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Abstract

We discuss two models for the growth of cells with supply centres in two dimensions. These supply
centres produce material which is distributed to the cell wall. Once the material reaches the wall,
the wall expands and the cell grows larger. This type of cell growth is analysed by investigating how
the cell wall expands over time. This expansion depends on how material is distributed throughout
the cell. The first model we consider assumes that supply material travels in straight lines from the
centre to the cell wall. The second model we consider assumes that supply material travels on a
random path from the centre to the cell wall. The models are based on research for fungal hyphae,
which suppose a unbounded domain. We apply these models in a bounded setting. To describe the
evolution of a bounded domain, we analyse how the boundary changes over time. In particular, we
derive an evolution equation for a parametrisation function of the boundary. We see that the first
model yields a fully nonlinear parabolic differential equation. However the second model does not yield
a differential equation, but the resulting equation can be considered fully nonlinear parabolic similar
to the first model. We show that both models have a unique short-time solution, applying theory for
fully nonlinear problems. Additionally, we show that circular solutions to these models are linearly
stable over time. Finally, we show that solutions to the first model satisfy an avoidance principle. This
principle states that if one domain is contained in another, then this is preserved over time.
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3.2.1 Fréchet differentiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.2 Sectoriality and equivalence of the graph norm . . . . . . . . . . . . . . . . . . . . 33
3.2.3 Local Lipschitz continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Linear stability of circular solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.1 Derivative of F at ψ0 ≡ 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.2 Linear stability results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Conclusion 41
4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Further research options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

References 43

A Derivations of the curvature, normal vector and velocity 45
A.1 Derivation of the normal vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
A.2 Derivation of the curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
A.3 Derivation of the normal velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

B Auxiliary lemmas ballistic model 46
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1 Introduction

The analysis of cell growth has proven to have many real-world applications, most notably in the field
of health sciences and biology. These applications include plant architecture [Fourcaud et al., 2008],
disease research [Lai and Zou, 2015], and tissue engineering [Croll et al., 2005]. Usually cell growth
is mentioned in the same sentence as cell division; as cell grows larger, they can split into multi-
ple [Hanczyc and Szostak, 2004]. After dividing, the individual cells can grow once again and the process
repeats. Different type of cells can experience varying types of growth: fungal hyphae grow primar-
ily near the tip [Riquelme and Sánchez-León, 2014], while shells grow accretively, i.e. along the entire
boundary [Goriely, 2017, Chapter 1.1.2]. This distinction is illustrated in Figure 1.

Figure 1: Examples of accretive growth (left) in shells and tip growth (right) in a hair [Goriely, 2017,
Figures 1.2 D, 1.3]. Note that the arrows on the left depict the growth direction.

However, one aspect of cell growth is consistent: growth can only occur if there is an influx of material.
This influx can originate from sources inside or outside of a cell. Examples of these sources include
ambient nutrients absorbed by bacterial cells [Shuler et al., 1979] and vesicle supply centres (VSC) inside
fungal hyphae [Tindemans et al., 2006]. Bacterial cells transform nutrients outside the cell into cellular
material which causes the cell to grow. A VSC produces material inside the hypha near the tip, where
the cell growth is most visible. While the supple centre supplies vesicles, it moves in the growth direction,
which causes the tipped shape. However, if the supply centre does not initially move, tip growth is be
preceded by accretive growth, as illustrated in Figure 2.

Most mathematical models of fungal hyphae focus on tip growth. These models study different dis-
tribution methods of vesicles [Nolet, 2020, Tindemans et al., 2006] or the cell structure [de Jong, 2019,
Campàs and Mahadevan, 2009]. The simplest cell distribution method is that vesicles travel in straight
lines, while it may be more realistic that they do not travel in predefined paths from the centre to
the edge. In contrast, the simplest cell structure model is that vesicles at the wall directly expand the
boundary, while it may be more realistic that there is a thin viscous membrane which grows and slowly
hardens over time. Although these models extensively analyse tip growth, most models do not anal-
yse accretive growth. One example that does incorporate accretive growth, also assumes the domain is
spherical [Bartnicki-Garcia et al., 1989]. This paper uses the spherical domain as an initial domain from
which tip growth is investigated. A spherical domain is an ideal situation, since natural domains are often
not perfectly spherical. However, general domains could be approximated by a sphere. When modelling
growth in general domains, the error from the approximation might persist or become larger over time.
Therefore, this project will investigate the accretive growth for VSC type models. The tip growth models
will first be explained in more detail, and will function as a basis for the accretive model.
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Figure 2: [Bartnicki-Garcia et al., 1989, Figure 2]Simulation of accretive growth followed by tip growth.
The VSC is initially (a-g) in the middle, after which it moves to the top and tip growth occurs (h-o).

1.1 Previous tip growth models

The models of interest are the Ballistic Ageing Thin viscous Sheet (BATS) model by De Jong [de Jong, 2019]
and the ballistic and diffusive VSC model by Nolet [Nolet, 2020]. These models both investigate tip
growth in fungal hyphae, but are based on older models, such as found in [Bartnicki-Garcia et al., 1989,
Eggen et al., 2011, Campàs and Mahadevan, 2009, Tindemans et al., 2006, Koch, 1982]. An overview of
these models may be found in [Keijzer et al., 2010]. One geometrical assumption for tip growth is that
the domain is cylindrically symmetric and extends infinitely behind the tip, as illustrated in Figure 3.

Figure 3: Mathematical model interpretation of a hypha cell [de Jong, 2019], where the domain extends
infinitely in one direction.

The BATS model as stated by De Jong more accurately describes the biological process of tip growth at
the boundary of the cell. It assumes that the cell consists of two parts: the cell and a thin viscous sheet
at the boundary. The cell grows through ballistic dispersion of material from the supply centre near the
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tip. Once the material reaches the boundary, it is absorbed into the wall. This wall slowly hardens over
time according to some prescribed viscosity function. While the cell grows, it shows steady tip growth,
which is modelled as a travelling wave profile. This profile describes that the cell grows approximately at
constant speed and preserves shape.

The model is used for both analytical and numerical results for tip growth. A numerical method is used
to compute steady growth solutions. Using a ´topological shooting´ method, existence of solutions to
a simplified model is shown. This result is then extended to the original statement, which produces
conditions on the existence of steady tip growth solutions. These conditions are verified using a rig-
orous numerical method, and shows that solutions may be approximated by the topological shooting
method.[de Jong, 2019]

The VSC models described by Nolet allows analysis for more types of distribution throughout the cell.
Similar to the BATS model, the cell is assumed to have a travelling wave profile. In contrast to the BATS
model, the thin viscous sheet is modelled as a flat surface. This simplification eliminates one difficulty
so that others may be investigated in more detail. The distribution models focuses on the growth of
the boundary, which is described by a flux. The flux can be chosen according to the type of dispersion
method, such as ballistic or diffusive. In particular, the ballistic model assumes that vesicles travel in
straight lines, while the diffusive model assumes that they travel through diffusive motion, as illustrated
in Figure 4.

Figure 4: Visualisation of ballistic (left) and diffusive (right) motion of vesicles from a supply centre (red
dot) through a cell.

Using this model, Nolet proves existence, uniqueness and linear stability of hyphoid solutions to the
ballistic model, in addition to asymptotic results in the cylinder and the tip. The diffusive model is shown
to have a solution that follows the travelling wave profile. and again asymptotic results away from the
tip. Additionally, the diffusive model is analysed through numerical simulations which show the origin of
a tip shaped cell, when starting from a spherical domain.

1.2 The accretive VSC models

This project will adapt the models described by Nolet [Nolet, 2020]; the boundary is modelled as a flat
surface. However, instead of a domain that extends infinitely in one direction, the domain is assumed to
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be bounded and star-shaped with respect to the origin. This assumption differentiates the model from
the tip growth models as it changes the geometry of the problem. Additionally, the problem is considered
in two dimensions. This assumption can be interpreted as a cell between two large slates, similar to a
microscope slide or inside a petri dish. Furthermore, vesicle production is assumed to be constant with
rate P > 0. The setup for both VSC models will be analogous to the models by Nolet.

1.2.1 Mathematical model assumptions

Let Ω ⊂ R2
be a star-shaped domain. Additionally, let ψ(θ) be such that ψ(θ)(cos(θ), sin(θ)) is a parametri-

sation of ∂Ω, where θ is the angle. Then we can write Ω = Ωψ where

Ωψ = {0} ∪ {(r, θ) ∣ θ ∈ S1
, r ∈ (0, ψ(θ))}, (1.1)

and S
1
= R\(2πZ). Since Ωψ will change over time, we write Ωψ = Ωψ(t). This time dependency also holds

for ψ, so that ψ = ψ(t, θ). Using the boundary ∂Ωψ(t) we can analyse the evolution of the domain.

Assume that Γ(t) ⊂ ∂Ωψ(t) is a closed curve in the boundary with length L(t). Additionally, we assume
that there exists a flux Φ at the boundary which is constant over time. This flux can be used to calculate
the change of L(t) over time:

dL

dt
= ∫

Γ(t)
Φ ⋅ ndS, (1.2)

where n is the outward unit normal vector. In general, the flux is not defined orthogonal to the boundary,
which is why we have to take the inner product with the normal.

Contrastingly, if we assume that Γ(t) flows according to some velocity field v(t), we can use the formula for
first variation of area [Andrews et al., 2020, Lemma 5.27]. This concept relates the change of the length
of Γ(t) to its velocity and curvature by

dL

dt
= ∫

Γ(t)
HVndS, (1.3)

where H is the curvature of Γ(t) and Vn the normal velocity of Γ(t). Combining (1.3) and (1.2) yields

∫
Γ(t)

HVn − Φ ⋅ ndS = 0. (1.4)

Since this equation holds for any arbitrary Γ(t), we know that the integrand must vanish:

Φ ⋅ n = VnH. (1.5)

We can rewrite this equation by isolating the only time-dependent term Vn to

Vn =
Φ ⋅ n
H

. (1.6)

As noted by Nolet, this equation can also describe several popular geometric flows. For example, mean
curvature flow Vn = H can be obtained by choosing the flux as Φ = H

2
n. Similarly, inverse curvature flow

Vn = H
−1

, such as described in [Huisken and Ilmanen, 2001], can be obtained by Φ = n.
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For the ballistic and diffusive model, the quantities Vn, H, n and Φ can be expressed in terms of ψ. The
expressions for n,H and Vn are given for both models by

n(ψ) = (ψθ sin θ + ψ cos θ,−ψθ cos θ + ψ sin θ)
√
ψ2
θ
+ ψ2

H(ψ) =
ψ

2 + 2ψ
2
θ − ψψθθ

(ψ2 + ψ2
θ
)3/2

,

Vn(ψ) = ψt
ψ

√
ψ2 + ψ2

θ

.

(1.7)

(1.8)

(1.9)

The derivations of these quantities are found in Appendix A. The only quantity that remains is the flux,
which changes with the choice of the dispersion method; there is a difference between the ballistic flux
and the diffusive flux.

Ballistic flux

The ballistic VSC model assumes that vesicles are distributed in straight lines from the centre. Conse-
quently, the flux ΦB is given by

ΦB(x) = P

2π

x

∣x∣2
,

for x ∈ R2
.

Since we need ΦB evaluated at ∂Ωψ, we can substitute x = ψ cos θ, y = ψ sin θ. This substitution yields

ΦB(ψ) = P

2π

(cos θ, sin θ)
ψ

. (1.10)

Diffusive flux

The diffusive model assumes that the vesicles move in random paths from the centre to the boundary.
This new model solves the unrealistic nature of the ballistic model, as vesicles usually do not travel in
straight lines to their destination [Koch, 1994]. The randomness of the individual paths can be eliminated
by regarding the concentration or density u of vesicles instead. The density should adhere to a diffusion
equation. We assume that P is the total amount of surface area produced by the VSC per unit of time.
Additionally, we assume that the diffusion time of vesicle is fast compared to the motion of the cell wall,
such that the density is in equilibrium. Finally we assume that vesicles are fully absorbed into the cell
wall. The concentration u therefore satisfies the Poisson equation with homogeneous boundary condition:

{
∆u = −Pδ in Ωψ,

u = 0 on ∂Ωψ,
, (1.11)

where δ the Dirac delta distribution at zero. The normal component of the corresponding diffusive flux
ΦD is equal to the negative of the normal derivative of u since the concentration at the boundary is
smaller than the concentration close to the centre. Thus we obtain ΦD ⋅ n = −∂u

∂n
.

1.3 Overview

This project will discuss the ballistic and diffusive VSC models for accretive growth on bounded domains.
In Chapter 2 we will discuss the ballistic model. First we will analyse the simple case of a growing circle.
After this analysis, we derive the evolution equation for generic perturbations ψ. This evolution equation
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will be used to show short time existence and uniqueness. Additionally, we will show that circular domains
are stable over time using linear stability. Finally we will use maximum principles to show that solutions
to the ballistic model satisfy an avoidance principle.

In Chapter 3 we will discuss the diffusive model. We first redefine the needed components for the evolution
equations. As explained before, we use the concentration u of vesicles and (1.11) to define the flux Φ. We
will use a diffeomorphism to transform the corresponding differential equation on Ωψ to one on Ω1. The
new expression will yield an implicit expression for Φ in terms of ψ. Using similar methods to Chapter 2 we
can achieve short time and existence and uniqueness of solutions to the corresponding evolution equation.
Moreover, we will show linear stability of circular solutions for the diffusive model. However, since the
evolution equation is non-local, we cannot use maximum principles to show an avoidance principles.
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2 Ballistic VSC problem

The first model we analyse is the ballistic VSC model. We begin in Section 2.1 by deriving the evolution
equation for general perturbations ψ. Then we will analyse the behaviour on circular domains in Sec-
tion 2.2. In Section 2.3 we continue to analyse the general setting. We will first show short-time existence
and uniqueness of solutions to the derived evolution equation. Then we will show long-time linear sta-
bility of circular solutions in Section 2.4. Finally we will show that solutions satisfy an avoidance principle.

First we introduce some model assumptions. In particular, we assume that Ωψ is non-empty, bounded
and strictly convex. These assumptions correspond to the following conditions on ψ:

� There exists a ν such that ψ,H(ψ) > ν.

� ψ is twice differentiable on S
1
.

Note that boundedness of ψ follows from continuity since S
1

is bounded.

2.1 The evolution equation

To derive the evolution equation for ψ from (1.6), we can substitute the expressions for Φ, n,H, Vn to
obtain

Vn(ψ)H(ψ) = ψt
ψ

√
ψ2 + ψ2

θ

ψ
2 + 2ψ

2
θ − ψψθθ

(ψ2 + ψ2
θ
)3/2

= ψt
ψ(ψ2 + 2ψ

2
θ − ψψθθ)

(ψ2 + ψ2
θ
)2

Φ(ψ) ⋅ n(ψ) = P

2π

(cos θ, sin θ)
ψ

⋅
(ψ cos θ + ψθ sin θ,−ψθ cos θ + ψ sin θ)

√
ψ2
θ
+ ψ2

=
P

2π

1

ψ
⋅
ψ cos

2
θ + ψθ sin θ cos θ − ψθ cos θ sin θ + ψ sin

2
θ

√
ψ2
θ
+ ψ2

=
P

2π

1

ψ

ψ
√
ψ2
θ
+ ψ2

=
P

2π

1√
ψ2
θ
+ ψ2

.

These expressions yield the following evolution equation for ψ:

ψt = F (ψ) ∶= P

2π

(ψ2
θ + ψ

2)3/2

ψ(ψ2 + 2ψ2
θ
− ψψθθ)

. (2.1)

Observe that F is not a linear operator in ψ. Since there are multiple types of nonlinearity, we will briefly
elaborate on this subject. Nonlinear partial differential equations are usually divided into semilinear,
quasilinear and fully nonlinear. The types can be found in [Evans, 2010, Page 2]. We see that F is fully
nonlinear in ψ, since it depends nonlinearly on the highest derivative ψθθ. Thus we will have to apply
techniques for fully nonlinear problems to analyse the evolution equation.

The complete problem statement requires an initial condition for ψ. Adding the condition ψ(0, θ) = ψin(θ)
for θ ∈ S

1
, we obtain the complete statement

{
∂tψ(t, θ) = F (ψ(t, θ)), (t, θ) ∈ (0,∞) × S1

ψ(0, θ) = ψin(θ), θ ∈ S
1

(2.2)

Before we analyse the general case, we will first apply the model to circles.
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2.2 Simple example: circles

For circular domains, we have that the corresponding ψc as defined in 1.2 does not depend on θ. The
independence of θ means that we can simplify (2.1) to

F (ψc) =
P

2π

(ψ2
c )3/2

ψ3
c

=
P

2π
. (2.3)

This simple expression means that the evolution equation for ψc becomes

dψc
dt

=
P

2π
,

which implies that (2.2) is solved by

ψc(t) = ψs +
P

2π
t, (2.4)

where we assume that ψc(0) = ψin(θ) ≡ ψs. This solution shows that circular domains stay circular and
grow linearly over time.

2.3 General case: local existence and uniqueness

In this section, we will show local existence and uniqueness of solutions to (2.2). We note that the
evolution equation is a fully nonlinear parabolic partial differential equation. For fully nonlinear problems,
(local) existence and uniqueness of solutions is relatively difficult to show, when compared to other types
of problems. For example, Theorem 2.1 gives conditions for which local existence and uniqueness of
solutions holds.

Theorem 2.1. [Lunardi, 1995, Theorem 8.1.1] Let D be a Banach space, with norm ∣∣ ⋅ ∣∣D, continuously
embedded in X, and O ⊂ D be an open set. Let F ∶ [0, T ] × O ↦ X a sufficiently smooth function,
non-linear function, with T ∈ (0,∞). Consider the initial value problems

u
′(t) = F (t, u(t)), t > 0, u(0) = u0, (2.5)

for some u0 ∈ O.

Assuming that the following conditions are satisfied

(i) (t, u) ↦ F (t, u) is continuous with respect to (t, u), and it is Fréchet differentiable with respect to u,
with derivative DF (t, u).

(ii) For every t ∈ [0, T ] and v ∈ O, the Fréchet derivative DF (t, v) is sectorial in X, and its graph norm
is equivalent to the norm of D.

(iii) There exists α ∈ (0, 1) such that for all u ∈ O there are R = R(u), L = L(u),K = K(u) > 0 verifying

∣∣DF (t, v) −DF (t, w)∣∣L(D,X) ≤ L∣∣v − w∣∣D
∣∣F (t, u) − F (s, u)∣∣X + ∣∣DF (t, u) −DF (s, u)∣∣L(D,X) ≤ K∣t − s∣α,

for all t, s ∈ [0, T ], u, v, w ∈ B(u,R) ⊂ D.

Fix t ∈ [0, T ], u ∈ O such that F (t, u) ∈ D. Then there are δ = δ(t, u) > 0, r = r(t, u) > 0 such that

(i) For every t0 ∈ [t − r, t + r] ∩ [0, T ] and x0 ∈ O such that F (t0, x0) ∈ D and ∣∣x0 − u∣∣D ≤ r, there is a
strict solution u ∈ C([t0, t0 + δ];D) ∩ C1([t0, t0 + δ];X) to Equation (2.5) in [t0, t0 + δ].
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(ii) u belongs to C
α
α ((t0, t0 + δ];D), u′ belongs to Bα((t0, t0 + δ]; (X,D)α,∞), and in addition

lim
ε→0

ε
α[u]Cα([t0+ε,t0+2ε];D) = 0.

Moreover, the solution u is unique and belongs to

⋃
0<β<1

C
β

β
((t0, t0 + δ];D) ∩ C([t0, t0 + δ];D).

This theorem shows local existence and uniqueness of solutions for more general evolution equations than
parabolic partial differential equations. We will apply this theorem to (2.2) for appropriate choices of
D,O and X.

For D and X, we need a Banach space D that is continuously embedded in X. Additionally, we will
require that D is dense in X and both are Banach algebras. Density will ensure that the condition
F (t, u) ∈ D in the theorem is automatically satisfied. The Banach algebra will ensure that our definition
of F makes sense and prove useful when calculating Fréchet derivatives, as we will see later.

A practical requirement on D is that it involves twice differentiable functions. Examples of these spaces
are the Hölder space C

2+γ(S1), Sobolev space W
2,p(S1) and little Hölder space h

2+γ(S1). We choose
D = h

2+γ(S1) and X = h
γ(S1), for some fixed γ ∈ (0, 1). This space satisfies the additional constraints we

set on D. In particular, we know that h
2+γ(S1) lies dense in h

γ(S1) where C
2+γ(S1) does not lie dense in

C
γ(S1). Furthermore, the Hölder spaces are Banach algebras, while Sobolev spaces with p < ∞ are not.

We note that C
2(S1) and C(S1) for D and X are also usable in the ballistic model, however not for the

diffusive model. To keep the analysis in the diffusive model similar to the ballistic model, we will choose
D and X as the little Hölder spaces.

For O ⊂ D we will use the modelling assumptions as stated earlier, in addition to assuming that every
ψ ∈ O is uniformly bounded in the 2 + γ norm by some fixed R

∗
> 0. Note that these choices for D,O

and X satisfy the previously mentioned constraints. In summary, we have

D = h
2+γ(S1),

O = {ψ ∈ h
2+γ(S1) ∣ ν < ψ, ∣∣ψ∣∣2+γ < R∗

, H(ψ) > ν}
X = h

γ(S1)
(2.6)

with γ ∈ (0, 1). The spaces h
γ
, h

2+γ
are endowed with norms ∣∣ ⋅ ∣∣γ , ∣∣ ⋅ ∣∣2+γ defined by

∣∣ψ∣∣γ = ∣∣ψ∣∣∞ + [ψ]γ
∣∣ψ∣∣2+γ = ∣∣ψ∣∣∞ + ∣∣ψθ∣∣∞ + ∣∣ψθθ∣∣∞ + [ψθθ]γ ,

[ψ]γ = sup
x,y∈S1,x≠y

( ∣ψ(x) − ψ(y)∣
dS1(x, y)γ ) .

We note that the distance dS1(x, y) on S
1

is different to the distance on R. The main difference is that
we choose the shortest distance on S

1
, instead of the distance on R. Thus for any x, y ∈ S

1
we have that

the distance dS1(x, y) is given by

dS1(x, y) = inf
k∈Z

∣[x] + 2kπ − [y]∣. (2.7)

where [x], [y] ∈ [0, 2π) denote the representatives of x, y.

As stated by the theorem, we will use the concept of Fréchet differentiability and sectoriality. We first
discuss some preliminaries about these concepts before we continue.

9



2.3.1 Preliminaries Theorem 2.1

We will first discuss what Fréchet differentiability entails. The definition of a Fréchet derivative is given
in Definition 2.2.

Definition 2.2. [Cheney, 2001, Page 115] Let f be a mapping from an open set D in a normed linear
space X into a normed linear space Y . Let x ∈ D. If there exists a bounded linear operator A ∶ X → Y
such that

lim
∣∣h∣∣X→0

∣∣f (x + h) − f (x) −Ah∣∣Y
∣∣h∣∣X

= 0, (2.8)

then f is said to be Fréchet differentiable at x. We write the Fréchet derivative of f at x in direction h
as Df (x)[h].

The Fréchet derivative has several properties as described in Lemma 2.3.

Lemma 2.3. The following statements are true.

(i) (Linearity) [Cartan, 1971, Proposition 2.3.1]: Let X,Y be normed vector spaces and D an open
subset in X. Let f, g ∶ D → Y be Fréchet differentiable with derivatives Df,Dg. Then f + g is
Fréchet differentiable at x ∈ D with derivative

D(f + g)(x)[h] = Df (x)[h] +Dg(x)[h],

for h ∈ X.

(ii) (Product rule) [Cartan, 1971, Page 34]: Let X be a normed vector space and Y a Banach algebra
and D an open subset in X. Let f, g ∶ D → Y be Fréchet differentiable with derivatves Df,Dg.
Then fg is Fréchet differentiable at x ∈ D with derivative

D(f ⋅ g)(x)[h] = Df (x)[h]g(x) + f (x)Dg(x)[h],

for h ∈ X.

(iii) (Chain rule) [Cartan, 1971, Theorem 2.2.1]: Let X,Y, Z be normed vector spaces and Df ⊂ X,Dg ⊂

Y open subsets. Let f ∶ Df → Dg, g ∶ Dg → Z be Fréchet differentiable with derivatives Df,Dg.
Then g ◦ f ∶ Df → Z is Fréchet differentiable at x ∈ Df with derivative

D(g ◦ f )(x)[h] = Dg(f (x))[Df (x)[h]],

for h ∈ X.

(iv) (Derivative of inverses) [Cartan, 1971, Theorem 2.4.4]: Let X,Y be two Banach spaces. Let f ∶
Isom(X,Y ) ⊂ L(X,Y ) → L(Y,X) ∶ x ↦ x

−1
. Then f is Fréchet differentiable at any x ∈ Isom(X,Y )

with derivative Df ∈ L(L(X,Y ),L(Y,X)) given by

Df (x)[h] = −x−1
◦ h ◦ x

−1
,

for h ∈ L(X,Y ).

Note that the third and fourth property can be combined to achieve Fréchet differentiability of reciprocals
of functions that stay away from 0. Some examples of commonly used functions and their derivatives can
be found in Corollary 2.4.
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Corollary 2.4. Consider f1,2,3 ∶ O → h
γ(S1) defined by

f1(ψ) = ψn,
f2(ψ) =

√
ψ,

f3(ψ) = ∂kθψ,

where n ∈ N and ∂
k
θ denotes k-th partial derivative of ψ for k = 1, 2. Then f1,2,3 are Fréchet differentiable

at ψ0 ∈ O with derivatives

Df1(ψ0)[h] = nψn−1
0 h,

Df2(ψ0)[h] =
1

2
ψ
−1/2
0 h,

Df3(ψ0)[h] = ∂kθh.
The proof to this corollary can be found in Appendix B.1. Next we will give the definition of a sectorial
operator.

Definition 2.5. [Lunardi, 1995, Definition 2.0.1] Let X be a complex Banach space and A ∶ D(A) ⊂ X →
X a linear operator. Then A is sectorial if there exist constants ω ∈ R, θ ∈ (π/2, π),M > 0 such that

(i) ρ(A) ⊃ Sθ,ω = {λ ∈ C ∶ λ ≠ ω, ∣arg(λ − ω)∣ < θ},

(ii) ∣∣R(λ,A)∣∣L(X) ≤
M

∣λ − ω∣ ∀λ ∈ Sθ,ω.
(2.9)

Now we will continue to proving that F satisfies the assumptions for Theorem 2.1. The first property we
will show is Fréchet differentiability.

2.3.2 Fréchet differentiability

In Lemma 2.6 we show that F is Fréchet differentiable.

Lemma 2.6. The function F (ψ) as given in (2.1) is Fréchet differentiable with respect to ψ, with Fréchet
derivative DF (ψ0)[h] at ψ0 in direction h given by

DF (ψ0)[h] = a0(ψ0)h + a1(ψ0)hθ + a2(ψ0)hθθ. (2.10)

where

a0(ψ0) =
3P
2π

(ψ2
0 + ψ

2
0,θ)

1/2
ψ0 − F (ψ0)(3ψ2

0 + 2ψ
2
0,θ − 2ψ0ψ0,θθ)

ψ3
0 + 2ψ0ψ

2
0,θ

− ψ2
0ψ0,θθ

,

a1(ψ0) =
3P
2π

(ψ2
0 + ψ

2
0,θ)

1/2
ψ0,θ − 4F (ψ0)ψ0,θψ0

ψ3
0 + 2ψ0ψ

2
0,θ

− ψ2
0ψ0,θθ

,

a2(ψ0) =
F (ψ0)ψ2

0

ψ3
0 + 2ψ0ψ

2
0,θ

− ψ2
0ψ0,θθ

.

(2.11)

Proof. Let ψ0 ∈ O and h ∈ D be fixed. Using the properties in Lemma 2.3, we can establish Fréchet
differentiability of F . We will accomplish this by first showing that both the denominator and numerator
are Fréchet differentiable, after which we will use a quotient rule to achieve differentiability of F .

First we establish differentiability of the denominator dF ∶ O → h
γ(S1). The denominator is given by

dF (ψ) = ψ3
+ 2ψψ

2
θ − ψ

2
ψθθ.
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By Corollary 2.4 we know that powers and partial derivatives of ψ are differentiable. With the sum and
product rule, we know that dF is Fréchet differentiable, with derivative

D(dF )(ψ0)[h] = 3ψ
2
0h + 2ψ

2
0,θh + 4ψ0,θψ0hθ − 2ψ0ψ0,θθh − ψ

2
0hθθ

= (3ψ2
0 + 2ψ

2
0,θ − 2ψ0ψ0,θθ)h + 4ψ0,θψ0hθ − ψ

2
0hθθ

For the numerator nF ∶ O → h
γ(S1), we have

nF (ψ) = P

2π
(ψ2

+ ψ
2
θ )

3/2
=
P

2π
(ψ2

+ ψ
2
θ )

√
ψ2 + ψ2

θ
.

We know that ψ
2 + ψ2

θ is Fréchet differentiable. Therefore, we can use the chain rule and product rule to
find that nF is Fréchet differentiable at ψ0 with derivative

D(nF )(ψ0)[h] =
3P

4π
(ψ2

0 + ψ
2
0,θ)

1/2(2ψ0,θhθ + 2ψ0h)

=
3P

2π
(ψ2

0 + ψ
2
0,θ)

1/2(ψ0h + ψ0,θhθ).

Next we want to combine these results to achieve differentiability of F . We note that there exists some
ν
∗
> 0 such that dF (ψ) ≥ ν∗ > 0 since ψ ∈ O. Therefore, we can apply the third and fourth property of

Lemma 2.3 to obtain that d
−1
F is differentiable at ψ0 with derivative

Dd
−1
F (ψ0)[h] = −dF (ψ0)−1

DdF (ψ0)[h]dF (ψ0)−1
= −dF (ψ0)−2

DdF (ψ0)[h].

Finally, we can use the product rule to find that F is Fréchet differentiable with derivative

DF (ψ0)[h] = D(nF /dF )(ψ0)[h]
= D(nF )(ψ0)[h]dF (ψ0)−1

−D(dF )(ψ0)[h]nF (ψ0)dF (ψ0)−2

= D(nF )(ψ0)[h]dF (ψ0)−1
−D(dF )(r)[h]F (ψ0)dF (ψ0)−1

= (D(nF )(ψ0)[h] −D(dF )(ψ0)[h]F (ψ0))dF (ψ0)−1

=
1

ψ3
0 + 2ψ0ψ

2
0,θ

− ψ2
0ψ0,θθ

(3P

2π
(ψ2

0 + ψ
2
0,θ)

1/2(ψ0h + ψ0,θhθ))

−
F (ψ0)

ψ3
0 + 2ψ0ψ

2
0,θ

− ψ2
0ψ0,θθ

((3ψ2
0 + 2ψ

2
0,θ − 2ψ0ψ0,θθ)h + 4ψ0,θψ0hθ − ψ

2
0hθθ)

=

3P
2π

(ψ2
0 + ψ

2
0,θ)

1/2
ψ0 − F (ψ0)(3ψ2

0 + 2ψ
2
0,θ − 2ψ0ψ0,θθ)

ψ3
0 + 2ψ0ψ

2
0,θ

− ψ2
0ψ0,θθ

h

+

3P
2π

(ψ2
0 + ψ

2
0,θ)

1/2
ψ0,θ − 4F (ψ0)ψ0,θψ0

ψ3
0 + 2ψ0ψ

2
0,θ

− ψ2
0ψ0,θθ

hθ

+
F (ψ0)ψ2

0

ψ3
0 + 2ψ0ψ

2
0,θ

− ψ2
0ψ0,θθ

hθθ

= a0(ψ0)h + a1(ψ0)hθ + a2(ψ0)hθθ.

Note that DF (ψ0) is a bounded linear operator, since ai(ψ0) ∈ hγ(S1) from Lemma B.2, Lemma B.3 and
definition of O.

Lemma 2.6 shows that the first condition for Theorem 2.1 is met. Before we continue to the other
conditions, we will show some properties of a0,1,2 in Lemma 2.7 which we will need later.
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Lemma 2.7. The following statements about a0, a1, a2 are true.

(i) There exists a ξ > 0 such that a2(ψ0) ≥ ξ > 0 for all ψ0 ∈ O;

(ii) The functions a0(ψ0), a1(ψ0), a2(ψ0) are locally Lipschitz continuous with respect to ψ0;

Proof. Positivity of a2

We can rewrite a2 so that

a2 =
F (ψ0)ψ2

0

ψ3
0 + 2ψ0ψ

2
0,θ

− ψ2
0ψ0,θθ

=

(ψ2
0 + ψ

2
0,θ)

3/2

H(ψ0)2
.

Since ψ0 is bounded in h
2+γ(S1) by R

∗
, we know that the curvature H(ψ) must be bounded in h

γ(S1) by
some λ > 0 independent of ψ. This bound implies that

a2 ≥

(ψ2
0 + ψ

2
0,θ)

3/2

λ2
≥ ψ

3
0λ

−2
.

Additionally, since ψ0 ≥ ν, we obtain a2 ≥ ν
3
λ
−2

> 0.

Local Lipschitz continuity of a0, a1, a2 with respect to ψ0

Let u ∈ O and ψ0, ψ1 in a ball B(u,R) with R = R(u) such that B(u,R) ⊂ O. We want to show that there
exists a constant Li such that

∣∣ai(ψ0) − ai(ψ1)∣∣γ ≤ Li∣∣ψ0 − ψ1∣∣2+γ .

Since ψ0,1, H(ψ0,1) > ν and ∣∣ψi∣∣2+γ < R∗
, we know by Lemma B.2 that there exists a CR∗,ν,λ such that

∣∣ai(ψ0) − ai(ψ1)∣∣γ =
»»»»»»»»»

»»»»»»»»»

nai(ψ0)
ψ0H(ψ0)

−
nai(ψ1)
ψ1H(ψ1)

»»»»»»»»»

»»»»»»»»»γ
≤ CR∗,ν,λ∣∣nai(ψ0) − nai(ψ1)∣∣γ ,

where nai denote the numerators of ai. Using the properties of Fréchet differentiation, we obtain that
each numerator nai is differentiable at ψ∗ ∈ O with derivatives

Dna1(ψ∗)[h] =
3P

2π
ψ∗(ψ2

∗ + ψ
2
∗,θ)

−1/2(ψ∗h + 2ψ∗,θhθ)) +
3P

2π
(ψ2

∗ + ψ
2
∗,θ)

1/2
h

− (a0(ψ∗)h + a1(ψ∗)hθ + a2(ψ∗)hθθ)(3ψ2
∗ + 2ψ

2
∗,θ − 2ψ∗ψ∗,θθ)

− F (ψ∗)(6ψ∗h + 4ψ∗,θhθ − 2ψ∗,θθh − 2ψ∗hθθ)
=∶ a00(ψ∗)h + a01(ψ∗)hθ + a02(ψ∗)hθθ,

Dna2(ψ∗)[h] =
3P

2π
ψ∗,θ(ψ2

∗ + ψ
2
∗,θ)

−1/2(ψ∗h + 2ψ∗,θhθ)) +
3P

2π
(ψ2

∗ + ψ
2
∗,θ)

1/2
hθ

− 4ψ∗,θψ∗(a0(ψ∗)h + a1(ψ∗)hθ + a2(ψ∗)hθθ)
− 4F (ψ∗)(ψ∗hθ + ψ∗,θh),
=∶ a10(ψ∗)h + a11(ψ∗)hθ + a12(ψ∗)hθθ

Dna3(ψ∗)[h] = 2ψ∗F (ψ∗)h + ψ2
∗(a0(ψ∗)h + a1(ψ∗)hθ + a2(ψ∗)hθθ)

=∶ a20(ψ∗)h + a21(ψ∗)hθ + a22(ψ∗)hθθ.

Note that each coefficient aij ∈ h
γ(S1). Additionally, the operator norm of Dnai(ψ∗) can be bounded

independently of ψ∗ since ∣∣ψ∗∣∣2+γ < R
∗
. Thus we see that all nai are locally Lipschitz continu-

ous [Cartan, 1971, Theorem 3.3.2]. Consequently, we have that ai are locally Lipschitz continuous.
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2.3.3 Sectoriality and equivalence of the graph norm

With Lemma 2.7 we will show that F satisfies the second condition in Lemma 2.10. Sectoriality will be
shown in several steps. We will use 2π-periodic continuations f of functions f that take arguments from
S

1
. These periodic continuations are defined such that f is 2π-periodic and for all [x] ∈ [0, 2π) we have

f ([x]) = f (x), where [x] is the representant of x ∈ S
1
.

First we will show in Lemma 2.8 that the h
γ(R) norm of continuations f are equal to the h

γ(S1) norm of
f . We will use this continuation to translate our problem to the setting of 2π-periodic functions in h

γ(R).
Then we will show sectoriality of the translated operator in h

γ(R) in Lemma 2.9. Finally we will show
sectoriality in the original space in Lemma 2.10.

Lemma 2.8. Let f be a function in C
γ(S1) and f be the 2π-periodic continuation. Then f ∈ C

γ(R) and

∣∣f ∣∣Cγ (R) = ∣∣f ∣∣Cγ (S1). (2.12)

Proof. Let f be a function in C
γ(S1) and f its 2π-periodic continuation. We note that by periodicity we

obtain
∣∣f ∣C(R) = sup

x∈R
∣f (x)∣ = sup

x∈[0,2π)
∣f (x)∣ = sup

y∈S1

∣f (y)∣ = ∣∣f ∣∣C(S1).

Next we will show that the Hölder semi-norm are equal. We know that for all x, y ∈ S
1
, we have that

dS1(x, y) ≤ ∣[x]− [y]∣. Now let x, y ∈ R and m,n ∈ Z such that x−2mπ, y−2nπ ∈ [0, 2π) are representants
of x̂, ŷ ∈ S

1
. Note that ∣x − y∣ ≥ dS1(x̂, ŷ). Then we know that

∣f (x) − f (y)∣
∣x − y∣γ =

∣f (x − 2mπ) − f (y − 2nπ)∣
∣x − y∣γ ≤

∣f (x̂) − f (ŷ)∣
dS1(x̂, ŷ)γ .

Thus we know that [f ]Cγ (R) ≤ [f ]Cγ (S1).

Next we let x, y ∈ S
1

with representants [x], [y] ∈ [0, 2π). If ∣[x] − [y]∣ ≤ π, we know that dS1(x, y) =
∣[x] − [y]∣ by the definition of the distance on S

1
. Thus we know that

∣f (x) − f (y)∣
dS1(x, y)γ =

∣f ([x]) − f ([y])∣
∣[x] − [y]∣γ

If ∣[x] − [y]∣ > π we know that
dS1(x, y) = ∣[x] − [y] ± 2π∣.

Using this result and the periodicity of f we obtain

∣f (x) − f (y)∣
dS1(x, y)γ =

∣f ([x] ± 2π) − f ([y])∣
∣([x] − [y] ± 2π)∣γ =

∣f (x) − f (y)∣
∣x − y∣γ ,

where x = [x] ± 2π, y = [y] ∈ R. Therefore, for every x, y ∈ S
1
, x ≠ y there is a pair x, y ∈ [−2π, 4π), x ≠ y

with
∣f (x) − f (y)∣
dS1(x, y)γ =

∣f (x) − f (y)∣
∣x − y∣γ .

We can use this result to obtain

[f ]Cγ (S1) = sup
x,y∈S1,x≠y

∣f (x) − f (y)∣
∣x − y∣γ

S1

≤ sup
x,y∈[−2π,4π),x≠y

∣f (x) − f (y)∣
∣x − y∣γ ≤ sup

x,y∈R,x≠y

∣f (x) − f (y)∣
∣x − y∣γ = [f ]Cγ (R).

Consequently, we know that [f ]Cγ (S1) ≤ [f ]Cγ (R). Thus we know that ∣∣f ∣∣Cγ (R) = ∣∣f ∣∣Cγ (S1), so f ∈

C
γ(R).

14



We note that this lemma also holds if we replace C
γ

with h
k+γ

. Next we define the periodic continua-

tion DF (ψ0) of DF (ψ0) as DF (ψ0)[h] = a2(ψ0)hθθ + a1(ψ0)hθ + a0(ψ0)h where ai(ψ0) are the 2π-periodic
continuations of ai(ψ0).

Lemma 2.9. Let DF be the Fréchet derivative of F as defined in (2.10). Then DF (ψ0) is sectorial in
h
γ(R) for all ψ0 ∈ O.

Proof. Fix ψ0 ∈ O. By definition of DF (ψ0), and Lemma 2.8, we can apply Theorem 3.1.14 [Lunardi, 1995]

which gives sectoriality of DF (ψ0) in h
γ(R).

Lemma 2.10. The Fréchet derivative DF (ψ0) is sectorial in h
γ(S1) for all ψ0 ∈ O.

Proof. Fix ψ0 ∈ O. First we will show that the resolvent sets of DF (ψ0) is contained in the resolvent set

of DF (ψ0). Let λ be in the resolvent set ρ(DF (ψ0)) and g ∈ h
2+γ(S1). We want to show that there exists

a u ∈ h
2+γ(S1) such that λu −DF (ψ0)[u] = g.

We know there exists a u ∈ h
2+γ(R) such that λu−DF (ψ0)[u] = g, where g is the periodic continuation of g.

Next we will show that u is 2π-periodic so that there exists a u ∈ h
2+γ(S1) which has periodic continuation

u. Since g is 2π-periodic, we have g(θ + 2π) = g(θ). By linearity of DF (ψ0), we know that λI −DF (ψ0) is
a linear operator, so that

λu(θ) −DF (ψ0)[u(θ)] = g(θ) = g(θ + 2π) = λu(θ + 2π) −DF (ψ0)[u(θ + 2π))]
⟹ (λI −DF (ψ0))[u(θ)] −DF (ψ0)[u(θ + 2π)] = 0

⟹ (λI −DF (ψ0))[u(θ) − u(θ + 2π)] = 0

⟹ u(θ) − u(θ + 2π) = 0,

which means that u is 2π-periodic. Thus there exists a u ∈ h
2+γ(S1) such that λu−DF (ψ0)[u] = g. There-

fore we know that λ ∈ ρ(DF (ψ0)), which implies that DF (ψ0)) ⊂ ρ(DF (ψ0)). Since DF (ψ0) is sectorial,
we know that there exists some sector Sθ∗,ω ⊂ ρ(DF ) ⊂ ρ(DF (ψ0)), which means that the first condition
of sectoriality is satisfied.

Next we investigate the resolvent estimate. Let λ ∈ Sθ∗,ω. Then by Lemma 2.8 we obtain that

∣∣(λ −DF (ψ0))−1∣∣L(hγ (S1)) = ∣∣ (λI −DF (ψ0))
−1

∣∣L(hγ (R)) ≤
M

λ − ω
,

for some M > 0. Thus we know that DF (ψ0) is sectorial in h
γ(S1).

Lemma 2.11. The graph norm of DF (ψ0) and the norm of D are equivalent for all ψ0 ∈ O.

Proof. Let ψ0 ∈ O. To show equivalence, we need to show that there exist C1, C2 > 0 such that

C1∣∣h∣∣2+γ ≤ ∣∣DF (ψ0)[h]∣∣γ + ∣∣h∣∣γ ≤ C2∣∣h∣∣2+γ ,

for all h ∈ D. Observe that the second inequality follows from boundedness of DF (ψ0).

For the first inequality, we will first write hθθ in terms of h, hθ and DF (ψ0)[h]:

hθθ =
1

a2(ψ0)
(DF (ψ0)[h] − a1(ψ0)hθ − a0(ψ0)h) (2.13)
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Next, we will show that ∣∣hθ∣∣γ ≤ c(∣∣h∣∣γ + ∣∣DF (ψ0)[h]∣∣γ) for some c > 0. The proof will use the fact that

∣∣u′∣∣∞ ≤ 2∣∣u∣∣1/2
∞ ∣∣u′′∣∣1/2

∞ , for all u ∈ C
2
[Matioc, 2017, Lemma 3.13]. Additionally, we will use Young’s

inequality, so that for all ε > 0

∣∣hθ∣∣∞ ≤ 2∣∣h∣∣1/2
∞ ∣∣hθθ∣∣1/2

∞

≤ 2( 1

2ε
∣∣h∣∣∞ +

1

2
ε∣∣hθθ∣∣∞) = 1

ε ∣∣h∣∣∞ + ε∣∣hθθ∣∣∞.

Combining this inequality and (2.13) yields

∣∣hθ∣∣∞ ≤
1
ε
∣∣h∣∣∞ + ε∣∣hθθ∣∣∞

≤
1
ε
∣∣h∣∣∞ + ε∣∣ 1

a2(ψ0) ∣∣∞∣∣DF (ψ0)[h]∣∣∞ + ε∣∣a1(ψ0)
a2(ψ0) ∣∣∞∣∣hθ∣∣∞ + ε∣∣a0(ψ0)

a2(ψ0) ∣∣∞∣∣h∣∣∞
⟹ (1 − ε∣∣a1(ψ0)

a2(ψ0) ∣∣∞)∣∣hθ∣∣∞ ≤ (ε + 1
ε
∣∣a0(ψ0)
a2(ψ0) ∣∣∞)∣∣h∣∣∞ + ε∣∣ 1

a2
∣∣∞∣∣DF (ψ0)[h]∣∣∞.

Now we choose ε > 0 such that ε∣∣a1(ψ0)
a2(ψ0) ∣∣∞ < 1. Consequently, we know (1 − ε∣∣a1(ψ0)

a2(ψ0) ∣∣∞) > 0 so that

∣∣hθ∣∣∞ ≤ (1 − ε∣∣a1(ψ0)
a2(ψ0) ∣∣∞)−1 ((ε + 1

ε
∣∣a0(ψ0)
a2(ψ0) ∣∣∞)∣∣h∣∣∞ + ε∣∣ 1

a2(ψ0) ∣∣∞∣∣DF (ψ0)[h]∣∣∞)
= c(∣∣h∣∣∞ + ∣∣DF (ψ0)[h]∣∣∞),

for some c = c(ε, ψ0) > 0.

Next we note that there exists a Cγ such that [hθ]γ ≤ Cγ ∣∣hθθ∣∣∞, so that

∣∣h∣∣2+γ = ∣∣h∣∣∞ + ∣∣hθ∣∣∞ + ∣∣hθθ∣∣γ
= ∣∣h∣∣∞ + ∣∣hθ∣∣∞ + ∣∣ 1

a2(ψ0) (DF (ψ0)[h] − a1(ψ0)hθ − a0(ψ0)h)∣∣γ
≤ ∣∣h∣∣γ + ∣∣hθ∣∣∞ + ∣∣ 1

a2(ψ0) ∣∣γ∣∣DF (ψ0)[h]∣∣γ + ∣∣a1(ψ0)
a2(ψ0) ∣∣γ∣∣hθ∣∣γ + ∣∣a0(ψ0)

a2(ψ0) ∣∣γ∣∣h∣∣γ
≤ ∣∣h∣∣γ + c(∣∣h∣∣∞ + ∣∣DF (ψ0)[h]∣∣∞) + ∣∣ 1

a2(ψ0) ∣∣γ∣∣DF (ψ0)[h]∣∣γ + ∣∣a1(ψ0)
a2(ψ0) ∣∣γ∣∣hθ∣∣γ + ∣∣a0(ψ0)

a2(ψ0) ∣∣γ ∣∣h∣∣γ
≤ c1(∣∣h∣∣γ + ∣∣DF (ψ0)[h]∣∣γ) + ∣∣a1(ψ0)

a2(ψ0) ∣∣γ[hθ]γ
≤ c1(∣∣h∣∣γ + ∣∣DF (ψ0)[h]∣∣γ) + Cγ∣∣a1(ψ0)

a2(ψ0) ∣∣γ∣∣hθθ∣∣∞
≤ c1(∣∣h∣∣γ + ∣∣DF (ψ0)[h]∣∣γ + ∣∣hθθ∣∣∞)
≤ c1 (∣∣h∣∣γ + ∣∣DF (ψ0)[h]∣∣γ + ∣∣ 1

a2(ψ0) ∣∣∞∣∣DF (ψ0)[h]∣∣∞ + ∣∣a1(ψ0)
a2(ψ0) ∣∣∞∣∣hθ∣∣∞ + ∣∣a0(ψ0)

a2(ψ0) ∣∣∞∣∣h∣∣∞)
≤ c1(∣∣h∣∣γ + ∣∣DF (ψ0)[h]∣∣γ),

where we note that the coefficient c1 > 0 may differ in each inequality. Therefore, we know that the graph
norm of DF (ψ0) and D are equivalent.

2.3.4 Local Lipschitz continuity

Finally we will show that F satisfies the third condition in Lemma 2.12.

Lemma 2.12. For all u ∈ O there are R = R(u), L = L(u) > 0 such that

∣∣DF (ψ1) −DF (ψ0)∣∣L(D,X) ≤ L∣∣ψ1 − ψ0∣∣2+γ

for all ψ0,1 ∈ B(u,R) ⊂ D.
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Proof. Fix u ∈ O. The condition we need to show is equivalent to showing

∣∣DF (ψ1)[h] −DF (ψ0)[h]∣∣γ ≤ L∣∣ψ1 − ψ0∣∣2+γ ∣∣h∣∣2+γ ,

for all h ∈ B(u,R). To prove this statement, we will use local Lipschitz continuity of a0, a1, a2.

∣∣DF (ψ1)[h] −DF (ψ0)[h]∣∣γ = ∣∣a0(ψ1)h + a1(ψ1)hθ + a2(ψ1)hθθ − a0(ψ0)h − a1(ψ0)hθ − a2(ψ0)hθθ∣∣γ
= ∣∣(a0(ψ1) − a0(ψ0))h + (a1(ψ1) − a1(ψ0))hθ + (a2(ψ1) − a2(ψ0))hθθ∣∣γ
≤ ∣∣(a0(ψ1) − a0(ψ0))h∣∣γ + ∣∣(a1(ψ1) − a1(ψ0))hθ∣∣γ + ∣∣(a2(ψ1) − a2(ψ0))hθθ∣∣γ
≤ ∣∣(a0(ψ1) − a0(ψ0))∣∣γ∣∣h∣∣∞ + ∣∣(a1(ψ1) − a1(ψ0))∣∣γ∣∣hθ∣∣∞ + ∣∣(a2(ψ1) − a2(ψ0))∣∣γ∣∣hθθ∣∣∞
≤ ∣∣(a0(ψ1) − a0(ψ0))∣∣γ∣∣h∣∣2+γ + ∣∣(a1(ψ1) − a1(ψ0))∣∣γ∣∣h∣∣2+γ + ∣∣(a2(ψ1) − a2(ψ0))∣∣γ ∣∣h∣∣2+γ
≤ L∣∣ψ1 − ψ0∣∣2+γ∣∣h∣∣2+γ ,

where L = max(L0, L1, L2). Therefore

∣∣DF (ψ1)[h] −DF (ψ0)[h]∣∣L(D,X) ≤ L∣∣ψ1 − ψ0∣∣2+γ ,

which was the inequality we needed.

We can combine Lemmas 2.6, 2.10, and 2.12 to obtain our main theorem for the ballistic model.

Theorem 2.13. Let ψ0 ∈ O and F defined by (2.1). Then there exist δ = δ(ψin), r = r(ψin) such that for
every t0 ∈ [0, r] and ψin ∈ O with ∣∣ψin − ψ0∣∣2+γ ≤ r there is a strict solution ψ ∈ C([0, δ];h2+γ(S1)) ∩
C

1([0, δ];hγ(S1)) to
ψt(t) = F (ψ(t)) t ∈ [0, δ],
ψ(0) = ψin.

In the next section, we will extend this result by comparing the general case to the simple, circular case.

2.4 Long time stability of circles

This section will consist of several parts. First we will introduce a new time-scale to which we will
translate the evolution equation. The advantage of the rescaling is that circular solutions are transformed
into constant solutions. We will then use the concept of linear stability to analyse the stability of these
constant solutions and translate the result back to the original setting.

2.4.1 Introduction of the new time-scale

First we note that for any ψ ∈ O and α, such that αψ ∈ O, we have that F (αψ) = F (ψ). With this
property in mind, we introduce the new variable ψ̃ =

ψ

ψc
, where ψc = ψin +

P
2π
t is the solution to the

constant growing circle. This variable transforms circular solutions ψc to constant solutions ψ̃c ≡ 1. Next
we will find the evolution equation for ψ̃. Straightforward calculations show that

∂tψ̃ = ∂t
ψ

ψc

= ψtψ
−1
c − ψψ

−2
c
P

2π

= F (ψ)ψ−1
c − ψ̃ψ

−1
c
P

2π

= F (ψ̃ψc)ψ−1
c − ψ̃ψ

−1
c
P

2π

= (F (ψ̃) − P

2π
ψ̃)ψ−1

c .
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This non-autonomous equation can be made autonomous with the proper time scaling. We introduce
t̃ = g(t), with g

′(t) = ψ−1
c . This definition implies that g(t) = 2π

P
ln(ψc). Substituting this transformation

yields

ψ
−1
c
∂ψ̃

∂t̃
=
∂ψ̃

∂t̃

∂t̃

∂t

=
∂ψ̃

∂t

= ψ
−1
c (F (ψ̃) − P

2π
ψ̃).

Thus we see that ψ̃(t̃) has an autonomous evolution equation, namely

∂ψ̃

∂t̃
= F (ψ̃) − P

2π
ψ̃ (2.14)

Finally, we will translate the variable ψ̃ to ρ = ψ̃ − 1 so that 0 corresponds to the trivial solutions. The
rescaled equation thus becomes

∂t̃ρ = F (ρ + 1) − P

2π
(ρ + 1) = F̃ (ρ). (2.15)

2.4.2 Stability of the rescaled problem

We want to analyse perturbations of the stationary solutions to (2.15). Observe that F̃ (ρ) is once again a
non-linear parabolic partial differential operator in ρ. However, we can investigate asymptotic behaviour
around the equilibrium ρ = 0 using linearised stability. The analysis of linear stability uses spectral
analysis of the linearised equation around the equilibrium. We will apply a theorem for more general
settings to the setting of partial differential equations. In particular, we will use Theorem 2.14.

Theorem 2.14. [Lunardi, 1995, Theorem 9.1.2] Let A ∶ D(A) → X be a linear operator satisfying

� A ∶ D(A) → X is sectorial and its graph norm is equivalent to X;

� sup{Reλ ∶ λ ∈ σ(A)} = −ω0 < 0.

Let O be a neighbourhood of the origin in D, and let G ∶ O → X be a C
1

function with locally Lipschitz
continuous derivative, satisfying

G(0) = 0, G
′(0) = 0.

Fix ω ∈ [0, ω0). Then there exist r > 0,M > 0 such that for each u0 ∈ B(0, r) ⊂ D we have τ (u0) = +∞ and

∣∣u(t)∣∣D + ∣∣u′(t)∣∣γ ≤Me
−ωt∣∣u0∣∣D, ∀t ≥ 0, (2.16)

where u satisfies
u
′(t) = Au(t) +G(u(t)), t ≥ 0,

u(0) = u0.
(2.17)

To apply the theorem, we will to define A,G to be

Aρ = DF̃ (0)[ρ], G(ρ) = F̃ (ρ) −Aρ. (2.18)

Using similar calculation as before, we know that

DF (1)[ρ] = P

2π
ρθθ

which implies that Aρ = P
2π

(ρθθ − ρ). Using these new operators, we will prove Theorem 2.15.
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Theorem 2.15. The operators A and G in (2.18) satisfy the assumptions of Theorem 2.14 with D(A) =
D,O and X as defined in (2.6).

Proof. The operator A is a linear uniformly elliptic partial differential operator with definition domain
h

2+γ(S1). Clearly, A is sectorial in h
γ(S1) and has graph norm equivalent to the γ-norm. Next we will

find the spectrum of A to check whether the second condition is met.

Spectrum of A We need to find all λ ∈ C such that the operator λI − A is not invertible. Therefore,
we will try to solve the equation λρ −Aρ = g for ρ ∈ D and arbitrary g ∈ X, and show that (λI −A)−1

is
a bounded operator for these λ. We note that h

γ(S1) ⊂ L2(S1), so we can write ρ and g in term of their
Fourier coefficients. By definition for A, we have that

λρ −Aρ = λρ −
P

2π
ρθθ +

P

2π
ρ = (λ + P

2π
)ρ − P

2π
ρθθ.

Assume that ρ, g have Fourier coefficients ρn and gn respectively. Then we have that

(λ + P

2π
)ρ − P

2π
ρθθ = ∑

n∈Z
(λ + P

2π
−
P

2π
(−n2))ρn exp(inθ) = ∑

n∈Z
gn exp(inθ).

Next we take the inner product with exp(imθ) for some m ∈ Z on both sides to obtain

(λ + P

2π
+
P

2π
m

2)ρm = gm⟹ ρm =
gm

λ + P
2π

(1 +m2)
,

which only holds if λ ≠ − P
2π

(1 + n2) for all n ∈ Z. Next we will to show that ρ as defined here lies in

h
2+γ(S1). Since (gn)n∈Z ∈ `

2
, we get that (ρn)n∈Z ∈ `

2
which implies that ρ is in L

2(S1). Additionally,
for any λ ≠ λm, we note that (−ρnn2)n∈Z ∈ `

2
. Thus we know that ρ is in W

2,2(S1). However, since
W

2,2(S1) ⊂ hγ(S1), we know that ρ ∈ h
γ(S1). Additionally, since g ∈ h

γ(S1), we can also obtain that

ρθθ =
2π

P
Aρ + ρ =

2π

P
(g + λρ) + ρ ∈ hγ ,

which implies that ρ ∈ h
2+γ

. Therefore the equation λρ−Aρ = g can be solved in h
2+γ

for any λ ∈ C unequal
to λn = − P

2π
(1 + n2) for any n ≥ 0. Finally, we will show that (λI − A)−1

is a bounded operator for any

λ ≠ λn. Let (λI −A)ρ = g for some g ∈ h
γ(S1), ρ ∈ h2+γ(S1). We can use Morrey’s inequality [Evans, 2010,

Paragraph 5.6.2] so that there exists some C > 0 such that

∣∣ρ∣∣γ ≤ C∣∣ρ∣∣W 1,2 .

By the calculations done earlier we can write ρ in terms of g using Fourier coefficients. Since (n2
ρn)n ∈ `2,

we know that there exists some Cλ > 0 such that

∣∣ρ∣∣γ ≤ C∣∣ρ∣∣W 1,2 ≤ Cλ∣∣g∣∣L2 ≤ Cλ∣∣g∣∣γ .

Additionally, recall from the proof of Lemma 2.10 that ∣∣ρθ∣∣∞ ≤ ∣∣ρθθ∣∣∞ + ∣∣ρ∣∣∞. Thus we know that

∣∣ρ∣∣2+γ = ∣∣ρ∣∣∞ + ∣∣ρθ∣∣∞ + ∣∣ρθθ∣∣γ
≤ 2∣∣ρ∣∣γ + 2∣∣ρθθ∣∣γ
≤ 2∣∣ρ∣∣γ + 2∣∣2π

P
(g + λρ) + ρ∣∣γ

≤ (3 + 4π

P
λ)∣∣ρ∣∣γ +

4π

P
∣∣g∣∣γ

≤ Cλ∣∣g∣∣γ ,
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for some constant Cλ > 0. Therefore we know that ∣∣(λI − A)−1
g∣∣2+γ ≤ ∣∣g∣∣γ and thus we know that

(λI − A)−1
is a bounded linear operator for λ ≠ λn. This implies that λ ∈ ρ(A) if λ ≠ λn. Thus A has

a discrete spectrum σ(A) ⊂ {λm}m≥0. Since λn ≤ − P
2π

, we also know that we can choose ω0 =
P
2π

so that
sup{Reλ ∶ λ ∈ σ(A)} ≤ −ω0.

Differentiability of G As discussed in Subsection 2.3, we know that G is differentiable with locally
Lipschitz continuous derivative. Note that the derivative G

′(0) denotes the Fréchet derivative at 0. Addi-
tionally, we know that

G(0) = F (1) − P

2π
−DF (1)[0] − 0 =

P

2π
−
P

2π
= 0,

G
′(0) = DF̃ (0) −A = DF̃ (0) −DF̃ (0) = 0,

which means that each condition of Theorem 2.14 is satisfied.

We will now use Theorem 2.15 to show linear stability of circles in the original problem statement in
Theorem 2.16.

Theorem 2.16. Let ψc be a circular solution to (2.2) and ψin close to ψc(0) ∈ O. Then ψ is a solution
to (2.2) with initial condition ψ(0) = ψin for all time t > 0 and ε ∈ (0, 1] there exists a M =M (ε) such that

∣∣ψ − ψc∣∣2+γ ≤M (ψc(0) +
P

2π
t)ε∣∣ψin − ψc(0)∣∣2+γ .

Proof. We will achieve the inequality by using linear stability of the rescaled problem from Theorem (2.15).
By this theorem we know that the evolution equation (2.15) can be solved for all time, and ∣∣ρ(t̃)∣∣2+γ ≤
Me

−ωt̃∣∣ρ0∣∣2+γ for all t ≥ 0. Note that the initial condition ρ0 can be obtained by transforming the initial
condition ψin.

ρ0 =
ψ(0)
ψc(0)

− 1.

Since we want a result for ψ, we need to substitute the definitions of t̃, ψ̃ and ρ backwards to obtain

∣∣ψ − ψc∣∣2+γ = ∣∣ψ̃ψc − ψc∣∣2+γ
= ∣∣ψ̃ − 1∣∣2+γψc
= ∣∣ρ∣∣2+γψc
≤Me

−ωt̃(t)∣∣ρ0∣∣2+γψc
=Me

−ω 2π
P

ln(ψc(t))ψc∣∣ψc(0)−1(ψ(0) − ψc(0))∣∣2+γ

=Mψc(0)−1
ψ

1− 2π
P
ω

c ∣∣ψ(0) − ψc(0)∣∣2+γ
=Mψc(0)−1(ψc(0) +

P

2π
t)1−

2π
P
ω∣∣ψ(0) − ψc(0)∣∣2+γ

Since ω ∈ [0, P
2π

), we know that for all ε ∈ (0, 1], we have an M =M (ε, ψc(0)) > 0 such that

∣∣ψ − ψc∣∣2+γ ≤M (ψc(0) +
P

2π
t)ε∣∣ψin − ψc(0)∣∣2+γ .

Next we will prove an avoidance principle for solutions to the ballistic model.
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2.5 Avoidance principle for solutions of the ballistic model

We have shown that perturbations of circles will grow similar to circles over long time. For circles we know
that two circles will never intersect, unless they started with an equal radius. The question for this final
part is thus whether perturbations of solutions also satisfy this principle. This principle is often referred
to as an avoidance principle. The avoidance principle is a well-known concept for mean curvature flow,
which states that two different solutions will not intersect if they did not already intersect at the starting
time. The proof for the principle is based on the maximum principle. We will use a similar method to
show the principle for the non-linear parabolic partial differential equation of the ballistic VSC model in
Theorem 2.17.

Theorem 2.17. Let ψ1(0), ψ2(0) be initial conditions for solutions ψ1(t), ψ2(t) of the equation ψt = F (ψ),
such that ψ1(0) < ψ2(0). Then also ψ1(t) < ψ2(t) for all t > 0, such that ψ1,2(t) exist.

The proof of this theorem will use a maximum principle, as given in Theorem 2.18.

Theorem 2.18. [Protter and Weinberger, 1984, Chapter 3, Theorem 2] Let E be a domain and suppose
that in Et1 = {(x, t) ∈ E ∶ t ≤ t1} the inequality

L[u] ≡ a∂
2
u

∂x2
+ b

∂u

∂x
−
∂u

∂t
≥ 0

holds, that a and b are bounded functions of x and t, and that L is uniformly parabolic in Et1, i.e. there
exists a λ > 0 such that a ≥ ν. If u ≤M in Et1 and u(x1, t1) =M , then u =M at every point (x, t) in Et1,
which can be connected with (x1, t1) by a horizontal and a vertical line segment, both of which lie in Et1.

Proof of Theorem 2.18. We will prove by contradiction. Assume there is a minimal time t̃ such that there
exists a θ̃ with ψ1(t̃, θ̃) = ψ2(t̃, θ̃). Let w = ψ2 − ψ1. Then

∂w

∂t
=
∂ψ2

∂t
−
∂ψ1

∂t
= F (ψ2) − F (ψ1)

= ∫
1

0
DF (sψ2 + (1 − s)ψ1)[ψ2 − ψ1]ds

= ∫
1

0
DF (sψ2 + (1 − s)ψ1)ds[ψ2 − ψ1]

= ã2∂θθw + ã1∂θw + ã0w,

where ãi = ∫1
0 ai(sψ2 + (1− s)ψ1)ds. As a2 > 0, we know that ã2 > 0, and thus, w satisfies a linear parabolic

equation. To apply Theorem 2.18, we will first rewrite the equation.

Let K > 0 be such that ã0+K ≥ 0 and v ∶= −eKtw ≤ 0. Conversely, we obtain that w = −e−Ktv. Therefore,
we obtain

wt = ∂t(−e−Ktv)
= −e

−Kt
vt +Ke

−Kt
v

= e
−Kt(−vt +Kv)

The parabolic equation for w can be rewritten to

wt = ã2wθθ + ã1wθ + ã0w

= ã2∂θθ(−e−Ktv) + ã1∂θ(−e−Ktv) + ã0(−e−Ktv)
= −e

−Kt (ã2vθθ + ã1vθ + ã0v) .
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Combining these two results yields

−vt +Kv = ã2vθθ + ã1vθ + ã0v.

Next we reorder the terms so that

ã2vθθ + ã1vθ − vt = −(ã0 +K)v.

Note that v ≤ 0, ã0 +K ≥ 0. Therefore, if wt = ã2wθθ + ã1wθ + ã0w then

L[v] ∶= ã2vθθ + ã1vθ − vt ≥ 0.

From Lemma 2.7 we know that a2 ≥ ν and a1,2 are bounded. Therefore we obtain that the ã1,2 must

have the same properties. Since v(θ̃, t̃) = 0, we can apply Theorem 2.18 with M = 0 to obtain that v ≡ 0.
However, then w ≡ 0 must hold, which contradicts the assumption that t̃ is the first time where w = 0.
Thus, there is no time t and angle θ, such that ψ1(t, θ) = ψ2(t, θ), which implies that ψ2(θ, t) > ψ1(θ, t) for
all θ, t.
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3 Diffusive VSC problem

The second model we analyse is the diffusive VSC model. We first define a diffeomorphism between the
unit ball and the domain in Section 3.1. This diffeomorphism will be used to transform the diffusion
equation for the concentration to one on the unit ball. Using this transformation, we will show local
existence and uniqueness to solutions of the evolution equation in Section 3.2. Similar to the previous
chapter, we will show this with Theorem 2.1. Finally, we will use linear stability to prove stability of
circular solutions in Section 3.3.

For the diffusive model, we will also assume that Ωψ is a bounded, non-empty and strictly convex set.
Therefore, ψ should satisfy

� There exists a ν > 0 such that ν < ψ(θ), H(ψ(θ)) for all θ ∈ S
1
.

� ψ is twice continuously differentiable on S
1
.

However, we will later see that ψ has an extra condition when we transform the concentration equa-
tion (1.11).

3.1 Deriving the evolution equation

In this section we will derive the evolution equation for the diffusive model. We will first introduce a
diffeomorphism between the unit ball Ω1 and the domain Ωψ. This diffeomorphism allows us to rewrite
Equation (1.11) to a problem on the unit ball. The rewritten problem will then be used to derive the
evolution equation.

3.1.1 Introducing the diffeomorphism

We define the function z = z(ψ) ∶ Ω1 → Ωψ, by splitting Ω1 in two subdomains Ωa and Ωd. These
subdomains are given by

Ωd = {(x, y) ∣ x2
+ y

2
<

1

9
},

Ωa = {(r cos θ, r sin θ) ∣ (r, θ) ∈ (1
4
, 1) × S1},

(3.1)

Note that we choose two different coordinate systems for the subdomains. This choice will help to show
that z(ψ) will be a global diffeomorphism on Ω1. For the definition of z(ψ) we suppress the time-dependence
of ψ. Now we define z(ψ) as

z(ψ) = {
z(ψ;x, y) = (x, y) for (x, y) ∈ Ωd

z(ψ; r cos θ, r sin θ) = g(r, θ)(cos θ, sin θ), for (r cos θ, r sin θ) ∈ Ωa.
, (3.2)

where we choose χ a smooth, increasing function from (1
4
, 1) to [0, 1] and g(r, θ) = r(1 + χ(r)(ψ(θ) − 1)). In

addition, we require that χ(r) ≡ 0 for r ∈ (1
4
, 1

3
) and χ(r) ≡ 1 for r ∈ (1

2
, 1). Furthermore, we introduce

K > 0 such that χ(r)+rχ′(r) ≤ K for all r ∈ (1
4
, 1). Note that this constant always exists, since χ is smooth

on a bounded interval. We can find a lower bound on K using the previously mentioned assumptions for
χ. We know that χ(r) ≥ 0, and there must exist a r

∗
∈ (1

3
, 1

2
) such that χ

′(r∗) = 6 by the intermediate

value theorem. Additionally, we know that χ(r) + rχ′(r) will take its largest value for r ∈ (1
3
, 1

2
). We thus

know that K ≥ 0 + 1
3
⋅ 6 = 2. This implies that ψ ≥

1
2
+ α for some α > 0.

Since z(ψ) is defined on two subdomains that overlap, we need to verify that it is well-defined on the
intersection. On Ωd, we know that z(ψ;x, y) = (x, y) which is the identity map in cartesian coordinates.
On Ωa ∩ Ωd, we note that the corresponding radius r must be between 1

4
and 1

3
. However, then we see

23



that χ(r) ≡ 0, so that z(ψ; r cos θ, r sin θ) = (r cos θ, r sin θ), which is the identity map in polar coordinates.
Thus we see that on the overlap Ωd∩Ωa, the two definitions for z(ψ) both correspond to the identity map,
so z(ψ) is well-defined. Additionally, we note that z(ψ;x) = 0 implies that x = 0 ∈ Ωd. A visualisation of
how z(ψ) transforms Ω1 is depicted in Figure 5.

Figure 5: Demonstration of how Ω1 is transformed under z(ψ). The subdomains Ωd,Ωa, and their im-
ages are visualised in blue and orange respectively. Note that the variation of ψ has been embellished to
emphasise its perturbative behaviour.

We will show that z as given in (3.2) is a global diffeomorphism from Ω1 to Ωψ in Lemma 3.1. The proof

needs an additional assumption on ψ. In particular we assume that ψ ≥ 1 − 1
K
+ α > 0, for some α > 0.

Lemma 3.1. Let ψ satisfy the modelling assumptions and ψ ≥ 1 − 1
K
+ α > 0. Let z(ψ) be given by (3.2).

Then z(ψ) is a global diffeomorphism from Ω1 to Ωψ.

Proof. We need to show that z(ψ) is a differentiable bijective map from Ω1 to Ωψ and its inverse z(ψ)−1

is differentiable too. We note that the second requirement follows from the inverse function theorem if
we can show that the determinant of the Jacobian of z(ψ) stays away from zero. First we will show that
z(ψ) is differentiable and the Jacobian has a determinant that stays away from zero. This property would
imply that z(ψ) is a local diffeomorphism from Ω1 to Ωψ.

We note that z(ψ) equals the identity map in Ωd, which is differentiable and the Jacobian has determinant
equal to 1. On Ωa\Ωd, we can calculate the partial derivatives of z(ψ) = (z1(ψ), z2(ψ)) with respect to r
and θ. These partial derivatives use the derivatives of g(r, θ) which are equal to

∂g

∂r
= gr(r, θ) = 1 + χ(r)(ψ(θ) − 1) + rχ′(r)(ψ(θ) − 1),

∂g

∂θ
= gθ(r, θ) = rχ(r)ψθ(θ).

Therefore the partial derivatives of z(ψ) are given by

∂z1(ψ)
∂r

= cos(θ)gr(r, θ),
∂z2(ψ)
∂r

= sin(θ)gr(r, θ),
∂z1(ψ)
∂θ

= − sin(θ)g(r, θ) + cos(θ)gθ(r, θ),
∂z2(ψ)
∂θ

= cos(θ)g(r, θ) + sin(θ)gθ(r, θ).
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The corresponding determinant of the Jacobian is given by

det(J ) = ∂(z1(ψ))
∂r

∂z2(ψ)
∂θ

−
∂z2(ψ)
∂r

∂z1(ψ)
∂θ

= cos(θ)2gr(r, θ)g(r, θ) + cos(θ) sin(θ)gr(r, θ)gθ(r, θ) + sin(θ)2gr(r, θ)g(r, θ) − cos(θ) sin(θ)gr(r, θ)gθ(r, θ)
= gr(r, θ)g(r, θ).

We note that g(r, θ) ≥ rmin(1, ψ(θ)) ≥ 1
4

min(1, 1 − 1
K
+ α) > 0. Furthermore, since χ(r) + rχ′(r) ∈ [0,K],

we know that

gr(r, θ) = 1 + (χ(r) + rχ′(r))(ψ(θ) − 1) ≥ 1 +min(0,K(− 1
K
+ α)) = min(1, αK) > 0.

Therefore, we have that

det(J ) ≥ 1

4
min(1, αK) min(1, ψ(θ))

≥
1

4
min(1, αK,ψ(θ), αKψ(θ))

≥
1

4
min(1, αK, 1 − 1

K
+ α, α(K − 1 + αK)) > 0.

Next we will show that z(ψ) is a bijective map from Ω1 to Ωψ. By construction of z(ψ) we already know
that it is surjective. Thus we will only have to show that it is injective. We will show this in two steps.
First we will show that z(ψ) is angle preserving. Then we will show that it is radially monotonically
increasing.

We know that z(ψ) is the identity map on Ωd, which is clearly radially monotonically increasing and
preserves angles. For Ωa, we will prove that θ1 = θ2 if z(ψ; r1 cos θ1, r1 sin θ1) = z(ψ; r2 cos θ2, r2 sin θ2). Let
x1, x2 ∈ Ωa with xi = (ri cos θi, ri sin θi) such that z(ψ;x1) = z(ψ;x2). Then we know that

z1(ψ; r1, θ1)z2(ψ; r2, θ2) − z1(ψ; r2, θ2)z2(ψ; r1, θ1) = 0.

Substituting the expressions for z1, z2, we obtain

g(r1, θ1)g(r2, θ2)(cos(θ1) sin(θ2) − cos(θ2) sin(θ1)) = 0.

We know that g(r, θ) > 0, so we get

0 = cos(θ1) sin(θ2) − cos(θ2) sin(θ1) = sin(θ2 − θ1).

This implies that θ2 = θ1 or θ2 = θ1+π. We will show that the case θ2 = θ1+π does not yield a valid solution.

Assume that θ2 = θ1 + π. We know that

g(r1, θ1) cos(θ1) = g(r2, θ2) cos(θ2)

Since g(r, θ) > 0, we see that the signs of cos(θ1) and cos(θ2) must match. Similarly, we can obtain that
sin(θ1) and sin(θ2) must have matching signs. However, cos θ and sin θ are never simultaneously equal to
zero, thus we have that θ1 = θ2. Therefore, we know that z(ψ) is angle preserving on Ω1. Additionally,
we know that gr(r, θ) > 0 for any θ ∈ S

1
, which implies that z(ψ) is monotonically increasing in r. Thus

we know that z(ψ) is injective. Therefore, we obtain that z(ψ) is a diffeomorphism from Ω1 to Ωψ.

Next we will use z(ψ) to transform the diffusion equation on Ωψ to one on Ω1.
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3.1.2 Transformation of the concentration equation

Recall that the concentration equation is given by (1.11). We split u into u = −w − φ, where

∆φ = Pδ in Ωψ,

∆w = 0 in Ωψ,

w = −φ on ∂Ωψ.

(3.3)

Note that the corresponding flux can thus be split to

ΦD = −
∂u

∂n

»»»»»»»∂Ωψ

=
∂φ

∂n

»»»»»»»∂Ωψ

+
∂w

∂n

»»»»»»»∂Ωψ

.

We note that φ is a scaled version of the fundamental equation to the Laplace equation. Therefore φ is
given by

φ(r) = P

2π
ln(r). (3.4)

We can calculate the gradient of φ to be

∇φ = (cos(θ)φr −
1
r sin(θ)φθ, sin(θ)φr +

1
r cos(θ)φθ)

= (cos(θ) P
2π

1
r , sin(θ) P

2π

1
r )

=
P

2π

(cos θ, sin θ)
r .

Observe that we can write

∂φ

∂n

»»»»»»»∂Ωψ

=
P

2π

(cos θ, sin θ)
r

»»»»»»»»r=ψ
⋅ n(ψ) = ΦB(ψ) ⋅ n(ψ).

We introduce c ∶ Ω1 → R such that w is the push-forward of c. Then c satisfies

∆z(ψ)∗c = 0 in Ωψ,

z(ψ)∗c = −φ on ∂Ωψ.
(3.5)

Using the pull-back z(ψ)∗ on both equations, we thus know that c satisfies

L(ψ)[c] = 0 in Ω1,

c = z(ψ)∗(φ) = −φ ◦ z(ψ) = − P
2π

ln(ψ) on ∂Ω1,
(3.6)

where L(ψ) ∶= z(ψ)∗ ◦ ∆ ◦ z(ψ)∗ is a second order differential operator. In geometric terms, L(ψ) is given
by the Laplace-Beltrami operator with respect to the pulled back canonical metric z(ψ)∗can. Therefore,
we can write L(ψ) using the inverse of the Jacobian of z:

L(ψ) = J−1
z(ψ),ij∂i(J

−1
z(ψ),kj∂k).

The inverse Jacobian J
−1
z is given by

J
−1
z(ψ)(r, θ) = (

∂z1(ψ)
∂r

∂z1(ψ)
∂θ

∂z2(ψ)
∂r

∂z2(ψ)
∂θ

)
−1

=
1

det(J )(r, θ) (
∂z2(ψ)
∂θ

−
∂z1(ψ)
∂θ

−
∂z2(ψ)
∂r

∂z1(ψ)
∂r

) , for (r cos θ, r sin θ) ∈ Ωa,

det(J )(r, θ) = r(1 + χ(r)(ψ(θ) − 1)) (1 + (χ(r) + rχ′(r))(ψ(θ) − 1)) , for (r cos θ, r sin θ) ∈ Ωa,

J
−1
z(ψ)(x, y) = (1 0

0 1
) for (x, y) ∈ Ωd.
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First we observe that det(J ) stays away from zero, as shown in Lemma 3.1. Secondly we note that L(ψ)
is given by the Laplacian when r ∈ (1

4
, 1

3
), thus we see that the operator L(ψ) is well-defined on Ω1.

Furthermore, we can write the operator L(ψ) as

L(ψ) =∑
i,j

aij∂ij +∑
j

bj∂j ,

where aij = ∑k J−1
z(ψ),ikJ

−1
z(ψ),jk and bj = ∑i,k J−1

z(ψ),ik∂iJ
−1
z(ψ),jk. We note that the matrix (aij)ij = J−Tz(ψ)J

−1
z(ψ) is

symmetric and positive definite as J
−1
z(ψ) is invertible. Therefore there exists a λ > 0 such that

aijξiξj ≥ λ∣ξ∣2

for all ξ ∈ R2
; we have that L(ψ) is a uniformly elliptic operator. Additionally, we can combine L(ψ) and

the trace operator Tr in A(ψ) = (L(ψ), T r) so that (3.6) becomes

A(ψ)c = (0,− P
2π

lnψ).

For now, we derive the expression for the evolution equation. On the later chosen domains, we will be
able to prove that A(ψ) is invertible. With this knowledge, we will be able to write c as

c = c(ψ) = A(ψ)−1(0,− P
2π

lnψ).

We use this expression to obtain the evolution equation for ψ.

3.1.3 The evolution equation

The expression for c can be substituted in ∂w
∂n

at ∂Ωψ:

∂w

∂n

»»»»»»»∂Ωψ

= ∇w∣∂Ωψ
⋅ n(ψ)

= ∇(z∗c)∣∂Ωψ
⋅ n(ψ)

= z
∗
∇(z∗c)∣∂Ω1

⋅ n(ψ)

= (z∗ ◦ ∇ ◦ z∗)A(ψ)−1(0,− P
2π

lnψ)
»»»»»»»S1

⋅ n(ψ).

Using similar reasoning as above, we can express z
∗ ◦ ∇ ◦ z∗f ∣S1 in terms of the Jacobian of z:

z
∗
◦ ∇ ◦ z∗f ∣S1 = J

−T
z (ψ)∇af,

where ∇a is the concatenation of the trace operator to S
1

and the vector of partial derivatives (∂a, ∂b)
with respect to coordinates va, vb in Ω1. The derivation of this equality can be found in Appendix C.1.
Thus, we obtain the following expression for the diffusive flux:

ΦD = −J
−T
z (ψ)∇aA(ψ)−1(0,− P

2π
lnψ) ⋅ n(ψ) + ΦB(ψ)

Substituting the diffusive flux in (1.6) we obtain

ψt
ψ

√
ψ2 + ψ2

θ

=

J
−T
z (ψ)∇aA(ψ)−1(0,− P

2π
lnψ) ⋅ n(ψ) + ΦB(ψ)

H(ψ) .
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To ease notation, we define n0 = n(1) = (cos θ, sin θ). This allows us to rewrite the equation above to

ψt(n0 ⋅ n(ψ)) =
J
−T
z (ψ)∇aA(ψ)−1(0,− P

2π
lnψ) ⋅ n(ψ) + ΦB(ψ)

H(ψ) ,

which yields the evolution equation

ψt = F (ψ) ∶=
J
−T
z (ψ)∇aA(ψ)−1(0,− P

2π
lnψ) ⋅ n(ψ) + ΦB(ψ)

H(ψ)(n0 ⋅ n(ψ)) . (3.7)

Note that we can write F (ψ) as

F (ψ) =
J
−T
z (ψ)∇aA(ψ)−1(0,− P

2π
lnψ) ⋅ n(ψ)

H(ψ)(n0 ⋅ n(ψ)) +
ΦB(ψ)

H(ψ)(n0 ⋅ n(ψ))

=

J
−T
z (ψ)∇aA(ψ)−1(0,− P

2π
lnψ) ⋅ n(ψ)

H(ψ)(n0 ⋅ n(ψ)) + FB(ψ)

=∶ FD(ψ) + FB(ψ),
where FB(ψ) is the right hand side function F of the ballistic model given by (2.1). The full problem is
given by

ψt(t, θ) = F (ψ(t, θ)) (t, θ) ∈ (0,∞) × S1
,

ψ(0, θ) = ψin(θ) θ ∈ S
1
,

(3.8)

with F defined as in (3.7). Similar to the ballistic model, we see that F is a fully non-linear. Additionally,

we note that FD(ψ) = 0 if ψ(θ) ≡ ψ, which implies that the evolution of circular domains in the diffusive
model is identical to the ballistic model. Contrasting to the ballistic model, the problem has become non-
local due to the diffusive flux, and can thus no longer be represented with a partial differential equation.
However, we will still be able to show that F satisfies the conditions for Theorem 2.1.

3.2 Local existence and uniqueness of solutions

In this section, we will show that we have local existence and uniqueness of solutions to (2.2). We choose
X,D and O similar to the ballistic model, namely

X = h
γ(S1),

D = h
2+γ(S1),

O = {ψ ∈ h
2+γ(S1) ∣ ψ > 1 −

1

K
+ α,H(ψ) > ν, ∣∣ψ∣∣2+γ < R∗},

(3.9)

for some fixed γ ∈ (0, 1), α, ν > 0. Note that the only difference with the ballistic model, is the additional
assumption on the lower bound of ψ. Before we show that F satisfies the needed conditions, we will first
show some auxiliary results.

We will show that c(ψ) satisfies an a priori estimate in Lemma 3.2. We will use this lemma in Theorem 3.3
to show that for any ψ ∈ O, A(ψ) is an isomorphism from C

2+γ(Ω1) to C
γ(Ω1)×C2+γ(S1). Note that these

results do not hold if we had chosen D = C
2(S1) and X = C(S1), which explains why we choose Hölder

spaces for D and X. This theorem implies that A(ψ) is invertible, so that the expression in (3.7) makes
sense.

Lemma 3.2. Let c ∈ C
2+γ(Ω1), ψ ∈ O. Then there exists a C > 0 such that

∣∣c∣∣2+γ ≤ C(∣∣L(ψ)[c]∣∣γ + ∣∣c∣S1 ∣∣2+γ). (3.10)
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Proof. To prove this statement, we will split the solution c into ca, cd defined by

cd = ζc,

ca = (1 − ζ)c, (3.11)

where ζ is a smooth, radially decreasing function on Ω1 such that ζ ≡ 1 on Ωd\Ωa, ζ ≡ 0 on Ωa\Ωd and

Ωd\Ωa ⊂⊂ {ζ ≡ 1} ⊂ supp(ζ) ⊂⊂ Ωd.

The behaviour of ζ has been visualised in Figure 6. Recall that L(ψ) is uniformly elliptic on both Ωa

0.2

0.4

0.6

0.8

1.0

Figure 6: Visualisation of the behaviour of ζ in Ω1. The lines at the bottom represent Ωd and Ωa in red
and green respectively.

and Ωd. Additionally we obtain that its coefficients are in C
γ(S1) since ψ ∈ O. This result follows from

the lower bound on the determinant of the Jacobian of z(ψ) we had obtained earlier. Therefore, we have
elliptic regularity on Ωa,d [Gilbarg and Trudinger, 1977, Theorem 6.6]. To make the notation easier, we

introduce ∣∣ ⋅ ∣∣a,d as a norm on Ωa,d and ∣∣ ⋅ ∣∣ as a norm on Ω1 or S
1
. Thus there exist Ca,d > 0 such that

∣∣ca,d∣∣a,d,2+γ ≤ Ca,d(∣∣L(ψ)ca,d∣∣a,d,γ + ∣∣ca,d∣∣a,d,∞ + ∣∣ ca,d∣∂Ωa,d
∣∣a,d,2+γ), (3.12)

where ∣∣ ⋅ ∣∣a,d denotes a norm in Ωa,d. The boundary terms in (3.12) can also be expressed in terms of c:

∣∣ cd∣∂Ωd
∣∣d,2+γ = 0,

∣∣ ca∣∂Ωa
∣∣a,2+γ = ∣∣ c∣S1 ∣∣2+γ

Next we observe that we can express L(ψ)[cd] in terms of L(ψ)[c]:

L(ψ)[ζc] =∑
i,j

aij∂ij(ζc) +∑
j

bj∂j(ζc)

=∑
i,j

aij(∂ijcζ + 2∂iζ∂jc + ∂ijζc) +∑
j

bj(∂jcζ + ∂jζc)+

= ζ
⎛
⎜
⎝
∑
i,j

aij∂ijc +∑
j

bj∂jc
⎞
⎟
⎠
+∑
i,j

aij(2∂iζ∂jc + ∂ijζc) + c∑
j

bj∂jζ

= ζL(ψ)[c] +∑
i,j

aij∂iζ∂jc + (∑
i,j

aij∂ijζ +∑
j

bj∂jζ)c.

Thus we can write

L(ψ)[cd] = ζL(ψ)[c] +∑
j

bd;j∂jc + edc,

L(ψ)[ca] = (1 − ζ)L(ψ)[c] +∑
j

ba;j∂jc + eac,

(3.13)

(3.14)
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where ba,d;j and ea,d contain derivatives of ζ, and lie in C
γ(Ω1) Thus, we can estimate ∣∣ca,d∣∣a,d,∞ us-

ing [Gilbarg and Trudinger, 1977, Theorem 3.7] by

∣∣ca,d∣∣a,d,∞ = sup
Ωa,d

∣ca,d∣ ≤ sup
∂Ωa,d

∣ca,d∣ + C̃a,d sup
Ωa,d

∣L(ψ)ca,d∣, (3.15)

for some C̃a,d > 0. We will use Lemma C.2 which is an interpolation property of Hölder spaces. Thus for
any ε1 > 0 we know that

∣∣cd∣∣d,2+γ ≤ Cd((1 + C̃d)∣∣L(ψ)[cd]∣∣d,γ + 2∣∣ cd∣∂Ωd
∣∣d,2+γ)

≤ Cd(∣∣ζL(ψ)[c]∣∣d,γ + ∣∣bd;i∂ic∣∣d,γ + ∣∣edc∣∣d,γ + 0)
≤ Cd(∣∣L(ψ)[c]∣∣γ + ∣∣∂ic∣∣d,γ + ∣∣c∣∣d,γ)
Lemma C.2

≤ Cd(∣∣L(ψ)[c]∣∣γ + ε1∣∣∂iic∣∣d,γ + Cε1 ∣∣c∣∣d,∞)
≤ Cd(∣∣L(ψ)[c]∣∣γ + ε1∣∣c∣∣2+γ + Cε1 ∣∣c∣∣∞)
(3.15)
≤ Cd(∣∣L(ψ)[c]∣∣γ + ε1∣∣c∣∣2+γ + Cε1(∣∣ c∣S1 ∣∣∞ + ∣∣L(ψ)c∣∣∞))

≤ Cε1(∣∣L(ψ)[c]∣∣γ + ∣∣ c∣S1 ∣∣2+γ) + Cdε1∣∣c∣∣2+γ),

for some C1 = C1(ε1) > 0 and a different Cd > 0 from in (3.12). Furthermore, we note that c satisfies (3.15)
on Ω1, as L(ψ) is elliptic on Ω1. For ca we can similarly obtain a C2(ε2), Ca > 0 for any fixed ε2 > 0 such
that

∣∣ca∣∣a,2+γ ≤ C2(∣∣L(ψ)[c]∣∣γ + ∣∣ c∣S1 ∣∣2+γ) + Caε2∣∣c∣∣2+γ)
Combining the inequalities for ca and cd, we obtain

∣∣c∣∣2+γ = ∣∣(1 − ζ)c + ζc∣∣2+γ
= ∣∣ca + cd∣∣C2+γ (Ω1)
≤ ∣∣ca∣∣a,2+γ + ∣∣cd∣∣d,2+γ
≤ (C1 + C2)(∣∣L(ψ)[c]∣∣γ + ∣∣ c∣S1 ∣∣2+γ) + (Cdε1 + Caε2)∣∣c∣∣2+γ).

We choose ε1,2 =
1

4Cd,a
> 0 respectively, so that

∣∣c∣∣2+γ ≤ (C1 + C2)(∣∣L(ψ)[c]∣∣γ + ∣∣ c∣S1 ∣∣2+γ) +
1

2
∣∣c∣∣2+γ .

Now we set C = 2(C1 + C2) to obtain

∣∣c∣∣2+γ ≤ C(∣∣L(ψ)[c]∣∣γ + ∣∣ c∣S1 ∣∣2+γ).

Theorem 3.3. Let ψ ∈ O. Then the function A(ψ) ∶ C2+γ(Ω1) → C
γ(Ω1) × C2+γ(S1) is an isomorphism.

Proof. We can use Lemma 3.2 in combination with [Amann, 1995, Proposition 1.1.1] on A where we

note that A depends continuously on ψ, so that A ∈ C(O,L(C2+γ(Ω1), Cγ(Ω1) × C2+γ(S1))). From the
proposition, we know that A(ψ) is an isomorphism for all ψ ∈ O if there exists a ψ

∗
∈ O such that A(ψ∗)

is an isomorphism. We choose ψ
∗
≡ 1 ∈ O. For this ψ

∗
, we note that A(ψ∗) = (∆, T r) which is an

isomorphism on the correct space. Therefore, we know that A(ψ) must be an isomorphism as well for any
ψ ∈ O.

With the preliminary proofs in place, we will now verify that F satisfies the conditions for Theorem 2.1.
Similar to the ballistic model, we will first show Fréchet differentiability.
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3.2.1 Fréchet differentiability

We will prove that F is Fréchet differentiable at any ψ0 ∈ O in Lemma 3.4.

Lemma 3.4. Let ψ0 ∈ O. Then F as defined in (3.7) is Fréchet differentiable at ψ0, and DF (ψ0) can be
written as A +B where A,B are defined by

A[h] = a(ψ0)hθθ,

B[h] = ∇aDc(ψ0)[h]TJ−1
z (ψ0)n(ψ0)

H(ψ0)n0 ⋅ n(ψ0)

−
∇ac(ψ0)TJ−1

z (ψ0)DJz(ψ0)[h]J−1
z (ψ0)n(ψ0)

H(ψ0)n0 ⋅ n(ψ0)

+ (∇ac(ψ0)TJ−1
z (ψ0)

H(ψ0)n0 ⋅ n(ψ0)
−

FD(ψ0)
n0 ⋅ n(ψ0)

)Dn(ψ0)[h]

+ a1hθ + a0h,

(3.16)

where

a(ψ0) =
FD(ψ0) ⋅ (ψ2

0 + ψ
2
0,θ)

−3/2
ψ0

H(ψ0)
+ a2

and a0, a1, a2 are given by (2.11).

Proof. To prove Fréchet differentiability, we first note that we only need to show that FD is Fréchet
differentiable, since FB is by Lemma 2.6. We will obtain differentiability of FD by showing differentiability
of the individual terms in its definition. First we note that H and n are differentiable by the properties
discussed in the previous chapter. Their derivatives are given by

DH(ψ0)[h] = −
3

2
(ψ2

0 + 2ψ
2
0,θ − ψ0ψ0,θθ)(ψ2

0 + ψ
2
0,θ)

−5/2(2ψ0h + 2ψ0,θhθ)

+ (ψ2
0 + ψ

2
0,θ)

−3/2(2ψ0h + 4ψ0,θhθ − hψ0,θθ − ψ0hθθ)
=∶ H0h +H1hθ +H2hθθ,

Dn(ψ0)[h] = −
1

2
(ψ2

0,θ + ψ
2
0)−3/2(2ψ0,θhθ + 2ψ0h)(ψ0,θ sin θ + ψ0 cos θ,−ψ0,θ cos θ + ψ0 sin θ)

+ (ψ2
0,θ + ψ

2
0)−1/2(hθ sin θ + h cos θ,−hθ cos θ + h sin θ)

=∶ (N00h +N01hθ, N10h +N11hθ),

(3.17)

(3.18)

where we note that each component Hi, Nij are in h
γ(S1). Next we note that the Jacobian Jz has differen-

tiable components, since each partial derivative of z is linear in ψ and ψθ. Therefore, it is (componentwise)
differentiable with derivative

DJz(ψ0)[h] = (cos(θ)h − sin(θ)h + cos(θ)hθ
sin(θ)h cos(θ)h + sin(θ)hθ

) = (J000h + J100hθ J001h + J101hθ
J010h + J110hθ J011h + J111hθ

) , (3.19)

where we see that also Jijk ∈ h
γ(S1). We note that also J

−1
z is Fréchet differentiable, since the determinant

of Jz stays away from zero. Thus we can apply the inverse rule from Lemma 2.3 so that

DJ
−1
z (ψ0)[h] = −J−1(ψ0)DJz(ψ0)[h]J−1(ψ0).

Note that this expression contains only h and hθ with h
γ(S1) coefficients.
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Next we will show Fréchet differentiability of c(ψ) = A(ψ)−1(0,− P
2π

lnψ). We will not be able to find an
explicit expression in terms of the derivatives of h, yet we are able to show that it is not contained in the
definition A. First we investigate differentiability of A(ψ) = (L(ψ), T r). Clearly, Tr is differentiable with
zero derivative. For L, we know that it is differentiable, since J

−1
z is differentiable. Thus we can write

DL(ψ0)[h] = D(J−1
z,ij(ψ)∂i(J−1

z,kj(ψ)∂k))(ψ0)[h]
= D(J−1

z,ij)(ψ0)[h]∂i(J−1
z,kj(ψ)∂k) + J−1

z,ij(ψ0)∂i(D(J−1
z,kj)(ψ0)[h]∂k)

= −J
−2
z,ij(ψ0)DJz,ij(ψ0)[h]∂i(J−1

z,kj(ψ)∂k) − J−1
z,ij(ψ0)∂i(J−2

z,kj(ψ0)DJz,kj)(ψ0)[h]∂k)
= −J

−2
z,ij(ψ0)DJz,ij(ψ0)[h]∂i(J−1

z,kj(ψ)∂k) − J−1
z,ij(ψ0)∂i(J−2

z,kj(ψ0)DJz,kj)(ψ0)[h]∂k)

Using the expression for DJz,ij(ψ0)[h] we obtain

DL(ψ0)[h] = −J−2
z,ij(ψ0)(Jij0(ψ0)h + Jij1(ψ0)hθ)∂i(J−1

z,kj(ψ0)∂k) − J−1
z,ij(ψ0)∂i(J−2

z,kj(ψ0)(Jkj0(ψ0)h + Jkj1(ψ0)hθ)∂k)

Observe that DL(ψ0)[h] can be written as

DL(ψ0)[h] = hL0(ψ0) + hθL1(ψ0),

where L0,1(ψ0) are two second order differential operators. Additionally, both have coefficients in h
γ(S1)

since Jz,ij(ψ0), J−1
z,ij(ψ0), Jijk(ψ0) are in h

γ(S1). Therefore we know that A(ψ) is Fréchet differentiable.

Additionally we note that also lnψ is Fréchet differentiable, with derivative D(lnψ)(ψ0)[h] = hψ−1
0 .

We will use an additional property of Fréchet derivatives as noted in [Cartan, 1971, Proposition 2.5.2].
This proposition states that if w(x) = f (u(x), v(x)), and f a continuous bilinear map, and u, v are differ-
entiable at a point, then w is differentiable at that point with derivative Dw(a)[h] = f (Du[a][h], v(a)) +
f (u(a), Dv(a)[h]). We apply this proposition to A(ψ)−1(0,− P

2π
lnψ) to obtain

D(A(ψ)−1(0,− P
2π

(lnψ)))(ψ0)[h] = D(A(ψ)−1)(0,− P
2π

(lnψ0)) +A(ψ0)−1(0, D(− P
2π

(lnψ))(ψ0)[h])

= −A(ψ0)−1
DA(ψ0)[h]A(ψ0)−1(0,− P

2π
(lnψ0)) +A(ψ0)−1(0,− P

2π

h

ψ0
)

= −A(ψ0)−1
D(L(ψ), T r)(ψ0)[h]c(ψ0) +A(ψ0)−1(0,− P

2π

h

ψ0
)

= −A(ψ0)−1(DL(ψ0)[h]c(ψ0), 0) +A(ψ0)−1(0,− P
2π

h

ψ0
)

= −A(ψ0)−1(DL(ψ0)[h]c(ψ0),
P

2π

h

ψ0
).

In summary, we have that

Dc(ψ0)[h] = −A(ψ0)−1(DL(ψ0)[h]c(ψ0),
P

2π

h

ψ0
) (3.20)

is the Fréchet derivative of c at ψ0. Next we investigate whether ∇aDc(ψ0)[h] contains second order
derivatives of h.

We know thatDL(ψ0)[h] contains second order differential operators and c(ψ0) ∈ C2+γ(Ω1), soDL(ψ0)[h]c ∈
C
γ(Ω1). By the properties of A, we consequently see that Dc(ψ0)[h] lies in C

2+γ(Ω1). Thus Dc(ψ0)[h] is
twice differentiable, which implies that ∇aDc(ψ0)[h] cannot have a hθθ term, since h is only twice differ-
entiable in θ. Therefore, we know that ∇aDc(ψ0)[h] is contained in the definition of B[h].
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Finally, we note that H(ψ) and n0 ⋅ n(ψ) stay away from zero for any ψ ∈ O. Therefore, we can use the
properties of the Fréchet derivative to show that FD is differentiable with derivative at ψ0 given by

DFD(ψ0)[h] = D((∇ac)TJ−1
z n(ψ)(H(ψ)n0 ⋅ n(ψ))−1)(ψ0)[h]

=

D(∇ac)T (ψ0)[h]J−1
z(ψ0)n(ψ0) + (∇ac(ψ0))TDJ−1

z(ψ)(ψ0)[h]n(ψ0) + (∇ac(ψ0))TJ−1
z(ψ0)D(n(ψ))(ψ0)[h]

H(ψ0)n0 ⋅ n(ψ0)

−
(∇ac(ψ0))TJ−1

z(ψ0)n(ψ)
(H(ψ0)n0 ⋅ n(ψ0))2

D(H(ψ)n0 ⋅ n(ψ))(ψ0)[h].

=

(∇aDc(ψ0)[h])TJ−1
z(ψ0)n(ψ0) − (∇ac(ψ0))TJ−1

z(ψ0)DJz(ψ0)[h]J−1
z(ψ0)n(ψ0) + (∇ac(ψ0))TJ−1

z(ψ0)Dn(ψ0)[h]
H(ψ0)n0 ⋅ n(ψ0)

− FD(ψ0)
DH(ψ0)[h]n0 ⋅ n(ψ0) +H(ψ0)n0 ⋅Dn(ψ0)[h]

H(ψ0)n0 ⋅ n(ψ0)
.

We see that the individual Fréchet derivatives all have components in h
γ(S1) and have a combination of

h, hθ and hθθ terms. The functions n(ψ0), H(ψ0),∇ac(ψ0), J−1
z(ψ0) are also in h

γ(S1) as established earlier.
Now we write a(ψ0) as

a(ψ0) = (−FD(ψ0)
H2(ψ0)
H(ψ0)

+ a2),

so that DF (ψ0) becomes
DF (ψ0) = A +B,

where A,B are given by (3.16).

Next we will show that DF (ψ0) is sectorial and its graph norm is equivalent to the norm of D.

3.2.2 Sectoriality and equivalence of the graph norm

To show that F satisfies the second condition for Theorem 2.1, we take a different approach than in the
ballistic model. Instead of translating the problem to h

γ(R), we will show that A is a sectorial in X and
B a perturbation of A in X. Consequently, A +B = DF (ψ0) is sectorial in X. We will prove sectoriality
of A in Lemma 3.5, and the perturbation property of B in Lemma 3.6. Finally we will show that DF (ψ0)
is sectorial in X and its graph norm is equivalent to the norm of D in Lemma 3.7.

Lemma 3.5. The operator (A,D(A)) where A[h] is given by (3.16) and D(A) = h2+γ(S1) is sectorial in
X.

Proof. First we verify that there exists a µ > 0 such that a ≥ µ. Even though the sign might not be
explicitly computable from the current expression, we can determine the sign from the original problem
statement. Recall that FD(ψ) was given by

FD(ψ) =
∂nw∣∂Ωψ

H(ψ)n0 ⋅ n(ψ) ,

and w satisfies
∆w = 0 in Ωψ,

w = −φ on ∂Ωψ.

Naturally, we know that ∂nw(x0) ≥ 0 for all x0 ∈ ∂Ωψ as ∆ is an elliptic operator. Therefore we have
that ΦD(ψ0) ⋅ n(ψ0) ≥ 0. Since H(ψ0) > ν and n(ψ0) ⋅ n0 ≥ 0 we thus obtain that FD(ψ0) ≥ 0. Since

ψ
2
0 + ψ

2
0,θ ≥ 0, ψ0 ≥ 0 we see that H2(ψ0) = −(ψ2

0 + ψ
2
0,θ)

−3/2
ψ0 ≤ 0. Finally, since H(ψ0) > 0, we know that

a(ψ0) = (−FD(ψ0)
H2

H(ψ0)
+ a2) ≥ a2 ≥ ξ > 0,
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where ξ was the coefficient determined by Lemma 2.7. Thus we choose µ = ξ > 0 to obtain a ≥ µ > 0.

Since a is strictly positive, we obtain thatA is a uniformly elliptic operator. Thus we can use [Lunardi, 1995,
Theorem 3.1.14] and similar reasoning as 2.10 to obtain that A is sectorial.

Lemma 3.6. The operator B = DF (ψ0) − A with domain D(B) = h
1+γ(S1) has the following property.

For all ε > 0 and h ∈ D(A) there exists a Cε > 0 such that

∣∣B[h]∣∣γ ≤ ε∣∣A[h]∣∣γ + Cε∣∣h∣∣γ .

Proof. To show this property, let ε > 0 be fixed and h ∈ D(A). Using the definition of B, we see that B
can be written as a sum

B[h] = B1[h] +B2[h],
where

B1[h] = b0(ψ0)h + b1(ψ0)hθ,
B2[h] = b2(ψ0)∇aDc(ψ0)[h],

for some appropriate bi ∈ h
γ(S1). For B1 we note that there exists some C1 > 0 such that ∣∣B1[h]∣∣γ ≤

C1∣∣h∣∣1+γ . Note that C1 can be chosen independently of ψ0, since we can estimate the norm of ψ0 by
R
∗
. By the interpolation property in Lemma C.2, we see that ∣∣B1[h]∣∣γ ≤ C1(δ1∣∣h∣∣2+γ + Cδ1 ∣∣h∣∣∞) for

all δ1 > 0.

For B2 we introduce γ
′
∈ (0, γ) fixed. Then there exists a C2 > 0 such that

∣∣B2[h]∣∣γ = ∣∣b2(ψ0)∇aDc(ψ0)[h]∣∣γ ≤ C2∣∣∇aDc(ψ0)[h]∣∣1+γ ′ .

Recall that ∇a is the concatenation of the trace to S
1

and the vector of partial derivatives on Ω1. Since

Dc(ψ0) is a bounded operator on h
2+γ(S1), it is also a bounded operator h

2+γ ′(S1). We can combine these
results to obtain a C3 > 0 such that

∣∣∇aDc(ψ0)[h]∣∣1+γ ′ ≤ C3∣∣h∣∣2+γ ′ .

Secondly we apply the interpolation property from Lemma C.2 with γ1 = 2 + γ ′, γ2 = 2 + γ. Thus we fix
δ2 > 0 so that there exists a Cδ2 > 0 with

∣∣h∣∣2+γ ′ ≤ δ2∣∣h∣∣2+γ + Cδ2 ∣∣h∣∣∞.

Therefore we obtain that
∣∣B2[h]∣∣γ ≤ C2C3δ2∣∣h∣∣2+γ + Cδ2 ∣∣h∣∣∞.

In summary, we have that

∣∣B[h]∣∣γ ≤ (C1δ1 + C2C3δ2)∣∣h∣∣2+γ + Cδ1,δ2 ∣∣h∣∣∞.

Next we use the definition of ∣∣h∣∣2+γ and apply the inequality ∣∣hθ∣∣∞ ≤ δ3∣∣hθθ∣∣∞ + Cδ3 ∣∣h∣∣∞ for δ3 = 1
so that there exists a C4 > 0 such that

∣∣h∣∣2+γ = ∣∣hθθ∣∣γ + ∣∣h∣∣∞ + ∣∣hθ∣∣∞
≤ ∣∣hθθ∣∣γ + ∣∣h∣∣∞ + ∣∣hθθ∣∣∞ + C4∣∣h∣∣∞
≤ 2∣∣1/aA[h]∣∣γ + (1 + C4)∣∣h∣∣∞
≤ Ca,µ∣∣A[h]∣∣γ + (1 + C4)∣∣h∣∣∞,

where Ca,µ comes from Lemma B.2. Thus we can write

∣∣B[h]∣∣γ ≤ (C1δ1 + C2C3δ2)Ca,µ∣∣A[h]∣∣γ + Cδ1,δ2 ∣∣h∣∣∞,
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for some Cδ1,δ2 > 0. We choose δ1 =
ε

2C1Ca,µ
, δ2 =

ε
2Ca,µC2C3

so that for all ε > 0 there exists a Cε > 0 such

that
∣∣B[h]∣∣γ ≤ ε∣∣A[h]∣∣γ + Cε∣∣h∣∣∞.

Lemma 3.7. The operator DF (ψ0) is sectorial in X for any ψ0 ∈ O and its graph norm is equivalent to
the norm of D.

Proof. Fix ψ0 ∈ O. Sectoriality of DF (ψ0) is a direct result of the perturbation property of B with respect
to the sectorial operator A from [Engel and Nagel, 2006, Theorem III.2.10]. The proof that the graph
norm of DF (ψ0) is equivalent the norm of D will be similar to the proof for the ballistic model. To show
equivalence, we need to show that there exists a C1, C2 > 0 such that

C1∣∣h∣∣2+γ ≤ ∣∣h∣∣X + ∣∣DF (ψ0)[h]∣∣γ ≤ C2∣∣h∣∣2+γ

for all h ∈ O.

The second inequality can be shown using Lemma 3.6. Let ε > 0 be fixed. Then we know that

∣∣h∣∣γ + ∣∣DF (ψ0)[h]∣∣γ = ∣∣h∣∣∞ + [h]X + ∣∣A[h] +B[h]∣∣γ
≤ ∣∣h∣∣∞ + C∣∣hθ∣∣∞ + ∣∣Ah∣∣γ + ∣∣Bh∣∣γ
≤ Cε∣∣h∣∣∞ + C∣∣hθ∣∣∞ + (1 + ε)∣∣A[h]∣∣γ
≤ Cε∣∣h∣∣∞ + C∣∣hθ∣∣∞ + Ca,ε∣∣hθθ∣∣γ
≤ C2∣∣h∣∣2+γ ,

for some C2 > 0. To obtain the first inequality we first show that B is bounded with respect to the graph
norm. Let 0 < ε < 1 be fixed. Then we know by the perturbation property of B that there exists a Cε > 0
such that

∣∣B[h]∣∣γ ≤ ε∣∣A[h]∣∣γ + Cε∣∣h∣∣∞
≤ ε∣∣DF (ψ0)[h] −B[h]∣∣γ + Cε∣∣h∣∣∞
≤ ε∣∣DF (ψ0)[h]∣∣γ + ε∣∣B[h]∣∣γ + Cε∣∣h∣∣∞

⟺ (1 − ε)∣∣B[h]∣∣γ ≤ ε∣∣DF (ψ0)[h]∣∣γ + Cε∣∣h∣∣∞
⟺ ∣∣B[h]∣∣γ ≤ Cε(∣∣DF (ψ0)[h]∣∣γ + ∣∣h∣∣γ).

Using this inequality, we introduce δ > 0 such that ∣∣hθ∣∣∞ ≤ δ∣∣hθθ∣∣∞ + Cδ∣∣h∣∣∞. Thus we know that

∣∣h∣∣2+γ = ∣∣h∣∣∞ + ∣∣hθ∣∣∞ + ∣∣hθθ∣∣γ
≤ c1∣∣h∣∣∞ + (δ + 1)∣∣hθθ∣∣γ
≤ c1(∣∣h∣∣∞ + ∣∣hθθ∣∣γ)
≤ c1(∣∣h∣∣∞ + Ca,µ∣∣Ah∣∣γ)
≤ c1(∣∣h∣∣∞ + ∣∣DF (ψ0)[h]∣∣γ + ∣∣Bh∣∣γ)
≤ c1(∣∣h∣∣γ + ∣∣DF (ψ0)[h]∣∣γ + Cε(∣∣DF (ψ0)[h]∣∣γ + ∣∣h∣∣γ))
≤ c1(∣∣h∣∣γ + Cε∣∣DF (ψ0)[h]∣∣γ)
≤ c1(∣∣h∣∣γ + ∣∣DF (ψ0)[h]∣∣γ),

for some c1 = c1(a, µ, ε, δ) > 0. By letting C1 = c
−1
1 > 0, we also obtain the first inequality.
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3.2.3 Local Lipschitz continuity

The final condition we need to verify is that DF is locally Lipschitz continuous with respect to ψ0. We
will show this condition by showing that F is twice Fréchet differentiable at ψ0 ∈ O.

Lemma 3.8. The function F is twice Fréchet differentiable at any ψ0 ∈ O.

Proof. We will not give an explicit expression of what the second derivative looks like, since we do not
need this to show locally Lipschitz continuity, as can be seen in Corollary 3.9. Let ψ0 ∈ O, and re-
call the definition of DF (ψ0) from (3.16). We will show that DF is differentiable at ψ0 with derivative
D

2
F (ψ0)[h1, h2] for h1, h2 ∈ D. Similar to the first derivative, we will show differentiability of DF using

properties of the Fréchet derivative.

First we note that DH,DJz, Dn and Dc are differentiable by similar arguments for the first derivative.
In particular, we have that D

2
Jz,ij(ψ0)[h1, h2] = 0 since DJz,ij(ψ0) does not depend on ψ0. Additionally,

the second derivatives of H and n can be written as

D
2
H(ψ0)[h1, h2] = DH0(ψ0)[h2]h1 +DH1(ψ0)[h2]h1,θ +DH2(ψ0)[h2]h1,θθ

D
2
N (ψ0)[h1, h2] = DN0(ψ0)[h2]h1 +DN1(ψ0)[h2]h1,θ,

where the components Hi, Ni = (Ni0, Ni1) are given by (3.17) and (3.18). Similar to before, we obtain
that the derivatives of these components can be written as

DHi(ψ0)[h2] = Hi0(ψ0)h2 +Hi1(ψ0)h2,θ +Hi2(ψ0)h2,θθ,

DNi(ψ0)[h2] = Ni,0(ψ0)h2 +Ni,1(ψ0)h2,θ,

and Hij(ψ0), Nij,k(ψ0) ∈ hγ(S1). The second derivative of c is equal to

D
2
c(ψ0)[h1, h2] = −D(A(⋅)−1)(ψ0)[h2](DL(ψ0)[h1]c(ψ0),

P

2π

h1

ψ0
))

−A(ψ0)−1(D2
L(ψ0)[h1, h2]c(ψ0) +DL(ψ0)[h1]Dc(ψ0)[h2],−

P

2π

h1h2

ψ2
0

)

= A(ψ0)−1
DA(ψ0)[h2]A(ψ0)−1(DL(ψ0)[h1]c(ψ0),

P

2π

h1

ψ0
))

−A(ψ0)−1(D2
L(ψ0)[h1, h2]c(ψ0) +DL(ψ0)[h1]Dc(ψ0)[h2],−

P

2π

h1h2

ψ2
0

).

Using the definition of Dc(ψ0)[h1], we obtain

D
2
c(ψ0)[h1, h2] = −A(ψ0)−1

DA(ψ0)[h2]Dc(ψ0)[h1]

−A(ψ0)−1(D2
L(ψ0)[h1, h2]c(ψ0) +DL(ψ0)[h1]Dc(ψ0)[h2],−

P

2π

h1h2

ψ2
0

)

= −A(ψ0)−1(DL(ψ0)[h2]Dc(ψ0)[h1], 0)

−A(ψ0)−1(D2
L(ψ0)[h1, h2]c(ψ0) +DL(ψ0)[h1]Dc(ψ0)[h2],−

P

2π

h1h2

ψ2
0

)

= −A(ψ0)−1(DL(ψ0)[h2]Dc(ψ0)[h1] +D2
L(ψ0)[h1, h2]c(ψ0) +DL(ψ0)[h1]Dc(ψ0)[h2],−

P

2π

h1h2

ψ2
0

).

Analogously to DL(ψ0)[h], we have that D
2
L(ψ0)[h1, h2] will be a second order differential operator, that

can be written as

D
2
L(ψ0)[h1, h2]c = h1h2L00(ψ0)[c] + h1,θh2L10(ψ0)[c] + h1h2,θL01(ψ0)[c] + h1,θh2,θL11(ψ0)[c].
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Thus we have that D
2
L(ψ0)[h1, h2]c(ψ0) ∈ Cγ(Ω1). Therefore, we have that

(DL(ψ0)[h2]Dc(ψ0)[h1] +D2
L(ψ0)[h1, h2]c(ψ0) +DL(ψ0)[h1]Dc(ψ0)[h2],−

P

2π

h1h2

ψ2
0

) ∈ Cγ(Ω1) × C2+γ(S1),

which lies in the domain of A(ψ0)−1
, and the definition of the second derivative of c makes sense.

Now we can apply the properties of the Fréchet derivative to achieve that DF is differentiable at ψ0.
This derivative will contain products of first derivatives Df (ψ0)[h1]Dg(ψ0)[h2] and second derivatives
D

2
f (ψ0)[h1, h2] and is a bounded, operator in both h1 and h2. However, the expression of D

2
F (ψ0)[h1, h2]

would be too cumbersome to mention. Finally we note that all components of D
2
F (ψ0) depend continu-

ously on ψ0, which implies that D
2
F itself is continuous in ψ0.

Corollary 3.9. For all u ∈ O there are R = R(u), L = L(u) > 0 such that

∣∣DF (ψ1) −DF (ψ0)∣∣L(D,X) ≤ L∣∣ψ1 − ψ0∣∣2+γ , (3.21)

for all ψ0,1 ∈ B(u,R) ⊂ D.

Proof. This follows from Lemma 3.8, Lemma 2.12 and [Cartan, 1971, Theorem 3.3.2] and continuity of
D

2
F in ψ0.

We can combine Lemmas 3.4, 3.7 and Corollary 3.9 to achieve the main theorem for the diffusive model
in Theorem 3.10.

Theorem 3.10. Let ψ0 ∈ O Then there exist δ = δ(ψin), r = r(ψin) such that for every t0 ∈ [0, r] and
ψin ∈ O with ∣∣ψin − ψ0∣∣2+γ ≤ r there is a strict solution ψ ∈ C([0, δ];h2+γ(S1)) ∩ C1([0, δ];hγ(S1)) to

ψt(t) = F (ψ(t)) t ∈ [0, δ],
ψ(0) = ψin.

Next, we will investigate linear stability of circular solutions, similarly to the ballistic model.

3.3 Linear stability of circular solutions

In this section we will show that circles are linearly stable under the evolution equation. The proof will
be analogous to the proof for the ballistic model. The first property we will show is that F (βψ) = F (ψ)
in Lemma 3.11. This property allows the evolution equation for the diffusive model to be transformed
analogously to Section 2.4. We will introduce the operators A,G such that the transformed evolution
equation satisfies ρt = Aρ+G(ρ). Finally we will find the spectrum of A to find an ω0 and show that A,G
satisfy the assumptions of Theorem 2.14.

Lemma 3.11. Let β, ψ ∈ O such that βψ ∈ O. Then F (βψ) = F (ψ).
Proof. To show that F (βψ) = F (ψ), we first note that FB already satisfies this property, so we only
investigate FD. For H,n, J

−1
z we obtain that

H(βψ) = β−1
H(ψ),

n(βψ) = n(ψ),
J
−1
z (βψ) = β−1

J
−1
z (ψ).

For ∇ac we see that c(βψ) has to satisfy the system

L(βψ)c = 0 in Ω1,

c = −
P

2π
ln(βψ) on S

1
.
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By definition of L, we have that

L(βψ) = J−1
z,ab(βψ)∂a(J−1

z,cb)(βψ)∂c
= β

−2
J
−1
z,ab(ψ)∂a(J−1

z,cb)(ψ)∂c
= β

−2
L(ψ).

Additionally, since ln(βψ) = lnβ + lnψ, we see that the function c(βψ) = c(ψ) − P
2π

lnβ solves the system:

L(βψ)c(βψ) = β−2
L(ψ)(c(ψ) − P

2π
lnβ) = 0 in Ω1,

c(βψ) = c(ψ) − P

2π
lnβ = −

P

2π
ln(βψ) on S

1
.

Therefore, we know that c(βψ) = A(βψ)−1(0,− P
2π

ln(βψ)) = A(ψ)−1(0,− P
2π

lnψ) − P
2π

lnβ Thus for FD(βψ)
we obtain

FD(βψ) = ∇ac(βψ)TJ−1
z (βψ)n(βψ)

H(βψ)(n(βψ) ⋅ n0)

=
∇a(c(ψ) + lnβ)Tβ−1

J
−1
z (ψ)n(ψ)

β−1H(ψ)(n(ψ) ⋅ n0)

=
∇ac(ψ)TJ−1

z (ψ)n(ψ)
H(ψ)(n(ψ) ⋅ n0)

= FD(ψ),

so F (βψ) = F (ψ) for all β, ψ ∈ O.

Since this function F also has the scaling property, we will use the same transformation of Section 2.4.
Thus we have the evolution equation

ρt̃(t̃) = F̄ (ρ) = F (ρ + 1) − P

2π
(ρ + 1). (3.22)

We define the operators A,G as
Aρ = DF̄ (0)[ρ],

G(ρ) = F̄ (ρ) −Aρ, (3.23)

such that F̃ (ρ) = Aρ +G(ρ). Next we will elaborate on DF̄ (0)[ρ] = DF (1)[ρ].

3.3.1 Derivative of F at ψ0 ≡ 1

Assume that ψ0 ≡ 1. Then we see that

z(ψ0; r, θ) = z(1; r, θ) = (r cos θ, r sin θ),

for (r cos θ, r sin θ) ∈ Ωa. Furthermore, we have that c(1) is given by

c(1) = A(1)−1(0,− P
2π

ln 1) = A(1)−1(0, 0) = 0.

For A(1) = (L(1), T r), we note that L(1) is given by the Laplacian on Ω1. By definition of Dc(1)[h], we
see that it has to satisfy

∆Dc(1)[h] = 0 in Ω1,

Dc(1)[h] = − P
2π
h on S

1
.

(3.24)
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This problem can be solved using Fourier coefficients hn =
1

2π
∫2π
0 h(θ) exp(−inθ)dθ. Since we will need the

The resulting solution Dc(1)[h](r, θ) on Ωa is then given by

Dc(1)[h](r, θ) = − P
2π
∑
n∈Z

r
∣n∣
hn exp(inθ). (3.25)

Recall that ∇aDc(1)[h] is given by

∇aDc(1)[h] = (∂rDc(1)[h], ∂θDc(1)[h])∣S1 .

We note that derivatives of Dc(1)[h] can be obtained by interchanging the sum and derivatives since h is
twice differentiable on S

1
. This observation allows us to write

∇aDc(1)[h] = (∂rDc(1)[h](r, θ)
∂θDc(1)[h](r, θ)

)
»»»»»»»»S1

= −
P

2π
(∑n∈Z ∣n∣r∣n∣−1

hn exp(inθ)
∑n∈Z r∣n∣hnin exp(inθ)

)
»»»»»»»»»S1

= −
P

2π
(∑n∈Z ∣n∣hn exp(inθ)
∑n∈Z i∣n∣hn exp(inθ)) .

Additionally, we know that
H(1) = 1,

n(1) = (cos θ, sin θ) = n0

J
−1
z(1) = (cos(θ) sin θ

− sin θ cos θ
)

DFB(1)[h] = − P
2π
hθθ

In summary, we obtain that

DFD(1)[h] = 1

1 ⋅ n0 ⋅ n0
−
P

2π
(∑n∈Z ∣n∣hn exp(inθ) ∑n∈Z i∣n∣hn exp(inθ)) (cos(θ) sin θ

− sin θ cos θ
)n0

= −
P

2π
(∑
n∈Z

∣n∣hn exp(inθ) (cos θ sin θ) + ∑
n∈Z

i∣n∣hn exp(inθ) (− sin θ cos θ))n0

= −
P

2π
∑
n∈Z

∣n∣hn exp(inθ).

so that

DF (1)[h] = − P
2π

(hθθ + ∑
n∈Z

∣n∣hn exp(inθ)) . (3.26)

We can thus rewrite A to

Aρ = −
P

2π
(∑
n∈Z

∣n∣ρn exp(inθ) − ρθθ + ρ) .

3.3.2 Linear stability results

With the operators A and G defined, we will check the assumptions of Theorem 2.14.

Lemma 3.12. The operators A and G defined in (3.23) satisfy the assumptions of Theorem 2.14 for
D(A) = D,O, X as defined in (3.9).
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Proof. The proof for the diffusive model will be analogous to the proof for the ballistic model in Theo-
rem 2.15. We obtain sectoriality of A in X, since DF (ψ0) is sectorial for all ψ0 ∈ O, and in particular
for ψ0 ≡ 1 ∈ O and the operator M ∶ ρ ↦ P

2π
ρ can be considered a perturbation of DF (ψ0), so that

A is sectorial. Similarly to the ballistic model, we thus obtain that A,G satisfy the first condition
of Theorem 2.14. Therefore, we only need to investigate the spectrum of A and find a ω0 such that
sup{Re λ ∶ λ ∈ σ(A)} = −ω0 < 0. Analogously to the previous chapter, we will try to solve λρ −Aρ = g for
λ ∈ C, g ∈ hγ(S1). We again translate the problem in terms of Fourier coefficients, so that

λρ −Aρ = ∑
n∈Z

λρn exp(inθ) + P

2π
∑
n∈Z

(n2
+ ∣n∣ + 1)ρn exp(inθ)

=
P

2π
∑
n∈Z

(n2
+ ∣n∣ + 1 +

2π

P
λ)ρn exp(inθ) = ∑

n∈Z
gn exp(inθ)

⟹
P

2π
(n2

+ ∣n∣ + 1 +
2π

P
λ)ρn = gn

⟹ ρn =
gn

P
2π

(n2 + ∣n∣ + 1 + 2π
P
λ)
,

which will only yield a solution if n
2 + ∣n∣ + 1 + 2π

P
λ ≠ 0, or

λ ≠ λn ∶= −
P

2π
(n2

+ ∣n∣ + 1).

Additionally, for any such λ ≠ λn we obtain similarly to the ballistic model that

∣∣(λI −A)−1
g∣∣2+γ = ∣∣ρ∣∣2+γ ≤ Cλ∣∣g∣∣γ ,

for some Cλ > 0, which implies that λ ≠ σ(A). Thus we have that σ(A) ⊂ {λn∣n ∈ Z}. Since λn =
P
2π

(n2 + ∣n∣ + 1) ≥ P
2π

, we can define ω0 =
P
2π

so that sup{Reλ ∶ λ ∈ σ(A)} ≤ −ω0.

Finally we use Lemma 3.4 and Corollary 3.9 to obtain that G is a C
1

function with locally Lipschitz
continuous derivative. Additionally, we have that

G(0) = F (1) − P

2π
= 0,

G
′(0) = DF (1)[0] − P

2π
0 −A0 = 0,

so that A,G satisfy the assumptions of Theorem 2.14.

We will use this lemma to show linear stability of circular solutions to the original evolution equation in
the following corollary.

Corollary 3.13. Let ψc, ψ be a solutions to (3.8), where ψc is a circular solution, and ψ(0) close to ψc(0).
Then ψ(t) exists for all time t > 0. Additionally, for all ε ∈ (0, 1] there exists a M =M (ε) such that

∣∣ψ − ψc∣∣2+γ ≤M (ψc(0) +
P

2π
t)ε∣∣ψ(0) − ψc(0)∣∣2+γ .

Proof. The proof is analogous to the proof of Theorem 2.16.

This concludes the analysis of the diffusive VSC model. Unfortunately, we are unable to show an avoidance
principle similar to the ballistic model. The main problem is that we cannot write the Fréchet derivative
of F as a second order partial differential operator. Thus we cannot apply the maximum principle used
in Lemma 2.17 to show the avoidance principle. The next chapter will contain a summary and possible
future research subjects.
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4 Conclusion

4.1 Summary

In this project we have discussed the two dimensional ballistic and diffusive VSC model for the growth
of cells. In particular, we were interested in analysing how perturbations of circles would evolve under
these models. Circular domains served as a simple example, since the models were identical for circles and
showed that circles would grow linearly over time. The models changed when regarding perturbations ψ:
the ballistic model only had explicit functions of ψ while the diffusive model contained implicit expressions.

This difference meant that the approach for showing existence to the evolution equation differed too, yet
both yielded the same result. The proof for the ballistic model was relatively straight-forward, and the
Fréchet derivative could be expressed as a second order differential operator. Contrastingly, the diffusive
model did not yield such an expression, yet the gouverning function could be written using the solution
for the ballistic model. Additionally, we introduced a diffeomorphism that transformed the differential
equation for the concentration function from a changing domain to a fixed domain. However, this dif-
feomorphism caused the set on which the initial perturbation was defined, O, to decrease. Despite this
change, both models allowed short time and long time existence for the evolution equations.

Alongside the existence results, an asymptotics results and a comparison result were achieved. The first
result held for both models, which showed that the difference between the solution and an expanding
circle could only grow sublinear in time. The second result was exclusive to the ballistic model, which
showed that if one initial perturbation was contained in another, then this would hold for all time. This
result was achieved using the maximum principle, which cannot be used for the diffusive model. A similar
result might however be achievable using other methods.

4.2 Further research options

Next we will discuss some further research topics which can be investigated.

Improving the long time stability result

One additional topic of future research could be to exclude the smallest eigenvalue in the long-time anal-
ysis of both models. The current conclusion is that solutions are O(tε) close to growing circles for any
ε ∈ (0, 1]. This result could be improved if the smallest eigenvalue λ0 is excluded from the analysis, simi-
lar to [Prokert and Vondenhoff, 2009, Chapter 4]. This omission should be achievable by eliminating the
corresponding eigenspace Eλ0 from the domain of solutions. The eigenspace Eλ0 corresponds to the space

of constant functions on S
1
, i.e. circles, which can be verified using the Fourier coefficients. The solution

could then be transformed using an L
2(S1)-orthogonal projection P to {ν ∈ h

2+γ(S1) ∣ (ν,Eλ0) = 0}. On
this new space, the operator P ◦A = Ã has spectrum σ(Ã) = σ(A)\{λ0}. This operator should then give a
similar bound to the solutions, except that ε can be smaller than zero. The new bound then implies that
the perturbations of circles should vanish as time passes on, and thus the solutions will be similar to circles
over time. However, note that this approach is only a sketch based on [Prokert and Vondenhoff, 2009],
and should be investigated more thoroughly.

Transforming the problem to the third dimension

Another interesting topic is to increase the dimension of the problem statement. This project has focused
on a two dimensional cell, which raises the question how the models would behave in three dimensions. For
example, the trivial solution of a growing circle, would not grow linearly over time but instead would grow
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in proportion to
√
t. Additionally, the perturbation function ψ would take arguments from the unit ball

instead of the circle. Similar changes will be needed for the other components, such as the normal vector
and the (mean) curvature. Overall, the approach for the short time existence of the three-dimensional
models should look similar to the two-dimensional models.

The approach for the long time existence would likely see more changes needed to the approach. For
instance, obtaining the eigenvalues will need to be done on the sphere instead of the circle, which means
that the approach using Fourier coefficients can no longer be used. This change can be made through
the choice of spherical harmonic coordinates, in which the equation can consequently be solved. More
importantly, the scaling property of F might not hold for higher dimensions, which may cause the rescaled
equation to be inhomogeneous in time. The comparison result will most likely still hold for the ballistic
model.
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first edition.

[Andrews et al., 2020] Andrews, B., Chow, B., Guenther, C., and Langford, M. (2020). Extrinsic ge-
ometric flows. Number 206 in Graduate studies in mathematics. American Mathematical Society,
Providence, Rhode Island.

[Bartnicki-Garcia et al., 1989] Bartnicki-Garcia, S., Hergert, F., and Gierz, G. (1989). Computer sim-
ulation of fungal morphogenesis and the mathematical basis for hyphal (tip) growth. Protoplasma,
153(1-2):46–57.
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A Derivations of the curvature, normal vector and velocity

In this appendix we will derive the expressions for v(ψ), n(ψ) and H(ψ).

A.1 Derivation of the normal vector

For a parametrised curve γ(θ) = (x(θ), y(θ)), the vector
dγ

dθ
is tangent to the curve in counterclockwise

direction [Goldman, 2005, Section 2.1] . This vector can be rotated π/2 to the right to obtain the
outward normal vector n. The normal vector can thus be written as

n =
(yθ,−xθ)√
y2
θ
+ x2

θ

. (A.1)

The (x(θ), y(θ)) = ψ(θ)(cos θ, sin θ) to obtain

xθ = ψθ cos θ − ψ sin θ

yθ = ψθ sin θ + ψ cos θ

so that

n(ψ) = (ψθ sin θ + ψ cos θ,−ψθ cos θ + ψ sin θ)
√
ψ2
θ

cos2 θ − 2ψψθ cos θ sin θ + ψ2 sin2 θ + ψ2
θ

sin2 θ − 2ψψθ cos θ sin θ + ψ2 cos2 θ

=
(ψθ sin θ + ψ cos θ,−ψθ cos θ + ψ sin θ)

√
ψ2
θ
+ ψ2

A.2 Derivation of the curvature

The curvature H for a parametrised curve γ(θ) = (x(θ), y(θ)) is given by [Goldman, 2005, Section 2.1]

H =
det(γ ′ γ ′′)

∣∣γ ′∣∣3
. (A.2)

Note that we need the second derivatives for the curvature. The numerator can be calculated to be

det(γ ′ γ ′′) = det (xθ xθθ
yθ yθθ

)

= xθyθθ − yθxθθ,

so that the curvature becomes

H =
xθyθθ − yθxθθ

(x2
θ
+ yθ)3/2

.

Next we substitute the parametrisation γ(θ) = ψ(θ)(cos θ, sin θ) to obtain

xθθ = ψθθ cos θ − 2ψθ sin θ − ψ cos θ

yθθ = ψθθ sin θ + 2ψθ cos θ − ψ sin θ.

so that the curvature equals

H(ψ) = (ψθ cos θ − ψ sin θ)(ψθθ sin θ + 2ψθ cos θ − ψ sin θ) − (ψθ sin θ + ψ cos θ)(ψθθ cos θ − 2ψθ sin θ − ψ cos θ)
(ψ2 + ψ2

θ
)3/2

=
2ψ

2
θ (cos

2
θ + sin

2
θ) − ψψθθ(sin2

θ + cos
2
θ) + ψ2(sin2

θ + cos
2
θ)

(ψ2 + ψ2
θ
)3/2

=
ψ

2 + 2ψ
2
θ − ψψθθ

(ψ2 + ψ2
θ
)3/2

.
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A.3 Derivation of the normal velocity

For the velocity of the boundary, we note that this is simply the time derivative of the parametrisation.
Therefore the velocity of γ(t, θ) = ψ(t, θ)(cos θ, sin θ) is given by ∂tγ(t, θ). Since we need the normal
component Vn of the velocity, we take the inner product with the normal vector:

Vn(ψ) = ∂tψ(t, θ)(cos θ, sin θ) ⋅ n(ψ). (A.3)

Substituting the expression for n(ψ), we see that

Vn(ψ) = ∂tψ(cos θ, sin θ) ⋅ (ψθ sin θ + ψ cos θ,−ψθ cos θ + ψ sin θ)(ψ2
+ ψ

2
θ )
−1/2

= ∂tψψ(cos
2
θ + sin

2
θ)(ψ2

+ ψ
2
θ )
−1/2

= ∂tψ
ψ

√
ψ2 + ψ2

θ

.

B Auxiliary lemmas ballistic model

This appendix contains some auxiliary lemmas with proofs that are used in the ballistic model.

B.1 Fréchet differentiability of several functions

Corollary B.1. Consider f1,2,3 ∶ O → h
γ(S1) defined by

f1(ψ) = ψn,
f2(ψ) =

√
ψ,

f3(ψ) = ψθ,
where n ∈ N. Then f1,2,3 are Fréchet differentiable at ψ0 ∈ O with derivatives

Df1(ψ0)[h] = nψn−1
0 h,

Df2(ψ0)[h] =
1

2
ψ
−1/2
0 h,

Df3(ψ0)[h] = hθ.

Proof. Let ψ0 ∈ O and h ∈ h
2+γ

. The first function we will analyse is ψ
n
. We will show differentiability

through induction over n.

Base case Consider f (ψ) = ψ
2
. Then the product rule implies that f is differentiable at ψ0 with

derivative
Df (ψ0)[h] = ψ0 ⋅Dψ(ψ0)[h] +Dψ(ψ0)[h]ψ0

= ψ0 ⋅ h + h ⋅ ψ0 = 2ψ0h.

Induction step Assume that f (ψ) = ψk is Fréchet differentiable for some k > 2. Then g(ψ) = ψk+1
=

ψ ⋅ ψk is Fréchet differentiable at ψ0 with derivative

Dg(ψ0)[h] = hψk0 + ψ0Dψ
k(ψ0)[h]

= hψ
k
0 + ψ0 ⋅ kψ

k−1
0 h

= hψ
k
0 + kψ

k
0h

= (k + 1)ψk0h,
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which was the induction hypothesis. Therefore f1(ψ) = ψn is Fréchet differentiable at ψ0 for all n ∈ N.

The next derivative will be found using the definition of the Fréchet derivative. Clearly we see that Df2(ψ0)
is a bounded linear operator. Thus we need to show that ∣∣f2(ψ0 + h) − f2(ψ0) −Df2(ψ0)[h]∣∣γ∣∣h∣∣−1

2+γ → 0
as ∣∣h∣∣2+γ → 0. We write out the expression to obtain

f2(ψ0 + h) − f2(ψ0) −Df2(ψ0)[h] =
√
ψ0 + h −

√
ψ0 −

h

2
√
ψ0

=
ψ0 + h − ψ0√
ψ0 + h +

√
ψ0

−
h

2
√
ψ0

=

h
√
ψ0 −

1
2
h
√
ψ0 + h −

1
2
h
√
ψ0

(
√
ψ0)(

√
ψ0 + h +

√
ψ0)

=

√
ψ0 + h −

√
ψ0

2
√
ψ0(

√
ψ0 + h +

√
ψ0)

h.

Therefore we know that

lim
∣∣h∣∣2+γ→0

»»»»»»»»»»

»»»»»»»»»»

√
ψ0 + h −

√
ψ0

2
√
ψ0(

√
ψ0 + h +

√
ψ0)

h

»»»»»»»»»»

»»»»»»»»»»γ
1

∣∣h∣∣2+γ
≤ lim

∣∣h∣∣2+γ→0

»»»»»»»»»»

»»»»»»»»»»

√
ψ0 + h −

√
ψ0

2
√
ψ0(

√
ψ0 + h +

√
ψ0)

»»»»»»»»»»

»»»»»»»»»»γ

=

»»»»»»»»»»

»»»»»»»»»»

√
ψ0 −

√
ψ0

2
√
ψ0(

√
ψ0 +

√
ψ0)

»»»»»»»»»»

»»»»»»»»»»γ
=

»»»»»»»
»»»»»»»

0

4ψ0

»»»»»»»
»»»»»»»γ
= 0.

So we indeed find that Df2(ψ0)[h] is the Fréchet derivative of f2.

For the third function, we note that the partial derivative ∂
k
θ is a linear operator. Clearly Df3(ψ0) is a

bounded linear operator, thus we find by definition of the Fréchet derivative that f3 is differentiable at
ψ0 with derivative Df3(ψ0)[h].

B.2 Proof that the quotient of two h
γ

functions is still in h
γ

Lemma B.2. Let u, v ∈ X, v ≥ µ > 0. Then there exists a C = C(∣∣v∣∣γ , µ) > 0 such that

∣∣u
v
∣∣γ ≤ C∣∣u∣∣γ (B.1)
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Proof. Fix u, v with v ≥ µ > 0. Then we know that

∣∣uv ∣∣γ = ∣∣uv ∣∣∞ + [uv ]γ

= sup
x∈S1

»»»»»»»»
u(x)
v(x)

»»»»»»»»
+ sup
x,y∈S1,x≠y

⎛
⎜⎜
⎝

∣u(x)
v(x) −

u(y)
v(y) ∣

∣x − y∣γ
⎞
⎟⎟
⎠

≤ µ
−1∣∣u∣∣∞ + sup

x,y∈S1,x≠y

⎛
⎜⎜
⎝

∣u(x)v(y)−u(y)v(x)
v(x)v(y) ∣
∣x − y∣γ

⎞
⎟⎟
⎠

≤ µ
−1∣∣u∣∣∞ + sup

x,y∈S1,x≠y

⎛
⎜
⎝

∣∣v∣∣∞∣u(x) − u(y)∣ 1
∣v(x)v(y)∣

∣x − y∣γ
⎞
⎟
⎠

≤ µ
−1∣∣u∣∣∞ + ∣∣v∣∣∞ sup

x,y∈S1,x≠y

( ∣u(x) − u(y)∣µ
−2

∣x − y∣γ )

≤ µ
−1∣∣u∣∣∞ + ∣∣v∣∣∞µ−2

sup
x,y∈S1,x≠y

( ∣u(x) − u(y)∣∣x − y∣γ )

≤ (µ−1
+ ∣∣v∣∣γµ−2)∣∣u∣∣γ =∶ C∣∣u∣∣γ

B.3 Proof that
√
u2 + u2

θ
∈ h

γ
if u ∈ h

2+γ
.

Lemma B.3. Let u ∈ O. Then
√
u2 + u2

θ
∈ X.

Proof. For any u ∈ O we know that u > 0 and continuous, implying there exists a λ > 0 such that

u ≥ λ > 0. Thus we know that
√
u2 + u2

θ
≥ λ. Using the mean value theorem, we can estimate the Hölder

norm [
√
u2 + u2

θ
]X by

[
√
u2 + u2

θ
]X = sup

x,y∈S1,x≠y

∣
√
u2(y) + u2

θ
(y) −

√
u2(x) − u2

θ
(x)∣

∣y − x∣γ

≤ sup
x,y∈S1,x≠y

1

∣x − y∣γ sup
θ∈S1

∣ ∂
∂θ

√
u2(θ) + u2

θ
(θ)∣∣y − x∣

= sup
x,y∈S1,x≠y

sup
θ∈S1

∣ 1√
u2(θ) + u2

θ
(θ)

(u(θ)uθ(θ) + uθ(θ)uθθ(θ))∣∣y − x∣1−γ

≤ sup
x,y∈S1,x≠y

sup
θ∈S1

∣ 1
λ
(u(θ)uθ(θ) + uθ(θ)uθθ(θ))∣∣y − x∣1−γ .

Since u, uθ, uθθ are bounded functions, we know that there is a C > 0 such that ∣2u(θ)uθ(θ)+2uθ(θ)uθθ(θ)∣ ≤
C(∣∣u∣∣∞ + ∣∣uθ∣∣∞). As x, y ∈ S

1
we also know that ∣x − y∣1−γ ≤ µ for some µ > 0. Using these estimates,

we obtain

[
√
u2 + u2

θ
]X ≤ sup

x,y∈S1,x≠y

1

λ
C(∣∣u∣∣∞ + ∣∣uθ∣∣∞)µ

=
1

λ
C(∣∣u∣∣∞ + ∣∣uθ∣∣∞)µ

≤
1

λ
Cµ∣∣u∣∣D.

(B.2)

(B.3)

(B.4)

For ∣∣
√
u2 + u2

θ
∣∣∞ we know that

∣u2(x) + u2
θ(x)∣

1/2
≤ ∣u(x)∣ + ∣uθ(x)∣,
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so that

∣∣
√
u2 + u2

θ
∣∣∞ ≤ ∣∣u∣∣∞ + ∣∣uθ∣∣∞ ≤ ∣∣u∣∣D.

Overall, we obtain that

∣∣
√
u2 + u2

θ
∣∣X ≤ ( 1

λ
Cµ + 1)∣∣u∣∣D <∞,

which means that the function is in C
γ(S1). For the function to be in h

γ(S1) we see that

0 ≤ sup
x,y∈S1,∣x−y∣<δ

∣
√
u2(y) + u2

θ
(y) −

√
u2(x) − u2

θ
(x)∣

∣y − x∣γ ≤ sup
x,y∈S1,∣x−y∣<δ

C
1

λ
∣∣u∣∣D∣x − y∣1−γ

< C
1

λ
∣∣u∣∣Dδ1−γ

→ 0 as δ → 0.

By the squeeze theorem we obtain that also

lim
δ→0

sup
x,y∈S1,∣x−y∣<δ

∣
√
u2(y) + u2

θ
(y) −

√
u2(x) − u2

θ
(x)∣

∣y − x∣γ = 0,

which means that the function is in h
γ(S1) = X.

C Auxiliary lemmas diffusive model

C.1 Derivation of the trace of the transformed gradient on the unit ball

Lemma C.1. Let ψ ∈ O and f ∶ Ω1 → Ω1 differentiable and z = z(ψ) as defined by Equation (3.2). Then
z
∗ ◦ ∇ ◦ z∗f ∣S1 can be written as

z
∗
◦ ∇ ◦ z∗f ∣S1 = J

−T
z ∇af, (C.1)

where ∇a = Tr ◦ ∇1, and ∇1 = (∂a, ∂b) denotes the vector of derivatives with respect to coordinates in Ω1.

Proof. Assume that Ωψ has coordinates x1, x2 and Ω1 has coordinates va, vb. Additionally, let ∇ = (∂1, ∂2)
be the gradient with respect to coordinates in Ωψ and ∇1 = (∂a, ∂b) where ∂a is the derivative with respect

to va in Ω1. Then we have for every (va, vb) ∈ Ω1 a pair (x1, x2) ∈ Ωψ such that (va, vb) = z−1(x1, x2) =
(z−1
a (x1, x2), z−1

b (x1, x2)). We can use the chain rule to obtain

∇ ◦ z∗f = (∂1(f (z−1(x1, x2)))
∂2(f (z−1(x1, x2)))

)

= (∂af (z
−1(x1, x2))∂1z

−1
a (x1, x2) + ∂bf (z−1(x1, x2))∂1z

−1
b (x1, x2)

∂af (z−1(x1, x2))∂2z
−1
a (x1, x2) + ∂bf (z−1(x1, x2))∂2z

−1
b (x1, x2)

) .

Applying the pullback z
∗

to this expression componentwise yields

z
∗
◦ ∇1 ◦ z∗f = (z

∗(∂af (z−1(x1, x2))∂1z
−1
a (x1, x2) + ∂bf (z−1(x1, x2))∂1z

−1
b (x1, x2))

z
∗(∂af (z−1(x1, x2))∂2z

−1
a (x1, x2) + ∂bf (z−1(x1, x2))∂2z

−1
b (x1, x2))

)

= (∂af (z
−1(z(va, vb)))∂1z

−1
a (z(va, vb)) + ∂bf (z−1(z(va, vb)))∂1z

−1
b (z(va, vb))

∂af (z−1(z(va, vb)))∂2z
−1
b (z(va, vb)) + ∂bf (z−1(z(va, vb)))∂2z

−1
b (z(va, vb))

)

= (∂af (va, vb)∂1z
−1
a (z(va, vb)) + ∂bf (va, vb)∂1z

−1
b (z(va, vb))

∂af (va, vb)∂2z
−1
b (z(va, vb)) + ∂bf (va, vb)∂2z

−1
b (z(va, vb))

)

= J
T
z−1(z(va, vb))∇1f (va, vb).
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Note that since z is a diffeomorphism, we have that Jz−1(z(va, vb)) = J−1
z (va, vb), so that

z
∗
∇1(z∗c)(va, vb) = J−Tz (va, vb)∇1f (va, vb).

Note that the inverse of the Jacobian evaluated at S
1

is given by

J
−1
z(ψ) =

1

ψ2
(ψ cos(θ) + ψθ sin(θ) ψ sin(θ) − ψθ cos(θ)

−ψ sin(θ) ψ cos(θ) + ψθ sin(θ))

Thus we obtain that z
∗ ◦ ∇z∗f ∣S1 is given by

z
∗
◦ ∇z∗f ∣S1 = J

−T
z Tr ◦ ∇1f (va, vb) = J−Tz ∇af.

C.2 Interpolation property of Hölder spaces

Lemma C.2. Let γ1 ∈ (0, γ2). Then for all ε > 0 there exists a Cε > 0 such that

∣∣u∣∣γ1 ≤ ε∣∣u∣∣γ2 + Cε∣∣u∣∣∞

for all u ∈ h
γ1.

Proof. First we note that C
γ1(S1) is an interpolation space of class γ1/γ2 between C(S1) and C

γ2(S1).[Lunardi, 1995,
Proposition 1.1.3 ]. Let u ∈ h

γ1(S1) ⊂ Cγ1(S1) and ε > 0 fixed. By the interpolation class property, we
know that there is a constant c such that

∣∣u∣∣γ1 ≤ c∣∣u∣∣
1−γ1/γ2
γ2 ∣∣u∣∣γ1/γ2∞ .

Recall that Young’s inequality for products states that for all a, b ≥ 0, we know

a
p
b
q
≤ pa + qb,

where we let p = 1 − γ1/γ2, q = γ1/γ2. We choose a = c
−1

1/pε∣∣u∣∣γ2 , b = c
p/q
p
p/q
ε
−p/q∣∣u∣∣∞ Then we obtain

that
∣∣u∣∣γ1 ≤ c∣∣u∣∣

p
γ2 ∣∣u∣∣

q
∞

= c(1/pε∣∣u∣∣γ2)
p(pp/qε−p/q∣∣u∣∣∞)q

= ca
p
b
q

≤ cpa + cbq

= c/cp/pε∣∣u∣∣γ2 + cqc
p/q
p
p/q
ε
−p/q∣∣u∣∣∞

= ε∣∣u∣∣γ2 + Cε∣∣u∣∣∞,

where Cε = qc
(p+q)/q

p
p/q
ε
−p/q

> 0.
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