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Abstract

Construction equipment manufacturers want to reduce the downtime of their

equipment by moving from the typical reactive maintenance to a predictive

maintenance approach. They would like to define amethod to predict the failure of the

construction equipment ahead of time by leveraging the realworld data that is being

logged by their vehicles. This data is logged as general event data and specific sensor

data belonging to different components of the vehicle. For the scope of this study, the

focus is on articulated hauler vehicles with engine as the specific component under

observation. In the study, extensive time and resources are spent on preparing both

the realworld data sources and coming up with methods such that both data sources

are ready for predictive maintenance and can also be merged together. The prepared

data is used to build respective remaining useful life machine learning models which

classify whether there will be a failure in the next x days. These models are built using

data from two different approaches namely, lead data shift and resampling approach

respectively. Three different experiments are carried out for both of these approaches

using three different combinations of data namely event log only, engine sensor log

only, event and sensor log combined. All these experiments have an increasing look

ahead window size of how far into the future we would like to predict the failure. The

results of these experiments are evaluated in relation to which is the best approach,

data combination, and window size to foresee engine failures. Themodel performance

is primarily distinguished by the FScore and Area under PrecisionRecall Curve.

Keywords

Predictive Maintenance, Construction Equipment, Event Log, Sensor Log, Machine

Learning, Imbalanced Data
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Abstrakt

Tillverkare av anläggningsutrustning vill minska stilleståndstiden för sin utrustning

genom att övergå från det typiska reaktiva underhållet till ett förebyggande underhåll.

De vill definiera en metod för att förutse fel på byggutrustningen i förväg genom

att utnyttja de verkliga data som loggas av fordonen. Dessa data loggas som

allmänna händelsedata och specifika sensordata som tillhör olika komponenter i

fordonet. I den här studien ligger fokus på ledade dragfordon med motorn som

den specifika komponent som observeras. I studien läggs mycket tid och resurser

på att förbereda båda datakällorna i den verkliga världen och att ta fram metoder

så att båda datakällorna är redo för förebyggande underhåll och kan slås samman.

De förberedda uppgifterna används för att bygga maskininlärnings modeller för

återstående livslängd som klassificerar om det kommer att ske ett fel inom de

närmaste x dagarna. Modellerna byggs upp med hjälp av data från två olika metoder,

nämligen lead data shift och resampling approach. Tre olika experiment utförs

för båda dessa metoder med tre olika kombinationer av data, nämligen endast

händelselogg, endast motorsensorlogg och kombinerad händelselogg och sensorlogg.

Alla dessa experiment har en ökande fönsterstorlek för hur långt in i framtiden vi vill

förutsäga felet. Resultaten av dessa experiment utvärderas med avseende på vilket

tillvägagångssätt, vilken datakombination och vilken fönsterstorlek som är bäst för att

förutse motorhaverier. Modellens prestanda bedöms i första hand med hjälp av F

poäng och arean under PrecisionRecallkurvan.

Nyckelord

Prediktivt underhåll, byggutrustning, händelselogg, sensorlogg, maskininlärning,

obalanserade data
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Chapter 1

Introduction

The construction industry is central to the development of infrastructure of any country

in the world [26]. Construction equipment manufacturers are a crucial component of

this industry and the equipment they produce is essential to the success of construction

projects. The key factors which lead construction equipment manufacturers to

become market leaders is the quality and reliability of their equipment [44]. Reliable

equipment has the least downtime, breakdowns, and is always readily available.

Predictive Maintenance (PdM) is a technique that foresees the breakdown and sudden

failure of equipment so that necessary preventable measures can be taken. This

technique has shown to reduce the unexpected downtime of equipment by 70%,

maintenance costs by 5% to 10%, and increased equipment uptime by 10% to 20% [47].

Log data is one of the main sources that records the functioning of such equipment via

various software applications running on the equipment [44].

1.1 Background

Construction companies and contractors are the primary customers for construction

equipment manufacturers such as Volvo Construction Equipment (VCE). The fleet of

heavy earthmoving machinery is the main resource for these customers and they rely

on them for the success of the projects they undertake [14, 26]. If these machines are

not maintained well, they break down which causes delays in project completion times

and effectively causes economic loss. Therefore, it is imperative to fix any imminent

problems with the equipment ahead of time to avoid delays and in some cases even

accelerate the project timeline with higher productivity [26]. Thus, the customers take

1



CHAPTER 1. INTRODUCTION

precautionary measures by identifying equipment that needs replacing ahead of time

and similarly rely on the construction equipment manufacturers to notify them of any

impending failures of their equipment which can cause a delay in their projects [14]. In

the US, nearly 10% of equipment from the fleet needs to be replaced annually by these

customers [24].

Over the years, PdM based on datadrivenmethods has become themost powerful and

useful solution to tackle the issue ofmaintenance of industrial equipment. Itmakes use

of the different types of big data generated by the equipment such as eventlog data,

componentbased sensor data, duration logs, etc., to track its health and predict its

next failure to conduct corrective maintenance before that happens [63]. Therefore,

highquality data is a key component for the success of any PdM system. Companies

have been investing in infrastructure such as software, sensors, servers, cameras, etc.,

to collect such data so that they may equip themselves to perform PdM [47].

The log data being collected can be categorized into two different types of logs for

construction equipment; event logs, sensor data logs (duration and distribution logs

for specific components). These logs are used to retrieve runtime information of the

equipment and find out patterns that indicate as towhy a specific fault occurred [4, 22].

With the advancement in computational power and data mining techniques, analyzing

this complex log data has shifted from a manual to an automated approach [22]. The

software and sensors can be installed on different components of the equipment such

as distance travelled, operating hours, temperature, fuel level, etc., to record this data

[44]. However, installing such software or adding these sensors can be costly if you

wish to monitor all the components of the equipment and typically due to a large fleet

of equipment [44].

1.2 Problem

The problem can be divided in two parts, an overall general problem and a specific

problem. Solving the specific problem inherently will contribute towards solving the

overall problem. Therefore, in this study we aim to solve the specific problem.

2



CHAPTER 1. INTRODUCTION

General Problem

Downtime of equipment is primarily one of the most critical problems faced by the

construction industry [26]. This problem has an impact on all parties involved

in the industry; manufacturers, contractors, automotive engineers, customers, etc.

With the rise of Industry 4.0 [47], the production processes have become completely

interconnected and streamlined. The production processes and construction projects

heavily rely on the equipment to be readily available and work correctly [2]. Therefore,

the downtime of equipment has a ripple effect on interrupting and/or stopping

production processes or construction projects prematurely. This has a large negative

impact on the industry in terms of delays in production, high repair cost, depreciation

of equipment, waste of economic and material resources [18]. However, if we can

foresee the failures of the equipment, we can reduce the aforementioned problems by

taking action ahead of time, thereby saving economic, time, and material resources

[59].

Specific Problem

To predict the failure of the equipment ahead of time and reduce the downtime

of equipment, we need to make use of equipment data that is being collected by

equipment manufacturers on a regular basis for the numerous amount of different

equipment they build. One such manufacturer is VCE who has a vast amount of

vehicles in their fleet sold to customers around the world for construction projects.

These vehicles are are collecting and logging the vehicle data in the VCE system. This

gives rise to the problem of how can we actually leverage this data sitting idle in the

databases and/or currently being used for reporting purposes to foresee vehicle failure.

To solve this problem, first we define a precise research question.

1.3 Research Question

In this thesis, we aim to answer the following research question:

Howcan realworld event log and component based sensor log data be used to predict

failure of construction equipment reliably ahead of time using a machine learning

approach to enable appropriate prescriptive actions?

3



CHAPTER 1. INTRODUCTION

1.4 Purpose

In order to further increase the availability of customers’ fleet of construction

equipment whenever they require it, VCE [49] needs to develop smart solutions

allowing anticipation of maintenance and failure of their equipment. In this way, the

aftermarket chain can be ready and anticipate part availability while the customer can

plan for equipment service at the right time. This results in a very low disturbance

at the worksite, avoids project delays and ensures maximum productivity of each

machine. Overall, there is higher availability of equipment for the customer to use

and higher productivity which has a positive economic impact [44].

1.5 Goal

The goal of the thesis is to define a method to predict the failure of construction

equipment (e.g. haulers or wheelloaders) ahead of time by analyzing the specific

machines’ logs (generated by each Electronic Control Unit (ECU)) in order to identify

patterns that can cause the machine to malfunction. The desired outcome for VCE is

to have a model/solution which can do this effectively ahead of time for any specific

component (e.g. engine, transmission, brakes, etc.) of any machine. The model will

serve as proof of concept for the company that they can leverage the data they collect

from their construction equipment to improve the uptime of theirmachines and reduce

the number of failures. Themodel will act as a foundation that they can build upon and

scale for other types of components and machines. To develop this model, we will use

Machine Learning (ML)methods alongwith realworld log data to perform PdM.

1.6 Ethics and Sustainability

PdM is a significant contributor towards the sustainable future of the world. It plays a

key role to further assist the manufacturing industry to reach the sustainability targets

outlined by the United Nations [37]. It falls under the area of SustainableMaintenance

[1] which aims to reduce the environmental impact of the breakdown and depreciation

of industrial equipment. It does this by maintaining the health of the equipment by

replacing parts and reducing breakdowns ahead of time. This improves the durability

of the equipment thereby, reducing the overall cost ofmaintaining the equipment. This

4



CHAPTER 1. INTRODUCTION

contributes positively to achieving sustainability targets such as reducing the energy

usage (e.g. fixing electrical appliances prior to breakdown), increasing sustainable

energy generations (e.g. lesser downtime for wind turbines), reducing maintenance

waste, improving the safety of workers, etc [15, 42].

Nonetheless, its important to note that this PdM approachmoves the industry towards

more automation and reliable equipment manufacturing with an increase in optimal

use of resources. However, this may result in fewer human resources being needed

to maintain the equipment and be replaced by analysts who can apply these advanced

predictive techniques. Even with these jobs being replaced, overall more jobs at the

ground level (e.g. technicians) will be under threat as opposed to those created at

an analytics level which may be a downside. Lastly, the project does not address any

ethical questions or has any ethical implications.

1.7 Methodology

For this thesis, we will use the quantitative research method to answer the research

question. This method is optimal to carry out experiments and test hypotheses using

measurable tools such as big datasets, statistics, computations, mathematics, etc.

More specifically, wewill make use of the applied researchmethodwhich is suitable for

our research since we are solving a practical problem whilst building on existing work

and research. Our research will involve building a MLmodel using realworld log data

directly retrieved fromVCE’s articulated haulerswhichwill enable us to predict failures

in advance.

There will not be a need for any data collection method as the focus of the thesis is to

work with the existing historical data available at VCE. However, we will make use of

data analysismethodsmainly computationalmathematics, coding, and statistics.

1.8 Delimitations

The log data provided by VCE for their construction equipment is not logged in real

time. The readings are recorded when a technician connects to the machine or when

a failure occurs. Therefore, the data may not be at regular time intervals, so realtime

scaling/forecasting is not considered in this project.

5



CHAPTER 1. INTRODUCTION

There is a wide range of construction equipment which VCE has in their product range,

so we do not consider all machines for the purpose of our research. We only focus on

one type of machine i.e. articulated haulers and build a model for that, which acts

as a proof of concept for VCE to build upon and scale to the rest of their products.

Similarly, each machine has different components e.g. engine, transmission, brakes,

etc., with each of themhavingmany different types of failures. In our research, we only

consider one specific component i.e. engine and and focus on specific engine related

failures.

Therefore, it is important to note that our solution is focused on a specific set

of machines, components, and failures respectively. Moreover, we only consider

machines that have a significant amount of historical data andnot consider thosewhich

have been recently sold to customers thereby to avoid the coldstart problem for our

model.

1.9 Outline

The remainder of the thesis is structured as follows:

• Chapter 2: Theoretical Background

• Chapter 3: Method

• Chapter 4: Data Preprocessing and Exploration

• Chapter 5: Applied Predictive Maintenance

• Chapter 6: Model, Results and Analysis

• Chapter 7: Discussion and Conclusion

6



Chapter 2

Theoretical Background

In this chapter, we look at the overall area ofmaintenance, its application andwhat role

PdM has in this space. Moreover, we highlight the related work that has used PdM for

different types of equipment using ML and non ML methods.

2.1 Maintenance

Maintenance plays a key role in nearly every industry since the industrial revolution.

The shift to mechanical machinery, electrical equipment, hardware, software,

automation, and in recent times Industry 4.0 [47], has enhanced the importance

and dependence on maintenance more than ever. Simultaneously, modern industrial

equipment has become highly complex; made up of many different mechanical and

electrical components which areworking together in harmony, and therefore, there is a

higher chance of any one component failing. This by nomeans indicates that the failure

is critical but it possibly can be. For instance, construction equipment has an engine,

brakes, axle, electric components within which faults can occur [52]. Thus, customers

purchasing such products require it to be maintained and similarly, manufacturers

producing these products offermaintenance services and guidelines for their products.

This has given rise to third party maintenance service providers as well.

On an industrial level, with the rise of automation, maintenance plays an increasingly

important role in the smooth functioning of the modern production processes and

ensures the uptime of equipment [47]. Therefore, there is a dependence on improving

themaintenance techniques to guarantee higher productivity of modernmachines and

7



CHAPTER 2. THEORETICAL BACKGROUND

processes.

2.1.1 Types of Maintenance

Maintenance can be carried out in different ways. Primarily, they are categorized as

follows:

• Reactive Maintenance

It is themost typical form ofmaintenance across all industries. You only perform

maintenance on the equipment once it has already broken down. Mostly, it is

applied to lowvalue products for instance  changing a light bulb once it has

fused [19]. However, in some cases, highvalue products such as cars owned by

individuals are only taken to the mechanic to fix once they have broken down.

• Preventive Maintenance

This form of maintenance is performed at scheduled regular intervals. It is

often performed outside working hours and the cost of maintenance is typically

not high. Equipment owners who perform this type of maintenance have

internal maintenance plans scheduled at regular time intervals for e.g. biannual

inspection of wind turbines [19, 20].

• ConditionBased Maintenance

This form ofmaintenance is similar to preventivemaintenance, however, instead

of regular time intervals, it takes into account thresholds which the equipment

reaches and then is inspected. For instance, automotive vehicle manufacturers

would recommend that after driving every 10,000 kilometers, you should get

your vehicle checked in for service [9]. Similarly, airplanes are checked after

traveling a certain amount of distance as well [47]. It is often a form of

recommended maintenance by equipment manufacturers.

• Predictive Maintenance (PdM)

This is a modern type of maintenance that makes use of equipment data and

advanced analytical techniques to predict the failure of the equipment ahead of

time. It can predict theRemainingUseful Life (RUL) of the equipment and allows

maintenance to be scheduled in advance [20]. Typically, this method is used in

industries where the downtime of equipment has a high impact financially [47].

8



CHAPTER 2. THEORETICAL BACKGROUND

For instance, construction equipment manufacturers would like to know ahead

of time whether their machine owned by a customer/contractor will break down

anytime soon so that they can fix it before the customers’ project is delayed due

to a breakdown.

Figure 2.1.1: Overview  Types of Maintenance (Image retrieved from [47])

Industry 4.0 has given rise to the adaption of this PdM and more companies are

shifting from a reactive approach towards this proactive approach [19]. However, it

is important to note that the other forms of maintenance are not useless but in fact, in

some cases still the best approach where PdM is not possible. For instance, refilling

vehicle lubricants or tightening some hardware bolts [17]. Moreover, at times, for

safety reasons or the type of action to be executed may require the equipment to be

switched off. To minimize the impact on the business, in these cases the maintenance

is planned and executed as quickly as possible [17]. This indicates another reason why

companies tend to shift to predictive maintenance mainly for critical breakdowns and

downtime which causes a significant financial impact.

9



CHAPTER 2. THEORETICAL BACKGROUND

2.1.2 Why Predictive Maintenance?

PdM increases overall productivity and has a positive impact on the business. The PdM

lifecycle in Figure 2.1.2 shows the three core components of PdM in a spiral that is at

the forefront of its success.

Figure 2.1.2: The Predictive Maintenance Cycle (Image adapted from [17])

10



CHAPTER 2. THEORETICAL BACKGROUND

Advantages of Predictive Maintenance

Advantages of PdM over the other aforementioned maintenance methods as follows

[9]:

Predictive Maintenance Other maintenance methods

• Lower maintenance costs as only

the specific components which are

forecasted to fail ahead of time are

serviced/replaced.

• Higher customer satisfaction as

they can plan for any impending

failures of their equipment ahead

of time resulting in their projects

to be executed on time as planned.

• Realtime asset management with

notifications to report any

imminent failures.

• Higher maintenance costs as

either the equipment has

completely broken down or is

inspected and serviced at regular

intervals.

• Equipment undergoes

inspection/service/maintenance

even when it is perfectly healthy as

per predefined maintenance

schedules.

• There is no way of knowing ahead

of time when a failure will occur

unless the specific component

undergoes inspection / service.

Challenges of Predictive Maintenance

Even with the great advantages of PdM, there exist some critical challenges in

its application across industries. Mainly, there is a need for integration between

the maintenance and analytics departments of any organization. They need to

work together to make the transition towards PdM from their traditional reactive

maintenance approaches. However, this is costly as possibly there is a need to hire

analysts and maintenance technicians who are experts in this area of PdM [9]. Over

the years, a lot of organizations have been collecting data but have not been leveraging

it to enhance their products or have moved towards a datadriven approach. However,

there seems to be a strong feeling amongst these organizations that they have the ability

to easily transition and make use of this data. Unfortunately, often we see that they

struggle to adapt as the data quality is not up to the standard to employ these advanced

techniques [47]. Therefore, a big challenge the organizations are facing is to improve

11
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their data quality essentially by modeling better the data they require and from which

components of the equipment they need to collect it from [47]. They will need to install

the right infrastructure to achieve this by employing the right people, installing the

right software and a wide range of sensors across their different equipment which can

relay data in realtime from the machines, identifying the critical failures, bottlenecks,

and, areas of improvement [47]. Installing this infrastructure can result in the cost

of equipment to increase for e.g. higher cost of sensors results in a higher cost of the

vehicle for the customer. Some other concerns in recent times exist with government

regulations on which data can be shared and the lack of defined standards in the

industry makes this area more difficult to navigate [4, 9].

In conclusion, organizations will need to invest in transitioning their maintenance

activities to the PdM approach which requires significant investment before they see

the return on it. However, it seems to be a doubleedged sword as organizations that

are hesitant to invest in such innovative techniques will eventually get left behind by

their rivals in the near future, while on the other hand, if they do decide to invest, they

will need to invest a significant amount of capital to employ the expertise lay down the

correct infrastructure to succeed.

2.2 Application of Predictive Maintenance

PdM in practice is dependent on the availability of data and its quality. Without the

availability of data, PdM is not possible. It makes use of data along with predictive

modeling approaches such as ML to predict the RUL of a component [52]. Once

the model makes the prediction, typically a notification is sent to the maintenance

team about the corresponding equipment who then contact the customer to schedule

the maintenance. The following subsections provide a comprehensive outline of the

requirements for creating such a system for construction equipment.

2.2.1 Log Data

Log data stores readings detailing the functioning of equipment via the software

modules running on the equipment [44]. Each reading observation has a timestamp

which is mapped to other features of the construction equipment for e.g. engine hours,

distance travelled, operating hours, etc. (see figure 2.2.1). Each reading observation
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is essentially an event and typically this kind of data is known as eventlog data i.e.

most common and widely available form of log data [44]. The frequency of these event

notifications is determined by the data infrastructure set up by the company, often

being reported in nearly realtime. The features which are included in these logs are

the ones defined by the domain experts/developers in charge of the equipment [44]. In

principle, these logs can be used to track how the equipment has been used over time

and effectively make conclusions about its current state along with its overall health

[44].

Similarly, sensor data is also another popular source to gather data for such equipment.

Sensor data is often derived from each individual component installed on the

equipment for e.g. the fuel level, voltage, brake oil temperature, etc [20]. Each reading

observation in this data is derived via sensor readings corresponding to a specific date

and time. It is also mapped to a timestamp, however, the features are timebased

and/or distributionbased attributes.

Therefore, to enrich the data andmake itmore valuable, both eventlog and component

based sensor data can be used in a hybrid way by merging them together (timebased

and distributionbased logs) [47].

Log data in practice

Typically, once we have loaded the log data, we identify which type of log data it is

and whether we need to merge it with other log data sources to get access to for e.g.

timebased and/or distribution logs and/or domainspecific logs. Once, we have all

the log data at one source, then we perform some preliminary analysis and understand

what the basic data looks like. We interpolate any missing values, identify key features

and perform any feature engineering techniques if required. Then, we check whether

the data is labeled or not in terms of failure/no failure. At this step, we already have

an inclination on whether to use supervised or unsupervised learning methods for the

prediction. Depending on the labels, we either make note of the outliers/anomalies or

remove them. Finally, we prepare the dataset in a way that is ready to be used by ML

methods.
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Challenges of using Log Data

System logs are not always simple and easy to deal with it when it comes to predicting

failure. Sometimes, the log datamay not contain enough featureswhich directly results

in a failure or not enough failure observations popularly known as the classimbalance

problem [44]. Therefore, looking for patterns that can indicate when a failure may

occur becomesmore difficult. Moreover, there can be computational challenges during

the preprocessing of the data due to its size if the data is logged in realtime [44]. Also,

it can be difficult to identify outliers/anomalies at times due to the highdimensionality

of the data [12]. Lastly, for PdM, high data quality is of utmost importance without

which it can be very challenging to achieve acceptable model performance [54].

2.2.2 Predictive Maintenance using Machine Learning

Predictive models are one of the key components on which predictive maintenance

relies on [47]. These models are able to use the log data to predict the failure of

a specific component, its health/condition, and its RUL [20]. Normally, to achieve

this predictive maintenance systems make use of two popular machine learning

techniques:

Classification

Classification algorithms are one of the most common and popular techniques used

in ML across all domains. They are able to determine typical and atypical patterns

from the historical data provided and based on that classify which group a certain

observation belongs to [47]. It can be a Binaryclass Classification (BCC) / Multiclass

Classification (MCC) based on the data provided. In the domain of PdM, classification

algorithms can be used in few different ways:

• BCC: Predict whether a machine is “likely to fail” or “not fail” [53].

• BCC: Predict whether a machine will fail or not in the next “x” days [20].

• BCC / MCC: Predict which failure/fault code will occur.

Typical algorithms used to perform such classification tasks are Random Forest (RF),

Support Vector Machines (SVM), and KNearest Neighbours.
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Anomaly detection

Another popular technique to identify any outliers/patterns which deviate from the

data when the machine is working normally. This technique makes use of event and

sensor log data generated by specific components at specific time intervals. These

outliers can indicate specific types of failure and some recurring patterns can be

identified to indicate whenever a failure is about to occur. This technique can be

implemented using a single class SVM and autoencoder neural networks [47].

Infrastructure

Tomake use of theseML techniques in the domain of PdM, it is crucial to have the right

infrastructure in place. In terms of data collection, having a streaming architecture can

be really helpful. It ensures the availability of realtime log data of the equipmentwhich

can be used by the ML algorithms to predict failure [47]. The streaming architecture

can be implemented using Apache Spark, Kafka, etc. However, the focus of our

research will not involve this streaming architecture as the real equipment log data

we have available from VCE is not collected in realtime.
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2.3 Construction Equipment

Construction equipment is a vital product in the construction, mining or agriculture

industry [49]. There is a broad variety of equipment that is required by projects in

this industry for e.g. haulers, wheel loaders, excavators, etc. and is offered by VCE.

However, for our research study, we will focus only on one specific type of construction

equipment i.e. Articulated Haulers [50]. This is the type of equipment for which

we have sufficient log data available and is one of the “star” [50] products of VCE

with extremely high demand. It is one of the most sold VCE products around the

world.

Figure 2.3.1: Articulated Hauler  A40G Series (Image retrieved from [51])

2.4 Related work

In recent times, with the rise of Industry 4.0, significant research has been done in

the area of PdM [2]. These include using different data approaches (e.g. event

log data [4, 20, 44, 53], sensor data [61]), different domains (e.g. ATM machines

[53], smart electric devices [4]), and different ML techniques (e.g. supervised

learning classification models [11, 48], anomaly detection [41], unsupervised learning

[13]).

2.4.1 Log Data and Machine Learning methods

Various different studies have been conducted using a different combination of log

data and ML methods. A notable study is of NASA’s aircraft engine [62]. The engine

data has been collected using six sensors and has been used to predict the engine’s
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performance and its RUL [62]. Primarily, the study focused on using Long Short Term

Memory (LSTM) to predict the failure and RUL of the engine. Moreover, it compared

the performance of the LSTMwith otherMLmodels such as Support VectorRegression

(SVR), Multilayer Sensor (MLP), and Deep Evolution Neural Network (DCNN) [2]. It

concluded that the LSTM outperformed all the aforementioned models in predicting

the RUL of the aircraft engine [2]. Other studies have also established that LSTM and

Recurrent Neural Networks (RNN) models perform well on time series and sequential

log data for PdM [2, 45, 56]. Even though thesemodels performwell, there is a concern

about their interpretability since they are blackbox models. This can cause problems

especially from the side of the technicians/maintenance team as they would want to

know why they need to fix a component. Moreover, it is important to note according

to the authors of this study [41] is that the use of data collected from sensors without

any domain knowledge or expert input can lead to incorrect predictions. Therefore, it

is crucial to ensure that the data quality produced by the sensors is high and there is

input from experts [41].

Whitebox classification models have also been a popular way to predict RUL.

Ensemble treebased methods have been used such as RF [38] and RandomSurvival

Forest (RSF) [25] respectively. RF has been used to predict the RUL for vehicle

compressors using log and service data which allows them to plan their visits to the

maintenance workshop accordingly [39, 52]. Similarly, RSF is a technique that can be

used to predict the probability of the component being functional at a particular date

and time in the future. It does this by allocating components into groups based on the

similarity of the patterns [52]. The similarity could be based on depreciation indicators

of the equipment, the health of the equipment, or any other correlated patterns. In

the case of construction equipment, the model could group equipment with similar

patterns together. Furthermore, ensemble classification algorithms such as RF have

been used with eventlog data to predict the breakdown of ATMs [53], smart electrical

devices [4], and discrete partsmanufacturing [20] to reduce the unexpected downtime.

These approaches have been successful with eventlog data, however, do not make use

of a hybrid data approach to merge event and sensor data together.
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2.4.2 Nonmachine learning methods

Our study is only going to be making use of ML methods for PdM, however, it is

important to note that there exist other methods to perform PdM as well. One of

the earliest methods in the field of PdM are nonML rulebased expert systems which

have been heavily adopted by the industry [6, 57]. The reason is that the research

in these rulebased systems started as early as 1996 and precisely required expert

knowledge whichmost organizations possess [6, 57]. The rules/patterns for failure are

predefined in these systems and a notification is triggered once the specific pattern is

encountered in the data. However, these rules are dependent on experts themselves

and are not maintainable for modern largescale applications due to the exponential

increase of defining rules and hiring experts [53]. It is simply not viable or scalable,

however, it can play a role in specific smallscale applications.

Moreover, some statisticalmethods have also been investigated in the area of PdM. The

prominent ones are sequential pattern mining [10, 34, 60], survival model, and Cox

model [53]. Sequential pattern mining relies on the strong association which exists in

the log data of the equipment [10, 34]. It identifies the statistically significant patterns

in this sequential data, however, is unable to make use of the time component [10,

34]. Therefore, it is unable to capture the effect of time series data and is not able to

forecast timebased failure prediction. It is one of themajor drawbacks of this method.

Alternatively, both the survival and Cox model are able to handle the time component

and are able to forecast how long before the failure occurs [30, 36, 40]. This method

makes use of the failure data, however, all predictive features are still not captured as

it does not make use of error logs [30, 36, 40]. So the different statistical methods

seem to have their own significant drawbacks, however, they can be deemed quite

useful depending on the type of data and computational resources you have at your

disposal.

With the improvement in technology, big data, and IoT systems, more modern

methods were developed and adapted [2]. An example would be a standalone

Autoregressive IntegratedMoving Average (ARIMA)model or a combination of aDeep

Learning (DL)model with the ARIMAmodel [2, 16, 23]. Both of these techniques have

been used for making PdM forecasts [16, 23]. Unfortunately, the studies have shown

the ARIMA models have not proven to be as powerful and accurate as it’s machine

learning counterparts in terms of predictive performance [2]. Therefore, we only focus
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on the cuttingedge datadriven ML models for the purpose of our study.

2.4.3 Conclusion

In conclusion, a lot of this research has beenusing openpublic datasets andnot actually

data that is originating directly from the machines themselves [63]. Moreover, these

works mostly only make use of eventlog data and do not use a hybrid data approach

(event + sensor log data). Furthermore, a survey of 150 papers was conducted in the

field of data mining in manufacturing and concluded that failure prediction in the

automotive industry is more difficult to do than in other domains as it is difficult to

do continuous monitoring in realtime [8, 39]. Therefore, we must also note that

instead of predicting failure for a specific type of equipment, it is more viable to predict

failure for the specific component within that equipment as the equipment is made up

of numerous components and predicting all faults with high accuracy using a single

model is extremely difficult [44]. Lastly, we see that rarely any PdM research has been

done related to construction equipment.
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Method

3.1 Choice of research method

We made use of the quantitative research method to answer the defined research

question for this project. This decision was made based on the notable previous

research work done in this area which also makes use of this method as highlighted

in Chapter 2. This is due to the fact that there is the availability of a vast amount

of equipment data and wellgrounded machine learning algorithms whose predictive

performance can bemeasured usingmetrics that are widely recognized. This applies to

our case as well, as we had realworld log data directly retrieved fromVCE’s articulated

haulers which could readily be used towards carrying out our research. Moreover,

we had the computational resources to build machine learning models on this data to

predict failures ahead of time. Lastly, the expertise that was available at our disposal

at VCE along with their years of experience working with the data sources further

supported us to go with this approach. This went handinhand with the expectation

of VCE i.e. to build a predictive maintenance machine learning model whose quality

can be measured quantifiably and can act as a proof of concept which can be scaled

into their products and portfolio.

Having said that, a qualitative approach could also have been carried out by

interviewing industrial experts and academics who have worked with such predictive

maintenance machine learning models in theory and practice for instance at VCE and

KTHRoyal Institute of Technology (KTH) respectively. However, such a study requires

considerable time and human resources to establish concrete results and conclusions.
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Therefore, due to time constraints and lack of sufficient resources, we did not proceed

with the qualitative approach.

3.2 Application of research method

When we talk about data science, there is always a big focus on ML techniques and

algorithms. However, these ML algorithms are just a cog in the entire process that is

required to carry out a quantitative data science project [19]. A popular methodology

to carry out data science projects is known as the CRoss Industry Standard Process for

DataMining (CRISPDM) [55] methodology which is widely used in both industry and

academia.

Figure 3.2.1: Phases of the CRISPDM Model for Data Science (Image adapted from
[55])

However, to carry out predictive maintenance projects in the realm of data science,

SAP [19] has concluded that this methodology needs some amendments which need

to be specified even though they may actually be applied in practice in CRISPDM.

Precisely, two additional steps:

1. Integrate domain expertise of the problem at hand into the iterative CRISPDM

lifecycle.

2. Monitor the ML model scoring and results during and after deployment.
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Therefore, to apply the aforementioned quantitative research approach, we made use

of an amended CRISPDMmethodology proposed by SAP [19].

Figure 3.2.2: Amended CRISPDM Data Science Process for Predictive Maintenance
(Image adapted from [19])

In the last step of themethodology, we did not carry out the deployment part as it is not

in the scope of this research project. Our research and the resulting model are aimed

to act as a proof of concept which VCE can then build upon and deploy as part of their

future work.

3.2.1 Domain expertise

Our research work has a broad domain relating to maintenance, construction

equipment and log data. Therefore, to gain expert insight on existing and future work

along with challenges VCE faces in these domains, we spoke to the people working

across different departments in these areas at VCE. Table 3.2.1 outlines the experts

role and the department they belonged to.

Table 3.2.1: List of departments and experts contacted

DEPARTMENT EXPERTS

Advanced Engineering and
Emerging Technologies

Research Engineers, Industrial PhDs

Analytics Development Engineers, Technology Domain
Leaders

Electronics and Embedded
Systems

Senior Verification Engineer, Test Engineers

Uptime Center andWarranty Head of Department, Thesis Students

After speaking to them, they pointed us in the right direction on how tomake use of the
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resources available at our disposal to carry out the research work. The following areas

were discussed at length throughout the course of the project and the key takeaways

are summarized along with the support the experts offered.

Construction Equipment and Maintenance

Most of the popular products sold in the market by VCE are wheelloaders and

articulated haulers. Therefore, the bulk of customer support and maintenance

activities are related to these machines. Consequently, a high amount of data is

available for these machines. These machines can have different types of failures

on different types of components. Some failures can be critical which can result in

the breakdown of the machine which means it comes to a halt. While other failures

may not be of critical nature and may not need to be fixed immediately. Moreover,

predicting a specific failure for the entire machine is quite a challenge. Therefore, it

was recommended to go with a bottomup approach:

1. Identify a specific component for which we can predict failures for e.g. engine,

transmission, etc.

2. Identify specific types of failure to predict belonging to that component, which if

were to occur may result in critical breakdown or high costs to fix.

The active care and uptime center provide warranty, repair services, and support to

their customers. They perform a mixture of reactive and preventive maintenance of

the machine depending on the components. With the help of PdM, they can manage

the stock for replacement parts optimally and can plan to prevent failures and service

the machine ahead of time.

Log Data

The data sources that are appropriate to our research work, how to access them

along with the relevant tables, their structures and schema respectively. Quality of

the log data available in these data sources and their limitations were discussed at

length. The keys findings were that the data is not collected in realtime, only when

the technician connects to the machine. Therefore, there is a logged timestamp and

send out timestamp respectively. Moreover, the data is temporal, with timestamps at

unequal intervals. Also, the log database was initially designed for reporting purposes,

therefore, some of the data is preaggregated. Furthermore, the previous work done at
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VCE using this log data and the challenges they faced from a practical standpoint were

discussed and we were given access to detailed documentation of the logdata.

In conclusion, the domain experts’ input helped us shape our research project and to

avoid pitfalls.

3.2.2 Data sources

Data tables pertaining to event and sensor logs respectively will be retrieved from

the VCE database. The details of all the data will be specific to Articulated Haulers

particularly to all vehicles belonging to the A40G series. Table 3.2.2 and 3.2.3 below

outlines the data tables belonging to each of these categories.

Table 3.2.2: List of data tables containing EventLog Data

TABLE NAME TOTAL OBSERVATIONS TOTAL FEATURES

READING 49,660 11

FAULTCODES 887,999 17

VEHICLE 5,603 13

Table 3.2.3: List of data tables containing SensorLog Data

TABLE NAME TOTAL OBSERVATIONS TOTAL FEATURES

ECU PARAMETER N/A 6

TEA2 READING N/A 5

The data available in these tables is structured and labelled data.

3.2.3 Imbalanced data

When working with failure and maintenance datasets, class imbalance is extremely

common. Formally, class imbalance is defined as a dataset where one or more classes

have a much larger number of instances than the other classes. The most occurring

class is known as themajority class, whereas the class with the least instances is known

as the minority class [31].

Naturally, all equipment has more instances recorded of when it is functioning

normally as opposed towhen it has failed. Failure is considered to be a rare event i.e. an

event which occurs less frequently than what occurs commonly [21, 35]. In the realm
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of data mining and machine learning, this is considered to be a binary classification

problem of predicting whether a specific event has occurred, in this case, whether a

failure has occurred or not [21].

Traditional supervised classification algorithms do not perform as well on imbalanced

data as they do on balanced data. For instance, Logistic Regression (LR), SVM,

Decision Trees (DT) provide substandard results for imbalanced data as they classify

the majority class correctly, however, the minority class is classified incorrectly most

of the time [28]. Moreover, performance metrics such as accuracy are biased towards

the majority class and can be quite misleading as the high accuracy might seem to you

that the model is good but its only classifying the majority class correctly most of the

time [33]. Furthermore, someminority class instances can be considered as anomalies

or outliers by the models as they occur rarely [3].

Even though these problems exist, the aforementioned algorithms can still be used to

build amodel on such imbalanced data after adjusting the data andmaking tweaks to it

using some recommended approaches. Some of these approaches include resampling

techniques, feature selection, ensemble models, different performance metrics, etc.

We incorporate these approaches into our method and discuss them in the sections

ahead as the data we are dealing with is imbalanced.

3.2.4 Data Preprocessing

To prepare the data, a combination of different data processing techniques will need

to be used. Here we highlight some of the key ones.

Missing Value Imputation

Real world data more often than not has missing data due to a variety of reasons.

Some of them may involve issues with the collection process, incorrect data entry, the

database system or network itself, etc [32]. Thismissing data can be interpolated using

a variety of different techniques ranging frommean imputation tomaking a prediction

for the imputation using predictive models such as regression. The most commonly

used are mean, median, mode, min, max imputation techniques. Moreover, for time

series data rolling average, neural networks, ratio and windowing techniques are also

used [58]. The imputation technique largely depends on the data you have. Since our

data involves time series of vehicles with continuous values increasing over time, we
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will make use of the windowing and average techniques.

Onehot encoding

Onehot encoding is the goto technique to prepare categorical data for machine

learning models [43]. For each category, the encoding technique creates a binary

vector, with labels one/zero indicating whether this category exists for a certain

observation or not [43]. For x categories, it creates x binary vectors. These binary

vectors act as features to the ML model and often may contribute significantly to the

prediction. In our case, this technique will be crucial to prepare the vehicle ID’s and

historical failure features for the ML model to take as some of the inputs.

Resampling

The datetime interval frequency of time series data can be changed using the

resampling technique. The resampling technique can make the interval between each

consecutive observation equal by aggregating the data and assigning it to the next equal

interval value. It can be divided into two categories:

1. Downsampling

This approach decreases the frequency of the data by aggregating the values.

2. Upsampling

This approach increases the frequency of the data by increasing the number of

observations.

This approach is useful to handle class imbalance that can affect model performance.

Therefore, it is one of the approaches which we will experiment with to see how its

performs in comparison to other approaches and whether losing data has an impact on

model performancewhile observing the effect of resampling on class imbalance aswell.

In our case, we will make use of a custom resampling technique using a windowing

approach aswewant to see the failure ahead of a certain period of time. The application

of this technique is explained further in subsection 5.1.2.

Feature Selection

Feature selection is a widely recognized and effective technique to prepare data for ML

tasks. Features which do not contribute to themodel, are redundant or have anomalies
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should be dropped [29]. In our case, the features pulled from the tables mentioned in

Table 3.2.2 will be filtered out based on their relevance to our task and whether they

contribute to the PdMmodel or not.

3.2.5 Models

The log data is tabular with a binary class label indicating whether there is a failure

or not. Therefore, we used a supervised learning approach for our research work and

selected the leading classification algorithms.

Logistic Regression

LR is a predictive modelling method which uses data to explain the relationship

between a categorical dependent variable and one or more independent variables [27].

It is typically used for binary classification problems and predicts the class label with

a certain probability. If the probability of prediction of a certain label is above the

defined threshold which by default is 0.5, then that label is predicted [27]. It is one of

the most common and popular techniques used in the area of classification.

Random Forest

RF is an ensemble supervised learningmethodwhich canbe used for both classification

and regression problems [38]. It is an ensemble method as it makes use of a vast

number of decision trees to predict the class label and the class label with the highest

number of predictions gets assigned as the final prediction [46]. Essentially, it takes

the majority prediction made by the defined number of trees. This approach of

choosing the highest voted predictions from the trees gives good results. Therefore,

it outperforms an individual decision tree model.

XgBoost

XgBoost is a scalable distributed tree boosting algorithm which is in recent years

has been used for stateoftheart machine learning models and has also gained a

lot of popularity in Kaggle competitions owing to its success [7]. Scalability and

the algorithms ability to handle highly sparse and dimensional data is one of the

key reasons for its success [7]. Most real world data sets are often sparse or highly

dimensional for e.g. biological data, text classification, etc, this algorithm is of great
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use to solve such problems. The algorithm is implemented using gradient boosting

trees [7].

3.2.6 Model Evaluation

The performance of the models mentioned in section 3.2.5 can be evaluated using

some well known metrics in the ML community [21]. The selection of the metrics was

influenced by the fact that the data has a significant class imbalance. In view of the

class imbalance, we chose multiple metrics which are not affected by it and are known

to perform well to evaluate the performance of our models [5]. To understand these

metrics, we first define the confusion matrix for a binary classification problem.

The confusion matrix helps us to understand deeply the predictive performance of a

ML model by showing us which precisely how many times a class is being predicted

correctly, incorrectly and what errors the model is typically making. It also introduces

us to terms that are used to define performance metrics which we have used in our

study. The terms are as follows:

Figure 3.2.3: Confusion matrix for a Binary Classification Problem

• True Positive (TP): Instance label is positive and is classified correctly by the

model as positive.

• True Negative (TN): Instance label is negative and is classified correctly by the

model as negative.
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• False Negative (FN): Instance label is positive and is classified incorrectly by the

model as negative.

• False Positive (FP): Instance label is negative and is classified incorrectly by the

model as positive.

The selected metrics to evaluate model performance are as follows:

1. Accuracy

Accuracy is the most widely used metric for classification tasks [21], however, as

mentioned previously in section 3.2.3, accuracy performs poorly for imbalanced

data due to a bias towards themajority class andmay not be the optimalmetric in

our case [5]. However, wewill still keep it for comparisonwith other performance

metrics and whether they conflict or validate the performance of a specific model

in comparison to other performance metrics.

For binary classification problems, accuracy is defined as the ratio of correct

predictions to the total predictions themodelmakes. It can be denoted as follows:

Accuracy =
CorrectPredictions

TotalPredictions
=

TP + TN

TP + TN + FP + FN

2. Precision

Precision is the ratio of positive predictions that were correct. In other words,

precision is the ratio of true positive labels to the total positive labels. It can be

denoted as follows:

Precision =
TP

TP + FP

3. Recall

Recall tells us how well the positive classes were predicted. It is the ratio of

positive cases that were correctly classified. In other words, recall is the ratio of

true positive labels to the total positive predictions. It can be denoted as follows:

Recall =
TP

TP + FN
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4. F1score

F1score is the harmonic average of the precision and recall. The F1score value

lies between zero and one, where one is when all instances are predicted correctly

and zero is when all instances are predicted incorrectly. It can be denoted as

follows:

F1score =
2 ∗ TP

2 ∗ TP + FP + FN

3.2.7 Software Selection

To carry out this research work, we used the following software:

• Programming Language: Python 3.8+

Python is the most preferred programming language for data science projects. It

has numerous thirdparty libraries for data preprocessing and to build machine

learning models. Moreover, it has a simple syntax, easy to learn and a very

active community. Therefore, it is quite popular amongst data scientists and has

an excellent reputation for ML projects. The aforementioned reasons fulfill the

demands of our research work which made it the optimal choice for our project.

• Notable Libraries: pandas, numpy, scikitlearn

These libraries are popular for data preprocessing and building ML models in

python. They are quite extensive and were sufficient for the tasks required in our

project.

• Programming Environment: Jupyter Notebook and Visual Studio Code.

Jupyter notebook was used to perform quick dirty analysis of the data, build

baseline models and to come up with a rough solution of our research question.

Once, we were confident of our solution, we used Visual Studio Code to

modularize the code in a way that is scalable and generalizable so that it can be

deployed by VCE if they choose to do so.

• Data Sources: Logged Data Analysis (LDA) Data Warehouse and EDW Tool

Both data sources were VCE’s inhouse data warehouse and analysis tools

respectively. The LDA warehouse was accessed using DBeaver software and the
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data was exported as .csv using SQL statements. The EDW tool is a clickbased

report generation tool and had it’s own export functionality to generate data as

.csv.
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Data Preprocessing and
Exploration

In this section, we show how the research method was applied practically and what

work was done to prepare the data in different ways which was then used to build the

PdMML models.

4.1 Data Retrieval

The historical data for the ArticulatedHaulers A40G series was retrieved from the data

sources mentioned in subsection 3.2.2 and 3.2.7. The eventlog and componentbased

sensor log data were retrieved from different databases respectively. To retrieve this

data, different queries and merging of tables was required.

4.1.1 Event Log

The event log data was available in the inhouse LDA warehouse. All this data was

retrieved using SQL statements and was exported as commaseparated files.

• Reading table

Contained the readings taken of vehicles at a given datetime distinguished by a

unique reading ID. This table was joined with the vehicle table tomap the vehicle

information to the reading observations and then exported as commaseparated

files.
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Table 4.1.1: List of features belonging to the READING Table

FEATURE NAME DESCRIPTION DATA TYPE

READING_ID Unique ID to identify
reading

INTEGER

VEHICLE_ID ID to identify vehicle for
which the reading is taken

INTEGER

INCOMINGDATE Timestamp of when the
reading is recorded in the
system

DATETIME

READOUTDATE Timestamp of when the
reading is recorded by the
vehicle ECU

DATETIME

LAM_OPERATINGHOURS Total hours the vehicle has
been in operation

FLOAT

LAM_TOTALDISTANCE Total distance travelled by
the vehicle

FLOAT

LAM_NUMBEROFPARAMETERS Number of logs associated
with the vehicle

INTEGER

CUSTOMER Customer who the vehicle
belongs to

INTEGER

SENDER VCE data source which
records the data

STRING

ISPROTOTYPE Indicates whether
the reading is for a real or
prototype vehicle

CATEGORICAL

SENDTIME Timestamp of
when the reading is sent to
the system

DATETIME
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Table 4.1.2: List of features belonging to the VEHICLE Table

FEATURE NAME DESCRIPTION VALUES

VEHICLE_ID Unique ID to identify a vehicle INTEGER

CHASSISSERIES ID to identify which equipment
series the vehicle belongs to

STRING

CHASSISNUMBER Unique ID to identify the
vehicle

INTEGER

COUNTRY Country in which the vehicle is
under operation

STRING

MODELID ID to identify the model of the
vehicle

INTEGER

DEALERID ID to identify which dealer sold
this vehicle

INTEGER

NUMBEROFREADINGS Total number of readings
taken for the vehicle

INTEGER

PRODUCTCLASS ID to identify which Volvo
company the vehicle belongs to

INTEGER

REGISTRATIONNUMBER Registration number of the
vehicle

INTEGER

PROTOTYPE Indicates whether the reading
is for a real or prototype vehicle

CATEGORICAL

SPECDATE The date when the vehicle was
ordered by the customer

DATE

PRODDELDATE The date when the vehicle was
delivered to the customer

DATE

ISACTIVE Indicateswhether the vehicle is
still in operation

CATEGORICAL

• Faultcodes table

Contained the failure data of vehicles at a given datetime distinguished by a

unique faultcode ID. This table was also joined with the vehicle table to map the

vehicle information to the faultcode observations and then exported as comma

separated files.
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Table 4.1.3: List of features belonging to the FAULTCODES Table

FEATURE NAME DESCRIPTION VALUES

FAULTCODES_ID Unique ID to identify the
failure

INTEGER

VEHICLE_ID ID to identify which vehicle has
undergone a specific failure

INTEGER

SENDER VCE data source which records
the data

STRING

FAILURECOUNT Total number of failures INTEGER

FIRSTFAILURETIME First time a failure occurred for
a vehicle in a specific window

DATETIME

LASTFAILURETIME Last time a failure occurred for
a vehicle in a specific window

DATETIME

ENGINEHOURS Total hours the engine has
been under operation

INTEGER

COUNTRY Country in which the vehicle is
under operation

STRING

NUMBEROFREADINGS Total number of readings
taken for the vehicle

INTEGER

PROTOTYPE Indicates whether the reading
is for a real or prototype vehicle

CATEGORICAL

ISACTIVE Indicateswhether the vehicle is
still in operation

CATEGORICAL

NODENAME ID to identify which ECU of the
vehicle has the failure occurred
in

INTEGER

DIAOBJTYPE Diagnostic object
type to identify parameters and
subsystems

STRING

FAILURECOMP ID
to identify which component of
the vechile has failed

INTEGER

FAILURECOMPDESCRIPTION Describes the failure
component

STRING

FAILURETYPE ID to identify type of failure INTEGER

FAILURETYPEDESCRIPTION Describes the failure type STRING

Note that only failures related to engines were retrieved as our research work only

focuses on PdM for the engine of the vehicles and also any observations where the

failure component was null were ignored. Moreover, this table did not have a common
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ID with the reading table and later we will be merging these tables together but not at

the time of retrieval.

4.1.2 Sensor Log

The sensor log data was available in the EDW inhouse click based report generation

tool. The data was retrieved by constructing queries in the tool and exporting the

output tables as commaseparated files. A total of three sensor logs were identified

to be logging sensor data related to engines and were retrieved. Note, for data privacy

purposes, the respective log output details are kept hidden.

• Engine coolant temperature

Records the spread of the engine coolant temperature when the engine is

running. This is a distribution log and the data is measured in an incremental

way that is stored in a vector with eleven values.

Table 4.1.4: Coolant temperature log output format

Coolant temperature
[°C]

<A A 
<B

B 
<C

C 
<D

D 
<E

E 
<F

F 
<G

G 
<H

H 
<I

>I

Value No. xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx

– Value No. stores the duration of the log and the time for which the coolant

temperature is within the defined interval.

• Engine oil pressure

Records the spread of oil pressure within a small rpm and temperature area.

Similar to the previous log, this is also a distribution log and the data ismeasured

in an incremental way that is stored in a vector of eleven values.
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Table 4.1.5: Oil pressure log output format

Oil Pressure [bar] A 
<B

B 
<C

C 
<D

D 
<E

E 
<F

F 
<G

G 
<H

H 
<I

I 
<J

>=J

Value No. xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx

– Value No. stores the duration of the log and the total time for which the oil

pressure is within the defined interval.

• Fuel consumption

Records the fuel consumptionwhile the engine is on. This is a timebased log and

the data is measured in a temporal way that is stored in a vector of four values.

Table 4.1.6: Fuel consumption log output format

Value No. A B C D

Logged Value xxx xxx xxx xxx

– Logged value stores the time and fuel consumption component of the log.

If any of the aforementioned logs encounter erroneous data, as a defined rule, the

system does not log that data. Therefore, we can assume that the sensor log data we

have retrieved does not contain any incorrect data.

4.2 Data Quality, Cleaning and Preparation

Once the data had been retrieved, the commaseperated files were loaded into Jupyter

Notebook and were ready to be explored using python.

Before we started the exploration, we had to keep inmind that the data wewere dealing

with was real equipment data collected in the industry as oppossed to simulated data.

Typically, the real world data is quite messy and requires significant exploration. With

this in mind, considerable time and resources were spent on preparing the data and

ensuring that the data prepared for the ML models is of high quality.

4.2.1 Reading Table

The table 4.1.1 was retrieved and some basic summary statistics were explored prior to

preprocessing.
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Table 4.2.1: Basic reading table statistics

MODEL TOTAL VEHICLES TOTAL READINGS

A40G 3,756 45,332

Table 4.2.2: Readings per vehicle statistics

MEAN STD MIN 25% 50% 75% MAX

12.06 23.38 1.00 2.00 6.00 12.00 237.00

It is interesting to note that the median number of readings per vehicle is only six.

The frequency of readings can be better understood by average age of the vehicles to

date.

Table 4.2.3: Vehicle age statistics in years

MEAN STD MIN 25% 50% 75% MAX

1.93 1.59 0.03 0.55 1.60 2.93 6.99

The median age of the vehicle is 1.6 years. This shows that half of the vehicles are

relatively new, however, the number of median readings still indicates that the reading

is not taken frequently enough. Definitely not in realtime.

We proceeded to explore the data and performed some data cleaning and feature

creation.

Data Cleaning

• Duplicate Data

Duplicate readings were found for some vehicles at the same datetime where all

the feature values were identical except the operating hours. For each of these

duplicate readings, one reading had a real value for operating hours while the

other logged it as zero. The duplicate readings with zero operating hours was

removed as this was considered to be incorrect data.

Moreover, there were other duplicate readings where for the same vehicle there

was more than one reading at the same datetime. These duplicate readings for

the same datetimewere also removed and only the last occurrence of that reading

was kept as it was the latest reading data for the vehicle at that specific datetime.
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• Missing Data and Interpolation

For some vehicles, the country the vehicle is being operated in was null, but these

vehicles still had corresponding observations in the reading table. Therefore,

instead of losing reading data by dropping these vehicles, a new category

”Unknown” was created for these vehicles and the missing countries were filled

in accordingly.

• Features dropped

In table 4.1.1, there are three different datetime features for a specific

reading namely ‘INCOMINGDATE’, ‘READOUTDATE’, and ‘SENDTIME’. After

exploring these dates, we found that ‘READOUTDATE’ is the one which

records the reading at the earliest datetime while ‘INCOMINGDATE’ and

‘SENDTIME’ record the same reading at a later datetime. This behaviour is

as expected, as the ‘READOUTDATE’ is the datetime when the vehicle ECU

records the reading while the other two datetimes are for when the reading is

transferred to and recorded by the database respectively. Therefore, we drop

the ‘INCOMINGDATE’ and ‘SENDTIME’ features. We only make use of the

‘READOUTDATE’ in our analysis and moving on we refer to it as ‘DATE’.

Feature Creation

• Class Label

Each reading for a specific vehicle at a specific datetime is considered as a

‘healthy’ vehicle reading. In other words, that vehicle has no failure at that

datetime as long as there is not a failure observation at the same datetime for that

vehicle. Using this approach, a class label column is created called ‘FAILURE’

with all healthy vehicle readings assigned the value of zero.

4.2.2 Faultcodes Table

Table 4.1.3 was retrieved and some basic summary statistics were explored prior to

preprocessing.

Table 4.2.5 shows the total number of failures for 3,756 vehicles where the failure

component is known. The failure number is high as the data is from 2015 todate

across all ECU components. Also, the total failures also consist of noncritical failures
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Table 4.2.4: Dataset Excerpt: Preprocessed reading table features output format

DATE READING ID VEHICLE ID FEATURES FAILURE

2020
0825

987xxx 123xxx ... 0

2020
1230

988xxx 123xxx ... 0

2021
0412

999xxx 123xxx ... 0

Table 4.2.5: Basic failure table statistics

MODEL TOTAL VEHICLES TOTAL FAILURES

A40G 3,756 327,840

which tend to occur more often than critical failures which cause breakdowns. If these

noncritical failures are not fixed, they are logged by the system repeatedly on different

dates until they are fixed. Therefore, the statistics shown in 4.2.6 are quite high and

skewed.

Table 4.2.6: Failures per vehicle statistics

MEAN STD MIN 25% 50% 75% MAX

89.76 71.44 1.00 39.00 75.00 120.00 600.00

We chose engine as the specific component for our study as any engine failure is

typically considered to be critical, and we filtered the failure data only for those as

shown in Table 4.2.6.

Table 4.2.7: Basic engine failure table statistics

MODEL TOTAL
VEHICLES

TOTAL
READINGS

TOTAL ENGINE
FAILURES

A40G 978 7759 3,231

For the A40G series, the engine failures approximately equate to 1% of total failures

and about 25% of the vehicles undergo them at least once in their life time.

The maximum value of 25 engine failures might seem surprising at first, but at a

closer look, it exists because repeated failures related to a specific type of engine

failure were not fixed which were being logged repeatedly over the course of the
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Table 4.2.8: Engine failures per vehicle statistics

MEAN STD MIN 25% 50% 75% MAX

3.30 3.10 1.00 1.00 2.00 4.00 25.00

vehicle’s operations. The engine failures can be categorised as follows along with their

occurrence frequency.

Table 4.2.9: Engine failure categories with frequency

FAILURE COMPONENT TOTAL FAILURES

Engine coolant level 2,260

Fuel delivery pressure 545

Water in fuel indicator 270

Engine coolant temperature 67

Engine oil level 36

Engine oil temperature 29

Engine oil pressure 24

Figure 4.2.1: Engine failures by category over time

We proceeded to further explore the data and performed some data cleaning and

feature creation.

Data Cleaning

• Vehicle Selection

Before exploring the data further, we only select those vehicles with failure data
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for which there exists at least one reading in the reading table. In other words,

we only select vehicles such that they have at least one reading and one failure.

This decision is made to reduce any chance of bias by the ML model towards a

specific class by removing vehicles for which only one or the other class exists.

After applying this filter, we find that there are 3,659 A40G vehicles for which

there exists at least one reading and one failure.

• Duplicate Data

Duplicate failure observations were found for some vehicles at the same datetime

where the faultcode ID was the same. These duplicate observations were

removed and only the last occurrence of the duplicate observation was kept as

that was the latest failure data for that vehicle at that specific datetime.

Moreover, any vehicles which had duplicate failure observations for the same

component at the same datetime were also removed.

• Features dropped

‘SENDER’, ‘PROTOTYPE’, and ‘ISACTIVE’ features were dropped as each of

these columns had the same consistent value throughout all observations

respectively. These features will not contribute anything to the ML model.

• Incorrect Data

There were some failure observations where the datetime for the failure was from

the future for e.g. 2023, 2048, 2081, etc. This data is obviously incorrect and

was removed. Moreover, we only considered data from 2015 onwards as the data

logging prior to that is not of the same standard or consistency.

Feature Creation

All features were created for every vehicle individually as each vehicle had a different

history. In data terms, each vehicle has a unique time series with different types and

number of engine failures.

• Class Label

The failure data is being logged by the system in an incremental way. Each

time a failure occurs for the specific vehicle, the ‘FAILURECOUNT’ feature is

incremented by one. This is also why the ‘FIRSTFAILURETIME‘ feature exists.
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However, we reassigned these labels and transformed the data as we want

the data to be recorded as an isolated event instead of an incremental one.

Therefore, the entire ‘FAILURECOUNT’ was assigned the value of one indicating

that everytime a failure observation is recorded, it takes the class label one.

This column was also renamed to ‘FAILURE’. While the ‘FIRSTFAILURETIME’

column was renamed to ‘DATE’. This reassignment and relabeling facilitated

the concatenation of the reading (nonfailure) and faultcodes (failure) data as

shown ahead.

• Historic Failures

For each failure observation in the faultcode table, the failure component

description indicates which component and what fault it has undergone for e.g.

the failure component description is ‘engine coolant temperature’. This indicates

that there is an issue with the engine coolant temperature for that vehicle at

that specific datetime. To introduce lagged historic failure for each vehicles

time series failure data, we created binary dummy variables for each failure

component description and then lagged themby one. Therefore, for each vehicle,

at any specific datetime, we have the last component failure it underwent. The

features created in our case were for the six unique engine failures which exist.

– H1: HISTORIC_WATER_IN_FUEL_INDICATOR

– H2: HISTORIC_FUEL_DELIVERY_PRESSURE

– H3: HISTORIC_ENGINE_COOLANT_TEMPERATURE

– H4: HISTORIC_ENGINE_OIL_PRESSURE

– H5: HISTORIC_ENGINE_OIL_TEMPERATURE

– H6: HISTORIC_ENGINE_OIL_LEVEL

Table 4.2.10: Dataset Excerpt: Historic failures output format

DATE VEHICLE ID FEATURES FAILURE FAILUREDESC H4 H5

2020
0825

123xxx ... 1 Engine oil pressure 0 0

2020
1230

123xxx ... 1 Engine oil level 1 0

2021
0412

123xxx ... 0 No failure 0 1
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• Total Historic Failures (THF)

This feature keeps track of the total engine failures each vehicle has experienced

throughout its life for each datetime observation. This feature was calculated by

incrementing the count everytime an engine related failure was observed for a

specific vehicle.

• Total Historic Unique Failures (THUF)

This feature keeps track of the unique engine failures every vehicle has

experienced throughout its life for each datetime observation. This feature was

calculated by keeping track of the historic failures a vehicle had undergone in its

life and if a failure occurred which was not found in the vehicle’s historic data,

the unique failure count was incremented by one.

• Days Since Failure (DSF)

This feature keeps track of the number of days since the last failure occurred

for that specific vehicle. This feature was calculated by keeping track of the

last failure date for the specific vehicle and for every datetime observation, the

datetime is subtracted from the last failure date. Once, a new failure occurs then

the days since failure was set to zero and the count started again with the last

failure date also being updated.

Table 4.2.11: Dataset Excerpt: More Historic failure features output format

DATE VEHICLE ID FEATURES FAILURE FAILUREDESC THF THUF DSF

2020
0825

123xxx ... 1 Engine oil
pressure

0 0 0

2020
1230

123xxx ... 1 Engine oil level 1 1 127

2021
0412

123xxx ... 0 No failure 2 2 103

4.2.3 Prepare Final Datasets

To answer our research question, we decided to carry out three experiments by building

ML models for PdM on three different datasets and then evaluate their performance.

All three datasets had the nonfailure and failure data respectively, however, differed

in the type of data and features. Precisely, data for:
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• Experiment one: Event log only

• Experiment two: Event log and componentbased sensor log combined

• Experiment three: Componentbased sensor log only

This dictated our approach on how we prepared our final datasets. We show the final

dataset preparation as follows.

After preprocessing the aforementioned reading and faultcodes table, both of them

were concatenated together to integrate the nonfailure and failure data into one

dataset. For each vehicle, the time series data was sorted by date in ascending order

from 2015 todate. This enabled us to have a clear picture of the life of every machine

in order of the events that occurred over the course of its operations that were healthy

readings and the respective engine failures.

At this point, we had all the event log data merged together including failures and

nonfailures for every A40G machine that had undergone an engine failure at least

once.

Table 4.2.12: Dataset Excerpt: Merged dataset output format

DATE VEHICLE ID EVENT
FEATURES

HISTORIC
FEATURES

FAILURE

2020
0825

123xxx ... ... 1

2021
0412

123xxx ... ... 0

Then, we performed some further data cleaning and feature creation for each vehicles

time series which was required after concatenating both tables.

Data Cleaning

• Missing Data and Interpolation

After concatenating the datasets, some of the features that existed in the failure

data as opposed to the nonfailure data and vice versa were set to null by

default. Therefore, these values needed to be filled using different interpolation

techniques, some more straightforward than others.
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The historic failure features for the nonfailure data were null as these features

were created in the faultcodes table. THF and THUF values were interpolated

using straight forward backward and forward fill methods as they hold the last

value of the latest failure seen for a specific vehicle. While, DSF was recalculated

for the nonfailure observations by subtracting the datetime of each observation

from the datetime of the last failure for a specific vehicle.

The engine hours and number of parameters are discrete numerical features

whose value was increasing over the life of the vehicle but were not updated by

the system frequently and seemed to hold consistent values so they were also

interpolated using the forward fill method.

Lastly, the number of operating hours is a continuous numerical feature whose

value was also increasing over the life of the vehicle andwas consistently updated

by the system for every other reading. However, there were a few nulls every

now and then in every other vehicle time series for this feature. Therefore, it was

interpolated using a custom interpolation function which we discuss in the next

subsection.

• Changing Precision

The precision of the ‘DATE’ feature was upto the exact second. However, since

this data was not being collected in realtime and we only wanted to predict the

RUL of the equipment in terms of number of days, so we changed the precision of

the ‘DATE’ feature to YYYYMMDD instead of YYYYMMDD HH:mm:ss. This

was achieved by stripping the hour, minute and seconds component so this way

we do not lose any data which you typically do if you aggregate.

• Dropping observations

After concatenating the datasets, we found that there are some days where for a

specific vehicle we find a failure and a nonfailure observation. We drop the non

failure observation at this datetime and keep the failure observation to reduce

the class imbalance as naturally the observations where there is no failure are

more than the failure observations. In other words, we keep the minority class

and drop the majority class when they exist on the same datetime for a specific

vehicle.
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Feature Creation

• Days Since Last Observation (DSLO)

Since the frequency of logging is unequal for both nonfailure and failure data, we

introduced a feature to track the number of days passed since the last observation

for each vehicles respective time series.

After these data cleaning and feature creation steps, we had completed the dataset for

experiment one (eventlog only). Before creating the dataset for experiment two and

three, we discuss the custom interpolation function we used for the interpolation of

continuous numeric data which proved to be useful for interpolating some missing

sensor data as well.

4.2.4 Custom Interpolation Method

There was a need for a custom interpolation function as the traditional methods of

using mean, median, mode, min, or max imputation were not sufficient for our case.

Precisely, each vehicle has a time series recording the events over the life of the

machine in which as time passes, continuous features such as operating hours, total

fuel consumption, etc, tend to keep increasing but never decrease. Keeping this in

mind, if we used any of the traditional approaches for instancemean imputation, often

the mean value looked out of place for a time series observation as it might have been

bigger than the next value in the time series or lower than the previous value which

was not representative of the data for that specific feature in question.

In light of this, some inspiration was taken from the arithmetic and geometric

progression theory (APGP) to define a custom way of determining the common

difference between values in a specific window and using this to interpolate the nulls

in that window. This ensured that the interpolated value was never bigger than the

next value in time series and never smaller than the previous one. This helped to keep

the inherent nature of the rising continuous values over time and did not add incorrect

data to the feature. Note that APGP was not used itself as the data is not logged in any

defined interval or consistency.

There were three cases which were encountered while interpolating and were handled

by the custom function accordingly.
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1. Start and end value exists

This was the ideal case where we had a defined initial start and end for the

window. We iterated over the feature values and once a null was encountered, the

algorithmwas aware that it needs to fill this null, so as soon as it reached the next

valid value, that value was defined as the end of the window. Then, within this

start and end pointer marking the window, the per day value was calculated and

multiplied by the number of days passed since the start at the time the null value

was encountered. This computationwas then added to the start value to compute

the null value. Once this was completed, the end of the window became the new

start and the algorithm repeated until it found another null to fill, marked a new

end pointer and calculated the interpolated value.

2. Start value is null

Before we could interpolate the values as described in case one, we first needed

to define a start value. To do this, we first defined a per day value for the entire

feature values column by taking the last value and divided it by the total number

of days in the time series. Then, we iterated over the feature values and the first

nonnull valuewe found, we counted the number of days passed since the start till

that value and multiplied it by the per day value for the entire series and divided

by ten to normalize it. Once that was done, we subtracted this from the first non

null value found. This gave us a start value for the series which was smaller than

any other value encountered and was representative of the data.

3. End value is null

The opposite of case two. Here, we found the days passed since the last valid

value, multiplied it by the per day value and added the sum to the value at the

last valid index.

The algorithm below shows the implementation of the custom function and how it

handled these three cases.
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Algorithm 1 Custom Interpolation

1: function Interpolate(df) ▷Where df  dataframe containing all the data
2: feature_list = continuous features with null values
3: for feature in feature_list do
4: last_valid_index = feature.get_last_valid_index()
5: total_days = ((date_at_last_valid_index− date_at_start_index)).days
6: value_per_day = value_at_last_valid_index/total_days
7: interpolation_map = HashMap()
8: switch = False
9: temp_list = []
10: start_value = check_start_is_nan()
11: if start_value is not False then
12: feature_values[0] = start_value
13: interpolation_map[0] = start_value
14: end if
15: for i, value in enumerate(feature_values) do
16: if value_is_null is not False then
17: if switch is False then
18: window_start = value
19: window_s_date = date_col[i]
20: else
21: window_end = value
22: window_e_date = date_col[i]
23: window_total_value = window_end− window_start
24: window_total_days = (window_e_date− window_s_date).days
25: value_per_day = window_total_value/window_total_days
26: for i in temp_list do ▷ DSLO  Days since last observation
27: inter_value = window_start+ (DSLO[i] ∗ value_per_day)
28: interpolation_map[i] = inter_value
29: window_start = inter_value
30: end for
31: window_end = None
32: switch = False
33: temp_list = []
34: window_s_date = window_e_date
35: end if
36: else
37: interpolation_map[i] = None
38: temp_list.append(i)
39: switch = True
40: end if
41: end for
42: end_map = check_end_is_nan()
43: end for
44: returnMERGE_HASHMAPS(interpolation_map, end_map)
45: end function
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Algorithm 2 Check Start Value

1: function check_start_is_nan(df, value_per_day)
2: if value_is_null(start_value) then
3: for i, value in enumerate(feature_values) do
4: if value_is_null is False then
5: days_passed = (date_col[i]− date_col[0]).days
6: return absolute(value− (days_passed ∗ value_per_day)/10)
7: end if
8: end for
9: else
10: return False
11: end if
12: end function

Algorithm 3 Check End Value

1: function check_end_is_nan(df, value_per_day)
2: interpolation_map = HashMap()
3: if value_is_null(end_value) then
4: for i = last_valid_index+ 1 to length(feature_values) do
5: inter_value = last_valid_value+ (DSLO[i] ∗ value_per_day)
6: interpolation_map[i] = inter_value
7: end for
8: end if
9: return interpolation_map
10: end function

4.2.5 Sensor Data Transformation

Before we could create the final datasets for experiment two and three, the sensor data

had to be preprocessed and transformed in a way for it to be ready to be integrated with

the event log data and the failure data respectively.

As shown in subsection 4.1.2, enginebased sensor logs were retrieved. However, they

needed to be transformed into the same structure as the experiment one data for them

to be joined to it to create datasets for experiment two and three respectively.
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Table 4.2.13: Dataset Excerpt: Sensor data before transformation output format

DATE READING ID VEHICLE ID X VALUE

2020
0825

987xxx 123xxx xxx 456000

2020
0825

987xxx 123xxx yyy 857123

2020
0825

987xxx 123xxx zzz 358456

In Table 4.2.13, we see that for the same ‘READING ID’ and ‘DATE’, the readings

are repeating but are distinguished by the ‘X’ value indicating the corresponding

‘Value No.’ in the log. Therefore, for each reading for this log there are eleven

observations and in our case that is a problem as this data cannot be joined with the

rest of the prepared experiment data where a unique reading is represented as a single

observation.

Therefore, we had to transform this data in a way that each ‘READING ID’ and the

corresponding ‘DATE’ were represented as a single observation so that they could

be joined with the rest of the data. To achieve this, we used the crosstable method

which enabled us to reduce the number of observations significantly but increased the

dimensionality of the data. The method achieved this by transposing the ‘X’ column

values and created them as individual column values for each reading.

Table 4.2.14: Dataset Excerpt: Sensor data after transformation output format

DATE READING ID VEHICLE ID xxx yyy zzz

2020
0825

987xxx 123xxx 456000 857123 358456

All three logs were transformed using this same method as they were in the same

structure at the time of retrieval. Once the structural transformation was complete,

depending on the bit resolution of the log cells, the values needed to be transformed as

well.

The following values were transformed depending on which log it was:

• Seconds

All secondswere converted to hours for ease of interpretation andunderstanding.

The cells where the resolution was one second was directly converted to hours
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whereas the cells with resolution of ten seconds were first multiplied by a factor

of ten and then converted to hours. Converting to hours also made it easier to

understand the fuel consumption in the precision of liters per hour.

• Liter

The original liter value in the cells was multiplied by a factor of onetenth to

convert it to per liter because of the bit resolution.

• Renamed labels

The cell numbers were reassigned labels by the cell description concatenated

with the log number to identify which cell belongs to which log. For instance, ‘2’

was relabelled as ‘Log_xxx_Feature_yyy’.

The data transformation was now complete for the sensor data and it was ready to

be joined with the preprocessed data for experiment one which only included event

log and failure data. To conclude, the final datasets were created for the following

experiments:

1. Experiment one: Event only dataset

Dataset created with failure and nonfailure event log data and preprocessed as

shown in subsection 4.2.3.

Table 4.2.15: Dataset Excerpt: Experiment one  Data output format

DATE VEHICLE ID EVENT
FEATURES

HISTORIC
FEATURES

FAILURE

2020
0825

123xxx ... ... 1

2021
0412

123xxx ... ... 0

2. Experiment two: Event and Sensor combined dataset

This dataset was created by joining the transformed sensor data with the

experiment dataset on ‘READING_ID’. The missing sensor values created after

merging the two datasets were interpolated using the custom interpolation

function as mentioned in subsection 4.2.4 as the sensor values for each vehicles’

time series followed a continuous numeric distribution of increasing values over
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time. The ‘READING_ID’ was dropped as the final step.

Table 4.2.16: Dataset Excerpt: Experiment two  Data output format

DATE VEHICLE ID EVENT
FEATURES

SENSOR
FEATURES

HISTORIC
FEATURES

FAILURE

2020
0825

123xxx ... ... ... 1

2021
0412

123xxx ... ... ... 0

3. Experiment three: Sensor only dataset

The dataset in experiment two had all the preprocessed data at our disposal

merged together  event, sensor, failure and nonfailure data. To create the

dataset for this experiment, we dropped all the event data from the experiment

two dataset to investigate the effect of only componentbased sensor logs on the

failure of the equipment.

Table 4.2.17: Dataset Excerpt: Experiment three  Data output format

DATE VEHICLE ID SENSOR
FEATURES

HISTORIC
FEATURES

FAILURE

2020
0825

123xxx ... ... 1

2021
0412

123xxx ... ... 0
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Applied Predictive Maintenance

The three different datasets were ready for the experiments to be carried out by

building theMLmodels. However, these datasets could only be used to build Condition

Monitoring (CM)MLmodels which is considered to be themost basic form of PdM. In

CM, based on the input data, the ML model can inform you whether a specific vehicle

has an engine failure at this current point in time instead of predicting whether it will

in the future or not.

In our study, we wanted to build a PdMMLmodel which will predict whether a specific

vehicle will undergo a failure in the future which is also known as the RUL of the

vehicle. However, it was important to build a baseline ML model for CM to evaluate

the performance and see how it differed from the RUL models performance. Simply

because a CM model typically outperforms an RUL model as naturally it is easier

to predict the current state of the machine instead of the future state. It would be

interesting to see how the model performance differs for the same set of data.

The tables 4.2.15, 4.2.16, 4.2.17 were ready to be used for CM.

5.1 Remaining Useful Life

Now that the data was ready for CM, we needed to augment it slightly to prepare

it for an RUL model. The RUL model built is a binary classification model which

predicts:

• Will there be an engine failure in the next x days for a specific vehicle?
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We created a new binary target class called FAILURE_WITHIN_NEXT_X_DAYS to

achieve this. A value of one indicates that an engine failure will occur in the next x

days while zero indicates otherwise. Typically, for critical failures or components, the

desired period to predict ahead of time is 6090 days. However, in our case, we decided

to determine the next x days by looking at how often does an engine failure occur in

our data. This was calculated by looking at the distribution of our created feature ‘Days

Since Failure’ (DSF) for all the vehicles’ time series.

Table 5.1.1: Days since failure per vehicle statistics

MEAN STD MIN 25% 50% 75% MAX

140.56 168.06 0.00 18.00 78.00 207.00 1263.00

We see in Table 5.1.1 that 25% of engine failures occur within 18 days, 50% within 78

days and 75%within 207 days. Based on these quartile values forDSF, we created three

target label columns.

1. 25%: FAILURE_WITHIN_NEXT_18_DAYS

2. 50%: FAILURE_WITHIN_NEXT_78_DAYS

3. 75%: FAILURE_WITHIN_NEXT_207_DAYS

Separate ML models were built with each of these individual class labels and the

performance of the models was observed in relation to the different periods of

time.

To create these new target classes, we make use of the two following techniques:

5.1.1 Lead Data Shift

The target variables were created using the lead variable technique. The lead variable

essentially looks to the next observation and takes its value at the current observation.

It works in the opposite way to a lag variable. However, in our case, we could not

just not look at the next observation as the date interval for the time series is unequal.

Therefore, instead, we made use of the windowmethod to identify whether there were

any failures in the next x days. This was achieved by creating a window with the start

date of the current observation offset by one additional day and the end date was

equivalent to the start date offset by an additional x days. If any failure observation

existed within this window W [start_date + (1_day) : start_date + (x_days)], then
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the current observations’ new target variable was set to one, otherwise zero. This

processwas applied to each vehicles’ entire time series for every existing date to identify

future failures ahead of time and was done for all three aforementioned values of x

separately.

Algorithm 4 Get Lead Shifted Label

1: function get_shifted_label(df) ▷Where df  dataframe containing all the data
2: fwn_x_days_list = [] ▷ FWN  FAILUREWITHIN NEXT
3: vehicle_list = list of unique vehicle IDs in our data
4: for vehicle_id in vehicle_list do
5: vehicle_df = df [df [V EHICLE_ID] == vehicle_id]
6: dates = vehicle_df [DATES]
7: for date in dates do
8: window = start_date+ (1_day) : start_date+ (x_days)
9: curr_window_df = vehicle_df [window]
10: if 1 in set(curr_window_df [FAILURE].values) then
11: fwn_x_days_list.append(1)
12: else
13: fwn_x_days_list.append(0)
14: end if
15: end for
16: vehicle_df [fwn_x_days] = fwn_x_days_list
17: end for
18: end function

Let us observe the PdM dataset outputted by the algorithm that is ready to be used to

build a RUL model.
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Table 5.1.2: Dataset Excerpt: PdM data output format

DATE VEHICLE ID FEATURES FAILURE FWN 18
DAYS

FWN 78
DAYS

FWN 207
DAYS

2016
1116

123xxx ... 1 1 1 1

2016
1117

123xxx ... 1 0 0 0

2017
0705

123xxx ... 0 0 1 1

2017
0720

123xxx ... 0 1 1 1

2017
0728

123xxx ... 1 0 1 1

2017
0804

123xxx ... 0 0 1 1

2017
0830

123xxx ... 0 1 1 1

2017
0904

123xxx ... 1 0 0 1

The vehicle ID was onehot encoded at this stage as the final step. The entire dataset

including the target classes were now ready to be used to build individual RULmodels

using ML.

5.1.2 Lead Data Shift with Resampling

This is another technique to prepare the dataset for PdM that also uses the same

approach as highlighted in the previous section to create the target classes. However,

along with that, this technique fixes the unequal date interval. If you notice in Table

5.1.3, there are missing date observations, ideally you should have an observation

logged every single day for daily data. However, that was not the case with our real

world data, so this is where wemade use of resampling to introduce those observations

to achieve an equal date interval for every vehicles’ time series. Even though you

lose data by using the resampling technique due to aggregation, it was acceptable to

an extent in our case as there was a imbalance of observations between nonfailure

and failure. Therefore, losing some nonfailure observations may not be a problem,

however, losing too many failure observations could be.
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This technique was applied by creating the lead data shift variable the same way as

described in the previous subsection 5.1.1, but by making sure the date frequency

differs by every x days. Observations which lie in the window between the start date

and end date after every x days were used to extract the target variable and latest

feature values to be assigned to the new equal interval observation and then the existing

observations in the current window were dropped.

In otherwords, essentially we took the closest reading to the enddate for everywindow

to resample and assigned the target to be one/zero depending on whether a failure

existed in the window. This worked well as the data was a continuous time series for

every vehicle with values increasing over time and as we ensured that we kept the latest

observation to every resampled date.

Algorithm 5 Prepare resampled data

1: function prepare_resampled_df(df) ▷Where df  dataframe containing the data
2: vehicle_list = list of unique vehicle IDs in our data
3: for vehicle_id in vehicle_list do
4: vehicle_df = df [df [V EHICLE_ID] == vehicle_id]
5: start_date = df [DATE].values[0]
6: end_date = df [DATE].values[−1]
7: dates = date_range(start_date, end_date, freq = x_Days)
8: empty_df = DataFrame(cols = df.columns, index = dates)
9: resampled_df = concat([df, empty_df ]).sort_values(DATE)
10: end for
11: end function

Once we had applied Algorithm 5, we got the resampled dataframes for every vehicle,

then we just applied the windowing method as shown in Algorithm 4 to get the target

classes. For all three different values of x, we created three different resampled

dataframes for every vehicle.

Let us observe the PdM dataset with resampling outputted by the algorithm that is

ready to be used to build an RUL model.
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Table 5.1.3: Dataset Excerpt: PdM data with resampling output format

DATE VEHICLE ID FEATURES FAILURE FWN 78
DAYS

2016
1116

123xxx ... 1 1

2017
0202

123xxx ... 1 0

2017
0421

123xxx ... 0 0

2017
0708

123xxx ... 0 1

2017
0924

123xxx ... 1 1

2017
1211

123xxx ... 1 1

Nowwe see that the date intervals have become equal. In this case, where x = 78, every

observation differs by 78 days. The vehicle ID was also onehot encoded at this stage

as the final step. The entire dataset including the target classes were ready to be used

to build individual RUL models using ML for resampled data.
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Model, Results, and Analysis

All the datasets have been prepared and the experiments have been defined by this

stage as shown in Chapter 4 and 5. In this chapter, we describe the models built

using these datasets and the experiments carried out on them along with the results

of these different experiments and their analysis. The experiments are categorized as

follows:

• Experiment one: Event data only

• Experiment two: Event and Sensor data combined

• Experiment three: Sensor data only

These experiments were carried out for both CM and RUL ML models. The main

focus was on the RUL models but we established some baseline comparison results

by carrying out the experiments for CM as well. For each experiment, the data was

split in a stratified way into 70% training and 30% test sets respectively. This was

executed three separate times where the split was done once on the original data, once

on the upsampled datawhere the number of instances of theminority class weremade

equivalent to the majority class and lastly one split for the downsampled data where

the number of instances for the majority class were made equivalent to the minority

class. In all three cases, as it turned out, the majority class was nonfailure and the

minority class was failure.

Furthermore, the key metrics to measure the performance of both models were

according to thosementioned in subsection 3.2.6, however, themain ones we looked at

to distinguish model superiority were FScore and Area under PrecisionRecall curve
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(AUPRC). Both of these metrics were chosen as they have proven to be successful

metrics which represent the true picture of a model when the data is imbalanced.

Their scores indicate whether the model is predicting a high or low number of false

positives and false negatives which helps to identify real threats and avoid false alarms.

Moreover, their values can indicate how well the minority class (failure) is actually

being predicted.

The highlighted rows in every results table indicates the top two models for that

experiment.

6.1 Condition Monitoring

The ‘FAILURE’ column is the binary class label.

Table 6.1.1: Number of instances in the data

DATA FAILURE = 0 FAILURE = 1

Original 7759 2850

Training 5431 1995

Test 2328 855

Upsampled Training 5431 5431

Downsampled Training 1995 1995

Table 6.1.2: Experiment one: Condition monitoring results

Algorithm SAMPLING ACCURACY AUC PRECISION RECALL F
SCORE

AU
PRC

LR None 73.7 0.62 0.71 0.52 0.46 0.40

LR Up 54.19 0.67 0.60 0.62 0.53 0.41

LR Down 60.04 0.67 0.60 0.62 0.58 0.41

RF None 79.61 0.84 0.75 0.69 0.71 0.66

RF Up 79.89 0.84 0.75 0.72 0.73 0.65

RF Down 75.05 0.83 0.71 0.76 0.72 0.64

XgBoost None 80.21 0.86 0.75 0.75 0.75 0.69

XgBoost Up 80.08 0.86 0.75 0.76 0.75 0.69

XgBoost Down 73.8 0.85 0.71 0.76 0.71 0.66
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Table 6.1.3: Experiment two: Condition monitoring results

Algorithm SAMPLING ACCURACY AUC PRECISION RECALL F
SCORE

AU
PRC

LR None 73.17 0.53 0.67 0.5 0.43 0.28

LR Up 69.62 0.52 0.48 0.49 0.45 0.27

LR Down 70.25 0.54 0.50 0.50 0.46 0.28

RF None 87.06 0.95 0.89 0.78 0.81 0.87

RF Up 89.00 0.94 0.89 0.82 0.85 0.87

RF Down 88.72 0.94 0.85 0.87 0.86 0.87

XgBoost None 93.47 0.98 0.92 0.91 0.92 0.95

XgBoost Up 93.43 0.98 0.92 0.91 0.92 0.95

XgBoost Down 90.39 0.97 0.87 0.91 0.88 0.94

Table 6.1.4: Experiment three: Condition monitoring results

Algorithm SAMPLING ACCURACY AUC PRECISION RECALL F
SCORE

AU
PRC

LR None 73.23 0.53 0.87 0.5 0.43 0.27

LR Up 70.19 0.52 0.49 0.50 0.46 0.27

LR Down 70.75 0.54 0.52 0.50 0.47 0.28

RF None 86.93 0.95 0.89 0.77 0.81 0.87

RF Up 88.75 0.94 0.89 0.82 0.84 0.87

RF Down 88.63 0.94 0.85 0.87 0.86 0.87

XgBoost None 93.53 0.97 0.93 0.91 0.92 0.95

XgBoost Up 93.18 0.97 0.92 0.91 0.91 0.95

XgBoost Down 89.04 0.96 0.85 0.89 0.87 0.93
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After carrying out the three experiments for CM, we saw that the models in Table

6.1.2 built only using event data did not perform nearly well enough as those models

in experiment two and three. The models for experiment two and three as shown in

Table 6.1.3 seemed to perform extremely well and had very similar consistent results.

For both of them, XgBoost was the highest performing model with an Fscore of 0.91

0.92 and AUPRC of 0.95 for either the original or upsampled data. The difference

in performance was nearly negligible. After achieving these results, we became quite

confident that we can perform condition monitoring using our data at a very high level

with very few false positives and false negatives.

Moreover, all the three algorithms performed on a similar comparative level

across experiments from which we derived that ensemble and boosting models

are outperforming LR which as expected. However, due to the big difference in

performance, we decided to drop the LRmodel for the RULmodels as even after tuning

it would not reach the level of performance of the ensemble or boosted algorithms. The

CM results gave us a good grounding to proceed with building the RULmodels with an

inclination towards the experiment two and three datasets.
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6.2 Remaining Useful Life

For both of the approaches mentioned in subsection 5.1.1 and 5.1.2, the three

aforementioned experiments were carried out respectively on the three datasets pre

processed as shown in Chapter 4 and 5.

The class imbalance was further dependent upon the chosen approach and the value of

x in the class label, where x can be 18, 78 or 207 days. The class imbalance decreases

as the value of x increases as more failures are included within the x days window. In

other words, as the window size increases, so does the likelihood of failure.

6.2.1 Lead Data Shift Approach

Table 6.2.1: Number of class instances in the data per label

DATA FWN_18
= 0

FWN_78
= 0

FWN_207
= 0

FWN_18
= 1

FWN_78
= 1

FWN_207
= 1

Original 9433 7457 5389 1176 3152 5220

Training 6603 5220 3772 823 2206 3654

Test 2830 2237 1617 353 946 1566

Upsampled
Training

6603 5220 3772 6603 5220 3772

Downsampled
Training

823 2206 3654 823 2206 3654

In Table 6.2.1, we see that as the window size increases, the number of nonfailures

decrease and the number of failures increase across all sets of data.
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Experiment one

Table 6.2.2: Experiment one: PdM for FWN 18 days using lead data shift label results

Algorithm SAMPLING ACCURACY AUC PRECISION RECALL F
SCORE

AU
PRC

RF None 88.31 0.74 0.65 0.54 0.56 0.26

RF Up 87.02 0.73 0.62 0.57 0.58 0.27

RF Down 68.90 0.73 0.57 0.67 0.56 0.24

XgBoost None 84.04 0.75 0.61 0.63 0.62 0.30

XgBoost Up 79.36 0.75 0.60 0.66 0.61 0.29

XgBoost Down 55.86 0.72 0.56 0.65 0.48 0.22

Table 6.2.3: Experiment one: PdM for FWN 78 days using lead data shift label results

Algorithm SAMPLING ACCURACY AUC PRECISION RECALL F
SCORE

AU
PRC

RF None 78.23 0.83 0.76 0.68 0.70 0.69

RF Up 78.83 0.83 0.76 0.71 0.72 0.69

RF Down 74.27 0.82 0.71 0.74 0.71 0.65

XgBoost None 76.03 0.83 0.72 0.73 0.72 0.65

XgBoost Up 74.96 0.83 0.71 0.74 0.72 0.66

XgBoost Down 68.77 0.81 0.69 0.73 0.67 0.61

Table 6.2.4: Experiment one: PdM for FWN207 days using lead data shift label results

Algorithm SAMPLING ACCURACY AUC PRECISION RECALL F
SCORE

AU
PRC

RF None 79.30 0.88 0.79 0.79 0.79 0.87

RF Up 78.45 0.88 0.78 0.78 0.78 0.87

RF Down 79.20 0.88 0.79 0.79 0.79 0.87

XgBoost None 78.32 0.87 0.78 0.78 0.78 0.86

XgBoost Up 78.04 0.87 0.78 0.78 0.78 0.86

XgBoost Down 78.10 0.87 0.78 0.78 0.78 0.86
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Experiment two

Table 6.2.5: Experiment two: PdM for FWN 18 days using lead data shift label results

Algorithm SAMPLING ACCURACY AUC PRECISION RECALL F
SCORE

AU
PRC

RF None 88.82 0.71 0.68 0.53 0.53 0.26

RF Up 85.67 0.66 0.57 0.54 0.55 0.20

RF Down 66.26 0.70 0.56 0.65 0.54 0.22

XgBoost None 87.56 0.74 0.65 0.59 0.60 0.30

XgBoost Up 84.42 0.72 0.60 0.60 0.60 0.27

XgBoost Down 54.45 0.71 0.56 0.65 0.47 0.23

Table 6.2.6: Experiment two: PdM for FWN 78 days using lead data shift label results

Algorithm SAMPLING ACCURACY AUC PRECISION RECALL F
SCORE

AU
PRC

RF None 76.85 0.78 0.75 0.65 0.66 0.61

RF Up 72.89 0.75 0.67 0.64 0.64 0.54

RF Down 70.28 0.77 0.67 0.70 0.67 0.59

XgBoost None 76.12 0.80 0.71 0.70 0.71 0.63

XgBoost Up 74.49 0.80 0.70 0.70 0.70 0.62

XgBoost Down 68.49 0.79 0.68 0.71 0.67 0.60

Table 6.2.7: Experiment two: PdM for FWN207 days using lead data shift label results

Algorithm SAMPLING ACCURACY AUC PRECISION RECALL F
SCORE

AU
PRC

RF None 73.92 0.82 0.74 0.74 0.74 0.82

RF Up 74.11 0.83 0.74 0.74 0.74 0.82

RF Down 73.74 0.82 0.74 0.74 0.74 0.82

XgBoost None 76.97 0.86 0.77 0.77 0.77 0.85

XgBoost Up 76.75 0.86 0.77 0.77 0.77 0.85

XgBoost Down 76.37 0.86 0.76 0.76 0.76 0.86

66



CHAPTER 6. MODEL, RESULTS, AND ANALYSIS

Experiment three

Table 6.2.8: Experiment three: PdM for FWN 18 days using lead data shift label results

Algorithm SAMPLING ACCURACY AUC PRECISION RECALL F
SCORE

AU
PRC

RF None 88.88 0.69 0.69 0.53 0.53 0.24

RF Up 85.67 0.63 0.57 0.54 0.55 0.19

RF Down 64.75 0.67 0.55 0.62 0.52 0.22

XgBoost None 87.15 0.68 0.62 0.56 0.58 0.23

XgBoost Up 82.53 0.67 0.58 0.59 0.59 0.22

XgBoost Down 48.92 0.65 0.55 0.61 0.43 0.19

Table 6.2.9: Experiment three: PdM for FWN78 days using lead data shift label results

Algorithm SAMPLING ACCURACY AUC PRECISION RECALL F
SCORE

AU
PRC

RF None 75.62 0.75 0.73 0.63 0.64 0.58

RF Up 72.35 0.72 0.66 0.62 0.63 0.51

RF Down 69.15 0.74 0.66 0.68 0.66 0.55

XgBoost None 72.98 0.75 0.67 0.66 0.67 0.58

XgBoost Up 71.94 0.75 0.67 0.67 0.67 0.57

XgBoost Down 62.80 0.74 0.64 0.67 0.62 0.54

Table 6.2.10: Experiment three: PdM for FWN 207 days using lead data shift label
results

Algorithm SAMPLING ACCURACY AUC PRECISION RECALL F
SCORE

AU
PRC

RF None 72.35 0.81 0.72 0.72 0.72 0.80

RF Up 72.23 0.81 0.72 0.72 0.72 0.80

RF Down 72.95 0.80 0.73 0.73 0.73 0.80

XgBoost None 74.14 0.83 0.74 0.74 0.74 0.83

XgBoost Up 73.64 0.83 0.74 0.74 0.74 0.82

XgBoost Down 73.92 0.82 0.74 0.74 0.74 0.82

After performing all three experiments with three different failure ranges, we found

that experiment one with only the event data outperformed experiment two and three

with an Fscore of 0.79 for failure within 207 days by the RFmodel. This is the highest

score achieved across all the experiments.

The results for the 18 day window were not good enough with the Fscore ranging

between 0.56  0.62 across all experiments indicating a very high number of false

positives and negatives. This shows that predicting failure in an approximately three

67



CHAPTER 6. MODEL, RESULTS, AND ANALYSIS

weeks window is extremely difficult, especially since our research is looking at only

engine failures that are considered to be critical failures.

Nonetheless, 78 day models perform decent across all experiments with an Fscore of

0.64  0.71. However, if this model could be improved to between a score between 0.75

 0.80, then it can be considered as an extremely good model as predicting an engine

failure approximately less than three months would be desired.

The results do show that a larger window improves the results significantly. One

of the main reasons is that the class imbalance decreases naturally as the window

size increases. Therefore, there are more failure observations for the model to build

on as shown in Table 6.2.1. However, a 207 day window can be considered to be

quite large. Therefore, possibly finding a tradeoff between performance of model and

failure window would be the key to settling on a well balanced model.
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6.2.2 Resampled Data Approach

Table 6.2.11: Number of class instances in the data per label

DATA FWN_18
= 0

FWN_78
= 0

FWN_207
= 0

FWN_18
= 1

FWN_78
= 1

FWN_207
= 1

Original 32,426 6606 2036 1997 1720 1412

Training 22,698 4624 1425 1398 1204 988

Test 9728 1982 611 599 516 424

Upsampled
Training

22698 4624 1425 22698 4624 1425

Downsampled
Training

1398 1204 988 1398 1204 988

In Table 6.2.11, we see that the nonfailure class has increased dramatically for the

18 day period. This is because to ensure equal intervals, the data introduces missing

samples for every 18 days which are nonfailure observations. This increases the class

imbalance significantly. However, the ratio seems to bemuch better for the 78 and 207

day periods respectively.
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Experiment one

Table 6.2.12: Experiment one: PdM for FWN 18 days using resample approach results

Algorithm SAMPLING ACCURACY AUC PRECISION RECALL F
SCORE

AU
PRC

RF None 93.47 0.69 0.50 0.50 0.49 0.10

RF Up 92.47 0.69 0.50 0.50 0.50 0.10

RF Down 65.87 0.67 0.53 0.62 0.47 0.10

XgBoost None 81.72 0.67 0.54 0.61 0.54 0.12

XgBoost Up 66.86 0.66 0.53 0.62 0.48 0.11

XgBoost Down 39.96 0.67 0.53 0.61 0.34 0.11

Table 6.2.13: Experiment one: PdM for FWN 78 days using resample approach results

Algorithm SAMPLING ACCURACY AUC PRECISION RECALL F
SCORE

AU
PRC

RF None 76.70 0.67 0.50 0.50 0.47 0.30

RF Up 75.74 0.67 0.55 0.52 0.51 0.31

RF Down 66.25 0.68 0.59 0.62 0.58 0.33

XgBoost None 73.42 0.68 0.60 0.61 0.61 0.34

XgBoost Up 68.98 0.68 0.59 0.62 0.60 0.35

XgBoost Down 55.88 0.66 0.57 0.61 0.52 0.32

Table 6.2.14: Experiment one: PdM for FWN 207 days using resample approach
results

Algorithm SAMPLING ACCURACY AUC PRECISION RECALL F
SCORE

AU
PRC

RF None 62.22 0.67 0.61 0.57 0.55 0.56

RF Up 63.29 0.66 0.62 0.59 0.58 0.55

RF Down 64.06 0.68 0.63 0.63 0.63 0.56

XgBoost None 61.84 0.67 0.60 0.60 0.60 0.56

XgBoost Up 62.71 0.67 0.61 0.61 0.61 0.55

XgBoost Down 59.71 0.65 0.59 0.60 0.59 0.54
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Experiment two

Table 6.2.15: Experiment two: PdM for FWN 18 days using resample approach results

Algorithm SAMPLING ACCURACY AUC PRECISION RECALL F
SCORE

AU
PRC

RF None 93.91 0.68 0.52 0.50 0.49 0.10

RF Up 92.01 0.67 0.53 0.51 0.51 0.09

RF Down 60.09 0.63 0.52 0.59 0.44 0.08

XgBoost None 90.08 0.66 0.54 0.54 0.54 0.10

XgBoost Up 80.31 0.65 0.53 0.59 0.53 0.10

XgBoost Down 48.06 0.65 0.52 0.60 0.38 0.10

Table 6.2.16: Experiment two: PdM for FWN 78 days using resample approach results

Algorithm SAMPLING ACCURACY AUC PRECISION RECALL F
SCORE

AU
PRC

RF None 78.26 0.67 0.55 0.51 0.47 0.31

RF Up 75.54 0.64 0.57 0.54 0.54 0.29

RF Down 62.73 0.64 0.58 0.62 0.56 0.29

XgBoost None 75.58 0.66 0.59 0.56 0.57 0.33

XgBoost Up 73.18 0.66 0.59 0.59 0.59 0.33

XgBoost Down 58.05 0.66 0.58 0.62 0.54 0.32

Table 6.2.17: Experiment two: PdM for FWN207days using resample approach results

Algorithm SAMPLING ACCURACY AUC PRECISION RECALL F
SCORE

AU
PRC

RF None 61.84 0.64 0.60 0.58 0.57 0.54

RF Up 60.68 0.64 0.59 0.58 0.58 0.53

RF Down 60.77 0.64 0.60 0.60 0.60 0.53

XgBoost None 63.38 0.67 0.62 0.61 0.61 0.57

XgBoost Up 61.06 0.66 0.59 0.59 0.59 0.56

XgBoost Down 62.51 0.67 0.62 0.62 0.62 0.55
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Experiment three

Table 6.2.18: Experiment three: PdM for FWN 18 days using resample approach
results

Algorithm SAMPLING ACCURACY AUC PRECISION RECALL F
SCORE

AU
PRC

RF None 93.89 0.66 0.50 0.50 0.49 0.09

RF Up 91.73 0.64 0.52 0.51 0.51 0.09

RF Down 59.46 0.61 0.52 0.59 0.44 0.08

XgBoost None 90.06 0.60 0.53 0.52 0.52 0.08

XgBoost Up 72.89 0.60 0.52 0.57 0.49 0.08

XgBoost Down 42.6 0.60 0.52 0.57 0.35 0.08

Table 6.2.19: Experiment three: PdM for FWN 78 days using resample approach
results

Algorithm SAMPLING ACCURACY AUC PRECISION RECALL F
SCORE

AU
PRC

RF None 78.02 0.64 0.54 0.51 0.47 0.29

RF Up 75.02 0.61 0.56 0.53 0.53 0.26

RF Down 59.73 0.63 0.56 0.59 0.54 0.28

XgBoost None 74.22 0.62 0.55 0.55 0.54 0.28

XgBoost Up 69.26 0.62 0.55 0.56 0.55 0.29

XgBoost Down 53.04 0.62 0.55 0.58 0.50 0.28

Table 6.2.20: Experiment three: PdM for FWN 207 days using resample approach
results

Algorithm SAMPLING ACCURACY AUC PRECISION RECALL F
SCORE

AU
PRC

RF None 61.35 0.62 0.59 0.57 0.56 0.51

RF Up 61.16 0.62 0.59 0.58 0.58 0.50

RF Down 60.19 0.61 0.59 0.60 0.59 0.50

XgBoost None 61.26 0.64 0.59 0.59 0.59 0.53

XgBoost Up 59.61 0.64 0.58 0.58 0.58 0.52

XgBoost Down 61.06 0.64 0.61 0.61 0.60 0.51

72



CHAPTER 6. MODEL, RESULTS, AND ANALYSIS

After performing all three experiments with three different failure ranges for the

resampled equal interval data, we found that overall the results were not upto the

required standard. The highest Fscore achieved was 0.610.62, for both the 78 and

207 days across two experiments. The resampling technique results in the loss of data

due to aggregation, which is one of the reasons for the poor performance along with

the overarching increased class imbalance that id not allow themodel to performwell.

The loss of data can be acceptable at times when there is sufficient data available at

frequent intervals or even if most of the data lost was nonfailures. However, in this

case failure data was also significantly lost, which did not help the models at all.

6.2.3 Summary

The results shown in Table 6.2.1 and 6.2.2 can be summarized by taking the top

performing model from each experiment for each approach over the different failure

date ranges.

Figure 6.2.1: Model FScore Performance Summary across all experiments

The top three performing models are from the lead data shift approach and are for the

207 time period. The general trend can be seen that as the window size increases the

FScore of themodel increases. It is able to predict failures better with a lower number

of false positives and negativves.

Surprisingly, Experiment one with the event only data came out on top as the top

performing model with the hybrid approach in second and only sensor data in third.
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This is possibly due to the event data being less complex and being reliant on the

historical features with lower dimensionality and variance. While, the datasets with

sensor data are more complex with higher dimensionality and variance. However, the

performance was the complete opposite when it came to CM with experiment two and

three outperforming experiment one by a big margin.

Figure 6.2.2: Model AUPRC Performance Summary across all experiments

TheAUPRCmodel performance across all the experiments backedup the results of the

FScore summary as shown in Figure 6.2.1. The same approach and experiments were

the top performers with the highest AUPRC score of 0.87 indicating that the classifier

has sufficient enough skill to distinguish between the classes with the score taking

into account the effect of the minority class as well. In comparison to the commonly

used AUROC (AUC), AUPRC takes the impact of the minority class into account

while determining the skill and ability of the classifier to distinguish between classes,

whereas AUC does not cater for the minority class and it’s score can be misleading

when the data is imbalanced.
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Figure 6.2.3: Model Accuracy Performance Summary across all experiments

We already know that accuracy is not a good metric for imbalanced data. However, it

is important to show how its performance is the total opposite of what is indicated by

the Fscore. This is precisely because the high accuracy scores of up to 0.95 are due to

large imbalance of data because of resampling with the majority class to minority class

ratio rising up to 33:1. As thewindow size increases, the class imbalance decreaseswith

more failure observations becoming a part of the window and therefore, the accuracy

decreases as the models bias decreases towards predicting the majority nonfailure

class.

Figure 6.2.4: Model AUC Performance Summary across all experiments
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The AUC performance follows a similar trend to the PRAUC model performance

summary as shown in Figure 6.2.2 for the lead data shift approach. However, for the

resampling approach, the AUC score is nearly the same with a slight decrease with an

increasing window size, indicating that the AUC is not reflective of characterizing the

performance of the model when it comes to classifying the minority class. Therefore,

evenwith an increasingwindow size resulting in a decreasing class imbalance, the AUC

score does not take into account the effect of the minority failure class well.
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Chapter 7

Conclusion

In this researchwork, we deeply explored the area of PdMusing log data. We presented

ways on how to prepare both event and component based sensor data using data pre

processing and feature engineering techniques to ensure that it is ready for both CM

and PdM. Using this prepared data, we used two different approaches to create the

target lookahead class and carried out three different experiments respectively with

different combinations of data imbalance and window size of the lookahead time for

future prediction.

These experiments gave us an insight on how model performance is affected based on

using different approaches, different data, window sizes and most importantly, which

of these settings is optimal for PdM for construction equipment based on the realworld

log data.

7.1 Discussion

There were many keytakeaways derived from this research work both on the data and

model aspect respectively. These takeaways supported the recent topic of discussion in

the ML community of whether the focus should be on a datacentric or modelcentric

approach to improve the performance of ML models.

On the data front, too many infrequent readings per vehicle was a hindrance to our

models with only a median of six readings per vehicle. Not only that, but even these

readings which existed had an extremely unequal time interval between them that

resulted in highly skewed time intervals for nearly every vehicle. This clearly showed
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the need for realtime logging of data at regular intervals, any specified interval as

long as it is regular for e.g. daily. Without these regular intervals, the chance of

knowing what the condition of the component of a specific vehicle was using the event

or componentsensor data is only as good as your luck of how recent the latest reading

is. If you are lucky, it is very recentwithin a fewdays of the failure, or it could bemonths

old, which may not be as useful. Having said that, we achieved decent performance

with Fscores ranging between 0.74  0.79. With regular interval data, this score

can improve further leading to good enough models with very few false positive and

false negative predictions that can be deployed. Therefore, the ”garbage in, garbage

out” argument holds and backs up the argument of focusing more on a datacentric

approach. Lastly, we found that log data is not being collected for predictive modelling

purposes but rather more from a reporting standpoint. This gives us insight that with

the rise of Industry 4.0, there is a need for newdata design and systems that specifically

cater for predictive modelling techniques. Organizations across the board will need to

invest in such systems if they are to succeed in transitioning into making decisions

supported by their products’ data.

Even though our research work was largely focused on a datacentric approach, there

were still key takeaways from a model perspective as well. The experiments showed

that PdM model performance tends to increase as the window size of the lookahead

period increases. However, the smaller the lookahead period for PdM the better, as

if the lookahead period is too large, the machine is bound to fail within that time

window. With the large lookahead period, the prediction may not be of any use to the

organization, therefore, there exists a tradeoff between model performance and the

lookahead period which needs to be decided upon on a casebycase basis dependent

onwhich component or equipment under observation. Such decisionmaking, requires

input from domain experts that handle and maintain the equipment. Moreover, the

leaddata shift approach outperforms the resampling approach quite comfortably.

This is down to the fact that resampling loses key failure data due to aggregation and

introduces more nonfailure observation leading to an even higher class imbalance.

This adversely effects the model performance and makes this approach not fit for

purpose. Having said that, resampling can still be a good approach if there is sufficient

data availablewhere losing a bit of datamay not be a problem. However, in our case, we

could not afford to lose any failure data as we already had an existing class imbalance

that was being accounted for by upsampling or downsampling in the experiments.
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Lastly, CM is easy to do, however, PdM is not. With the same combination of approach,

experiments and data, the highest FScore achieved for CMwas 0.910.92 whereas the

highest of score for PdM was 0.770.79 for a 78/207 day period respectively.

7.2 Future Work

This research area can be explored further and our work can act as a foundation to

build upon. A second step can be added to our PdMmodel by introducing amulticlass

classification ML model built only using the component failure data. Once our initial

model predicts failure in the next x days, the secondmodel comes into action to predict

what this exact failure would be with a certain probability. Moreover, additional data

and features can be introduced into the model such as service and warranty claim

data. This data source was not used in this research work as there was a doubt over

its quality as customers can sometimes get their vehicles serviced or repaired by third

party service providers which cannot be accounted for. Introducing this data could

have made the historical life of the vehicles’ time series unreliable, however, it is

definitely something worth exploring. More vehicle models can be added to the data

as long as they tend to follow the same type of data trend which can be determined by

what tasks the machine performs on a daytoday basis. For instance, if all different

models of articulated haulers e.g. A25G, A30G, A40G perform similar work, then their

data could be merged to see how performance is affected, or separate models could

be built for each vehicle model and the performance could be compared. Along with

this integration of data from different vehicle models, the onehot encoding technique

can be replaced with feature hashing for the vehicle IDs which will make the model

scalable to the addition of new vehicles as well. Also, these solutions can be scaled

to other components of the vehicle apart from engines, other components such as

transmission, hydraulics, control systems, etc. Moreover, a prediction interval with

a certain probability could be introduced along with the prediction made by the model

to support the quality of the prediction. Lastly, instead of just running experiments

for three different values of the lookahead window size x, it can be run for many more

values or a range of values using a bucketing approach to find the right tradeoff /

balance between model performance and the need for the right lookahead period for

the specific component in question.
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