.00286256624,
-933567.153512947, 3402085.627172878, -12397792.94420039, 45179711.455358505,
-164642715.27831963, 599986648.3472228};

cg = {-10.283185307179586, 39.00234562980771, -142.2093601196166, 518.0624729937624,
-1887.9018304534766, 6879.871449869997, -25071.446322423893, 91364.69934684594,
-332948.83220453176, 1213323.3692657636, -4421561.077350758, 16112936.46548903,
-58718338.840466894, 213979824.44522506, -779779642.5066359, 2841652442.9079223,
-10355475016.412548, 37737149412.19475, -137520726330.87762, 501149410200.56854,
-1826275486213.649, 6655265044031.606, -24252941651283.492, 88381931425565.06,
-322079107550233.94, 1173712203921684.2};

co = {-35.41592653589793, 182.57033967159833, -755.6170760178776, 2866.3476403452105,
-10556.712781274358, 38561.006701066246, -140585.60399540304, 512356.0057251325,
-1867134.307025894, 6804171.254345756, -24795585.88840078, 90359422.91071701,
-329285430.55663925, 1199973296.6944456, -4372911094.556007, 15935647479.247122,
-58072266984.50376, 211625426397.706, -771199807129.3015, 2810386032718.7905,
-10241534787594.438, 37321931430194.5, -136007599892878.44, 495635314673340.94,
-1806181164470387.2, 6582037845785234.0};
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Thereafter, we give the actual functions for the involutes are given as per Equations 2.2 and
2.1.

In[3]:=a[r0_,i_,theta_,c_] :=
r0 p[theta,i]

i!
+

i∑∑∑
j=1

c[[j]] p[theta,i-j]
(i-j)!

;

f[k_,r0_,theta_,c_,offset_] :=

{
offset+

Floor[ k
2 ]∑∑∑

i=0

(p[-1,i] a[r0,2 i,theta,c]) Cos[theta]

-

Ceiling[ k
2 ]∑∑∑

i=1

(p[-1,i-1] a[r0,2 i-1,theta,c]) (-Sin[theta]),

Floor[ k
2 ]∑∑∑

i=0

(p[-1,i] a[r0,2 i,theta,c]) Sin[theta]

-

Ceiling[ k
2 ]∑∑∑

i=1

(p[-1,i-1] a[r0,2 i-1,theta,c]) Cos[theta]

}
;

These functions compute the length of a section of an involute for a given order k and from a
certain angle.

In[4]:=lb[k_,o_] :=

∫ π

o

√
f′′′[k,rb,theta,cb,0][[1]]2+f′′′[k,rb,theta,cb,0][[2]]2dtheta;

lr[k_,o_] :=

∫ 2π

o

√
f′′′[k,rr,theta,cr,-1][[1]]2+f′′′[k,rr,theta,cr,-1][[2]]2dtheta;

lg[k_,o_] :=

∫ π

o

√
f′′′[k,rg,theta,cg,0][[1]]2+f′′′[k,rg,theta,cg,0][[2]]2dtheta;

lo[k_,o_] :=

∫ 2π

o

√
f′′′[k,ro,theta,co,-2][[1]]2+f′′′[k,ro,theta,co,-2][[2]]2dtheta;

p

q

γ

π

Figure A.2: Paths γ and π, such that segment pq is tangent to γ through p and π ends in q.

The following piece constructs self-approaching path γ up to a certain point p, calculates the
tangent τ and construct π until it intersects with τ at point q. Then we can calculate the desired
ratio by dividing |π| by |γ|+ |pq| (Figure A.2).

In[5]:=(* we calculate for 8 orders of involutes *)
For[k = 1, k < 14, k++,

(* first we build the green section of order k *)
For[i = 8, i ≥ 0, i--,

(* derivative of the green section of order k *)
fp[theta_] = D[f[k, rg, theta, cg, 0], theta];

(* we construct up to: *)

38 Self-Approaching Paths and Paths with Increasing Chords in Polygonal Domains
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t =
i
8

*
π

1
;

(* calculate the tangent at the point of construction *)
tangentA = f[k, rg, t, cg, 0];
tangentB = {tangentA[[1]] - 10000*fp[t][[1]], tangentA[[2]] - 10000*fp[t][[2]]};

(* initialization of variables *)
eps = 1;

l =
3
2

π;
r = 2 π;
n = 1;
ri = rr;
ci = cr;
offset = -1;

(* find at which order of blue or red section the other path is intersected *)
While[¬(brokenSegFunIntersect[n, tangentA, tangentB, rb, cb, 0, 0, π] ∨

brokenSegFunIntersect[n, tangentA, tangentB, rr, cr, -1,
3
2

π,
π

2
]) ∧ n < 100, n++ ];

(* determine if the other path is intersected in the red or blue section *)

If[brokenSegFunIntersect[n, tangentA, tangentB, rr, cr, -1,
3
2

π,
π

2
], ,

l = 0; r = π; ci = cb; ri = rb; offset = 0];

(* using a binary search, find the point at which the other path is intersected *)
While[eps > 0.001, If[SegSegIntersect[tangentA, tangentB, f[n, ri, l, ci, offset],

f[n, ri,
l + r

2
, ci, offset]], r =

l + r
2

, l =
l + r

2
]; eps = r - l; ];

thetaN = N[
l + r

2
];

(* calculate the length of pi *)

pi =
∑n-1

i=0
(lb[i, 0] + lr[i, (3/2)π]) + 1;

If[ri == rb, pi = pi + lb[n, thetaN], pi = pi + lb[n, 0] + lr[n, thetaN]];

(* calculate the length of gamma *)

gamma =
∑k-1

i=0
(lg[i, 0] + lo[i, (3/2)π]) + lg[k,t]

+ ArcLength[Line[{f[k, rg, t, cg, 0], f[n, ri, thetaN, ci, offset]}]] + 4;

(* print the output *)
WriteString["stdout", ToString[k + (8-i)/12], " \t",ToString[N[pi / gamma]],"\n"];

];

(* now we build the orange section of order k *)
For[i = 4, i ≥ 1, i--,

(* derivative of the orange section of order k *)
fp[theta_] = D[f[k, ro, theta, co, -2], theta];

(* we construct up to: *)

t =
3
2

π +
i
4

*
π

2
;

(* calculate the tangent at the point of construction *)
tangentA = f[k, ro, t, co, -2];
tangentB = {tangentA[[1]] - 10000*fp[t][[1]], tangentA[[2]] - 10000*fp[t][[2]]};

(* initialization of variables *)
eps = 1;

l =
3
2

π;
r = 2 π;
n=1;
ri = rr;
ci = cr;
offset = -1;
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(* find at which order of blue or red section the other path is intersected *)
While[¬(brokenSegFunIntersect[n, tangentA, tangentB, rb, cb, 0, 0, π] ∨

brokenSegFunIntersect[n, tangentA, tangentB, rr, cr, -1,
3
2

π,
π

2
]) ∧ n < 100, n++ ];

(* determine if the other path is intersected in the red or blue section *)

If[brokenSegFunIntersect[n, tangentA, tangentB, rr, cr, -1,
3
2

π,
π

2
], ,

l = 0; r = π; ci = cb; ri = rb; offset = 0];

(* using a binary search, find the point at which the other path is intersected *)
While[eps > 0.001, If[SegSegIntersect[tangentA, tangentB, f[n, ri, l, ci, offset],

f[n, ri,
l+r
2

, ci, offset]], r =
l + r

2
, l =

l + r
2

]; eps = r - l; ];

thetaN = N[
l + r

2
];

(* calculate the length of pi *)

pi =
∑n-1

i=0
(lb[i, 0] + lr[i, (3/2)π]) + 1;

If[ri == rb, pi = pi + lb [n, thetaN], pi = pi + lb[n, 0] + lr[n, thetaN]];

(* calculate the length of gamma *)

gamma =
∑k-1

i=0
(lg[i, 0] + lo[i, (3/2)π]) + lg[k,0] + lo[k, t]

+ ArcLength[Line[{f[k, ro, t, co, -2], f[n, ri, thetaN, ci, offset]}]] + 4;

(* print the output *)
WriteString["stdout", ToString[k + 8/12 + (4-i)/12], " \t",ToString[N[pi / gamma]],"\n"];

]
]

Finally, the output can be seen processed in Figure 4.7
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