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Abstract—Most current algorithms and models are optimized
for daytime scenes, but little attention is paid to the nighttime
situations. However, in real-world driving scenarios, vehicles need
to face both situations and even some adverse weather or other
weakly-illuminated scenes. Therefore, in this work, we propose to
use a multi-head network to perform semantic segmentation on
both daytime and nighttime scenarios. Due to the lack of annota-
tion for nighttime data, we adopt domain adaptation technique,
specifically adversarial learning with a domain discriminator, to
narrow the domain gap. In this process, we first apply the multi-
head network to the RGB-to-Thermal adaptation task, and then
transfer it to solving the shift between day and night with a
modified decoder structure, which helps to boost the performance
on nighttime domain by 2%. During our study, we refer to the
work of HeatNet [3], which proposes a multimodal network
to bridge the day-night gap with thermal images. As a final
result, we compare our multi-head approach as the unimodal
network with HeatNet RGB-only model on Freiburg dataset, and
our network can achieve the same performance as it. However,
to create the unimodal network, we do not need to train a
multimodal network at first except pre-training a RGB and a
thermal teacher models. Compared to HeatNet, our multi-head
network is also more efficient to train because there are less
parameters.

I. INTRODUCTION

An autonomous car is a vehicle capable of sensing its
environment and operating without human involvement. It can
go anywhere a traditional car goes and do everything that
an experienced human driver does. To achieve this goal, a
precise and robust semantic segmentation for urban scenes
plays an important role in the perception of a self-driving
system. However, there are still many factors that hinder the
popularization of autonomous driving. One crucial challenge
is how to help the vehicle perceive its surroundings quickly
and precisely.

A vehicle needs to face both day and night, well and weakly
illuminated conditions while driving. Currently, great progress
has been made in RGB image semantic segmentation for
autonomous driving scenarios [1] [2], but most of them are
present in well illumination or daytime conditions. Due to the
large gap between day and night within RGB modality, these
methods are difficult to generalize well to nighttime scenes.
Besides, there are few datasets for nighttime urban scenes,
and this also hinders the development at this area. Nowadays,
most vehicles use optical cameras to detect objects on the
roads, but they require sufficient illumination. As consequence,
they cannot work well at night and darkness. In this case,

Fig. 1: Our multi-head network makes use of two head
networks to segment the input images from different domains.
In each domain, a pre-trained model guides the training of the
segmentation network.

a thermal camera can provide complementary information,
since it captures infrared radiation that objects emit to the
surroundings so that its performance is less influenced by
weather and illumination. Nonetheless, compared to optical
cameras, thermal ones are usually more expensive, and they
are not always installed on vehicles. These factors motivate us
to pay more attention to semantic segmentation for nighttime
RGB images. At the same time, inspired by HeatNet [3], we
aim to create a unimodal segmentation network that only uses
RGB images as inputs to make semantic prediction. In this
process, we also notice that people usually utilize one common
head network which is also known as the decoder to fulfil
the adaptation task of computer vision, such as classification
and segmentation, between different domains. However, in
this case, it is assumed that the decoder needs to make a
compromise to restore the information from different fields,
which may impair the performance on a certain domain.
Encouraged by this assumption, we propose a multi-head
structure, and it is expected to bring positive influences to
achieving adaptation between different domains [4].

As mentioned above, it is difficult to find a dataset that
is published specifically for nighttime urban scene. Recently,
the authors of HeatNet [3] also released the corresponding
Freiburg dataset that contains RGB and thermal images of day-
and night-time automotive scenes. Since there is no annotation



for nighttime data, domain adaptation technique is adopted to
transfer the knowledge of daytime to the nighttime domain.
Such an approach [21] [22] is usually used to narrow the
domain gap between a labeled source domain and a target
domain, where supervised learning is impossible.

In this work, we first reproduce the result of HeatNet,
and also consider it as a reference for our own approach.
Then, we propose the multi-head network to perform RGB-
only semantic segmentation on day and night with the help
of adversarial learning. To bridge these two domains, we also
employ thermal features during the training.

The main contribution of this work is the application of
multi-head neural network architecture to perform semantic
segmentation for daytime and nighttime RGB images. We
propose a training strategy that first pre-trains the architecture
by RGB-to-Thermal domain adaptation step, and then it is
trained to perform daytime-to-nighttime domain adaption. We
summarize all the contributions as follows:

• The thesis tries to reproduce the work of HeatNet method.
Although the results are partially reproduced, the work is
used for a comparison with our approach.

• The thesis proposes a multi-head neural network archi-
tecture for semantic segmentation task which can narrow
the domain gap between different domains.

• The thesis demonstrates the effectiveness of the proposed
multi-head approach as the final unimodal network that
can well perform the semantic segmentation on daytime
and nighttime RGB images. It achieves the same per-
formance as HeatNet but with a more efficient training
process.

II. RELATED WORK

A. Domain adaptation for semantic segmentation

Classical machine learning techniques assume that the train-
ing and test samples are from the same distribution so that
the model trained on the training set can be applied to the
unknown samples directly. However, this assumption can not
always hold in all cases, especially when the training and test
data are collected from different sources. Due to the domain
discrepancy, the trained model may not generalize well to
the target domain. To solve this type of problem, domain
adaptation (DA) is proposed and explored in many sub-fields
within machine learning. Unsupervised domain adaptation
(UDA) [18] is one branch within DA, and it aims at the specific
situation when there are only labels available for training data
but few or no labels for domain of interest.

There are already many works that study on UDA for
semantic segmentation [23] [24]. Markus Wulfmeier et al. [5]
proposed adversarial domain adaptation. They trained a super-
vised task module and encoder to maximize the likelihood of
source labels given the source inputs. At the same time, to
adapt the network to the unknown target domain, they trained
the encoder to confuse a domain discriminator that is respon-
sible for distinguishing the domain of inputs. This method
has been considered as a benchmark in UDA. Based on this

work, Yi-Hsuan Tsai et al. [6] proposed to adapt the structured
output space instead of feature space to transfer the structured
spatial knowledge. This paper also argued that multi-level
adaptation can improve the segmentation result further. Apart
from adversarial learning technique, there is another type of
method to achieve UDA. Parallel CNN architectures such as
Siamese network have been verified to be effective for learning
invariant features [7] [17]. Therefore, in addition to the loss of
the supervised task, an extra domain loss is applied to minimiz-
ing the distance between domains. The distribution divergence
is usually measured by Maximum Mean Discrepancy (MMD)
[19] [20], but it lacks the strong semantic representation so that
it is rarely used in the field of semantic segmentation. To adapt
this method to semantic segmentation, ADVENT employed
Entropy Minimization, which constrains the model such that
it produces high-confident prediction on target-like samples,
in their work [8].

B. The work of HeatNet

Johan Vertens et al. [3] proposed a novel multimodal
approach for daytime and nighttime image segmentation with
the help of adversarial learning, leveraging both RGB and
thermal images while not requiring annotations for nighttime
RGB or thermal infrared images. Fig. 2 illustrates the specific
architecture of HeatNet.

The whole architecture is based on PSPNet [1] with ResNet
[12] backbone. In the backbone network, there are two parallel
encoders to extract features from RGB and thermal inputs,
respectively. They consist of the first three stages of ResNet.
After that, two features are concatenated and then passed
through the remaining layers to produce the final segmentation
prediction. The discriminator network is a fully convolutional
network, and its main function is to distinguish which domain
the input is from. However, the objective is to confuse it so
that it can not discriminate the input image’s origin. If this
confusion can be achieved, the segmentation network trained
on daytime domain can be transferred to nighttime. This is
fulfilled by adding another adversarial loss, which is applied
only to nighttime images.

As for the training scheme, it can be separated into two
steps, which is very similar to the generative adversarial
network [13] [25] [26]. In the first step, the parameters of the
discriminator are frozen, the segmentation network is trained
using segmentation loss and adversarial loss; in the second
step, the case is reversed, and the discriminator is trained using
discriminator loss while the segmentation network is frozen.

The above is the basic architecture and training scheme
of HeatNet. As an extension, the paper also proposed two-
stage training. Since there is a large shift between day and
night within RGB modality, the gap within thermal modality is
much smaller. The authors proposed to train the segmentation
network merely in the first stage with supervision provided by
the RGB teacher for daytime images and the thermal teacher
for nighttime images. In the second stage, the normal training
procedure including domain adaptation, as described above, is
continued.



Fig. 2: The architecture of HeatNet [3]. HeatNet is a multimodal network that uses RGB and thermal images as inputs. The
network is trained with the supervision produced by the pre-trained RGB teacher model for the daytime images and the
supervision produced by the pre-trained thermal teacher model for the nighttime images. The discriminator is used to narrow
the domain gap by training with the adversarial loss.

III. METHODOLOGY

A. Single-head network

Single-head network is the most frequently used framework
in domain adaptation currently. It consists of one common
encoder and also a shared decoder. In the work [27] [28],
it can be found that only a single decoder is placed in the
network. In this work, a single-head network is considered as
a baseline. We first apply this method to study the task of
RGB-to-Thermal adaptation. We consider the following two
domain adaptation strategies for a single-head neural network:

1) Maximum squares loss: In the work of ADVENT, en-
tropy minimization is used to enforce the network to produce
high-confident predictions on target-like images, which is
formulated as follows:

Lent(xt) =
−1

log(C)

∑
h,w

C∑
c=1

P (h,w,c)
xt

logP (h,w,c)
xt

, (1)

where C denotes the number of object classes, and xt

denotes the input image from target domain. P
(h,w,c)
xt rep-

resents the C-dimensional prediction from the segmentation
network. However, it brings a problem: probability imbalance.
Specifically speaking, in the training process, the gradient is
dominated by samples with high probability so that the training
on those with lower probability is relatively ignored. To solve
this problem, Minghao Chen et al. [9] proposed an improved
loss for domain adaptation of semantic segmentation: Maxi-
mum Squares Loss. The loss is formulated as:

LT (xt) = − 1

2N

N∑
n=1

C∑
c=1

(pn,ct )2, (2)

where N denotes the total number of pixels in an image, C
denotes the total number of object classes in the dataset, and
pn,ct represents the model prediction probability of the class c
at point n for sample xt. For the simplicity of analysis, we just

Fig. 3: The gradient curves of entropy minimization and
maximum squares loss [9].

take the binary case for an example. In this case, the gradient
curves of two functions are plotted in Fig. 3.

In Fig. 3, it can be seen that within the modality of entropy
minimization, the gradient of points with high prediction
probability is much larger than those lie in other ranges.
Hence, the training effect is dominated by samples with
high certainty and those with low confidence are ignored. In
contrast, maximum squares loss has a linear gradient curve.
Hence, there is no large difference between the gradients of
points with high or low probability, while a point with higher
probability still preserves the higher gradient than a point of
less probability. Therefore, in this work, we decide to use
maximum squares loss as our first baseline experiment for
the single-head method.

2) Adversarial learning based method: Adversarial learn-
ing is a machine learning technique that attempts to deceive
models by providing deceptive inputs or pseudo labels. Gen-



erally speaking, the objective is to train the network so that it
can not distinguish which domain the input image is from.
This strategy has been illustrated in the work of HeatNet,
and we adopt this directly to execute our second baseline
experiment. This time, we adopted DeepLab v2 [14] as our
basic framework, and the architecture of the discriminator is
the same as HeatNet.

Our training process is also separated into two stages. In
the first stage, we just optimize the segmentation network
using segmentation loss on RGB images; then we apply the
adversarial learning strategy. As an extension, we execute
another experiment where we also calculate the segmentation
loss for thermal images using the supervision provided by the
RGB teacher model in the first stage as well.

B. Multi-head network

1) The basic architecture: In the network of semantic
segmentation, such as PSPNet and DeepLab, the head network,
also known as the decoder, usually consists of a module that is
formed by multi-scale dilated convolutions and an interpola-
tion function to restore the resolution. However, in most works
of domain adaptation involving multiple domains, only one
decoder is placed in the network, but some works have proven
that multi-head configuration is of much potential. The work
of Shota Masaki et al. [4] proposes a semantic segmentation
model that involves using a multi-head network. In their
method, for each domain, an output head is assigned to it. By
preparing an output head specific to each domain, datasets with
different object classes can be trained simultaneously. Inspired
by this layout, we propose to employ multi-head network to
fulfil adaptation between different domains.

Since inputs from different domains are passed through the
common encoder, it ensures the encoder is learning domain-
invariant features from both inputs. However, when only a
decoder is placed there, it may lead to an underlying com-
petition because it needs to learn how to restore information
for different domains, which may impair the performance on
a certain domain. It is assumed that two decoders can help
improve the result further because they only focus on their own
features so that they are able to extract meaningful information
from both domains. Such a design could give the decoders
more freedom to learn their interested information. Therefore,
we place two identical decoders in the network and each
is responsible for one modality, respectively. In this work,
we explore the effect of the multi-head network to domain
adaptation on two adaptation tasks: RGB-to-Thermal and Day-
to-Night.

Fig. 4 shows the overall architecture of the multi-head
network. The general framework is based on DeepLab v2
with ResNet backbone. A decoder contains an ASPP module
and a bilinear interpolation function subsequently. In Fig. 4,
it can be observed that images from both source and target
domains, namely Isource and Itarget, are passed through a
common encoder to get the extracted features at first. After
that, the features are sent to their unique decoders to produce
the final prediction Psource and Ptarget. With the prediction,

segmentation loss can be calculated on both domains using
the supervision generated by the teacher models. As for the
discriminator C, it has as inputs the softmax activation Ssource

or Starget of the segmentation model, and its function and the
computation of loss are the same as before.

We also adopt two-stage training to train this network. In the
first stage, we only optimize the network with segmentation
loss on both domains, and the loss is calculated using:

Ls = − 1

HW

∑
h,w

C∑
c=1

P (h,w,c)logP (h,w,c), (3)

where C denotes the total number of classes and H,W denotes
the height and width of the output, respectively. P (h,w,c)

represents the C-dimensional prediction from the segmentation
network.

In the second stage, specifically, the optimization objective
of the multi-head network can be formulated as:

L =

{
LS
s + λLadv, the first step

Ld, the second step
(4)

Ld =
1

HW

∑
h,w

{
[0− C(SX)]2, X=S
[1− C(SX)]2, X=T

(5)

Ladv =
1

HW

∑
h,w

[0− C(SX)]2, X=T (6)

where LS
s represents the segmentation loss on the input from

the source domain, Ladv represents the adversarial loss on the
input from the target domain, and Ld denotes the loss of the
discriminator. λ is the weighting factor of the adversarial loss.

As for the training process, it is worth mentioning that
we define two optimizers for the two heads, respectively.
Specifically, when a source image is inputted, Optimizer 1
updates the parameters for the common backbone and the
source-domain head; when it turns to a target input, Optimizer
2 updates the parameters for the common backbone and the
target-domain head.

2) The modified architecture: Apart from the above basic
multi-head network, we also make a change to the network
to improve its performance. In previous networks, the decoder
consists of a module formed by multi-scale dilated convolution
layers and a following interpolation function. Because the
down-sampling ratio of the backbone is 8, the interpolation
function also up-samples the feature eight times directly. To
improve the learning capability of the decoder, some additional
convolutional layers are added.

Fig. 5 shows the architecture of the modified decoder. The
feature is up-sampled for three times, and each time the ratio is
two. After each up-sampling operation, a convolutional layer
is inserted which will not change the dimension of the feature.
The inserted convolution operation is expected to learn how
to make segmentation prediction further.



Fig. 4: The overview of the multi-head network. Each time, we sample a batch of images from the source and target domains,
respectively. The images pass through a common encoder, and then through their corresponding decoders. We optimize the
network with two pre-trained teacher models, and minimize a domain confusion loss from the discriminator to narrow the gap
between two domains at the same time.

Fig. 5: The modified decoder. After the ASPP module, we
insert three convolutional layers in the upsampling operation.
We upsample the feature twice for three times, and insert a
layer (conv + BN + PReLU) after each upsampling.

C. Application study

1) From RGB to thermal domain: Fig. 6 shows the specific
configuration of the multi-head network for RGB-to-Thermal
adaptation. The training data are daytime RGB and thermal
images of Freiburg dataset. It is worth mentioning that since
they are inputted to the same encoder, their channels should be
the same. However, thermal images in Freiburg dataset is one-
channel. To make them uniform, the channel of each thermal
image is duplicated three times before inputting to the network.
The pre-trained RGB teacher model provides supervisions for
inputs of both domains, since each RGB image and its thermal
pair of Freiburg dataset are time-synchronized to the same
view.

Fig. 6: The configuration of the multi-head network for RGB-
to-Thermal adaptation. We only use daytime images here.
Since each RGB and its thermal pair are time-synchronized,
the RGB teacher model can provide supervisions for them
simultaneously.



Fig. 7: The configuration of the multi-head network for Day-
to-Night adaptation. Since this is a unimodal network, we use
daytime and nighttime RGB images as its inputs. This time,
the pre-trained RGB teacher can still guide the training of the
daytime input, but we need to employ the pre-trained thermal
teacher to generate labels for the nighttime images.

2) From daytime to nighttime domain: As the main objec-
tive of this work is to create a unimodal network to achieve
adaptation between daytime and nighttime domains, so multi-
head network is expected to play this role. This time, the
network architecture and training scheme are exactly the same
as those in the RGB-to-Thermal adaptation task except the
training data. To make the model unimodal, the input data are
daytime and nighttime RGB images of Freiburg dataset.

Fig. 7 demonstrates the configuration of this unimodal net-
work. There is no distinct difference from Fig. 6, but the pre-
trained thermal teacher model is used to provide supervisions
for nighttime images. It is noted that we do not need a thermal
paired image when doing inference for a RGB image, although
synchronized thermal inputs are required during training.

Pre-trained weights initialization. Since multi-head net-
work is researched in two aspects: RGB-to-Thermal and
daytime-to-nighttime, one can apply a transfer learning tech-
nique by using the weights trained on RGB-to-Thermal task to
initialize the network when training it for daytime-to-nighttime
problem. Initialization with some pre-trained weights is a
regular method when training a deep neural network, which
can help the training converge more quickly and even boost
the final result. As there is a large gap between day and night
within RGB modality, thermal image is a middle modality to
bridge them. Therefore, we argue that the weights trained on
thermal domain can boost the nighttime head.

IV. DATASET

There are already many public datasets available for com-
puter vision tasks, such as Cityscapes [2], Mapilliary Vistas
[15], BDD 100K [16] datasets and so on. However, most
of them are focusing on RGB images, thermal dataset is
rarely seen. In this work, the dataset from HeatNet [3]
is employed. This paper released a large-scale urban-scene
dataset of Freiburg, Germany. The training set consists of
12170 daytime images and 8683 nighttime images, and the
test set has 32 daytime and nighttime images, respectively,
with each image’s corresponding time-synchronized thermal
pair included. Freiburg dataset contains highly diverse driving
scenarios including highways, densely populated urban scenes,
residential areas and rural districts.

All images’ resolution is 1920×650. However, there is some
black margin in the two sides of each thermal image, so they
are cropped to the size of 1280 × 640 to guarantee that the
visual region is valid and the same process is also applied to
RGB images. Each RGB image has three channels and each
thermal image has only one channel. During all experiments,
they are normalized with the mean 0.5 and standard variance
0.5 for all channels.

As the bit depth of thermal images captured by the camera is
so large, their pixel values need to be clamped to an interesting
range so that they can look like normal images. The specific
range is usually chosen empirically, and here the minimal
value is set to be 21800 and the maximum value is 23700.
In each thermal image, the pixel values which are larger than
the maximum are set to be 23700, and the ones that are smaller
than the minimum are set to be 21800. The rest pixels keep
unchanged. Moreover, each pixel value is normalized within
the range of 0 to 1 using Eq. 7.

Pnorm =
P − Pmin

Pmax − Pmin
, (7)

where Pnorm denotes the normalized pixel value, and P
denotes the original pixel value. Pmax and Pmin denote the
maximum and minimum values of all pixels, respectively.

V. EXPERIMENTAL RESULTS

In the following, we present our experimental results for
the reproduction of HeatNet and our multi-head network. We
evaluate all models on Freiburg test set.

A. Training details

In this work, we implement our network using the PyTorch
toolbox with CUDA 11.0, and all experiments are executed
on a single NVIDIA GPU. Most are performed on NVIDIA
RTX 3090 with 24 GB memory, and several are on RTX
A6000 GPU with 48 GB memory. In the experiment for
the reproduction of HeatNet, we adopt RMSProp optimizer
to train the network for 100 epochs and the initial learning
rate is set to be 10−4. We halve it every 30 epochs, and
the batch size is 4. In the remaining experiments, we use the
Stochastic Gradient Descent (SGD) optimizer with momentum
0.9 and weight decay 5 × 10−4 to train the segmentation



TABLE I: Semantic segmentation performance mIoU(%) of
RGB and the thermal teacher models.

RGB teacher Thermal teacher
Ours 70.1 56.3
Paper 69.4 57.0

network and Adam optimizer with momentum 0.9 and 0.99
to train the discriminator network. The initial learning rate for
segmentation network is 2.5 × 10−4, and it is 10−5 for the
discriminator network. During the process, the learning rate
is decreased using the polynomial decay with power of 0.9.
When the network is trained for two stages, we set 50 epochs
for the first stage and 100 epochs for the second one.

B. Evaluation metric

In this work, we evaluate all the experimental results using
mIoU on the following 12 object classes: road/parking, side-
walk, building, curb, fence, pole/signs, vegetation, terrain, sky,
person, car, bicycle. The mIoU is defined as:

MIoU =
1

k + 1

k∑
i=0

pii∑k
j=0 pij +

∑k
j=0 pji − pii

(8)

In the equations above, it is assumed that there are k+1 classes
in total, including k object classes and one void/ignored class.
pij denotes the amount of pixels of class i inferred to belong to
class j. Hence, pii represents the total number of true positives
(TP), while pij and pji denote false positives (FP) and false
negatives (FN), respectively.

C. Teacher model

The teacher model is used to generate labels for images in
Freiburg dataset. Both RGB and thermal teacher models are
based on PSPNet with ResNet as backbone. The two teacher
models are based on the open-sourced GitHub project of [1].

The RGB teacher model is trained on Mapiliary Vistas, and
then it is used to generate labels for each RGB daytime image.
The network is trained for 400 epochs. During the training
process, SGD with momentum and polynomial learning rate
scheduler are adopted. With the pre-trained RGB teacher
model, each RGB daytime image has its label. As its thermal
pair is time-synchronized, the label can be also used for
thermal supervision. In this way, a thermal teacher model is
trained in a supervised manner as well. The training network
and scheme are the same as training the RGB teacher. The
evaluation result is listed in Tab. I.

From the table, it can be found that the mean result of RGB
teacher slightly surpasses the result reported in [3], and this
can ensure the supervision in the work is at the same level with
the original work. As for the thermal teacher, the overall result
is worse than that of the RGB one because the supervision
produced by the RGB teacher is not 100% accurate. Besides,
although the mean mIoU is a bit lower than that in the original
paper, it is a very comparable result, which is only 0.7% lower.
Therefore, this model can be used in the following task.

D. Overall results

In the following part, we report results of experiments we
mentioned above, and they can be divided into three parts.

1) Reproduction of HeatNet: Tab. II shows the comparison
between our reproduction result for HeatNet and the paper’s
original one. Without the thermal teacher, the reproduced
result is around 7% lower than the paper reported on daytime
domain while almost achieving the same effect on nighttime
domain. We note that not all details of HeatNet architecture
and training scheme were described in the original paper. As
consequence, some variations and minor differences between
our implemented version and the one presented by paper
can occur. This leads to the difference in performance and
our reproduced mIoU results are lower than of the reported
ones. When the thermal teacher is applied, the results on both
domains improve, but they are still around 4− 5% lower than
the original HeatNet result. In this experiment, the architecture
of the network was corrected, and the parameters’ setting was
the same as the original paper. The reasons why it performs
worse are as follows. Firstly, the batch size 4 is different from
that in the paper 8 due to the memory limitation of GPU.
Secondly, the method of data argumentation is also different.
In our execution, only gaussian blur and random horizontal flip
are used; however, in the paper, the authors applied additional
random rotation and block drop to images. Besides, because
the RGB teacher model is trained on Mapilliary Vistas dataset,
and its annotation of object classes is different from that of
Freiburg dataset, a label mapping is applied to making the
annotation unified. This mapping process was not described
in the original paper, either, so it may lead to the worse
performance.

2) From RGB to thermal domain: Tab. III presents our
results of all experiments on RGB-to-Thermal adaptation
task. Although single-head network using maximum squares
loss can achieve more than 60% on RGB domain, it can
only achieve 31.3% on thermal images, which is a relatively
low performance. By contrast, single-head network with ad-
versarial learning boosts the performance on both domains,
especially on thermal images by almost 9.3%. When we
also apply the thermal teacher, the result on thermal domain
improves further by 10% while it decreases by only 1.3%
on RGB. This proves that compared to a single target loss
minimization, adversarial learning strategy is more effective
to domain adaptation on thermal images. Furthermore, our
multi-head network boosts the mIoU on thermal domain by
3.2%, while impairing it on RGB by only 1.2%. With the
modified decoder, the performance on the thermal domain
further increases to 57.3%, and it keeps almost the same on
RGB images, which also achieves the highest mean mIoU
among all methods.

3) From daytime to nighttime domain: Tab. IV illustrates
our results of all experiments on day-to-night adaptation task.
Our basic multi-head network achieves 66.9% and 42.7% on
day and night, respectively, with the mean value of 54.8%.
When the modified decoder is adopted, both results increase



TABLE II: Semantic segmentation performance mIoU(%) of
our reproduced HeatNet and of the original paper. The former
one represents the reported result, and the latter one represents
ours. Missing results are marked with a dash(-).

Method mIoU-Day mIoU-Night Mean mIoU
HeatNet w/o thermal teacher 70.5/63.1 43.2/43.0 56.9/53.1

HeatNet 70.8/65.7 59.0/54.8 64.9/60.3
HeatNet RGB-only -/65.6 -/46.0 58.0/55.8

TABLE III: Semantic segmentation performance mIoU(%) on
RGB-to-Thermal adaptation. The abbreviations ”SH”, ”Adv”,
”Seg.” and ”IR” stand for single-head, adversarial learning,
segmentation loss and infrared thermal images. The ”Multi-
head*” denotes the multi-head network with the modified
decoder. The ”HeatNet*” represents our reproduced result of
HeatNet.

Method mIoU-RGB mIoU-Thermal Mean mIoU
SH-Maximum squares loss 61.5 31.3 46.4

SH-Adv 66.4 40.6 53.5
SH-Adv(Seg. on IR) 65.1 50.5 57.8

Multi-head 63.9 53.7 58.8
Multi-head* 63.5 57.3 60.4

HeatNet 70.8 - -
HeatNet* 65.7 - -

by 1− 3%; when we use the pre-trained weights from RGB-
to-Thermal task to initialize the network further, the mIoU
on nighttime domain increases by 2% while decreasing by
0.6% on daytime domain. Moreover, it is worth mentioning
that the mean value is 58.0% reported, and it is exactly the
same as the result of HeatNet RGB-only model. This is a very
comparable result, and it proves the effectiveness of our multi-
head network. Compared to the training approach of HeatNet
RGB-only, we just need to train the multi-head network for
150 epochs, but it requires 200 epochs to train a multimodal
network at first, and then even 300 epochs to train a unimodal
network.

E. Parameters comparison

Tab. V shows the comparison of parameters’ numbers
between HeatNet and a multi-head network. It can be found
that a multi-head network contains less parameters and its total
number is around 18% less than that of HeatNet. Under the

TABLE IV: Semantic segmentation performance mIoU(%) on
daytime-to-nighttime adaptation. The ”Multi-head*” denotes
the multi-head network with the modified decoder, and the
”Multi-head**” denotes ”Multi-head*” with the pre-trained
weights initialization. The ”HeatNet RGB-only*” represents
our reproduced result.

Method mIoU-Day mIoU-Night Mean mIoU
Multi-head 66.9 42.7 54.8
Multi-head* 68.5 46.0 57.3

Multi-head** 67.9 48.0 58.0
HeatNet RGB-only* 65.6 46.0 55.8
HeatNet RGB-only - - 58.0

TABLE V: The comparison of parameters’ numbers between
HeatNet and a multi-head network.

HeatNet Multi-head network
Number of parameters 54.4M 44.6M

circumstance, our multi-head network is more efficient to train.

VI. CONCLUSIONS AND DISCUSSION

In this work, we present a novel multi-head network to
perform semantic segmentation on both daytime and nighttime
urban RGB images. In this process, we adopt adversarial
learning strategy to help narrow the gap between different
domains, and prove that this method is more effective than
merely using a target loss minimization. By using our multi-
head network, it can achieve the same performance as HeatNet
RGB-only model. Compared with the approach to creating
this unimodal network, our multi-head network contains less
parameters and we do not have to train a multimodal network
to produce supervisions for nighttime data at first. In this case,
our model is simpler and more efficient to implement and
train. In experiments, we also demonstrate that the weights
pre-trained on RGB-to-Thermal adaptation task is beneficial to
the training of Day-to-Night, and the thermal head can boost
the nighttime head especially.

In the future, we could explore the following directions.
(i) We can consider use of multi-level strategy, like the work
of [6], to train our model because the training on the lower-
level feature can also enhance the adaptation. (ii) We can
incorporate the target loss for the target domain in our training
strategy to see if we can improve the segmentation results
further.
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