
 Eindhoven University of Technology

MASTER

Creating a generalized framework to support the computational study of historical literature

Kortleven, David

Award date:
2021

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/ddc434d8-9f20-4745-a267-c1d896532a22

Creating a generalized framework
to support the computational
study of historical literature

Master Thesis

David Kortleven

Department of Mathematics and Computer Science
Architecture of Information Systems Research Group

Supervisors:
Bettina Speckmann

Andrew Salway

Eindhoven, July 2021

Acknowledgements

Glory be to God for all the beauty around us and inside us. He is good, all the time.

I would like to thank my supportive supervisor Bettina Speckmann for guiding me to and
through this amazing project. I am also very grateful for the onboarding, support,

brainstorming sessions, and guidance in simplifying my explanations by Andrew Salway.

Thank you Arianna Betti for providing me with your insights, and sharing your delightful
music to listen to while studying. I thank Maria Chiara Parisi for spending all the time to help
me understand the perspective of researchers, and giving very helpful suggestions in putting

everything on paper.

I thank my parents for supporting me with everything that lead to this thesis. And finally I
thank my loving wife who supported me through every moment of this process.

iii

Abstract

Research in various humanities fields, such as history of ideas, involves historical literature
research. This starts with defining a corpus, i.e. a set of texts specified by bibliographical data,
relevant to the research project and acquiring copies of these texts in order to analyze them.

Researchers get online access to increasingly large federated catalogs containing bibliograph-
ical data (such as WorldCat) and repositories of digitized texts (such as Google Books). A new
approach to history of ideas, computational history of ideas, aims to employ these develop-
ments to enlarge the evidence basis for a wide-scope historical investigation.

A challenge this new approach faces is that the bibliographic data available online varies
in quality and structure. This is problematic since humanities researchers, for example, must
know precisely what edition of a book they are analyzing, and that they have identified all the
books relevant to their research project.

This thesis presents a technical and user interface design of a framework that is created
in collaboration with the Concepts in Motion team from the University of Amsterdam, rep-
resenting the users of this framework. The framework supports researchers in the process of
compiling text corpora using online catalogs and repositories. This way, bigger corpora with
more accurate bibliographic data can be modeled and explored in a user-defined model. In ad-
dition, the framework keeps a detailed history of activity within the framework. This allows
researchers to investigate and ensure the legitimacy of conclusions drawn from results from
the framework. Other features include discussions and access control. The framework also
prepares for the future integration of other features such as automated analysis of texts, and
applications in other fields.

Next to presenting a design, this thesis also involves the implementation of a subset of the
design in a production-ready way. This allows future projects to use the results of this thesis to
deploy the framework for use in actual research projects.

Contents

Contents ii

List of Figures iv

1 Introduction 1
1.1 Bibliographic Data . 2
1.2 Workflow of a Historian of Ideas . 3

1.2.1 Towards Computational History of Ideas 4
1.2.2 Challenges . 6

1.3 Related Work . 6
1.3.1 Related Tools . 6
1.3.2 Data Storage Technologies . 7

1.4 Scope of Project . 8

2 Description 9
2.1 Users of the Framework . 9
2.2 Generalized Framework Description . 10
2.3 Definitions . 11
2.4 Requirements . 11

2.4.1 Functional Requirements . 12
2.4.2 Non-functional Requirements . 15

2.5 Design Scope . 15

3 Architecture 16
3.1 Main Challenges . 16
3.2 Approach . 17

3.2.1 Interface Points . 17
3.2.2 Application Backend . 17

3.3 Considerations . 19
3.3.1 Monolith versus Micro-Services . 19
3.3.2 Open Source versus Closed Source . 20
3.3.3 Deletion versus Archiving . 21

4 Design 22
4.1 Definitions . 22
4.2 Design Choices . 23

4.2.1 Interface Points . 23
4.2.2 Projects . 24

ii

CONTENTS

4.2.3 Authentication . 24
4.3 Dynamic Data Model . 24

4.3.1 Class Design . 24
4.3.2 Database Design . 27
4.3.3 Interaction . 28
4.3.4 UI Design . 28
4.3.5 Feedback Sessions . 31

4.4 Query Engine . 31
4.4.1 Process . 31
4.4.2 Query DSL Semantics . 32
4.4.3 Class Design . 37

4.5 Exploring . 40
4.5.1 Technical Design . 41
4.5.2 Database Design . 41
4.5.3 UI Design . 41
4.5.4 Feedback Sessions . 47

4.6 Importing . 48
4.6.1 Class Design . 48
4.6.2 Database Design . 49
4.6.3 UI Design . 49
4.6.4 Feedback Sessions . 52

4.7 Collaborating . 54
4.7.1 Class Design . 54
4.7.2 Database Design . 55
4.7.3 UI Design . 55
4.7.4 Feedback Sessions . 56

5 Implementation 59
5.1 Method . 59

5.1.1 Front End . 59
5.1.2 Back End . 60

5.2 Results . 61

6 Conclusion 65
6.1 Future Work . 66

Bibliography 68

A General Class Diagram 70

B Wireframes of the Graphical User Interface 72

C Screenshots of the implementation of prototype 88

iii

List of Figures

1.1 Group 1 entities of FRBR . 3
1.2 Workflow history of ideas . 4
1.3 Data model from the practice of computational history of ideas 5
1.4 JSON example . 7

2.1 Conceptual data model definition . 11

3.1 General architecture of the framework . 18
3.2 General architecture of the framework pointing out the division between back

end and front end deployment . 20

4.1 An altered version of the general architecture, describing the relation between
API and GUI. 23

4.2 Class diagram describing the Dynamic Data Model 25
4.3 Database design describing the Dynamic Data Model 27
4.4 Wireframe of interface for creating a data object 29
4.5 Wireframe of interface for selecting a referenced data object 29
4.6 Wireframe of interface for showing a data object 30
4.7 Query Engine conceptual process . 32
4.8 Query DSL Structure . 33
4.9 Class diagram of Query Engine Controller Classes 38
4.10 Class diagram of Query Engine Query Classes . 38
4.11 Class diagram of Exploring module . 41
4.12 Exploring database design . 42
4.13 Wireframe of interface for exploring data objects 43
4.14 Wireframe of interface for selecting columns to display in a table representing

data objects . 43
4.15 Wireframe of interface for adding data objects to a collection 44
4.16 Wireframe of interface for writing a query using the query DSL 44
4.17 Wireframe of interface for writing a query using visual components 45
4.18 Wireframe of interface for showing an overview of all collections 46
4.19 Wireframe of interface for showing an overview of all data objects in a collection 47
4.20 Wireframe of interface showing the concept of facets 48
4.21 Class diagram of the Importing module . 49
4.22 Database design of the Importing module . 50
4.23 Wireframe of interface for starting an import . 51
4.24 Wireframe of interface for finishing an import . 52

iv

LIST OF FIGURES

4.25 Wireframe of interface of a curation session . 53
4.26 Class diagram of Collaborating module . 54
4.27 Database design of Collaborating module . 56
4.28 Wireframe of the interface to manage comments and actions 57

5.1 Screenshot of the interface for creating an import 62
5.2 Screenshot of the interface of a curation session . 62
5.3 Screenshot of the interface of the Exploring module while querying using visual

components . 63
5.4 Screenshot of the interface of the Exploring module while querying using the

query DSL . 63

A.1 Class diagram summarizing the whole framework 71

B.1 Wireframe of interface for creating a data object 72
B.2 Wireframe of interface for selecting a referenced data object 73
B.3 Wireframe of interface for updating a data object 73
B.4 Wireframe of interface for showing a data object 74
B.5 Wireframe of interface to select a data type to start exploring data objects of that

data type . 75
B.6 Wireframe of interface for exploring data objects 76
B.7 Wireframe of interface for selecting columns to display in a table representing

data objects . 76
B.8 Wireframe of interface for writing a query using the query DSL 77
B.9 Wireframe of interface for writing a query using visual components 77
B.10 Wireframe of interface for adding data objects to a collection 78
B.11 Wireframe of interface for showing an overview of all collections 78
B.12 Wireframe of interface for showing an overview of all data objects in a collection 79
B.13 Wireframe of interface for exporting all data objects in a collection 79
B.14 Wireframe of interface for starting an import . 80
B.15 Wireframe of interface for finishing an import . 81
B.16 Wireframe of interface showing all created imports 82
B.17 Wireframe of interface for starting a new curation session 82
B.18 Wireframe of interface of a curation session . 83
B.19 Wireframe of interface showing all curation sessions 84
B.20 Wireframe of the interface to manage comments and actions 85
B.21 Wireframe of the interface to manage actions . 86
B.22 Wireframe of the interface to manage comments 87

C.1 Screenshot of the login interface . 88
C.2 Screenshot of the interface for selecting a project 89
C.3 Screenshot of the interface for selecting an import or creating a new import . . . 89
C.4 Screenshot of the interface to finish an import . 90
C.5 Screenshot of the interface of a curation session . 90
C.6 Screenshot of the interface for setting up a curation session 91
C.7 Screenshot of the interface of the curation session while curating import records 91
C.8 Screenshot of the interface to start exploring data object of a data type 92
C.9 Screenshot of the interface for filtering data objects using visual components . . . 92
C.10 Screenshot of the interface for filtering data object using a query in the query DSL 93

v

LIST OF FIGURES

C.11 Screenshot of the interface showing validation errors when an invalid query was
entered . 93

C.12 Screenshot of the interface showing a single data object 94

vi

Chapter 1

Introduction

History of ideas is the field of research within the humanities that studies the historical de-
velopment and decline of concepts (ideas). It entails studying historical works, in the form of
books, articles, or any other textual works. This requires researchers to have access to a suf-
ficiently sized corpus, a collection of written texts, containing enough works that comprise all
resources relevant to their research. In addition, researchers need to have access to a sufficient
amount of time to analyze and investigate such a corpus. Both requirements include resources
which availability is often limited to researchers. With the rise of modern technology, such as in-
creasingly powerful computers, the world wide web, researchers can get access to much larger
corpora. Together with the development of computational tools used in disciplines such as Ma-
chine Learning and Natural Language Processing, a new approach to the study of the history
of ideas, dubbed computational history of ideas (Betti and Van den Berg, 2016), is pioneered by
the e-Ideas project from the Concepts in Motion team at the University of Amsterdam 1.

These days, researchers have access to increasingly large digital federated catalogs of bibli-
ographical data, and repositories containing digitized copies of historical texts. However, these
resources are of variable quality, and different repositories use different structures to store the
bibliographical data. Therefore there is a need of researchers for support in processing these
large repositories, by having tools to carefully decide what resources are relevant to their re-
search. This will help the researcher to create a larger evidence basis and be able to account for
this basis. An approach to this challenge is presented in the form of hierarchical models that de-
scribe the editorial history of literature, as we discuss in Section 1.1. This proves to be a helpful
approach to, for example, historians of ideas, who for their research must know precisely which
edition of a book they are analyzing, and that they have identified all books that are relevant to
their research, e.g. "all 18th-century books written in Latin on the topic of biology".

This thesis project aims at providing the technical and user interface design and implement-
ation of a framework that supports researchers in the process of constructing corpora to perform
analysis on, using online catalogs and repositories. The researcher can model and explore big-
ger corpora with more accurate bibliographic data in a user-defined model. The framework
also includes an activity history that allows the researcher to investigate and validate the legit-
imacy of conclusions drawn from results from the framework. The design of the framework
also includes a feature for discussions amongst users, and access control. The framework will
be designed in such a way that it can be extended to support different tasks such as text analysis
in the future. This project is performed in collaboration with the Concepts in Motion team, by
using their input to construct a design, and testing the implementation using their insights.

1https://conceptsinmotion.org (accessed: 2/7/2021)

1

https://conceptsinmotion.org/e-ideas/

CHAPTER 1. INTRODUCTION

Next, we describe the concept of bibliographic data, the workflow, and corresponding chal-
lenges of a (computational) historian of ideas in detail, followed by an overview of related work,
and a description of the scope and structure of this thesis.

1.1 Bibliographic Data

An important concept in historical literature research is the one of bibliographic record. A
bibliographic record is an entry in a catalog, bibliography, or any other bibliographic database,
that describes a bibliographic resource such as a book, using bibliographic metadata such as the
title, name of the author, and date of the first edition.

An example of a repository containing bibliographic data is WorldCat, provided by the On-
line Computer Library Center (OCLC) which combines bibliographic data of thousands of lib-
raries into one repository (OCLC, 2021). Being one of the largest bibliographic databases, it is a
great resource, however, the large amount of sources for the catalog is one of the main reasons
that available bibliographic data is of varying quality and structure. For example, some bibli-
ographic records miss specific metadata, or store the author of a work in the same attribute as
the title. This varying quality and structure explains the need for a framework that allows re-
searchers to make precise decisions and perform accurate normalizations on the available data
for their research. An example of a repository that contains digitized copies of textual resources
is Google Books, which contains an extensive set of resources that are already digitized. How-
ever also here, due to the massive amount of sources, the quality and structure of these sources
are variable.

Finding a bibliographic record, indicating the existence of a work, such as a book, journal, or
article, does however not necessarily provide all the insight into the exact history of a work that
a researcher might need. A work, being an abstract representation of an intellectual or artistic
creation, often is not a static object, just written once, producing a single artifact, but has its own
history. A work is usually published multiple times in different editions, and each edition can
consist of numerous physical copies. This hierarchy can be modeled by a relational model.

This concept and the use of a relational model describing bibliographic resources and their
relevant entities is exemplified in detail by the Functional Requirements for Bibliographic Re-
cords (FRBR) (Functional Requirements for Bibliographic Records, 2016). FRBR aims to provide
a standardized model to describe bibliographic records and their hierarchical relations as can
be seen in Figure 1.1.

This model describes the following entities, which make up the so-called Group 1 entities:

1. A work, which represents a unique creation, for example, the tragedy Romeo and Juliet
by William Shakespeare.

2. An expression, which represents an intellectual or artistic form of a work, for example,
the book, the film, or the opera of Romeo and Juliet.

3. A manifestation, which represents an instantiation of an expression, such as the first edi-
tion of the book Romeo and Juliet, or the translation into German.

4. An item, which represents a physical exemplar of a manifestation. For example, a physical
book of the German translation of Romeo and Juliet

A bibliographic record can describe any of these entities. However, it usually describes a
manifestation, including attributes that, for example, point to a specific edition of a work. But a

2

CHAPTER 1. INTRODUCTION

realizationOf

embodimentOf

exemplarOf

e

realization

embodiment

exemplar

e

Manifestation

Item

Work

Expression

Endeavour

part/partOf relatedEndeavour

Figure 1.1: The Group 1 entities in FRBR, representing products of intellectual or artistic en-
deavor.
Source: Jakob Voss, WikiMedia

bibliographic record can also describe only a work without describing a specific manifestation
of such a work.

Next to describing so-called Group 1 entities that are products of an intellectual or artistic
endeavor (such as books, articles, or symphonies), FRBR also prescribes a model for Group 2
entities, entities responsible for intellectual or artistic content, such as a person or an organiza-
tion, and Group 3 entities, subjects of intellectual or artistic endeavor, such as a concept, object,
event or place.

There are already tools that support tasks related to literature research, such as Zotero for
constructing corpora, or Microsoft Excel for maintaining bibliographic data in spreadsheets.
These however do not suffice, as is discussed in more detail in Section 1.3.1. One of the main
reasons is that these tools do not support the use of hierarchical models to describe bibliographic
records. The prototype developed by the Concepts in Motion team does support a form of
hierarchical models, but is not sufficient for a production environment.

1.2 Workflow of a Historian of Ideas

In order to understand what the framework resulting from this project should support, we
describe in more detail how the research of a historian of ideas is shaped. Next, we explain how
this workflow is adapted when considering computational history of ideas. This process can be
summarized through the following steps, also visualized in Figure 1.2:

1. Defining a research question: The researcher defines a question or topic they want to
investigate.

2. Defining the corpus criteria: The researcher describes corpus criteria, that work as
guidelines to retrieve and include or exclude works that make up the exact corpus that
is relevant for answering the research question.

3. Find all resources matching the corpus criteria: The researcher searches through (online)
catalogs, such as WorldCat provided by the Online Computer Library Center (OCLC),
uses bibliographies, or any other procedure to find bibliographic records, that match the
corpus criteria.

3

https://upload.wikimedia.org/wikipedia/commons/8/80/FRBR-Group-1-entities-and-basic-relations.svg

CHAPTER 1. INTRODUCTION

4. Find textual resources to construct the corpus: The researcher finds all textual copies,
items as described in Figure 1.1, described by selected bibliographic record matching the
corpus criteria, to construct a corpus.

5. Perform analysis and draw conclusions: The researcher performs analysis on the con-
structed corpus, and uses the results as textual evidence that can validate their conclu-
sions.

The last step, performing analysis and drawing conclusions, actually includes multiple sub-
steps. We group these substeps into the final step since they are beyond the scope of this project.

Define
research
question

Defining
corpus criteria

Find resources
matching

corpus criteria

Find copies of
each resource

Perform analysis and
draw conclusions

Figure 1.2: The typical workflow of research of a historian of ideas.

These steps are describing an ideal situation. In practice, each step of the research will
include numerous challenges not yet addressed, and the steps will often not occur in a strictly
linear fashion. In fact, a research project will involve an iterative process of going back and forth
between each step, eventually leading up to the final conclusion.

1.2.1 Towards Computational History of Ideas

Corpus analysis in the traditional approach of history of ideas is a time-consuming process
requiring close reading, and can also introduce bias since a human being is performing the
close reading. Computational history of ideas, as a new approach to history of ideas, aims at
supplementing the traditional approach by enlarging the evidence basis for a wide-scope his-
torical investigation. To this end, the researcher applies computational techniques and tools to
construct and analyze historical corpora. Using such computational techniques, the researcher
can use larger corpora as textual evidence that validate their conclusion in a more efficient,
and more transparent way. Considering the main topic of this thesis, namely supporting cor-
pus construction, one of the most significant changes is that in Step 4, the researcher needs
machine-readable corpora. Therefore, the researcher wants to find digitized copies, which rep-
resent items in a machine-readable way. The researcher can no longer use a physical book or
unprocessed scans to do the analysis, since these are not machine-readable so computational
tools can not be used on them. Only items that are digitized can be useful as input for the ana-
lysis. Additionally, to successfully use computational tools, digitized copies need to be of the
highest quality. Having the highest quality digitized copies will namely optimize the efficiency
and accuracy of the analysis of computational tools.

The notion of digitized copies, being machine-readable representations of an item, is not
yet captured in the FRBR model. In practice, researchers in computational history of ideas
have started to address the issue themselves, however. For example, the Concepts in Motion
team have suggested adaptations to this model, leading to, for example, the model in Figure
1.3 (Parisi and Betti, 2020a). An extra entity is added, namely Digitized Copy, describing the
digitized representation of a physical item. Extending the model with such an entity makes it
more granular. This allows the researcher to answer certain questions such as, what is the best
digitized copy of a work or manifestation that is available? This is useful since it contributes to
the more general aim of building high-quality digital corpora for text-mining purposes, which

4

CHAPTER 1. INTRODUCTION

is an important requirement for computational history of ideas. Note that in addition to adding
the digitized copy entity, this model also removed the Expression entity, as the expression of a
work in literature study is always textual, and added an entity Person, representing authors,
publishers, editor, and translators, borrowing from the Group 2 entities from FRBR.

Work

Manifestation

Item

Digitised
CopyEntities

Relations
Attributes

realized through & embodied in

exemplified by

digitised in

Person

written by

edited by

translated by

published by

translated from

preceded by

succeded by

Attributes filled with another entity

Figure 1.3: A model from the practice of computational history of ideas, based on FRBR (Parisi
and Betti, 2020a).

An implication of being focused on digitized copies, and digitalizing history of ideas, is that
computational history of ideas relies more on an implementation of a hierarchical model such
as FRBR, or the model presented in Figure 1.3. Having such a hierarchical structure describing
bibliographical records in place is crucial for the researcher to find all objects (manifestations,
items, and ultimately digitized copies) matching the corpus criteria. This allows the researcher
to efficiently explore the history of a work and compare different manifestations, items, and
digitized copies of a work and take those into account when selecting the optimal resources for
their research project.

Further changes when moving from history of ideas to its computational supplement are the
methods of analyzing. New, computational techniques of analyzing a corpus, such as the ones
used in the discipline of Natural Language Processing and other forms of Artificial Intelligence,
can be used to analyze vast amounts of text. This is however beyond the scope of this project,
but we can use it as a guide to design the framework in such a way that it can be extended to

5

CHAPTER 1. INTRODUCTION

support such functionality.

1.2.2 Challenges

There are a number of challenges that the framework around which this thesis revolves aims
to provides support for. Firstly, the quality of bibliographic data often "are of variable quality
and completeness" , bibliographic records "use different cataloging schemes, and different lan-
guages" and do not involve structures such as hierarchical models like FRBR (Salway, 2021).
Since a hierarchical model containing bibliographical data is important for researchers, a solu-
tion needs to be provided that allows researchers to structure bibliographic data from various
sources of varying quality in a model that suits their research.

The exact shape of such a model is not fixed for every type of research project and may vary
from researcher to researcher. We noticed this already in the FRBR model and an adapted ver-
sion that researchers tailored to their use case in Figure 1.3. So the next challenge the framework
faces is to provide a model that is complete enough to support the tasks a researcher needs to
be supported in, but is also flexible to match the model a research project requires.

Additionally, to provide legitimacy and validatability for the conclusions that a researcher
draws from the results of their research, the framework has to support a way to trace back how
results were constructed. This includes the possibility to review decisions made in the past, and
start discussions on them with collaborating researchers.

Since the framework that results from this thesis is not aiming to immediately be an all-
encompassing framework that a researcher can use for any process in their research, an interface
with external tools also needs to be part of the framework. This interface allows the framework
to interact with other relevant tools that are not integrated within the framework (yet).

1.3 Related Work

In the following section, we describe previous work that is relevant to the goal of the framework
or can serve as inspiration for the design and implementation of the framework.

1.3.1 Related Tools

There are a number of existing tools that provide parts of solutions to the described challenges.
For example, the software tool Zotero provides the functionality to manage bibliographic re-
cords, specifically designed for keeping track of references during a research (Vanhecke, 2008).
This allows the user to compile a list of bibliographic records, and filter among all these re-
cords, in search of a specific set of records that, for example, match corpus criteria. A limitation
of Zotero however is that it is not possible to organize and enrich the records within a data
model that is specifically relevant for the researcher. Therefore a researcher is limited to the re-
stricted degree of freedom that Zotero prescribes, and will not be able to exploit a modeling of
bibliographic records specific to their research project. A historian of ideas, for example, can not
quickly explore all manifestations of a certain work, since there is no concept of a work, mani-
festation nor a relation between these in Zotero. Another tool that researchers can use is Gneiss
(Chang and Myers, 2016). This tool allows users to explore hierarchical data in a spreadsheet
without destroying the hierarchical structure. However, this tool does only allow for explor-
ing already structured data, and does not provide the required functionality for (re)structuring
bibliographic data from various sources.

6

CHAPTER 1. INTRODUCTION

Another set of tools that relates to the described problems are the so-called Content Man-
agement Systems (CMS). These, often commercial, systems primarily aimed at serving websites,
sometimes also allow for creating a dynamic data model. A CMS is often not completely suited
for managing data dynamically, without it being directly coupled to a website as output. We
can however distinguish Headless CMS, a class of CMS that aims to decouple the output of a
system (usually a website) from its Content Managing component. In theory, this would allow
for entirely "website-unrelated" applications of such systems, such as providing a dynamic data
model that implements FRBR. The design and implementation of such systems can serve as
inspiration for the dynamic data model that is required for the framework this project creates.

Researchers from the Concepts in Motion team noticed the limitations of tools such as Zotero,
Gneiss, and Excel, and started to think about a solution to this by, for example, using a rela-
tional database. They developed a prototype application that implements a hierarchical model
as presented in Figure 1.3, using a relational database (Parisi and Betti, 2020b). This prototype
shows the potential of using a hierarchical relational model for (computational) historians of
ideas, since it, for example, allows researchers to explore all available items of a certain work.
The prototype also serves as an important inspiration for the data modeling features of the
framework designed in this thesis.

1.3.2 Data Storage Technologies

For the implementation of the framework, we take inspiration from other ideas and systems that
were developed before. When thinking about the requirement of a flexible data model, the rel-
atively recent development of NOSQL databases is relevant (Nayak, Poriya and Dikshay, 2013).
Some types of NOSQL databases, opposing or complementing the classical SQL databases or
relational database management systems (RDBMS), have as a main feature that they do not ne-
cessarily fix an application to a database schema, that requires manual actions to migrate to a
new state. In addition, NOSQL databases aim to address scalability challenges that traditional
database approaches face (Strauch, 2021). These properties of NOSQL databases seem to align
very well with the desire for a Dynamic Data Model. Namely, a Dynamic Data Model can in-
herently not be defined in an RDBMS schema during the development of the framework, since
the exact schema varies from project to project. Having a database with a flexible schema, that
does not need explicit migration of the database can be a helpful alternative.

Another relevant development is the use of JavaScript Object Notation (JSON) in relational
databases. JSON objects are structured strings, that can be used to store data, an example is
shown in Figure 1.4. Traditional databases, such as Oracle Database, Microsoft SQL Server, and
PostgreSQL, started to integrate with JSON (Petkovic, 2017). This means that they provide field
types for JSON that can be indexed, and thus queried efficiently. Previously JSON would just
be stored as a string, which made it difficult, if not impossible to query the JSON field in a
meaningful way, but this development of traditional databases relieved this limitation. Now
that this feature is available, an application can use the strengths of a traditional and mature
RDBMS, while also effectively having a partly flexible schema.

Figure 1.4: An example of JavaScript Object Notation (JSON)

7

CHAPTER 1. INTRODUCTION

Elasticsearch is also a relevant and interesting open-source piece of software. Elasticsearch
is a "distributed search and analytics engine", the core of the Elastic Stack, which includes other
tools that are relevant to data collection (Elasticsearch Query DSL 2021). An interesting feature
Elasticsearch has is the so-called Query Domain Specific Language (DSL), based on JSON. This
allows the user to construct data queries in JSON, that can be arbitrarily complex through the
use of Compound query clauses, which allow the user to combine multiple simple queries, e.g.
selecting all records with a specific value for an attribute. What makes Elasticsearch inspiring
for this project is that the flexibility of its Query DSL does allow for the querying of data models
without a specific schema.

1.4 Scope of Project

The aim of this project is to provide a framework as a foundation for the automation of, and
supporting tools for, the research of history of ideas. This thesis focuses on providing function-
ality that supports researchers in building corpora for their research, and furthermore takes the
future addition of functionality, for example, for analyzing corpora, into account when creating
a design. The final product generalizes towards the use not only in different research areas that
share similar textual analysis on significant amounts of digital textual data but also towards ap-
plications outside academia, such as libraries, museums, and other institutions that may benefit
from components of the framework. For example, some components of the framework, such as
a dynamic data model, could also be used to model the collection of a museum, in order to help
finding objects in the collection to create coherent exhibitions.

This project is executed as an iterative process, where each iteration of the project involves
the design and implementation of a component or module within the framework. This is done
in collaboration with the aforementioned Concepts in Motion team, represented by Arianna
Betti, Andrew Salway, and Maria Chiara Parisi. Next to being the instigators of this project,
they also act as example users, having good insight into what potential users expect to see in
the framework, and what challenges they will face. The collaboration consists of several forms.
Firstly, the description and requirements are based on all the work that has been performed
on describing the e-Ideas project by the Concepts in Motion team. Secondly, the design based
on this description is presented several times to the Concepts in Motion team, asking for their
insights in order to improve and fine-tune the design. Finally, in the implementation phase of
the iterations in this project, the Concepts in Motion team provides feedback to improve the
implementation or suggests new ideas for the framework for future iterations. This thesis will
describe the final outcomes of each iteration, without explicitly giving minute details about all
the feedback sessions with the Concepts in Motion team. However, some interesting results of
these sessions will be mentioned throughout the design and implementation chapters.

This thesis is structured as follows. In Chapter 2, a detailed description of the requirements
of the framework is provided. Chapter 3 draws the general outline of the design of the frame-
work, and discusses general decisions that are relevant for the rest of the design and implement-
ation. Chapter 4 provides a granular design of the framework. The components of the design
that were also implemented as part of this thesis are then showcased in Chapter 5. Chapter
6 concludes by summarizing the work done and elaborating the future work, be it design or
implementation, that can be done in this project.

8

Chapter 2

Description

The following chapter provides a detailed description of the project, starting by elaborating on
who the users of the framework will be. Following that, we focus on the tasks that the frame-
work has to support, generalizing from the tasks of a historian of ideas as described in Section
1.2. Next, we describe the user requirements for the framework we are designing, explaining
the general tasks of the framework. Finally, the exact scope of the design and implementation
of this project is defined, delimiting what features of the framework will be designed in detail,
which features will be implemented in the prototype, and which parts will be left to future
work.

2.1 Users of the Framework

We can define two groups of users of the framework, application users and framework de-
velopers. We define application users as the group of mostly non-technical users who will use a
graphical user interface (GUI) to interact with the functionality of the framework. These users
are, for example, represented by the aforementioned historians of ideas, but can be general-
ized to librarians and researchers doing literature research, desiring to construct corpora in a
systematic and accountable manner, and potentially an even broader group of users as we will
discuss later. In general, their needs are centered around the completeness and usability of the
functionality in an intuitive way. When we refer to users of the framework, we refer to these
application users.

Framework developers are defined as the technically skilled group of users, who can extend
the framework with new functionality, or integrate external tools with the framework. They
interact with the framework mostly through a non-graphical interface to support application
users who require more advanced functionality than the framework supports by default.

When defining the required functionalities of the framework, we base this mostly on the
desires and expectations of the application users. The desires and expectations of framework
developers do however impact the implementation design choices significantly. For the extend
to which the framework is maintainable, extensible, and modular to framework developers is a
decisive factor in the successful continuation of the development of the framework.

9

CHAPTER 2. DESCRIPTION

2.2 Generalized Framework Description

As mentioned before, we want the framework to support not just a specific group of historians
of ideas, but rather every historian of ideas, and even other groups of users that can benefit from
(a subset) of functionalities that the framework provides. We think, for example, of historians or
philosophers that also analyze historical corpora. But potentially we can even think of museums
that want to structure a collection, as discussed before. Therefore, we generalize the tasks of a
historian of ideas as seen in Figure 1.2 to the following general tasks that the framework has to
support:

1. Research Workflow: The framework should provide the user with a workflow, that
guides the user through their research process in a structured way. This workflow should
be modifiable to the specific methodology a researcher is using, since this methodology
might vary from researcher to researcher and from research project to research project.
For example, a philosopher or historian of ideas is usually interested in tracing changes in
concepts, while linguists are often focused more on the evolution of a term in a language,
and archaeologists commonly study history of physical objects. Each type of research can
involve different workflows. A workflow consists of a set of tasks divided over several
steps that can be assigned or iterated. When looking at the workflow description of his-
tory of ideas in Section 1.2, this task corresponds to Steps 1, 2 and 5.

2. Dynamic Data Model: The framework should provide the user with a dynamic data
model. This data model is modifiable to a specific project, such that it can contain the data
in a way that it represents them in a format relevant to the researcher’s needs and ques-
tions. One important aspect of this model is the requirement to be able to define relations
between objects. This allows a historian of ideas, for example, to link a manifestation to a
work, following the data model in Figure 1.3. This enables the historian of ideas to explore
these explicit relations and, for example, explore every manifestation of a work to recon-
struct the bibliographical history of a work. Next to having this dynamic data modelling
functionality, we also require the framework to have import and export functionality at
scale, to allow interaction between, and migration from and to external tools. When look-
ing at the workflow description of history of ideas in Section 1.2, this task corresponds
to Step 3 and 4 since having a dynamic data model allows the researcher to import and
curate resources into this dynamic data model.

3. Data Exploration: The framework should provide the user with an interface to explore
all the available data. The user should be able to explore the data that will be present
in the data model, to find relevant data efficiently. For example, a historian of ideas has
to be able to see all manifestations of a work, such as all editions of Romeo and Juliet,
or find all works with certain attributes, such as all works published in the 19th century.
The user should then also be able to create collections of data, and export these from the
framework. When looking at the workflow description of history of ideas in Section 1.2,
this task corresponds to Step 3, 4 and 5, since having the functionality to explore data
in the Dynamic Data Model allows to find resources that match the corpus criteria, and
analyze them to create supported conclusions.

4. Access Control: The framework should provide a method of access control, to ensure, or
at least enhance, the integrity of activities and their results within the framework. When
looking at the workflow description of history of ideas in Section 1.2, this task corresponds
to Step 5, in the sense that results can be accounted for, and integrity of the data can be
controlled.

10

CHAPTER 2. DESCRIPTION

5. Collaborating: The framework should provide supporting tools to improve the collab-
oration of multiple researchers within a single project. Important aspects are a way of
commenting or discussions, on certain topics. But also the more basic requirement that
multiple users can access and manage data within the framework simultaneously is ne-
cessary. Next to that, the framework should show all activities that occurred within the
framework, in order to allow for an activity audit. This can help the user to derive how
certain results were established, but can also help in collaboration. When looking at the
workflow description of history of ideas in Section 1.2, this task corresponds to Steps 1
and 5, next to supporting collaboration on every other task.

As will be explained in more detail in Section 2.5, in this project we focus mostly on the tasks
of data modelling, data exploration, and collaborating. In the following sections, we describe
specific requirements.

2.3 Definitions

Before elaborating on the requirements, there are a few definitions to provide.

1. When mentioning a data model, we consider a data model to consist of a number of data
types, akin to classes in object-oriented programming languages, which all have can have
a number of data attributes. A data type has a name, while a data attribute has a name
and a type, for example, a string or number. In addition, the data model can be ’filled’
with data through data objects. A data object is an instantiation of a certain data type,
and can have values for each data attribute of the data type. This is also shown in Figure
2.1.

2. A user is considered to be the Application User as described in Section 2.1.

3. The initial stage or this stage of the framework, refers to the phase of designing and
developing the framework in the scope of this Master’s thesis. Later stages can include
more advanced or extensive functionalities than this thesis.

Data ObjectAttribute Value

+ Value

Data Type
Data Attribute

+ Type [Text, Number, Location, Date,
Choice, Reference]

Figure 2.1: The relations between concepts that make up the data model definition

2.4 Requirements

We describe the specific requirements in two parts: functional requirements, describing explicit
functionalities the framework has to provide, and non-functional requirements, describing de-
sired non-functional properties of the framework. We do not provide priorities for each require-
ment, for example, by using MoSCoW-based methods (Ahmad et al., 2017), since this project

11

CHAPTER 2. DESCRIPTION

revolves around setting up a design and implementation process for the framework, and does
not aim to have a completely implemented product as the end goal. Prioritizing the desired
order of implementation of certain features is something that has to be done during the phase
where these features potentially might be implemented. Related to this, note that this list of
requirements is in no way definitive for the development of the project, but serves as a starting
point for future development. This will also lead to some deliberately unspecific requirements
that will not be addressed in detail in this project. Some requirements will have examples in italic
to exemplify their impact.

2.4.1 Functional Requirements

We group the Functional Requirements based on the tasks described in Section 2.2:

Research Workflow

The following requirements provide a general and unspecific description of what the research
workflow functionalities of this framework may involve. This will not be the focus of this thesis.

1. Workflow per Project: The user has to be able to define a workflow per project.

2. Steps in a Workflow: The user has to be able to define steps consisting of tasks in a
workflow.

3. Assign Tasks to Users: The user has to be able to assign users to a task of a step in the
workflow.

Dynamic Data Model

The requirements of the dynamic data model functionalities of the framework are similar to the
description of a traditional database system. However in general these requirements require
that the data model has to be customizable at run time, and not predefined in some schema as
in traditional database systems (Köhler and Link, 2018).

1. Data model per Project: The user has to be able to define a data model (consisting of data
types and data attributes) per project.

2. Data type definition: The user has to be able to define data types. For example, a data type
named Work

3. Data attribute Definition: The user has to be able to define data attributes for a data type,
where the attribute has to be one of the following types:

(a) Text: E.g. an attribute named Title

(b) Number: E.g. an attribute named Volume

(c) Date: E.g. an attribute named PublicationDate for the data type Manifestation

(d) Multiple Choice, allowing the user to pick a value from a predefined set of values.

(e) Reference, allowing the user to pick an object of a certain data type. E.g. an attribute
named Work for the data type Manifestation, referring to the data type Work

4. Validate data object: The user has to be able to define validations for data attributes, of
the following types:

12

CHAPTER 2. DESCRIPTION

(a) Required, requiring data objects to have a value for the respective data attribute.
Applicable for all data attribute types.

(b) At least, requiring data objects to have a value that is at least some other value.
Applicable for Number and Date data attribute types.

(c) At most, requiring data objects to have a value that is at most some other value.
Applicable for Number and Date data attributes.

(d) Length at least, requiring data objects to have a value that has a length of at least
some other value. Applicable for Text and Reference data attribute types.

(e) Length at most, requiring data objects to have a value that has a length of at most
some other value. Applicable for Text and Reference data attribute types.

(f) Length exactly, requiring data objects to have a value that has a length of exactly
some other value. Applicable for Text and Reference data attribute types.

5. Create data object: The user has to be able to create a single data object of a certain data
type

6. Edit data object: The user has to be able to edit the values of a specific data object.

7. Validation on save: The user has to receive validation errors when they want to create or
edit a data object but enter data that does not match all validations of the data attributes
of the data type of the data object.

8. Import CSV: The user has to be able to import a comma-separated values (CSV) file, and
create data objects from each record in the CSV file. The user can import an export from
Zotero into the framework and add all records as Manifestation data objects.

9. Archive data object: The user has to be able to archive a single data object. Archived data
objects will not show up in the framework, unless explicitly referenced.

10. Unarchive data object: The user has to be able to unarchive a single data object.

11. Archive multiple data objects: The user has to be able to archive multiple data objects at
once.

12. Unarchive multiple data objects: The user has to be able to unarchive multiple data
objects at once.

Data Exploration

The following requirements describe how the framework has to support the exploration of data
within the Dynamic Data Model.

1. List data objects: The user has to be able to see all data objects of a certain data type

2. Filter data objects: The user has to be able to see all data objects of a certain data type
that have a matching value for a specific data attribute. The matcher has to be one of the
following:

(a) Exactly. The value of the data object for the data attribute has to be exactly a certain
value. Applicable for all data attribute types

(b) Contains. The value of the data object for the data attribute has to contain a certain
value. Applicable for Text data attribute types

13

CHAPTER 2. DESCRIPTION

(c) At Least. The value of the data object for the data attribute has to be at least a certain
value. Applicable for Number and Date data attribute types.

(d) At Most. The value of the data object for the data attribute has to be at most a certain
value. Applicable for Number and Date data attribute types.

(e) Length At Least. The length of the value of the data object for the data attribute has
to be at least a certain value. Applicable for Text and Reference data attribute types.

(f) Length At Most. The length of the value of the data object for the data attribute has
to be at most a certain value. Applicable for Text and Reference data attribute types.

(g) Length Exactly. The length of the value of the data object for the data attribute has to
be at exactly a certain value. Applicable for Text and Reference data attribute types.

3. Filter data objects nested: The user has to be able to see all data objects of a certain
data type that refer to a specific data object through a Reference data attribute, that has a
matching value for a specific data attribute.

4. NOT filter: The user has to be able to see all data objects that do not match with a specific
matcher.

5. AND filter: The user has to be able to see all data objects that do match all of a set of
matchers.

6. OR filter: The user has to be able to see all data objects that do match any of a set of
matchers.

7. Show data object: The user has to be able to see all values for all data attributes of a
specific data object

8. Show referring data objects: The user has to be able to see all data objects that refer to a
specific data object through any data attribute.

9. Create Collections: The user has to be able to create a Collection that can contain data
objects.

10. Add data object to Collection: The user has to be able to add a data object to a Collection.

11. Remove data object from Collection: The user has to be able to remove a data object
from a Collection.

12. Export Collection as CSV: The user has to be able to export a Collection as a CSV file,
which will contain all data of the data objects in that Collection.

Access Control

The following requirements briefly describe how Access Control in the framework has to func-
tion. These requirements are deliberately unspecific, since they will not be the focus of this
project.

1. A user can only access the framework once they have authenticated.

2. An admin user can define which user has access to which features of the framework.

3. A user can only access the features of the framework they were granted access to.

14

CHAPTER 2. DESCRIPTION

Collaborating

The following requirements summarize how collaboration has to be supported by the frame-
work.

1. The user to be able to create a comment on any resource within the framework. For ex-
ample, a user can add a comment on a data object

2. The user has to be able to reply with a new comment to a comment.

3. The user has to be able to create a comment on any action. For example, a user can reply to
the creation of a data object by another user.

4. The user has to be able to see which actions have been performed within the framework.

5. The user has to be able to see which actions have been performed with respect to a specific
resource within the framework. For example, a user can see who created a data object, who
updated a data type’s name, or who created a data attribute.

2.4.2 Non-functional Requirements

The following section describes requirements that do not relate to specific functionalities of the
framework.

1. The framework has to be easy to extend in functionality.

2. The framework has to be able to integrate with any external tools.

3. The GUI of the framework has to be accessible through a web browser.

4. The GUI of the framework has to be responsive, meaning it should be workable on devices
with smaller screens, such as smartphones or tablets.

5. The interfaces of the framework have to respond nearly instant, i.e. provide responses
within 2 seconds.

2.5 Design Scope

As mentioned before, this project is not a full implementation, nor a complete design of the
framework, this is partly because it would not be feasible for a 6 months Master’s thesis project.
At its core, this project aims to create the basic yet essential foundations for an ongoing pro-
ject. This ongoing project will be expanding and adapting the functionalities of the framework
according to its use over time and the availability of required resources such as development
time.

This project scope includes the design and (partial) implementation of the Dynamic Data
Model and Data Exploration tasks. Additionally, the scope of this project includes only the
design of the Collaborating task, which provides a clear starting point for implementation in a
later stage.

The scope of this project will not include Access Control. This is a feature that is desirable
in a production application of the framework, where actual users will use it in an uncontrolled
environment which will not yet be the case. This has been discussed with the Concepts in
Motion team, and can be implemented in the near future when the environment of use requires
it.

15

Chapter 3

Architecture

The architecture of the framework described in the following sections addresses strategic de-
cisions made in order to get a coherent design and implementation fulfilling the requirements
as elaborated in the previous section. First, we will summarize the challenges that arise from
the description into a number of modules. Next, we will use these modules to draft a general
approach to the design of the framework.

3.1 Main Challenges

The main challenges that amongst others arise from the description can be summarized in the
following modules:

1. The framework needs to provide a dynamic data model. This addresses the dynamic data
model requirements as described in Section 2.4.1.

2. The framework needs to provide a flexible interface to query (explore) data within the
Dynamic Data Model. This addresses the data exploration requirements as described in Section
2.4.1.

3. The framework needs to provide a history of every action performed within the frame-
work This addresses part of the collaboration requirements as described in Section 2.4.1.

4. The framework needs to provide a supportive collaborating function, in order for co-users
to communicate. This addresses part of the collaboration requirements as described in Section
2.4.1.

5. The framework needs to provide a way to integrate with external tools This addresses non-
functional requirements2 from Section 2.4.2.

Challenges we will not address in this project, as described in Section 2.5, are, amongst
others listed below. This list is deliberately unspecific since it requires further investigation
before more detailed descriptions can be given.

1. The framework needs to provide detailed access control

2. The framework needs to provide a dynamic workflow to guide users through a user-
defined workflow.

16

CHAPTER 3. ARCHITECTURE

Next to these challenges, we also need the framework to be minimally internally coupled,
in order to make future development but also integration with external tools easier.

3.2 Approach

To devise a design for the framework, we first propose a general architecture, that will serve
as the main guideline for our design. Figure 3.1 presents the general architecture. Within the
framework we distinguish between the core application, called the Application Backend, and
two interface points, to allow interaction with the framework. In the figure we also see the two
types of users represented. The application user only interacts with the Graphical User Interface
(GUI), while the framework developer either interacts with the API by building integrations
that interact with the API, or develops or extends modules within the Application Backend.

3.2.1 Interface Points

We distinguish two interface points. The first interface point is a Graphical User Interface (GUI).
This intuitive interface allows (non-technical) application users to interact with the framework.
The GUI will use all the functionalities present in the Application Backend, and expose them
graphically to the user, as a web application, accessible through a browser. Even though it will
be discussed in detail in the implementation description in Section 5.1, it is worth mentioning
that the GUI uses the Application Programming Interface (API) as a means to interact with the
Application Backend.

The second interface point is the API. This non-graphical programmatic interface allows
other software to interact with the Application Backend. This enables the integration of ex-
ternal tools with the framework. The initial implementation of an API will be one-directional,
meaning data can be requested, and mutations to the data can be made from an external tool
through the API. An addition in a future stage of the framework could be that the API also pro-
actively informs external applications through a Publisher-Subscriber mechanism, or by using
webhooks.

3.2.2 Application Backend

The Application Backend contains all the functionalities that make up the core of the frame-
work. We can specify the six modules that make up the initial stage of the framework: Dynamic
Data Model, Query Engine, Exploring, Importing, Action Framework, and Collaboration.

• The Dynamic Data Model, will provide a data model that can be dynamically, i.e. at run
time, changed. A data model consists of data types with corresponding data attributes.
Then, using this data model, a user can create data objects. A data object is of a specific
data type, and can have data for each data attribute of that data type. In Section 4.3, a
detailed design is shown, explaining the functionality of the Dynamic Data Model module
in more detail.

• The Query Engine can query data within the Dynamic Data Model, using a Domain Spe-
cific Language (DSL). This query DSL is a text-based language, with which the user can
construct queries that can be parsed and processed by the Query Engine. This effectively
allows the user to query data from the Dynamic Data Model. Section 4.4 describes the
Query Engine in more detail.

17

CHAPTER 3. ARCHITECTURE

uses

Graphical User
Interface (GUI)

uses

Application
Programming Interface

(API)

interacts

Application User

builds integrations

develops

Framework Developer
integrates

External Applications
and tools

Application Backend

queries

Dynamic Data Model

imports

Importing

retrieves
data

ExploringQuery Engine

Collaborating

+

Action Framework

Figure 3.1: The general architecture guiding the approach for designing and implementing the
framework.

• The Exploring will provide supporting tools around the Query Engine. It will, for ex-
ample, allow to store queries, such that the user can load these queries later and revisit
the result, or investigate changes in results after the data has changed. Additionally, this
module also allows the user to create collections, which consist of a set of data objects,
and create export files from these collections. Section 4.5 describes the exploring module
in more detail.

• The Importing module provides functionality to import data from CSV (and in the future
also differently typed) files, and create multiple data objects from this file. Section 4.6
describes the Importing module in more detail.

18

CHAPTER 3. ARCHITECTURE

• The Action Framework is used to store the history of anything that happens within the
framework. For example, if a change was made to a data model, if some data was created,
if a specific exploration query was stored, these events are all stored as an action in the
Action Framework. These actions can then be used as a subject of discussion, which is
part of the Collaborating module, but also as a means to audit the history of a project.
This can be used to account for results from the framework, and trace back and correct
any mistakes.

• The Collaborating module takes care of functionality that relates to communication and
collaboration between users. In the scope of this thesis, this will entail the option to
write comments for any objects within any module of the framework, such as data objects
within the Dynamic Data Model or actions within the Action Framework. This enables
discussion and elaboration on any subject within the framework. Having these features
as close to the relevant subject is a significant design decision. This prevents unnecessary
navigating, be it inside or outside of the framework, to comment on any subject, which is
a time-consuming and distracting task. Next to communication through comments, later
stages of the framework might also add, or integrate with, other collaboration tools, such
as to-do lists, or planning tools. Section 4.7 describes the exact design of the Collaborating
module.

Because of the limited initial scope, and interactions between the Action Framework and
Collaboration module that make it naturally coupled, we will provide a basic design and im-
plementation for the Action Framework as part of the Collaboration module.

3.3 Considerations

Next to the decomposition of the framework into modules, there are a few general considera-
tions to make.

3.3.1 Monolith versus Micro-Services

Firstly, we have to consider whether we want to implement and deploy the framework as a
single monolith or a set of micro-services (Fritzsch et al., 2019). A monolith is one single ap-
plication, which contains the implementation of all software components. A micro-services
approach, relating to a Service Oriented Architecture (SOA), decomposes the application into
multiple loosely coupled individual services, which each have a single responsibility. In the
case of the framework we are developing, each module in Figure 3.1 could, for example, be an
individual service, even though finding the exact granularity in decomposing a framework into
services can be a balancing act.

An advantage of a monolith approach is that the implementation is less complicated, since
any reference between modules can just be made within the code of the implementation, and
does not require communication with other services. Another advantage of the monolith ap-
proach is that initial deployment becomes faster. Only one infrastructure for the application
needs to be deployed and maintained, as opposed to a set of services.

On the other hand, an advantage of the micro-services approach is that parallel develop-
ment and maintenance of service becomes easier, since individual services are naturally more
decoupled than modules in a monolith. Also, when the framework experiences high load and
requires scaling, we can scale out only the services that experience high load, as opposed to
scaling out a whole monolith.

19

CHAPTER 3. ARCHITECTURE

For the initial stage of the frame we propose a monolith approach, but with only one separate
service. We design and implement one single "back end" application, which includes all parts
of the architecture, except for the GUI. The only external interface this back end has, is the API.
Then we devise a separate GUI service, which provides a GUI to the user, and integrates with
all the functionality that is present within the back end through the API. This is shown in Figure
3.2, where the back end service is encircled in red, and the front end service in blue. In this way,
we get a distinction between the GUI (front end) and the back end.

Uses

Graphical User
Interface (GUI)

Uses

Application
Programming Interface

(API)

Interacts

Application User

Builds integrations

Develops

Framework Developer
Integrates

External Applications
and tools

Application Backend

queries

Dynamic Data Model

imports

Importing

retrieves
data

ExploringQuery Engine

Collaborating

+

Action Framework

Figure 3.2: The general architecture guiding the approach for designing and implementing the
framework, split up in a back end (encircled in red) and a front end (encircled in blue).

3.3.2 Open Source versus Closed Source

A second consideration that we have to make is whether the framework should be an open-
source project, or a closed source project. The former meaning that the source code is publicly
available, and can be used by anyone under a certain license while the latter indicates that only
people who are specifically granted access, can access the source code. We advise making the

20

CHAPTER 3. ARCHITECTURE

framework and all of its components open source under the GNU General Public License v3.0
1. This will allow other developers, not directly related to the main owners of the framework
to make or propose improvements and additions. This will lower the threshold for future de-
velopers to join or contribute to the development of the framework. The advantages of having
a closed source framework are minimal, and an open-source approach does not have any block-
ing implications.

3.3.3 Deletion versus Archiving

The framework will contain certain functionality around deleting objects. We have to decide
whether a deletion of, for example, a data object actually deletes the corresponding database
record, or archives it in a way. Deleting the record from the database resembles a deletion of an
object most accurately, however, if a user deletes a record by accident, it will be hard to restore
the record. Another disadvantage of deleting the database record is that if any references to
the object to be deleted exist - which is especially the case for data objects - these references
are broken by the deletion. This causes incomplete even invalid data states. Archiving on the
other hand, for example, by adding a boolean database field to each table indicating whether
a record is archived or not, has the disadvantage of potentially polluting the database with
numerous unused records. This will especially be the case in the setup phase of a project, where
the data model is set up. This could namely involve some iterations of constructing the data
model, where data types and data attributes are created and deleted. Concluding we decide
as a general design guideline that every deletion is treated as an archive action. We can make
some exceptions on this, for example, when deleting parts of a data model, where deletion still
can happen if the framework can explicitly check whether no invalid data state would arise.

1https://www.gnu.org/licenses/gpl-3.0.html (accessed: 2/7/2021)

21

Chapter 4

Design

This section describes the detailed design of the framework. We first address some design
choices that are not specific to any module in the architecture, as seen in Figure 3.1. Then we
describe the design of each module in the Application Backend, fulfilling the requirements in
Section 2.4.1. We describe the designs of each module by explaining the relevant classes and
their relations, elaborating on the database design if relevant, explaining non-trivial function-
alities and flows in the design. For some modules, we also discuss interesting or relevant out-
comes of the feedback sessions with the Concepts in Motion team, which have an impact on the
design. A summarizing diagram showing most of the relevant classes is shown in Appendix A.
Finally, we explain the GUI design in the form of wireframes for the module where this is rel-
evant. All wireframes are presented in Appendix B, and some relevant wireframes are shown
in this chapter.

Before describing the design, however, we discuss some definitions and assumptions made
in the designs.

4.1 Definitions

Hash We use the notions of hash as a data type. A hash is a data structure available in a lot of
programming languages, also sometimes referred to as a hash map or map. This data structure
allows us to store items with identifiers in an object. It is also similar to the notion of an object
in JSON, which is discussed in Section 4.4.

Database relations When modeling database designs, we present diagrams such as in Fig-
ure 4.3. Each entity in such a diagram is representing a database table, with columns corres-
ponding to the attributes of the respective entities. Additionally, each (one to many) relation
is represented by an extra column on the "many" side. In the example diagram in Figure 4.3,
the DataAttribute table would have a column data_type_id of type integer, representing the
relation.

Polymorphic relations In some cases we also use the notion of polymorphic relations. These
are relations between classes or database tables that do not relate to a specific class or table. For
example, in the database design in Figure 4.27, the table ResourceAction refers to a resource,
which can be any table that represents objects that implement the ActionableObject interface,
as will be described later. This is represented in the database table ResourceAction by not

22

CHAPTER 4. DESIGN

just having a column named resource_action_id of type integer, but also a column named
resource_action_type of type string, representing the type of object that a specific record in
the ResourceAction table refers to.

4.2 Design Choices

In this section, we discuss general design choices not specific to one of the modules defined in
the architecture.

4.2.1 Interface Points

We previously defined two interface points, a graphical one - the GUI - geared towards the
Application Users, and an interface that can only be used programmatically, the API. Each
module in the Application Backend has functionality that can and should be exposed to the
users, either through the GUI or through the API, but often through both. To prevent duplicate
implementation of features for the API and GUI, which would inevitably eventually also imply
inconsistencies in the implementation of certain features, we propose a design where the GUI
interacts with the Application Backend through the API. This is visualized in Figure 4.1.

usesGraphical User
Interface (GUI)

uses

Application
Programming Interface

(API)

Application Backend

interacts

Application User

integrates

External Applications
and tools

builds integrations

Framework Developer

Figure 4.1: An altered general architecture, based on Figure 3.1. The GUI interacts with the Ap-
plication Backend only through the API, to prevent duplicate implementation, and inconsistent
implementations of the API and GUI.

We describe the designs of the GUI as wireframes, for each module in the Application
Backend in the following sections. In the description of the implementation in Section 5.1, we
will elaborate on how these wireframes are transformed into an actual interface.

23

CHAPTER 4. DESIGN

4.2.2 Projects

Another design decision we make is that every entity and functionality is scoped by projects.
This means that a project is a secluded environment, where no interference with other projects
is possible. Any database record can always be traced back to one unique project. The only
overarching objects are users since a single user can have access to multiple projects. This can
be controlled very granularly once detailed Access Control is added in a future stage of the
project. This way we can have a single deployment of the framework supporting multiple
projects, instead of having to make separate deployments for each project that desires to use
this framework, which would be a costly undertaking.

4.2.3 Authentication

As discussed before, access control will not be part of this thesis project, however, we do devise
an authentication system. Users will be registered and stored in a database table. The API
will then have one endpoint for authenticating, i.e. logging in, and one for logging out. All
other endpoints then require the user to be authenticated. The GUI checks whether a user is
authenticated and shows a login screen that communicates with the API to log the user in.
This is done when the user opens the application, but also when a request fails to authenticate,
so the user can log in again, to re-authenticate. See, for example, Figure C.1 (in Appendix C)
for this. When access control is implemented, a user can, for example, be granted access to
specific projects, while in the initial stage of the framework, a user will simply have access to
all projects. This is sufficient since the initial stage of the framework will only be used in a
controlled environment.

4.3 Dynamic Data Model

The Dynamic Data Model provides the functionality to create a data model completely tailored
to the specific project of a user. An example data model that is used in practice by historians of
ideas is shown before in Figure 1.3.

4.3.1 Class Design

We devise the design shown in the class diagram in Figure 4.2.
On the left side of this figure we see the components that enable a model definition: the

DataType, the DataAttribute and the DataValidator. One DataType can have multiple Data-
Attributes, and each DataAttribute can have multiple DataValidators. On the right side we
see the components that enable the storage of actual content according to the DataModel. A
DataObject represents a single object that can contain data in the form of AttributeValues.
An AttributeValue belongs to a DataAttribute. Note that this design implements the idea
explained in Figure 2.1.

DataType A DataType has a name, and a representing_name_template. This is a template
string that ordains how a DataObject of this DataType should be represented in string form.
This can be useful when the GUI refers to an object in an interface. An example representing_-
name_template for a fictional DataType named Person with DataAttributes named First-
Name, LastName and YearOfBirth could be: "LastName, FirstName (YearOfBirth)". Then if
a DataObject of the DataType Person with values FirstName: Anton, LastName: Bommel,

24

CHAPTER 4. DESIGN

Define

modelled by

belongs to

modelled by

refers to

DataObject
DataType

+ name: String

+ representing_name
 _template: String

DataAttribute

+ name: String

+ type: String

AttributeValue

+ value: String/Number

provide validations for DataObjects

DataValidator

+ validator_key: String

+ condition: String/Number/JSON

Figure 4.2: The class diagram for the proposed design for the Dynamic Data Model

YearOfBirth: 1942 needs to be represented, the resulting representing string would be "Bommel,
Anton (1942)".

DataAttribute A DataAttribute has a name and type. The name defines the name of the
DataAttribute, and the type defines the type of data that the DataAttribute models. The
type can be one of the primitive types: Text, Number, DateTime. If a DataObject wants to spe-
cify a value for this DataAttribute, is has to be of string type if it the DataAttribute type is Text,
of integer or float type if the DataAttribute type is Number, and of string type representing a
DateTime as specified in RFC 2822 (Resnick, 2001).

Next to one of these primitive types, the type can also be the complex type Reference. This
type expects a DataObject to have an AttributeValue with an integer value that is an ID of a
certain other DataObject. This effectively allows to create relations between DataObjects.

The other complex type is Array. This type allows to store an array of any primitive or
Reference typed DataAttributes as a single field. This can, for example, be useful if a DataObject
needs to refer to a list of other DataObjects, or if it needs to store an array of texts. The ac-
tual value for the type attribute of a DataAttribute can, for example, be "Array[Text]" for a
DataAttribute that represents an Array of Texts or "Array[Reference]" for a DataAttribute
that represents a list of references to other DataObjects.

DataValidator A DataValidator belongs to a DataAttribute. It stores definitions to validate
AttributeValues of a DataObject when a DataObject with a value for this DataAttribute is
created or updated. The DataValidator is defined by a validator_key, indicating which type
of validation is to be performed, such as length and presence. Additionally the DataValidator

25

CHAPTER 4. DESIGN

has a condition, that describes details for a specific validator. Table 4.1 shows all possible
validators and the DataAttribute types for which they are valid, and the expected format of
the condition.

validator_key Allowed DataAt-
tribute types

Expected
Condition Format

Description

presence Text, Number,
DateTime,
Reference, Array

True or false Validates whether a
DataObject has a non-empty
value for this DataAttribute

length Text, Array A JSON object con-
taining atLeast,
atMost or exactly
keys, with corres-
ponding values

Validates whether a
DataObject has a value that
has at least, at most or exactly
a certain length

inclusion Text, Number,
DateTime

A set of values of
valid type

Validates whether a
DataObject has a value that
is included in a set of values.
If this validation is present,
the interface can show the edit
field for this DataAttribute as
a drop-down box.

referred_data
_type

Reference An ID of a
DataType

Validates whether a
DataObject has a value that is
an ID of another DataObject
which is of a DataType with a
certain ID (the condition).

Table 4.1: All allowed validator_keys with matching DataAttribute types, and a description
of the expected format of the condition attribute of the DataValidator.

Next we show a few examples of DataValidators. Firstly, the following validator validates
whether a value is given as AttributeValue of a DataObject:

validator_key: presence,
condition: true

The validator with the following attributes validates whether the length of the string provided
as AttributeValue is between 4 and 10 characters long:

validator_key: length,
condition: { atLeast: 4, atMost: 10 }

Another validator validates that a DataObject has a value for the DataAttribute that is one
of Amsterdam or Eindhoven:

26

CHAPTER 4. DESIGN

validator_key: inclusion,
condition: ["Amsterdam", "Eindhoven"]

Finally, the next validator validates that (assuming we have a DataType called Bike, with id
5192) a DataObject has a value for this DataAttribute that corresponds to a DataObject that
is a Bike, i.e. belongs to the DataType named Bike.

validator_key: referenced_data_type,
condition: 5192

DataObject The DataObject is an object that corresponds to a certain DataType. DataObjects
can be seen as records that follow the (dynamic) schema of the defined data model. A Data-
Object has a number of AttributeValues that each store a value for a DataAttribute of
the corresponding DataType. A DataObject has at most one AttributeValue for each Data-
Attribute of the DataType of the DataObject.

AttributeValue Already being explained before, the AttributeValue represents the value that
a DataObject has for a specific DataAttribute of the DataType the DataObject belongs to. Its
value attribute can be validated by a DataValidator.

4.3.2 Database Design

The database design for the Dynamic Data Model is visualized in Figure 4.3 and differs slightly
from the class diagram in Figure 4.2.

modelled by

belongs to

DataObject

+ data: JSON

DataType

+ name: String

+ representing_name
 _template: String

DataAttribute

+ name: String

+ type: String

+ validation_definition: JSON

Figure 4.3: The database design for the Dynamic Data Model

27

CHAPTER 4. DESIGN

We design the framework with scalability in mind. However, if we would make separate
tables for each class presented in the class diagram, querying a list of data objects from the
database would involve complex queries for retrieving relatively simple data. However, as we
noticed in Section 1.3, modern database technology allows us to efficiently store JSON data.
Therefore the data of a DataObject is stored in a JSON attribute called data in the DataObject
table. Similarly, validators are stored in the validation_definition JSON attribute of the
DataAttribute table. Then in the implementation, we unpack these data and definitions stored
as JSON, into the correct instances of corresponding classes from the class diagram.

4.3.3 Interaction

Now that the framework has a way to define a Dynamic Data Model, and store data in it, we
need to design a way to interact with it. Taking the description from Chapter 2 into account, we
design the following list of interactions:

1. Create, read, update and delete (CRUD) functionalities for DataType and DataAttribute.

2. CRUD functionalities for DataObject

3. Bulk create for DataObject

4. Filtering and querying DataObjects

The CRUD interactions for DataType, DataAttribute are trivial actions that can be imple-
mented in the API and do not need to be specified further, except for the fact that deletion of
a DataType or corresponding DataAttributes is only possible when no DataObjects of the
DataType exist, as explained in Section 3.3.3.

CRUD interactions for DataObject are not complex either. When creating a DataObject the
user submits a DataType ID combined with some data that matches with the DataAttributes
present within the DataType. Then all the data is validated by the DataValidators of the
DataAttributes. If the validations succeed, the object is created, if not, a validation error is
returned to the user.

Bulk creation of DataObjects will be handled by the Importing module, Section 4.6.
Filtering and querying DataObjects will be handled by the Query Engine, described in Sec-

tion 4.4.

4.3.4 UI Design

We do not present a UI design for creating and updating a data model yet, as this will be part
of a future stage of the project. This section, however, will show the wireframes for creating,
reading, updating, and deleting (which is archiving) DataObjects.

Figure 4.4 shows the wireframe of the UI for creating a DataObject. It is actually a rather
simple form, with form fields for each DataAttribute of the relevant DataType. The icons in-
dicate different types of attributes. The wireframe shows a number of primitive fields: Text
fields (Title, Publisher), a Date field (Year of publication) and a number field (Volume num-
ber). Next to that, there is a complex field, namely a Reference field (Related Work). Instead
of actually entering a value here by typing, which is possible for all the primitive fields, the
user would click the form field, and a popup would open, shown as a wireframe in Figure
4.5. This popup allows the user to select a DataObject to refer to, or create a DataObject
inline. Once a referenced DataObject is selected, the representing string - generated using

28

CHAPTER 4. DESIGN

Dark Matter

Related Work

link

Eindhoven

City of publication

angle-down

1872

Year of publication

calendar

Logica Nuclearis

Title

font

15

Volume number

hashtag

Heidelberg

Publisher

font

Create Work

Save

Figure 4.4: The wireframe of the UI for creating a data object, in the example the created data
object would be of the data type named Work.

Select a Work

ID Title Author Year of publication

12 1728Philosophia Rationalis C. Wolff

15 1852De nucleare logica H. Olland

16 1852Lord of the rings N. Arnia

17 1852Dark matter G. Ramsey

18 1852Imitatione Christi T. a Kempis

cog

SelectCreate new

Figure 4.5: The wireframe of the popup UI for selecting a referenced data object for a reference
form field, while creating or updating a data object

the representing_name_template attribute of the referenced DataType - of this DataObject is
shown in the form field to indicate the selection.

The UI for updating a DataObject is actually very similar to the UI for creating one and is
represented by the wireframe in Figure B.3. The only significant difference with the create UI
is that in this wireframe a button to archive the DataObject is present. Clicking it would, after
confirmation of the user, archive the DataObject.

Finally, we show the UI for reading a DataObject as a wireframe in Figure 4.6. This interface
shows all AttributeValues first, where AttributeValues for DataAttributes of type reference
actually provided a link to the read interface of that object. In this example, the user can click
on the author representing string, and that would take the user to the UI to read that specific
DataObject.

Next to this trivial display of the AttributeValues, we also introduce an interface that al-
lows the user to explore all DataObjects that refer to the shown DataObject. For example,

29

CHAPTER 4. DESIGN

Show Work

Title: Philosophia Rationalis sive Logica

Author: Wolff, Christian, Freiherr von, link

Manifestations:

587 Philosophia Rationalis sive Logica Frankfurt, Germany external-link-altLatin1728

573 Philosophia Rationalis sive Logica Frankfurt, Germany external-link-altLatin1732

2093 Philosophia Rationalis sive Logica Verona, Italy external-link-altLatin1735

572 Philosophia Rationalis sive Logica Frankurt, Germany external-link-altLatin1740

877 Philosophia Rationalis sive Logica Helmstadt, Germany external-link-altLatin 1746

Title LanguageYear Place ID cog

Items that refer to these Manifestations as “Manifestations”angle-down

152 Philosophia Rationalis sive
Logica

Heidelberg, Germany external-link-altHeidelberg University Library1740

153 Philosophia Rationalis sive
Logica

München, Germany external-link-altBavarian State Library1776

164 Philosophia Rationalis sive
Logica

Lelystad, Netherland external-link-altFlevomeer Library Lelystad1801

182 Philosophia Rationalis sive
Logica

Valencia, Spain external-link-altPublic Library of Valencia1788

201 Philosophia Rationalis sive
Logica

Dublin, Ireland external-link-altTrinity College Library1815

Title LibraryYear PlaceID cog

Documentaries that refer to these Manifestations as “Covered Manifestation”angle-right

Documentaries that refer to these Manifestations as “Source Manifestations”angle-right

25
6

Philosophia Rationalis sive
Logica

https://books.google.com/books/books?id=749 external-link-altGoogle
Books

1

48
3

Philosophia Rationalis sive
Logica

https://www.internetarchive.org/philosophiarati
00

external-link-altInternetArchive3

187 Philosophia Rationalis sive
Logica

https://reader.digitale-sammlungen.de/1000829
4

external-link-altMDZ 5

66
4

Philosophia Rationalis sive
Logica

https://books.google.com/books/wolffii-phil external-link-altGoogle
Books

4

77
8

Philosophia Rationalis sive
Logica

https://digital.slub-dresden.de/id/0-774211326 external-link-altSLUB1

Title SourceQuality LinkID cog

Digitized copies that refer to these Items as “item”angle-down

editedit work

comment

Figure 4.6: The wireframe of the UI for reading a data object. The attribute values are shown on
the top, and below is a part that shows all data objects that refer to the shown data object.

30

CHAPTER 4. DESIGN

in this wireframe we assume that the DataType named Manifestation has a DataAttribute
that refers to the DataType named Work. This means that for each work, there can be a set of
manifestations that refer to that work through that DataAttribute. This set of manifestations is
shown on the read UI of the work. This will be added for any DataAttribute of any DataType
that refers to this work. Additionally, nested referencing DataObjects can also be explored. In
the design, we can also see that all items - DataObjects of the DataType named Item - that refer
to any of the manifestations that refer to the work are shown as well. This nesting can in theory
be expanded indefinitely if the data model has circular referencing. However, by default, none
of the lists of referencing objects will be visible, as the user has to explicitly expand the lists,
to reduce the performance impact in loading the interface. Also, infinite loops in loading the
references are prevented this way.

The lists of referring objects will be generated using a query that is sent to the Query Engine,
as will be explained in the following sections. This again prevents duplicate implementations of
querying. This also, allows the user to swiftly add further explore a specific list of referencing
objects, since the list of referencing objects can be reconstructed using a query in the Query
Engine, and that query can then be expanded by adding or removing clauses of the query.

4.3.5 Feedback Sessions

One of the most important conclusions from the feedback session concerning the Dynamic Data
Model is that once the data model is constructed for a project, it should not be possible to
adapt it anymore. If a data model would change once data is created in it, this data could
become unusable if the data model no longer correctly models this data. Additionally, having
this constraint encourages the user to clearly define their data model upfront. However, when
the user has a valid reason to change the data model, they can use the importing and exporting
functionality of the framework to export all the data from the original data model to the new,
improved data model, in a new project. Doing this explicitly also triggers the user to check the
migration from the original to the new data model, which relieves the need for a generalized
approach for changing the data model during a project, and allows for an accurate migration
for each specific case.

4.4 Query Engine

Now that we have a way to store data through the Dynamic Data Model, a way to query that
data is required to make effective use of the data. Since the data model is dynamic, it is not
possible to make preprogrammed queries into the application, except for the simple indexing
queries such as "Show all DataObjects of DataType X". Therefore, we design the Query Engine.
In general it takes in a query in a query DSL and a DataType to search in, parses that query,
finds matching DataObjects of that DataType and returns them to the user.

In this section we first describe the process that the Query Engine conceptually follows, next
we describe the semantic structure of the query DSL, followed by a description of the design
of the Query Engine itself. The Query Engine module itself does not have any GUI but is used
by the Exploring module, which allows users to enter or construct queries, and perform other
relevant actions, which are described in the next section, Section 4.5.

4.4.1 Process

The process of the Query Engine is illustrated in Figure 4.7.

31

CHAPTER 4. DESIGN

query

Query Interface

parsed query

Query Parser

parsed query + potentially relevant records

Data Retriever

potentially relevant
records

Dynamic Data
Model

matching records

Data Filter

Results Interface

Figure 4.7: The conceptual process of the Query Engine.

From this figure we can distinguish the following steps in the process of handling a query:

1. Query Interface: The Query Interface takes in a query string. As mentioned, the Query
Engine itself does not have a GUI, but can only be accessed through the API.

2. Query Parser: The Query Parser component takes in the query string, and parses it into
an abstract tree, in order to be able to process it.

3. Data Retriever: The Data Retriever inspects the parsed query and makes one or more
database queries to retrieve all data objects from the Dynamic Data Model that are poten-
tially relevant to the query.

4. Data Filter: The Data Filter filters through all retrieved data objects and only keeps records
that exactly match the query. A data object is matching a query if the root node of the
query returns true for that data object.

5. Results Interface: The Results Interface returns all the matching data objects.

4.4.2 Query DSL Semantics

Next, we describe the theoretical structure of the query DSL. The query DSL, which allows the
user to construct queries in textual format, is based on JSON. In a future stage of the project, the
DSL could also support YAML as basis language, since JSON and YAML are similar in structure.
In fact, YAML is a superset of JSON, (Ben-Kiki, Evans and Döt Net, 2009) and takes significant
inspiration from the Elasticsearch Query DSL as described in Section 1.3.

32

CHAPTER 4. DESIGN

JSON Terminology:

For the reader who is unfamiliar with JSON, we advise to establish an understanding of basic
JSON terminology 1. The most important notions are summarized as follows. An object contains
a number of key-value pairs. The key is a string or a number, while the value is a string, number,
object, or array. An array is an array of numbers, strings, or objects. The root of a JSON string is
always an object or an array.

When we refer to a node, this refers to a key-value pair, and we also refer to the value of this
pair as the children of this node, especially when the value of the node is an object or array.

Recall Figure 1.4 for an example of JSON.

Query DSL Semantic Structure

Figure 4.8 shows the structure of the query DSL, note that the Condition node is shown multiple
times, they all refer to the same node, but are drawn multiple times to prevent an unreadable
figure. At the root, a query consists of one or more conditions. A condition is either a Control
Flow node, or a Matcher node. Each Control Flow node has one or more child condition nodes,
while a Matcher has one or more key-value pairs as children, as is explained next in more detail.

Root

Condition

MatcherControl Flow

AND OR

Condition Condition

NOT

Condition

exactly atLeast containsatMost

length
atMost

length
atLeast

length
exactly

Key

Value

Figure 4.8: A model describing the structure of the query DSL used by the Query Engine. The
color of the nodes correspond with the colors in the example queries below.

A Control Flow node can be used to combine multiple conditions. We define three Control
Flow nodes:

1The pages at https://www.json.org/json-en.html and https://www.w3schools.com/js/js_json_syntax.asp
provide a comprehensive introduction into JSON (visited on 2/7/2021).

33

https://www.json.org/json-en.html
https://www.w3schools.com/js/js_json_syntax.asp

CHAPTER 4. DESIGN

• Not: This will return true if and only if its child Condition node returns false. Can have
one child Condition node.

• And: This will return true if all child Condition nodes return true. Can have one or more
child Condition nodes.

• Or: This will return true if any of the child Condition nodes returns true. Can have one
or more child Condition node.

A Matcher node on the other hand can be used to check an attribute of the DataObject
against some test value, and returns true if the test succeeds. A Matcher object has one or
more key-value pairs, which we also refer to as a MatcherEntry. The key of a MatcherEntry
can be either a string that corresponds with the name of one of the DataAttributes of the
queried DataType, or a string representing a nested attribute, separated by a dot character. A
nested attribute is the attribute of a data object that is referenced through some other attribute.
For example, if the queried DataType has a Reference DataAttribute called x that refers to a
DataType which has a Text DataAttribute named y, then a MatcherEntry key could be "x.y".

We define the following Matcher nodes, a list which in later stages of the framework can be
extended:

• exactly: The value of the DataObject for the DataAttribute is exactly equal to the test
value.

• atLeast/atMost: The value of the DataObject for the DataAttribute is respectively at
least or at most the test value. Only applicable to Number and Date attributes.

• contains: The value of the DataObject for the DataAttribute contains the test value.
Only applicable to Text and Array attributes.

• length exactly/atLeast/atMost: The length of the value of the DataObject for the Data-
Attribute is respectively exactly, at least or at most the test value. Only applicable to
Text and Array attributes.

Using these objects we can, for example, construct the following query (where the node keys
are colored referring to the nodes in Figure 4.8):

{
"exactly": {

"title": "Dutch milestones"
}

}

This query would return all DataObjects (of the DataType we are querying for) where the
title is exactly Dutch milestones.

A query that uses a nested DataAttribute key for its MatcherEntrylooks as follows:

{
"exactly": {

"author.firstName": "Wolfgang"
}

}

34

CHAPTER 4. DESIGN

This query would return all data objects which have a reference to a data object for the
DataAttribute named author which firstName is exactly "Wolfgang".

A more complex query could, for example, be:

{
"and": {

"exactly": {
"title": "Dutch milestones"

},
"atLeast": {

"yearOfPublication": 1572
}

}
}

This query would return all DataObject where the title is exactly Dutch milestones and
the yearOfPublication attribute is at least 1572.

Due to the recursive nature of the definition of the DSL - Control Flow objects can have
Control Flow nodes as child nodes - any combination of matchers can be constructed, such as
the following complex query, which would select all DataObjects that do not have a title that
is exactly Dutch milestones, and either the yearOfPublication attribute is at least 1572, or the
subtitle attribute contains the word science:

{
"and": {

"not": {
"exactly": {

"title": "Dutch milestones"
},

},
"or": {

"atLeast": {
"yearOfPublication": 1572

},
"contains": {

"subtitle": "science"
}

}
}

}

Query DSL Considerations

To ensure the robustness of the DSL, there are three considerations that have to be made.
Firstly, how to combine multiple children of Control Flow nodes? JSON provides two ways

for this. If the keys of all children are unique - e.g. Not and Or - they can just be put in a single
object, as can be seen in the above example queries. If we want to construct a set of children
that have the same key - e.g. Or and Or - then we can not use a single object to represent this.
This would introduce duplicate keys in a JSON object, which is not considered correct syntax
by many JSON parsers, and discouraged by RFC 8259.4 (Bray, 2017). Therefore, in such a case,

35

CHAPTER 4. DESIGN

an array of objects is the correct solution. This enables the children of Control Flow nodes
to contain multiple children with the same name, as in the following query where we have
multiple exactly child nodes of the and node:

{
"and": [{

"exactly": {
"title": "Dutch milestones"

}
},
{

"exactly": {
"title": 1572

}
}]

}

Since the child objects have the same key - exactly - they can not be combined into one
child object since this would result in one object having two keys both named exactly, hence
the and node has an array of objects as a child.

The second thing we have to consider is that the query root can either be an object, or an
array of objects, and in both cases, multiple root nodes can exist - e.g. an Or and Exactly
node. In such a case, the Query Parser will automatically add a new root, in the form of the
Control Flow node And, and the original root nodes (either an object or an array of objects) will
be considered children of this new root. In practice, this means that the following query:

{
"not": {

"exactly": {
"title": "Dutch milestones"

}
},
"exactly": {

"title": 1572
}

}

is translated by the parser into the following, effectively equivalent query:

{
"and": {

"not": {
"exactly": {

"title": "Dutch milestones"
}

},
"exactly": {

"title": 1572
}

}
}

36

CHAPTER 4. DESIGN

Thirdly, we need to consider the combination of children of Matcher nodes. Theoretically,
the DSL allows multiple Matcher children. If such a case is encountered by the Query Parser,
such a query will be considered to be joined by an And node. This means that the following
query:

{
"exactly": {

"title": "Dutch milestones",
"title": 1972

}
}

is equivalent to:

{
"and": [{

"exactly": {
"title": "Dutch milestones"

}
},
{

"exactly": {
"title": 1572

}
}]

}

These queries are equivalent and both considered to be valid queries.

4.4.3 Class Design

Now that we established the semantics of the DSL, we describe the classes that make up the
Query Engine. We distinguish between two groups of classes. Firstly we describe a set of
controller classes that manage the querying process, and secondly, we describe a set of classes
that will represent any query and implement the functionality to filter data objects using that
query. Finally, we describe in detail how the querying process is designed, touching upon the
interaction between these controller classes and query-representing classes.

Controller classes

The controller classes are shown in Figure 4.9.
The QueryExecutor is the main controller, which uses the other controller classes, the Query-

Parser, QueryDataRetriever and QueryDataFilter, to complete the query process as described
in Figure 4.7.

Query-representing Classes

The query-representing classes are shown in Figure 4.10.
A query is represented by a tree of Nodes. We distinguish FilterNode and MatcherEntry

nodes, which both inherit from the Node class.

37

CHAPTER 4. DESIGN

QueryExecutor

+ initialize(data_type, query_string)

- parse_query()

- retrieve_data()

- execute_query()

+ execute(): Array<DataObject>

QueryParser

+ parse_query(String, DataType): Node

QueryDataRetriever

+ retrieve_data(Node): nil

QueryDataFilter

+ filter_data(Node): Array<DataObject>

Figure 4.9: The class diagram describing the controller classes of the Query Engine.

Node

+ node_key: String

+ context: Context

+ initialize(Hash, Context): nil

+ validate(): Boolean

Context

+ project: Project

+ queried_data_type: DataType

+ included_data_types: Array<DataType>

+ included_data_objects: Hash<DataType.id: Array<DataObject>>

+ preload_data_object(): nilFilterNodeFactory

+ parse_node(String, Hash, Context): Node

AND OR NOT

Retrieves test value

MatcherControl Flow

MatcherEntry

+ value: String/Number/Array

- referenced_data_types: Array<DataType>

+ retrieve_object_value(DataObject): String/Number

Exactly AtLeast AtMost ...ContainedIn

FilterNode

+ original_query: Hash

+ filter_object(DataObject): Bool

Uses to create child FilterNodes

Figure 4.10: The class diagram describing the classes that contain the functionality to represent
a query and filter data objects.

38

CHAPTER 4. DESIGN

The Control Flow and Matcher class inherit from the FilterNode . The Control Flow and
Matcher class directly correspond to the Control Flow and Matcher nodes respectively as de-
scribed in Section 4.4.2. The recursive nature of queries is represented by the relation that the
Control Flow class has to the FilterNode class, indicating that a Control Flow node can have
zero or more FilterNodes (either a Control Flow or Matcher node) as children. The diagram
also shows a non-exhaustive list of inheriting classes of Control Flow and Matcher classes,
such as And, Or, Not, Contains, Exactly and GreaterThan. The initial stage of the framework
only comprises a number of them, however, due to the flexible setup of this query-representing
classes, it does not take a lot effort to add additional Matcher or Control Flow classes.

FilterNodes are initialized with a context object and the sub query represented by a hash.
Control Flow nodes will call the FilterNodeFactory to parse this sub query into the children
FilterNodes as part of their initialization procedure. Matcher nodes on the other hand can
not have FilterNodes as children, but only MatcherEntries, so as part of their initialization
procedure the sub query - which is expected to represent only MatcherEntries - will be parsed
into MatcherEntry children.

The MatcherEntry class is used to represent key-value pairs that make up the children of a
Matcher node in a query. It is used to store the test value, stored as the attribute value. The
key is represented by the inherited attribute node_key, and either corresponds to the name of a
DataAttribute of the queried DataType, or a nested DataAttribute. When a MatcherEntry ob-
ject is initialized with a node_key that refers to a nested attribute, it will also store the DataTypes
that are referenced through the nested DataAttributes, and also add these to the context, in
the attribute included_data_types. This is then later used to also retrieve all data objects that
possibly are referred to by nested attributes.

The Context class is a singleton class that is shared across all nodes and is used to store the
context of a query, including which project the query concerns, which DataType is being quer-
ied, which DataTypes are further relevant to the query because of nested attribute matchers,
and an attribute included_data_objects which can store data objects that are loaded from the
database and can be used to perform the query.

The FilterNodeFactory is a class that can generate a FilterNode from a node key, indicat-
ing the type of the node, a subquery representing all children of the node to be created - as a
hash - and a context object.

Querying Process Design

The querying process is designed as follows (note that this closely resembles the process in
Figure 4.7):

1. A QueryExecutor is initialized, with the DataType to be queried and a query string.

2. The QueryExecutor receives a call to its execute method, and it will call the three methods
parse_query, retrieve_data, filter_data consecutively, as described in the following
steps.

3. parse_query is calling the homonymous QueryParser method, executing the following
steps:

(a) Parse the query string into the equivalent hash.

(b) Optionally nest the root in an And node, so the parsed query always has one single
root node.

39

CHAPTER 4. DESIGN

(c) Parse the hash into a query node using the FilterNodeFactory, which recursively
parses the whole query into nodes.

(d) The resulting parsed query is validated, by calling the validate method on the root
node. The validation checks whether the node_key matches the class of the node
for FilterNodes. For MatcherEntries the validation entails checking whether the
validated key actually corresponds to an existing DataAttribute, and whether this
DataAttribute is of a type that matches the Matcher type. Recall that specific match-
ers only work for specific DataAttribute types, e.g. the AtLeast matcher only works
with Number or DateTime DataAttributes. For MatcherEntries, the validation also
checks whether the test value actually matches the Matcher type, e.g. for the AtLeast
matcher on a Data Attribute of type DateTime, we only expect a test value of the type
DateTime.

4. retrieve_data is calling the homonymous QueryDataRetriever method, providing the
root node as an argument, which loads all data objects of the queried DataType from the
database - as potentially matching data objects - which are then stored into the context
in the included_data_objects attribute. Also, all data objects of any of the included_-
data_types attribute are also loaded from the database. This will load all data objects of
data types that are referred to through nested attributes.

Note that this is a naive approach that can be optimized significantly in later stages of the
framework by, for example, by extracting properties from the parsed query and translat-
ing these into conditions in the database query which can significantly reduce the number
of data objects which are loaded from the database, increasing the performance of the
following steps.

5. filter_data calls the homonymous method from QueryDataFilter, providing the root
node as an argument. It loops over all data objects in the context that potentially match
with the query, and calls the filter_object method on the root node with each of these
data objects. This results in an array containing all data objects that yield true for the
filter_object method of the root node of the query.

The array of matching data objects that results from this querying procedure can then be
presented to the API, and be used by, for example, the Exploring module.

4.5 Exploring

The Exploring module is designed to make the exploration features that the Query Engine
provides available to the application users. This module adds a UI to construct and execute
queries in two ways. Firstly, the user can simply enter a query using the query DSL as text,
and submit the query to retrieve the results. Secondly, an interface will be available to the user
where they can construct a query using visual components. Next to the querying interface, the
Exploring module also adds functionality to store queries and create and maintain collections
of data objects. Collections provide the user with a way to store sets of data objects for later use,
or for exporting sets of data objects to use in external tools. The following sections describe the
class design and the corresponding database design, followed by a description of the UI design.

40

CHAPTER 4. DESIGN

4.5.1 Technical Design

Figure 4.11 shows the design of the Exploring module. We address the responsibilities of these
classes next.

StoredQuery

+ data_type: DataType

+ query_string: String

+ created_by: User

Export
Collection

+ name: String

+ data_type: DataType

CollectionEntry

+ data_object: DataObject

Figure 4.11: The class diagram describing the relevant classes of the Exploring module.

StoredQuery

The StoredQuery class - its name is purposely not just Query, to avoid confusion with all the
other uses of query in this thesis - represents a query that has been stored. This query can be
revisited by the user but does not explicitly store the previous results of executing this query.
The user can however load this query and execute it at any time, giving the user a result that is
up to date for the current state of the database.

Collection and CollectionEntry

A Collection, having a name to be able to find it later, can be used to represents a collection of
data objects of one specific data type. It has a relation to one or more CollectionEntry objects,
which refer to a data object.

Export

An Export can take a collection and export it into an appropriate type, which will be a CSV file
for the initial stage of the framework.

4.5.2 Database Design

The database design as shown in Figure 4.12, does not include storage of exports, as there is no
requirement for this. Future stages of the framework might include some stored reference to
exports, either in the form of explicit database records, but also in different ways like an Export
Action within the Action Framework that indicates to the user that a Collection was exported
at certain points in time.

4.5.3 UI Design

In this section we describe interactions for the following functionalities:

41

CHAPTER 4. DESIGN

StoredQuery

+ data_type: DataType

+ query_string: String

+ created_by: User

Collection

+ name: String

+ data_type: DataType

CollectionEntry

+ data_object: DataObject

Figure 4.12: The database design of the Exploring module.

1. Start exploring

2. Explore the results of a Query

3. Create a Query by entering a query string using the DSL

4. Create a Query using visual components

5. Add data objects to a Collection

6. Show and export Collections

Start Exploring

The wireframe shown in Figure B.5 allows the user to select one of the data types to start ex-
ploring. Selecting one of the data types leads the user to the page where the results of a query
are shown.

Explore the Results of a Query

The wireframe shown in Figure 4.13 contains all the components to enable the user to explore
all data objects of the selected data type. When the user first enters this interface, no query will
be given, so all data objects of the selected data type are shown initially.

The main component is the table showing each data object as a row, where clicking on the
icon in the last column of the row leads the user to the interface to explore this specific data
object as shown in Figure B.4. The columns represent Data Attributes of the data type, and each
cell contains the value of the data object for the Data Attribute of the corresponding columns.
The table can also be sorted based on a column, by clicking the column header. The exact set of
columns that can be selected can be modified using the gear icon, which will open a popup that
allows the user to enable and disable columns, i.e. Data Attributes to display, as seen in Figure
4.14

Below the table, there is a button that leads the user to the page to create a new data object
of the selected data type, as shown in Figure B.1.

At the top of the table, there are two components that allow filtering through the data objects
The first component, to the left, is a simple search box that will filter the data objects based
on the displayed values in the table, without additional filtering logic involved. The second
component, to the right, is the component that allows for advanced filtering. If any filters have

42

CHAPTER 4. DESIGN

Explore manifestations

cogID Year of
publication

Title Place of
publication

Language Author Author VIAF

2249 1732 27095699 Kurtze Fragen Aus der
Philosophischen Historie

Ulm ger Brucker, Johann Jakob, external-link-alt

744 1732 155537508Institutionum philosophiae
theoreticae

Groningen Engelhard, Nicolaus, external-link-altlat

455 1732 25487639Philosophia juxta inconcussa
tutissimaque

Cologne lat Goudin, Antoine, external-link-alt

939 1732 20772815
Promptuarium philosophicum
complectens argumenta

Ingolstadt lat Hofer, Johann Baptist, external-link-alt

573 1732 7425989Philosophia Rationalis sive Logica Frankfurt lat Wolff, Christian, Freiherr von, external-link-alt

plus-circle Create a new manifestation...

1732

Search

search Advanced Filteringangle-right year of publication at least 1715 X

comment

check

Add to collection angle-down

arrow-down arrow-down arrow-down arrow-down arrow-down arrow-down

Figure 4.13: The wireframe of the UI to show the results of a query

Select columns
Title

Author

Year of publication

Author

Original language

Figure 4.14: The wireframe of the popup that allows the user to select the columns that should
be visible in a table representing a set of data objects.

been selected already through the interface using visual components, these will be shown as
small chips. In this example, we can see an active filter that shows only manifestations where the
year of publication is at least 1715. When the user clicks on this advanced filtering component,
it will open up the querying interface, which can be switched to either a form to enter a query
in the query DSL, or a form using visual components to construct a query, as discussed in the
next sections. Finally, there is a button called Add to collections, that opens up a popup that can
be used to add selected data objects to a Collection, as shown in Figure 4.15.

Create a Query by Entering a Query String using the Query DSL

The interface shown in Figure 4.16 allows the user to enter a query using the query DSL.
The text field can be used to write the query and will contain code highlighting and JSON

43

CHAPTER 4. DESIGN

Collections

Germanic manifestations

Works mentioning Asterix

Works mentioning Idefix

Lost books

To be filtered

Add new collection...+

Figure 4.15: The wireframe of the popup that allows the user to add data objects to a collection

Advanced Filteringangle-down

Filter

pager
{

 "and": [

 {

 "exactly": {"title": "Dutch milestones"}

 },

 {

 "exactly": {"yearOfPublication": 1572}

 }]

}

savefolder-open

Figure 4.16: The wireframe of the form that allows the user to enter a query using the query
DSL

validation, to validate that the query presented is correct JSON. This front-end validation will
prevent the user to submit queries to the server that are invalid, and allow the user to easily
spot syntax errors in their queries. When the user finished constructing their query, the filter
button can be clicked and the overview in Figure 4.13 will update with the matching records.

In addition to this query editing component, there is a button, next to the title to switch to
the interface to construct a query with visual components, Figure 4.17. In the top right corner,
there are icons that allow the user to save a query or open a previously saved query.

Create a Query using Visual Components

The interface shown in Figure 4.17 allows the user to construct a query with visual components
and thus without using the query DSL. This interface has a lower threshold to use since there is
no need to learn the syntax of the query DSL.

This visual interface works with the notion of filters. It allows the user to construct a number

44

CHAPTER 4. DESIGN

Advanced Filteringangle-down
Active filters:

Add filter

OR Switch to AND

+ OR

author.name is exactly C. Olevianus OR

title is exactly Hungarian Dances

X

code savefolder-open

Add new filter:

title

Attribute of Manifestation

angle-down Logica Nucleori

Value

angle-downis exactly

Match

X

X

toggle-on Require one filter to match

author

Attribute of Manifestation

angle-down

C. Olevianus

Value

angle-downhas matching attribute

Match

name

Attribute of Author

angle-down angle-downis exactly

Match

yearOfPublication is exactly 1716 X

Figure 4.17: The wireframe of the form that allows the user to enter a query using visual com-
ponents

of filters which together, under the hood combined using an And or an Or Control Flow node,
form a query in the query DSL. One single filter consists of one matcher, or a set of matchers
combined using a single node, either And or Or. Next, we will describe how the interface can be
used to create these filters.

The interface consists of several parts. Again, this interface has an icon next to the title to
switch to the interface where a query in the query DSL can be entered, just like buttons to save
and open queries.

Then, at the top, the active filters are shown in chips. Active filters can be deleted by clicking
the cross icon on their right side. Next to the active filters, there is a toggle button that allows
the user to select whether the resulting data objects should match all active filters (equivalent
to combining the queries using an And node), or only one of the active filters (equivalent to
combining the queries using an Or node).

Below this, the form to create a new filter is placed. Creating a new filter starts with filling
out three fields: a selection box to select a data attribute, another selection box to select a
matcher, and a box to enter the test value. Once these three fields are filled, the user can click
the Add filter button and a new filter will be added and the overview of data objects will be
updated. The match field contains all available matchers such as exactly, atLeast, atMost,
but also negations, such as not exactly. This allows the user to introduce negated matchers,
which will be translated into Not nodes in the resulting query.

However, there are two additions to this flow. Firstly, the match field can be designated to
filter on the data attributes of an object that is referred to by a Reference data attribute (recall
these are the so-called nested attributes matchers). The user can do this by selecting the Match

45

CHAPTER 4. DESIGN

value has matching attribute’, and then a new, indented, line will open up with again the option
to select a matcher, but now for the referenced object, the Author of a Manifestation in this
example.

Secondly, the user can combine multiple matchers, by clicking the +OR or +AND buttons.
This will allow the user to create a set of matchers which will be joined by an Or or And node
respectively.

All these components together allow the user to construct a significant subset of queries
without ever needing to touch the query DSL.

Add Data Objects to a Collection

The popup represented by the wireframe in Figure 4.15 can be used to add or remove a set of
selected data objects, represented by rows in Figure 4.13, to collections. This can be achieved
by selecting or deselecting any collection. When the user wants to assign data objects to a non-
existent collection, they can create a new collection in this same interface by clicking the bottom
rule, and entering a collection name.

Show and Export Collections

The wireframe in Figure 4.18 represents the interface where the user can see all the collections,
and open a specific collection, leading them to the next interface shown in Figure 4.19.

Collections

Works

external-link-altgrip-vertical Germanic manifestations 722 works

external-link-altgrip-vertical Germanic manifestations 722 works

Manifestations

Items

external-link-altgrip-vertical Germanic manifestations 722 manifestations

external-link-altgrip-vertical Germanic manifestations 722 items

external-link-altgrip-vertical Germanic manifestations 722 manifestations

external-link-altgrip-vertical Germanic manifestations 722 items

Figure 4.18: The wireframe of the UI that allows the user to select a collection

The interface in Figure 4.19 allows the user to explore all data objects in a specific collection.
This interface is very similar to the interface used to explore all data objects of a data type,
as shown in Figure 4.13. The addition is that this interface contains a button to export this
collection, leading the user to the next interface shown in Figure B.13.

The interface represented by the wireframe in Figure B.13 contains a form that allows the
user to select a format to export a collection in. As mentioned before this will only be CSV for
the initial stage of the framework, but can be extended with any relevant format that would
allow the user to use the export with an external tool, such as BibTex, XML, JSON, or even PDF.

46

CHAPTER 4. DESIGN

Collection: Germanic Books

cogID angle-down angle-down angle-down angle-down
Year of

publication
Title Place of

publication Language Author Author VIAF

show all works

2249 1732 27095699 Kurtze Fragen Aus der
Philosophischen Historie

Ulm ger Brucker, Johann Jakob, external-link-alt

744 1732 155537508Institutionum philosophiae
theoreticae

Groningen Engelhard, Nicolaus, external-link-altlat

455 1732 25487639Philosophia juxta inconcussa
tutissimaque

Cologne lat Goudin, Antoine, external-link-alt

939 1732 20772815
Promptuarium philosophicum
complectens argumenta

Ingolstadt lat Hofer, Johann Baptist, external-link-alt

573 1732 7425989Philosophia Rationalis sive Logica Frankfurt lat Wolff, Christian, Freiherr von, external-link-alt

plus-circle Create a new manifestation...

1732

Search

search Advanced Filteringangle-right year of publication at least 1715 X

comment

check

Export

Figure 4.19: The wireframe of the UI that allows the user to explore a collection by showing all
data objects in that collection and providing filtering tools.

Depending on the selected format, the interface could show more options to specify the exact
export format.

4.5.4 Feedback Sessions

The feedback sessions resulted in a number of decisions for the Exploring module. Firstly, we
concluded that only having the export in CSV format is sufficient to serve most of the use cases
of exporting. If users want to export all the data to another application that does not accept
CSV, the user can transform the data in the CSV export into the desired format. This way, the
initial stage of the framework does require less effort to support a large set of export formats.

The second suggestion that resulted from the feedback sessions is enriching the exploring
interface with facets. Facets present all available values for a specific attribute to the user, espe-
cially attributes with a low unique number of values, to allow the user to quickly filter for that
attribute, as exemplified in Figure 4.20.

47

CHAPTER 4. DESIGN

Publisher city

Heidelberg

Amsterdam

Berlin

Rome

Author

Shakespeare

Dante

Erasmus

Figure 4.20: An example of two facets that allow the user to quickly filter a set of data objects
based on their publisher city and author attributes.

4.6 Importing

Since the main source of data that will be entered in a data model constructed using the Dy-
namic Data Model will come from external sources, for example, from an export from Zotero or
an Excel spreadsheet, we introduce the Importing module. This module provides an interface
to the user that allows him to quickly import a file containing records as a set of data objects of
a specific DataType.

4.6.1 Class Design

For the implementation of Importing we devise the design shown in Figure 4.21.

Import An import represents a file that is imported in the framework. It has a name, which
can be set manually by the user or automatically be set to the name of an imported file. An
import also has an attribute raw data. This contains the raw data that is present in the imported
file. Note that we are assuming only text files to be imported, and not files that have binary or
otherwise non-textual content. The final attribute an import has is the parsed data. This is a
JSON representation of the file content - stored in raw data. The parsed data will consist of an
array of objects that represents a set of records that are also added as individual import records.

ImportMeta Each import can have a single ImportMeta object. For each importable file type
(such as CSV, and XML), an ImportMeta object stores metadata that is required to parse the raw
data of an Import. In the first stage of the framework, we only implement a CSV parser and the
corresponding CSVMeta object. This has an attribute called headers, which indicates whether

48

CHAPTER 4. DESIGN

involvesconcerns

modelled by

ImportRecord

+ data: JSON

Import

+ name: String

+ raw_data: String

+ parsed_data: JSON

CurationSession

+ data_type: DataType

+ mapping: JSON

ImportMeta

CSVMeta

+ headers: Boolean

+ column_separator: String

XMLMeta

CurationAction

+ curation_type: [Discard, Create]

+ created_data_object: DataObject

Figure 4.21: The class diagram for the proposed design for Importing

the imported CSV file has headers on the first line. The next attribute is the column separator,
which indicates which separator character is used to delimit columns in the CSV file. Frequent
separators are a comma (,), semi-colon (;) or a tab character (\t).

ImportRecord An import record is a record in the import file that will eventually be impor-
ted as a data object. It only has a data JSON field, which is one object from the parsed_data
attribute of the corresponding import.

CurationSession The user can create multiple curation sessions from one import. A curation
session defines an environment for the user where they can create DataObject of the DataType
that the curation session corresponds with, from import records of a specific import. All the
import records can either be Discarded or Created, which is kept track of by the creation of
curation actions. Additionally, the user can create a mapping that maps the data from the import
records automatically to DataAttributes of the DataType.

CurationAction Curation actions are used to indicate for each import record in a curation
session whether a DataObject was created based on the import record, or the import record
was discarded. This is indicated by the curation type attribute. The created data object attribute
will refer to the DataObject that was created based on the import record. Note that the curation
action class is actually implementing an interface from the Collaborating module, which allows
integration of Importing with the Collaborating. This is explained in more detail in Section 4.7.

4.6.2 Database Design

The database design as shown in Figure 4.22 again differs from the class design. The Import-
Meta object attributes are stored as a JSON attribute of the import table, and when the records
from the import are loaded from the database, the framework unpacks the data in this JSON
attribute into instances of their relevant classes.

4.6.3 UI Design

The interactions related to Importing are as follows:

49

CHAPTER 4. DESIGN

involves

concerns

modelled by

ImportRecord

+ data: JSON

Import

+ name: String

+ raw_data: String

+ parsed_data: JSON

+ meta: JSON

CurationSession

+ data_type: DataType

CurationAction

+ curation_type: [Discard, Create]

+ created_data_object: DataObject

Figure 4.22: The database design for the proposed design for Importing

1. Creating an import from a file

2. Creating a curation session based on an Import

3. Curating an import record in a curation session

Creating an Import from a File

The UI for creating an import consists of two phases. In the first phase, shown in Figure 4.23,
the user can either create a totally new Import, by selecting a file and setting the name. If the
user does not enter a name, the name of the file will be used for the Import. Then, after the user
clicks on the import button, the second phase of the process, processing the Import, is started.
The other possibility for the user is to continue with an import that was not yet (completely)
processed in the second phase.

The second phase of creating an import, as shown in Figure 4.24, is performed by the user by
providing metadata. This metadata depends on the file type, but for this stage of the framework
it only supports CSV, so the user needs to enter the separator character, and whether the file has
headers. After the user provides metadata, the framework attempts to parse the raw data and
shows the results as a parsed records preview. This preview can be used to check whether the
provided metadata actually leads to the expected parsing. After the metadata is set correctly, the
user can click the save button, which will create the Import, and corresponding import records.

Creating a Curation Session based on an Import

The next UI is an overview of all created Imports. This is shown in Figure B.16. Next to showing
an overview of all imports, this page can be used to start curation sessions. A curation session
can be started by clicking the play icon next to an import. This opens up the pop-up screen
shown in Figure B.17. The user then selects a data type, and a curation session is started.

50

CHAPTER 4. DESIGN

Import data

Or continue existing imports

Import

+ select file...

Enter name...

continue2 feb 2021 worldcat-germany-15thcentury.xml

continue2 feb 2021 worldcat-germany-15thcentury.xml

Name

Figure 4.23: The wireframe of the UI for the first phase of creating an import. The user can
either select a file and set a name, or continue with creating an import that was started before
but did not finish processing completely.

Curating an Import Record in a Curation Session

The UI of the curation session, shown in Figure 4.25 is the place where the user can actually
translate an import record into a data object. The interface is made up of several components.
The first component is a tool to assign, or map, fields from the import to DataAttributes.
Next, a table of all import records is shown. The user can click an import record to open up the
curation form.

This form shows the original data, so the user can keep this as a reference while curating the
import record. This form has a form field for each DataAttribute of the DataType that the user
is importing to. Hence this form has exactly the same fields and functionality as the create form
of the Dynamic Data Model, shown in Figure 4.4. The form fields will be prefilled based on the
mapping that the user provides. The user can still normalize the data, by correcting mistakes
or adding missing data. A special case comes up with reference DataAttributes. Here we do
not expect a simple value, but a reference to an object. In the initial stage of the framework, this
field will not be prefilled, and the user can just use the interface that was shown in Figure B.2
to select the correct referenced object. However, later stages of the framework can enhance this
experience. For example, by automatically finding data objects that contain data that match the
value in the import record, and prefilling this form field with that matching DataObject.

After the user normalized all form fields, they can click the include button. This will create a
DataObject with the normalized data, and create a curation action with type Create to indicate
that this import record is processed. If some validation error arises from the data model while
creating the DataObject, the user will see this validation error instead.

Alternatively, the user can choose to exclude this import record. When the user clicks the
exclude button, only a curation action is created with type Discard to indicate this import record

51

CHAPTER 4. DESIGN

Process Import

Bommelstein export

Name

CSV

File type

tab (\t)

Value separator Import date: 2 februari 2020

Settings

Import started by: Olivier B. Bommel

angle-down

angle-down

True

File has headers?

angle-down

Raw import data angle-down

https://www.worldcat.org/oclc/1013852407	3901196352	1728	lat	Gottlieb Stollii ..., Introdvctio in historiam litterariam in gratiam cvltorvm elegantiorvm litterarvm et philosophiae conscripta /	Stolle, Gottlieb,;Lange, Karl Heinrich.	Ien,		

https://www.worldcat.org/oclc/1003935962	4497961279	1730	lat	Philosophia Prima sive Ontologia, Methodo Scientifica Pertractata, qua Omnis Cognitionis Humanae Principia Continentur. Autore Christiano Wolfio, Consilario Aulico Hassiaco, Mathematum ac Philosophiae in Academia Marburgensi Professore Primario et Ordinis Philosophorum P.T. Decano, Professore Petropolitano Honorario, Societatum Regiarum Britannicae atque Borussicae Sodali. 	Wolff, Christian,	Francofurti & Lipsiae :		

https://www.worldcat.org/oclc/490167741	3768515598	1743	lat	Jacobi Bruckeri ... Historia critica philosophiae a Christo nato ad repurgatas usque literas. Periodi secundae pars altera. Tomus tertius. 	Brucker, Johann Jakob,;Breitkopf, Bernhard Christoph,	Lipsiae apud Bernh. Christoph. Breitkopf. MDCCXLIII.		

https://www.worldcat.org/oclc/39256041	2865280304	1730	lat	Philosophia Pollingana ad norman Burgundicæ. In qua.	Amort, Eusebius,	Augustæ Vindelicorum,		

https://www.worldcat.org/oclc/753476391	2678399	1775	ger	Philosophisches Lexicon, worinnen die in allen Theilen der Philosophie vorkommende Materien und Kunstwörter erkläret ... mit vielen neuen Zusätzen und Artikeln vermehrt ... wie auch mit einer kurzen kritischen Geschichte der Philosophie aus dem Bruckerischen grossen Werke versehen von Justus Christian Hennings / 	Walch, Johann Georg	Leipzig,		4. Aufl.

https://www.worldcat.org/oclc/466078626	24951340	1780	ger	Griechenlands erste Philosophen, oder Leben und Systeme des Orpheus, Pherecydes, Thales und Pythagoras 	Tiedemann, Dietrich	Leipzig,		

https://www.worldcat.org/oclc/632603831	3859190391	1736	ger	Auszug aus den kurtzen Fragen : aus der philosophischen Historie, von Anfang der Welt bisz auf unsere Zeiten, zum Gebrauch der Aufänger.	Brucker, Jacob.	Ulm :		

https://www.worldcat.org/oclc/895321990	3856115358	1772	ger	Thomas Abbts vermischte Werke. 	Abbt, Thomas,	Berlin ;		

https://www.worldcat.org/oclc/703821584	24430664	1778	ger	Von dem Begriffe der Philosophie und ihren Theilen ... 	Eberhard, J. A.	Berlin,		

https://www.worldcat.org/oclc/41321329	26947848	1734	lat	M. Christoph. Andreae Buttneri Fac. Philos. Hal. Adiunct. Cursus philosophicus omnes philosophiae partes complectens. 	Büttner, Christoph Andreas,	Halae Magdeburg :		

https://www.worldcat.org/oclc/895315534	2864364572	1753	ger	Georg Friedrich Meiers, (...) philosophische Sittenlehre. 	Meier, Georg Friedrich,	Halle im Magdeburgischen :		

https://www.worldcat.org/oclc/919962701	4820735910	1747	lat	Danielis Georgii Morhofii Polyhistor, literarius, philosophicis et practicus ... / 	Boeckmann, Peter,;Frick, Johann Georg,;Moller, Johann,;Morhof, Daniel Georg,	Lubecae :		Editio quarta.

https://www.worldcat.org/oclc/52060544	9130915	1748	lat	Vernünftige Gedanken von dem Wahrscheinlichen und desselben gefährlichen Missbrauche. 	Thorschmid, Urban Gottlob.;Chladni, Johann Martin,	Stralsund Griefswalde u. Leipzig,		

https://www.worldcat.org/oclc/1003964161	4497990335	1746	lat	Georgii Bernhardi Bilfingeri Dilucidationes philosophicae De deo, anima humana, mundo, et generalibus rerum affectionibus. 		Tubingae :		Editio tertia. Auctior et prioribus multo emendatior.

https://www.worldcat.org/oclc/42867142	3858006332	1747	lat	Frid. Christiani Baumeisteri ... Institutiones philosophiae rationalis methodo VVolfii conscriptae. 	Baumeister, Friedrich Christian,	Vitembergae :		Editio undecima auctior et emendatior.

https://www.worldcat.org/oclc/921181259	2620627581	1778	ger	Magazin für die Philosophie und ihre Geschichte. Aus den Jahrbüchern der Akademien angelegt von Michae Hißmann, der Weltweisheit Doktor in Göttingen. Erster Band. 	Priestley, Joseph;Canaye, Étienne de;Achard, Franz Carl;Hissmann, Michael;Mérian, Jean Bernard;Maupertuis, Pierre-Louis Moreau de;Sevin, François;La Nauze, Louis Jouard de;Boivin, Jean;Meyer, Officine.			

https://www.worldcat.org/oclc/920365794	5090661777	1733	ger	Jacob Bruckers / 	Brucker, Johann Jakob;Bartholomäi, Daniel			

Save

Parsed records preview angle-down

Figure 4.24: The wireframe of the UI for the second phase of creating an import. The user can
select metadata to parse the raw data and save the import.

is processed, but did not create any DataObject. Effectively, the import record is ignored this
way.

The final interface for Importing is the UI in Figure B.19. It is a simple overview page, that
shows started curation sessions, grouped by DataType in the data model. A user can use this
overview to navigate to a curation session to continue a curation session that was started be-
fore, or review actions that were performed and decisions that were made in a specific curation
session. The latter is also related to the accountability that the Action Framework module of the
architecture aims to provide.

4.6.4 Feedback Sessions

The feedback sessions also provided an important insight for the Importing module, namely
that it is important to maintain the relation between an import record and the data object that

52

CHAPTER 4. DESIGN

Imported manifestations

Year
(Jahre) Title Publisher city Author name Author viaf no.ID cog

1872152 Logica nucleori Heidelberg Joseph Haydn

Original Data:

angle-down

Heidelberg

Work

link

1872

Year of publication

calendar

Logica Nuclearis

Title

font

Heidelberg

Publisher

font

Heidelberg

Publisher

font

Heidelberg

Publisher

font

Heidelberg

Publisher

font

Heidelberg

Publisher

font

IncludeExclude

1872152 Logica nucleori Heidelberg Joseph Haydn trash

1872152 Logica nucleori Heidelberg Joseph Haydn trash

1872152 Logica nucleori Heidelberg Joseph Haydn trash

1872152 Logica nucleori Heidelberg Joseph Haydn trash

1872152 Logica nucleori Heidelberg Joseph Haydn trash

Assign Fields

Import name Model name

Year

Year

Year

angle-down

angle-down

angle-down

JahreJahre

Jahre

Jahre

angle-down Tools angle-down

� Year: 187�
� Title: Logica nucleor�
� Publisher city: Heidelber�
� Author name: Joseph Hayd�
� Author viaf no.: n/a

Figure 4.25: The wireframe of the UI of a curation session. The user can go through each import
record iteratively, while normalizing the data or simply including or excluding it.

was created from that record. This functionality also relates to the Action Framework which
we describe as part of the Collaborating module in Section 4.7, and is required by the users to
be able to trace the source of a data object back. We reflected this in the design through the
presence of the CurationAction class, which stores a reference to the created data object, as can
be seen in Figure 4.21.

53

CHAPTER 4. DESIGN

4.7 Collaborating

The framework’s goal is not only to provide a tool to manage (bibliographic) data, but also to
provide an environment where multiple users can collaborate. We designate two methods to
support collaboration, firstly a mechanism that will store any activities within the framework,
and secondly the functionality to write comments and reply to comments. This allows users
to elaborate and have discussions on certain actions and objects. As mentioned before, the
Collaboration module implements the basic functionality for the Action Framework module,
since these two are somewhat coupled, and have a too limited scope in this project to separate
them into two modules.

4.7.1 Class Design

Figure 4.26 shows the different classes that make up the Collaborating functionality.

concerns
<<interface>>

ActionableObject

details

Action

+ created_by: User

+ parent_action: Action
concerns

Comment

+ created_by: User

+ text: String

ActionComment

concerns

ResourceComment

ResourceAction

+ old_attributes: JSON

+ new_attributes: JSON

implements <<interface>>
ActionDetailer

CurationAction

+ curation_type: [Discard, Create]

+ created_data_object: DataObject

+ curation_session: CurationSession

+ import_record: ImportRecord

implements

replies to

Figure 4.26: The class diagram describing the design of the Collaborating module.

Action The Action class represents any activity that occurred within the framework. An
Action can be part of another Action, for example, when a user would assign a bulk of data

54

CHAPTER 4. DESIGN

objects to a collection, there could be one Action that represents the bulk assign Action, and
then a separate Action for each individual assignment of a data object to a collection, which
would all have the former bulk assign Action as parent. As part of the implementation of any
other functionality that can be considered to be an action, the creation of an Action is added.
This way, a complete history of activities within the framework is maintained.

ActionDetailer An Action alone only describes who created the action, and the parent_action,
describing whether an Action was part of a different Action. In order to describe significant de-
tails of the action, we devise an interface called ActionDetailer. For each type of activity in the
framework, a unique ActionDetailer is implemented. In the initial stage of the framework, for
example, we have a ResourceAction and a CurationAction, which already was explained in
Section 4.6.

ResourceAction The ResourceAction represents any create, update or delete activity on any
resource in the framework. It can expects these resources to implement the ActionableObject
interface. Figure A.1 shows all these objects. A ResourceAction stores the old and new attrib-
utes of a resource, representing the state of a resource before and after the Action. This will
allow users to not only see the fact that something happened, but also what exactly happened.
In addition a ResourceAction contains a reference to the resource, an ActionableObject.

Comment Secondly, the Collaboration module involves functionality to create comments. Com-
ments are simple objects that have a text - the actual message - and a reference to the user who
wrote a Comment. For the first stage of the framework, we distinguish two types of comments,
ResourceComments and ActionComments. They only differ in the subject of the Comment. A
ResourceComment stores a reference to some ActionableObject, exploiting the presence of the
ActionableObject interface, enabling the user to comment on any resource. An ActionComment
however has a specific Action as subject. This allows the user to elaborate on an Action, for ex-
ample, to explain why a user performed an Action.

In addition to writing comments for an ActionableObject or an Action, comments can also
be a reply to another comment.

4.7.2 Database Design

The database design as shown in Figure 4.27 shows that each ActionDetailer will have its
own database table. This is due to the fact that the attributes of each ActionDetailer can differ
completely, so storing them in one table would introduce several inefficiencies, since each record
would only use a subset of the columns of such table, depending on the type of ActionDetailer
that a record belongs to.

4.7.3 UI Design

To allow the user to interact with the functionality that the Collaborating module contains, we
introduce a design that consists of two components. Firstly, at every location in the GUI where
a resource is visible that implements the ActionableObject interface, the user will see a small
icon show up when they hover over it. This can be seen in, for example, Figure 4.13, next to the
first row in the table.

When the user clicks on this icon, a screen will slide in from the right side of the screen,
showing the Collaborating interface, as shown by the wireframes in Figures 4.28, B.21 and B.22.

55

CHAPTER 4. DESIGN

details

Action

+ created_by: User

+ parent_action: Action

Comment

+ created_by: User

+ text: String

+ subject: Polymorphic<ActionableObject|Action>

ResourceAction

+ old_attributes: JSON

+ new_attributes: JSON

+ resource: Polymorphic<ActionableObject>

CurationAction

+ curation_type: [Discard, Create]

+ created_data_object: DataObject

+ curation_session: CurationSession

+ import_record: ImportRecord

replies to

details

Figure 4.27: The database design of the Collaborating module.

This Collaborating interface starts with a description of the object that is the selected subject.
Then there are two toggle buttons that allow the user to toggle the visibility of either actions or
comments. Below this, in the main part of the interface, the actual comments and actions are
visible, in chronological order. Comments show who created this comment. Actions, which
have a different styling to indicate the distinction between actions and comments, show the
relevant information of an action, and also who performed the action. The user can reply to a
comment or action by clicking on the icon in the bottom right corner of the corresponding box.

If a comment or action takes too much vertical space, it will collapse, and the user can ex-
pand it by clicking the show more link, or corresponding arrow icon. Also, nested replies, i.e.
replies to replies are not shown by default, but can be expanded by the user by clicking show
replies. This can then also be reversed by clicking hide replies.

4.7.4 Feedback Sessions

The feedback sessions provided the following suggestions for the Collaborating module. Firstly,
users should be able to reply to comments, to allow for structured discussions, where it is clear
which comment is responding to which other comment. This is reflected by the replies to
relation from the Comment class to itself 4.26. Additionally, the users mentioned that the usab-
ility of the framework would improve if users were able to tag other users in comments, or
assign tasks in comments to users. Even though this suggestion is not taken into account in this
stage of the framework, it is stored as a valuable suggestion for future work. Finally, the level
of automation of the Action Framework was discussed. One suggestion was to provide the

56

CHAPTER 4. DESIGN

History
Manifestation: Kurtze Fragen Aus der
Philosophischen Historie

Commentstoggle-on Actionstoggle-on

Commented 12 January, 16:07

DK
Sometimes I wonder if I really can. But
then I think to myself, maybe I can't. But
if I could, that would be good. Maybe it's
all a lie?

comment

Commented 12 January, 16:07

AB

Donut caramels croissant candy canes
lollipop dragée apple pie. Sesame snaps
tart chupa chups cheesecake tiramisu
dessert pie soufflé tootsie roll. Pastry
lemon drops ice cream cotton candy.

comment

show more

Commented 12 January, 16:07

BS

I'm baby post-ironic sustainable VHS,
mustache humblebrag meh offal palo
santo squid chia narwhal art party
pickled raw denim kombucha. Man bun
asymmetrical DIY, 90's hot chicken
thundercats jianbing +1. Venmo
normcore subway tile, selfies photo
booth chia street art heirloom YOLO
pug. Kinfolk marfa woke ennui...

angle-right

show less

Commented 12 January, 16:07

MC

Ultimate measure of success i also
believe it's important for every member
to be involved and invested in our
company and this is one way to do so
prairie dogging, or we can't hear you or
run it up the flag pole so quarterly sales
are at an all-time low for offline this
discussion. Big data we are running out
of runway for come up with something
buzzworthy golden goose, nor can you
put it into a banner that is not alarming,
but eye catching and not too giant so
dunder mifflin. All hands on deck into
the weeds, back of the net drill down.
T-shaped individual teams were able to
drive adoption and awareness and
screw the pooch, so a better
understanding of usage can aid in
prioritizing future efforts blue sky
thinking we need to future-proof this,
and we need evergreen content.

angle-upcomment

Performed 12 January, 16:07

AB

Update

New attribute values�
� Title: Kurtze Fragen Aus Der

Philosophischen histori�
� Author: Christian Wolff

Original attribute values�
� Title: Korte Vrage�
� Author: H. de Groot

I think this history is unacceptable, it does not
boil the shrimps like plants which microphones
the oven like a switch but white spoons exfiltrate
some of the

Comment

paper-plane

comment

Figure 4.28: The wireframe of the Collaborating UI where both Comments and Actions are
visible.

functionality to roll back certain actions automatically, which would introduce some technical
challenges, such as deciding in which order to revert actions, and how to deal with changing
referenced data. The users however proposed that this automated roll-back functionality is not
required, and only an overview of the actions is sufficient. They argued that if some actions

57

CHAPTER 4. DESIGN

needed to be reverted, this can be done manually by the user, after inspecting these actions.

58

Chapter 5

Implementation

In this section, we first describe the implementation tools and technologies that are used to
create the implementation of the prototype of the framework. Next, the results of the imple-
mentation are shown, preceded by a description of the scope of the implementation

5.1 Method

As described in Figure 4.1, the implementation consists of a GUI, and an API that provides an
interface to the Application Backend. The application that provides the GUI is called the front
end, while the API and the Application Backend that provides the API is referred to as the back
end. For both the front end and the back end we describe which implementation decisions we
made, and how a roadmap to a production-ready environment looks like.

5.1.1 Front End

The front end is implemented using a modern progressive Javascript framework called Vue.js 1.
This framework allows for the rapid development of a front end application using Javascript,
HTML, and CSS. To keep the scope of the implementation manageable, we used a framework on
top of Vue.js called Vuetify 2. Vuetify provides the developer with a complete set of front end
components such as buttons, forms, and tables all following the Material Design 3. Material
Design is a design system created by Google, with guidelines to create consistent and user-
friendly interfaces. Using Vuetify thus, allows us to implement a coherent interface without
having to build every component from scratch.

During the implementation process, we found that certain components we needed were not
readily available within Vuetify, so we developed these from scratch. An example of such a case
is the table that shows the results of a query, as in Figure 4.13. Our design included significantly
more functionality than the default table component of Vuetify provided, such that a custom
implementation was required.

The front end uses the GraphQL API that the back end provides as described in the next
section, to retrieve and manage data and manage authentication of the user.

1https://vuejs.org (accessed: 5/7/2021)
2https://vuetifyjs.com (accessed: 2/7/2021)
3https://material.io/design (accessed: 5/7/2021)

59

https://vuejs.org
https://vuetifyjs.com
https://material.io/design

CHAPTER 5. IMPLEMENTATION

We made the implementation responsive, meaning that nearly all UI components are optim-
ized for use on non-desktop devices such as tablets or smartphones.

Bringing the front end to a production environment can be done in the following way. The
front end application, as built in Vue, can be built into a self-contained, completely static pack-
age. This package can then be served by any simple HTTP server, or a Content Delivery Net-
work (CDN) such as AWS Cloudfront, Azure CDN or different managed CDN services that can
be leveraged to serve the front end app.

The source code of the front end is open source and available at https://github.com/Gen
iekort/Bibliobase.

5.1.2 Back End

The back end is implemented using Ruby on Rails, also dubbed Rails. Rails is an open-source
web application framework, which provides the developer with multiple components that
support the rapid development of a web application (Rails, 2021). It uses the Model-View-
Controller pattern as a central paradigm, but also provides Object Relational Mapping, which
prevents the developer from writing and debugging SQL queries. Rails is mostly geared to-
wards serving complete applications, including a front end, however it can also only serve an
API. We decided to implement a GraphQL API 4, instead of using the popular REST API or
SOAP API standard. A GraphQL API does not provide a fixed set of endpoints where other ap-
plications can retrieve predefined sets of data or perform predefined mutations such as a REST
API does. On the contrary, a GraphQL API provides a set of queries and mutations which can
be combined with each other, and allow developers to retrieve exactly all data they need within
one request, without over- or under-requesting data.

The database is powered by the open-source PostgreSQL database server 5. The main reason
for this is that it provides a useful implementation of the indexable jsonb data type, as discussed
in the related work, Section 1.3. It also integrates well with Rails.

Since both Rails and PostgreSQL require a specific environment to run, we also chose to
use Docker 6 to containerize the back end. This allows us to create a procedure to set up the
environment once, and use this to create a development and even a production environment
without having to manually set up this environment repeatedly.

The source code of the back end is split into two parts. First, we created a gem , which is
a library or package for the programming language Ruby, dynamic_model that implements the
Dynamic Data Model functionality, in a generalized way. The second source code component is
the actual Ruby on Rails application, which has the dynamic_model gem as a dependency. The
dynamic_model gem is available at https://github.com/Geniekort/dynamic_model while the
Rails application is available at https://github.com/Geniekort/BibliobaseBackend.

To deploy the back end in a production environment, we can exploit the fact that the back
end is developed using Docker. This allows us to use any managed container service to deploy
our application in a scalable way. For example, in AWS Elastic Container Service, Azure Con-
tainer Service, or Google Container Engine. Another way is to manually deploy the container
on a private server, possibly managed with a solution like Kubernetes. This method is a bit less
scalable since it requires more setup, active management, and monitoring of the infrastructure
than when using a managed container service.

4https://graphql.org (accessed: 2/7/2021)
5https://www.postgresql.org (accessed: 2/7/2021)
6https://docs.docker.com (accessed: 5/7/2021)

60

https://github.com/Geniekort/Bibliobase
https://github.com/Geniekort/Bibliobase
https://github.com/Geniekort/dynamic_model
https://github.com/Geniekort/BibliobaseBackend
https://graphql.org
https://www.postgresql.org
https://docs.docker.com

CHAPTER 5. IMPLEMENTATION

5.2 Results

As touched upon before, this project is mainly about designing the foundations of the frame-
work, but also included the implementation of a prototype. The prototype consists of the fol-
lowing parts.

• The implementation of a basic authentication module.

• The setup of several basic framework tools, such as the implementation of the notion of
projects and user authentication.

• The implementation of the Dynamic Data Model module.

• The implementation of the Importing module

• The implementation of the Exploring module, containing the implementation of the DSL,
and corresponding interfaces.

• The initial setup of the Collaboration module. This is not visible in the interface yet, how-
ever, the Action mechanism as described in Section 4.7, is already set up in order to integ-
rate with the importing (curation) functionality.

To showcase some of the results of the prototype, Appendix C shows a number of screen-
shots of the implementation of the prototype. These UIs are an implementation of the wire-
frames presented in Appendix B. A user can first log in to the framework (Figure C.1), and then
gets to an overview screen to select a project (Figure C.1). Figure C.3 shows a screenshot of the
interface which allows the user to start creating a new import by selecting a file and providing
a name. The user can already preview the contents of the file to check whether the correct file is
provided.

Then in Figure 5.1 (but also in the appendix in Figure C.4) we see the interface where the user
can complete an import by providing the correct import settings for the imported file. Again
the user can preview the results from parsing the import file with the given settings.

After an import is created, the user can start a new curation session in the interface we
already saw in Figure C.3, or continue with a curation session using the interface shown in
Figure C.5. Recall that a curation session allows the user to transform records in the import file
into data objects in the data model. The user can select a mapping from attributes in the import
file to data attributes of the data type when beginning with a curation session, as shown in
Figure C.6. After this, the user can start curating each record in the import file, in the interface
shown in Figure 5.2.

The Exploring module is also implemented, and the user can start to explore data in the data
model of a project by first selecting the type of data they want to explore, Figure C.8. After this,
the user can explore the data objects of the selected data type. This can be done in two ways, as
designed, either through an interface using visual components, or by manually writing a query
string in the DSL. The former method is shown in the screenshot in Figure 5.3, and the latter is
shown in Figure 5.4.

As we can see, the text box that allows the user to enter a query string offers multiple util-
ities to make the construction of a query less complicated. These include syntax highlighting,
auto-indentation, the matching of brackets, which is an important feature to have when writing
JSON, and also syntax validation, as can be seen in Figure C.11. For implementing these func-
tionalities we also made grateful use of CodeMirror 7, which we integrated with the framework.

7https://codemirror.net (accessed: 2/7/2021)

61

https://codemirror.net

CHAPTER 5. IMPLEMENTATION

Figure 5.1: Screenshot of the Import creation screen. The user can upload a new file and create
an Import from it.

Figure 5.2: Screenshot of the Curation Session screen. The user can include each Import Record
to create a new Data Object, a Manifestation in this specific example. Alternatively, the user can
exclude an Import Record

Finally, the user can also inspect the data of a specific data object in detail, by the basic
interface provided C.12. This interface is still very basic, and can be further expanded, for ex-
ample, by implementing other parts of the interface as is further discussed in Section 6.1. Most

62

CHAPTER 5. IMPLEMENTATION

Figure 5.3: Screenshot of the Exploring screen, showing filters using the . The user can create
filters using visual components in order to filter the Data Objects, again Manifestations in this
example, shown in the table at the bottom. Clicking on the icon in a row of the table will take
the user to the screen to see all details of a Data Object, as seen in Figure C.12

Figure 5.4: Screenshot of the Exploring screen. The user can create filters by entering a query in
the DSL. The query editor provides highlighting to provide the user visual cues to understand
the structure of the query

63

CHAPTER 5. IMPLEMENTATION

of the implemented UI of the prototype of the framework has been shown in the discussed
screenshots. The amount of work that went into the development of the modules that do not
necessarily provide an interface, can be investigated at the above-mentioned Github repositor-
ies.

Refer to Appendix C for a complete overview of the implemented UIs.

64

Chapter 6

Conclusion

This thesis aimed at creating a foundation for a framework that can support the computational
history of ideas, specifically with the construction of corpora. Additionally, the framework tries
to generalize the support for tasks that computational history of ideas involves into support
for tasks that can support scientists in similar historical fields. The range of tasks that can be
supported is wide, it could involve retrieving digitized copies of work from online repositories,
generating digitized copies from scans of books, modeling resulting data in the form of biblio-
graphic records in a dynamic hierarchical model, exploring the data in such a model, support-
ing collaborative methods, to even analyzing data using methods from statistics and artificial
intelligence. Supporting all of these tasks is not feasible in the scope of this thesis, and hav-
ing incremental additions to the framework allows for iterative integration of user experience
and feedback. Therefore, we limited the scope of this thesis to the design of modules and com-
ponents that support researchers in constructing corpora using bibliographic data from various
sources of varying quality and structure. Additionally, a subset of this design was implemented.

We first described the challenges a historian of ideas specifically encounters while construct-
ing corpora in Section 1.2. These include finding bibliographic data that match the corpus cri-
teria they constructed for their research. These data can be retrieved from various sources in-
cluding Worldcat, but the quality of the bibliographic metadata can be expected to be variable.
In addition, we found that having a relational (hierarchical) model can help the researcher in
exploring and understanding the history of a work, and selecting relevant resources for their
research to create the largest possible evidence basis.

Next, in Section 1.3 we looked at some relevant existing tools like Zotero, which already
help researchers in managing bibliographic data, however, fail to provide a hierarchical model,
which we described to be important for the researchers. In addition, we also looked at relev-
ant data storage technologies, such as NOSQL databases, and the use of JSON in traditional
RDBMS.

In Chapter 2 we then generalized the workflow and challenges of a historian of ideas into a
description of the framework, and ended up with a number of general tasks or functionalities
that the framework provides. These functionalities were described in more detail in Section
2.4.1 and 2.4.2. The level of detail of these requirements was not as specific as one would do for
clearly outlined tools with an unambiguous goal, since this project is laying basic foundations
for the process of the development of the framework. Also, we pointed out that there are two
types of users, namely application users, and framework developers.

Chapter 3 described the approach we use in designing and implementing the framework.
Next to devising that the framework would have two interface points, an API and GUI, we

65

CHAPTER 6. CONCLUSION

decomposed the framework into a set of modules comprising all the functionality needed in
an Application Backend. The modules included a Dynamic Data Model, a Query Engine, an
Exploring module, an Importing module, an Action Framework, and a Collaboration module.
Also, we decided that we initially arrange the framework in an open-source and hybrid mono-
lith approach, where only the front end (GUI) is separated from the monolith.

The actual design of the framework was described in Chapter 4. We explained that the GUI
uses the API to communicate with the back end, to allow a consistent implementation, and thus
consistent behavior of the functionalities of the framework. Additionally, we elaborated how
each entity in the framework is secluded by the notion of a project. Then, the design of each
module as described in the architecture was described, split up into a technical design, dealing
with the relevant classes and services, and a UI design, exemplified by the use of wireframes,
as shown in Appendix B.

As a significant part of this project, we laid the foundation for the implementation by build-
ing a production-ready prototype of the framework using modern web technology. In addition
to basic features such as setting up the required environments and frameworks, and implement-
ing authentication, this prototype includes an implementation of the Dynamic Data Model. We
also implemented important features of the Importing module, where the basic foundation of
the Action Framework was also created. Additionally, this prototype involves the implementa-
tion of the Query Engine, including a complete infrastructure for parsing and processing quer-
ies according to the semantics of the Query DSL, and a UI that both accepts query strings, and
provides visual components to construct such query strings, allowing non-technical users to
create complex queries. This prototype also used technologies such as containerization using
Docker that allows for easy deployment of testing and production environments such that fu-
ture iterations of the framework can be tested by users as soon as necessary.

6.1 Future Work

Things that are left to future work can be categorized into two groups. Firstly some components
were already designed in detail and secondly, some functionalities are not yet designed, or were
only mentioned briefly in this thesis. We describe them in a non-exhaustive way in this section.

Modules that were already designed but lack (full) implementation include the following.
The Dynamic Data Model can be extended by handling validation errors during the creation
and deletion of objects in a more intuitive way, since these are now not shown in detail to the
user in the GUI. Also, the selection of referenced objects for Reference data attributes can be
improved by actually showing the representing name of referenced objects instead of their id.
This interface could also be extended with search functionality. Also, numerous performance
improvements can be applied when larger-scale data will ever be processed using this frame-
work. A concrete example is by adding an extra table making the references between data
objects more explicit, allowing for SQL query including JOIN clauses. This would, for example,
make more efficient use of functionalities within the database server and could thus improve
the performance of the framework.

Another task for future work is that the page that shows details of a data object can be further
implemented by adding the interface for showing data objects that refer to the shown data
object, see the wireframe in Figure B.4. The UI for defining the data model for a project in the
Dynamic Data Model module can also still be implemented. In the current implementation data
models for projects can only be defined by a developer directly interacting with the database.

In addition, all functionalities of the Collaborating module can be implemented, such as an
overview of all activities within the framework, and the implementation of discussion function-

66

CHAPTER 6. CONCLUSION

alities as shown in Figure B.21. Additional ideas for this module are the addition of a tagging
and notification system, where users can tag each other in messages, or assign tasks to other
users, and will receive notification in the interface and, for example, by email. The Explor-
ing module can also be further expanded, by amongst others adding collections and exporting
functionality. Another idea to enhance the Exploring module is the addition of facets to explore
the data. Also, the Query Engine can be further polished, by implementing more matchers, and
implementing the functionality to process queries containing matchers for nested attributes.

Additionally, there is a set of components and functionalities that are not designed in detail.
The first challenge that can be investigated was already mentioned briefly in Section 2.2, being
the Research Workflow. Another idea is the addition of a media or file storage and processing
mechanism that allows user to enrich their data model with relevant files. This can also be a
stepping stone to the addition of functionalities or integration with existing tools for digitizing
and analyzing data within the framework. This way, the framework that is designed and im-
plemented over the course of this thesis can grow to a complete ecosystem, supporting a wide
range of tasks of different types of research projects, and potentially even prove to be helpful in
other applications outside academia.

67

Bibliography

Ahmad, K. S. et al. (2017). ‘Fuzzy_MoSCoW: A fuzzy based MoSCoW method for the priorit-
ization of software requirements’. In: 2017 International Conference on Intelligent Computing,
Instrumentation and Control Technologies (ICICICT), pp. 433–437. DOI: 10.1109/ICICICT1.
2017.8342602.

Ben-Kiki, O., C. Evans and I. Döt Net (Oct. 2009). YAML Ain’t Markup Language (YAML™). URL:
https://yaml.org/spec/cvs/spec.pdf (visited on 30/06/2021).

Betti, A. and H. Van den Berg (Dec. 2016). ‘Towards a Computational History of Ideas’. In:
DHLU 2013: Digital Humanities Luxembourg: Proceedings of the Third Conference on Digital Hu-
manities in Luxembourg with a Special Focus on Reading Historical Sources in the Digital Age
: Luxembourg, Luxembourg, December 5-6, 2013. URL: https://pure.uva.nl/ws/files/
55572639/Betti_van_den_Berg_computational_history_of_ideas.pdf.

Bray, T. (Dec. 2017). The JavaScript Object Notation (JSON) Data Interchange Format. STD 90. RFC
Editor.

Chang, K. S. and B. A. Myers (2016). ‘Using and Exploring Hierarchical Data in Spreadsheets’.
In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. New York,
NY, USA: Association for Computing Machinery, pp. 2497–2507. ISBN: 9781450333627. URL:
https://doi.org/10.1145/2858036.2858430.

Elasticsearch Query DSL (2021). URL: https://www.elastic.co/guide/en/elasticsearch/
reference/current/elasticsearch-intro.html (visited on 28/06/2021).

Fritzsch, J. et al. (2019). ‘From Monolith to Microservices: A Classification of Refactoring Ap-
proaches’. In: Software Engineering Aspects of Continuous Development and New Paradigms of
Software Production and Deployment. Ed. by J. Bruel, M. Mazzara and B. Meyer. Cham: Springer
International Publishing, pp. 128–141. ISBN: 978-3-030-06019-0.

Functional Requirements for Bibliographic Records, IFLA Study Group on the (Sept. 2016).
Functional Requirements for Bibliographic Records. International Federation of Library Asso-
ciations and Institutions. URL: https://www.ifla.org/files/assets/cataloguing/frbr/
frbr_2008.pdf.

Köhler, H. and S. Link (2018). ‘SQL schema design: foundations, normal forms, and normaliz-
ation’. In: Information Systems 76, pp. 88–113. ISSN: 0306-4379. DOI: https://doi.org/10.
1016/j.is.2018.04.001.

Nayak, A., A. Poriya and P. Dikshay (Mar. 2013). ‘Type of NOSQL Databases and its Comparison
with Relational Databases’. In: International Journal of Applied Information Systems 5.4, pp. 16–
19.

OCLC (2021). Inside WorldCat. URL: https://www.oclc.org/en/worldcat/inside-worldcat.
html (visited on 30/06/2021).

Parisi, M.C. and A. Betti (Oct. 2020a). Bibliobase Data Model 1.0. URL: https://drive.google.
com/file/d/1ngFNweRDNjoTQTFWGEyQ2Hb-yI4bUj-d/view (visited on 25/06/2021).

68

https://doi.org/10.1109/ICICICT1.2017.8342602
https://doi.org/10.1109/ICICICT1.2017.8342602
https://yaml.org/spec/cvs/spec.pdf
https://pure.uva.nl/ws/files/55572639/Betti_van_den_Berg_computational_history_of_ideas.pdf
https://pure.uva.nl/ws/files/55572639/Betti_van_den_Berg_computational_history_of_ideas.pdf
https://doi.org/10.1145/2858036.2858430
https://www.elastic.co/guide/en/elasticsearch/reference/current/elasticsearch-intro.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/elasticsearch-intro.html
https://www.ifla.org/files/assets/cataloguing/frbr/frbr_2008.pdf
https://www.ifla.org/files/assets/cataloguing/frbr/frbr_2008.pdf
https://doi.org/https://doi.org/10.1016/j.is.2018.04.001
https://doi.org/https://doi.org/10.1016/j.is.2018.04.001
https://www.oclc.org/en/worldcat/inside-worldcat.html
https://www.oclc.org/en/worldcat/inside-worldcat.html
https://drive.google.com/file/d/1ngFNweRDNjoTQTFWGEyQ2Hb-yI4bUj-d/view
https://drive.google.com/file/d/1ngFNweRDNjoTQTFWGEyQ2Hb-yI4bUj-d/view

BIBLIOGRAPHY

— (Sept. 2020b). FileMaker & Gbooks for User-Controlled Corpus Building - User Scenarios. URL:
https://docs.google.com/document/d/1KWFZTCiEtciFEbglth-pJbG6B9WnVekMHJCDoAPBJx4/
edit (visited on 29/06/2021).

Petkovic, D. (June 2017). ‘JSON Integration in Relational Database Systems’. In: International
Journal of Computer Applications 168, pp. 14–19. DOI: 10.5120/ijca2017914389.

Rails (2021). Getting Started with Rails. URL: https://guides.rubyonrails.org/getting_
started.html (visited on 30/06/2021).

Resnick, P. (Apr. 2001). Internet Message Format. RFC 2822. RFC Editor.
Salway, A. (2021). Towards gbooks2 and SalVe2. URL: https://docs.google.com/presentation/

d/1n3ebWXWqclQyyEOugG4fK0k0Fc_vEcehqSH5AJmjgso/edit (visited on 29/06/2021).
Strauch, C. (2021). NoSQL Databases. Hochschule der Medien, Stuttgart. URL: https://www.

researchgate.net/profile/Jesus- Sanchez- Cuadrado/publication/257491810_A_
repository_for_scalable_model_management/links/568baf0508ae051f9afc5857/A-
repository-for-scalable-model-management.pdf (visited on 10/06/2021).

Vanhecke, T. E. (July 2008). ‘Zotero’. eng. In: Journal of the Medical Library Association : JMLA 96.3.
PMC2479046[pmcid], pp. 275–276. ISSN: 1536-5050. DOI: 10.3163/1536-5050.96.3.022.
URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2479046/.

69

https://docs.google.com/document/d/1KWFZTCiEtciFEbglth-pJbG6B9WnVekMHJCDoAPBJx4/edit
https://docs.google.com/document/d/1KWFZTCiEtciFEbglth-pJbG6B9WnVekMHJCDoAPBJx4/edit
https://doi.org/10.5120/ijca2017914389
https://guides.rubyonrails.org/getting_started.html
https://guides.rubyonrails.org/getting_started.html
https://docs.google.com/presentation/d/1n3ebWXWqclQyyEOugG4fK0k0Fc_vEcehqSH5AJmjgso/edit
https://docs.google.com/presentation/d/1n3ebWXWqclQyyEOugG4fK0k0Fc_vEcehqSH5AJmjgso/edit
https://www.researchgate.net/profile/Jesus-Sanchez-Cuadrado/publication/257491810_A_repository_for_scalable_model_management/links/568baf0508ae051f9afc5857/A-repository-for-scalable-model-management.pdf
https://www.researchgate.net/profile/Jesus-Sanchez-Cuadrado/publication/257491810_A_repository_for_scalable_model_management/links/568baf0508ae051f9afc5857/A-repository-for-scalable-model-management.pdf
https://www.researchgate.net/profile/Jesus-Sanchez-Cuadrado/publication/257491810_A_repository_for_scalable_model_management/links/568baf0508ae051f9afc5857/A-repository-for-scalable-model-management.pdf
https://www.researchgate.net/profile/Jesus-Sanchez-Cuadrado/publication/257491810_A_repository_for_scalable_model_management/links/568baf0508ae051f9afc5857/A-repository-for-scalable-model-management.pdf
https://doi.org/10.3163/1536-5050.96.3.022
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2479046/

Appendix A

General Class Diagram

The diagram shown in Figure X shows an overview of all class diagrams, with some relations
between different modules. Some relations, classes and attributes have been omitted for brevity.

70

APPENDIX A. GENERAL CLASS DIAGRAM

Data model

Define

modelled by

Define

constrained by

Actionable
Object

Actionable
Object

Actionable
Object

Actionable
Object

refers through

DataObject
DataType

+ name: String

+ representing_name
 _template: String

AttributeValue

+ value: String/Number
DataAttribute

+ name: String

+ type: String

Collaborating

concerns
<<interface>>

Actionable Object

details

Action

+ created_by: User

+ meta: JSON

+ parent_action: Action

justifies

Comment

replies to
+ created_by: User

+ text: String

ActionComment

elaborates

ResourceComment

ResourceAction

+ old_attributes: JSON

+ new_attributes: JSON

implements <<interface>>
ActionDetails

Importing

curates

Import

+ name: String

+ raw_data: String

+ meta: JSON

+ parsed_data: JSON

ImportRecord

+ data: JSON

CurationAction

+ created_data_object: DataObject

+ curation_session: CurationSession

+ import_record: ImportRecord

+ curation_type: [Discard, Create]

involves

CurationSession

+ started_by: User

Actionable
Object

Actionable
Object

belongs to leads to

User

+ email: String

+ password: String (Encrypted)

+ name: String

Actionable
Object

implements

Exploring

StoredQuery

+ query_string: String

+ created_by: User

Export

Actionable
Object

Collection

+ name: String

+ data_type: DataType
Actionable
Object

CollectionEntry

+ data_object: DataObject Actionable
Object

Actionable
Object

queries

Project

+ name: String

Figure A.1: General class diagram showing the most important entities and their relations in
the framework.

71

Appendix B

Wireframes of the Graphical User
Interface

Dark Matter

Related Work

link

Eindhoven

City of publication

angle-down

1872

Year of publication

calendar

Logica Nuclearis

Title

font

15

Volume number

hashtag

Heidelberg

Publisher

font

Create Work

Save

Figure B.1: The wireframe of the UI for creating a data object, in the example the created data
object would be of the data type named Work.

72

APPENDIX B. WIREFRAMES OF THE GRAPHICAL USER INTERFACE

Select a Work

ID Title Author Year of publication

12 1728Philosophia Rationalis C. Wolff

15 1852De nucleare logica H. Olland

16 1852Lord of the rings N. Arnia

17 1852Dark matter G. Ramsey

18 1852Imitatione Christi T. a Kempis

cog

SelectCreate new

Figure B.2: The wireframe of the popup UI for selecting a referenced data object for a reference
form field, while creating or updating a data object

Edit Work

Save

Archive

Dark Matter

Related Work

link

Eindhoven

City of publication

angle-down

1872

Year of publication

calendar

Logica Nuclearis

Title

font

15

Volume number

hashtag

Heidelberg

Publisher

font

Figure B.3: The wireframe of the UI for updating a data object, in the example the updated data
object would be of the data type named Work.

73

APPENDIX B. WIREFRAMES OF THE GRAPHICAL USER INTERFACE

Show Work

Title: Philosophia Rationalis sive Logica

Author: Wolff, Christian, Freiherr von, link

Manifestations:

587 Philosophia Rationalis sive Logica Frankfurt, Germany external-link-altLatin1728

573 Philosophia Rationalis sive Logica Frankfurt, Germany external-link-altLatin1732

2093 Philosophia Rationalis sive Logica Verona, Italy external-link-altLatin1735

572 Philosophia Rationalis sive Logica Frankurt, Germany external-link-altLatin1740

877 Philosophia Rationalis sive Logica Helmstadt, Germany external-link-altLatin 1746

Title LanguageYear Place ID cog

Items that refer to these Manifestations as “Manifestations”angle-down

152 Philosophia Rationalis sive
Logica

Heidelberg, Germany external-link-altHeidelberg University Library1740

153 Philosophia Rationalis sive
Logica

München, Germany external-link-altBavarian State Library1776

164 Philosophia Rationalis sive
Logica

Lelystad, Netherland external-link-altFlevomeer Library Lelystad1801

182 Philosophia Rationalis sive
Logica

Valencia, Spain external-link-altPublic Library of Valencia1788

201 Philosophia Rationalis sive
Logica

Dublin, Ireland external-link-altTrinity College Library1815

Title LibraryYear PlaceID cog

Documentaries that refer to these Manifestations as “Covered Manifestation”angle-right

Documentaries that refer to these Manifestations as “Source Manifestations”angle-right

25
6

Philosophia Rationalis sive
Logica

https://books.google.com/books/books?id=749 external-link-altGoogle
Books

1

48
3

Philosophia Rationalis sive
Logica

https://www.internetarchive.org/philosophiarati
00

external-link-altInternetArchive3

187 Philosophia Rationalis sive
Logica

https://reader.digitale-sammlungen.de/1000829
4

external-link-altMDZ 5

66
4

Philosophia Rationalis sive
Logica

https://books.google.com/books/wolffii-phil external-link-altGoogle
Books

4

77
8

Philosophia Rationalis sive
Logica

https://digital.slub-dresden.de/id/0-774211326 external-link-altSLUB1

Title SourceQuality LinkID cog

Digitized copies that refer to these Items as “item”angle-down

editedit work

comment

Figure B.4: The wireframe of the UI for reading a data object. The attribute values are shown
on top, and below is a part that shows all data objects that refer to the shown data object.

74

APPENDIX B. WIREFRAMES OF THE GRAPHICAL USER INTERFACE

Explore

Works
Explore all 259 works

Manifestations
Explore all 312 manifestations

Items
Explore all 100 items

Authors
Explore all 78 authors

Digitized Copies
Explore all 85 digitized copies

Figure B.5: The wireframe of the UI to pick a data type to start exploring data objects of that
data type.

75

APPENDIX B. WIREFRAMES OF THE GRAPHICAL USER INTERFACE

Explore manifestations

cogID Year of
publication

Title Place of
publication

Language Author Author VIAF

2249 1732 27095699 Kurtze Fragen Aus der
Philosophischen Historie

Ulm ger Brucker, Johann Jakob, external-link-alt

744 1732 155537508Institutionum philosophiae
theoreticae

Groningen Engelhard, Nicolaus, external-link-altlat

455 1732 25487639Philosophia juxta inconcussa
tutissimaque

Cologne lat Goudin, Antoine, external-link-alt

939 1732 20772815
Promptuarium philosophicum
complectens argumenta

Ingolstadt lat Hofer, Johann Baptist, external-link-alt

573 1732 7425989Philosophia Rationalis sive Logica Frankfurt lat Wolff, Christian, Freiherr von, external-link-alt

plus-circle Create a new manifestation...

1732

Search

search Advanced Filteringangle-right year of publication at least 1715 X

comment

check

Add to collection angle-down

arrow-down arrow-down arrow-down arrow-down arrow-down arrow-down

Figure B.6: The wireframe of the UI to show the results of a query

Select columns
Title

Author

Year of publication

Author

Original language

Figure B.7: The wireframe of the popup that allows the user to select the columns that should
be visible in a table representing a set of data objects.

76

APPENDIX B. WIREFRAMES OF THE GRAPHICAL USER INTERFACE

Advanced Filteringangle-down

Filter

pager
{

 "and": [

 {

 "exactly": {"title": "Dutch milestones"}

 },

 {

 "exactly": {"yearOfPublication": 1572}

 }]

}

savefolder-open

Figure B.8: The wireframe of the form that allows the user to enter a query using the DSL

Advanced Filteringangle-down
Active filters:

Add filter

OR Switch to AND

+ OR

author.name is exactly C. Olevianus OR

title is exactly Hungarian Dances

X

code savefolder-open

Add new filter:

title

Attribute of Manifestation

angle-down Logica Nucleori

Value

angle-downis exactly

Match

X

X

toggle-on Require one filter to match

author

Attribute of Manifestation

angle-down

C. Olevianus

Value

angle-downhas matching attribute

Match

name

Attribute of Author

angle-down angle-downis exactly

Match

yearOfPublication is exactly 1716 X

Figure B.9: The wireframe of the form that allows the user to enter a query using visual com-
ponents

77

APPENDIX B. WIREFRAMES OF THE GRAPHICAL USER INTERFACE

Collections

Germanic manifestations

Works mentioning Asterix

Works mentioning Idefix

Lost books

To be filtered

Add new collection...+

Figure B.10: The wireframe of the popup that allows the user to add data objects to a collection

Collections

Works

external-link-altgrip-vertical Germanic manifestations 722 works

external-link-altgrip-vertical Germanic manifestations 722 works

Manifestations

Items

external-link-altgrip-vertical Germanic manifestations 722 manifestations

external-link-altgrip-vertical Germanic manifestations 722 items

external-link-altgrip-vertical Germanic manifestations 722 manifestations

external-link-altgrip-vertical Germanic manifestations 722 items

Figure B.11: The wireframe of the UI that allows the user to select a Collection

78

APPENDIX B. WIREFRAMES OF THE GRAPHICAL USER INTERFACE

Collection: Germanic Books

cogID angle-down angle-down angle-down angle-down
Year of

publication
Title Place of

publication Language Author Author VIAF

show all works

2249 1732 27095699 Kurtze Fragen Aus der
Philosophischen Historie

Ulm ger Brucker, Johann Jakob, external-link-alt

744 1732 155537508Institutionum philosophiae
theoreticae

Groningen Engelhard, Nicolaus, external-link-altlat

455 1732 25487639Philosophia juxta inconcussa
tutissimaque

Cologne lat Goudin, Antoine, external-link-alt

939 1732 20772815
Promptuarium philosophicum
complectens argumenta

Ingolstadt lat Hofer, Johann Baptist, external-link-alt

573 1732 7425989Philosophia Rationalis sive Logica Frankfurt lat Wolff, Christian, Freiherr von, external-link-alt

plus-circle Create a new manifestation...

1732

Search

search Advanced Filteringangle-right year of publication at least 1715 X

comment

check

Export

Figure B.12: The wireframe of the UI that allows the user to explore a Collection

Export Collection

Export collection: “Gallic Books”, a collection of 504 works

Export as:

CSV

BibTex

Export

Figure B.13: The wireframe of the UI that allows the user to export a Collection

79

APPENDIX B. WIREFRAMES OF THE GRAPHICAL USER INTERFACE

Import data

Or continue existing imports

Import

+ select file...

Enter name...

continue2 feb 2021 worldcat-germany-15thcentury.xml

continue2 feb 2021 worldcat-germany-15thcentury.xml

Name

Figure B.14: The wireframe of the UI for the first phase of creating an import. The user can
either select a file and set a name, or continue with creating an import that was started before
but did not finish processing completely.

80

APPENDIX B. WIREFRAMES OF THE GRAPHICAL USER INTERFACE

Process Import

Bommelstein export

Name

CSV

File type

tab (\t)

Value separator Import date: 2 februari 2020

Settings

Import started by: Olivier B. Bommel

angle-down

angle-down

True

File has headers?

angle-down

Raw import data angle-down

https://www.worldcat.org/oclc/1013852407	3901196352	1728	lat	Gottlieb Stollii ..., Introdvctio in historiam litterariam in gratiam cvltorvm elegantiorvm litterarvm et philosophiae conscripta /	Stolle, Gottlieb,;Lange, Karl Heinrich.	Ien,		

https://www.worldcat.org/oclc/1003935962	4497961279	1730	lat	Philosophia Prima sive Ontologia, Methodo Scientifica Pertractata, qua Omnis Cognitionis Humanae Principia Continentur. Autore Christiano Wolfio, Consilario Aulico Hassiaco, Mathematum ac Philosophiae in Academia Marburgensi Professore Primario et Ordinis Philosophorum P.T. Decano, Professore Petropolitano Honorario, Societatum Regiarum Britannicae atque Borussicae Sodali. 	Wolff, Christian,	Francofurti & Lipsiae :		

https://www.worldcat.org/oclc/490167741	3768515598	1743	lat	Jacobi Bruckeri ... Historia critica philosophiae a Christo nato ad repurgatas usque literas. Periodi secundae pars altera. Tomus tertius. 	Brucker, Johann Jakob,;Breitkopf, Bernhard Christoph,	Lipsiae apud Bernh. Christoph. Breitkopf. MDCCXLIII.		

https://www.worldcat.org/oclc/39256041	2865280304	1730	lat	Philosophia Pollingana ad norman Burgundicæ. In qua.	Amort, Eusebius,	Augustæ Vindelicorum,		

https://www.worldcat.org/oclc/753476391	2678399	1775	ger	Philosophisches Lexicon, worinnen die in allen Theilen der Philosophie vorkommende Materien und Kunstwörter erkläret ... mit vielen neuen Zusätzen und Artikeln vermehrt ... wie auch mit einer kurzen kritischen Geschichte der Philosophie aus dem Bruckerischen grossen Werke versehen von Justus Christian Hennings / 	Walch, Johann Georg	Leipzig,		4. Aufl.

https://www.worldcat.org/oclc/466078626	24951340	1780	ger	Griechenlands erste Philosophen, oder Leben und Systeme des Orpheus, Pherecydes, Thales und Pythagoras 	Tiedemann, Dietrich	Leipzig,		

https://www.worldcat.org/oclc/632603831	3859190391	1736	ger	Auszug aus den kurtzen Fragen : aus der philosophischen Historie, von Anfang der Welt bisz auf unsere Zeiten, zum Gebrauch der Aufänger.	Brucker, Jacob.	Ulm :		

https://www.worldcat.org/oclc/895321990	3856115358	1772	ger	Thomas Abbts vermischte Werke. 	Abbt, Thomas,	Berlin ;		

https://www.worldcat.org/oclc/703821584	24430664	1778	ger	Von dem Begriffe der Philosophie und ihren Theilen ... 	Eberhard, J. A.	Berlin,		

https://www.worldcat.org/oclc/41321329	26947848	1734	lat	M. Christoph. Andreae Buttneri Fac. Philos. Hal. Adiunct. Cursus philosophicus omnes philosophiae partes complectens. 	Büttner, Christoph Andreas,	Halae Magdeburg :		

https://www.worldcat.org/oclc/895315534	2864364572	1753	ger	Georg Friedrich Meiers, (...) philosophische Sittenlehre. 	Meier, Georg Friedrich,	Halle im Magdeburgischen :		

https://www.worldcat.org/oclc/919962701	4820735910	1747	lat	Danielis Georgii Morhofii Polyhistor, literarius, philosophicis et practicus ... / 	Boeckmann, Peter,;Frick, Johann Georg,;Moller, Johann,;Morhof, Daniel Georg,	Lubecae :		Editio quarta.

https://www.worldcat.org/oclc/52060544	9130915	1748	lat	Vernünftige Gedanken von dem Wahrscheinlichen und desselben gefährlichen Missbrauche. 	Thorschmid, Urban Gottlob.;Chladni, Johann Martin,	Stralsund Griefswalde u. Leipzig,		

https://www.worldcat.org/oclc/1003964161	4497990335	1746	lat	Georgii Bernhardi Bilfingeri Dilucidationes philosophicae De deo, anima humana, mundo, et generalibus rerum affectionibus. 		Tubingae :		Editio tertia. Auctior et prioribus multo emendatior.

https://www.worldcat.org/oclc/42867142	3858006332	1747	lat	Frid. Christiani Baumeisteri ... Institutiones philosophiae rationalis methodo VVolfii conscriptae. 	Baumeister, Friedrich Christian,	Vitembergae :		Editio undecima auctior et emendatior.

https://www.worldcat.org/oclc/921181259	2620627581	1778	ger	Magazin für die Philosophie und ihre Geschichte. Aus den Jahrbüchern der Akademien angelegt von Michae Hißmann, der Weltweisheit Doktor in Göttingen. Erster Band. 	Priestley, Joseph;Canaye, Étienne de;Achard, Franz Carl;Hissmann, Michael;Mérian, Jean Bernard;Maupertuis, Pierre-Louis Moreau de;Sevin, François;La Nauze, Louis Jouard de;Boivin, Jean;Meyer, Officine.			

https://www.worldcat.org/oclc/920365794	5090661777	1733	ger	Jacob Bruckers / 	Brucker, Johann Jakob;Bartholomäi, Daniel			

Save

Parsed records preview angle-down

Figure B.15: The wireframe of the UI for the second phase of creating an import. The user can
select meta data to parse the raw data and save the import.

81

APPENDIX B. WIREFRAMES OF THE GRAPHICAL USER INTERFACE

Imports

playgrip-vertical 2 feb 2021 worldcat-germany-15thcentury.xml 722 imported records

playgrip-vertical 2 feb 2021 worldcat-germany-15thcentury.xml 722 imported records

playgrip-vertical 2 feb 2021 worldcat-germany-15thcentury.xml 722 imported records

Figure B.16: The wireframe of the UI for the index page of imports

Import as manifestations

Import as works

Import as digitized copies

Import as item

Import as authors

Figure B.17: The wireframe of the UI for creating a new curation session from an import

82

APPENDIX B. WIREFRAMES OF THE GRAPHICAL USER INTERFACE

Imported manifestations

Year
(Jahre) Title Publisher city Author name Author viaf no.ID cog

1872152 Logica nucleori Heidelberg Joseph Haydn

Original Data:

angle-down

Heidelberg

Work

link

1872

Year of publication

calendar

Logica Nuclearis

Title

font

Heidelberg

Publisher

font

Heidelberg

Publisher

font

Heidelberg

Publisher

font

Heidelberg

Publisher

font

Heidelberg

Publisher

font

IncludeExclude

1872152 Logica nucleori Heidelberg Joseph Haydn trash

1872152 Logica nucleori Heidelberg Joseph Haydn trash

1872152 Logica nucleori Heidelberg Joseph Haydn trash

1872152 Logica nucleori Heidelberg Joseph Haydn trash

1872152 Logica nucleori Heidelberg Joseph Haydn trash

Assign Fields

Import name Model name

Year

Year

Year

angle-down

angle-down

angle-down

JahreJahre

Jahre

Jahre

angle-down Tools angle-down

� Year: 187�
� Title: Logica nucleor�
� Publisher city: Heidelber�
� Author name: Joseph Hayd�
� Author viaf no.: n/a

Figure B.18: The wireframe of the UI of a curation session. The user can go through each import
record iteratively, while normalizing the data or simply including or excluding it.

83

APPENDIX B. WIREFRAMES OF THE GRAPHICAL USER INTERFACE

Figure B.19: The wireframe of the UI of the index page of curation sessions, that allow the user
to continue a curation session that was started before, or review actions that were performed
and decisions that were made in a specific curation session.

84

APPENDIX B. WIREFRAMES OF THE GRAPHICAL USER INTERFACE

History
Manifestation: Kurtze Fragen Aus der
Philosophischen Historie

Commentstoggle-on Actionstoggle-on

Commented 12 January, 16:07

DK
Sometimes I wonder if I really can. But
then I think to myself, maybe I can't. But
if I could, that would be good. Maybe it's
all a lie?

comment

Commented 12 January, 16:07

AB

Donut caramels croissant candy canes
lollipop dragée apple pie. Sesame snaps
tart chupa chups cheesecake tiramisu
dessert pie soufflé tootsie roll. Pastry
lemon drops ice cream cotton candy.

comment

show more

Commented 12 January, 16:07

BS

I'm baby post-ironic sustainable VHS,
mustache humblebrag meh offal palo
santo squid chia narwhal art party
pickled raw denim kombucha. Man bun
asymmetrical DIY, 90's hot chicken
thundercats jianbing +1. Venmo
normcore subway tile, selfies photo
booth chia street art heirloom YOLO
pug. Kinfolk marfa woke ennui...

angle-right

show less

Commented 12 January, 16:07

MC

Ultimate measure of success i also
believe it's important for every member
to be involved and invested in our
company and this is one way to do so
prairie dogging, or we can't hear you or
run it up the flag pole so quarterly sales
are at an all-time low for offline this
discussion. Big data we are running out
of runway for come up with something
buzzworthy golden goose, nor can you
put it into a banner that is not alarming,
but eye catching and not too giant so
dunder mifflin. All hands on deck into
the weeds, back of the net drill down.
T-shaped individual teams were able to
drive adoption and awareness and
screw the pooch, so a better
understanding of usage can aid in
prioritizing future efforts blue sky
thinking we need to future-proof this,
and we need evergreen content.

angle-upcomment

Performed 12 January, 16:07

AB

Update

New attribute values�
� Title: Kurtze Fragen Aus Der

Philosophischen histori�
� Author: Christian Wolff

Original attribute values�
� Title: Korte Vrage�
� Author: H. de Groot

I think this history is unacceptable, it does not
boil the shrimps like plants which microphones
the oven like a switch but white spoons exfiltrate
some of the

Comment

paper-plane

comment

Figure B.20: The wireframe of the Collaborating UI where both comments and actions are vis-
ible.

85

APPENDIX B. WIREFRAMES OF THE GRAPHICAL USER INTERFACE

History
Manifestation: Kurtze Fragen Aus der
Philosophischen Historie

Commentstoggle-off Actionstoggle-on

Performed 12 January, 16:07

AB

Update

New attribute values�
� Title: Kurtze Fragen Aus Der

Philosophischen histori�
� Author: Christian Wolff

Original attribute values�
� Title: Korte Vrage�
� Author: H. de Groot

comment

Figure B.21: The wireframe of the Collaborating UI where only actions are visible.

86

APPENDIX B. WIREFRAMES OF THE GRAPHICAL USER INTERFACE

History
Manifestation: Kurtze Fragen Aus der
Philosophischen Historie

Commentstoggle-on Actionstoggle-off

Commented 12 January, 16:07

DK
Sometimes I wonder if I really can. But
then I think to myself, maybe I can't. But
if I could, that would be good. Maybe it's
all a lie?

Commented 12 January, 16:07

AB

Donut caramels croissant candy canes
lollipop dragée apple pie. Sesame
snaps tart chupa chups cheesecake
tiramisu dessert pie soufflé tootsie roll.
Pastry lemon drops ice cream cotton
candy. comment

Commented 12 January, 16:07

AB

Donut caramels croissant candy canes
lollipop dragée apple pie. Sesame snaps
tart chupa chups cheesecake tiramisu
dessert pie soufflé tootsie roll. Pastry
lemon drops ice cream cotton candy.

comment

Commented 12 January, 16:07

AB

Donut caramels croissant candy
canes lollipop dragée apple pie.
Sesame snaps tart chupa chups
cheesecake tiramisu dessert pie
soufflé tootsie roll. Pastry lemon
drops ice cream cotton candy. comment

I think this history is unacceptable, it does not
boil the shrimps like plants which microphones
the oven like a switch but white spoons exfiltrate
some of the

Comment

paper-plane

comment

Show repliesangle-right

hide repliesangle-up

Figure B.22: The wireframe of the Collaborating UI where only comments are visible.

87

Appendix C

Screenshots of the implementation
of prototype

Figure C.1: Screenshot of the login screen, the place where the user can authenticate to get access
to the framework.

88

APPENDIX C. SCREENSHOTS OF THE IMPLEMENTATION OF PROTOTYPE

Figure C.2: Screenshot of the project overview screen. The user can select one of the projects to
work on.

Figure C.3: Screenshot of the import overview screen. The user can see previously created
imports, continue an unfinished import (indicated by the red icon), or start a new import. Also,
the user can start a new curation session from any finished import here.

89

APPENDIX C. SCREENSHOTS OF THE IMPLEMENTATION OF PROTOTYPE

Figure C.4: Screenshot of the import creation screen. The user can upload a new file and create
an import from it.

Figure C.5: Screenshot of the curation session overview screen. The user can see started curation
sessions and continue with a curation session.

90

APPENDIX C. SCREENSHOTS OF THE IMPLEMENTATION OF PROTOTYPE

Figure C.6: Screenshot of the curation session screen. The user can select a mapping to map the
fields or columns in the import to DataAttributes.

Figure C.7: Screenshot of the curation session screen. The user can include each import record
to create a new data object, a manifestation in this specific example. Alternatively, the user can
exclude an import record

91

APPENDIX C. SCREENSHOTS OF THE IMPLEMENTATION OF PROTOTYPE

Figure C.8: Screenshot of the Exploring overview screen. The user can select a data type to
explore.

Figure C.9: Screenshot of the Exploring screen, showing filters using the . The user can create
filters using visual components in order to filter the data objects, again manifestations in this
example, shown in the table at the bottom. Clicking on the icon in a row of the table will take
the user to the screen to see all details of a data object, as seen in Figure C.12

92

APPENDIX C. SCREENSHOTS OF THE IMPLEMENTATION OF PROTOTYPE

Figure C.10: Screenshot of the Exploring screen. The user can create filters by entering a query in
the DSL. The query editor provides highlighting to provide the user visual cues to understand
the structure of the query

Figure C.11: Screenshot of the Exploring screen. If the user enters an invalid query, a syntax
validation error will show, so the user can instantly see what the syntax error is, and fix it.

93

APPENDIX C. SCREENSHOTS OF THE IMPLEMENTATION OF PROTOTYPE

Figure C.12: Screenshot of the data object show screen. This interface only contains the plain
data of the data object, and should be extended in several areas.

94

	Contents
	List of Figures
	Introduction
	Bibliographic Data
	Workflow of a Historian of Ideas
	Towards Computational History of Ideas
	Challenges

	Related Work
	Related Tools
	Data Storage Technologies

	Scope of Project

	Description
	Users of the Framework
	Generalized Framework Description
	Definitions
	Requirements
	Functional Requirements
	Non-functional Requirements

	Design Scope

	Architecture
	Main Challenges
	Approach
	Interface Points
	Application Backend

	Considerations
	Monolith versus Micro-Services
	Open Source versus Closed Source
	Deletion versus Archiving

	Design
	Definitions
	Design Choices
	Interface Points
	Projects
	Authentication

	Dynamic Data Model
	Class Design
	Database Design
	Interaction
	UI Design
	Feedback Sessions

	Query Engine
	Process
	Query DSL Semantics
	Class Design

	Exploring
	Technical Design
	Database Design
	UI Design
	Feedback Sessions

	Importing
	Class Design
	Database Design
	UI Design
	Feedback Sessions

	Collaborating
	Class Design
	Database Design
	UI Design
	Feedback Sessions

	Implementation
	Method
	Front End
	Back End

	Results

	Conclusion
	Future Work

	Bibliography
	General Class Diagram
	Wireframes of the Graphical User Interface
	Screenshots of the implementation of prototype

