
 Eindhoven University of Technology

MASTER

Avantstep
parallel query execution in graph databases

van der Looij, J.W.F.M.C.

Award date:
2021

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/ab665c78-b8c4-4404-bd00-e415af0593df


Database group

Graduation project

Thesis

Avantstep: parallel query execution in graph databases

Computer Science and Engineering
Quartile 3-4: 2020-2021

J.W.F.M.C. van der Looij j.w.f.m.c.v.d.looij@student.tue.nl

Supervisors
N. Yakovets n.yakovets@tue.nl
A.A.G van de Wall a.a.g.v.d.wall@tue.nl

Eindhoven, July 12, 2021



Abstract
Modern servers contain enough computing power and
available memory that just a few decades ago was only
available in large distributed computing clusters. Due
to the increase in amount and speed of memory, the
execution becomes limited by the computational bottle-
neck instead of the I/O bottleneck. This thesis presents
a graph execution engine designed to solve this compu-
tational bottleneck by utilising the parallelism available
in modern servers. The execution engine is based on
the relational execution engine called Quickstep. We
describe how the design of the relational engine is mod-
ified and extended for use in graph databases, which
is then implemented in AvantGraph, an existing graph
database. Furthermore, we present experimental results
comparing the performance of our parallel graph execu-
tion engine to the existing sequential graph execution
engine in AvantGraph, demonstrating that the parallel
execution engine can both utilise the parallelism avail-
able in modern servers and outperform the sequential
graph execution engine.

Table of Contents
1 Introduction 2

2 Background 3
2.1 Query Semantics . . . . . . . . . . . . . 3
2.2 Query pipeline . . . . . . . . . . . . . . 4
2.3 Intermediate result pipelining . . . . . . 4
2.4 Row-wise and column-wise layout . . . . 4
2.5 Transitive closure . . . . . . . . . . . . . 5
2.6 Worst-case optimal . . . . . . . . . . . . 5
2.7 Parallelism . . . . . . . . . . . . . . . . 6
2.8 Quickstep execution model . . . . . . . 7

3 Approach 8
3.1 Architecture . . . . . . . . . . . . . . . . 8
3.2 Scheduling and execution . . . . . . . . 8

3.2.1 Threading model . . . . . . . . . 9
3.2.2 WorkUnit based scheduler . . . . 9
3.2.3 Separation of Policy and Mecha-

nism . . . . . . . . . . . . . . . . 10
3.3 Transitive closure . . . . . . . . . . . . . 11

3.3.1 Transitive closure via repeated
joining . . . . . . . . . . . . . . . 11

3.3.2 Transitive closure via depth first
search . . . . . . . . . . . . . . . 12

3.4 Leap frog trie join . . . . . . . . . . . . 12
3.4.1 Conventional leap frog trie join . 13
3.4.2 Leap frog trie join with one arbi-

trary input . . . . . . . . . . . . 14

4 Experimental evaluation 15
4.1 Evaluation criteria . . . . . . . . . . . . 15
4.2 System configuration . . . . . . . . . . . 15
4.3 Dataset . . . . . . . . . . . . . . . . . . 15
4.4 Workload . . . . . . . . . . . . . . . . . 15
4.5 Evaluation method . . . . . . . . . . . . 16
4.6 Measurement points . . . . . . . . . . . 16
4.7 Results . . . . . . . . . . . . . . . . . . . 17

4.7.1 Inter-engine performance difference 17
4.7.2 Multiple threads difference . . . 18
4.7.3 Parallel scalability . . . . . . . . 19
4.7.4 Speedup over original . . . . . . 19

5 Related work 22

6 Conclusion 24



1 Introduction
Graph databases have numerous applications spanning
various domains. For example, graph databases are
used to store and analyse different types of networks.
These networks include social networks [34] and com-
plex heterogeneous biological data [37]. Furthermore,
graph databases are used to store and query graphs
containing encyclopedic data, also known as knowledge
graphs. Besides these applications, graph databases
are used in other workloads that query the underlying
graph structure of the data. Compared to traditional re-
lational databases, graph databases provide significant
performance advantages in these situations [16].

We are interested in the evaluation of Union of Con-
junctive Regular Path Queries (UCRPQ). These type
of queries combine different types of graph evaluation
namely, subgraph matching (also known as Conjunctive
queries (CQ)) and reachability (also known as Regular
Path Queries (RPQ)) [8]. Union of Conjunctive Regu-
lar Path Queries are often described using a high-level
declarative language, such as SPARQL or RPGQ, in
which the path predicates are defined. The output of
these queries are all vertex binding which satisfy the
path predicates.

There are various differences between relational and
graph databases. For example, in relational databases
the structure of the data must be know beforehand
(schemas), whereas a graph database does not require a
predetermined data structure [27]. Another difference
is the type of queries which are executed. Although
supported, recursive queries are not at the foundation
of relation databases. Recursive queries are not sup-
ported by early versions of SQL, the query language
used by most relational databases, nor Relational alge-
bra (RA), the formal query language SQL is based on
[31]. Support for recursive queries was added in later
versions of SQL and RA is often extended to include
support for recursive queries. In contrast, recursive
queries lie at the core of graph databases. One of
the fundamental types of graph queries are reachabil-
ity queries, which are based on recursion. Obtaining
bounds on the output of queries is a heavily researched
topic in the database community. A tight Worst Case
Optimal (WCO) bound on the output size of conjunc-
tive queries has been discovered by Atserias et al. [4].
One WCO join algorithm is the Leap Frog Trie Join
(LFTJ) [36]. Although conjunctive queries can be found
in relational databases, they are much more prevalent
in graph databases as conjunctive queries are another
fundamental type of graph query.

This thesis is primarily focused on the part of a
database management system (DBMS), which executes

the queries, namely the execution engine. Before exe-
cution, a query must first be parsed and planned. The
execution engine interprets the generated plan to exe-
cute. During interpretation, an operator tree is created
in memory, and the execution engine navigates the op-
erator tree executing the required code based on the
operator type(s) in the tree.

Historically, I/O operations have been the dominating
factor in execution time. However, with the introduc-
tion of SSDs, the cost of I/O operations have reduced
significantly. Furthermore, with the ever increasing
size of available main-memory, I/O operations are no
longer necessarily the dominating factor. In addition,
with sufficient main-memory, entire data sets can be
stored in memory eliminating the I/O factor nearly com-
pletely. When data sets fit in memory, the dominating
factor often becomes the execution of the operators
themselves.

Extensive research has been done to ensure that the
amount of work performed by these operators are as
close to optimal as possible, which means that the dom-
inating factor often cannot be solved by performing
less work. The speed at which a single piece of work
can be executed by modern hardware is often limited.
However, with the introduction of concurrent execution,
numerous different pieces of work can be executed simul-
taneously. Because the amount of work can often not be
reduced, a possible solution to the current dominating
factor is to perform the work concurrently.

Due to the change in dominating factor, different de-
sign considerations are required when building modern
execution engines. A number of (relational) execution
engines have already been designed with the change
in dominating factor in mind, for example Quickstep
[28]. However, due to the differences between relational
and graph databases, solutions designed for relational
databases cannot always be directly applied to graph
databases.

Research Questions. Numerous modern execution en-
gines have been designed for relational databases. How-
ever, due to the differences between relational and graph
databases, these designs cannot always simply be ap-
plied in graph databases. Therefore, we try to answer
the following: 1) How can the research in modern rela-
tional execution engine be adapted for graph databases?
2) How can the Transitive Closure and Leap Frog Trie
Join be parallelised? 3) What are the effects of parallel
execution on query performance?

As we answer these research questions, we furthermore
contribute the following:

1. We describe and implement an adaptation of the

2



Quickstep design for use in Graph databases (Sec-
tion 3.1),

2. We describe how the design for Quickstep can be
extended to support cyclic queries (Section 3.2.2),

3. We describe how operators, such as Transitive
Closure (Section 3.3) and Leap Frog Trie Join
(Section 3.4), can be implemented in a parallel
vectorised execution engine, which are then imple-
mented,

4. We evaluate the effects of parallel vs sequential
query execution on large real-world graphs and
evaluate the parallel scaling capabilities in various
different scenarios (Section 4).

The remainder of this thesis is organised as follows:
Section 2 provides an overview of preliminaries and
background information. In Section 3, we describe the
design of the parallel execution engine along with the
extensions required, highlight the similarities and differ-
ences with Quickstep’s design, and finally, implement
the design. Section 4 provides an evaluation of the
parallel execution engine and a comparison with the
original execution engine. We then compare our imple-
mentation to related work in Section 5. And finally, we
conclude in Section 6.

2 Background

2.1 Query Semantics

Graph databases are designed to answer queries using
the information encoded in graphs. In this thesis, we
consider queries on property graphs. Property graphs
are graphs where each vertex and edge are assigned a
set of labels and key-value pairs.

These graphs are formally defined as follows. Let O be
a set of objects, L be a finite set of labels, K be a set of
property keys, and N be a set of values. Furthermore,
we assume that these sets are pairwise disjoint. A prop-
erty graph is given by the tuple (V,E, η, λ, v), where
V,E ⊆ O are disjoint sets of vertices and edges respec-
tively. The function η : E → V × V assigns an ordered
vertex pair — the source and target vertex — to each
edge in the graph. The function λ : V ∪ E → P(L) as-
signs to every vertex and edge a (possibly empty) set of
labels. Finally, the partial function v : (V ∪E)×K → N
assigns a value from N to properties in K. For each
vertex and edge in the graph, the number of assigned
properties is finite.

Figure 1: Example property graph, with numbers as-
signed to the vertices and edges.

An example graph is shown in Figure 1. The labels
are wrapped in angle brackets and each vertex and
edge is assigned a label. Furthermore, vertices and
edge are assigned a number allowing easy referral to
specific vertices and/or edges. Properties are shown
in tables and the dashed line points to the associated
vertex. The formal definition of the example graph
would be:

V = {0, 1, 2, 3, 4}
E = {5, 6, 7, 8, 9}

η(5) = (0, 1)
η(6) = (0, 3)
η(7) = (1, 2)
η(8) = (2, 3)
η(9) = (1, 4)
λ(0) = {〈person〉}
λ(1) = {〈person〉}
λ(2) = {〈person〉}
λ(3) = {〈company〉}
λ(4) = {〈company〉}
λ(5) = {〈ancestorOf〉}
λ(6) = {〈worksAt〉}
λ(7) = {〈ancestorOf〉}
λ(8) = {〈worksAt〉}
λ(9) = {〈worksAt〉}

v(0, "Name") = "John"
v(1, "Name") = "Jim"
v(2, "Name") = "Jane"
v(3, "Name") = "Doe Inc."
v(4, "Name") = "Ace Inc."

We can execute Union of Conjunctive Regular Path
Queries (UCRPQ) on property graphs. Formally, such
a query consist of a finite non-empty set of Conjunc-
tive Regular Path Queries (CRPQ) each with the same
number of output variables.A CRPQ consists of three
parts. First, a set of vertex variables V. Second, body
predicates given by (v1, v2, p), where v1, v2 ∈ V define
the source and target vertex of the edge (or path), p
defines a predicate over the edge (or path) enforcing the

3



Figure 2: A graph pattern describing people(P) that
work at the same company (C ) as one of their descen-
dants (D).

existence thereof and/or placing additional constraints
on the labels assigned to the edges. Third, body con-
straints, which can enforce certain requirements. These
requirements can include that elements in the body
predicates are assigned certain labels or place restric-
tions on the properties of vertices and edges.

The results of these type of queries are a subsets of ver-
tices for which there exists an assignment a : V (G′)→
V (where V (G′) are the vertices in the subset) such
that all the vertex and edge predicates are fulfilled.
For example, we might want to know the set of people
that work at the same company as one of their descen-
dants. Figure 2 shows a graph pattern encoding the
query. If this example is executed on the example graph
previously shown in Figure 1, the only vertex subset
matching the pattern is the subset {0, 2, 3}. The ver-
tices 1, 4 are not part of the assignment and therefore
not part of the result.

2.2 Query pipeline

In a typical database, a query goes through three differ-
ent stages before the query is executed. These stages
are depicted in Figure 3. First the query is parsed
and translated into an intermediate representation, for
example an Abstract Syntax Tree (AST). In the follow-
ing stage, the optimal method of execution — which
query operators to use — is calculated by the planner
using statistics and heuristics, resulting in a physical
query plan. The difference between the physical query
plan and the previous query representations, is that the
query plan encodes how to answer the query, whereas
the previous representations only contain the question
to be answered. The physical query plan consists of
operator primitives which describe operations that need
to be performed. For example, merge-join and table-
scan. Once the physical plan is created, it is send to
the execution engine, which executes it.

2.3 Intermediate result pipelining

Every operator in the physical query plan produces
results. The results produced by the last operator are
the query results, while the results produced by other

Figure 3: The different representation status of the
query before execution [35].

operators are intermediate results used as input for
other operators.

If an operator must be fully executed before starting
with the next one, all results produced by the opera-
tor must be buffered until the next operator can use
them. Materialising the intermediate results by buffer-
ing can be expensive or even impossible due to memory
constraints. The complete materialisation of interme-
diate results can be prevented by sending them to the
next operator and processing them as soon as possi-
ble, which is called pipelining. Pipelining results from
one operator to the next ensures that only a fraction
of the intermediate results is materialised simultane-
ously. The downside to pipelining the results is the
additional overhead introduced due to the repeated
context switching.

The overall cost of pipelining can be reduced by sending
results in blocks instead of individually. When results
are sent in blocks, the cost of changing which operator
is executed can be amortized over more tuples. For
example, if 1024 tuples are pipelined together in a single
block, then which operator is executed is switched only
once every 1024 tuples. This method does, however,
result in additional materialisation cost as more results
are materialised at once — 1024 compared to only
1.

2.4 Row-wise and column-wise lay-
out

A collection of tuples can be stored row- or column-
wise. Storing tuples row-wise means that each tuple is
stored in a continuous block of memory and for each
tuple, a pointer to the block of memory is kept. Storing
tuples column-wise means that each column is stored
in a continuous block of memory and for each column
a pointer to the block of memory is stored. The cost of
removing a tuple from a set of tuples stored row-wise is
cheap, as only the pointers have to be moved. The cost
of removing a tuple from a set of tuples stored column-
wise can be quite expensive because, for each column,
possibly all values must be moved. To prevent these
expensive deletions, an additional column is stored,
namely a selection column. The selection column stores

4



the indexes of the tuples which have not been removed.
When a selection column is used, removing a tuple
only requires modification to a single column, namely
the selection column, in which deletions are performed
similar to row-wise tuple deletion. If an operator does
not remove tuples, the selection column can be omitted
and the tuples can be access directly. Omitting the
selection column can be seen as there being a default
identity selection column. Figure 4 depicts two tuple
blocks, one using a row-wise and one using a column-
wise layout. In both depictions, arrows are used to
indicate the values associated with the tuples. The
row-wise block contains 4 tuples with pointers to their
memory blocks. In order to access the first field of the
second tuple, the memory location of the second tuple
is retrieved from the index column and then the value
can be read from the memory location. The column-
wise block also contains 4 tuples, however, the selection
column contains gaps in the indexes where tuples have
been removed. In order to access the first field of the
second tuple, the offset of the second tuple is retrieved
from the selection column — which in this case is 3 —
and then from the first column, the value located at
the offset can be read.

Figure 4: Examples of tuple blocks.

2.5 Transitive closure

One of the core functionalities of modern graph
databases involves querying reachability.

When querying reachability, we look for all vertex pairs,
for which there exists a path in the graph, such that
the edge labels along the path satisfy the constrains in
the query. Part of the example query shown in Figure 2
contains an example of reachability. In contrast to the
left and right edge, the bottom edge is augmented with
a "+". The addition of the "+" indicates that the two
vertices P and D, do not have to be connected by a
single edge, but can be connected by a path of one or
more edges.

Reachability can be evaluated by various methods.
One of these methods is the Transitive Closure (TC).
The transitive closure is defined as follows, let G =

(V,E, η, λ, v) be a property graph and R ⊆ V × V be a
binary relation which contains pairs of vertices in G. R
is called transitive on a set of vertices V is for all ver-
tices s, v, t ∈ V if it holds that (s, v) ∈ R and (v, t) ∈ R
it implies that (s, t) ∈ R. The transitive closure R+ of
the relation R is the smallest binary relation on V that
contains R and is transitive. [8].

The relation B is called the base relation over which
the transitive closure B+ is computed. Depending on
how the relation B is defined over the graph G, B+

can be used to represent various different reachability
patterns. For example, if the relation B contains all
vertex pairs which are connected by an edge with the
label ancestorOf , B+ would contain all pair of vertices
(s, t) such that vertex t can be reached from vertex s
by following only edges with the label ancestorOf .
Using the example graph shown in Figure 1, the base
relation B would be {(0, 1), (1, 2)} and the relation
B+ would be {(0, 1), (1, 2), (0, 2)}. Figure 5 shows a
visual representation of the base relation B depicted
with black edges and the transitive closure B+ depicted
with red edges.

Figure 5: Transitive closure (shown as red edges) over
the base relation (shown as black edges) defined by
ancestorOf in the example graph. The vertices and
edges have been numbered to facilitate referral to ver-
tices and/or edges.

2.6 Worst-case optimal

The join operator is one of the core query operators
and forms the base of many query languages, such as
SQL.

Therefore, minimising the work performed by a query
often involves minimising the work performed by join
operators. A lower bound on the minimal amount of
work required to evaluate join operators is the output
size as the algorithm has to enumerate all the output
tuples. Obtaining a bound on the output size of com-
plex join patters is often non-trivial. Furthermore, the
obtained bound often cannot be achieved by conven-
tional join operators, such as merge join, or nested loop
join.

Consider the following join query, q(x, y, z) =
R1(x, y), R2(y, z). Here q denotes the query, x, y, z
are the variables in the query, and R1, R2 are the re-
lations in the query. For this query it is easy to see

5



that the largest possible output is |R1| · |R2|, which
occurs when all the tuples in the relations pair-wise
join.

However, for more complex queries, obtaining a worst-
case optimal (WCO) bound might not be trivial. At-
serias et al. [4] proposed a method based on fractional
edge covers for obtaining a WCO bound. The bound ob-
tained by this method is also known as the AGM bound.
The AGM bound can be obtained as follows.

Let vars(q) denote all the variables of the query q and
vars(Rj) denote all the variables belonging to relation
Rj .

A fractional edge cover of a conjunctive query q is a
vector u, which assigns a weight uj to the relation
Rj , such that for every variable x ∈ vars(q), we have
that: ∑

j:x∈vars(Rj)

uj ≥ 1

Furthermore, let q be a full conjunctive query. Then,
for every fractional edge cover u of q, we have that:

|q| ≤
|R|∏
j=1

|Rj |uj (2.1)

The AGM bound is obtained by computing the cardi-
nality of q (Equation (2.1)) using the minimal fractional
edge cover, i.e. a fractional edge cover with minimal
weight.

Consider the following triangle query, qt(x, y, z) =
R(x, y), S(y, z), T (z, x). Figure 6 shows the query qt
encoded in a graph pattern. Furthermore, suppose
|R| = |S| = |T | = N . Then the minimal fractional
edge cover assigns a weight of 0.5 to each relation. The
AGM bound for qt would be |qt| ≤ N3/2.

Conventional join algorithms perform pairwise joins,
which would give us a bound of Ω(N2). However, the
AGM bound is tighter than the bound obtained by
using conventional join algorithms.

In order to achieve the AGM bound, the selectivity of
multiple joins can be leveraged. To understand how
leveraging selectivity can help lets consider the follow-
ing query qs = R(x), S(x), T (x). Figure 7 shows the
selectivity of each relation with regards to x. For ex-
ample, R(x) selects the first million and third million
values of x. The selectivity of any pairwise combination
of relations results in a selectivity of 1/3, however, the
selectivity of all relations combined results in a selectiv-
ity of 0. Thus to obtain the minimal selectivity, all three
relations should be evaluated simultaneously.

A similar approach can be used to obtain a tighter
bound for the join results, namely, performing multiple
joins simultaneously. One such join algorithm is the
Leap From Trie Join (LFTJ) proposed by Veldhuizen
[36].

Figure 6: A graph pattern describing a triangle query.

Figure 7: Selectivity of query qs.

2.7 Parallelism

There are various different techniques to execute queries
in parallel. To illustrate the different techniques, two
example queries, as shown in Figure 8, are used.

The execution plans of the queries are represented by
operator trees, where the nodes represent the operators
and the edges represent the dependencies between oper-
ators. Two operators are non-dependant when neither
operator depends on the other.

The simplest technique is to execute multiple sequential
queries in parallel. Figure 9 shows the execution of
the two examples queries using this technique. This
technique can be classified as inter-query parallelism.
A disadvantage is that this technique cannot be used
to speed up a single query.

Another technique is to execute non-dependant query
operators in parallel. Consider the example query 1
(Figure 8) consisting of a single join on two relations.
The operators reading the relations are non-dependant
and can be executed in parallel. Figure 10 shows the
execution of the two examples queries using this tech-
nique.

The variation which executes dependant operators in
parallel utilises result pipelining. Without parallelism,
in order to process pipelined results, the executing query
operator has to be switched. However, if parallelism is
used, both query operators can be executed simultane-
ously, avoiding operator switching. Figure 11 shows the

6



execution of the two examples queries using this tech-
nique. Both techniques can be classified as intra-query
or inter-operator parallelism. A disadvantage is that
operators themselves are still executed sequentially, and
therefore these techniques cannot be used to speed up
queries, which are dominated by a single operator. The
second example query is dominated by the Selection
operator.

The last technique is to execute the work for a sin-
gle operator in parallel. Consider the join operator in
example query 1 (Figure 8). The join operator will
pairwise compare tuples from both relation for possible
joins. Rather than comparing these tuples sequentially,
the multiple tuples can be compared in parallel. Fig-
ure 12 shows the execution of the two examples queries
using this technique. This technique can be classified as
intra-operator parallelism. A disadvantage of this tech-
nique is that it cannot be applied to all operators. For
example, the Read X and Selection operators cannot
be parallelised and the Read Y and Read Z operators
have limited parallelism.

As can be seen in the execution examples, each tech-
nique has disadvantages and none of them can fully
utilise all the parallelism available. Therefore a combi-
nation of all techniques is required to fully utilise the
parallelism. An example in which all techniques are
used is shown in Figure 13. When all techniques are
used, all available parallelism is utilised.

Figure 8: Two example queries.

Figure 9: Two example queries executed using inter-
query parallelism.

Figure 10: Two example queries executed using intra-
query parallelism without pipelining.

Figure 11: Two example queries executed using intra-
query parallelism with pipelining.

Figure 12: Two example queries executed using intra-
query parallelism.

Figure 13: Two example queries executed using all
forms of parallelism.

2.8 Quickstep execution model

Over the years, many database systems have been de-
signed to utilise the parallelism available in modern
hardware, one of which is Quickstep. In order to take
full advantage of the parallelism available, Quickstep
utilises several types of parallelism. The three most
important of which are, intra-operator parallelism, inter-
operator parallelism, and lastly, inter-query parallelism.
To enable these different types of parallelism, several
techniques are used.

Normally, execution management and the actual exe-
cution are interwoven. In contrast, in Quickstep, exe-
cution management and the actual execution has been
separated and divided into a management thread and
several worker threads. The management thread del-
egates the execution of the work to different worker

7



threads. Separating management and execution allows
work to be divided across multiple threads and therefore
utilise more of the available parallelism.

In order to divide the work across multiple execution
threads, each query operator has been designed such
that it can be divided into multiple sub-tasks. These
sub-tasks are independent of one another, and can
therefore be delegated to one of the execution threads.
Splitting the query operators into multiple sub-tasks
enables Quickstep to take advantage of intra-operator
parallelism. Furthermore, to enable intra-operator par-
allelism, intermediate result pipelining is used. And
lastly, multiple queries can be executed concurrently,
which allows for inter-query parallelism.

3 Approach

In this thesis, we implement parallel query execution in
the pre-existing graph database AvantGraph — a single-
threaded main-memory graph-database developed at
the TU/e [5]. We completely replace the existing execu-
tion engine to support parallel query execution.

3.1 Architecture

The design is based on the architecture used by Quick-
step, borrowing the general ideas and components. The
internal working of the components, however, is re-
designed to accommodate the use in graph databases
— as Quickstep is designed for relational databases —
as well as allowing integration into AvantGraph. The
internal architecture resembles that of a typical DBMS
engine. The distinguishing aspect is the combination
of the purpose designed query operators and scheduler,
which allows the execution engine to fully utilise the
parallelism available. A high level overview of the archi-
tecture of the execution engine is shown in Figure 14.
The figure shows the different components and how each
component interacts with the other components.

A Command Line Interface (CLI) is used, which is
responsible for the interaction between the user and the
execution engine. The CLI is responsible for sending
queries to the execution engine and presenting the result
of the queries to the user.

In order to facilitate communication between the differ-
ent components of the execution engine a Message bus
is used. The functionality provided by the Quickstep
message bus was suitable for the functionality required
in AvantGraph. Therefore, the message bus is nearly
identical to the message bus in Quickstep. Only small
modifications have been made to allow integration into
AvantGraph.

Memory management of the (intermediate) query re-
sults is handled by the Storage manager. The design is
based on a block-based architecture. To prevent contin-
uously moving complete blocks of data, each block is
assigned a unique id. This unique id is shared between
the components, which can use the id to retrieve the
block when required.

An execution plan is encoded as a directed graph, also
known as a DiGraph, of relational operators. The exe-
cution plan is created by the optimizer and then sent to
the scheduler, which is described in Section 3.2.

The query operator library contains implementations
of various query operators. Currently, the library has
implementations for the following operators: select,
project, join, rename, and union. Furthermore, several
data access operators have been implemented, such as,
read edges, read vertices, and read properties among
others.

The execution engine implements several join algo-
rithms, such as nested loop join, indexed nested loop
join, merge join, hash join, and leap frog trie join. The
hash join consist of two operators, a build and probe
operator.

Nearly all operators take advantage of block level paral-
lelism. Some data access operators cannot take advan-
tage of block level parallelism due to their sequential or
random nature. Another example is the LFTJ operator,
which depending on the version, may use a different
form of parallelism, the details of which are given in
Section 3.4. Operators, which cannot take advantage
of block level parallelism, do return block based results
and support pipelining of these results.

Figure 14: High level architecture overview and com-
ponent interaction.

3.2 Scheduling and execution

In this section, we describe how the design of the exe-
cution engine achieves the three key objectives.

First, separating the control flow from the data flow
during query execution allows for greater flexibility and

8



extensible of the execution engine. In order to achieve
this objective, the execution engine separates these
flows into different components. The control flow is
handled by the scheduler and the data flow is handled
by the workers (Section 3.2.1).

Second, to fully utilise the parallelism available in mod-
ern processors, the execution engine complements the
block-based design with a WorkUnit based scheduling
model (Section 3.2.2) allowing for high intra-query and
intra-operator parallelism.

Finally, to obtain high inter-query parallelism, schedul-
ing policies are used which govern resource sharing
(such as CPU and memory) between concurrent queries
(Section 3.2.3).

3.2.1 Threading model

The execution engine consists of a single scheduler
thread, and a collection of workers threads.

The scheduler thread uses the query plan to gener-
ate and schedule work for the workers. When multi-
ple queries are executed concurrently, the scheduler is
responsible for enforcing resource allocation policies
across concurrent queries and managing query admit-
tance.

The workers are responsible for executing the query op-
eration tasks that are scheduled. Each worker is a single
execution thread, which is pinned to a CPU (or virtual)
core. The workers are created when the execution en-
gine starts and are kept alive across query executions,
minimising query initialisation cost. The number of
workers can vary and can be set (dynamically) when
the engine starts.

3.2.2 WorkUnit based scheduler

The scheduler divides the work for a query into a col-
lection of WorkUnits. First, we describe the WorkUnit
abstraction and provide examples of different WorkUnit
types. Next, we describe how WorkUnits are generated
by the scheduler for different types of operators in a
query plan, including pipelining and memory manage-
ment during query execution.

The query plan received by the scheduler is represented
as a DiGraph, in which each node represents a query
operator and each edge represents a dependency be-
tween query operators. Figure 16 shows the query plan
as a DiGraph for the query shown in Figure 15. For
each edge in the DiGraph it is shown whether the edge
allows results pipeling or is pipeline breaking.

Figure 15: Example of a query.

Figure 16: Example of a query plan DiGraph.

WorkUnit

A WorkUnit is a unit of intra-operator parallelism for a
query operator. Every query operator in the execution
engine encodes its work in a collection of WorkUnits,
where each WorkUnit contains references to its input
and all required parameters.

For example, a Selection WorkUnit contains a reference
to the input block, a selection predicate, and method for
obtaining a block into which the output can be written.
A selection operator will generate one WorkUnit for
each block in the input relation. Similarly, a Build
Hash WorkUnit contains a reference to the input block,
a collection of build keys, and a reference to a hash
table.

WorkUnit generation and execution

The scheduler uses a simple DiGraph traversal algo-
rithm to activate nodes in the graph for processing. The
algorithm closely resembles a Directed Acyclic Graph
(DAG) traversal algorithm, with the addition of a spe-
cial sub-routine to resolve transitive cycles in the graph.
The traversal algorithm starts at the leaf nodes and
moves up along the graph. An active node in the
DiGraph can generate schedulable WorkUnits. Once
a node becomes active, the scheduler can fetch these
WorkUnits.

In the example DiGraph (shown in Figure 16), the
two Read, the Selection, and Build Hash operators are
initially active. The Probe Hash is initially inactive

9



as the blocking dependency has not been met. Once
the blocking dependency of the Probe Hash operator
is met, the node will become active, and the scheduler
will fetch WorkUnits from the operator.

The scheduler will assign the execution of the fetched
WorkUnits to available workers, which will in turn
execute the WorkUnits. The results produced by these
WorkUnits are written to temporary storage blocks,
which are used as input for the next operators. For
example, the results of the Read X operator is used as
input for the Selection operator. After a worker has
executed a WorkUnit, the worker sends a completion
message to the scheduler.

Cyclic plans

The traversal algorithm used is based on a DAG traver-
sal algorithm.

An operator is finished once all their WorkUnits have
been generated and executed. Before an operator can
generate all WorkUnits, all input must be received first.
In order for the scheduler to know that all input has
been send to the operator, the child operator(s) generat-
ing the input must first be finished. The requirement of
child operator completion is transitive and will cascade
down the operator graph.

If there are no cycles in the graph, the transitive check
will eventually reach the leaf operators and is trivially
satisfied as per definition the leaf operators do not have
child operators and thus all possible input has been
received.

However, if there are cycles in the graph, the transitive
nature of the check will prevent any operator in the
cycle from being completed. The reason for this is that
an operator in the cycle (via transitivity) depends on
itself, therefore the operator must first be completed be-
fore it can be completed, which is of course impossible.
Because of this, an alternative completion check is used
for cyclic operators. Rather than checking each opera-
tor individually, all operators in the cycle are checked
simultaneously. In order for the cycle to be completed,
three conditions must hold. The first condition is that
for all operators in the cycle, all child operators not
part of the cycle must be completed. Second, no opera-
tor in the cycle can produce any new WorkUnits. And
third, all produced WorkUnits have been executed. If
these conditions hold, all operators in the cycle can be
completed, since all operators in the cycle received all
their inputs and all WorkUnits have been generated
and executed.

Implementation of pipelining

In the example plan DiGraph (Figure 16) the edge
for the Selection operator to the Build Hash operator
supports pipelining results. As described before, the
output of each Selection WorkUnit is written to tem-
porary blocks. Once such a block is full1, the blocks
are send to the Build Hash operator. The Build Hash
operator can create WorkUnits based on the received
input blocks, thus achieving pipelining.

The design of the scheduler separates the control flow
from the data flow. The control flow decisions are
encapsulated in the scheduling policy. The schedul-
ing policy can be changed to attain various objectives,
such as high performance, or various resource sharing
strategies among others. The current scheduler imple-
mentation schedules WorkUnits as soon as they are
available.

Intermediate result management

During query execution, intermediate results are stored
in temporary blocks. When possible, blocks belonging
to the same operator are reused and additional results
are appended until the blocks becomes full. Reusing
blocks is done to minimise the number of sparsely pop-
ulated blocks, reduce the number of created blocks and
with it the allocation overhead. For example, when a
join WorkUnit does not generate enough results to fully
fill the block, the block is reused by a different join
WorkUnit and additional results are appended.

Furthermore, to reduce the memory requirements
caused by storing intermediate results, these results
and the corresponding blocks are freed as soon as possi-
ble. Once all operators depending on the block do not
require the block anymore, and all WorkUnits requiring
the block as input have been executed, the block is
removed. When an operator is finished with the block,
varies across operators. For example, a Selection oper-
ator generates one WorkUnit for each input block, and
thus is finished with the block once the WorkUnit has
been generated — note that the generated WorkUnit
has not been executed and therefore the block is not
yet removed — whereas a Nested Loop Join operator
will generate many WorkUnits for each input block and
therefore requires the block until all WorkUnits have
been generated.

3.2.3 Separation of Policy and Mecha-
nism

The scheduler supports concurrent query execution.
The execution of a single query is governed by a Query

1Or based on a different configurable criteria.

10



execution manager. Recall that a query is decomposed
into query operators which are in turn are decomposed
into WorkUnits, which are executed. For each query,
all the WorkUnits belonging to the query are stored
and organised into a data structure called a WorkUnit
Container.

During scheduling a single decision consists of: selection
of a query, selection of a WorkUnit from the WorkUnit
container, and dispatch of the selected WorkUnit to a
worker.

When multiple queries are executed concurrently, one
key aspect of the scheduling decision is selecting a
query from the collection of concurrent queries. Various
policies for query selection can be used, such as priority
based, or expected duration.

In the current implementation, queries are selected
using a round robin approach. Once a query has been
selected a single WorkUnit is selected. Should a query
be selected multiple times, multiple WorkUnits are
selected. For example, if there are two queries executing,
and four WorkUnits have to be selected, two WorkUnits
are selected from each query.

3.3 Transitive closure

The transitive closure operator can be implemented
using various methods. Two of these methods will be
explained below. The first method uses a technique of
repeated joining, which is used in the original Avant-
Graph execution engine. The second method uses a
graph traversal algorithm, which is used in the parallel
execution engine.

Recall the following definitions: the relation B over
which the transitive closure B+ is computed is called
the base relation; the relation B+ is the smallest binary
relation which is transitive.

In order to successfully construct the transitive closure
B+, we have to ensure two things. First, we have to
ensure that the relation is transitive, i.e. contains all
transitive edges. Second, we have to ensure that the
relation is minimal, i.e. contains no duplicates.

3.3.1 Transitive closure via repeated join-
ing

The first method for constructing the transitive closure
relies on repeated joining to discover all edges and a
uniqueness check to remove all duplicates.

The base relation contains all single length edges. In
order to obtain all edges of length 2, single length edges
can be combined creating edges of length 2. Similarly,

edges of length 3 can be obtained by combining edges
of length 2 with edges of length 1. In order to obtain
edges of length n, edges of length n− 1 are combined
with edges of length 1.

Edges are always combined with edges of length 1.
Therefore, the same join operator can be used to com-
bine edges of arbitrary length with edges of length 1.
To combine edges, a hash join is used.

To compute the transitive closure, the following steps
are taken. First, using the base relation, a hash table
is constructed containing the length 1 edges. Next, the
base relation is checked for uniqueness and returned as
output, because the base relation contains all edges of
length 1. The output of the unique check is used as the
second input for the hash join. The following steps are
performed repeatedly until no more unique results are
produced. Lastly, the output of the hash join is checked
for uniqueness, returned as output, and used as input
for the hash join. The uniqueness check is required to
ensure that the returned output is minimal, but also to
ensure termination. Should the uniqueness check not
be used, a cyclic path can be traversed infinitely many
times. The uniqueness check prevents repeated traver-
sal of paths. An example of the query plan associated
with this method can be seen in Figure 17.

Consider the transitive closure of the ancestorOf rela-
tion shown in Figure 5. The black edges form the base
relation and the red edges the transitive closure. In this
example, in combination with the base relation, two
joins are required to discover all transitive edges. The
base relation contains all edges of length 1, the two red
edges 5, 6, which are checked for uniqueness, returned
as output, and used as input for the first join. The first
join discovers all edges of length 2, namely the edge
7, which is checked for uniqueness, returned as output,
and used as input for the second join. The second join
does not discover any new edges. As no edges have
been discovered, no unique edges have been discovered,
indicating that all edges have been discovered and that
the transitive closure of the ancestorOf relation has
been computed.

This method contains a cycle of different operators, such
as hash join, selection unique, and union among others.
The cyclic sub-routine is used to resolve operator com-
pleteness in the cycle. Because this transitive closure
implementation consist of other (basic) operators, par-
allelisation is achieved by leveraging the parallelism of
the base operators.

To illustrate how the execution of the transitive closure
can be parallelised, three example execution are shown
in Figure 18. The execution plan shown in Figure 18a

11



Figure 17: Example of a query plan DiGraph of a
transitive closure using repeated joining.

shows how the transitive closure is executed when no
parallelism is used. Each step in the execution has been
annotated, indicating what the step is used for, and
coloured to distinguish steps across different execution
plans. Figure 18b and Figure 18c show how the sequen-
tial execution plan can be executed in parallel using 2
and 3 processes respectively.

3.3.2 Transitive closure via depth first
search

The second method for constructing the transitive clo-
sure relies on a graph traversal algorithm to discover all
edges and uniqueness checks to prevent duplicate edge
discovery. The graph traversal algorithm is a Depth
First Search (DFS) and in contrast to the first method,
does not introduce any cycles in the query plan. Simi-
larly to the first method, a hash table is constructed
from the base relation. However, rather than using the
hash table as input for the hash join, the hash table is
used as an adjacency index.

From the base relation, all unique source vertices are ex-
tracted. The source vertices are used as starting points
for the DFS. The DFS will, using the adjacency index,
traverse all possible paths starting at a vertex. During
path traversal, a uniqueness check is used to prevent
duplicate traversal. Because all nodes discovered along
the traverse path are reachable from the source vertex,
edges are created between the source and the discov-
ered nodes, which are returned as output. A DFS is
performed from each of the unique source vertices. An
example of the query plan associated with this method

can be seen in Figure 19. All the source target ver-
tex pairs generated by the DFS are unique2 and are
returned as output of the transitive closure. Once the
DFS has been performed for each source vertex, the
transitive closure is complete. This implementation of
the transitive closure consist of other (base) operator
and one DFS operator. Similarly to how parallelism is
achieved in the base operators, the DFS operator uses
a block-based WorkUnit approach. The DFS WorkUnit
consist of a collection of source vertices from which to
start the DFS and the hash table to use as adjacency
index.

Consider the transitive closure of the ancestorOf re-
lation shown in Figure 5. The black edges form the
base relation and the red edges the transitive closure.
First, the adjacency index is constructed from the base
relation. Next, all unique source vertices are extracted
from the base relation, resulting in two source vertices,
namely 0 and 1. A DFS is started from each of these
source vertices. The DFS starting from the vertex 1
terminates after traversing one edge, namely 4. The
output of this DFS is the red edge 6. The DFS starting
from vertex 0 terminates after traversing two edges,
namely 3 and 4. The output of this DFS are the red
edges 5 and 7. Because all searches terminated, the
transitive closure of the ancestorOf relation has been
computed.

To illustrate how the execution of the DFS transitive
closure can be parallelised, three example executions
are shown in Figure 20. The execution plan shown in
Figure 20a shows how the transitive closure is executed
when no parallelism is used. Each step in the execution
has been annotated, indicating what the step is used
for, and coloured to distinguish steps across different
execution plans. Note, there are two DFS steps in the
execution plan, one for each source. Because one DFS
traverses twice as many edges as the other, the duration
is also twice as long. Figure 18b and Figure 18c show
how the sequential execution plan can be executed in
parallel using 2 and 3 processes respectively.

3.4 Leap frog trie join

There are two versions of the LFTJ operator in Avant-
Graph. The first version is a conventional LFTJ requir-
ing sorted inputs. The second version allows for one of
the input to be in arbitrary order.

2Note, the vertex pairs (1, 2) and (2, 1) are not counted as
duplicate as they denote different edges or paths in the graph.

12



(a) Execution using sequential processes

(b) Execution using 2 parallel processes (c) Execution using 3 parallel processes.

Figure 18: Examples of possible execution plans of the transitive closure using repeated joining.

Figure 19: Example of a query plan DiGraph of a
transitive closure using DFS.

3.4.1 Conventional leap frog trie join

The first version is a conventional LFTJ operator fol-
lowing the ideas presented in [36] and works completely
with variables and iterators. The conventional LFTJ
operator is a leaf operator and does not have any in-
put. Furthermore, the LFTJ is designed to only output
the final results and not materialise any intermediate
results. For these reasons, the LFTJ cannot trivially
be split into block-based WorkUnits. Because there
are no obvious splitting points in neither the input nor
the output, an alternative splitting point is required.
Recall that each WorkUnit should be independent of
other WorkUnits.

The binding of variables can be used as an alternative
splitting point. For example, when there are three
variables to bind, the binding of the second and third
variables depend on a specific binding of the first vari-

able, but are, however, independent of other bindings
of the first variable. Therefore, given certain variable
bindings, WorkUnits can be generated to bind the re-
maining variables. In the current implementation, the
binding of the first variable is done by the scheduler,
and for each binding found, a WorkUnit is created to
find the bindings of the remaining variables.

Consider the LFTJ query shown in Figure 21 of the
example graph shown in Figure 1. The manager will
find bindings for the first variable, a in our example.
Two possible bindings for the variable exist, namely
vertices 0 and 1. Two different WorkUnits will be
created one for each binding. The WorkUnit for the
binding with vertex 0 is able to bind the other variables
b, c, d with vertices 1, 2, 3, respectively. The complete
binding results in the output 1, 2, 3, 4. In contrast, the
WorkUnit for the binding with vertex 1 is not able to
find a binding for the other variables, resulting in no
output.

To illustrate how the execution of the LFTJ can be par-
allelised, two example execution are shown in Figure 22.
The execution plan shown in Figure 22a shows how the
LFTJ is executed when no parallelism is used. Each
step in the execution has been annotated, indicating
what the step is used for, and coloured to distinguish
steps across different execution plans. Note, there are
two LFTJ WorkUnits in the execution plan, one for
each initial binding. The duration of the WorkUnit
able to bind all variables is longer than the WorkUnit
which is not able to bind all variables. Figure 22b shows
how the sequential execution plan can be executed in
parallel using 2 processes. Because there are only two
bindings for the first variable, no example with three
processes is given.

13



(a) Execution using sequential processes

(b) Execution using 2 parallel processes (c) Execution using 3 parallel processes.

Figure 20: Examples of possible execution plans of the transitive closure using DFS.

Figure 21: Example of a LFTJ query.

(a) Execution using sequential processes

(b) Execution using 2 parallel processes.

Figure 22: Examples of possible execution plans of the
LFTJ.

There are several possible downsides to the current
approach. First, if there is only a single binding of the
first variable, only a single WorkUnit will be created
thus limiting parallelism. Second, if there are many
bindings of the first variable which result in few subse-
quent bindings of the second and third variable, a large
number of WorkUnits will be created which output few
results, and thus result in a large performance over-
head. Therefore, the order of the variables can have
an influence on the performance overhead and possible
parallelism.

3.4.2 Leap frog trie join with one arbitrary in-
put

The second version is a modified LFTJ, which replaces
one of the iterators with an arbitrary input. This modifi-
cation allows the LFTJ operator to be used on non-base
relations in the graph. Similar as before, the modified
LFTJ is designed to only output the final results and
not materialize any intermediate results. However, due
to the modification, this version can easily be split into
multiple block-based WorkUnits. WorkUnits can be
created for each of the input blocks.

The same example used for the unmodified LFTJ can be
used here as the execution and parallelisation are nearly
identical. The only difference is how the WorkUnits
are generated.

14



4 Experimental evaluation

In this section, we first describe how the parallel ex-
ecution engine is evaluated and then we present the
results.

4.1 Evaluation criteria

The parallel execution engine will be evaluated on three
criteria.

The first criteria is the performance difference (over-
head) induced by the separation of the control and data
flow. This criteria is measured by limiting the parallel
execution engine to a single core and a single worker,
essentially turning it into a sequential execution engine.
The results are then compared to the original sequen-
tial execution engine. The difference in performance
gives us an indication of how the two different types of
execution engines compare to one another.

The second criteria is the performance difference intro-
duced by distributing the various parts of the execution
engine over multiple CPU cores. This criteria is mea-
sured by constraining the engine to a single worker but
allowing the various parts of the execution engine to
be executed on different CPU cores. The results are
compared to the results when the engine is constrained
to a single worker and only a single CPU core.

The third criteria is to what degree the parallel execu-
tion engine can take advantage of the available paral-
lelism in different scenarios. We consider two different
scenarios. In the first scenario, queries are executed
sequentially, measuring the intra-operator and inter-
operator parallelism. In the second scenario, multiple
queries are executed concurrently, measuring the intra-
operator, inter-operator, and intra-query parallelism.
Because multiple machines are used for evaluation, the
details of which will be discussed later, the number of
concurrently executing queries depends on the machine
used for the evaluation. The results of both scenarios
are compared to the results of the parallel execution
engine running on multiple CPU cores, but limited to
a single worker.

4.2 System configuration

The experiments described above are preformed on two
virtual machines as each serves a different purpose. The
first virtual machine possesses less main memory than
the second virtual machine, but can support nearly
double the number of workers, giving a better rep-
resentation of how more workers affect performance.
However, even though the second virtual machine can

support fewer workers, it possesses 12 times the avail-
able main memory, giving a better representation of
how larger graphs affect performance.

The first virtual machine is configured with eight non-
hyper-threading cores, eight threads, and 16GB of main
memory. Because there are no Non-Uniform Memory
Access (NUMA) nodes on this machine, only the worker
threads have to be pinned. Seven workers are created,
leaving one core free for either the scheduler, CLI, or
other OS threads.

For the first criteria the CLI, scheduler, and worker are
all assigned to the same core. For the second criteria
the single worker is assigned to a core, and the CLI
and scheduler can be executed on any core. For the
third criteria the seven workers are all assigned one
core each, and the CLI and scheduler can be executed
on any core.

The second virtual machine is configured with two
CPUs, each with six cores and 12 threads for a total of
24 threads and 192GB of main memory. As there
is additional performance overhead associated with
cross NUMA-node memory access, care is taken to
ensure that all threads are assigned to the same NUMA-
node. Furthermore, we do not take advantage of hyper-
threading and assign a single thread to each physical
core, thus giving us a total of six usable threads. Note,
all six of these threads can be used, as there are still
18 other available threads for the OS.

For the first criteria the CLI, scheduler, and worker are
all assigned to the same core. For the second criteria
the CLI, scheduler, and single worker are all assigned
one core each. For the third criteria the CLI, scheduler
and four workers are all assigned one core each.

4.3 Dataset

In order to get representative results of the perfor-
mance, the execution engine is evaluated by querying
knowledge graphs, which is one of the applications of
graph databases. All experiments are performed us-
ing the YAGO2S dataset [29] — a knowledge-graph
mined from Wikipedia. Due to the memory capacity
of the first virtual machine, two versions of the graph
are used, the full graph and a subset consisting of the
first ten million tuples, which are called yago2s-full and
yago2s-10M respectively.

4.4 Workload

The execution engines are evaluated on seven types of
queries. Four of which are pre-existing workloads used
to benchmark the performance of the original execution

15



engine and three workloads are specially generated to
test critical parts of the execution engine not tested by
the other four workloads.

The four workloads, which will be executed on the
first virtual machine with the yago2s-10M dataset,
are:

1. Chain-2: A collection of three nodes and two
edges, connected in such a way that a chain is
formed through the nodes.

2. Chain-3: A collection of four nodes and three
edges, connected in such a way that a chain is
formed through the nodes.

3. Chain-4: A collection of five nodes and four edges,
connected in such a way that a chain is formed
through the nodes.

4. Edge: All the edges in the graph with a certain
label.

The three workloads, which will be executed on the
second virtual machine with the yago2s-full dataset,
are:

1. Kleene-1: A collection of two nodes connected by
one or more edges with each edge having the same
label.

2. Kleene-2: A collection of two nodes connected by
any non-zero multiple of two number of edges, such
that consecutive edges have alternating labels.

3. LFTJ-3: A collection of four nodes and three
edges, connected in such a way that a chain is
formed through the nodes. The difference between
this workload and the 3-chain is how the joins are
performed. In the 3-chain conventional joins are
used (merge and index nested loop join) whereas
here the LFTJ is used.

Each workload consists of 20 queries, expect for Kleene-
1, which consists of 10 queries. In order to obtain
the 20 queries, a query miner is used, which, given
a query pattern, finds all possible queries matching a
given pattern. A random selection of 20 is taken, which
are the 20 queries used in the workload. Because only
ten single label closures exist within yago2s-full, the
Kleene-1 workload consists of fewer queries.

The seven workloads cover many different traditional
query operators and different versions of these operators,
such as multiple join implementations. The Kleene-1
and Kleene-2 workloads cover the transitive closure,
and the LFTJ-3 workload covers the WCO and LFTJ
operator.

The average results of all queries in a workload are used
as the final result of that workload.

4.5 Evaluation method

Even though AvantGraph is a main memory database,
the datasets, initially located on disk, must first be
loaded into memory. Furthermore, there are various
indexes in AvantGraph, which also must be loaded into
memory.

Due to the large volume of data and accompanying
indexes, certain parts are only loaded into memory
when actually needed. For example, only the part of
the adjacency index which is required is loaded into
memory. This lazy loading technique can significantly
reduce the memory requirements but can also result in
significant I/O overhead when accessing the data for
the first time. Furthermore, the virtual machines are
not dedicated systems, some system noise is present and
can negatively influence the results. To minimise both
the I/O overhead and the system noise, all work-loads
are executed three times in quick succession. The best
result is used for the comparisons.

4.6 Measurement points

In order to analyse the various aspects of the parallel ex-
ecution engine, three different data points are collected
from each workload. Using these three data points,
various other data points are calculated.

The different data points cover various aspects of the
execution engine and will be compared to get a holistic
overview of the engine. In contrast to the various
data points collected and calculated from the parallel
execution engine, only a single data point is collected
from the sequential execution engine, namely the total
execution time.

The data points collected from the parallel execution
engine are:

1. CPU time: The total duration to execute all
WorkUnits, excluding generation and scheduling.
This metric represents the time required for the
data manipulation (i.e. query operator execution)
for the queries.

2. Wall time: The real world time spend waiting
on query results during query execution. Consists
of the time between the start of the first WorkU-
nit of the first query until the completion of the
last WorkUnit of the last query. Periods when no
queries are executed are discarded. For example,
when queries are executed sequentially, the time

16



between finishing a query and receiving the next
query for execution is discarded.

3. Number of workers: The number of available
workers in the current configuration.

Using the three collected data points, the additional
data points are calculated as follows:

1. Effective concurrency: The number of WorkU-
nits which are, on average, executed concurrently.
Calculated by the fraction of CPU time and Wall
time.

2. Available concurrency: The amount of concur-
rency available in the current configuration. Equal
to the number of workers.

3. Concurrency utilised: The percentage of the
available concurrency utilised. Calculated by the
fraction of effective concurrency and available con-
currency.

4.7 Results

4.7.1 Inter-engine performance differ-
ence

The results of the first criteria, the inter-engine per-
formance difference, can be seen in Figures 23 and 24.
Here and in all following figures, when results are com-
pared to results of a different configuration, the results
are scaled to the results of the other configuration. As
can be seen in Figure 23, the work performed by the
parallel execution engine is comparable to the original
execution engine, differing with at most a factor of 1.08.
In addition, many workloads see a significant reduction
in the work performed, with the lowest requiring only
a factor of 0.36 CPU time. Figure 24 shows that, with
the exception of the LFTJ workload, similar conclu-
sions can be drawn with regards to Wall time for the
remaining workloads, namely the execution engine is on
par or reduces the Wall time compared to the original.
The LFTJ workload sees an increase in Wall time with
a factor of 1.18. The reason for the difference is due
to the additional overhead during WorkUnit genera-
tion for the LFTJ operator as discussed earlier. All
components of the parallel execution engine are execut-
ing on the same core, therefore the control flow and
data flow are interleaved, i.e. WorkUnit generation and
scheduling occurs interleaved with WorkUnit execution.
Because, both the CPU and Wall time are known, an
estimation of the control flow overhead can be made,
which is shown in Figure 25. The LFTJ workload sees
a noteworthy scheduling overhead with a factor of 1.14.
However, the overhead in the other workloads in less
than a factor of 0.01.

Ch
ain
-2

Ch
ain
-3

Ch
ain
-4

Ed
ge

Kl
een

e-1

Kl
een

e-2
LF
TJ

0

0.2

0.4

0.6

0.8

1

ba
se
li
n
e

1
.0

8

0
.3

6

0
.5

7

0
.9

8

0
.6

0
.5

1
.0

4

WorkLoad

C
P
U

ti
m
e
(c
om

pa
re
d
to

or
ig
in
al
)

VM-1 VM-2

Figure 23: The CPU time of the different workloads of
the parallel execution engine using a single CPU core
compared to the original execution engine.

Ch
ain
-2

Ch
ain
-3

Ch
ain
-4

Ed
ge

Kl
een

e-1

Kl
een

e-2
LF
TJ

0

0.2

0.4

0.6

0.8

1

1.2

ba
se
li
n
e

1
.0

9

0
.3

6

0
.5

7

0
.9

8

0
.6

0
.5

1
.1

8

WorkLoad

W
al
lt
im

e
(c
om

pa
re
d
to

or
ig
in
al
)

VM-1 VM-2

Figure 24: The Wall time of the different workloads of
the parallel execution engine using a single CPU core
compared to the original execution engine.

17



Ch
ain
-2

Ch
ain
-3

Ch
ain
-4

Ed
ge

Kl
een

e-1

Kl
een

e-2
LF
TJ

0

0.2

0.4

0.6

0.8

1

1.2

id
ea
l

1
.0

0
8

1
.0

0
8

1
.0

0
8 1

1
.0

0
8

1
.0

0
5

1
.1

4

WorkLoad

Sc
he
du

lin
g
ov
er
he
ad

VM-1 VM-2

Figure 25: An estimation of the scheduling overhead in
the parallel execution engine.

4.7.2 Multiple threads difference

The results of the second criteria, the performance
difference when distributing the execution engine over
multiple CPU cores compared to a single core, can be
seen in Figures 26 and 27.

The results used as baseline include the scheduling
overhead. In contrast, the results produced by dis-
tributing the execution engine over multiple CPU cores
do not include the scheduling overhead. Because, the
scheduling overhead induced by the LFTJ operator is
not present in these results, a decrease in Wall time
would be expected. Therefore, the seemingly stable
CPU and Wall time of the LFTJ are indicative of an
increase in Wall time. Thus, all workloads, with the
exception of Kleene-2 and LFTJ, see an increase in
both CPU and Wall time between 1.11 and 1.24. The
Kleene-2 workload does not see an increase in CPU
and Wall time. The LFTJ only sees an increase in
Wall time, with the CPU time remaining unchanged.
A possible explanation for the increase in both CPU
and Wall time is related to data locality. Even though
AvantGraph is a main memory database and all data is
located in memory, there are additional memory layers
above main memory, e.g. the different layers of CPU
cache. We speculate that by using different CPU cores,
some performance benefits related to the CPU caches
are lost and therefore results in the additional overhead.
However, additional research is need to confirm these
speculations.

Ch
ain
-2

Ch
ain
-3

Ch
ain
-4

Ed
ge

Kl
een

e-1

Kl
een

e-2
LF
TJ

0

0.2

0.4

0.6

0.8

1

1.2

ba
se
li
n
e

1
.1

4

1
.1

3

1
.1

1

1
.1

4 1
.2

4

1

1
.0

2

WorkLoad

C
P
U

ti
m
e
(c
om

pa
re
d
to

si
ng

le
co
re
)

VM-1 VM-2

Figure 26: The CPU time of the different workloads
of the parallel execution engine with multiple CPU
cores but only a single worker compared to the parallel
execution engine with a single CPU core.

Ch
ain
-2

Ch
ain
-3

Ch
ain
-4

Ed
ge

Kl
een

e-1

Kl
een

e-2
LF
TJ

0

0.2

0.4

0.6

0.8

1

1.2

ba
se
li
n
e

1
.1

4

1
.1

3

1
.1

1

1
.1

4 1
.2

3

0
.9

9

0
.9

7

WorkLoad

W
al
lt
im

e
(c
om

pa
re
d
to

si
ng

le
co
re
)

VM-1 VM-2

Figure 27: The Wall time of the different workloads of
the parallel execution engine with multiple CPU cores
but a single worker compared to the parallel execution
engine with a single CPU core.

18



4.7.3 Parallel scalability

The third criteria, to what degree the execution engine
can utilise the available parallelism in different scenarios,
is evaluated using two different scenarios. The details
of which can be found in Section 4.1. The results
are grouped per virtual machine due to the difference
in the parallelism available. First, the results of the
first virtual machine will be presented, followed by the
results of the second virtual machine.

First virtual machine

As can be seen in Figure 28, the CPU time of most
workloads in both scenarios is comparable to the CPU
time of a single worker, differing with a factor ranging
from 0.92 to 1.05, or slightly increased with a factor of
1.12 for Chain-4.

Figure 29 shows that the Wall time decreases signifi-
cantly in all workloads in both scenarios. There is a
difference in the amount decreased, with a greater de-
crease in the parallel query scenario. In the sequential
query scenario the decrease is less than the predicted
maximum achievable, whereas the decrease in the par-
allel query scenario achieves (close to) the predicted
maximum in the majority of workloads. There can
be multiple reasons for not achieving the maximum
decrease. The most common are sequential queries/-
operators limiting intra-query parallelism, or the fewer
results than block size limiting block level parallelism.
The Edges workload is an example of fully sequential
queries, which can be seen in the minimal decrease in
the sequential scenario. However, despite the queries
being sequential, a significant decrease in Wall time
was still achieved in the parallel query scenario due
to leveraging the inter-query parallelism. Similar de-
creases between the different scenarios in the other
workloads can be attributed to leveraging inter-query
parallelism.

The amount of available parallelism utilised is shown
in Figure 30. As can be seen, none of the workloads in
the sequential scenario are able to utilise more than 0.6
of the available parallelism, with the Edge workload
not able to utilise any parallelism as the queries are
entirely sequential3. However, in the second scenario,
where multiple queries are executed concurrently, sig-
nificantly more of the available parallelism is utilised
by each workload. The parallelism utilised by the Edge
workload more than triples. Furthermore, the Chain-2
workload is able to utilise 0.9 of the available paral-
lelism and lastly, the remaining two workloads are able
to utilise over 0.95 of the available parallelism.

3The first virtual machine is configured with seven workers,
therefore, 0.14 corresponds approximately to single worker.

Second virtual machine

As can be seen in Figure 31, the CPU time in both
scenarios is either comparable to the CPU time of
a single worker or increases with a factor of up to
1.23.

Figure 32 shows a decrease in Wall time for all work-
loads in both scenarios. The decrease ranges between
a factor of 0.38 up to the predicted minimum of 0.25.
In the sequential query scenario, all three workloads
achieved significant reductions, with LFTJ even achiev-
ing the theoretical minimum Wall time. In the parallel
query scenario, both the Kleene-1 and Kleene-2 work
see even further reductions in Wall time, while the
LFTJ workload sees an increase in Wall time. We
suspect that this increase can be attributed to CPU
cache misses. With multiple queries and a round robin
WorkUnit selection policy, the execution of each in-
dividual query increases compared to the sequential
scenario. The increase in execution time might result
in additional CPU cache misses.

The amount of available parallelism utilised in both
scenarios is shown in Figure 33. Recall that the work-
loads in the sequential scenario on the first virtual
machine could nor utilise more than a factor of 0.6
of the available parallelism. All the workloads in the
sequential scenario on the second virtual machine are
able to utilise more than a factor of 0.6 of the available
parallelism, ranging between 0.79 and 0.91. For the
parallel scenario, the different workloads are all able to
utilise a significant portion of the available parallelism
ranging from a factor between 0.8 to 0.96.

The sequential scenario measures intra-query and intra-
operator parallelism, which, depending on the work-
load, might not be enough to fully utilise the available
parallelism. The parallel scenario, in addition to intra-
query and intra-operator parallelism, also measures
inter-query parallelism. This is often enough to fully
utilise the available parallelism. The increases in paral-
lelism utilised between the two scenarios can therefore
largely be attributed to inter-query parallelism. How-
ever, the addition of inter-query parallelism might even
be counter productive, as is shown in Figure 30 in the
LFTJ workload, which sees a decrease in parallelism
utilised.

4.7.4 Speedup over original

We will compare the parallel execution engine with
all configurations used in the three criteria, the full
details of which are given in Section 4.2, to the original
execution engine. The configurations used are: limited
to a single CPU core and single worker, multiple CPU

19



Ch
ain
-2

Ch
ain
-3

Ch
ain
-4

Ed
ge

0

0.2

0.4

0.6

0.8

1

1.2

ba
se
li
n
e

1

1
.0

0
2

1
.1

2

0
.9

2

1
.0

3

1
.0

5 1
.1

2

0
.9

7

WorkLoad

C
P
U

ti
m
e
(c
om

pa
re
d
to

si
ng

e
w
or
ke
r)

Sequential queries Parallel queries

Figure 28: The CPU time of the different workloads
of the parallel execution engine with seven workers
compared to the parallel execution engine with one
worker.

Ch
ain
-2

Ch
ain
-3

Ch
ain
-4

Ed
ge

0

0.2

0.4

0.6

0.8

1

m
in

ba
se
li
n
e

0
.5

1

0
.4

2

0
.2

6

0
.9

2

0
.1

6

0
.1

5

0
.1

6

0
.3

WorkLoad

W
al
lt
im

e
(c
om

pa
re
d
to

si
ng

e
w
or
ke
r)

Sequential queries Parallel queries

Figure 29: The Wall time of the different workloads
of the parallel execution engine with seven workers
compared to the parallel execution engine with one
worker.

Ch
ain
-2

Ch
ain
-3

Ch
ain
-4

Ed
ge

0

0.2

0.4

0.6

0.8

1

m
a
x

0
.2

8 0
.3

4

0
.6

0
.1

4

0
.9 0
.9

6

0
.9

8

0
.4

5

WorkLoad

P
ar
al
le
lis
m

ut
ili
se
d

Sequential queries Parallel queries

Figure 30: The amount of available parallelism utilised
by the parallel execution engine with seven workers.

Kl
een

e-1

Kl
een

e-2
LF
TJ

0

0.2

0.4

0.6

0.8

1

1.2

ba
se
li
n
e

1
.2

3

1
.0

5

0
.9

8

1
.2

2

1
.2

0
.9

8

WorkLoad

C
P
U

ti
m
e
(c
om

pa
re
d
to

si
ng

e
w
or
ke
r)

Sequential queries Parallel queries

Figure 31: The CPU time of the different workloads
of the parallel execution engine with four workers com-
pared to the parallel execution engine with one worker.

20



Kl
een

e-1

Kl
een

e-2
LF
TJ

0

0.2

0.4

0.6

0.8

1

m
in

ba
se
li
n
e

0
.3

8

0
.3

3

0
.2

50
.3

2

0
.3

2

0
.3

1

WorkLoad

W
al
lt
im

e
(c
om

pa
re
d
to

si
ng

e
w
or
ke
r)

Sequential queries Parallel queries

Figure 32: The Wall time of the different workloads of
the parallel execution engine with four workers com-
pared to the parallel execution engine with one worker.

Kl
een

e-1

Kl
een

e-2
LF
TJ

0

0.2

0.4

0.6

0.8

1

m
a
x

0
.7

9

0
.7

8

0
.9

10
.9

6

0
.9

4

0
.8

WorkLoad

P
ar
al
le
lis
m

ut
ili
se
d

Sequential queries Parallel queries

Figure 33: The amount of available parallelism utilised
by the parallel execution engine with four workers.

cores and limited to a single worker, multiple cores
and workers but sequential query execution, and lastly,
multiple cores, multiple workers, and parallel query
execution.

Similarly as before, the results are grouped per virtual
machine due to the parallelism differences.

First virtual machine

First we present the results of the workloads executed
on the first virtual machine compared to the original
execution engine. Figure 34 shows the CPU times of
the different configurations compared to the original
execution engine. As can be seen, for some workloads,
the CPU time increases regardless of the configuration.
For other workloads, the CPU time is comparable to
the original execution engine. Lastly, for some con-
figurations the CPU time always decreases, with the
decrease diminishing the more parallelism is exposed
by the different configurations

Figure 35 shows the Wall times of the different configu-
rations compared to the original execution engine. As
can be seen, all workloads show a significant reduction
in Wall time in at least one of the configurations, with
some workloads showing a significant reduction in all
configurations. The single worker configuration shows
the worst reduction in Wall time compared to the other
configurations. The best reduction on all workloads is
achieved by the parallel queries configuration with a
reduction between 0.33 and 0.06.

Second virtual machine

Next, we present the results of the workloads executed
on the second virtual machine compared to the original
execution engine.

Figure 36 shows the CPU times of the different con-
figurations compared to the original execution engine.
As can be seen, two of the workloads always shows a
decrease in the CPU time, with the decrease dimin-
ishing the more parallelism is exposed by the different
configurations. The last workloads shows a negligible
to slight increase in CPU time.

Figure 37 show the Wall times of the different configu-
rations compared to the original execution engine. One
workload shows a slight increase in Wall time when
only one CPU core or worker is used. However, the
Wall time decreases in the configurations with multiple
workers, ranging between 0.36 to 0.29. The other two
workloads show a significant reduction in wall time in
all configurations, ranging from 0.74 to 0.16.

Regardless of the virtual machine or workload, the
parallel execution engine is able to achieve significant

21



Ch
ain
-2

Ch
ain
-3

Ch
ain
-4

Ed
ge

0

0.2

0.4

0.6

0.8

1

1.2

ba
se
li
n
e

1
.0

8

0
.3

6

0
.5

7

0
.9

8

1
.2

3

0
.4

0
.6

3

1
.1

2

1
.2

3

0
.4

0
.7

1

1

1
.2

7

0
.4

2

0
.7

1

1
.0

8

WorkLoad

C
P
U

ti
m
e
(c
om

pa
re
d
to

or
ig
in
al
)

Single thread Single worker
Sequential queries Parallel queries

Figure 34: The CPU time of the different workloads of
the parallel execution engine in different configurations
compared to the original execution engine.

reductions in Wall time for all workloads on at least
one configuration and for some workloads on all config-
urations.

5 Related work
We noted related work throughout the thesis, and
highlight some of the overlapping areas of research
here.

There are two simultaneous shifts in the database field.
With the shift in how data can be represented, graph
databases have become a topic of interest and various
graph databases have been developed, including [33,
6, 15, 21, 32]. In addition, with the shift in execution
bottleneck, there is a tremendous interest in the area of
main-memory databases and a number of systems have
been developed, including [2, 3, 7, 12, 28, 20].

Many of the graph processing systems are based on a
scale-out approach, such as [33, 6, 32, 10, 30, 24, 14, 19,
25]. These systems use numerous severs to store and
process the graphs. In contrast to scale-out, several
systems have been designed using a scale-up approach,
such as [21, 15, 22]. These systems use a single machine
to store and process the graphs. These systems use
different method to achieve parallel processing.

The scale-out systems can be subdivided into syn-
chronous and asynchronous systems.

Ch
ain
-2

Ch
ain
-3

Ch
ain
-4

Ed
ge

0

0.5

1

ba
se
li
n
e1
.0

8

0
.3

6

0
.5

7

0
.9

8

1
.2

3

0
.4

0
.6

3

1
.1

2

0
.6

3

0
.1

7

0
.1

7

1

0
.2

0
.0

6

0
.1

0
.3

3

WorkLoad

W
al
lt
im

e
(c
om

pa
re
d
to

or
ig
in
al
)

Single thread Single worker
Sequential queries Parallel queries

Figure 35: The Wall time of the different workloads of
the parallel execution engine in different configurations
compared to the original execution engine.

Kl
een

e-1

Kl
een

e-2
LF
TJ

0

0.2

0.4

0.6

0.8

1

1.2

ba
se
li
n
e

0
.6

0
.5

1
.0

4

0
.7

4

0
.5

1
.0

6

0
.9

1

0
.5

2

1
.0

4

0
.9

0
.6

1
.1

4

WorkLoad

C
P
U

ti
m
e
(c
om

pa
re
d
to

or
ig
in
al
)

Single thread Single worker
Sequential queries Parallel queries

Figure 36: The CPU time of the different workloads of
the parallel execution engine in different configurations
compared to the original execution engine.

22



Kl
een

e-1

Kl
een

e-2
LF
TJ

0

0.2

0.4

0.6

0.8

1

1.2

ba
se
li
n
e

0
.6

0
.5

1
.1

8

0
.7

4

0
.5

1
.1

5

0
.2

8

0
.1

6

0
.2

9

0
.2

3

0
.1

6

0
.3

6

WorkLoad

W
al
lt
im

e
(c
om

pa
re
d
to

or
ig
in
al
)

Single thread Single worker
Sequential queries Parallel queries

Figure 37: The Wall time of the different workloads of
the parallel execution engine in different configurations
compared to the original execution engine.

Synchronous scale-out GBase [19] and Pegasus [18]
are based on MapReduce and utilise matrix-vector mul-
tiplications using compressed matrices. In contrast,
Pregel [25] is based on the vertex-centric programming
model where a vertex kernel is executed in parallel on
each vertex.

Pregel uses the Bulk-Synchronous Parallel (BPS) mes-
sage passing model. In this model, all vertex kernels
run concurrently in a sequence of super-steps. In each
super-step, each vertex kernel receives all messages
from the previous super-step and sends messages to
its neighbours in the subsequent super-step. To ensure
that all kernels finished processing their messages, a
barrier is created between super-steps.

Due to the synchronisation required, the synchronous
approaches could suffer from expensive performance
penalties because the runtime for each step is dictated
by the slowest machine. The imbalance in runtime
across machines can be the result of various factors,
such as hardware imbalance, network imbalance, an
imbalance within the graph itself, or a combination of
various factors.

Asynchronous scale-out GraphLab [24], similarly to
Pregel, is also based on the vertex-centric programming
model. However, vertex kernels are asynchronously ex-
ecuted in parallel on each vertex. Rather than sending
messages, each vertex reads and writes data on adjacent

vertices and edges using shared-memory.

PowerGraph [13] is similar to GraphLab. However,
PowerGraph accounts for the possible imbalance in the
graph by partitioning the graph based on highly skewed
power-law degree distributions.

Partitioning graphs effectively for all types of graph
operators in a distributed environment is an inherently
difficult problem [22]. In addition, the user must be
able to manage and fine tune a distributed system,
which is nontrivial for the ordinary user.

Scale-up GraphChi [22] is a disk-based single machine
system using the asynchronous vertex-centric program-
ming model. GraphChi uses a novel concept called Par-
allel Sliding Windows (PSW) for handling large scale
graphs. As GraphChi is not a distributed system but
a disk-based system, message passing is implemented
by updating values to the edges. PSW partitions the
vertices into P execution intervals. Each execution in-
terval contains a shard file, which stores all the edges
which have their target vertex in the interval. The
edges in the shard file are sorted by their source vertex.
PSW processes one shard file at a time, preforming the
required work for the shard.

McSherry et al. [26] showed that a well designed single-
threaded PageRank implementation could match or
even significantly outperform several state of the art
systems. These systems include, parallel single ma-
chine systems or distributed systems with up to 128
cores. Their implementation outperformed GraphChi
[22], Stratosphere [10], X-Stream [30], on both data sets
tested, and outperformed, GraphLab [24] and GraphX
[14], on one of the data sets tested. None of the systems
tested was able to outperform their implementation on
all data sets.

Therefore, careful consideration should be taken when
designing parallel systems to ensure the overhead in-
troduced by parallelisation does not overshadow the
performance benefits. Furthermore, Lin [23] articulated
the importance of understanding the difference between
scale-out and scale-up approaches. Lin suggested to
use a scale-up approach where possible, as scale-out
approaches often introduce significant overhead.

Therefore, we focused on a scale-up approach and verify
that the overhead introduced by the scale-up does not
overshadow the performance benefits.

We looked for a suitable scale-up graph system to base
our solution on. However, graph processing systems
based on a scale-up approach, such as [21], suffered from
limitations (such as a lack of parallelism), which Tur-
boGraph [15] aims to address. However, the proposed

23



solution relies on a general disk-based graph engine,
and is therefore not a main-memory database.

Similar limitations exist in other scale-up graph sys-
tems.

Therefore we decided to base our solution on a rela-
tional database execution engine. Quickstep [28] is a
single machine main memory relational database ex-
ecution engine. Quickstep divides the work for each
query into several independent WorkOrders which are
executed by execution threads. Even though Quickstep
[28] is designed for relational databases, the general
design fulfilled many of the requirements for a main
memory parallel graph database execution engine. The
design of quickstep is, however, incompatible in some
critical areas intrinsic to graph query processing, such
as cyclic queries and transitive closures. These incom-
patibilities, however could be resolved by redesigning
key areas and extending the design of Quickstep. There-
fore, Quickstep was used as the base for the parallel
graph execution engine and adapted and extended as
required.

Our execution engine employs a distinct block-based
architecture for query processing in combination with
fast query processing techniques for in memory process-
ing.

The vectorised block execution used in both Avant-
Graph’s original execution engine and our new parallel
execution engine has similarities to the work on colum-
nar execution methods, such as [1, 11, 17, 35].

Several operators in AvantGraph use template meta pro-
gramming which relies on the compiler’s optimisations
to make automatic use of Single Instruction, Multiple
Data (SIMD) instructions. This technique is described
in [38]. SIMD instructions operator on a vector or
tuples and perform operators data-parallel.

The block-based scheduling that is used by the execu-
tion engine is similar to the MapReduce style query
execution [9]. A key difference between MapReduce and
our execution engine is that there is no notion of pipelin-
ing in the original MapReduce framework. In contrast,
our execution engine does support pipelined parallelism.
In addition, our execution engine supports sharing com-
mon data structures (e.g. hash table) between multiple
tasks belonging to the same operator.

In this thesis we articulate the growing need for the
scaling-up approach in graph databases and present a
design for a parallel query execution engine for use in
graph databases. The execution engine presented is de-
signed for a very high-level of intra-operator parallelism
to address this need.

6 Conclusion
The compute and memory densities inside individual
servers continues to increase at an astonishing pace. As
the parallel capabilities continue to grow, in order to
utilise the full compute capabilities of these machines,
there is a clear need to fully exploit the parallelism
available. In this paper we presented a design for a
parallel execution engine, bases on Quickstep, for use
in Graph databases and implemented the design. The
design emphasizes a scale-up approach and targets in-
memory query processing on servers with multiple cores.
We present a novel extension to the Quickstep design
to resolve cyclic queries, and parallelise two non-trivial
query operators, Transitive closure and Leap Frog Trie
Join, which are intrinsic to graph processing. The ob-
tained results show that the parallel execution engine
is faster than the original execution engine in Avant-
Graph and is able to utilise nearly all of the parallelism
available. Furthermore, the execution engine is able
to scale to a large number of workers and handle large
graphs and queries effectively. A future iteration of
the parallel engine might extend the number of paral-
lelisable operators, add dynamic operators for index
creation, augment the query planner to take parallelism
into account, or enable sub-plan sharing.

24



References
[1] D. Abadi, S. Madden, and M. Ferreira. Inte-

grating compression and execution in column-
oriented database systems. In Proceedings of
the 2006 ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD ’06, page
671–682, New York, NY, USA, 2006. Associa-
tion for Computing Machinery. ISBN 1595934340.
doi: 10.1145/1142473.1142548. URL https://
doi.org/10.1145/1142473.1142548.

[2] L. Abraham, J. Allen, O. Barykin, V. Borkar,
B. Chopra, C. Gerea, D. Merl, J. Metzler, D. Reiss,
S. Subramanian, J. L. Wiener, and O. Zed. Scuba:
Diving into data at facebook. Proc. VLDB Endow.,
6(11):1057–1067, 8 2013. ISSN 2150-8097. doi: 10.
14778/2536222.2536231. URL https://doi.org/
10.14778/2536222.2536231.

[3] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu,
J. K. Bradley, X. Meng, T. Kaftan, M. J. Franklin,
A. Ghodsi, and M. Zaharia. Spark sql: Rela-
tional data processing in spark. In Proceedings
of the 2015 ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD ’15, page
1383–1394, New York, NY, USA, 2015. Association
for Computing Machinery. ISBN 9781450327589.
doi: 10.1145/2723372.2742797. URL https://
doi.org/10.1145/2723372.2742797.

[4] A. Atserias, M. Grohe, and D. Marx. Size bounds
and query plans for relational joins. In Proceed-
ings of the 2008 49th Annual IEEE Symposium
on Foundations of Computer Science, FOCS ’08,
page 739–748, USA, 2008. IEEE Computer Society.
ISBN 9780769534367. doi: 10.1109/FOCS.2008.43.
URL https://doi.org/10.1109/FOCS.2008.43.

[5] Avantgraph. Avantgraph website. http://
avantgraph.io/, 2021. Accessed: 2021-05-27.

[6] L. Barguñó, V. Muntés-Mulero, D. Dominguez-
Sal, and P. Valduriez. Parallelgdb: A paral-
lel graph database based on cache specialization.
In Proceedings of the 15th Symposium on In-
ternational Database Engineering&Applications,
IDEAS ’11, page 162–169, New York, NY,
USA, 2011. Association for Computing Machin-
ery. ISBN 9781450306270. doi: 10.1145/
2076623.2076643. URL https://doi.org/10.
1145/2076623.2076643.

[7] P. A. Boncz, M. L. Kersten, and S. Manegold.
Breaking the memory wall in monetdb. Commun.
ACM, 51(12):77–85, 12 2008. ISSN 0001-0782.

doi: 10.1145/1409360.1409380. URL https://
doi.org/10.1145/1409360.1409380.

[8] A. Bonifati, G. Fletcher, H. Voigt, and
N. Yakovets. Querying graphs. Synthesis
Lectures on Data Management, 10(3):1–184, 2018.
doi: 10.2200/S00873ED1V01Y201808DTM051.
URL https://doi.org/10.2200/
S00873ED1V01Y201808DTM051.

[9] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. Commun. ACM,
51(1):107–113, 1 2008. ISSN 0001-0782. doi: 10.
1145/1327452.1327492. URL https://doi.org/
10.1145/1327452.1327492.

[10] S. Ewen, K. Tzoumas, M. Kaufmann, and V. Markl.
Spinning fast iterative data flows. Proc. VLDB
Endow., 5(11):1268–1279, 7 2012. ISSN 2150-8097.
doi: 10.14778/2350229.2350245. URL https://
doi.org/10.14778/2350229.2350245.

[11] Z. Feng, E. Lo, B. Kao, and W. Xu. Byteslice:
Pushing the envelop of main memory data pro-
cessing with a new storage layout. In Proceedings
of the 2015 ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD ’15, page
31–46, New York, NY, USA, 2015. Association
for Computing Machinery. ISBN 9781450327589.
doi: 10.1145/2723372.2747642. URL https://
doi.org/10.1145/2723372.2747642.

[12] F. Färber, N. May, W. Lehner, P. Große, I. Müller,
H. Rauhe, and J. Dees. The sap hana database -
an architecture overview. IEEE Data Eng. Bull.,
35:28–33, 03 2012.

[13] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and
C. Guestrin. Powergraph: Distributed graph-
parallel computation on natural graphs. In Proceed-
ings of the 10th USENIX Conference on Operat-
ing Systems Design and Implementation, OSDI’12,
page 17–30, USA, 2012. USENIX Association.
ISBN 9781931971966.

[14] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw,
M. J. Franklin, and I. Stoica. Graphx: Graph
processing in a distributed dataflow framework.
In Proceedings of the 11th USENIX Conference
on Operating Systems Design and Implementation,
OSDI’14, page 599–613, USA, 2014. USENIX As-
sociation. ISBN 9781931971164.

[15] W.-S. Han, S. Lee, K. Park, J.-H. Lee, M.-S. Kim,
J. Kim, and H. Yu. Turbograph: A fast par-
allel graph engine handling billion-scale graphs
in a single pc. In Proceedings of the 19th ACM

25

https://doi.org/10.1145/1142473.1142548
https://doi.org/10.1145/1142473.1142548
https://doi.org/10.14778/2536222.2536231
https://doi.org/10.14778/2536222.2536231
https://doi.org/10.1145/2723372.2742797
https://doi.org/10.1145/2723372.2742797
https://doi.org/10.1109/FOCS.2008.43
http://avantgraph.io/
http://avantgraph.io/
https://doi.org/10.1145/2076623.2076643
https://doi.org/10.1145/2076623.2076643
https://doi.org/10.1145/1409360.1409380
https://doi.org/10.1145/1409360.1409380
https://doi.org/10.2200/S00873ED1V01Y201808DTM051
https://doi.org/10.2200/S00873ED1V01Y201808DTM051
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.14778/2350229.2350245
https://doi.org/10.14778/2350229.2350245
https://doi.org/10.1145/2723372.2747642
https://doi.org/10.1145/2723372.2747642


SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’13, page 77–85,
New York, NY, USA, 2013. Association for Com-
puting Machinery. ISBN 9781450321747. doi:
10.1145/2487575.2487581. URL https://doi.
org/10.1145/2487575.2487581.

[16] C. Have and L. Jensen. Are graph databases
ready for bioinformatics? Bioinformatics (On-
line), 10 2013. ISSN 1367-4811. doi: 10.1093/
bioinformatics/btt549.

[17] R. Johnson, V. Raman, R. Sidle, and G. Swart.
Row-wise parallel predicate evaluation. Proc.
VLDB Endow., 1(1), 8 2008. ISSN 2150-8097.
doi: 10.14778/1453856.1453925. URL https:
//doi.org/10.14778/1453856.1453925.

[18] U. Kang, C. E. Tsourakakis, and C. Faloutsos.
Pegasus: A peta-scale graph mining system imple-
mentation and observations. In 2009 Ninth IEEE
International Conference on Data Mining, pages
229–238. IEEE, 2009.

[19] U. Kang, H. Tong, J. Sun, C.-Y. Lin, and C. Falout-
sos. Gbase: A scalable and general graph manage-
ment system. In Proceedings of the 17th ACM
SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’11, page
1091–1099, New York, NY, USA, 2011. Association
for Computing Machinery. ISBN 9781450308137.
doi: 10.1145/2020408.2020580. URL https://
doi.org/10.1145/2020408.2020580.

[20] A. Kemper and T. Neumann. Hyper: A hybrid
oltp&olap main memory database system based on
virtual memory snapshots. In Proceedings of the
2011 IEEE 27th International Conference on Data
Engineering, ICDE ’11, page 195–206, USA, 2011.
IEEE Computer Society. ISBN 9781424489596.
doi: 10.1109/ICDE.2011.5767867. URL https:
//doi.org/10.1109/ICDE.2011.5767867.

[21] A. Kyrola and C. Guestrin. Graphchi-db: Simple
design for a scalable graph database system - on
just a PC. CoRR, abs/1403.0701, 2014. URL
http://arxiv.org/abs/1403.0701.

[22] A. Kyrola, G. Blelloch, and C. Guestrin. Graphchi:
Large-scale graph computation on just a pc. In
Proceedings of the 10th USENIX Conference on
Operating Systems Design and Implementation,
OSDI’12, page 31–46, USA, 2012. USENIX As-
sociation. ISBN 9781931971966.

[23] J. Lin. Scale up or scale out for graph processing?
IEEE Internet Computing, 22(3):72–78, 2018. doi:
10.1109/MIC.2018.032501520.

[24] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson,
C. Guestrin, and J. Hellerstein. Graphlab: A
new framework for parallel machine learning. In
Proceedings of the Twenty-Sixth Conference on Un-
certainty in Artificial Intelligence, UAI’10, page
340–349, Arlington, Virginia, USA, 2010. AUAI
Press. ISBN 9780974903965.

[25] G. Malewicz, M. H. Austern, A. J. Bik, J. C.
Dehnert, I. Horn, N. Leiser, and G. Czajkowski.
Pregel: A system for large-scale graph process-
ing. In Proceedings of the 2010 ACM SIG-
MOD International Conference on Management
of Data, SIGMOD ’10, page 135–146, New York,
NY, USA, 2010. Association for Computing Ma-
chinery. ISBN 9781450300322. doi: 10.1145/
1807167.1807184. URL https://doi.org/10.
1145/1807167.1807184.

[26] F. McSherry, M. Isard, and D. G. Murray.
Scalability! but at what COST? In 15th
Workshop on Hot Topics in Operating Systems
(HotOS XV), Kartause Ittingen, Switzerland,
May 2015. USENIX Association. URL https:
//www.usenix.org/conference/hotos15/
workshop-program/presentation/mcsherry.

[27] neo4j. Concepts: Relational to Graph. https:
//neo4j.com/developer/graph-db-vs-rdbms/,
2021. Accessed: 2021-06-29.

[28] J. M. Patel, H. Deshmukh, J. Zhu, N. Potti,
Z. Zhang, M. Spehlmann, H. Memisoglu, and
S. Saurabh. Quickstep: A data platform based
on the scaling-up approach. Proc. VLDB En-
dow., 11(6):663–676, Feb. 2018. ISSN 2150-8097.
doi: 10.14778/3199517.3199518. URL https:
//doi.org/10.14778/3199517.3199518.

[29] Y. Project. Yago2s. https://yago-knowledge.
org/downloads/yago-2s, 2021. Accessed: 2021-
06-22.

[30] A. Roy, I. Mihailovic, and W. Zwaenepoel. X-
stream: Edge-centric graph processing using
streaming partitions. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems
Principles, SOSP ’13, page 472–488, New York,
NY, USA, 2013. Association for Computing Ma-
chinery. ISBN 9781450323888. doi: 10.1145/
2517349.2522740. URL https://doi.org/10.
1145/2517349.2522740.

[31] A. Silberschatz, H. F. Korth, and S. Sudar-
shan. Database System Concepts, Sixth Edition.

26

https://doi.org/10.1145/2487575.2487581
https://doi.org/10.1145/2487575.2487581
https://doi.org/10.14778/1453856.1453925
https://doi.org/10.14778/1453856.1453925
https://doi.org/10.1145/2020408.2020580
https://doi.org/10.1145/2020408.2020580
https://doi.org/10.1109/ICDE.2011.5767867
https://doi.org/10.1109/ICDE.2011.5767867
http://arxiv.org/abs/1403.0701
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1145/1807167.1807184
https://www.usenix.org/conference/hotos15/workshop-program/presentation/mcsherry
https://www.usenix.org/conference/hotos15/workshop-program/presentation/mcsherry
https://www.usenix.org/conference/hotos15/workshop-program/presentation/mcsherry
https://neo4j.com/developer/graph-db-vs-rdbms/
https://neo4j.com/developer/graph-db-vs-rdbms/
https://doi.org/10.14778/3199517.3199518
https://doi.org/10.14778/3199517.3199518
https://yago-knowledge.org/downloads/yago-2s
https://yago-knowledge.org/downloads/yago-2s
https://doi.org/10.1145/2517349.2522740
https://doi.org/10.1145/2517349.2522740


McGraw-Hill Book Company, 2011. ISBN 978-
0-07-352332-3. URL https://www.db-book.com/
db6/index.html.

[32] S. R. Spillane, D. Bokser, D. Kemp, J.-H. Hwang,
J. Birnbaum, A. Labouseur, P. W. Olsen, J. Vi-
jayan, and J.-W. Yoon. A demonstration of
the g* graph database system. In Proceedings
of the 2013 IEEE International Conference on
Data Engineering (ICDE 2013), ICDE ’13, page
1356–1359, USA, 2013. IEEE Computer Society.
ISBN 9781467349093. doi: 10.1109/ICDE.2013.
6544943. URL https://doi.org/10.1109/ICDE.
2013.6544943.

[33] TigerGraph. TigerGraph. https://www.
tigergraph.com/, 2021. Accessed: 2021-01-18.

[34] D. Truong, Q. Truong, and T. Dkaki. Graph
Methods for Social Network Analysis. In P. Vinh
and L. Barolli, editors, Nature of Computation
and Communication, pages 276–286, Cham, 2016.
Springer International Publishing. ISBN 978-3-
319-46909-6.

[35] A. A. G. van de Wall. Fully compiled execution of
conjunctive graph queries. Master’s thesis, Eind-
hoven University of Technology, 5612 AZ Eind-
hoven, 03 2020.

[36] T. L. Veldhuizen. Leapfrog triejoin: a worst-case
optimal join algorithm, 2013.

[37] B. Yoon, S. Kim, and S. Kim. Use of graph
database for the integration of heterogeneous bio-
logical data. Genomics & Informatics, 15:19 – 27,
03 2017. doi: 10.5808/GI.2017.15.1.19.

[38] J. Zhou and K. A. Ross. Implementing database
operations using simd instructions. In Proceed-
ings of the 2002 ACM SIGMOD International
Conference on Management of Data, SIGMOD
’02, page 145–156, New York, NY, USA, 2002.
Association for Computing Machinery. ISBN
1581134975. doi: 10.1145/564691.564709. URL
https://doi.org/10.1145/564691.564709.

27

https://www.db-book.com/db6/index.html
https://www.db-book.com/db6/index.html
https://doi.org/10.1109/ICDE.2013.6544943
https://doi.org/10.1109/ICDE.2013.6544943
https://www.tigergraph.com/
https://www.tigergraph.com/
https://doi.org/10.1145/564691.564709

	Introduction
	Background
	Query Semantics
	Query pipeline
	Intermediate result pipelining
	Row-wise and column-wise layout
	Transitive closure
	Worst-case optimal
	Parallelism
	Quickstep execution model

	Approach
	Architecture
	Scheduling and execution
	Threading model
	WorkUnit based scheduler
	Separation of Policy and Mechanism

	Transitive closure
	Transitive closure via repeated joining
	Transitive closure via depth first search

	Leap frog trie join
	Conventional leap frog trie join
	Leap frog trie join with one arbitrary input


	Experimental evaluation
	Evaluation criteria
	System configuration
	Dataset
	Workload
	Evaluation method
	Measurement points
	Results
	Inter-engine performance difference
	Multiple threads difference
	Parallel scalability
	Speedup over original


	Related work
	Conclusion

