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Abstract

Knowledge graphs have shown to be effective at capturing domain knowledge to extract value
from data sources. Multiple knowledge graph construction engines have emerged to create knowl-
edge graphs; each with its own use-case, configuration settings, accepted mapping language(s)
and implementation language. This variety of tools also has its downsides in that it hinders
reproducibility; a mapping could lead to different results depending on the engine used. Fur-
thermore, switching between engines is not a trivial task, since all configuration settings have
to be set for each engine. In this thesis, an abstraction layer is proposed over the knowledge
graph construction engines to tackle this. The abstraction layer consists of a newly proposed
extension, that is mapping language independent, which declares the configurations; each con-
figuration follows from an investigation into the implicit settings of the creation of a knowledge
graph. The extension, called Templated Mapping Language (TML), is combined with a parser
that generates a mapping and the configuration file and/or command for a chosen engine. An
implementation is built to show the viability of the proposal, which is hosted as a website for
easy access and usage for a wide audience. The work presents a starting point to make knowledge
graph construction more accessible by abstracting away the intricacies in setting up an engine.
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Chapter 1

Introduction

In our day-to-day lives, we define all characteristics with relationships. A clear example of such
is a married couple, who are in a relationship with each-other. Relationships are not limited
between people in a romantic sense though; other examples are that a boy has a mother or
that a person is born in the Netherlands. These are all simple statements to understand for
humans, however not for a computer. Therefore, the Resource Description Framework (RDF)1

was proposed to formally state relationships with a subject-predicate-object triple (such as boy-
has-mother) in a machine-readable way. Relationships like these are far-stretching and could
be used to describe any sort of data that is related to each-other. These triples on its own are
not precise enough; often a word can be interpreted in multiple ways. To formalize the exact
meaning of a word, an extra vocabulary is required that states the meaning unambiguously.
Such an extra vocabulary with formalizations is called an ontology and is often build on top of
the Web Ontology Language (OWL)2.

The formal definition of relationships is the basis of a knowledge graph. Such a graph is a
combination of multiple triples that can be subsequently queried to find insights into the data
from which it was built. The data could be coming for example from a single Excel sheet, a
commercial database, or a combination of both. Ideally, all relevant data sources should be used
to have all relevant relationships in the knowledge graph and to extract the maximum value of
all the available data. The problem is that often all of this data is scattered across multiple
places and the process of combining all these together commonly yields various challenges. For
instance, the data in one location could use a different format than in another location, the data
is inconsistent and/or spelling mistakes were made. Solving these challenges could prove to be
quite tedious or even near to impossible.

As an end-user, the exact way how these challenges are addressed is normally not relevant. The
intricacies are not known as there are multiple layers of abstraction to make it more applicable
for a wider audience. This is the same way of how modern-day browsers function; a user simply
wants to type in an address (or search for it using an engine) and go to a website. The actual way
how this connection is made or how a Domain Name system (DNS) is used to find the IP address
of the human-readable address does not need to be known by the user. Such an abstraction layer
is also called a wrapper [1] (layer on top of source) or a mediator [2] (middle layer) within data
integration; these allow a modular approach that derive the needed architecture to be derived

1https://www.w3.org/TR/rdf11-concepts/
2https://www.w3.org/TR/owl2-syntax/
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from higher level settings (such as which format a website should be displayed depending on
screen size).

This thesis provides the same abstraction over the engines that actually construct a knowledge
graph: the knowledge graph construction engines. These take as input a mapping in a sup-
ported mapping language, which specifies the connection between the data and the formalized
relationships. Besides that, an engine also needs a configuration file and/or command to run
successfully. The configuration file and/or command are engine-specific and one needs to dive
into the documentation to find the exact settings to set. This is not only time-consuming, but
also hampers reproducibility as the output of one declarative mapping could be different based
on the settings of an engine. This means that evaluation of those engines, such as benchmarks,
cannot be accurately compared.

To provide this abstraction, an extension on top of any mapping (independent of mapping
language) is proposed using a templating language: the Templated Mapping Language (TML).
In TML, high-level settings can be set directly; after which a parser translates these to the
configurations for a chosen engine. The high-level settings added follow from a created overview
of the configuration file options and commands.

The viability of the proposed abstraction is shown by the creation of an on-demand parser that
is hosted as a website with an user-friendly interface. This work could be a starting point on
which more settings can be added as well as that mapping translations could be integrated in
the future to enable easier use of knowledge graph creation for a wider audience.
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Chapter 2

State of the Art

The related background work is aggregated and laid out in this chapter. The focus is on what
has been done before and how we can build on top of that. For this, we need to consider the
fundamentals of the field as well as the most recent developments. We will start with the field
of data integration, after which we continue with semantic web technologies, link both of the
previous together in ontology based data access and end with the knowledge graph construction
engines.

2.1 Data Integration

Data is typically stored in different places and sometimes in different formats too. From organi-
zations to individual persons, everyone is having multiple files in various formats stored across
different folders and often scattered across computers (for example storing on the cloud). The
process of data integration concerns about combining these data and providing a unified view
over these [3].

There are two modeling approaches to provide this unified view [4]:

1. Local-as-view, shortened as the LAV approach, is when the different source files are a
view of a globally defined (stable) schema. This is, for example, common in enterprise
systems - where all data files are a part of the enterprise - or when a set ontology is
followed (we state more about ontologies below).

2. Global-as-view, shortened as the GAV approach, is when the source files are stable. The
views are then extracted from (parts of) the source data to obtain the desired view.

More formally, the above are defined using the main components of a data integration system:
the global schema G, the source schema S and the mapping M between the previous two. A
data integration system I then uses a triple < G,S,M > where [4]:

• G is expressed in a language LG over an alphabet AG of which the alphabet has a symbol
for each element in G.

• S is expressed in a language LS over an alphabet AS of which the alphabet also includes
a symbol for each element that is in the sources.

• M contains the mappings between G and S in the form of assertions between queries on
G and S.

3



2.1. Data Integration

These two approaches could also be combined with the aim to get the best of both worlds; global-
local-as-view (GLAV) has the advantage of allowing recursive queries in source descriptions [5].

2.1.1 Architecture

Behind the scenes of the different views, there is a lot of data that differs from each-other. The
same information could for example be worded differently: ’33’ obviously has the same meaning
as ’thirty-three’ or even ’thirty-tree’ (when someone made a spelling mistake). Furthermore
various time-zones could be used or putting data in various formats: splitting the data over
multiple columns or combining it. Lastly the data could be different in various locations: a pizza
get ordered online at 17:00, but the restaurant receives the order at 17:01; it is the same order,
but the times are not equal. These challenges of traditional data integration are summarized
with the following three terms [6]:

1. Semantic Ambiguity;
(i) information meaning the same may be written differently and (ii) different information
may be written to mean the same (while it is not the same).

2. Instance Representation Ambiguity;
the same identifiers are formatted in different ways.

3. Data Inconsistency;
there is a difference in the information per source, not all columns are present in every
source.

These challenges are in turn addressed with the help of the steps in the architecture of Figure 2.1;
one step per challenge.

Schema
Mapping

Record
Linkage Data Fusion

Figure 2.1: Data integration architecture

These steps are subsequently defined as [7]:

1. Schema Mapping

i. making a global schema (G).

ii. making the mapping (M) between each source schema (S) and the global schema
(G).

2. Record Linkage

i. identifying the various columns that are referencing to the same sort of entity.

3. Data Fusion

i. resolving conflicts when combining the different data from the sources by aiming to
find the true value.

ii. the focus is on high quality data.

2.1.2 Mediators and Wrappers

The general approach is to put layers of abstraction over techniques, such that it is more ap-
plicable for a wider audience. Data integration is no different; the above described architecture

4
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is often not set manually, but derived from higher level settings. In data integration, we call a
layer of abstraction either a mediator or a wrapper.

A mediator is a middle layer between sets or subsets of data to create information for a higher
level of applications [2]. It should be made as a software module and, above all, small and simple.
This means that users could inspect its rules easily, as well as that expert(s) could maintain it.
Multiple mediators could subsequently be combined by building another mediator on top of it,
effectively creating a hierarchy of mediators.

A wrapper, on the other hand, is a layer on top of a source to translate the queries of the end-user
application into source specific queries or commands [1]. For this reason, it is also sometimes
called a translator. Sources may be arbitrary text files, tables, documents or any available format.
If a source does not support a component of the application query, the wrapper will handle it
by first querying what is possible for the source and subsequently formatting it correctly.

An overview of the layers of abstraction from (data) sources to the result within the application
is shown in Figure 2.2. When a user wants a result, he/she clicks or writes the necessary query
in the application. When evaluating, one or multiple mediators decide which source(s) to query.
The mediator(s) then query the wrapper(s) on top of these source(s) to get the information they
need. Lastly, when all necessary results are returned in a wrapper, the wrapper returns this to
the mediator(s); which subsequently returns it to other mediator(s) or to the application.

Figure 2.2: Mediators and wrappers as part of abstraction layers to give the end-user the result
he/she wants

2.2 Semantic Web Technologies

Most of the internet that we consume is made for humans and is thus human-readable. What
is easy for humans to read and comprehend, is often not the case for machines. The Semantic
Web is a way to bring structure to the content of the various web pages, such that computers

5



2.2. Semantic Web Technologies

can perform sophisticated tasks for humans [8]. It is not a separate web, but more so enhancing
the web we can see. To have this structured clear overview of knowledge, extra hidden labels
are present in pages that give out these information to computers. Traditionally, eXtensible
Markup Language (XML) is used to create these labels [8]. Furthermore, meaning is written
with the help of the Resource Description Framework (RDF); which contains triples of subject,
predicate and object to link various things together. We will discuss RDF more in detail below
with the help of examples.

But how do we link together databases from different providers? After all, we discussed above
in Data Integration that the same identifier could be in various formats, while referencing the
same object. A solution is using groups of information called ontologies [8], basically providing
a controlled vocabulary on how different information is linked together.

All that is then left to do is convert the information within the various databases to use the
defined ontologies. For this, we use mapping languages.

Within this section, we elaborate on the fundamentals of Semantic Web technologies as well as
go into more detail in the current state of the art of ontologies and mapping languages.

2.2.1 Fundamentals

RDF

The Resource Description Framework (RDF)1 is used for representing information in the web.
The basic idea is to use a set of triples, each having a subject, a predicate and an object. These
sets of triples are often also called an RDF graph and can be visualized, such as as shown in
Figure 2.3 for one triple. Multiple RDF graphs form a RDF dataset.

Subject ObjectPredicate

Figure 2.3: An RDF graph showing a single triple

These triples are able to formally state most relationships. An example could be that there is
boy called Tim, which has a grandfather called John. This is very straightforward to understand
for humans, however a computer needs some time to decipher the relationship. We could make
the relationship explicit instead with the help of a triple. Basically, the concept is shown in
Figure 2.4.

Tim John
has grandfather

Figure 2.4: An RDF graph showing an example

In RDF, it is a bit more formalized and it uses an IRI (Internationalized Resource Identifier)
for the predicate (and often also for the subject and object). These IRI are like an URL of a
website and (as these are unique) have an unique meaning. An example of RDF with IRI is
shown in Figure 2.5. We can see that the subject Tim within the example.org domain is of the
type Person, however this is a bit harder to read. There are multiple serialization formats for

1https://www.w3.org/TR/rdf11-concepts/
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http://example.org/Tim http://xmlns.com/foaf/0.1/Person

http://www.w3.org/1999/02/22-rdf-syntax-ns#type

Figure 2.5: An RDF graph showing an example using IRI

RDF, which often have the goal to make it easier to read and create for humans. Some common
formats are (with examples using Figure 2.4):

• RDF/XML2, which (as the name tells) is XML-based. It was the first standard format.

Listing 1: Example of RDF/XML using the example as defined in Figure 2.4
<?xml version="1.0" encoding="utf-8" ?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:rel="http://www.perceive.net/schemas/relationship/">

<foaf:Person rdf:about="http://example.org/#Tim">
<foaf:name>Tim</foaf:name>
<rel:grandchildOf rdf:resource="http://example.org/#John"/>

</foaf:Person>

<foaf:Person rdf:about="http://example.org/#John">
<foaf:name>John</foaf:name>
<rel:grandparentOf rdf:resource="http://example.org/#Tim"/>

</foaf:Person>

</rdf:RDF>

• Turtle3, which is compact and made to be human-readable.

Listing 2: Example of Turtle using the example as defined in Figure 2.4
@base <http://example.org/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rel: <http://www.perceive.net/schemas/relationship/> .

<#Tim>
rdf:type foaf:Person ;
foaf:name "Tim" ;
rel:grandchildOf <#John> .

<#John>
rdf:type foaf:Person ;
foaf:name "John" ;
rel:grandparentOf <#Tim> .

• N-Triples 4, which defines one triple per line and everything is stored within plain text.
Not quite readable for humans.

Listing 3: Example of N-Triples using the example as defined in Figure 2.4

2https://www.w3.org/TR/rdf-syntax-grammar/
3https://www.w3.org/TR/turtle/
4https://www.w3.org/TR/n-triples/
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2.2. Semantic Web Technologies

<http://example.org/#Tim> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://xmlns.com/foaf/0.1/Person> .↪→

<http://example.org/#Tim> <http://xmlns.com/foaf/0.1/name> "Tim" .
<http://example.org/#Tim> <http://www.perceive.net/schemas/relationship/grandchildOf>

<http://example.org/#John> .↪→

<http://example.org/#John> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://xmlns.com/foaf/0.1/Person> .↪→

<http://example.org/#John> <http://xmlns.com/foaf/0.1/name> "John" .
<http://example.org/#John> <http://www.perceive.net/schemas/relationship/grandparentOf>

<http://example.org/#Tim> .↪→

• N-Quads5, which is almost the same as N-Triples; it additionally allows specifying each
triple for a specific RDF graph.

Listing 4: Example of N-Quads using the example as defined in Figure 2.4
<http://example.org/#Tim> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://xmlns.com/foaf/0.1/Person> <http://example.org/graphs/family> .↪→

<http://example.org/#Tim> <http://xmlns.com/foaf/0.1/name> "Tim"
<http://example.org/graphs/family> .↪→

<http://example.org/#Tim> <http://www.perceive.net/schemas/relationship/grandchildOf>
<http://example.org/#John> <http://example.org/graphs/family> .↪→

<http://example.org/#John> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://xmlns.com/foaf/0.1/Person> <http://example.org/graphs/family> .↪→

<http://example.org/#John> <http://xmlns.com/foaf/0.1/name> "John"
<http://example.org/graphs/family> .↪→

<http://example.org/#John> <http://www.perceive.net/schemas/relationship/grandparentOf>
<http://example.org/#Tim> <http://example.org/graphs/family> .↪→

• JSON-LD 6, which builds on top of JSON and aims to be used for an easy transition
from JSON to JSON-LD (JSON for Linked Data).

Listing 5: Example of JSON-LD using the example as defined in Figure 2.4
[

{
"@id": "http://example.org/#John",
"@type": [

"http://xmlns.com/foaf/0.1/Person"
],
"http://xmlns.com/foaf/0.1/name": [

{
"@value": "John"

}
],
"http://www.perceive.net/schemas/relationship/grandparentOf": [

{
"@id": "http://example.org/#Tim"

}
]

},
{

"@id": "http://example.org/#Tim",
"@type": [

"http://xmlns.com/foaf/0.1/Person"
],

5https://www.w3.org/TR/n-quads/
6https://www.w3.org/TR/json-ld/
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"http://xmlns.com/foaf/0.1/name": [
{

"@value": "Tim"
}

],
"http://www.perceive.net/schemas/relationship/grandchildOf": [

{
"@id": "http://example.org/#John"

}
]

},
{

"@id": "http://xmlns.com/foaf/0.1/Person"
}

]

In these examples, we either see an IRI (e.g. http://example.org/#Tim) or a literal (e.g. "Tim").
There is however a third option: a blank node. This is when there is a relationship, however it
is not explicitly named. Think of saying that John is a grandparent, however it is not known
what the name of his grandchild is. Within an RDF triple, the predicate always has to be an
IRI, the subject has to be an IRI or a blank node, and the object could be an IRI, a literal or a
blank node.

OWL

TheWeb Ontology Language (OWL)7 enables the building of ontologies. An ontology is basically
a set of relationships, properties and formalizations to show how different properties are related
to each other. An example can be seen in Figure 2.5, where we are using the IRI http://xmlns.
com/foaf/0.1/Person; this IRI comes from the Friend Of A Friend (FOAF) ontology8. There
are many ontologies available and it is possible to create your own. To link more data together,
however, it is beneficial to re-use as much as possible from the already existing ontologies out
there.

These ontologies in turn are build upon RDF and OWL (what is built upon RDF/XML itself),
which could be seen as the basic blocks to build with. The same as with blocks, you can also use
existing ontologies and enhance them or combine them together to make whatever suits your
need.

The OWL ontology is an RDF graph and offers an easier way of building ontologies. For example,
the following (in RDF/XML):

<owl:Class rdf:ID="Family"/>

is the same as (in RDF/XML):

<rdf:Description rdf:about="#Family">
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#Class"/>

</rdf:Description>

Both would be encoded the same as RDF triples, however the first is significantly faster to write
- especially when there is a large amount of classes, properties and other constraints.

7https://www.w3.org/TR/owl2-syntax/
8http://xmlns.com/foaf/spec/
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2.2. Semantic Web Technologies

SPARQL

SPARQL9 is the query language to retrieve information from data stored in RDF. Queries are
using patterns in the RDF graphs as well as certain constraint to find the part of the RDF graph
that is desired as output.

A simple query could be to find the name of each person in the database or we could find the
names of each grandchild together with the name(s) of its grandparents as shown in Listing 6 and
its output in Table 2.1. In this query, we can see the graph patterns clearly: it are the triples
that look like RDF triples, but have a variable (e.g. ?grandchild) in the place of a subject,
predicate and/or an object. We can combine these together, as shown in the example, to get
various properties of a same variable.

Listing 6: Example of SPARQL querying to find the name of a grandchild with the name(s)
of its grandparents. The RDF structure is assumed to be the same as for the RDF examples
above, e.g. as in Listing 2.
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX rel: <http://www.perceive.net/schemas/relationship/>

SELECT ?grandchildName ?grandparentName
WHERE {

?grandchild rdf:type foaf:Person .
?grandchild foaf:name ?grandchildName .
?grandchild rel:grandchildOf ?grandparent .
?grandparent foaf:name ?grandparentName

}

Table 2.1: Resulting table after executing the SPARQL query in Listing 6 on the RDF of Tim
and his grandfather John in Turtle format in Listing 2.

grandchildName grandparentName

Tim John

Furthermore, we could also add constraints using the FILTER functions in SPARQL to only
include matches that fit the criteria. An example could be to only filter for a specific family
name (if present in the RDF graph).

Lastly, SPARQL can not only return the values it found, it can also create RDF graphs itself.
This is, for example, useful when an organisation is using its own ontology and we would like to
map this to another one that is more used and generally can link more data together. This is
done by using CONSTRUCT instead of SELECT, followed by curly braces and the corresponding
RDF triples with the variables resulting from the graph pattern. The new RDF graph will then
have the resulting variables from the graph patterns filled in according to these RDF triples.

2.2.2 Ontologies

The re-use of existing ontologies is confusing when there are hundreds, if not thousands, of
ontologies already. Which one is best to use and what are the other ontologies using? The

9https://www.w3.org/TR/sparql11-query/
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Linked Open Vocabularies10 helps by giving an overview of 750 common ontologies and how
they are related to each other.

All these ontologies are written on top of each other and inevitably on top of RDF. A problem
could arise when there are two ontologies that have been built on separate ontologies. Look, for
example, at Figure 2.6 in which we see the ontologies A, B, C, D and E. These are build upon
OWL and RDF (A could also directly use RDF without a concrete line between them). E is
build upon A, as well as B. C and D, in turn, are build upon B. They are all related, however
there could be a property in E that is the same in D; their only difference is that it is named
differently. Assume we have two datasets: one using ontology D and one using ontology E. To
integrate both, we would like to have a mapping that states which property is the most similar
to a property of the other ontology. This could be done manually, however that is often tedious.
Ontology-matching could also be done automatically by finding the most similar property [9].
In the next section, we will dive deeper into mapping languages to actually define this mapping.

RDF

OWL

A

B

C D

E

How to map?

Figure 2.6: Example of ontologies build on top of each other

2.2.3 Mapping Languages

We have a dataset and the relevant ontologies are found we want to use, now we have to map
the dataset to be using the terms in the vocabulary. It is possible to manually map every item
to the ontology as e.g. shown in Figure 2.5, but this is error-prone and tedious. It could even
be that the dataset itself is huge, which means it is an enormous task to do by hand. Luckily,
this is what a mapping language is for, it automates the process.

Just like there are multiple program languages, there are also multiple mapping languages. Some
of them laid out the foundations and have limited functionalities, while others have become more
advanced. In this section, we will take a look at both of them.

R2O

R2O (Relational to Ontology) [10] is one of the earlier mapping languages. It is more expressive,
meaning it is able to handle complex mapping situations. These situations could occur when
there are lower levels of similarity between an ontology and the dataset itself; e.g. the ontology

10https://lov.linkeddata.es/dataset/lov
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is too specific or the dataset contains more terms than are in the ontology. The mapping
definitions in R2O are not meant to be read by humans, instead they should be generated
through a graphical user interface.

D2RQ

D2RQ [11] is also one of the earlier mapping languages. It wraps one or more local relational
databases into a virtual read-only RDF graph. This presents the opportunity that a legacy
database could continue being maintained and used by non-RDF applications, as well as virtually
map it when needed for RDF applications.

R2RML

R2RML11 is the standard mapping language for mapping relational DBs to RDF as per W3C
recommendation. It uses the RDF Turtle serialization format (as seen in subsection 2.2.1) for
its mapping documents. The triples are in this case a triple map; each of which has to have at
least the following predicates:

• http://www.w3.org/ns/r2rml#logicalTable with the corresponding table as object for
this triple map (must be exactly one);

• http://www.w3.org/ns/r2rml#subjectMap which specifies how to create a subject for
each row of the table (must be exactly one).

Optionally, the following predicate could zero or more time used as predicate:

• http://www.w3.org/ns/r2rml#predicateObjectMap with predicate-object values within
to specify how to generate the predicates and objects (with the subject following from the
subjectMap).

Example 2.1 (Tim and John; from relational database to RDF) To see how to actu-
ally use R2RML, we continue the example of Tim and his grandfather John. Let us assume
that there is database with persons, where both Tim and John are in. Normally a grandfather is
not defined directly as we can deduce this from their parents. Therefore, we show the mother of
Tim also in the snippet of the relational database in Table 2.2. In here, we also see the country
in which someone is born; however it it a country identifier, the information is stored within the
relational database snippet in Table 2.3.

By considering this subset of the relational databases, we can showcase a simple Turtle file with
how we would like the resulting RDF to look like. The same ontologies as we used before, in e.g.
Listing 2, will be used and we define a new ontology as an example where the data will be stored.
The resulting file is shown in Listing 7.

To go from the relational database tables to the resulting RDF in Turtle format, we will define a
mapping. This example is used to compare some of these mappings in various mapping languages
against each-other.

11https://www.w3.org/TR/r2rml/
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Table 2.2: Snippet of a relational database table called ’PEOPLE’, wherein we can see that
Anna is the mother of Tim and John is the father of Anna.

person_id name born_in_country_id mother_person_id father_person_id

5 John 54 3 2
12 Anna 61 8 5
15 Tim 61 12 14

Table 2.3: Snippet of a relational database table called ’COUNTRIES’, wherein we can see two
countries with their name, capital and language.

country_id name capital language

54 Spain Madrid Spanish
61 Netherlands Amsterdam Dutch

Listing 7: Desired RDF in Turtle format resulting from integrating Table 2.2 with Table 2.3
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rel: <http://www.perceive.net/schemas/relationship/> .
@prefix ex: <http://example.com/ns#> .

<http://data.example.com/person/15>
rdf:type foaf:Person ;
foaf:name "Tim" ;
rel:childOf <http://data.example.com/person/12>, <http://data.example.com/person/14>;
ex:bornIn <http://data.example.com/country/61> .

<http://data.example.com/person/12>
rdf:type foaf:Person ;
foaf:name "Anna" ;
rel:childOf <http://data.example.com/person/8>, <http://data.example.com/person/5>;
ex:bornIn <http://data.example.com/country/61> .

<http://data.example.com/person/5>
rdf:type foaf:Person ;
foaf:name "John" ;
rel:childOf <http://data.example.com/person/3>, <http://data.example.com/person/2>;
ex:bornIn <http://data.example.com/country/54> .

<http://data.example.com/country/54>
rdf:type ex:Country ;
ex:countryName "Spain" ;
ex:countryCapital "Madrid";
ex:countryLanguage "Spanish" .

<http://data.example.com/country/61>
rdf:type ex:Country ;
ex:countryName "Netherlands" ;
ex:countryCapital "Amsterdam";
ex:countryLanguage "Dutch" .

We use Example 2.1 to give an example of what R2RML looks like in Listing 8. As it is using
the Turtle format, it is quite clear to read after getting used to the rr syntax.

13
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Listing 8: R2RML in Turtle format to compute the RDF of Listing 7 from Example 2.1
@prefix rr: <http://www.w3.org/ns/r2rml#>.
@prefix foaf: <http://xmlns.com/foaf/0.1/>.
@prefix rel: <http://www.perceive.net/schemas/relationship/>.
@prefix ex: <http://example.com/ns#>.

<#PersonsTriplesMap>
rr:logicalTable [ rr:tableName "PEOPLE" ];
rr:subjectMap [

rr:template "http://data.example.com/person/{person_id}";
rr:class foaf:Person;

];
rr:predicateObjectMap [

rr:predicate foaf:name;
rr:objectMap [ rr:column "name" ];

];
rr:predicateObjectMap [

rr:predicate rel:childOf;
rr:objectMap [ rr:template "http://data.example.com/person/{mother_person_id}" ];

];
rr:predicateObjectMap [

rr:predicate rel:childOf;
rr:objectMap [ rr:template "http://data.example.com/person/{father_person_id}" ];

];
rr:predicateObjectMap [

rr:predicate ex:bornIn;
rr:objectMap [

rr:parentTriplesMap <#CountriesTriplesMap>;
rr:joinCondition [

rr:child "born_in_country_id";
rr:parent "country_id";

];
];

].

<#CountriesTriplesMap>
rr:logicalTable [ rr:tableName "COUNTRIES" ];
rr:subjectMap [

rr:template "http://data.example.com/country/{country_id}";
rr:class ex:Country;

];
rr:predicateObjectMap [

rr:predicate ex:countryName;
rr:objectMap [ rr:column "name" ];

];
rr:predicateObjectMap [

rr:predicate ex:countryCapital;
rr:objectMap [ rr:column "capital" ];

];
rr:predicateObjectMap [

rr:predicate ex:countryLanguage;
rr:objectMap [ rr:column "language" ];

].

RML

RML[12] is an extension on top of R2RML, which enables mapping heterogeneous sources. It
aims to solve the per-source and the per-format basis limitations of R2RML. Furthermore, the
goal is to have the mapping definitions be reusable by using the R2RML standard as defined for

14



State of the Art

relational databases. By building on top of the standard, it wants to address the pain points of
R2RML, while still keeping the robustness and familiarity of R2RML.

RML has been used in various applications such as RMLStreamer [13], RMLMapper12 SDM-
RDFizer [14]. It basically generalizes R2RML for wider use-cases, however it also inherits its
limitations [15].

To make RML human-readable (instead of machine-readable), YARRRML [16] has been de-
veloped. It is made to give a textual-based approach for developing mapping rules as so far
mostly graphical user interfaces were made to make the creation of mapping rules easier. An
online Integrated Development Environment (IDE) called Matey13 could subsequently be used
for converting this to RML as well as testing it out for some smaller inputs. We use Example 2.1
to give an example of what YARRRML looks like in Listing 9.

Listing 9: YARRRML to compute the RDF of Listing 7 from Example 2.1; the assumption is
made that both databases are found at localhost and are in a PostgreSQL database
prefixes:

rr: "http://www.w3.org/ns/r2rml#"
foaf: "http://xmlns.com/foaf/0.1/"
rel: "http://www.perceive.net/schemas/relationship/"
ex: "http://example.com/ns#"

mappings:
person:

sources:
- [http://localhost/people~postgresql]

s: http://data.example.com/person/$(person_id)
po:

- [a, foaf:Person]
- [foaf:name, $(name)]
- [rel:childOf, [http://data.example.com/person/$(mother_person_id)~iri,

http://data.example.com/person/$(father_person_id)~iri]]↪→

- [ex:bornIn, http://data.example.com/country/$(born_in_country_id)~iri]
country:

sources:
- [http://localhost/countries~postgresql]

s: http://data.example.com/country/$(country_id)
po:

- [a, ex:Country]
- [ex:countryName, $(name)]
- [ex:countryCapital, $(capital)]
- [ex:countryLanguage, $(language)]

xR2RML

xR2RML[17] is an extension to R2RML, while using RML to handle different data formats. It
aims to address the constraints that arise from RML dealing with heterogeneous sources. It also
extends the scope to non-relational databases; its main advantage is NoSQL-to-RDF translation.

Furthermore, it also allows to reference embedded data elements within a database that are
not the the native database format. Such mixed content could be a JSON array in a cell of a
database and it is referenced using mixed-syntax paths in a xrr : reference. A limitation is,
however, that xR2RML it is dealing with scaling limitations.

12https://github.com/RMLio/rmlmapper-java
13https://rml.io/yarrrml/matey/
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As it is extending R2RML, and is backwards-compatible, it looks just like R2RML as in Listing 8
with some extra options. An implementation of xR2RML is Morph-xR2RML14, which connects
to relational databases and MongoDB15.

KR2RML

KR2RML[18] is an interpretation of R2RML that is meant for scalability to be able to support
huge hierarchical data sets and streams. To do this, it puts the following changes on R2RML:

• relational databases in some materialization are not supported as source. Either a relation
database has to be provided directly or a non-relational database has to be used;

• support for mapping nested columns are allowed by no longer limiting only SQL identifiers,
instead a JSON array is used to capture column names that make up the path to the correct
column;

• joins are not supported to deal with huge datasets or streaming data as it would affect
performance significantly;

• an optional additional tag that summarizes the cleaning, transformation and modeling
steps that should be done before RDF generation.

Furthermore, KR2RML is implemented in Karma16, which is a data integration tool that has
a graphical user interface to automate parts of the process. An example is that it learns to
recognize the mapping of the data to the ontology and proposes a model to tie it together;
afterwards users can change what is needed.

R2RML-F

R2RML-F[19] is an extension to R2RML that uses the ECMAScript17 standard to add functions.
Its idea is that domain-specific data transformations can be done directly within the mapping
language to attach relevant metadata.

It adds a function as a new term map with function name and body (function itself), which
can subsequently be references by a function call in an R2RML triples map. In here you define
the parameter bindings using the R2RML elements as parameters. All functions will be first
processed and afterwards the results are passed to R2RML to handle the processing to RDF.

SPARQL-Generate

SPARQL-Generate[20] is a mapping language that is based on the query language SPARQL.
SPARQL is normally used to query an RDF and is thus familiar territory for most people working
with semantic data.

The additional clauses introduced are:

• Source, which is used to state the document to refer to and apply a variable to it to refer
to;

• Iterator, to iterate over elements within a document;

14https://github.com/frmichel/morph-xr2rml
15https://docs.mongodb.com/manual/introduction/
16https://github.com/usc-isi-i2/Web-Karma
17https://262.ecma-international.org/10.0/
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• Generate, which enables the constructing of a RDF set.

The benefit of SPARQL-Generate is that it is on top of the query language and thus is able to
use its capacities. It is, for example, possible to map a document and only put it into the output
if there is no such element yet in another RDF.

An implementation of SPARQL-Generate has been made over Apache Jena 18.

ShExML

ShExML[21] is mapping languages based on ShEx [22], which are shape expressions to validate
RDF. This gives it an advantage of being able to have faster validation of generated data as the
difference between the validation language and the mapping language is small.

ShExML combines the following elements, which are subsequently combined to form triples in
a Turtle-like format (see Listing 2 for a Turtle example):

• Prefix, same as in Turtle;

• Source, defining an URL where the file is hosted;

• Query, to define queries over the sources, linked to a variable which can be used later on;

• Expression, to actually perform the queries, make unions and transform elements.

TARQL

TARQL19 is a mapping language made for the command line interface. It is made to convert
CSV to RDF using SPARQL. The mapping language is thus using queries with construct to
generate RDF in either Turtle (Listing 2) or N-Triples (Listing 3) format.

2.2.3.1 Comparison

A comparison between the mapping languages is shown in Table 2.4. The mapping languages
are compared on four characteristics:

1. Generating blank nodes, which is a part of general mapping functionalities that most
mapping languages typically support [23];

2. Generating lists, which is if the the mapping language allows to generate RDF collections
or containers for hierarchical values [17];

3. Allows functions, which is if the mapping language supports functions or transformation
within the mapping language [24];

4. Supports heterogeneous sources, which is if the mapping language (or associated tool) sup-
ports various types of sources as input (this does not include various Relational Database
Management Systems as this is seen as one type)[23].

Some specific remarks are that R2O is basically defunct as all tools have been deprecated,
therefore it is not recommended to use anymore, and the same holds for D2RQ. We further see
that R2RML has reduced functionality, but that its extensions are aiming to add these. RML
initially did not allow functions, however this changes with the introduction of the Function

18https://github.com/sparql-generate/sparql-generate
19http://tarql.github.io/
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Ontology (FnO20) and the FunctionHub [24]. This combination allows the creation and re-use
of various implementations of different functions. xR2RML, on the other hand, uses RML to
handle heterogeneous sources.

It is, in general, clear when something is possible or impossible. When it is labeled as limited
possible, it should be clarified further to give a fuller picture of why it is not labeled possible.
TARQL is limited in generating blank nodes, for example, as it is not consistent in producing
of blank nodes from strings21. It is furthermore limited in generating of lists as it is only able
to convert a JSON array into such a list [17]. SPARQL-Generate also is limited in generating
lists as it only allows to generate all triples required to subsequently generate lists [23]. Lastly,
ShExML and R2O both have limited functions as it is only possible to do string and match
operations [10, 25]

20https://fno.io/spec/
21http://tarql.github.io/docs/
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2.3 Ontology-Based Data Access

Ontology-Based Data Access (OBDA) is using the semantic web technologies of section 2.2 to
perform the data integration of section 2.1. In this case, we use ontologies as the mediators and
mapping language(s) as the wrappers. An overview of how this is coupled together is shown in
Figure 2.7 and the similarity with Figure 2.2 is undeniable.

Figure 2.7: The Ontology-Based Data Access (OBDA) architecture visualized: an end-user
queries the system after which a virtual knowledge graph is created from the data sources using
the mapping.

The classical approach of OBDA is to create a virtual knowledge graph, because no additional
data is stored and used for answering a query [26]. Basically, we have a view over the data
sources and query it when needed to always get the most recent data. This real-time processing
of data coming from multiple heterogeneous data streams and static databases is a typical task
in many industrial scenarios such as diagnostics of large machines [27]. A virtual knowledge
graph can be explained in detail as follows [28]:

• Virtual, the virtualization is created by avoiding the end-users to need to know the actual
data sources that are used to create the knowledge graph. Instead, the end-user only have
to deal with the ontology (or global schema) that represents the data on a higher level. It
is called virtual as the views over the data are normally not materialized, i.e. there is no
result stored to re-use for another query.

• Knowledge, the domain knowledge is found in the graph as the ontology (or global
schema) gives extra information to the data extracted from the data sources about con-
cepts, hierarchies and properties.

• Graph, the resulting graph uses edges for properties and nodes for subjects and objects.
This is comparable to the RDF concept as in Figure 2.3, but then for multiple connections.
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2.3.1 Framework

The formal framework for OBDA is built upon the architecture of data integration as defined in
section 2.1. An OBDA specification is given by P = (O,M,S); in which P is the specification
itself, O is an ontology, M is a mapping from S to O and S is a data source schema [26]. We
can see the similarity with the data integration system as defined in section 2.1; the ordering is
a bit switched, but the meaning is the same of the data integration schema I =< G,S,M >.
The ontology O takes the place of the global schema G in this case and we replace the I for a
P to make it clear that it is an OBDA specification.

An OBDA instance is a pair (P,D) of which D is a data source that is conforming to the
schema S. OBDA is, furthermore, using global-as-view (GAV, see section 2.1) as mappings or
global-local-as-view (GLAV, also see section 2.1) when using IRI [26].

The result of using a mappingM over a source schema S will thus always return a set of triples
that are following the ontology O that represent the data in S.

2.4 Knowledge Graph Construction Engines

To actually create the knowledge graphs as discussed before, we need to have construction
engines. These take an OBDA instance (ontology, mapping language and data source as stated
in section 2.3) as input and create a knowledge graph from it.

There are multiple engines, all with its own size of inputs capable of handling, configuration to
setup and implementation language. We mentioned some already under the mapping languages
and add some others to get a quick grasp of some of the available engines:

• Ontop22 [29] is made to be easy to use for end-users by having a Graphical User Interface
(GUI). It creates virtual knowledge graphs of relational databases to answer SPARQL
queries. Java-based;

• Morph [30], now called Morph-RDB23 and Morph-CSV24 [31] for tabular data. Morph-
CSV has a docker image to run it easily on any machine with a graphical user interface.
Furthermore, there is an Online Mapping Editor (Morph-OME25) to generate the mapping
without writing code. Python-based;

• RMLMapper26 [32] started out as RMLProcessor and was originally made to add metadata
automatically from implicit graphs. It is nowadays an engine that is easy to run with good
output, but is not efficient for big datasets as it loads all data in memory. Java-based;

• RocketRML27 [33] is a JavaScript RMLMapper implementation, which requires to edit a
JavaScript file to setup locally. It is most efficient for JSON as this is natively supported
within JavaScript and it could be nicely integrated within web servers;

• SDM-RDFizer28 [14] can handle quite big datasets, but requires an extra config file to be
created. The tool itself can be run using a docker (that has to be created first) or by

22https://github.com/ontop/ontop
23https://github.com/oeg-upm/morph-rdb
24https://github.com/oeg-upm/morph-csv
25https://github.com/oeg-upm/Morph-OME
26https://github.com/RMLio/rmlmapper-java
27https://github.com/semantifyit/RocketRML
28https://github.com/SDM-TIB/SDM-RDFizer
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installing rdfizer in the common PyPi library within pip of Python. Python-based;

• RMLStreamer29 [13] is capable of handling large inputs and continuous data streams. It
handles this by using Apache Flink to run jobs in parallel. There are more steps needed to
set it up, however docker can be used to start a Flink cluster on which the RMLStreamer
jar can be uploaded. Scala-based.

2.4.1 Evaluation of Engines

The different engines also need to be tested, such that potential issues could be detected and
fixed. Furthermore, these tests allow the different engines to be compared to each-other. The
same is common for smartphones, where there is a durability test, a speed test and many more.
Just as for smartphones, there are also multiple tests for knowledge graph construction engines
that vary in different aspects. Below we categorize some of these tests (often called benchmark):

• Berlin SPARQL Benchmark [34] contains a set of 12 SPARQL queries to get information
from an e-commerce use-case. In this use-case multiple vendors are selling the same product
and there are reviews of these scattered across websites.

• FedBench [35] consists of three data collections to test the heterogeneity of semantic data
use-cases. These collections vary in size, coverages and types of interlinkage.

• GTFS-Madrid-Bench [36] has multiple formats of dataset as test. The data itself is coming
from the General Transit Feed Specification (GTFS) of the metro of Madrid. The format
coming from this feed is in CSV and the data has been generated subsequently into JSON,
XML, SQL and MongoDB format.

Benchmarks have multiple variables that can be changed to compare various engines with. They
should be compared on the observed values, which are [37]:

• Execution time, which is split into time till first triple result and total execution time
to create all triples.

• Completeness, which is if all the triples are created that should have been created (not
more, not less).

Subsequently, the benchmarks can vary their independent variables across five dimensions [37]:

• Mapping, which is split into the order within the mapping and the complexity of the
mapping;

• Data, which differs in the size, amount of sources and how the data is actually stored (e.g.
partitioned);

• Platform, which is the hardware of the machine the benchmark is run on.

• Source, which corresponds to the time needed to retrieve the source(s) to actually process
it;

• Output, which is how the output is generated (e.g. serialization format or to deduplicate).

Besides benchmarks, there are also test-cases that assess the conformance to the specification
of a mapping language. An engine could choose not to fully adhere to the specification as, for
example, it increases the speed of the engine or it is too complex to implement. Conformance

29https://github.com/RMLio/RMLStreamer
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test-cases are thus created, such that the end-user could compare engines and choose a suitable
engine for their use-case.

There are test-cases for each of the W3C standards, which include R2RML30. As RML is an
extension of R2RML, its test-cases are build based on these, with the additional component to
take heterogeneous sources into account [38]. The results of applying it over various engines can
be found in an implementation report31

30https://www.w3.org/TR/2012/NOTE-rdb2rdf-test-cases-20120814/
31https://rml.io/implementation-report/
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Chapter 3

Work Objectives

The objectives of the work are laid out in this chapter in combination with the assumptions
under which these objectives will be performed. Besides that, there are some restrictions which
clarify the scope for this thesis.

3.1 Objectives

There are many mapping languages, each with their own use-case, limitations and challenges.
These languages allow us to describe rules to construct knowledge graphs, which can subse-
quently be used for finding informational insights that were present in the data. The mappings
are declarative and do not tell the knowledge graph construction engine how to actually process
the rules defined; only what result should be created from the defined inputs. This allows engines
to perform optimizations as long as they deliver the defined knowledge graph as output.

Currently, mappings have limited support for declaring what the output RDF should look like
(e.g. serialization format and de-duplication are set at the engine) as well as what part of
the input data is relevant (e.g. to not retrieve data older than 31 days). Often a pipeline is
made to pre-process the data (e.g. to only have the relevant data in a data source that is
being used for creating a knowledge graph) and to post-process the output RDF (e.g. to export
to multiple locations). This affects the reproducibility of knowledge graphs; the settings to
create one are implicit and only known by its maker(s) and/or the engine. The objective is
to make these implicit settings explicit to enhance the reproducibility as well as defining clear
declarations for the knowledge graph construction engine. Definitions, such as where the data
should be stored as well as if it should be de-duplicated, are then part of the mapping; basically
as enhanced metadata to be used by other humans and the engine(s). A beneficial effect of
defining these implicit settings is, besides reproducibility, uniformity in the output dimension.
Benchmarks could be compared more accurately as the output format stays consistent for each
engine (e.g. same serialization format and de-duplicated enabled/disabled). When an engine
does not support the specific output option, a penalty could be applied or an additional note
accompanying the benchmark.

Recently, in a related study, an investigation was done on how mapping languages could be
enhanced by declaring how to export the generated knowledge graphs as well as how to access
Web APIs and streams [39]. For this goal, RML was extended to define the input data as well
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3.2. Assumptions

the output RDF with the same descriptions1; which showed improvements in reproducibility on
its two real-life use-cases. It, thus, shows a clear proof of concept, however it is limited only for
RML and is not explicitly declaring multiple other implicit settings (such as e.g. de-duplication).

The following objectives are set to achieve the task of making the process of creating knowledge
graphs more reproducible for all mapping languages:

O.1 Finding the implicit settings of creating a knowledge graph (that hinder reproducibility)
within the configuration file(s) and/or command(s) of the knowledge graph construction
engines listed in section 2.4;

O.2 Adding the declaration of the found settings of item O.1 as an addition to the mapping
languages;

O.3 Creating a proof of concept that uses the new addition(s) to generate the needed configu-
rations to pass to a knowledge graph construction engine.

3.2 Assumptions

A.1 Knowledge graph construction engines enable multiple configurations through either a
command-line interface or a configuration file;

A.2 Backwards compatibility is a must and has to remain intact.

3.3 Restrictions

R.1 Knowledge graph construction engines remain responsible for the internal optimizations
of creating a knowledge graph, however the output is clearly defined and not up to inter-
pretation.

1https://rml.io/specs/rml-target/
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Chapter 4

Proposal

This chapter focuses on the proposal of this thesis. It starts by analyzing the relevant state of
the art and identifying what could be improved upon. Within this analysis, the various implicit
settings are also listed to provide a clear overview of what could be added to the mapping
languages. Subsequently, an approach shows a high-level overview of how the proposal would
work into practice. Lastly, it is elaborated how the proposal would fit into the current ecosystem.

4.1 Analysis of State of the Art

Mapping languages are made to create a (virtual) knowledge graph from data sources. They
specify the relationships between the data sources and the ontology to either create or query
a knowledge graph. A knowledge graph construction engine is responsible for actually creating
a knowledge graph following these relationships. The data sources are clearly described within
the mapping by file location, file name and file extension. The same does not uphold for the
resulting knowledge graph as the path to output file, file serialization and de-duplication are
set at the engine (e.g. with the CLI for RMLMapper and RMLStreamer, and with a config file
for SDM-RDFizer and Morph-RDB). To illustrate why this hinders reproducibility, an example
is created about Anna and Marc who share their mapping files to create the same knowledge
graph in Example 4.1.

Example 4.1 (Anna and Marc; different knowledge graphs, same mapping) This ex-
ample is about Anna and Marc, who are both working on data integration within the same
organization. Anna works in the finance department on business intelligence and Marc works in
the product management department on product monitoring. They noticed that Ontology-Based
Data Access would perfectly suit their needs and both created a mapping file in RML.

Anna was lucky and someone else already set up SDM-RDFizer, so she could just give her
mapping file to her colleague to create a knowledge graph. Marc was also fortunate as someone
else already had a Docker1 setup with RMLStreamer. Everything went smoothly and both created
a knowledge graph for their own use-case.

A while later, Anna has to have information about products and she contacts Marc. As per-
mission management does not allow her to access Marc’s knowledge graph directly, she gets the
mapping from Marc instead to create her own knowledge graph; they both store data from the
same source after all.

1https://www.docker.com/
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When testing it out, she notices that the resulting knowledge graph is very different from what she
heard of Marc; there is data from five years ago in the resulting knowledge graph and there was
no data from the Web API. How could this come, they were using the same data and mapping,
right? Apparently, Marc’s department had set up a pipeline that ran before the knowledge graph
construction engine begun. Data older than one year was no longer relevant and did not have
to be put in the knowledge graph. Besides that, the Web API data was also added to the data
source in the same pipeline. Marc was not aware of this either and when he inquired about it,
the response was that this was the only way to deal with the limitations of the mapping language
at the time they set up the pipeline.

To overcome this issue, Anna sets up the same pipeline with the help of Marc. They check and see
that the data sources are now the same, so Anna creates a knowledge graph again. Weirdly, she
gets a different serialization format and her resulting knowledge graphs file size is way smaller
than that of Marc (even when converting it to the same serialization format). After subsequent
research, they find out that SDM-RDFizer is configured to remove duplicate in the output; an
option that is not possible in RMLStreamer.

As a result, Marc set up a post-processing pipeline as he wished to have the result in the same
format as Anna. Switching the engine would be too much of a hassle to setup again and he
still liked the speed and efficiency of RMLStreamer. The post-processing pipeline manages to
transform the output into the wished result and both Anna as well as Marc are satisfied that they
managed to solve the problems around the inconsistencies.

From Example 4.1, the result is in the end found by the communication of Anna and Marc.
This is not always the case in practice though, one of the two could have left the company
halfway and/or there was no communication possible in the first place. The knowledge of which
data is relevant and what the knowledge graph should look like is thus partly implicit. When
Anna and Marc leave, others will have to figure the same thing out all over again. To prevent
this loss of implicit knowledge, it is a good idea to write this down in e.g. documentation.
Good documentation helps both (current and future) developers and downstream consumers to
understand the resulting knowledge graph(s) and where it came from. Documentation on its
own has the chance to quickly become outdated when there is no-one responsible for maintaining
and updating it; it could be stored somewhere where others are not aware of or the code undergo
maintenance and the implementation is different from the documentation. For this reason, there
are options to write documentation within the same file as the code after which documentation
could be automatically generated. Think for example of documentation strings within Python
(docstrings2), which can then provide auto-documentation by using the code as well as the
docstring present using various documentation tools3. These documentation tools generate the
documentation and subsequently renders it as a website; this gives a graphical user interface that
could be clicked through or hosted online as information that reflects the current implementation.

Currently, there is limited possibility in the mapping languages for writing documentation within
the same file as the mapping. Inline comment using ’#’ are supported by SPARQL-Generate
(following SPARQL specification4), YARRRML (following YAML5) and ShExML6. Documenta-
tion tools are not present to generate documentation for mappings. Even if there would be, there
is no common structure for various parameters that are used as configuration for a knowledge

2https://www.python.org/dev/peps/pep-0257/
3https://wiki.python.org/moin/DocumentationTools
4https://www.w3.org/TR/sparql11-query/#grammarComments
5https://yaml.org/
6https://github.com/herminiogg/ShExML/issues/62
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graph construction engine (such as the serialization format and de-duplication flag) to generate
useful documentation. As a comparison, the docstrings within Python have several formats that
provide a structure for the arguments, type and returning value. These formats are:

• Epytext7 is an older format that is similar to javadoc8, which uses tags starting with ’@’
followed by one of the defined keywords (for example ’param’, ’return’ or ’author’). The
variable name after e.g. ’param’ is the parameter name and the description starts after
the colon (’:’).

"""
docs in Epytext format
@param test: this is a test parameter
@return: what will be returned with a description
"""

• reStructuredText is recommended by PEP-2879 and uses a colon (’:’) both before and
after a keyword (with optionally a variable name); i.e. also a colon instead of a tag as in
Epytext.

"""
docs in reStructuredText format
:param test: this is a test parameter
:returns: what will be returned with a description
"""

• NumPy10 uses a keyword and dashes (’-’) on the next line to indicate which variable
names belong to which keyword.

"""
docs in NumPy format

Parameters
----------
test

this is a test parameter

Returns
-------
string

what will be returned with a description
"""

• Google11 is similar to YAML in that it uses indentation for the different variable names
to show which keyword it belongs to.

"""
docs in Google format

Args:
test: this is a test parameter

7http://epydoc.sourceforge.net/epytext.html
8https://docs.oracle.com/en/java/javase/13/docs/specs/javadoc/doc-comment-spec.html
9https://www.python.org/dev/peps/pep-0287/

10https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_numpy.html
11https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html
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4.1. Analysis of State of the Art

Returns:
what will be returned with a description

"""

Ideally, the parameters are used not just for documentation, but also directly as parameters
for the knowledge graph construction engine. This would mean that the defined parameters
(following from a created format) would directly translate into the configuration file(s) and/or
command(s) that is needed for an engine. Switching between knowledge graph construction
engines would be much easier as the user does not have to know the intricacies and configuration
of an engine. Basically, providing an abstraction layer over the knowledge graph construction
engines to make it easier usable for a wider audience. This is similar to what a wrapper (or
translator) does over data sources.

To achieve this goal, a format has to be defined to provide the structure needed for the wrapper
over the engines. Within this, keywords have to be defined for the settings that most (if not
all) knowledge graph construction engines need to operate. These keywords can then be parsed
to generate both the documentation as well as the configuration file(s) and/or command(s) for
the knowledge graph construction engines. Additionally, extra settings could be defined that
engines do not necessarily need, but would make it more clear what the output (and possibly
part of the inputs) should be used. Adding these settings, would reduce the need for additional
pipelines (when an engine is capable of handling it) and provide metadata as documentation to
users.

When defining settings, the declarative nature of a mapping must not be forgotten. A mapping
is declarative in that it specifies what the result should be from specified inputs, however it
should not state how to do this. Treating the engines as a black box, that performs the ’magic’
required to create the knowledge graph from data source(s), allows the engine enough flexibility
to perform the ’magic’ in an optimal way (for that specific engine). Hints could be a possibility
(according to what the user thinks would be best), but the engine does not have to follow.

4.1.1 Implicit Settings of the Creation of a Knowledge Graph

To find the implicit settings that are used by knowledge graph construction engines, it is best
to look at the configuration file(s) and/or commands that are needed for each one. For this,
the engines as stated in section 2.4 are used. These engines are not an exhaustive set of all
available engines, however they should provide a clear indication of the various settings used by
multiple engines. There is always a chance that some more niche setting was not present within
the chosen subset, but this could either be derived from others or added in a later stage.

An overview of the implicit settings found in the configuration files and commands of the knowl-
edge graph construction engines is shown in Table 4.1. The different settings shown are:

• Output location, which is the path towards the output folder for local saving or the URL
in case of an external location.

• Output serialization, which is the serialization format that the output should be returned
in from the engine.

– Multiple options under various keywords and not each engine supports every possi-
bility (overview present in Table 1 in [40]). All options are: nquads, ntriples, turtle,
trig, trix, jsonld, hdt, rdfxml, rdfxml-abbrev and n3.

• Output duplication, which is the option to turn de-duplication (duplicates removal) on or
off.
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• Input location, the path towards the folder where the data resides for local file-system or
the URL in case of an external location.

• Input type, the type that the input has; this could be either a database type (such as
PostgreSQL) or a file-type (such as CSV or JSON).

• Data Access, which are the required settings needed to access the data in case it is
password-protected or otherwise secured.

Some specific remarks are that the RML-specific engines have some of the settings directly
defined in the mapping already. For RMLMapper, RocketRML and RMLStreamer, the cell
thus shows "From mapping". The output location and serialization could also follow from the
mapping as of recently when Target12 has been added to RML. Furthermore, Ontop has a cross
mark for the input type as it supports all JDBC connections; a specific database type does not
have to be specified.

12https://rml.io/specs/rml-target/
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4.1.2 Additional Settings of the Creation of a Knowledge Graph

There are also multiple configurations that are not part of a configuration file or command.
These could be assumptions the engine operates under as it made, for example, the development
faster or the maintenance easier. Another reason could be that no use-case has been surfaced
yet to implement the handling of another setting. Such an (hypothetical) use-case is presented
in Example 4.2 about Internet of Things (IoT) data in combination with RMLStreamer, which
appending-only strategy is not configurable.

Example 4.2 (IoT data and RMLStreamer) A company is using RMLStreamer to con-
struct a knowledge graph from its many IoT devices that are monitoring the water quality of
rivers and lakes to swim in. The choice for RMLStreamer was evident as other knowledge graph
construction engines could simply not handle the huge amount of data that was continuously
transmitted.

The structure of the company is to put a single Kafka stream13 into RMLStreamer. For this,
they are using Kafka Connect to make the connection with the data warehouse where the data
is stored for up to two years to comply with the General Data Protection Regulation (GDPR)14.
The data warehouse gets its data from a stream of event data coming from the IoT devices (with
data transport and serialization using e.g. Thrift15, Avro16 or Protobuf17), however it is too
much data to save in one file. Thus, the data is partitioned by the date it was generated and
compressed (for example using Snappy18 compression).

Using this setup, RMLStreamer gets new data in a stream, it processes it and subsequently
appends new data to the knowledge graph. To prevent data in the knowledge graph that is older
than two years, a task is ran once a day to delete those specific records from the knowledge graph.
Also another task is ran every 15 minutes to remove duplicates per device.

A new data engineer is hired at the company and gets introduced to this process. She wonders
why these tasks have to be run separately. After all, SPARQL supports a DELETE/INSERT
operation19 to remove old data and insert the new; why could an engine like RMLStreamer not
be configured to do this operation instead of simply appending? After research, she found out
that the option to use appending-only is implicitly made within the engine and cannot be set in
the configuration. This could also not be done in another engine, even if those could handle the
amount of data.

Therefore, she explores further options to streamline the process. Ideally, the knowledge graph
is fully constructed (in line with the requirements) by the engine. An option is to create a
new knowledge graph of all the data present in the data warehouse to prevent older data and
duplicates (duplicates can be removed in the data warehouse already). Running this every day -
if even possible - is unfortunately a massive usage of computing resources and thus money (as the
company is paying for computing resources usage from their provider). Furthermore, the latest
data is then not always present as the constructed knowledge graph will be outdated by the time
it took to construct it.

13https://kafka.apache.org/documentation/streams/
14https://eur-lex.europa.eu/eli/reg/2016/679/oj
15https://github.com/apache/thrift
16https://github.com/apache/avro
17https://github.com/protocolbuffers/protobuf
18https://github.com/google/snappy
19https://www.w3.org/TR/sparql11-update/#deleteInsert
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For these reasons, she decides to keep the setup as it is for the moment; she will open a GitHub
issue and hopefully this configuration will be supported in the feature.

From Example 4.2, a potential need can be seen for adding an incremental strategy to the
settings. Multiple options exist for an incremental method, such as deleting existing records
that satisfy a filter and inserting the new records, merging/updating existing records with the
new records and appending the new records to the existing records. These options are not only
useful for the example shown, but they could also be useful for when the knowledge graph should
only keep the latest information about an object; basically having the most recent data define
the relations in the graph.

Another potential need seen in Example 4.2 is that compression is used to reduce the file size,
which is useful for storing data or for sending it around. This compression could also be added
as an option to be directly applied to the output, before saving it to the output location.

An overview of additional settings used in the creation of knowledge graphs, that are not con-
figurable yet (but are likely to be added in the future), is shown below:

• Incremental strategy

– Options are: append, update, delete+insert

• Output compression

– Many options are available and it depends on what an engine implements in the
future. Common options are ZIP20, GZIP21, LZ422 and Snappy23

4.2 Approach

In this work, the use of mapping-based transformations is explored. In particular, the addition of
various parameters inside a mapping to clearly declare the input(s) as well as the output(s) for the
knowledge graph construction engine. This addition should be mapping language independent,
i.e. the same for all mapping languages. The parameters should describe what is required from
a knowledge graph construction engine without endangering the declarative nature of mapping
languages.

The proposed framework can be seen in Figure 4.1, in which the new Templated Mapping
Language (TML) is defined. The figure provides a high-level overview of the proposition. Going
from left to right, first TML has to be explained; TML is a mapping in any existing mapping
language with extra specifications written in a templating language. These specifications are (a
part of) the implicit settings as found in subsection 4.1.1; however they are no longer implicit,
but explicitly defined as these specifications. A specification consists, in essence, of a keyword
and a defined value. For example, "output_serialization=turtle" has "output_serialization" as
keyword and "turtle" as defined value. Combining multiple of these combinations allows TML
to have all configurations in a clear observable manner at the very top of the mapping file.

The parser, as shown in detail in Figure 4.2, takes as input this TML and outputs the mapping as
well as the necessary configuration file(s) and/or command(s) for the selected knowledge graph
construction engine. It does this by finding the specifications, generating the configurations for

20https://www.iso.org/standard/60101.html
21https://www.gnu.org/software/gzip/
22https://lz4.github.io/lz4/
23https://github.com/google/snappy
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Figure 4.1: Framework: high level overview of the proposal. The Templated Mapping Language
(TML) is a new mapping that is going into the Parser, which subsequently links to a Knowledge
Graph Construction (KGC) Engine

the engine and replacing the templating language parts within TML to be in the form of an
existing mapping language. An example could be that "output_serialization=turtle" has been
defined and an user wants to have Morph-RDB as engine. The parser then finds the relevant
command or file from Table 4.1 (in subsection 4.1.1). The corresponding properties file in this
case will be generated with "output.rdflanguage=TURTLE" to reflect the specification in TML.

Figure 4.2: Framework: the Parser in detail, showcasing that the Templated Mapping Language
(TML) is an input as well as a selection of a Knowledge Graph Construction (KGC) Engine.
The outputs are then a mapping as well as the configurations needed for the KGC Engine.

The combination of TML with parser allows the use of any existing mapping language. When
no specifications are defined, the parser will simply result a mapping in the original mapping
language; such that no change is required from the various engines. Furthermore, it is also
backwards compatible as the parser generates a mapping in the original mapping language,
which can be used by any engine that accepted it. This means that no change is required from
the developers of the different knowledge graph construction engines.

An example of how a TML file could look is shown in Listing 10. The parser uses the template-
specific delimiters to find which variables are part creates a mapping in the original mapping
language to be used by the engine. The templating language parts could also be replaced or
removed manually to make it a mapping in the original mapping language again.
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Listing 10: An idea of the structure of TML as an extension on top of the YARRRML example
in subsection 2.2.3 (Listing 9)
{{

"""
This mapping solves Example 2.1 from the Thesis.
"""

}}
{{ output_location = [Azure, ./] }} # <- the '}}' are template-specific delimiters
{{ output_serialization = turtle }} # these allows a parser to see what the variables are
{{ output_de_duplication = True }} # and are also a visual indication for us humans
{{ azure_data_access= ('name', 'pwd') }}
{{ postgresql_data_access =('admin', 'admin') }}

prefixes:
rr: "http://www.w3.org/ns/r2rml#"
foaf: "http://xmlns.com/foaf/0.1/"
rel: "http://www.perceive.net/schemas/relationship/"
ex: "http://example.com/ns#"

mappings:
person:

sources:
- [http://localhost/persons~postgresql]

s: http://data.example.com/person/$(person_id)
po:

- [a, foaf:Person]
- [foaf:name, $(name)]
- [rel:childOf, [http://data.example.com/person/$(mother_person_id)~iri,

http://data.example.com/person/$(father_person_id)~iri]]↪→

- [ex:bornIn, http://data.example.com/country/$(born_in_country_id)~iri]
country:

sources:
- [http://localhost/countries~postgresql]

s: http://data.example.com/country/$(country_id)
po:

- [a, ex:Country]
- [ex:countryName, $(name)]
- [ex:countryCapital, $(capital)]
- [ex:countryLanguage, $(language)]

The parser has to parse the templating language part to create mapping and configurations for
that specific engine. Besides the configurations, the templating language (depending on how
complex it is) could also allow other simplifications. We could use control structures, such as if
statements and for loops, or write functions and then convert them to the mapping language.
An example of such thing is writing math operations within the templating language. The
parser could subsequently change this to be in a format that the mapping language accepts; for
example, by using the Function Ontology (FnO24) for RML.

In this work, we define a Proof of Concept and limit ourselves to making a working parser for a
limited amount of KGC engines. The idea is that more options could be added later, however a
strong core needs to be established. To do this, we define the following keywords to be used in
TML:

• output_location is the location where the output should be stored as a path for a local
file-system or an URL for an external location;

24https://fno.io/spec/
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• output_serialization that specifies the serialization format for the output;

• output_de_duplication is an option that is either true (perform duplicates removal)
or false (do not perform duplicates removal);

• input_location is the location where the data sources are stored as a path for a local
file-system or an URL for an external location;

• data_access are the settings to access a location to retrieve data as input or store data
as output.

4.2.1 Implementation approach

To accomplish the approach as stated above, we first have to settle down on a templating
language. This decision also affects the programming language in which the parser should be
written. A new language could be made, however it is - in general - better to build upon existing
standards to take advantage of developmental work done. To keep the modular approach, and
re-use what is already existing, the choice has been made to use Jinja25, which is a lightweight
templating language with a template engine. There is no specific file extension required for this
as Jinja just parses text files. An additional benefit is that the template engine uses Python,
which is a high-level programming language that is quite easy to understand for humans and is
often more maintainable. An easy example with the delimiters is shown in Listing 11.

Listing 11: Example of Jinja delimiters
{% set variable = "Hi there, I'm in a templated language!" %}

{% if True %}
{{ variable }}
{% endif %}

{# These are comments and will not be shown in mapping from parser output #}

After this decision, we adapt the template engine for our use-case by writing the parser as
an extension on top of it. The additional logic is to handle the defined settings to accurately
generate the configurations and mapping for an engine.

To allow easy access to the parser, it will be created with a graphical interface that is hosted
as a website. This makes sure that it is accessible from any device and that no hardware
requirements are needed from the user’s side. The graphical interface allows an user to upload
and/or type a mapping in TML format. The user subsequently makes a choice for the knowledge
graph construction engine and the mapping language the mapping should be generated. The
possible mapping languages are following from what the engine accepts. After pressing both these
options, the user interface returns a mapping in the specified mapping language alongside the
necessary configuration file(s) and/or command(s) for the chosen engine. These can subsequently
be downloaded or simply copied.

4.3 Fit into ecosystem

The parser will make it easier to use different knowledge graph construction engines without
knowing the intricacies of each one on how to set it up. See it as a wrapper on top of the

25https://github.com/pallets/jinja
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engines, where the engines are the back-end. The decision is then purely based on what engine
fits the end-users use-case the best. The end-user has the information of the benchmarks and
conformance test cases (as shown in subsection 2.4.1) to base his/her decision on. Furthermore,
an user could base his/her decision on the features that are required. Such a summary of the
distinctive features of each engine has been created in [40].

Mapping translations, as a concept, are proposed to take advantage of the various mapping
languages available [41]. These translations could be combined within the parser in the future.
Any mapping language could then be given as input within TML. The parser could translate
this to any mapping language to use even more engines and take advantage of the strengths of
each one. Think for example of using a SPARQL-Generate only engine, while we have RML; by
combining the parser with the mapping translations, there is a larger array of engines to chose
for any language.

The fit within the ecosystem is visualized in Figure 4.3, wherein Figure 4.3a represents the
current approach and Figure 4.3b represents the proposed approach. The difference is the
abstraction layer present that enables a wider audience to use multiple engines without knowing
the intricacies of setting up each one.

(a) Current approach for creating a knowledge graph requires knowing the configuration settings needed
for the specific engine.

(b) Proposed approach that abstracts away the need to know engine-specific settings. The user inputs
the choice for an engine in the parser and the mapping language to output (restricted by what the engine
accepts); the parser generates both the mapping as well as the configuration needed for the engine.

Figure 4.3: The fit within ecosystem, focused on the construction of knowledge graphs.
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Chapter 5

Implementation of Proposal

This chapter focuses on the implementation of a proof of concept to show the viability of the pro-
posal. For this, a TML-parser1 is created that takes the Templated Mapping Language (TML)
as input and returns a mapping with engine-specific configurations as output. An overview of
the implementation architecture of TML-Parser is described, followed by various use-cases that
illustrate how it could be used.

5.1 Implementation Architecture

The goal of the implementation is to provide a proof of concept, which others could use, enhance,
or learn from. A well-designed implementation is thus required for others to understand it, as
well as being more maintainable. To achieve this, the implementation of the parser is split into
three distinct (but related) parts:

P.1 A parser environment for TML;

P.2 Translations from TML to engine-specific configurations;

P.3 A graphical interface as website for the end-user.

In chapter 4, in particular the implementation approach of subsection 4.2.1, the choice has been
made to use Jinja2 as the templating language. For item P.1 , the parser environment is build
on top of Jinja to handle TML-specific commands as well as the ability to load a file into the
environment. This wrapper around the Jinja environment is called TML Parser Environment
in Figure 5.1. The TML-specific commands are implemented as classes to allow easily calling
translate on them with the result depending on the chosen knowledge graph construction engine
by the end-user. An example of how the Output and DataAcess is defined within TML is shown
in Listing 12.

Listing 12: TML-specific commands
{{ Output('output_id', location='internal', serialization='turtle', de_duplication=True) }}
{{ DataAccess('postgresDB', url='', user='admin', password='admin') }}

Regarding item P.2 , the translations are split out separately to easily review and update them
when needed. The necessary variables to perform the translations will be retrieved from the

1https://github.com/dimnl/TML-parser
2https://github.com/pallets/jinja
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TML-file provided by the end-user. For some engines, there is an extra option upon which the
output is dependent. An example is Morph-RDB, which command line command depends on
the operating system (Windows or Linux/MacOS).

Streamlit3 is used to provide the graphical interface as a website for item P.3 . This could be
integrated within Python allowing for a small and readable code-base. It also allows directly
accessing the inputs provided by the end-user within the Python code. A downside is that some
functions, such as providing a download opportunity, are not present; these have been created
as helper functions.

The glue tying the three parts together is themain Python file in Figure 5.1. The implementation
result is hosted on GitHub4 as open-source contribution, such that others could easily view and
use it.

Figure 5.1: Implementation architecture visualized. The external libraries used are Jinja and
Streamlit and these are visualized by their logos. The created Python files implement the logic
specific for the parser and also act as the glue tying it all together.

5.2 Use-cases

The proof of concept shows that the proposed solution is not just hypothetical, but that it can
also be built. To validate it, end-users are needed that adopt the solution for their use-case.
These end-users are not yet aware of the creation of this proof of concept, because of its novelty.
Therefore, as an early validation, some possible scenarios for use-cases are created to illustrate
the usage of the created proof of concept. These scenarios are Use-case 5.1 and Use-case 5.2 .

Use-case 5.1 (Anna and Marc; Example 4.1 revisited) It is now some months since Anna
had her conversation with Marc about creating a knowledge graph (as seen in Example 4.1). The

3https://streamlit.io/
4https://github.com/dimnl/TML-parser
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requirements for the resulting knowledge graph changed slightly in the meantime. This means
that the configurations of the engine have to be changed. As multiple people are using the same
engine, however, she cannot change the configurations without altering someone else’s output.
Anna, thus, has to set up her own engine configurations.

She noticed that, since her talk with Marc, a new parser was created that could automatically
generate the needed configurations per engine. As Anna wants to future-proof her mapping, and
not go into each engine documentation when something has to be changed, she decides to try it
out. The TML examples5 clearly show her that she only has to add a little definition on top of her
already existing mapping file; she defines the output location, serialization, and de-duplication
as well as the required authentication (if needed). Subsequently, she uses the online parser to
get the configuration file needed for the engine she is using: SDM-RDFizer6 [14] (as seen in
Example 4.1). The process was straight-forward and the adaption to TML costed her less time
than she would have needed to create the configuration for any engine. The additional benefit
is now that she could also switch to another engine without extra work and that she could share
this mapping easily with others.

Anna notices that having this new parser would have prevented the problem she encountered with
Marc last time; namely, that the same mapping could lead to a different knowledge graph with
another serialization format, possible (de-)duplication, etc. Marc could have shared his mapping
(removing any data access that Anna was not allowed to have) for RMLStreamer7 [13] and Anna
could generate the necessary configurations for SDM-RDFizer to get the same output.

Figure 5.2: Screenshot of the TML parser when opening up the website. On the left-hand side,
there is a sidebar in which multiple options can be chosen. The input and output mapping
languages are present to use for mapping translations in the future.

Use-case 5.2 (Creation of a new benchmark) Christian needs to choose a knowledge graph
construction engine for one of his own personal projects. He is learning about the semantic data

5https://github.com/dimnl/TML-parser/tree/main/examples
6https://github.com/SDM-TIB/SDM-RDFizer
7https://github.com/RMLio/RMLStreamer
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Figure 5.3: Screenshot of the TML parser after a TML file has been uploaded. The mapping is
resulted in the mapping language minus the templated part that can be visually inspected and
subsequently downloaded or copied. At the same time the command is given for the command
line for the engine (Morph-RDB in this case) along with the configuration file.

field and he first wants to understand the differences between the engines. From his research, he
found out that some engines only accept a particular mapping language and that some features
(such as de-duplication) are not supported in each engine. To get a feeling of the construction
speed of each engine, he also compares the results of different benchmarks such as GTFS-Madrid-
Bench [36].

For his project, he wants to generate a knowledge graph in many different serialization formats
and locations. This could limit him to only use the engines that support the output serialization
formats he want, however this might not be the most efficient time-wise. It could be faster to
construct a knowledge graph into a serialization format the engine supports and subsequently, as
a post-processing step, converting it to the output serialization format he wants. This depends
on the speeds of the engines per serialization format and how long the converting would take as
post-processing step. Christian could not find a benchmark that compares the engine speeds per
output serialization format and he decided to create his own: Christian’s Output Bench (COB).

When creating the COB, Christian found out how tedious it is to set the properties of the output.
Each engine uses a separate notation to specify this and sometimes it needs to be denoted in a
configuration file, while other times it has to be given on the command line. To streamline the
process, he uses TML with its parser to automatically generate these configurations.

He first creates the mappings as he would do normally in his mapping language of choice:
YARRRML [16]. At the same time of creating, he adds the templated parts on top to spec-
ify the output as he wished; this effectively converts it to a TML file, the file extension does not
matter for TML. When this mapping is created, he uses the parser as seen in Figure 5.2. Either
he uploads the mapping directly from his computer or he types/pastes the mapping content di-
rectly in the website. On the left side, he selects the engine the output should be generated for as
well as some engine-specific options. The output is subsequently generated as seen in Figure 5.3.
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All the necessary files and commands are generated, which he uses to test each engine. The
parser also notifies him when a format is not available for the engine chosen, such that further
research is not needed to see what engine supports which formats. For his own benchmark, he
applies a penalty if an engine is not supporting the format he needs. This penalty is the time it
will cost for converting plus some percentage on top for the inconvenience.

Christian then times how long it takes for each engine to create the knowledge graph in the
chosen serialization format. He collects the times in a spreadsheet and runs each engine multiple
times to account for random variation. Then he averages the time out and applies the penalty if
needed. The hard part of finding out each setting per engine was made easy, because of the use
of the TML parser.
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Chapter 6

Conclusions and Future Work

The final chapter reflects back on the work done within the thesis, while also pointing towards a
future direction. For this, it starts with summarizing the main conclusions with a focus on the
contributions. Subsequently, the future work is split into short- and long-term improvements.
The short-term focuses on what could be made to create a more-rounded product, while the
long-term focuses on the general vision of the author.

6.1 Conclusions

Within this thesis, a contribution is made towards reproducible workflows for knowledge graph
construction. Following from a thorough analysis of the state of the art in chapter 2, the
declarative nature of mapping languages is enhanced by clearly defining the input/output and
what is required from a knowledge graph construction engine in chapter 3 and chapter 4. For
this end, the Templated Mapping Language (TML) is created. TML is backwards-compatible
with any mapping language and it allows explicitly stating different settings that were hidden
in engine-specific configurations. An online parser is furthermore created, which automatically
generates the needed configuration command and/or file to run an engine from TML.

The usage of TML with parsers is explored with the help of use-cases in chapter 5, which clearly
show the additional benefit of providing an abstraction layer over the engines. The engines
require less time to set up, as well as that the mapping leads to the same output for each engine.
This improves the reproducibility of the construction of knowledge graphs and, at the same time,
limits the need for supplementary pre- and post-processing. Another benefit is the uniformity
of the output, with which benchmarks could be compared more accurately.

6.2 Future Work

Regarding the future, there are still many aspects to improve. More settings have been identified
in chapter 4, which could be supported by the parser as well as by the engines (if not present
yet). Further support of multiple engines could also be included within the parser to allow more
options to choose from and provide extensive support of the whole engine ecosystem. On top
of that, the addition of mapping language translations [41] will unlock the potential of using
any engine from a single mapping in an user’s favourite mapping language. The combination
of TML with mapping translation potentially enables the use of every engine from all mapping
languages.
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Besides these short-term improvements, it is also important to lay out a vision of how the
proposed solutions could look like in a couple of years. In the future, according to the author,
the construction of knowledge graphs from mapping rules should be as simple as pressing a
button. The decision of which engine to use is then purely based on benchmarks, conformance
test-cases, and the available features of each engine. The parser could be integrated as a library
within Python or acting as a connector between a mapping and cloud computing resources.
In this case, the user does not need to know any engine-specific configuration to set it up; all
attention could go to making sure the mapping is correct (possibly with the help of another
tool) and choosing an engine for their specific needs.

One step further than this would be the creation of a Knowledge Graph Construction Tool
(KGCT), which would be a development environment for knowledge graph construction. A
mapping in this workflow would be fully declarative of the input and output, after which the
knowledge graph is created. All the required processing will be done within the tool. This
is similar to some modern data-warehouses in which a SQL query specifies the input and the
output; the warehouse mostly takes care of optimizations internally by rewriting the query.
Mappings within this workflow would follow the modularity principle; building on top of each-
other, just like how mediators work. The referencing could happen with the use of a templating
function to create dependencies between the various mappings. The necessary ontologies would
just have to be defined once and all subsequent mappings on top will automatically derive
from it. Furthermore, documentation could be generated automatically from the references and
comments made; providing the mapping information for everyone in a understandable visual
way.

All these potential improvements would make the construction of knowledge graphs not only
more reproducible, but also more accessible. The knowledge and skills required will be reduced,
which allows more people to create a knowledge graph. To couple that with the current progress
in the field, this vision fits in with the goals of the Knowledge Graph Construction W3C Com-
munity Group1 to enable knowledge graph construction for a broader audience. On top of that,
the construction of a knowledge graph is only a part of the data analysis process; the envisioned
future enhances the whole process by providing transparency (documentation), flexibility (ef-
fortless switching of engines), reproducibility (same output), and maintainability (inspectable
modular mappings).

1https://www.w3.org/community/kg-construct/
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