
 Eindhoven University of Technology

MASTER

Mosaic cartograms for grid maps

Răducanu, Bogdan

Award date:
2021

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/673bcaee-94b7-4ed4-b62b-7c860cc01377

Mosaic cartograms for grid maps

Bogdan Raducanu Student number: 0870280
b.raducanu@student.tue.nl

July 3, 2021

Abstract

Grid maps are used to display data coupled with a visual, spatial information. Depend-
ing on the amount of data, the spatial information has to be distorted for the sake of the
data’s visibility. In a grid map, each spatial element is condensed into a simple tile (such
as a square or hexagon) and then arranged such that the global shape of all tiles matches
the global shape of the input with the least amount of spatial distortion, such that each
tile is visually identifiable according to its spatial information. We analyze the state-
of-the-art solution for generating such grid maps and identify avenues of improvement
which we pursue in this thesis. We improve two steps of this solution: the partitioning
of an input map based on salient features and its conversion into a square tile mosaic
cartogram. The main improvements over the state-of-the-art consist of guaranteeing a
valid mosaic cartogram conversion. We discuss our methodology, provide an implemen-
tation which we apply to one of the datasets used by the state-of-the-art solution, a map
of mainland Netherlands and its municipalities, compare it to the state-of-the-art result
and discuss further avenues of improvement for our implementation.

Contents

1 Introduction 3
1.1 Related work . 5
1.2 Reduction of pipeline complexity . 6
1.3 Mosaic cartograms revisited . 6
1.4 Results and organization . 9

2 A rule-preserving mosaic cartogram 11
2.1 Different partitioning criteria . 11
2.2 Tree datastructure . 12

2.2.1 Choosing the spine . 13
2.2.2 Creating the binary trees . 14
2.2.3 Embedding preservation . 14

2.3 Steps for creating a mosaic cartogram . 17
2.3.1 Proof . 18

2.4 A basic mosaic cartogram . 20

3 Shaping the mosaic cartogram 21
3.1 Constructing a compact mosaic cartogram 21

3.1.1 Proportional compaction of spinal nodes based on polygon area . . 22
3.1.2 Proportional compaction of non-spinal nodes based on border-edge

lengths . 25
3.1.3 A compacted mosaic cartogram . 28

3.2 Generating guiding tiles via partition shapes 29
3.2.1 Region scaling and placement . 29
3.2.2 Generating guide tiles via rasterization 30

3.3 Shaping the mosaic cartogram via guide tiles 31
3.3.1 Bulk maximization. Maximizing initial guide tile overlap via pivoting 33
3.3.2 Fine maximization. Tile-by-tile shifting to maximize guide tile

overlap . 35
3.3.3 Mosaic cartogram rule breaking detection 37

4 Conclusions 41

1

4.1 Parametrization and intermediary results 41
4.2 Comparison . 42
4.3 Limitations and shortcomings . 43
4.4 Discussion and Future Work . 43

A 46

2

Chapter 1

Introduction

15

71

15

15

31

16

39

25

15

18

15

31

58

15

Input Decomposition Mosaic Cartogram

Figure 1.1: Our two main steps for computing a valid mosaic cartogram: decomposing
the containing shape into parts that infer a binary tree dual graph, and computing a

mosaic cartogram using these parts.

As technology evolves and data collection becomes more prevalent, the complexity and
dimensionality of the data also increases with time. Thus, it is no surprise that un-
derstanding such data also requires increasing time and effort. However, not everyone
has the time or is willing to invest the required effort to study such data in its raw
form. And for a certain data complexity, comprehending it can become impossible for a
human to achieve. It is clear that an extra step has to be taken before undergoing the
study of such data, especially if it is wanted that the data should be quick and easily
understood by anyone engaging with it. Concerned with this extra step is the field of
data visualization, which pursues ways to aggregate, organize and visualize data of any
given complexity.

One often encountered type of data that needs proper visualization is data that is coupled

3

with a spatial dimension. In this thesis, we focus on one particular way to show such data,
namely, using maps. Maps are used every day for various purposes such as navigation,
geolocation, entertainment and many others. A map consists of not only geographical
features, but also certain data that are associated with these features, such as a label
marking the name of a certain region, or a population count. Maps that focus more on
the accurate location of the spatial data conveyed are called topographic maps. However,
the more information we want to convey on a map, the more cluttered and hard to read it
becomes. The field of cartography often has to tackle problems like this, in which it has
to be decided which information to omit in order to keep the geographical representation
of the map as faithful to the real world as possible, while also offering as much of the
desired functionality of the map as possible. These types of maps where the focus is
more on the properties of the spatial data are called thematic maps.

In certain situations, where no data that has to be conveyed on the map can be omitted,
i.e. all of it has to be displayed, this becomes a problem. It is clear that the focus of data
visualization is the readability of this data, thus, readability cannot be sacrificed. Thus,
the only remaining compromise that can be done concerns the accuracy of the spatial
information itself, the geographical features. In order to display large amounts of data
on a thematic map, the real world representation of space would have to be distorted,
in order to fit the desired data. However, the distortion should preserve as much real
world information as possible in order for the spatial information, distorted as it may
be, to still be recognizable to the reader, otherwise the entire functionality of a thematic
map is lost.

One solution for maximizing readability while minimizing spatial distortion consists of
the “grid map”. A grid map is a thematic map in which each spatial element (singular
point or a bounded region) is compacted into one specific geometrical shape of a certain
size, and are arranged such that the global shape of this arrangement resembles the global
shape of the spatial elements as much as possible. Each compacted spatial element is
identical in shape and size and are referred to as tiles, and are laid out on a regular grid
(such as a square tiling). In our case, the spatial elements do not consist of bounded
regions, but rather singular points referred to as sites, as seen Figure 1.1’s Input.

In this thesis, we revisit an existing solution for automatically generating grid maps.
We identify an avenue of improvement within this existing solution, and we propose and
implement a new solution for generating coherent grid maps, ultimately applying it to
the dataset that the previous paper was focused on, a map of the Netherlands with its
municipalities. One major improvement over the previous solution is that the wanted
number of tiles and wanted regional adjacencies are guaranteed to be maintained in the
grid map we generate.

We describe and illustrate each aspect of the our solution, and showcase the result of
applying this solution on a real world dataset. We then further discuss its potential
limitations as well as propose certain methods to address them.

4

1.1 Related work

A solution that tackles the grid maps problem directly is discussed and implemented by
Meulemans et al. [1]. Taking a shape and a set of spatial elements contained within
the given shape as input, their solution involves a 3-step pipeline for the automatic
generation of grid maps (illustrated in Figure 1.2 from the source paper):

1. The decomposition of the given shape into smaller shapes, based on salient features
(controlled by a variable called dilation), which infers a dual graph. The minimum
number of sites that each small shape must contain is controlled by a variable
called productivity.

2. The generation of a grid map precursor (referred to as a mosaic drawing) using
as input the decomposed shapes and the number of spatial elements that each of
the decomposed shape contains generated in the previous step. This step uses a
solution proposed by Cano et al. [2].

3. The correspondence of each tile in the mosaic drawing with a spatial element via
point-set matching, for the minimization of the squared Euclidean distance between
a mosaic drawing tile and a spatial element, turning the mosaic drawing into a grid
map.

While this solution does generate a grid map that preserves the global shape of the given
input pretty well, the second step of the pipeline cannot guarantee that for all inputs
it is able to preserve the desired number of tiles, or to guarantee that all adjacencies
dictated by the decomposition step are correct. If the number of tiles aren’t as specified,
this means that at least one spatial element does not have a representation in the grid
map (leading to loss of information) or there is at least one extra tile that does not map
to any one spatial element (leading to introduction of noise). If the adjacencies given
by the decomposition are not respected in the mosaic drawing, the resulting grid map
would lose the proper representation of the decomposition’s salient features. We propose

Figure 1.2: The three-step pipeline of Meulemans et al. [1], using the municipalities of
the Netherlands as input. This figure is taken from the source paper.

5

a number of changes to this existing solution, such that a grid map does guarantee the
previously mentioned criteria while also preserving the global shape of the input.

1.2 Reduction of pipeline complexity

The avenue of improvement comes from an observation made by the solution’s authors
themselves: they noticed that the decomposition step always produces a dual graph that
is a tree. Considerable complexity can be reduced in the mosaic drawing generation
step by making the assumption that the decomposition step produces tree graphs, since
it does not have to handle all types of planar graphs. Additionally, by changing the
decomposition step such that it creates a certain kind of tree graphs, it is possible to
introduce the adjacency and tile number guarantee for all generated mosaic drawings.
The final step of the pipeline remains unchanged and thus, it is not part of this thesis’
scope.

1.3 Mosaic cartograms revisited

“Mosaic drawing” is a term coined by Cano et al. [2]. Mosaic drawings and mosaic
cartograms have been well defined in their paper, and as such, certain definitions and
notations that are relevant are borrowed and re-stated from that paper for consistency.

In order to understand mosaic drawings and mosaic cartograms, the concept of a tiling
has to be introduced first. A tiling (or tesselation) of a plane is defined as the covering
of a Euclidean plane with geometric shapes, called tiles such that there are no gaps in
between the tiles and no tiles are overlapping eachother. Tilings can be periodic, in
which using a certain type of geometrical shapes would create a repeating pattern, and
aperiodic, in which the shapes involved are not able to create a repeating pattern. The
relevant plane tilings to this problem are periodic tilings that use regular polygons of
the same size as geometric shapes, such as triangles, squares, hexagons etc. which can
be seen in Figure 1.3.

While the original solution by by Cano et al. [2] for generating mosaic drawings supports
periodic regular tilings of square and hexagonal types, mosaic drawings in this thesis are
only based on the square kind, referred to as a square tiling of a plane.

Let T be a square tiling of a plane. A configuration C is defined as a set of tiles of T . A
configuration is called contiguous if all tiles within it are edge-connected. A contiguous
configuration is called simple if the tiles contained in the set are simply connected, i.e,
the tiles do not contain a hole. Figure 1.4 shows these properties.

Two simple configurations C1 and C2 are called adjacent if there is at least one tile
from C1 that is edge-connected to at least one tile from C2, exemplified in Figure 1.5.
Additionally, a union of configurations is itself a configuration.

Let T be a tree where all n nodes are of at most degree 3, with k degree 3 nodes and a

6

Triangular tiling Square tiling Hexagonal tiling

Figure 1.3: Examples of periodic regular tilings.

Configuration Contiguous
configuration

Simple
configuration

Figure 1.4: Types of configurations.

given embedding. Each node v in the given tree T contains an integer sqv representing
the number of tiles the configuration of v, denoted as C(v), should contain. An arbitrary
example of such T can be seen in Figure 1.6.

Let S(V, h, t) be an induced path subgraph of T , where V is a subset of T ’s nodes and
h, t ∈ V being the head node and the tail respectively. We call this path graph S a spine

Adjacent configurations Disconnected configurations

Figure 1.5: Adjacent versus non-adjacent configurations.

11
6

8

13

12

4

7 10

9

10

8

13

Figure 1.6: A tree T with the sqv of each node.

7

S(V, h, t)

h

t

h

t

V

Figure 1.7: A spine S(V, h, t) within T .

(As seen in Figure 1.7).

Let B(V, r) be an induced subgraph of T rooted at node r, where V is a subset of T ’s
nodes and r is a node of at most degree 2 within the induced subgraph. B(V, r) is a
rooted binary tree, and each node v ∈ V is augmented with an integer kv representing
the number of degree 3 nodes contained by the subtree Bv rooted at v. Such a tree is
exemplified in Figure 1.8.

We can now define a decomposition of T as follows: Let VS be a subset of T ’s nodes
with which a spine S(VS , h, t) can be made, where h, t ∈ VS . For each node u /∈ VS that
is adjacent to a node v ∈ VS , we create a subset Vu of T ’s nodes such that it contains all
nodes whose path to u does not contain node v. For each such subset Vu, a binary tree
B(Vu, u) can then be made. In Figure 1.9, a decomposition of an arbitrary T is shown.

Thus, based on the decomposition of tree T , we can define T as a spine between two
arbitrary nodes in T (S(VS , h, t), where h, t and the nodes between them are contained
in VS , and a set of rooted binary trees that would remain if the spine were to be remove
(B(Vu, u), where u is the root of the binary tree and Vu contains the nodes of the binary
tree). Figure 1.10 illustrates an arbitrary tree T defined by a decomposition of itself.

We define a mosaic drawing DT (T) of tree T with n nodes as the set of all configurations

r
V

r

Bt(V, r)

2

1

0 0

0

0

0

Figure 1.8: A binary tree B(V, r) within T , with the kv values of each node (in blue).

8

1
u1

Bt(Vu1
, u1)

1

0 0

0
1

00

0

Vu3

Vu1

Vu3

VS

h

t

S(VS , h, t)

u2

Bt(Vu3
, u3)

u3

Bt(Vu2
, u2)

u3

u1 u2
h

t

Figure 1.9: A decomposition of T into one spine and three binary trees, with the kv
values of each binary tree node (in blue).

h

t

u2

u1

u3

u3

u1 u2
h

t

Figure 1.10: Redefining T based on a decomposition.

C(v), where v is a node of T . We note that in a mosaic drawing, the number of tiles
that C(v) contains can be equal or different than sqv.

We define a mosaic cartogram CT (T) of tree T with n nodes as the set of all configurations
C(v), where v is a node of T , as a mosaic drawing of T with the following properties:

• Each configuration C(v) is a simple configuration.

• There are exactly sqv tiles for each configuration C(v).

• If two nodes v and u of T are adjacent, then their simple configurations C(v) and
C(u) are also adjacent, otherwise they should not be adjacent.

• The union C of all simple configurations C(v) is itself a simple configuration (i.e.
there are no holes contained between configurations either).

In Figure 1.11, an arbitrary mosaic cartogram of a decomposed T is illustrated.

1.4 Results and organization

While the original solution for generating mosaic drawings by Cano et al. [2] attempts
to create mosaic cartograms, it does not guarantee it. In this thesis, we introduce and

9

124

13 109

10

7

6

8

13 11

8

Figure 1.11: A mosaic cartogram of T .

implement a solution which can guarantee the generation of a mosaic cartogram, which
assures that a grid map generated from it does not have more or less tiles than desired.

We first theorize a few principles to guarantee the construction of a mosaic cartogram,
with a focus on maintaining the rules of adjacency and the number of tiles dictated by the
decomposition step, by making certain assumptions and modifying the decomposition
step to enforce said assumptions (Chapter 2). Secondly, we create a mosaic cartogram
that is space-efficient using the previously theorized principles, after which we shape it
tile by tile so that the global shape of the mosaic cartogram resembles that of the input
map as close as possible (Chapter 3). Finally, we discuss the resulting shaped mosaic
cartogram, identify areas of further improvement as well as identify existing limitations
of our solution and proposing ways to either fix or alleviate said limitations (Chapter 4).

10

Chapter 2

A rule-preserving mosaic
cartogram

In Chapter 1, we defined a mosaic cartogram based on a certain type of graph: a tree
with nodes of at most degree 3. Furthermore, this tree was decomposed into simpler
tree graphs, namely a single spine and multiple rooted binary trees. In this chapter,
we discuss the construction of this tree based on the input as well as how to achieve
its decomposition, and we present a number of principles to guarantee the creation of a
mosaic cartogram that does not break any of its own rules based on this tree. In order
to make such a guarantee, we make additional assumption about the input, regarding
the minimum number of tiles certain configurations must have.

2.1 Different partitioning criteria

As discussed in Section 1.1, we modify the partitioning algorithm used by Meulemans
et al. [1]. The decomposition algorithm is meant to partition a given shape into smaller
shapes (or regions) based on salient features. It recursively divides one shape into two
smaller shapes by introducing a dividing line segment (or cut) through the big shape.
This procedure is influenced by two parameters:

• productivity - the parameter which controls the minimum number of sites that a
region should contain.

• dilation - the parameter which controls the minimum size of a cut based on the
Euclidean length of the resulting region.

In order for a cut to be made, its productivity and dilation is computed and if both
parameters are above the given thresholds, these checks pass and the cut is accepted.
Once a cut is accepted, the productivity and dilation are once again computed for
any subsequent cut, taking into account the Euclidean length of the previous regions’
perimeter, and only accepted if they pass both criteria.

11

The first change we make to the partitioning algorithm pertains to the minimum dilation
check. In the original implementation, the dilation check is re-computed per each cut
according to the regions introduced by previous cuts. However, we want to ensure that
there are enough cuts to be considered such that our wanted property of a binary tree
dual graph is met. Thus, we compute the dilation for each considered cut only once,
based on the entire input shape, such that accepted cuts do not reduce the number of
subsequent cuts.

We add a new check for accepting a partitioning cut: make sure that any resulting region
after the cut does not have more than 3 neighboring regions. If the cut fails this check,
but passes the productivity and dilation checks, this cut is not accepted but is saved for
later consideration, in case that this cut becomes viable after a subsequent cut. After
all cuts are tried, the saved cuts are checked again and if at least one cut becomes valid,
the whole process starts again until no further cuts can be introduced without failing
the check. Additionally, we modify the dilation check such that the dilation ratio is not
re-computed after accepting each accepted cut. The differences between the partitioning
of Meulemans et al. [1] and our partitioning can be seen in Figure 2.1.

The aim of our partitioning algorithm is to create a region per each salient feature of
the map, with as few regions as possible, while also ensuring that no region has more
than 3 neighbors.

2.2 Tree datastructure

The partition discussed in the previous section, consisting of adjacent regions, needs to
be converted into a tree. We start by defining a border-edge as the line segment between
any two adjacent regions, which is of equal size for both regions.

In order to create the tree T for such a partitioning, we construct a set of nodes V and

2
14

1213

7

3

7

11

14
6

8

2
14

1213

7

3

714

25

Input (a) (b)

Figure 2.1: A side-by-side comparison between partitioning algorithms, given the same
Input. Partition (a) accepts fewer cuts due to re-computing dilation per each accepted
cut, and also allows for regions with more than 3 neighbors. Partition (b) takes more

cuts, such that we do not have regions with more than 3 neighbors.

12

a set of edges E in the following way:

1. A node v is created for each region inside the partitioning. Additionally, v is
augmented with the following data, extracted from the region: the region’s centroid
(or center of mass) Rv and the length of the border-edge l(v,u), shared between v
and an adjacent region’s node u.

2. An edge e = (v, u) is created for each pair of nodes v, u if and only if the regions
that are represented by v and u are adjacent.

Once computed and augmented, tree T is ready to be decomposed into a spine and
binary trees. An example of such a tree can be seen in Figure 2.2.

2.2.1 Choosing the spine

A spine must be chosen before the binary trees are constructed. While it is entirely
possible to algorithmically compute a subset V of tree T ’s nodes, with h, t ∈ V such
that a spine S(V, h, t) can be constructed, subset V is instead manually selected, since
we do not know how to compute it efficiently. The criteria for what would constitute a
“good” spine are hard to determine and are outside the scope of this thesis (an example
of a “good” and “bad” spine can be seen in Figure 2.3). However, we postulate the idea
that a “good” spine might constitute a subset V based on the following criteria:

• the sum of all deg(v) values is maximized, where v ∈ V , i.e. the chosen spine
contains the maximal number of degree 3 nodes.

• the sum of edge distances
∑

u∈V d(v, u) is minimized, where v ∈ V, u /∈ V , i.e. the
chosen nodes are as “central” as possible.

• based on the values of the nodes’ R value (their region’s centroid) the chosen nodes
are as close to co-linear as possible.

Once such a subset V of T ’s nodes has been made, the nodes in V form a spine S(V, h, t),
and are referred to as spinal nodes. With h being the root of the spine, each spinal node
v is augmented with its own node type (parent spinal node or child spinal node). Thus,

2
14

1213

7

3

7

11

14
6

8

14

14

11
7 13

12

3

6
8

2

7

Figure 2.2: The conversion of a partitioning to a tree.

13

14

11 13 127

14

2 8 6

3

7

1411

13

12

7

14

2

8

6

3

7

2
14

1213

7

3

7

11

14
6

8

(a) (b)

Figure 2.3: An example of a tree constructed with a “bad” spine highlighted in green
(a) and tree constructed with a “good” spine highlighted in blue (b).

if a node u is adjacent to a spinal node v, it is known if u either a parent spinal node, a
child spinal node or a binary tree node.

2.2.2 Creating the binary trees

After the spine has been created, removing the spinal nodes of T and the edges that
connect to them leaves us with a set of disconnected subgraphs. Our aim is to converted
them into rooted binary trees, the root of each tree being the node that was originally
adjacent to a spinal node. We refer to a node that is part of a binary tree as a non-spinal
node.

We construct a binary tree as follows: for each non-spinal node, starting from the root,
we check how many neighboring nodes it has. If any of the neighboring nodes are neither
a spinal node or an already processed node (i.e. a parent), they are assigned to be the
current node’s children, making the current node a parent node. The decision regarding
which nodes are considered “left” or “right” children is made based on the partition’s
embedding, which is discussed in more detail in Section 2.2.3.

After building the binary tree, we now augment each of its nodes n with its corresponding
kn value, that is, the number of degree 3 nodes (2 children and a parent) contained by
the subtree rooted at n. For each node, starting from the root, if n’s degree is 3, kn is
incremented by 1, and if the node has any children c, kn is incremented by the values kc,
which are calculated recursively. A figure of the resulting binary trees given a partition
can be seen in Figure 2.4.

2.2.3 Embedding preservation

We want our tree to be structured such that given partition’s dual graph embedding
is preserved. In order to preserve this embedding, we make use of the nodes’ stored
centroid values, which are a reflection of the partition’s dual graph embedding.

Since the spine is a path graph, the embedding for spinal nodes is already preserved
because a spinal node only connects to at most 2 other spinal nodes. This can be seen

14

14

11 13 127

14

2 8 6

3

72
14

1213

7

3

7

11

14
6

8

0 0 0

0

0

0

0

1

Figure 2.4: A partition and its equivalent tree showcasing the spine (blue) and binary
trees (blue) as well as the augmented k value for each non-spinal node (also in blue).

in Figure 2.5

The embedding given by our partition’s dual graph is not inherently preserved in our
binary trees. Figure 2.6 shows an incorrect and correct embedding representation of a
given partition’s binary tree. In order to preserve it, the clockwards order of the partition
must also be preserved in our binary tree, in the form of a “left” child node and a “right”
child node.

Traditionally, when visualizing binary trees, “left” and “right” children of a node are as-
signed in relation to their parent node’s visual placement. The parent node is arbitrarily
placed, and its children are placed below it, such that the left child is placed westward
in relation to the parent node, while the right child is placed eastward in relation to the
parent node.

We want to preserve the embedding using this convention. However, in our tree T , not
all nodes are visually placed that way, so determining which node should be “left” or
“right” can become tricky. However, using the established convention, we induce some
criteria that can produce a consistent labeling of “left” and “right” children in relation
to a parent node.

2
14

1213

7

3

7

11

14
6

8

7

11

14

8

2

Figure 2.5: A partition with an arbitrary spine (green) and its equivalent tree. The
embedding is clearly preserved.

15

2
14

1213

7

3

7

11

14
6

8

8

6

3

7

2

8

6

3

7

2

Incorrect embedding Correct embedding

Figure 2.6: A partition with an arbitrary binary tree (blue) and its two equivalent
trees of different embeddings.

p

c1 c2

p

c1 c2

Left child Right child Left child Right child

Figure 2.7: The “left” and “right” child convention for binary trees, and its counter
clockwise relation.

We observe that in the current convention, the parent node, left child and right child
are in counter-clockwise order, showcased in Figure 2.7. Using this observation, we label
a child node either “left” or “right” in the following manner: Assuming a node p is the
parent of two children c1 and c2, we compute the signed area of the triangle formed by
the points Rp, Rc1 and Rc2 . If the signed area is positive, we know that the mentioned
points are distributed in a counter-clockwise manner in relation to p, and assign c1 and c2
to be the “left” and “right” children of p respectively. Otherwise, c1 and c2 are assigned
to be the “left” and “right” children of p respectively. Using this criteria, the partition’s
dual graph embedding within binary trees is preserved, as can be seen in Figure 2.8.

1411

13

12

7

14

2

8

6

3

7

2
14

1213

7

3

7

11

14
6

8

Figure 2.8: The binary tree children convention applied for a given partition with an
arbitrary spine (red).

16

Lastly, the way that the roots of the binary trees connect with a spinal node also induce a
certain embedding. In this thesis, to produce the partition’s dual graph embedding, the
spine is constructed such that the spinal nodes are placed vertically, thus the embedding
criteria for determining which binary tree root is placed “left” or “right” in relation to a
spinal node consists of comparing the X-axis value of both tree roots’ centroids, assigning
the “left” placement to the node with the smallest value and the “right” placement to
the node with the biggest value.

Thus, we are able to preserve the partition’s dual graph embedding in our tree datas-
tructure T .

2.3 Steps for creating a mosaic cartogram

Once our tree datastructure T has been decomposed into a spine and a set of binary
trees, we are almost ready to create a mosaic cartogram of it. We start by defining the
two basic configuration types.

We define a vertical/horizontal slab to be a specific type of configuration, where the
tiles are edge-connected in sequence, along one spatial dimension, either horizontal or
vertical. Additionally, we define an L-slab as a configuration whose tiles arrangement
can be decomposed into one horizontal slab and one vertical slab that form an L shape
such that no tile within this configuration is edge-connected with more than 2 tiles.
These types of configurations can be seen in Figure 2.9.

In order to construct a basic mosaic cartogram of T using only these two configuration
types, we propose the following methodology:

1. For each spinal node n in spine S(VS , h, t), starting with h, C(n) is a vertical slab.

2. For each node n of a binary tree B(Vu, u), starting with r, C(n) is either a hori-
zontal slab if deg(n) < 3 or an L-slab if deg(n) = 3.

The first part of creating a mosaic cartogram of T is by chaining each spinal node’s
vertical slab configuration according to the spine adjacencies such that the union of these
configurations is itself a vertical slab. We can trivially see that the correct adjacencies are
maintained between configurations, and each configuration’s tile number is precise, since
the vertical slab can expands upwards or downwards infinitely (as seen in Figure 2.10).

L-slabHorizontal slabVertical slab

Figure 2.9: Three types of configurations.

17

4

3

5

2

Figure 2.10: The mosaic cartogram of an arbitrary spine, composed of a single vertical
slab.

The second part of creating the mosaic cartogram of T consists of arranging the con-
figurations of the non-spinal nodes, which all belong to a binary tree. We do this per
each binary tree. The configuration of a non-spinal node is either a horizontal slab or an
L-slab, and each node’s configuration is placed according to their tree adjacencies and
embedding. An example of this can be seen in Figure 2.11. In order to preserve the
correct adjacencies and number of tiles for each configuration, we make an additional
assumption on T and prove the following lemma:

Lemma 1. Given a rooted, augmented binary tree B with k degree 3 nodes and an
embedding, and assuming that the sqv value of every node v of T is at least sqmin =
2(k + 1), a mosaic cartogram of B can be constructed within 2k + 1 vertical space on a
square tiling T .

2.3.1 Proof

Induction hypothesis: given a rooted, augmented binary tree B with k degree 3
nodes and an embedding, and assuming that the sqv value of every node v of T is at
least sqmin = 2(k+1), a mosaic cartogram of B can be constructed within 2k+1 vertical
space on a square tiling T .

Base case k = 0 The vertical space available is 2 · 0 + 1 = 1. The tree consists of nodes
connected in sequence. Thus, the mosaic cartogram takes the shape of a horizontal slab,
occupying one row of vertical space (Figure 2.12). Thus, the IH trivially holds.

9

7

5

10

7

Figure 2.11: The mosaic cartogram of a binary tree, composed of L-slabs and
horizontal slabs.

18

sqa sqb sqc 2

Figure 2.12: The mosaic cartogram of a tree with no degree 3 nodes, composed of a
horizontal slab, with sqa = 2, sqb = 5, sqc = 5.

Inductive step case k > 0 We wish to prove that, for the given tree B with k degree
3 nodes and embedding, there is 2k + 1 available vertical space to construct its mosaic
cartogram.

The given tree B’s mosaic cartogram is constructed as follows: starting from the root
and until a degree 3 node is encountered, every degree 2 and degree 1 nodes have their
configurations constructed as chained horizontal slabs in any of the 2k + 1 rows of
available space. Once a degree 3 node is reached, its configuration is constructed partly
as a horizontal slab either in any of the 2k + 1 rows of available space, or chained to an
existing horizontal slab if it exists. Then, the rest of its configuration shall extend up
and/or down, forming a vertical slab of 2k tiles within the confines of the given 2k + 1
vertical space, forming an L-slab. This construction is possible since the minimum
number of tiles for any given node is sqmin = 2(k + 1), more than the available vertical
space, ensuring that the vertical slab subset of its configuration can be constructed.

Once a node p of degree 3 with kp degree 3 nodes in its subtree has its configuration
constructed, two subtrees Bl (subtree rooted on p’s left child, given by B’s embedding)
and Br (subtree rooted on the p’s right child, given by B’s embedding) need to be have
their mosaic cartograms constructed. Bl contains kl degree 3 nodes, and Br contains kr
degree 3 nodes, with kl + kr = kp − 1 .

Continuous space is reserved for two subtrees Bl and Br according to the number of
degree 3 nodes each tree has, and relative to their embedding. Additionally, one row
of space between them is needed to ensure adjacency separation. This is showcased in
Figure 2.13.

2kr + 1

2kl + 1

kp

kr

kl

sqp

sqr

sql

2kp + 1

Figure 2.13: Space allocation for Bl and Br, according to their respective k value.

19

Given subtree Bl with kl degree 3 nodes, 2kl + 1 vertical space is required, and given
subtree Br with kr degree 3 nodes, 2kr+1 vertical space is required. With the separation
row between them, the total vertical space used is 2(kl + kr + 1) + 1.

Since we know that there are kp−1 total degree 3 nodes left in both subtrees, this means
that kl+kr = kp−1, meaning kp = kl+kr +1. Thus, to construct B’s mosaic cartogram,
the space needed is 2(kl + kr + 1) + 1 = 2kp + 1.

Thus, Lemma 1 holds.

2.4 A basic mosaic cartogram

With the added assumption that every binary tree B with kB degree 3 nodes in a
decomposition of tree T nodes has a lower bound of sqmin(B) = 2(kB + 1) such that
every node v in B has its sqv ≥ sqmin, it is possible to create a basic mosaic cartogram
of any such tree T , with emphasis on maintaining correct adjacencies and the specified
number of tiles.

Similarly to the problem of creating a “good” spine, enforcing this added assumption
is done manually by instructing the partition algorithm to create regions with a chosen
minimal number of sites (through its productivity parameter) such that the assumption
is met for any spine. Thus, we give an arbitrary value bigger than max

B∈T
(sqmin(B)) as

a productivity parameter for the partitioning algorithm, enforcing a lower bound sqmin

value for each node v’s sqv value, where v is a node in T . The reasoning behind this
is that minimizing the assumption’s sqmin(B) value per each binary tree B is a hard
problem of its own and is outside the scope of this thesis, thus we use a value that works
for all binary trees. However, we intuit that the minimization of sqmin(B) is tied to
both the partitioning algorithm and the automatic spine creation problem discussed in
Section 2.2.1.

Figure 2.14 contains an example of an arbitrary tree T that meets our discussed assump-
tions.

2 7 1110

4

4 10

4

7

5

6

5

Figure 2.14: A mosaic cartogram of an arbitrary tree T .

20

Chapter 3

Shaping the mosaic cartogram

In this chapter, we build upon the theoretical mosaic cartogram discussed in Chapter 2 to
create a mosaic cartogram that resembles a given partition’s shape as much as possible.

As discussed in Section 2.1, a partition’s goal is to capture salient features of a shape with
the least number of partitioned regions, and combined with a minimum productivity for
our partition, in practice, the number of sites per region is not always as small as our
productivity parameter. If we exclusively use Chapter 2’s mosaic cartogram principles,
we notice that the resulting mosaic cartogram expands drastically both vertically and
horizontally, not making efficient use of the available space. The shape of the mosaic
cartogram would not resemble the given partition in any form either. Thus, we identify
two steps to address these issues: first, making a space-efficient, compact version of the
basic mosaic cartogram, and second, using this mosaic cartogram as a starting point
and shaping it such that the final mosaic cartogram resembles the partition as much as
possible, remaining a valid mosaic cartogram throughout with each shaping step.

3.1 Constructing a compact mosaic cartogram

For a partitioning that contains regions with a large number of sites, the basic mosaic
cartogram excessively extends vertically and horizontally, leaving a lot of unused space,
as seen in Figure 3.1. In order to address this, we propose an algorithm that aims to
create a compacted mosaic cartogram while still maintaining the mosaic cartogram rules,
under the same assumptions as the basic mosaic cartogram.

We preserve the same idea that the basic mosaic cartogram has: spinal nodes are placed
vertically and non-spinal nodes are placed horizontally. Each spinal node v’s height is
denoted by heightv, and each binary tree B rooted at r (which is adjacent to v) has its
height maximally bound by heightv. In order to enforce Lemma 1 each configuration of
C(u) has to have a height bound between 1 and heightv, where heightv ≥ sqmin.

For each node v, we define L(v,u) to be a subset of C(v) such that it contains all tiles

21

73811 49

8

5

52

4

7

1334

Figure 3.1: An arbitrary tree T and its basic mosaic cartogram, we can see that it
occupies a lot of horizontal space.

incident to C(u) (and since the adjacency rule is mandatory, L(v,u) must contain at least
one tile), and is either a vertical slab (if u is a non-spinal node) or a horizontal slab (if u
is a spinal node). Additionally,

⋂
L(v,u) = ∅. We denote |L(v,u)| to represent the number

of tiles that L(v,u) contains. This is exemplified in Figure 3.2.

We aim to compact the nodes using different criteria, based on if a node is a spinal or non-
spinal. We first apply a compaction of spinal nodes, after which we apply a compaction
of non-spinal nodes. These procedures are discussed in the upcoming sections.

3.1.1 Proportional compaction of spinal nodes based on polygon area

To compact a spinal node v, we implemented an algorithm that attempts to arrange
its configuration such that it resembles the shape of a specific polygon, based on v’s
adjacent nodes, detailed below.

Given a spinal node v and one of its neighbor node u, we denote l(v,u) to be the length
of the border-edge discussed in Section 2.2). For each node v, there at most 3 such
border-edge lengths, since v can have at most 3 neighboring nodes. Thus, based on
these lengths, we are able to compute the area of a polygon with at most 4 edges.

For each spinal node v, we want to make its configuration C(v) such that each |L(v,u)| is
proportional to the corresponding border-edge length l(v,u) in the partition. In general
this cannot be satisfied exactly, due to rounding errors, so in the remainder of this section

v
u3

u1

u2

L(v,u3)

L(v,u2)

L(v,u1)α · l(v,u1)

α · l(v,u2)

α · l(v,u3)

l(v,u3)
l(v,u2)

l(v,u1)

|L(v,u2)||L(v,u1)| |L(v,u3)|

Figure 3.2: An arbitrary partition with three border-edges with length l(v,ui), where
where 0 < i ≤ 3, v, u2 are spinal nodes and u1, u3 are a non-spinal nodes, and their

corresponding L(v,ui) sets given an arbitrary proportionality constant α.

22

we describe how this proportionality is achieved with the added constraint that C(v)
resembles the shape of a polygon to achieve some level of compaction.

Take a spinal node v with ui as a neighbor, where 0 < i ≤ 3. Proportionality with

l(v,ui) implies that
|L(v,u1)

|
l(v,u1)

=
|L(v,u2)

|
l(v,u2)

=
|L(v,u3)

|
l(v,u3)

. Assuming that sqv is the area of a

known polygon, we can determine a proportionality constant α such that the area of this
polygon is computed using the lengths α · l(v,ui). We then compute |L(v,ui)| = bα · l(v,ui)e.

The shape of the polygon depends on depending on the following cases:

• v has only one neighbor u1: since there is only one slab L(v,u1), the polygon in this
case is a rectangle, as seen in Figure 3.3.

• v has two neighbors u1 and u2: if u1 and u2 are both either spinal nodes or binary
tree roots, the polygon in this case is a right trapezoid. if u1 and u2 are different
type of nodes, the polygon is a right triangle, as seen in Figure 3.4.

• v has three neighbors u1, u2 and u3: this implies that at least one of them is a
non-spinal node. The polygon in this case is a trapezoid, as seen in Figure 3.5.

We enforce the following relation between any two neighboring spinal nodes v and u:
|L(v,u)| = |L(u,v)|. This is done in order to maintain an equal number of incident tiles
in both C(v) and C(u) similar to how the border-edge is of same length between the
regions of v and u. If, after computing the polygons for each node |L(v,u)| 6= |L(u,v)| (As
seen in Figure 3.6), we make it so that |L(v,u)| = |L(u,v)| = min(|L(v,u)|, |L(u,v)|) (the
number of incident tiles in both nodes match in number) and recompute either L(v,u) or
L(u,v) according to v or u’s border-edge length proportionality. Enforcing this relation
implies that any change snowballs into the all other spinal nodes. This is exemplified in
Figure 3.7.

If a spinal node v had its |L(v,ui)| changed to match |L(ui,v)|, where i 6= j 6= y, we then
recompute |L(v,uj)| and |L(v,uy)| based on proportionality with l(v,ui), l(v,uj) and l(v,uy),
which implies that

|L(v,ui)|
l(v,ui)

=
|L(v,uj)|
l(v,uj)

=
|L(v,uy)|
l(v,uy)

.

v

u l(u,v)

|L(v,u)|
α · l(u,v)

Figure 3.3: An arbitrary partition with a spinal node v and a non-spinal node u with
one border-edge between them of length l(v,u). α is computed such that C(v) resembles

a rectangle with an edge of length |L(v,u)|.

23

v

u1

u2l(v,u2)

l(v,u1)

|L(v,u1)|
α · l(v,u1)

|L(v,u2)|

α · l(v,u2)

v1

u

v2l(v1,v2)

l(v1,u)
|L(v1,u)|

α · l(v1,u)

|L(v1,v2)|
α · l(v1,v2)

(b)(a)

Figure 3.4: Figure (a) shows an arbitrary partition with two spinal nodes v1 and v2 one
non-spinal node u with their corresponding border-edge lengths. α is computed such
that C(v1) resembles a right trapezoid with its two parallel edges of length |L(v1,v2)|

and |L(v1,u)|.
Figure (b) shows an arbitrary partition with a spinal node v and two non-spinal nodes
u1 and u2 with their corresponding border-edge lengths. α is computed such that C(v)

resembles a right triangle with catheti of length |L(v,u1)| and |L(v,u2)|+ 1.

v

u3

u1

u2

|L(v,u3)|

|L(v,u2)|

|L(v,u1)|

α · l(v,u1)

α · l(v,u2) α · l(v,u3)

l(v,u3)
l(v,u2)

l(v,u1)

Figure 3.5: An arbitrary partition with a spinal node v and three nodes u1, u2 and u3
with their corresponding border-edge lengths. α is computed such that C(v) resembles

a right trapezoid with edges of length |L(v,u1)|, |L(v,u2)| and |L(v,u3)|, performing an
addition of 1 to this length if ui is a non-spinal node, 0 < i ≤ 3.

Thus,

|L(v,uj)| = b
|L(v,ui)|
l(v,ui)

· l(v,uj)e

and

|L(v,uy)| = b
|L(v,ui)|
l(v,ui)

· l(v,uy)e.

This algorithm is applied recursively starting on head node of the spine and ending on
the tail node of the spine. After finishing, the configurations of all spinal nodes are
compacted to a polygonal figure of at least the number of tiles in their configuration,

24

h

u3

u1

u2

|L(h,u3)|

|L(h,t)|

|L(h,u1)|

αh · l(h,u1)

l(h,u3)
l(h,t)

l(h,u1)

t

αh · l(h,t)

αh · l(h,u3)

αt · l(t,u2)

αt · l(h,t)
|L(t,h)|

|L(t,u2)|
l(t,u2)

Figure 3.6: An arbitrary partition with two spinal nodes h and t and three nodes u1,
u2 and u3 with their corresponding border-edge lengths. h and t’s proportionality

constants αh and αt are computed such that the shapes of C(h) and C(t) are
corresponding to their appropriate case.

|L(h,t)|

|L(t,h)| |L(t,h)|

|L(h,t)|

|L(h,u1)|
|L(h,u3)|

|L(t,u2)| |L(t,u2)|

|L(h,u3)|
|L(h,u1)|

Figure 3.7: Given the partition in Figure 3.6, |L(h,t)| 6= |L(t,h)|. Thus we make |L(t,h)|
equal to |L(h,t)|, changing the proportionality constant αt to α′t and as a consequence,

recompute L(h,t) according to α′t.

while maintaining proportionality with the partition border-edges.

Given any spinal node v and a neighboring non-spinal node u, where u is the root of
binary tree B, it may happen that L(v,u) has less tiles than sqmin(B), in which case we
revert the entire mosaic cartogram of the spine to the basic mosaic cartogram discussed
in Section 2.3 (seen in Figure 2.10).

After applying this algorithm, we proceed with compacting the non-spinal nodes i the
next section.

3.1.2 Proportional compaction of non-spinal nodes based on border-
edge lengths

To compact a non-spinal node v neighboring a spinal node s, we implemented an algo-
rithm that attempts to arrange its configuration such that its tiles are contained within
heights. Given a non-spinal node v and a neighboring non-spinal node u, we denote the

25

border-edge length as l(v,u).

Take a non-spinal node v with ui as a non-spinal neighbor, where 0 < i ≤ 3. Pro-

portionality with l(v,ui) implies that
|L(v,u1)

|
l(v,u1)

=
|L(v,u2)

|
l(v,u2)

=
|L(v,u3)

|
l(v,u3)

. Knowing that we

have a total of sqv tiles and that given a height bound min(heights, sqv), we can de-
termine a proportionality constant α such that α · max

0<i≤3
l(v,ui) = H. We then compute

|L(v,ui)| = bα · l(v,ui)e.

Similar to the spinal nodes, we enforce the following relation between any two neighbor-
ing non-spinal nodes v and u: |L(v,u)| = |L(u,v)|. If, after computing L(v,u) and L(u,v),
|L(v,u)| 6= |L(m,v)|, we make it so that |L(v,u)| = |L(m,v)| = min(|L(v,u)|, |L(u,v)|) and re-
compute either L(v,u) or L(u,v) according to v or u’s border-edge length proportionality.
Enforcing this relation implies that any change snowballs into the all other non-spinal
nodes (unless stated otherwise). This is illustrated in Figure 3.8.

If a non-spinal node v had its |L(v,ui)| changed to match |L(ui,v)|, where i 6= j 6= y, we
then recompute |L(v,uj)| and |L(v,uy)| based on proportionality with l(v,ui), l(v,uj) and
l(v,uy), which implies that

|L(v,ui)|
l(v,ui)

=
|L(v,uj)|
l(v,uj)

=
|L(v,uy)|
l(v,uy)

.

Thus,

|L(v,uj)| =
⌊ |L(v,ui)|
l(v,ui)

· l(v,uj)

⌉
and

|L(v,uy)| =
⌊ |L(v,ui)|
l(v,ui)

· l(v,uy)

⌉
.

If a non-spinal node v has two children c1 and c2 and a parent p, the above relation is
not always enforceable, because with each degree 3 node, the two subtrees B1 and B2

|L(v1,v2)|

v1 v2
v3 v4

|L(v2,v1)|

|L(v2,v3)|

|L(v3,v2)|

|L(v3,v4)|

|L(v4,v3)|

l(v1,v2)

l(v2,v3)

l(v3,v4)

Figure 3.8: An arbitrary partition with four non-spinal nodes vi, 0 < i ≤ 3 with their
corresponding border-edge lengths. The blue segments are scaled versions of the
border-edge lengths such that the relation |L(vi, vj)| = |L(vj , vi)| holds, where

0 < i, j ≤ 3 and i 6= j.

26

rooted at c1 and c2 respectively, need a different minimum height than 2kn + 1, namely
2kc1 and 2kc2 . The maximum subtree heights heightBc1

and height(Bc2)
are dictated by

the number of tiles in L(v,c1) and L(v,c2) respectively. The maximum height of node v’s
configuration is dictated by the number of tiles in L(v,p). This is illustrated in Figure 3.9.

However, there are two cases where trying to enforce that |L(v,c1)| = |L(c1,v)| and
|L(v,c2)| = |L(c2,v)| would not work:

• |L(v,c1)|+ |L(v,c2)| > |L(v,p)| − 1. The computed height values exceed v’s maximum
configuration height minus one vertical space needed to maintain adjancencies as
per Lemma 1, as seen in Figure 3.10.

• |L(v,c)| < 2kc + 1, where c ∈ {c1, c2}. One or more computed height values are
lower than the minimum height needed for subtree Bc.

In these cases, |L(v,p)|, L(v,c1) and L(v,c2) are recomputed such that |L(v,c1)|+ |L(v,c2)| ≤
|L(v,p)| − 1, where |L(v,p)| ≥ 2kv + 1, |L(v,c1)| ≥ 2kc1 + 1 and |L(v,c2)| ≥ 2kc2 + 1. This is
done by computing

|L(v,p)| =
⌊
min(heights,

sqv
2

⌉
,

|L(v,c1)| =
⌊

(|L(v,p)| − 1) · kc1 + 1

kv + 1

⌉
and

|L(v,c2)| =
⌊

(|L(v,p)| − 1) · kc2 + 1

kv + 1

⌉
.

The values of |L(v,p)|, |L(v,c1)| and |L(v,c2)| are then excluded from the enforcement of
the property that |L(v,p)| = |L(p,v)|, |L(v,c1)| = |L(c1,v)| and |L(v,c2)| = |L(c2,v)|. This can
be seen in Figure 3.11.

Once all L(v,u) have been calculated for each pair of neighboring non-spinal nodes v and
u, there can be an excess of tiles that do not belong in any L(v,u) subset. These extra
tiles are placed between the L(v,u) slabs, within a height bound of max

u∈U
|L(v,u)| (where

U is the set of non-spinal neighbors of v), preventing the addition of holes. Ideally, the

v

p

c2

c1

l(v,p)
l(v,c1)

l(v,c2)

α · l(v,p)

α · l(v,c2)

α · l(v,c1)

|L(v,p)|

|L(v,c1)|

|L(v,c2)|

Figure 3.9: An arbitrary partition with four non-spinal nodes, showcasing v’s
configuration, with p as its parent node, matching border-edge proportionality.

27

v

c2

p

c1

l(v,c2)

l(v,c1)
l(v,p)

α · l(v,c2)

α · l(v,p)

α · l(v,c1) |L(v,c2)|

|L(v,c1)|

|L(v,p)|

|L(v,p)| |L(v,c2)||L(v,c1)|

Figure 3.10: An arbitrary partition with four non-spinal nodes, showcasing v’s
configuration, with p as its parent node, in the case that the border-edge

proportionality cannot be enforced.

|L(v,c2)|

|L(v,c1)||L(p,v)|

|L(v,p)|

|L(c1,v)|

|L(c1,u1)| = |L(u1,c1)||L(c2,v)|

|L(c2,u2)| = |L(u2,c2)|

Figure 3.11: A non-spinal node v with a parent p and two children c1 and c2 where the
relation L(v,w) = L(w,v), with w ∈ {p, c1, c2}, is not enforced on its configuration C(v)

(blue).

shape of each individual configuration resemble a rectangle (Figure 3.12 (a)), but there
can be excess tiles that would prevent this (Figure 3.12 (b)), thus we place the excess
tiles such that they are “propagated” until a leaf node is reached (Figure 3.12 (c)).

This procedure is applied for all non-spinal nodes of T which are adjacent to a spinal
node.

3.1.3 A compacted mosaic cartogram

Given all procedures mentioned above, a potential compaction of an arbitrary basic
mosaic diagram can be seen in Figure 3.13.

(a) (b) (c)

Figure 3.12: An “ideal” configuration scenario (a), an “imperfect” scenario (b) and an
improvement of the imperfect scenario (c).

28

3.2 Generating guiding tiles via partition shapes

The idea to use guiding shapes in order to shape a mosaic drawing is inspired by the
solution of Cano et al. [2]. Once we obtained a mosaic cartogram, our next goal is to
shape it such that it resembles the shape of the partitioning as much as possible. We
devise an intuitive approach for this next step: create a “guide” mosaic cartogram of
the partition, which does not take into account contiguity, number of tiles, lack of holes
and correct adjacency rules, and attempt to change the mosaic cartogram tile-by-tile,
such that no rules are broken, “molding” our mosaic cartogram to resemble the “guide”
mosaic cartogram as much as possible.

The problem we encounter is that the number of tiles across regions are not proportional
with the geometric areas of the regions themselves, and as such, we cannot take the naive
approach where we could simply create a rasterization of the original partition. Thus,
to get around this, we propose a method to create rasterizations of regions that contain
an number of tiles that is roughly the same number as the wanted number of tiles.

3.2.1 Region scaling and placement

The general idea of this method is that we scale each partition region individually such
that their geometric area matches the number of tiles that this region’s configuration
should have. After this scaling each region, the scaled regions are positioned in a logical
manner such that they still resemble the original partitioning.

For each region, we first compute the area A of the region polygon. Using the desired
cartogram area Ac for this region, which is equal to the number of tiles in this region’s

configuration, compute the scale factor α =
√

A′

A used to scale A to the desired area A′,

as exemplified in Figure 3.14.

Once all regions have been scaled (Figure 3.15 (b)), they have to be pieced together such
that they resemble the original partitioning as much as possible. The way we do this is

24 21 1417

17

15 15

4

7

9

5

5

(a) (b) (c)

Figure 3.13: An arbitrary tree T (a) with its basic mosaic cartogram (b) and its
compacted mosaic cartogram (c).

29

A
A′

A′ = α2 ·A

Figure 3.14: An arbitrary region with area of A scaled to A′.

by first placing the scaled region corresponding to the head node of the spine, such that
this scaled region’s centroid coincides with centroid of this node’s configuration.

Since each partition has been disproportionally scaled, this means that the border-edge
segment previously shared between two regions are of different lengths per scaled region.
However, the information of which region connects to which region is preserved by the
tree datastructure, and we are able to place them according to this information. After
positioning a scaled region, for each of its original neighboring regions, we place the scaled
region such that the middle point of the placed region’s border-edge is overlapping the
middle point of the scaled neighbor region’s border-edge. This results in a logically
connected scaled partitioning of the original partition, which we refer to as a scaled
partition. We node that, as seen in Figure 3.15, we allow for shapes overlapping each
other.

3.2.2 Generating guide tiles via rasterization

Once the scaled partition has been created, the next step is to create a rasterization
of each scaled region within it. For each scaled region, a rasterization is created (Fig-
ure 3.16). For brevity, we define the rasterization of a node v of T to be the rasterization
of the scaled region associated with v.

We create the rasterization for the entire partition in a specific order, dictated by our tree
T as follows: We first create the rasterization of the spinal nodes, starting with the spine’s
head node and ending with the spine’s tail node. Then, we create the rasterization of
non-spinal nodes of the binary tree that contains them, in breadth first order, prioritizing

(a) (b) (c)

Figure 3.15: The scaling process (b) and the positioning process (c) applied on an
arbitrary partition (a).

30

Figure 3.16: A rasterization of an arbitrary region.

the binary trees with their root that is closest to the head node of the spine. In the case
that the rasterization of a scaled region would overlap a rasterization of region whose
rasterization has already been made (due to scaled regions overlapping), the specific tiles
that would create overlap are not placed.

The complete rasterization of the scaled partition (Figure 3.17) gives us a “guide” mosaic
drawing that we want to use for the next step. Our next goal is to use this mosaic drawing
as a guide in order to shape our mosaic cartogram with.

3.3 Shaping the mosaic cartogram via guide tiles

Our “guide” mosaic drawing is composed of tiles that belong to specific regions, just like
our mosaic cartogram. We refer to the tiles of the “guide” mosaic drawing as guide tiles
(tiles belonging to the same region referred to as a guide configuration) (Figure 3.18).
From here on out, given a set of guide tiles corresponding to various guide configurations,
the problem becomes a maximization problem, where the aim is to overlap as many guide
tiles of a certain node’s guide configuration with tiles belonging to the same node’s
configuration as possible, while keeping our mosaic cartogram valid with each step.

More formally, let v be a node in tree T , let CT (T) be T ’s mosaic cartogram and let
DT (T) be T ’s guide mosaic drawing. Let C(v) denote its configuration in CT (T), C ′(v)
denote its guide configuration in DT (T) and ct denote the square tiling position of a tile
t ∈ C(v) ∪ C ′(v). For each guide tile g find a unique tile q ∈ C(v) such that cq can be
changed such that cq = cg, maximizing the number of g tiles that meet these relations
while keeping CT (T) valid.

Figure 3.17: A rasterization of a scaled partition.

31

17 10 15

24

16 11
9

15
7

17

5

(a) (b) (c)

Figure 3.18: An arbitrary tree T (a), its mosaic cartogram composed of tiles (b) and
its guide mosaic drawing composed of guide tiles (c).

For this maximization problem, we employ a heuristic consisting of a number of sequen-
tial procedures, on a per-node basis, maximizing the overlap of a node’s guide tiles with
the same nodes’ tiles. The first procedure consists of moving a node’s configuration at
a time (bulk maximization) while other procedure consists of moving individual tiles of
a node’s configuration (fine maximization).

For this maximization problem, we employ a heuristic consisting of a number of sequen-
tial procedures, on a per-node basis, maximizing the overlap between a node’s config-
uration and its guide configuration. The first procedure consists of moving a node’s
configuration at a time to maximize this overlap (bulk maximization), while the second
consists of moving individual tiles of a node’s configuration to maximize this overlap
(fine maximization). The node order for which we apply this heuristic on is the same
order described in Section 3.2.2 for creating a node’s rasterization.

Once the heuristic has been applied for a specific node, we refer to this node as a settled
node. Conversely, a node that is not yet settled is referred to as a non-settled node.
Additionally, once a node becomes settled, it cannot become non-settled again, and its
configuration is no longer allowed to be changed.

We define two basic translation operations used on a tile or set of tiles, which are needed
for creating the discussed procedures.

• move(S, d) - given a set of tiles S, they are translated once towards direction d on
the square tiling, where d is one of the eight cardinal directions.

• place(t, c) - given a tile t, it is taken from its original square tile position and is
placed on the square tile position given by the coordinate tuple c.

Depending on their input, each one of these operation may break the mosaic cartogram
properties. We are able to identify which mosaic cartogram property is broken using the
methods described in Section 3.3.3. Depending on what which property is broken after
performing one of the above operations, said operation is either undone, or the property
is fixed by performing additional translation operations on non-settled nodes, which are
also described in Section 3.3.3.

32

The heuristics described below are applied sequentially on the spinal nodes of T in
breadth-first order, starting from the spine’s head node. After all spinal nodes are settled,
the same heuristics are sequentially applied on the non-spinal nodes in the breadth-first
order of the rooted binary tree they belong to.

3.3.1 Bulk maximization. Maximizing initial guide tile overlap via
pivoting

The first procedure involves maximizing guide tile overlap by translating the node’s
entire configuration at once. We do this by performing a sequence of move(C(v), d) for
a given node v, where d is computed per each individual move operation.

In order to do this, we use a settled node’s configuration as a “pivot” in order to move
a non-settled neighboring node’s configuration around this pivot, until the non-settled
node’s tile and guide tile overlap is maximized. In order to avoid local maxima, we pivot
a non-settled node’s configuration in either a clockwise or counter-clockwise motion
(depending on there the guide tile tiling positions), memorizing the amount of overlap
after each sequential move, until the configuration is unable to move in the chosen motion
due to breaking the mosaic cartogram’s adjacency and hole rules (or until it returns to
its original starting position), referred to as a limit point. When said limit point is
reached, the non-settled node’s configuration backtracks each sequential move applied
to it until it reaches the place where its guide tile overlap was maximized and have its
mosaic cartogram properties maintained. This procedure is illustrated in Figure 3.19.

While pivoting around a node, we explicitly allow for moves to introduce holes. This is
because the configuration of a settled node is unpredictable, and pivoting around such a
shape can temporarily introduce a hole in certain intermediary stages (Figure 3.20). If we
forbid such movements, a node’s configuration may not be able to reach its maximum
overlap position, a position where if the node’s configuration would reach, there may

start point

limit point

end point

pivoting procedure

Figure 3.19: The pivoting procedure of a non-settled node (blue) around the settled
pivot node (red) and its outcome. The light blue tiles are guide tiles, the orange

highlighted tiles represent the overlap between a guide tile and a tile, and the purple
arrow represents the next valid move direction.

33

start point end point

...

hole ignored hole ignored

Figure 3.20: Pivoting the blue node around the red pivot node breaks while ignoring
the hole rule of the mosaic cartogram, allowing for guide tile overlap.

be no holes that are introduced, maintaining the validity of the mosaic cartogram. If,
however, holes are introduced in positions with maximum overlap, the configuration
backtracks to the last known position where there was the most amount of overlap such
that the resulting drawing is a mosaic cartogram.

We note that there is always a node to be used as a pivot, since the first node is the head
node of a tree T ’s spine. This node already has some of its guide tiles overlapping with
tiles by virtue of placing its guide configuration over its configuration centroid, described
in Section 3.2.1.

However, as seen in Figure 3.21, if we only move the configuration of a non-settled
node located in between another non-settled node and a settled node, an early adja-
cency rulebreak is inevitable, preventing this node’s configuration to maximize its guide
configuration overlap. In order to address this, we choose to move not only this non-
settled node’s configuration, but also the entire subtree rooted at this node, as seen in
Figure 3.22. All nodes in this subtree are non-settled due to the breadth first order in
which the heuristic is applied. This way, we are able to maintain the adjacency rule and
obtain more guide configuration overlap than otherwise.

After maximizing the overlap for the node we applied this procedure on, we perform the
fine maximization procedure in Section 3.3.2 on it. It is important to note that guide
overlap is not guaranteed after applying this method.

start point end pointlimit point

...

Figure 3.21: Attempting to move the blue node around the red pivot node breaks
adjacency. The procedure reverts, and as a result it is unable to achieve any guide tile

overlap.

34

... ...

end pointstart point

Figure 3.22: Moving the blue node along with its green child node around the red pivot
node achieves guide tile overlap.

3.3.2 Fine maximization. Tile-by-tile shifting to maximize guide tile
overlap

This procedure’s goal is to further maximize a node’s guide tile overlap on a per-tile
basis, shaping our mosaic cartogram to match the guide mosaic drawing as much as
possible. The goal of the previous procedure is to create as much guide tile overlap as
possible, however any overlap at all is not guaranteed, in which case this procedure is
not be able to create additional guide tile overlap.

Given the assumption that the given node’s configuration has existing overlap with this
node’s guide configuration, we refer to guide tiles which do not overlap a tile as candidate
guide tiles. Similarly, tiles that do not overlap a guide tile are referred to as candidate
tiles (Figure 3.23). To promote mosaic cartogram shape cohesion, we prioritize incidence
with a neighboring settled node’s tiles. We achieve this by prioritizing guide tiles that
are incident with the neighboring settled node’s guide configuration. Additionally, we
prioritize the candidate tiles that are the furthest from the configuration’s centroid.

We now perform a place(q, cg) operations on each candidate tile q, for each candidate
guide tile g, where cg is g’s square tiling position. When a candidate tile overlaps a
candidate guide tile, they are removed from their respective candidate sets and this pro-
cedure is repeated until no more candidate guide tile can be overlapped, thus maximizing
the number of overlapped guide tiles. We illustrate this in Figure 3.24.

After performing above steps, there are two relevant scenarios to consider. If the can-
didate tile set does not contain any more tiles, this means that all of them are now

(a) (b) (c)

Figure 3.23: The configuration of a node (grey) along with its guide tiles (light grey)
(a), an initial overlap between these tiles (highlighted in orange) (b), the remaining

candidate tiles (grey) and candidate guide tiles (light grey) (C).

35

...

(a) (b) (c) (d)

Figure 3.24: Given the scenario in Figure 3.23, we find a candidate tile (highlighted in
blue) to overlap a candidate guide tile (highlighted in purple) (a), we overlap them

(highlighted in orange) (b), and remove them form their respective candidate set (c),
and repeat this procedure until the most guide tile overlap is achieved (d).

overlapping a guide tile, without breaking any mosaic cartogram rules. If the candidate
tile set still contains tiles, this means that there are either no candidate guide tiles left,
or the candidate guide tiles that are left would break the mosaic cartogram rules should
they be overlapped by a tile. In the latter case, there is the possibility that the tile may
overlap the guide tiles of non-settled nodes, lowering their maximum achievable overlap
(as illustrated in Figure 3.25).

To account for this, the final step of this procedure is to identify the remaining candidate
tiles which are overlapping the guide tiles of non-settled nodes, and performing a place
operation on each of them such that the described overlap is minimal and no mosaic
cartogram rules are broken. Once this final step is performed (Figure 3.26), the node
is considered to be a settled node. Tiles belonging to a settled node’s configuration are
prevented from being modified in any way by any translation operation invoked in the
context of a non-settled node.

We note that the first node that this procedure is applied to is the head node of a tree
T ’s spine. While this node is not affected by the previous bulk maximization procedure,

(a) (b)

(c)

Figure 3.25: A mosaic cartogram (a) and its corresponding guide mosaic drawing (b),
and their initial overlap (highlighted with orange) with three blue tiles overlapping

three brown guide tiles (highlighted in red) (c).

36

(1) (2)

(3) (4)

Figure 3.26: Moving each red-highlighted blue tile one by one in a valid position
(highlighted in blue) that does not overlap any guide tiles and maintains mosaic

cartogram rules.

it is not needed, since the prerequisite overlap already exists due to the placement of
this node’s guide mosaic drawing (following Section 3.2.1).

3.3.3 Mosaic cartogram rule breaking detection

In this section we discuss various methods used to check if the mosaic cartogram rules are
broken after performing a translation operation. We list each rule that could be broken
in which scenario and describe our methods of detecting it and correcting it through
additional translations operations if possible.

Adjacency

Correct configuration adjacency is verified by checking for all nodes of T , if a tile tv
belonging to a node v is edge-connected to a tile tu belonging to a node u, it should
imply that v and u are adjacent in T . Additionally, if any tile tv of v is not edge-
connected to any tile tu of u, it should imply that v and u are not adjacent in T . If
both implications hold, the adjacency is correct. If not, adjacency is not correct. These
implications are visualized in Figure 3.27. However, a distinction is made between these
two implications.

If the first implication is not true, then the translation operation that introduced this
rule break is undone. If the second implication is not true, we implement a way to
correct it through performing additional translation operations on different tiles.

Considering the context of the second implication, given two nodes v and u that are
adjacent in tree T , if a tile tv of C(v) with its initial square tile placement of cv is
placed in a different square tile placement c′v such that by doing so, no tile of C(v)
are edge-connected with any tile of C(u), both configurations C(v) and C(u) are now
disconnected, breaking the adjacency rule. However, it is possible to correct this by
performing a place operation on a tile tu such that tu is placed at tv’s original square

37

16

5

13

16

5

13

16

5

13

(a)

(b)

(c)

Figure 3.27: An arbitrary tree and a valid corresponding mosaic cartogram (a), a
mosaic drawing where a blue node tile connects to a node it shouldn’t connect with (b)
and a mosaic drawing where the orange node’s configuration is no longer adjacent with

the configuration of the red node (c).

tile placement cv without breaking any other mosaic cartogram rules. By doing so, the
configurations C(v) and C(u) are adjacent again, correcting the adjacency rule. If no
such tile tu can be found, then the translation operation that introduced this rule break
is undone. A successful application of this correction can be seen in Figure 3.28.

Contiguity

To check if a given node v’s configuration C(v) is contiguous, we perform a depth first
search starting from an arbitrary tile t in C(v) and recursively visiting each tile’s edge
connected neighbor tiles, counting each visited tile. If the number of visited tiles is
equal to the number of tiles in C(v), then C(v) is contiguous. Otherwise, C(v) is not
contiguous and the translation operation is undone. This is illustrated in Figure 3.29.

Overlap

Checking for overlap is a relatively simple operation. Given two tiles t1 and t2, if their
square tiling positions ct1 and ct2 are equal, this means that an overlap is present.

This rule break is verified both in the bulk maximization procedure as well as the fine
maximization procedure. If a translation operation is done that induces unintended

(1) (2) (3)

Figure 3.28: Given the mosaic cartogram in Figure 3.27, by moving the red tile
highlighted in blue we cause an adjacency violation, which we fix by moving an orange

tile (highlighted in blue) to where the first red tile was moved away from.

38

sqv = 15 count = 8

(1) (2) (3)

Figure 3.29: Moving away the tile highlighted in blue causes the configuration to be
discontiguous, since the count is not equal to the number of tiles before the move (tiles

highlighted in black), thus the move is undone (highlighted in red).

overlap, then this translation operation is undone.

There are certain cases where an overlap is intended, but only temporarily. Given a
node v that is currently being settled, we may want to translate a tile tv of this node’s
configuration via the place operation such that it overlaps a guide tile of the same
node, however, tv would overlap with another tile tu that belongs to the configuration of
a non-settled node u. If node u has correct adjacency with v, we want to move tu away
such that the overlap is eliminated.

We do this by now performing an operation place on tu, such that it overlaps a tile
tw, that belongs to the configuration of a non-settled node w and maintains correct
adjacencies after performing it. We then repeat this for tw recursively until there is no
other tile belonging to a node to be overlapped, in which case this tile would be placed
on a position where no other rules are broken. If no such position exists, the chain of
place operations are recursively undone. A successful application of this procedure is
illustrated in Figure 3.30.

(1) (2) (3) (4)

Figure 3.30: We highlight in blue the tiles that we want to move, and we highlight in
purple the tile that will be overlapped. An overlap between two tiles is shown as a

purple tile. In this sequence, we first move a red tile to overlap a blue tile, then move
the overlapped blue tile to overlap an orange tile, and lastly move the overlapped

orange tile such that no mosaic cartogram rules are broken.

Holes

The detection of holes is checked only for the place operation. For this algorithm,
we assume that the mosaic cartogram is contiguous. The way we check for holes is as
follows:

39

4 empty tiles
2 contiguous
empty tiles

(1) (2) (3) (4) (5)

Figure 3.31: We move the blue highlighted tile in a place where it would create guide
tile overlap (highlighted in orange), however it would introduce a hole, as there are

only 2 contiguous empty tiles instead of 4, if no hole were to have been introduced, and
thus we undo the move (highlighted in red).

After placing a tile t at a square tiling placement ct, we inspect a 3 by 3 area of tiles
around ct, choose an arbitrary square tiling placement cr that does not contain a tile and
recursively count the number of edge-connecting square tiling placements neighboring r
that also do not contain a tile. If this count is the same as the number of square tiling
placements that do not contain a tile withing this 3 by 3 area, then a hole has not been
introduced by placing tile t. Otherwise, the placement of t is undone. This procedure is
illustrated in Figure 3.31.

A hole can be intentionally introduced in a certain situation, but only temporarily, when
performing a place operation on a tile. If a tile tv of C(v) with its initial square tile
placement of cv and four edge-connected neighboring tiles, is placed in a different square
tile placement c′v, the empty square tiling placement left at cv is a hole. This hole can be
filled using another place operation of a tile t′ that does not have four edge-connected
neighbors such that no other mosaic cartogram rules are broken. If no such tile t′ exists,
the translation operation of tv is undone.

When moving an entire set via a move operation, the same method discussed above does
not work. While computationally expensive, depending on how space-efficient the mosaic
cartogram is, it is possible to check for a hole using a depth first search algorithm on
an arbitrary empty square tiling, counting the number of edge-connected empty square
tilings and comparing the result with the total number of empty square tiles in a given
bounding box around the mosaic cartogram.

40

Chapter 4

Conclusions

In this chapter, we apply our methodology on a data set which Meulemans et al. [1] also
used, namely the municipality map of the Netherlands. We note that our method is only
applied for mainland Netherlands. We investigate the following aspects: parametrization
of the partitioning step and spine selection, presentation of relevant intermediary results,
a comparison to state-of-the-art, the limitations of our method, ending with a discussion
and future work.

4.1 Parametrization and intermediary results

We specify the parameters that have been used in the case of our dataset: a safe produc-
tivity value of 15 and a dilation ratio of 5. This produces the partition seen in Figure 4.1.
In the same figure, we illustrate our choice of what nodes the spine should be composed
of.

15

71

15

15

31

16

39

25

15

18

15

31

58

15

1571 15

18

16 39 31 58

2515 31

15

15

15

Figure 4.1: The resulting partition of mainland Netherlands as well as its
corresponding tree with the spine highlighted in blue.

41

Figure 4.2: The resulting mosaic cartogram to be used as a starting point.

Given this parametrization, we showcase key relevant intermediary outputs that are
related to the methods described in this thesis. Figure 4.2 shows the mosaic cartogram
used as a starting point for shaping. Figure 4.3 shows the scaled regions of the partition
obtained in Figure 4.1, as well as its corresponding rasterization, used as a guide to
shape our mosaic cartogram.

4.2 Comparison

The most relevant state-of-the-art solution to this problem consists of the solution pro-
posed by Meulemans et al. [1]. Our final result is seen in Figure 4.4, as well as the
chosen result of Meulemans et al.

We can see that the quality of our result is roughly comparable with the state-of-the-art
solution. We have added the guarantee that a mosaic cartogram is always generated
for no significant shape trade-off in the case of this dataset, however the shape is not
guaranteed to be optimal in all cases. We discuss potential ways to improve our algorithm
in Section 4.4.

(a) (b)

Figure 4.3: The scaling and placement of the partition (a) and its rasterization (b).

42

(a) (b)

Figure 4.4: Our shaped mosaic cartogram (a) side by side with the mosaic cartogram
obtained by Meulemans et al. [1].

4.3 Limitations and shortcomings

One of the limitations of our methodology is that the process for creating a result is
not fully automated. While this is also the case for Meulemans et al. [1] in regards to
the parametrization step, our method assumes the parametrization of the spine as well.
Additionally, due to the lack of further experimentation, various steps of our heuristic
can fail due to unforeseen scenarios that are not accounted for since they were not
encountered in our application of the algorithm. Another limitation of our methodology
is that the shape is not always optimal, however a valid mosaic cartogram is always
produced.

4.4 Discussion and Future Work

Our work consist of improving the existing pipeline that Meulemans et al. [1] proposed.
The advantage of their pipelined approach is observable within our results and the same
advantage is still maintained. While one of the concerns of their work was that the
resulting grid map would have a jagged boundary, it still remains a valid concern in our
pipeline as well, since there is no specific method that addresses it. Thus, an avenue of
improvement of the grid map quality remains to be exploited in the form of adding an
extra post-processing step after our result is complete.

We also find an avenue of improvement regarding the creation of guide tiles that are
used to shape the mosaic cartogram. Further improvement can be made by creating
a higher quality rasterization of the partition by incrementally scaling a specific region
until the exact number of guide tiles are generated. Taking this process a step further,
the mosaic cartogram rule breaking detection methods discussed in Section 3.3.3 could
be applied on this mosaic drawing to potentially convert it into a mosaic cartogram. An
example of such a correction would be to remove certain guide tiles from our mosaic

43

drawing that break adjacency rules (since we know the correct adjancencies from the
dual graph of the partition) and adding new guide tiles that don’t break this rule to
replace them. While this method does not guarantee a mosaic cartogram, it can use our
mosaic cartogram generation and shaping methods as a fallback.

Additional experimentation with this pipeline can also help to determine more optimal
results based on experimentation with the parametrization step, including figuring out
an algorithm that is able to find a well suited spine for a partition. However, the
core problem remains that it is difficult to quantify the quality of a grid map and
automatically determining the input map’s salient features.

A node-by-node shaping procedure of the mainland Netherlands data set can be found
in Appendix A.

44

References

[1] W. Meulemans, M. Sondag, and B. Speckmann. “A Simple Pipeline for Coherent
Grid Maps”. In: IEEE Transactions on Visualization and Computer Graphics 27.2
(Feb. 2021), pp. 1236–1246. doi: 10.1109/tvcg.2020.3028953. url: https:

//doi.org/10.1109/tvcg.2020.3028953.
[2] R. G. Cano, K. Buchin, T. Castermans, A. Pieterse, W. Sonke, and B. Speckmann.

“Mosaic Drawings and Cartograms”. In: Computer Graphics Forum 34.3 (June
2015), pp. 361–370. doi: 10.1111/cgf.12648. url: https://doi.org/10.1111/
cgf.12648.

45

https://doi.org/10.1109/tvcg.2020.3028953
https://doi.org/10.1109/tvcg.2020.3028953
https://doi.org/10.1109/tvcg.2020.3028953
https://doi.org/10.1111/cgf.12648
https://doi.org/10.1111/cgf.12648
https://doi.org/10.1111/cgf.12648

Appendix A

(3)

(2)

(1)

(0)

Figure A.1: Unshaped mosaic cartogram (0) and the heuristic algorithm output for the
first 3 non-settled nodes (1-3).

46

(4)

(5)

(6)

(7)

Figure A.2: Heuristic algorithm output for the next 4 non-settled nodes (4-7).

47

(11)

(10)

(9)

(8)

Figure A.3: Heuristic algorithm output for the next 4 non-settled nodes (8-11).

48

(12)

(13)

(14)

Figure A.4: Heuristic algorithm output for the last 3 non-settled nodes (12-14).

49

	Introduction
	Related work
	Reduction of pipeline complexity
	Mosaic cartograms revisited
	Results and organization

	A rule-preserving mosaic cartogram
	Different partitioning criteria
	Tree datastructure
	Choosing the spine
	Creating the binary trees
	Embedding preservation

	Steps for creating a mosaic cartogram
	Proof

	A basic mosaic cartogram

	Shaping the mosaic cartogram
	Constructing a compact mosaic cartogram
	Proportional compaction of spinal nodes based on polygon area
	Proportional compaction of non-spinal nodes based on border-edge lengths
	A compacted mosaic cartogram

	Generating guiding tiles via partition shapes
	Region scaling and placement
	Generating guide tiles via rasterization

	Shaping the mosaic cartogram via guide tiles
	Bulk maximization. Maximizing initial guide tile overlap via pivoting
	Fine maximization. Tile-by-tile shifting to maximize guide tile overlap
	Mosaic cartogram rule breaking detection

	Conclusions
	Parametrization and intermediary results
	Comparison
	Limitations and shortcomings
	Discussion and Future Work

	

