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Introduction

Retinal images are frequently used to analyse the vascular system. This non-invasive method of observation
of the circulatory system is often used to diagnose different kinds of diseases. Studying an image of the retina
enables doctors amongst others to diagnose diabetes, as illustrated in Figure 1. Mathematical models can make
it easier to keep track of the changes that occur over time with respect to the retina vessels. One of the ways
to do so, is by constructing a tool that can automatically track the vessels and compare them with previously
obtained images of the same blood vessels.

(a) Healthy retina. Taken from [1]. (b) Retina showing hemorrhage and microa-
neurysms; tortuous vessels. Taken from the
Retina Image Bank [2].

Figure 1: The retina vessels of people suffering from diabetes may start to leak and cause bleeding [3]. In
addition to that, high tortuousity is also an indicator of diabetes [4]. Eventually, this can lead to blindness.

Often, intersections pose a problem while applying automated tracking of blood vessels in retinal images. When
two vessels overlap, the tracking algorithm may opt to continue its way on a different vessel, resulting in paths
whose parts are incorrectly connected (e.g. paths that jump from one vessel to another, or paths that do not
follow a vessel at all). To prevent this, we use so-called orientation scores. Here, we “lift” the image such that
it consists of different layers. Every layer coincides with a different given orientation. For every location and
orientation, we store the alignment of the line structure with the given orientation. In many cases, this will
separate vessels that used to cross in the original image, as we can see in Figure 2.

(a) Original image. (b) Lifted orientations scores.
(c) Selection of two orientations out
of the lifted orientation scores.

Figure 2: Visualization of the orientation scores of a given image. Adapted from [5].

Every layer in the lifted orientation score has a frame that rotates according to the orientation that we are
considering. This frame is called the left invariant frame. It allows a geometrical interpretation of the vessel
tracking techniques. Research on discouraging (or disallowing) movement in the direction perpendicular to
the vessel direction has been done in previous work by E.J. Bekkers, R. Duits, J.M. Mirebeau and others
[6; 7; 8; 9; 10]. In Figure 3, we see a visualization of the alignment in the left invariant frame for different
orientations for a given image.
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Figure 3: Original image and the alignment in the left invariant frame for different orientations. Adapted from
[5; 11].

As we can see, the left invariant frame is not always able to align with the vessel structure in the correct way.
This can be caused by:

1. Misestimation of the orientation of the vessel. It is possible that, due to the imperfectness of the orienta-
tion scores, a part of a vessel is assigned to have an angular coordinate which is not its true coordinate.
Consequently, it is not able to align with the vessel data properly. This is called deviation from hori-
zontality [12]. In Figure 4, a visualization of this phenomenon is given. In practice, we often use a low
angular dimension (so we consider a limited number of orientations) in an effort to limit calculation times,
which results in more extreme deviations, since a large range of vessel orientations is mapped to the same
angular orientation. Accounting for deviation from horizontality is particularly important if one wants to
reduce the number of orientation layers, for memory reduction and shorter computation times [12].

2. The left invariant frame lines up with the vessel structure in the orientation score. This works well
for straight line structures, but when the orientation of the line structure changes, these curvatures are
ignored.

Figure 4: A straight line gets responses from multiple orientations. The directions which react are indicated by
the white arrows. Not all of them are aligned with the given line structure. Taken from [13].

Deviation of horizontality may pose a problem when the frame steers the vessel tracking away from the actual
vessel structure. An example of such a situation is given in Figure 5. In an effort to encourage the tracking to
follow the vessel structure, the gauge frame (or locally adaptive frame) has been introduced in [12; 14; 15; 16].
This frame aligns better with the vessel structure, and stimulates moving in the correct direction, as can be
seen in Figure 6. However, there is also a big disadvantage of these gauge frames; they are not smooth. They
are vulnerable to changes, depending on the image, and the underlying vessel structure. In addition to that,
noise in the image has an impact on the alignment of the frames, and therefore, the best fitting gauge frames
can vary widely. There are different methods to align the gauge frames, and improve the alignment of the gauge
frames. It is important to note that the gauge frames outside the vessel structures, are still randomly aligned,
also after applying smoothing techniques.

Last, it is important to note that sometimes, tracking finds the shortest path by switching its moving direction.
Considering the tracking as a car driving over a road (the vessel), it sometimes has to switch gears (hence
switching from forward gear to reverse gear and vice-versa). However, vessels do not make sudden sharp
turns, and therefore, it should not be necessary to switch gears. In the left invariant frame, a model has been

Department of Mathematics and Computer Science 3
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Figure 5: The tracking in the left invariant frame (red) takes a shortcut, where the tracking in the gauge frame
(green) does not. The vessel structure is visible in black. The start and end point are indicated by blue points.
Adapted from [13].

Figure 6: Visualization of left invariant frame (left) and gauge frame (right) on a curved vessel structure. Taken
from [13].

introduced to prevent this backward motion by R. Duits, S.P.L. Meesters, J.-M. Mirebeau and J.M. Portegies
[17]. In Figure 7, we see a visualization of the effect of disabling the reverse gear. Note that it is still possible for
in place rotations to occur. That means that it is possible to stay in the same place and change the orientation
slightly to the left or right, but not backward. In this report, we focus on the construction and implementation
of the “forward gear” variant of the gauge frame. We investigate the results in simple settings, where we track
a single vessel, and in more complex settings, where we track multiple vessels at once, which do not all originate
from the same seed. We will consider both finite difference and fast marching solution strategies. We compare

(a) Scenario 1
Reverse gear

(b) Scenario 1
Forward gear

(c) Scenario 2
Reverse gear

(d) Scenario 2
Forward gear

Figure 7: Tracking starts at the green arrow (in its given direction), and ends in the white arrow (in its given
direction). The blue and red lines represent the reverse and forward gear model respectively. Adapted from
[17].

the results and discuss how they relate to each other in Section 3. Next, we consider four experimental settings
in which we calculate the geodesics, using the finite difference approach. We used different metric tensor fields;
symmetric and forward gear variants of the (anisotropic) left invariant frame and the (anisotropic) gauge frame.
In Section 4, we discuss the influence of the different parameters and differences between the models. The
most interesting finding was that the gauge frame was able to follow a highly tortuous vessel, whereas the left
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invariant frame did not succeed. The setting is similar to the setting in Figure 5. In Section 5, we present
and discuss the tracking results when we track multiple vessels at once. We compare the different models, and
discuss the flaws of the models. We find that the gauge frame always bends into the direction that gets the
highest response. However, this is not always the direction in which the vessel should be moving, and problems
occur at crossings. Solving these tracking problems and other open questions that are still standing, will be
presented in Section 6 for future research purposes.

This report builds upon the master thesis of A.J. Wemmenhove [13]. In [13], emphasis is on data-driven versions
of Cartan connections, whereas in this report the emphasis is on numerics, fast computational schemes, improved
models and practical experiments.
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1 Theoretical Background

In the first part of this report, we will discuss some theoretical concepts that are important in order to understand
the geometrical methods applied in the mathematical imaging model. We start by introducing some geometrical
concepts. Afterwards, we introduce different frames that can be used to do geometrical tracking.

1.1 Main Concepts

1.1.1 Lie Groups

First, we introduce several new concepts that are relevant for understanding the model with which we will be
working. We start with the space on which we will be working and analysing our results.

Definition 1.1 (2D positions and orientations). The space of two-dimensional positions and orientations M2

is defined as a smooth manifold
M2 ∶= R2 ⋊ S1,

where S1 ∶= R/(2πZ).
This means that every point (x, θ) ∈M2 consists of both a location x ∈ R2 and an orientation θ ∈ S1. In Figure
8, an example is given on how the orientation is defined. The orientation θ indicates in which direction the local

Figure 8: A trajectory of a car, at a given location (x(t), y(t)) has an orientation θ(t). The velocity vector is
given by (ẋ(t), ẏ(t)). On the right image, we see the lifted trajectory (height corresponds to orientation θ(t)).
Taken from [17].

line-element (visualized as a car with a front in Figure 8) at location x is pointing. An alternative illustrative
example would be when we try to describe a group of people in this space. For each person, we write down
their location x and the direction θ that they are looking into (compared to a reference direction). This way,
we can register the population in a more detailed way, since we also know the orientation of each single person,
instead of only their locations. This can be of an added value when we want to make them do something, for
instance walking in a specific direction or changing their orientation by rotation. Before we will explain how
this works, we introduce the concept “Lie group”. First, we recall the definition of a group.

Definition 1.2 (Group). A group G with group product ⋅ is a structure (G, ⋅) with

• A closed group operation such that for every two elements g, h ∈ G, we have g ⋅ h ∈ G.

• An associative multiplication such that for g, h, i ∈ G, we have (g ⋅ h) ⋅ i = g ⋅ (h ⋅ i).
• An identity element e ∈ G exists such that for all g ∈ G holds e ⋅ g = g ⋅ e = g.

• For every element g ∈ G an inverse g−1 ∈ G such that g ⋅ g−1 = e = g−1 ⋅ g.

In our case, we are able to consider a specific type of groups, being the Lie group.

Definition 1.3 (Lie Group). A Lie group G is a differentiable manifold equipped with a group product such
that the group operations are compatible with the differentiable structure on the manifold, i.e. multiplication
G ×G→ G and inversion G→ G are smooth maps.

First, we note that M2 is a differentiable manifold. This is the case since M2 consists of the cartesian product
of R2 and S1 which are both smooth manifolds. In practice, this means that our manifold is locally similar
enough to a linear space such that we can do calculus. More specifically, we are considering a group of rotations
and translations of vectors in R2; the “roto-translation group”.

Definition 1.4 (2D roto-translations). The space of two-dimensional roto-translations is a Lie group SE(2) ∶=
R2 ⋊ SO(2). Consider (x1,Rα) , (x2,Rβ) ∈ SE(2). Here, xi ∈ R2 denotes the location and Rα ∈ SO(2) denotes
the rotation matrix over an angle α ∈ S1 (in radians). Then, we define the semi-direct group product

(x1,R1) ⋅ (x2,R2) = (x1 +R1x2,R1R2) . (1)

Department of Mathematics and Computer Science 6
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Note that this is not the direct group product, since that would be given by (x1,R1) (x2,R2) = (x1 + x2,R1R2).
Therefore, we wrote in Definition 1.1 “⋊” instead of “×”.

Remark 1.1 (Commutativity). The 2D roto-translations are not commutative. This is easily checked:

(x1,R1) ⋅ (x2,R2) = (x1 +R1x2,R1R2) ;

(x2,R2) ⋅ (x1,R1) = (x2 +R2x1,R2R1) .

This means that the order of roto-translations cannot always be reversed, since x1 +R1x2 ≠ x2 +R2x1 for most
positions x1,x2 ∈ R2 and rotation matrices R1,R2 ∈ SO(2). Figure 9 confirms that the roto-translations are not
commutative.

Figure 9: Composed roto-translations on a drawing of a person with a fixed coordinate frame. The green arrow
indicates moving to the right and rotating with an angle −π/2 (π/2 clockwise), where the red arrow indicates
moving to the left and rotating over an angle π/4 (π/4 counterclockwise). Switching the order of movements
results in different end locations. Hence, the operations are not commutative.

Remark 1.2. Although there is a bijection between orientations θ ∈ S1 and rotations Rθ ∈ SO(2) in the two
dimensional space, this is not the case for higher dimensions. Therefore, we keep the homogeneous space M2

and the Lie group SE(2) (acting on the homogeneous space) separate.

Definition 1.5 (Unity element). The unity element of the Lie group is the unique element e ∈ G such that
the product eg = g for all g ∈ G, as mentioned in Definition 1.2. The unity element of the Lie group of
roto-translations is given by e = (0, I), where I is the identity map.

Definition 1.6 (Inverse element). The inverse element of an element a ∈ G in the Lie group is the unique
element a−1 ∈ G such that the product a−1a = aa−1 = e where e ∈ G is the unity element, as introduced in
Definition 1.2. The inverse of a roto-translation (x,Rα) is given by

(x,Rα)−1 ∶= (−R−1
α x,R−1

α ) .

We can easily check that the definition holds:

(x,Rα) ⋅ (x,Rα)−1 = (x −RαR−1
α x,RαR

−1
α ) = (0, I) = e;

(x,Rα)−1 ⋅ (x,Rα) = (−R−1
α x +Rαx,R−1

α Rα) = (0, I) = e.

Definition 1.7 (Tangent vector). A tangent vector is considered to be a differential operator on locally defined
functions f such that

γ̇(0)f ∶= d

dt
(f ○ γ) (t)∣

t=0
.

Definition 1.8 (Tangent space). The tangent space at the element g, denoted by Tg(G), is the vector space of
all tangent vectors of curves passing through the element g of the Lie group. In other words, that means that

Tg(G) = { γ̇ (0)∣γ ∶ R→ G differentiable, with γ(0) = g} .

Department of Mathematics and Computer Science 7
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Definition 1.9 (Tangent bundle). The set of ordered pairs

{(g, ġ) ∣ g ∈ G and ġ ∈ Tg(G)}

is the tangent bundle T (G).

1.1.2 Group Representations

In the previous section, we introduced the concepts of a Lie group, and the notion of “roto-translations”. In
this section, we will introduce different group representations. We start with the general definition of group
representations.

Definition 1.10 (Group representation). A representation R of a group G onto a Banach space H is a homo-
morphism R (preserves structure) between G and B(H), the space of bounded linear operators on H. I.e. it
must satisfy

Rgh =RgRh for all g, h ∈ G, and Re = I,

where I is the identity map.

Now, we introduce two mappings from R2 and M2 to R2 and M2 respectively.

Definition 1.11 (Mapping Lg). The mapping of Lg ∶ R2 → R2 is given by

Lgx ∶= (y,Rα) .x = y +Rαx, (2)

for a roto-translation g = (y,Rα) ∈ SE(2) and a position x ∈ R2.

Definition 1.12 (Mapping Ug). The mapping Ug ∶M2 →M2 is given by

Ugx ∶= (y,Rα) . (x, θ) = (y +Rαx, α + θ) (3)

for a roto-translation g = (y,Rα) ∈ SE(2) and combined position and orientation (x, θ) ∈M2.

Note that the above mappings are in fact group representations where L ∶ G → Aut(R2) and U ∶ G → Aut(R2),
where Aut(R2) ∶= {A ∶ R2 → R2∣A linear and A−1 exists}.

Definition 1.13 (Left/right regular representations on Lie group G). Let G be a Lie group. Then its right
regular representation R ∶ G→ B(L2(G)) is given by

RgU(h) = U(hg) for all g, h ∈ G and all U ∈ L2(G), (4)

whereas its left regular representation L ∶ G→ B(L2(G)) is given by

LgU(h) = U(g−1h) for all g, h ∈ G and all U ∈ L2(G). (5)

Next, we introduce the definitions of (ir)reducible and unitary representations.

Definition 1.14 (Properties of representations). Let G be a group and H a Hilbert space.

A representation R ∶ G → B(H) is said to be irreducible if the only invariant closed subspaces of H are H and
{0} and otherwise it is said to be reducible.

A representation U ∶ G→ B(H) is called unitary if (Ug)∗ = U−1
g for all g ∈ G.

In the definition of a unitary representation, we use the symbol for the adjoint operator. We recall its definition.

Definition 1.15 (Adjoint operator). Let A ∶ X → Y be a bounded linear operator. Then, its adjoint operator
A∗ ∶ Y →X satisfies

⟨Ax, y⟩Y = ⟨x,A∗y⟩X ,

where x ∈X and y ∈ Y , and where ⟨⋅, ⋅⟩X denotes the inner product on space X.

Definition 1.16 (Left-regular representation on R2). Let the roto-translation operator be given by

(U(x0,θ)f) (x) = f (R−1
θ (x − x0)) , x ∈ R2, (x0, θ) ∈ R2 × [0,2π) , (6)

with translation vector x0 ∈ R2 and counter-clockwise rotation Rθ ∈ SO(2) with angle θ. The matrix represen-
tation with respect to the standard basis is given by

Rθ = (cos θ − sin θ
sin θ cos θ

) . (7)
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The left-regular representation on R2 first translates the function f over a distance x0. Then it rotates the
translated function over an angle θ.

Proposition 1.1. The operator U ∶ G→ B(H) given by g ↦ Ug is a an unitary group representation.

Proof. First, we show that Ug is a group representation. That means that we should have Ug1g2 = Ug1Ug2 for all
g1, g2 ∈ G. We can easily check this. Let g1 ∶= (x1, θ1) , g2 ∶= (x2, θ2) ∈ G, f ∈ L2 given. Then,

(Ug1Ug2f) (x) = (Ug2f) (R−1
θ1 (x − x1)) = f (R−1

θ2
(R−1

θ1 (x − x1) − x2))
= f((Rθ1Rθ2)

−1 (x − (x1 +Rθ1x2)) = (Ug1g2f) (x) ,

where we recall the definition of the roto-translation group product given in Eq. (1). We also need to show that
Ug is unitary. Let f, φ ∈ L2 (R2) be given. Let g ∶= (x1, θ1) ∈ G be given. Then,

⟨Ugf, φ⟩ = ∫
R2
Ugf(x)φ(x)dx = ∫

R2
f (R−1

θ1
(x − x1))φ(x)dx

= ∫
R2
f (xnew)φ (Rθ1xnew + x1)dxnew = ∫

R2
f(xnew)Ug−1φ(xnew)dxnew

= ⟨f,Ug−1φ⟩ .

Now, showing that Ug−1 = U−1
g suffices. Let g ∈ G be given. Since we know that Ug is a group representation, we

know that

Ug ○ Ug−1 = Ugg−1 = Ue = I,

so we have Ug−1 = (Ug)−1 = U∗g .

1.1.3 Images

We use grey scale images f to assign grey-values to every location (x, y) ∈ R2. Each grey value f(x, y) is in the
interval [0,1]. Here, 0 and 1 represent black and white respectively. The image is extended in such a way that
the function takes on value 0 outside of the compact image domain Ω, i.e.

f(x) ∶=
⎧⎪⎪⎨⎪⎪⎩

grey value at location x if x ∈ Ω,

0 otherwise.

That means that intuitively, this is the considered image against an (infinite) black background. This also
means that we can consider the images f ∈ L2 (R2; [0,1]). Note that this holds since supp(f) <∞ is compact.
Hence,

∥f∥L2
=
⎛
⎝∑i,j

∣f(xij)∣2
⎞
⎠

1/2

<∞.

1.1.4 Orientation Score

At the beginning of this section, we introduced the space of 2D positions and orientations M2. Here, we will
explain how we intend to extend the domain of an image f ∈ L2 (R2; [0,1]) to the space of positions and
orientations. Since we need our orientation score transform to be a bijective function, we first need to introduce
the reproducing kernel Hilbert space.

Definition 1.17 (Reproducing Kernel Hilbert Space CI
K). We denote the reproducing kernel Hilbert space

consisting of functions on index set I with reproducing kernel K by CI
K .

Then, we define an orientation score transformation Wψ ∶ L2(R2) → CSE(2)
K , where the reproducing kernel

K is defined by K(g1, g2) ∶= (Ug1 ,Ug2)L2(R2)
with g1, g2 ∈ I, where index set I = SE(2). The corresponding

orientation score ∣Wψ ∣ ∈ [0,1] indicates to what extent a line structure with orientation θ is present in the image
f at position x ∈ R2. The wavelet ψ ∈ L2(R2) ∩ L1(R2) measures the line structure at the origin, and has a
horizontal orientation. In order to ensure that all positions and orientations are checked, we use the left-regular
representation on R2, given in Eq. (6). This allows us to calculate the alignment for all locations and all
orientations. The explicit formulation can be found in Definition 1.18.
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Definition 1.18 (Orientation score). Given an image f ∈ L2 (R2; [0,1]), its orientation score Wψf ∶ L2(R2)→
CSE(2)
K is given by

Uf (x, θ) ∶= (Wψf) (x, θ) ∶= (U(x,Rθ)ψ, f)L2(R2)
= ∫

R2
ψ (R−1

θ (y − x)) f(y)dy,

where ψ ∈ L2 (R2) ∩ L1 (R2) denotes a wavelet measuring a line structure at the origin with a horizontal
orientation.

More information about the orientation score transform and its invertibility can be found in [18; 19; 20]. One
can also find more information about different options for wavelets ψ here. We will be using cake wavelets ψ.
They are called that way, since they resemble pieces of cake in the Fourier domain, as you can see in Figure 10.

Cake wavelets Selected cake wavelet Edge Detector [Im] Line Detector [Re]

Figure 10: Visualization of the 2D cake-wavelets ψ. The edge and line detector are found after taking the
inverse Fourier transform. Taken form [20].

1.1.5 Vessel Tracking

In the introduction, we already explained that in this report, we will be focusing on improving vessel tracking on
images in R2. For every tracking that is performed, starting points (seeds) and end points (tips) are provided.
The vessel tracking connects every tip to a seed. In order to do so, the image goes through different steps. This
section is specifically written for 2D images, but the theory also applies to higher dimensional images. Below,
we will explain the different steps that the image goes through when it is processed. For every step, Figure 11
provides the corresponding visualization on an image.

1. We consider an image f in R2. In our example, we consider the image in Figure 11a. This image satisfies
the description of images given in Section 1.1.3.

2. We calculate the orientation score Wψf in M2, as explained in Section 1.1.4. Doing this allows us to
identify the differences between crossings and bifurcation because it “lifts” the image. An extra (angular)
dimension is added and therefore, we can recognize differences in orientations, as we can see in Figure 2.
Continuing our example, the orientation scores are visualized in Figure 11b.

3. We process the image, such that we find a curve γ̃ in M2 connecting a tip to a seed. In Section 3, we will
explain in full detail how these curves are calculated. As we can see in Figure 11c, this curve γ̃ follows
the vessel structure in the space of positions and orientations.

4. The curves on the initial image are situated in R2. Therefore, we project the curve γ̃ onto R2, such that
we find the curve γ. The projection P ∶ M2 → R2 boils down to only considering the positional data of
the curve, so if γ̃(t) ∶= (x(t), θ(t)), then P γ̃(t) ∶= γ(t) = x(t), where x(t) ∈ R2. This curve γ(t) represents
the tracking from tip to seed in R2, as you can see in Figure 11d.

Schematically, this would be given by

Image f in R2 Wψz→ Orientation Score Wψf in M2

Υψ

z→ z→ Φ

Curve γ in R2 P z→ Curve γ̃ in M2

Hence, we know that the operator Υψ can be defined as Υψf ∶= P ○Φ ○Wψf .
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(a) Image (b) Orientation Score (c) Processed Orientation Score (d) Processed Image

Figure 11: Example of vessel-tracking in a 2D image via orientation scores. Taken from [20].

1.1.6 (Pseudo)distances

When we process the image, our aim is to find the shortest distance between a tip and (one of) the seeds. In
this section, we will shed light over how these distances are defined and how they are computed.

In this example, we will be considering a Riemannian metric. The Riemannian metric tensor field is a family of
innerproducts Gp ∶ Tp(M)×Tp(M)→ R for each p ∈M. Therefore, it is also linear in its entries, so for all p ∈M
and ṗ0, ṗ1 ∈ Tp (M), for all λ ∈ R, we have

Gp (ṗ, ṗ0 + ṗ1) = Gp (ṗ, ṗ0) + Gp (ṗ, ṗ1) and Gp (ṗ0 + ṗ1, ṗ) = Gp (ṗ0, ṗ) + Gp (ṗ1, ṗ) ; (8a)
√
Gp(ṗ, λṗ) =

√
λGp(ṗ, ṗ) and

√
Gp(λṗ, ṗ) =

√
λGp(ṗ, ṗ). (8b)

The distance from a point p to a point q is defined by

dG(p,q) = inf {∫
1

0

√
Gγ(t) (γ̇(t), γ̇(t))dt∣γ ∈ Γ1, γ(0) = p, γ(1) = q} , (9)

where Γ1 = Lip([0,1],M) and where γ̇(t) ∶= d
dt
γ(t).

Remark 1.3. Note that the distance dG does not have to be finite, continuous or symmetric in its arguments.
We do not assume that the metric is smooth on T (M), but instead, we make an assumption on the control sets,
which is given in Definition 1.19.

Definition 1.19 (Control set). We define the control set to be given by

BG(p) ∶= {ṗ ∈ TpM ∣
√
Gp (ṗ, ṗ) ≤ 1} . (10)

The sets BG(p) are closed and vary continuously with respect to the point p ∈M in the sense of the Hausdorff
distance [21; 22].

In Appendix B, we will explain how these control sets are calculated for the left invariant frame and the gauge
frame respectively (which will be explained later on). In addition to that, we will also visualize them. We show
that Definition 1.19 is satisfied in the left invariant frame.

Lemma 1.1. The distance dG(p,q) does not depend on the choice of (monotonic) parametrization of the curve
γ(⋅).

Proof. Let γ ∈ Lip([0,1],M) be given. Define γ̃ ∶= γ ○A where A ∶ [0,1]→ [0,1] smooth on [0,1] and monotonic
with A > 0,A(0) = 0,A(1) = 1. Then, using that G satisfies Eq. (8b), we have

∫
1

0

√
Gγ̃(t̃) ( d

dt̃
γ̃(t̃), d

dt̃
γ̃(t̃))dt̃ = ∫

1

0

√
Gγ(A(t̃)) (γ̇(A(t̃)) d

dt̃
A(t̃), γ̇(A(t̃)) d

dt̃
A(t̃))dt̃ (11a)

(8b)= ∫
1

0

√
Gγ(t) (γ̇(t), γ̇(t))

dt

dt̃
dt̃ (11b)

= ∫
1

0

√
Gγ(t) (γ̇(t), γ̇(t))dt, (11c)

where we substituted the expression for γ̃ in (11a). In (11b), we define t ∶= A(t̃). Then dt
dt̃

= d
dt̃
A(t̃). Using

integration by substitution, this expression yields Eq. (11c).
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In order to show that the distance is independent of the parametrization, we also need to show that they satisfy
the same conditions.

γ(0) = p ⇒ γ̃(0) = γ(A(0)) = γ(0) = p;

γ(1) = q ⇒ γ̃(1) = γ(A(1)) = γ(1) = q;

γ ∈ Lip([0,1],M) ⇒ γ̃ ∈ Lip([0,1],M). (12)

Eq. (12) holds since

γ ∈ Γ1 ⇔ ∃K > 0∀t1 > t2 ∈ [0,1] ∶ γ(t1) − γ(t2) ≤K ∣t1 − t2∣
⇔ ∃K > 0∀s1 > s2 ∈ [0,1] ∶ γ̃(s1) − γ̃(s2) ≤K ∣A(s1) −A(s2)∣

=K ∣A′(ι)∣ ⋅ ∣s1 − s2∣ (13)

≤K2∣s1 − s2∣
⇔ γ̃ ∈ Γ1,

where A(s) ∶= t and K2 ∶= K ∣A′(ι)∣ for some ι ∈ (s1, s2). Note that in the derivation above, Eq. (13) holds
because of the mean value theorem. And hence, we can conclude that

dG(p,q) = inf {∫
1

0

√
Gγ(t)(γ̇(t), γ̇(t))dt∣γ ∈ Γ1, γ(0) = p, γ(1) = q} (14a)

= inf {∫
1

0

√
Gγ̃(t) ( d

dt
γ̃(t), d

dt
γ̃(t))dt∣ γ̃ ∈ Γ1, γ̃(0) = p, γ̃(1) = q} , (14b)

so the distance does not depend on the choice of (monotonic) parametrization of the curve γ(⋅).

There are various equivalent expressions for the distance. In Lemma 1.2, we state them and prove that they
are indeed equivalent.

Lemma 1.2. The following expressions for the distance dG are equivalent:

dG(p,q) = inf {∫
1

0

√
Gγ(t) (γ̇(t), γ̇(t))dt∣γ ∈ Γ1, γ(0) = p, γ(1) = q} (15a)

= inf

⎧⎪⎪⎨⎪⎪⎩
(∫

1

0
∣
√
Gγ(t) (γ̇(t), γ̇(t))∣

p

dt)
1/pRRRRRRRRRRR

γ ∈ Γ1, γ(0) = p, γ(1) = q

⎫⎪⎪⎬⎪⎪⎭
(15b)

= inf {T ≥ 0∣∃γ ∈ ΓT , γ(0) = p.γ(T ) = q,∀t∈[0,T ]γ̇(t) ∈ BG(γ(t))} , (15c)

where ΓT ∶= Lip([0, T ],M), and with BG(γ(t)) as defined in (10).

Proof. We begin showing Eq. (15a) ⇒ Eq. (15b).

∫
1

0

√
Gγ(t)(γ̇(t), γ̇(t))dt = ∫

1

0

√
Gγ(t)(γ̇(t), γ̇(t) ⋅ 1dt (16a)

≤ (∫
1

0

√
Gγ(t)(γ̇(t), γ̇(t))

p

dt)
1/p

⋅ ∥1∥Lq([0,1]) (Hölder’s inequality) (16b)

= (∫
1

0

√
Gγ(t)(γ̇(t), γ̇(t))

p

dt)
1/p

(16c)

Note that the inequality in Eq. (16b) is an equality when p = 1. We know that there exists a minimizer γ∗ such
that

√
Gγ∗(t)(γ̇∗(t), γ̇∗(t)) = C ∈ R. Then, we have

(∫
1

0

√
Gγ∗(t)(γ̇∗(t), γ̇∗(t))

p

dt)
1/p

= (Cp)1/p = C.

That means that we find

inf {∫
1

0

√
Gγ(t)(γ̇(t), γ̇(t))dt∣γ ∈ Γ1, γ(0) = p, γ(1) = q}

= inf

⎧⎪⎪⎨⎪⎪⎩
(∫

1

0

√
Gγ(t)(γ̇(t), γ̇(t))

p

dt)
1/pRRRRRRRRRRR

γ ∈ Γ1, γ(0) = p, γ(1) = q

⎫⎪⎪⎬⎪⎪⎭
.
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Next, we show that Eq. (15b) is equal to Eq. (15c). Since we know that Eq. (15b) holds for all p, we can
consider

lim
p→∞

inf

⎧⎪⎪⎨⎪⎪⎩
(∫

1

0

√
Gγ(t)(γ̇(t), γ̇(t))

p

dt)
1/pRRRRRRRRRRR

γ ∈ Γ1, γ(0) = p, γ(1) = q

⎫⎪⎪⎬⎪⎪⎭
(17a)

= inf {∥
√
Gγ(t)(γ̇(t), γ̇(t))∥

L∞([0,1])
∣γ ∈ Γ1, γ(0) = p, γ(1) = q} (17b)

= inf {T ≥ 0 ∣∃γ ∈ Γ1,∀t ∈ [0,1] ∶
√
Gγ(t)(γ̇(t), γ̇(t) ≤ T, γ(0) = p, γ(1) = q} (17c)

= inf {T ≥ 0 ∣∃γ ∈ Γ1,∀t ∈ [0,1] ∶
√
Gγ(t)(T −1γ̇(t), T −1γ̇(t)) ≤ 1, γ(0) = p, γ(1) = q} (17d)

= inf {T ≥ 0 ∣∃γ̃ ∈ ΓT ,∀t̃ ∈ [0, T ] ∶
√
Gγ̃(t̃)( d

dt̃
γ̃(t̃), d

dt̃
γ̃(t̃)) ≤ 1, γ̃(0) = p, γ̃(T ) = q} (17e)

= inf {T ≥ 0 ∣∃γ̃ ∈ ΓT , γ̃(0) = p, γ̃(T ) = q,∀t̃ ∈ [0, T ] ∶ d

dt̃
γ̃(t̃) ∈ BG(γ̃(t))} . (17f)

Here, Eq. (17d) holds because of the 1-homogenity condition given in Eq. (8b). In addition to that, we define
γ̃ such that γ̃(t̃) ∶= γ(t) for t̃ = Tt. Consequently, we find that d

dt̃
γ̃(t̃) = T −1γ̇(t). Using the results of Lemma

1.1, we find that

inf

⎧⎪⎪⎨⎪⎪⎩
(∫

1

0
∣
√
Gγ(t) (γ̇(t), γ̇(t))∣

p

dt)
1/pRRRRRRRRRRR

γ ∈ Γ1, γ(0) = p, γ(1) = q

⎫⎪⎪⎬⎪⎪⎭
= inf {T ≥ 0∣∃γ ∈ ΓT , γ(0) = p.γ(T ) = q,∀t∈[0,T ]γ̇(t) ∈ BG(γ(t))} .

Last, we will show what the norm looks like for a specific metric tensor field. In order to do so, we introduce
the definition for a metric tensor field.

Definition 1.20 (Metric tensor field). A metric tensor field G is given by

G =
3

∑
i=1

a2
ii%

i ⊗ %i, (18)

where D and %i for i = 1,2,3 represent the frame and its dual respectively. In this case, the coefficients aii > 0
represent the weight of the different directions.

Suppose we need to calculate ∥grad V ∥G . Then, using Remark 13 from [23], we have

∥grad V ∥G =
√
Gp (grad V (p),grad V (p)) =

√
Gp (G−1

p dV (p),G−1
p dV (p)), (19)

where Gp denotes an inner product defined on Tp(M2) where p ∈M2 such that

(ṗ1, ṗ2)↦ Gp(ṗ1, ṗ2) with ṗ1, ṗ2 ∈ Tp(M2),
and where G−1

p inverses the action of Gp.

We are interested to know G−1
p dV (p). Let us denote

dV (p) = (D1∣p V )%1 + (D2∣p V )%2 + (D3∣p V )%3,

where %i (i = 1,2,3) form the covector basis and Di∣p V (i = 1,2,3) are the coefficients in R. From tensor

calculus, we recall that %i(Dj) = δij (result 2.1 from [24]). By the linearity of G−1
p , we find

G−1
p ((D1∣p V )%1 + (D2∣p V )%2 + (D3∣p V )%3) = (D1∣p V )G−1

p (%1) + (D2∣p V )G−1
p (%2) + (D3∣p V )G−1

p (%3) .
(20)

In order to find G−1
p (%i), we need to find Gp (G−1

p %i, Dj ∣p) = δij . We know that Gp is linear as well. Then, we

have, for all b1, b2, b3 ∈ R:

Gp
⎛
⎝
G−1
p %i,

3

∑
j=1

bj Dj ∣p
⎞
⎠
=

3

∑
j=1

bjGp (G−1
p %i, Dj ∣p)

= bia2
ii%

i (G−1
p %i) = bi

⇔ %i (G−1
p %i) = 1

a2
ii

⇒ G−1
p %i = 1

a2
ii

Di,
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where we use %k (Dj ∣p) = δkj and %k (G−1
p %i) = Cδki for some C ∈ R. Consequently, the norm is given by

Gp (G−1
p ((D1∣p V )%1 + (D2∣p V )%2 + (D3∣p V )%3) ,G−1

p ((D1∣p V )%1 + (D2∣p V )%2 + (D3∣p V )%3))

=
3

∑
i=1

Gp ( 1

a2
ii

Di∣p V ⋅ Di∣p ,
1

a2
ii

Di∣p V ⋅ Di∣p)

=
3

∑
i=1

1

a2
ii

(Di∣p V )2
. (21)

1.2 Static Frame

The first frame that we consider is the static frame denoted by {∂x, ∂y, ∂θ}. This frame is induced by the
coordinates x, y, θ for all points in M2. Its dual frame, for the cotangent bundle T ∗M2 is denoted by {dx,dy,dθ},
where the symbol d denotes the exterior derivative.

1.3 Left Invariant Frame

One of the frames that we will be considering in this thesis, is the left invariant frame. The left invariant
frame is a roto-translation of the pushforward of the static frame at the origin. We define the pushforward
(Lg)∗ ∶ Th(G)→ Tgh(G) by

(Lg)∗ ∂x∣eU = ∂x∣e (U ○Lg), (22)

where e = (0,0,0). Then, we define the left invariant frame {A1,A2,A3} by

Ai∣(x,y,θ) = (L(x,y,θ))∗ Ai∣e (23a)

A1∣eU = ∂xU(e) (23b)

A2∣eU = ∂yU(e) (23c)

A3∣eU = ∂θU(e). (23d)

We denote the dual of the left invariant frame by {ω1, ω2, ω3} such that ⟨ωi,Aj⟩ = δij . We notice that we can
calculate the left invariant frame at any point gh ∈ SE(2), when we know the left invariant frame at the point
h ∈ SE(2), i.e. the frame is roto-translational invariant:

Ai∣ghU = (Lgh)∗ Ai∣eU = Ai∣e (U ○Lgh) = Ai∣h (U ○Lg) = Ai∣e (U ○Lg ○Lh) = (Lh)∗ Ai∣eU = (Lg)∗ Ai∣hU.
(24)

That means that the left invariant frame at location x = (x, y) and orientation θ is given by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

A1∣(x,y,θ)U = cos θ∂xU(x, y, θ) + sin θ∂yU(x, y, θ)
A2∣(x,y,θ)U = − sin θ∂xU(x, y, θ) + cos θ∂yU(x, y, θ)
A3∣(x,y,θ)U = ∂θU(x, y, θ).

(25)

Remark 1.4. We notice that the left invariant frame is a roto-translation of the static frame at the origin e.
Its base point is located at (x, y, θ) instead of (0,0,0). In addition to that, it is rotated with the angle θ in the
position space. In Figure 3 and Figure 12, a visualization of the frame can be found. The vector A1 lies parallel
to line structures in the image. The vector A2 is orthogonal to the vector A1, in the xy−plane. Therefore, we
say that A1 points forward, and A2 points to the left. Therefore, when we do not allow backward movement
in the frame, we ensure that A1∣(x,y,θ) ≥ 0. In practice this is done by replacing the constant A1∣(x,y,θ)W ∈ R
that indicates the length of the vector A1∣(x,y,θ) by max{0, A1∣(x,y,θ)W} [17].

The frame introduced in Eq. (25) is left invariant, since it satisfies

Ai ○Lg = Lg ○Ai for all g ∈ G. (26)

For more information and the proof, see [25; 23].

Department of Mathematics and Computer Science 14



Master Thesis

Figure 12: Visualization of left invariant frame. In black, we see the static frame. This frame is translated to
location x = (x, y) (in blue). Then, it is rotated with an angle θ, which results in the green left invariant frame.

Exponential curves in SE(2) Next, we discuss the exponential curves g ↦ getA. These are the characteris-
tics of the left invariant flow. First, we need to introduce the definition of generators of group representations,
in specific of group representation R.

Definition 1.21 (Generator of Group Representation R). Let G be a Lie group. We consider the right regular
representation R ∶ G → B(L2(G)) defined in Definition 1.13. Let A ∈ Te(G), where e ∈ G unity element. Then,
the generator/derivative dR is defined as follows:

dR(A)U(g) ∶= lim
t→0

(RetAU)(g) −U(g)
t

= lim
t→0

U(getA) −U(g)
t

for all U ∈ DL2(G) where DL2(G) is a domain of sufficiently regular U ∈ L2(G) such that the limit dR(A)U exists
in L2(G).
Algebraically, the exponential curves are characterized by

etdR(A) =RetA .

Note that when we consider W (⋅, t) = etQU(⋅) for some Q, we find

∂tW (⋅, t) = QW (⋅, t) and W (⋅, t)∣t=0 = U(⋅).

In this case, we have U = e and Q = dR(A).
Lemma 1.3. The following expressions are equivalent:

Ai∣g = (Lg)∗ Ai∣e = dR(Ai∣e)

Proof. The first equivalence was already defined in Eq. (23a). That leaves us to prove that (Lg)∗ Ai∣e =
dR(Ai∣e). First, we note that, for some function U and some point p = (x, θ), we have

(Rg ○Lq)U(p) = U(q−1pg) = (Lq ○Rg)U(p).

In addition to that, we find

(Lq)∗ Ai∣eW = (Lq)∗∂iW = ∂i(W ○Lq)

= lim
t↓0

W (q ⋅ (tei)) −W (q)
t

= . . . = Ai∣q

= lim
t↓0

t−1 (W (q ⋅ etAi∣e) −W (q))

= lim
t↓0

t−1 (R
etAi ∣e − I)W (q) = dR (Ai∣e)W (q),

where ei is the ith unit vector and we use that

etAi∣e = tei.
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Rewriting this expression for exponential curves, we find

⎧⎪⎪⎨⎪⎪⎩

∂W
∂t

(g, t) = ∑3
i=1 c

idR(A∣e)W (g, t) = (c1 (cos θ∂x + sin θ∂y) + c2 (− sin θ∂x + cos θ∂y) + c3∂θ)W (g, t)
W (⋅, t)∣t=0 = e

(27)

⇔
⎧⎪⎪⎨⎪⎪⎩

d
dt
W (x(t), y(t), θ(t)) = ∂W

∂x
∣
γ(t)

ẋ(t) + ∂W
∂y

∣
γ(t)

ẏ(t) + ∂W
∂θ

∣
γ(t)

θ̇(t).
W (⋅,0) = e.

(28)

Hence, the system can be rewritten to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ = c1 cos θ − c2 sin θ, x(0) = 0;

ẏ = c1 sin θ + c2 cos θ, y(0) = 0;

θ̇ = c3, θ(0) = 0.

(29)

Solving this system of ordinary, first order, equations results in

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x(t) = c1

c3
sin(c3t) + c2

c3
(1 − cos(c3t))

y(t) = c1

c3
(1 − cos(c3t)) + c2

c3
sin(c3t) if c3 ≠ 0;

θ(t) = c3t
(30)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x(t) = c1t
y(t) = c2t otherwise.

θ(t) = 0

(31)

Lie Brackets Last, we introduce general concept of Lie brackets, and how they apply to the left invariant
frame. In addition to that, we also calculate the structure constants.

Definition 1.22 (Lie bracket). Consider a Lie algebra g which is a vector space over a field F equipped with
a binary operation [⋅, ⋅] ∶ g × g→ g, which is defined such that for all V,W ∈ g holds

[V,W ] ∶= V ○W −W ○ V. (32)

The binary operation given in Eq. (32) is called the Lie bracket of V and W , where we compose vector fields as

((V ○W )f)(g) ∶= V ∣g (h↦ W ∣h f).

The Lie brackets have a set of properties.

Proposition 1.2 (Properties Lie brackets). A Lie algebra g is a vector space over a field F equipped with a
binary operation (the so-called Lie bracket) [⋅, ⋅] ∶ g × g→ g such that

∀α,β ∈ F ∀X,Y ∈ g ∶ [αX + βY,Z] = α[X,Z] + β[Y,Z] (33a)

∀α,β ∈ F ∀X,Y ∈ g ∶ [Z,αX + βY ] = α[Z,X] + β[Z,Y ] (33b)

∀X ∈ g ∶ [X,X] = 0 (33c)

∀X,Y,Z ∈ g ∶ [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0. (33d)

Remark 1.5. A consequence of these properties is that we also have for the Lie bracket:

[X,Y ] = −[Y,X] for all X,Y ∈ g.

When we apply these Lie brackets specifically to the left invariant frame, we get

Lemma 1.4 (Lie brackets in the left invariant frame).

[A1,A2] = 0, [A1,A3] = −A2, [A2,A3] = A1.
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Proof. Let f ∈ C∞ be given. Then we find

[A1,A2]f = [cos θ∂x + sin θ∂y,− sin θ∂x + cos θ∂y]f
= (cos θ∂x + sin θ∂y) ○ (− sin θ∂x + cos θ∂y) f − (− sin θ∂x + cos θ∂y) ○ (cos θ∂x + sin θ∂y) f
= − cos θ sin θ∂xxf − sin2 θ∂xyf + cos2 θ∂xyf + cos θ sin θ∂yyf

+ sin θ cos θ∂xxf − cos2 θ∂xyf + sin2 θ∂xyf + cos θ sin θ∂yyf

= 0.

[A1,A3]f = [cos θ∂x + sin θ∂y, ∂θ]f
= cos θ∂xθf + sin θ∂yθf − ∂θ (cos θ∂x + sin θ∂y) f
= cos θ∂xθf + sin θ∂yθf + sin θ∂xf − cos θ∂xθf − cos θ∂yf − sin θ∂yθf

= sin θ∂xf − cos θ∂yf = −A2f.

[A2,A3]f = [− sin θ∂x + cos θ∂y, ∂θ]f
= − sin θ∂xθf + cos θ∂yθf − ∂θ (− sin θ∂x + cos θ∂y) f
= − sin θ∂xθf + cos θ∂yθf + cos θ∂xf + sin θ∂xθf + sin θ∂yf − cos θ∂yθf

= cos θ∂xf + sin θ∂yf = A1f.

Definition 1.23 (Structure constants). There exist ckij ∈ R such that

[Ai,Aj] =
3

∑
k=1

ckijAk.

These constants ckij are called the structure constants.

Remark 1.6. The non-zero structure constants of M2 are given by

c213 = −1, c123 = 1,

c231 = 1, c132 = −1.

1.4 Gauge Frame

We have just introduced the left invariant frame. Unfortunately, this frame is not always able to follow the line
structures correctly. We recall (from the introduction) that the problems that arise are

1. Deviation of horizontality: The line structures are lifted and extended to the M2 domain by calculating
the orientation scores. However, there will also be response for slightly different orientations than the
orientation of the line structure. In other words, the orientation score contains line structure whose
orientation is different from the orientation coordinate in the manifold. Since we use a low angular
resolution (low number of orientations), the effects of deviating from the angular direction are bigger. In
Figure 4, this problem is visualized.

2. Fixed orientations in M2: The left invariant frame lines up with fixed orientations in the slices of M2.
When considering a curved line structure, there should be a smooth transaction between different slices.
However, in practice, this is not the case since every slice lines up with exactly one orientation. When the
line structure is very curved, it is possible that the orientation moves between multiple slices in a short
period of time.

In an effort to avoid these problems, the gauge frame (also called locally adaptive frame) has been introduced.
This frame and its dual are denoted by {B1,B2,B3} and {ω1, ω2, ω3} respectively. The gauge frame is able to
align better to the line structure, as we can see in Figure 5.

It is important to note that this frame is fitted to the data, and therefore depending on the specific image that
we are considering. It is common that there is some level of noise included in the image (and therefore also
in the corresponding data). The effect of the noise is bigger when we are considering the frame at a different
location than at one of the line structures. Therefore, it is important to apply some stabilization technique in
order to obtain some level of smoothness of the gauge frame.
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1.4.1 Construction of the Gauge Frame

First Gauge Vector

Definition 1.24 (First gauge vector). Given a differentiable function f ∈ C2(M2), f ∶M2 → R with

gradf =
n

∑
i=1

ξ−2
i (Aif)Ai,

the first gauge vector at the point p ∈M2 is given by the optimization problem

B1∣p = arg min
c∈TpM2

∥c∥=1

XXXXXXXXXXX

n

∑
i,j=1

(ξj)−2
cjAiAjf(p) Ai∣p

XXXXXXXXXXX
(34)

where the norm is induced by a metric tensor field G on M2.

Lemma 1.5 (Solving first gauge vector). The first gauge vector is a coordinate vector c = (c1, c2, c3)⊺ ∈ R3. It
is the eigenvector of the matrix M2H⊺M2H with the smallest eigenvalue and it has length ∥M−1c∥L2 = 1. The
matrices M and H are given by

M = diag (1/ξ,1/ξ,1) and Hij = Aj Ai(f)∣p , (35)

where i and j denote rows and columns respectively.

The proof of this lemma can be found in [13].

Remaining Gauge Vectors

Definition 1.25 (Remaining gauge vectors). Let the first gauge vector be given by

B1∣p =
3

∑
j=1

cj1 Aj ∣p . (36)

Let PB1∣p be the projection of the first gauge frame on the spatial part of Tp(M2), i.e. span (A1,A2). The
curvature of the line structure is expressed by the angle between the first gauge frame vector and its projection

νp ∶=∠ (B1∣p , PB1∣p) = arctan
⎛
⎜
⎝

c3√
(c1)2 + (c2)2

⎞
⎟
⎠

RRRRRRRRRRRRRRp
,

and the deviation of horizontality is expressed by the angle between the projected first gauge vector and the
forward direction of the left invariant frame:

ϕp ∶=∠ (PB1∣p , A1∣p) = arctan(c
2

c1
)∣

p

.

Using these angles, the left invariant frame is adapted such that the forward vector lines up with the first gauge
vector. That means that we do the following corrections to the left invariant frame.

1. Correct for curvature by an anticlockwise rotation over the angle −νp around A3∣p in the plane spanned
by A1∣p and A2∣p.

2. Correct for deviation of horizontality by an anticlockwise rotation over the angle −ϕp around A2∣p, in the
plane spanned by the rotated vector PB1∣p and A3∣p.

3. Normalize the resulting vectors w.r.t. the weighted Euclidean metric field.

The rotations are visualized in Figure 13. The procedure explained in Definition 1.25 gives the following two
rotation matrices:

Re2,−νp =
⎛
⎜
⎝

cos νp 0 − sinνp
0 1 0

sinνp 0 cosνp

⎞
⎟
⎠
, Re3,−ϕp =

⎛
⎜
⎝

cosϕp − sinϕp 0
sinϕp cosϕp 0

0 0 1

⎞
⎟
⎠
.

The constants c12(p), c22(p), c32(p) and c13(p), c23(p), c33(p) belong to B2∣p and B3∣p respectively, and they are
given by

⎛
⎜
⎝

c12(p)
c22(p)
c32(p)

⎞
⎟
⎠
∶= Re3,−ϕpRe2,−νp

⎛
⎜
⎝

0
1
0

⎞
⎟
⎠
=
⎛
⎜
⎝

− sinϕp

cosϕp

0

⎞
⎟
⎠

and
⎛
⎜
⎝

c13(p)
c23(p)
c33(p)

⎞
⎟
⎠
∶= Re3,−ϕpRe2,−νp

⎛
⎜
⎝

0
0
1

⎞
⎟
⎠
=
⎛
⎜
⎝

− sinνp cosϕp

− sinνp sinϕp

cosνp

⎞
⎟
⎠
. (37)
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Figure 13: Visualization of the gauge frame compared to the left invariant frame.

Then, the (remaining) gauge vectors are given by

Bi∣p =
∑3
j=1 c

j
i (p) Aj ∣p

∥∑3
j=1 c

j
i (p) Aj ∣p∥

, (38)

where i = 2,3 and the norm is induced by a metric tensor field on M2.

1.4.2 External Regularization

At the beginning of this section, we already mentioned that the gauge frame is not smooth. One way to smooth
it, is by using external regularization. That means that the hessian is replaced by a locally averaged hessian
such that the first gauge vectors are fitted, taking into account their surroundings.

Definition 1.26 (External regularization). Let the scaling matrix M and the hessian matrix H ∣x be given as
in Eq. (35). Consider the component-wise Gaussian smoothed Hessian given by

H̃ ∣
(x,θ)

∶= ∫
R2
∫
S1
GR2

ρs (x − y)GS
1

ρa (θ − φ) H ∣(y,φ) dσ(φ) dy, (39)

where σ is the normalized Borel measure on the sphere S1. The smoothing kernels GMρ are given by

GR2

ρs (x) =
1

4πρs
e−

∥x∥2
4ρs

GS
1

ρa (θ) =
1

2
√
πρa

e−
∣θ−a∣2
4ρa ,

with ρs, ρa > 0, a ∈ S1. For more details, see Section 2.7 of [16].

The externally regularized first gauge vector is the eigenvector of the smoothed matrix M2H̃⊺M2H̃ with the
smallest eigenvalue.

1.4.3 Iterated Stabilization

Besides external regularization, the gauge frames can also be smoothed by iteratively fitting the gauge frames.
The first time, the gauge frame is fitted to the orientation score. After the first iteration; we cannot use
the orientation score again. Therefore, we introduce, the orientation confidence. This measure indicates the
alignment of the first gauge vectors B1∣p to the underlying line structures.

Definition 1.27 (Orientation confidence). Given a gauge frame {B1,B2,B3} fitted to an orientation score
V ∶M2 → R, consider the Laplacian in the plane orthogonal to the principal direction B1∣p:

(∆23V )(p) ∶= (B2B2V )(p) + (B3B3V )(p). (40)
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The orientation confidence S(V ) ∶M2 → [0,1] is defined as

S(V )(p) ∶= (− (∆23V ) (p))+
∥(− (∆23V ))+∥∞

, (41)

where (a)+ ∶= max{0, a}.

To clarify this definition, we visualize an example as given in Figure 14. The vector B1∣p lines up with the
line structure at point p. Consequently, B2∣p and B3∣p are orthogonal to the line structure in the image. The
presence of the curvature (in this case a bump created by the ridge) is measured by the negative Laplacian
−∆23. In order to understand why we only consider the positive part of −∆23, we consider two parallel line
structures as in Figure 15. The vector B1∣p aligns with its surrounding line structures for a point p between
the parallel lines. Consequently, a negative response to the negative Laplacian arises. This response does not
correspond to a genuine line structure, and therefore we only consider the positive part (−∆23)+. Last, we
divide by the maximum to ensure that its values are in the interval [0,1].

Image 3D plot Contour plot

Figure 14: Visualization of a ridge. Taken from [13].

Image 3D plot Contour plot

Figure 15: Two parallel line structures.

Remark 1.7. The calculation of (BiBiV )(p) for i = 1,2,3 is fairly easy for an orientation score V ∶ M2 → R.
We know how to calculate the Hessian H ∣p with respect to the left invariant frame as defined in Eq. (35). Then

for Bi∣p = ∑3
j=1 c

j
i (p) Aj ∣p, we have

(BiBiV )(p) = (c1i (p) c2i (p) c3i (p)) H ∣p (c1i (p) c2i (p) c3i (p))⊺ . (42)

The iterated stabilization of gauge frames starts with an orientation score V ∶M2 → R. An initial gauge frame is
fitted to this orientation score, and results an orientation confidence S(V ). During the next iteration, the gauge
frame is fitted to this orientation confidence S(V ) with resulting orientation confidence S(S(V )) =∶ S2(V ).
This process can have as many iterations as needed. In practice, the computation costs (and time) outweigh
the benefits of the improved smoothness of the gauge frame after four iterations [13]. This method has been
proposed in Section 11.3.2 and 11.3.3 in [5], but a formal proof of convergence Sn → S∗ has not been published
yet.
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2 Metric Tensor Fields

In this section, we introduce the different metric tensor fields that were used for both the left invariant frame
and the gauge frame. They describe how distances are defined on the manifold. We can visualize these distances
with control sets. In Figure 16, we visualize the effect of such a metric tensor field. In the left figure, we see a
situation in which the tracking is allowed to move backward, as you can see in the image in the left top corner.
This model uses the control sets visualized in the left bottom corner. These control sets are symmetric in their
spatial direction. On the right side, we see what happens when we restrict the model, and allow only forward
movement. In this case, the model uses in-place rotations in order to take the shortest path, as we see in the
right top corner. The control sets are visualized in the right bottom corner. We see that these only support
movement in the forward direction.

Figure 16: Visualization of the effect of control sets (symmetric and forward gear). Left: Model which is
allowed to use reverse gear. The control sets are spatially symmetric and allow angular movement. Right:
Model without reverse gear. The control sets are asymmetric, and allow only forward spatial (and angular)
movement. Taken from [17].

In this section, we will define some specific metric sensor field, but first, we define (a)− ∶= min{a,0} and
(a)+ ∶= max{a,0}, which we use in the forward gear variants of the models.

• The left invariant metric tensor field GLIF is given by

GLIF ∶= 1

(1 + β/C)2
(ξ2 (ω1 ⊗ ω1 + 1

ζ2
ω2 ⊗ ω2) + ω3 ⊗ ω3) . (43)

In this expression, the cost function C ∶ M2 → [δ,1] discourages the model from taking paths outside
the vessels. The parameter β determines the influence of the cost function, where β ≥ 0. When β = 0,
the cost function does not influence the solution at all, whereas higher values of β make sure that the
cost function plays a more important role towards distance calculations on the manifold. The anistropy
parameter ζ penalizes vectors with large sideways components, and thus stimulates forward movement.
The last parameter is given by ξ and this is a weighting parameter which influences the flexibility of the
calculated vessel, as we will see later on.

• The forward gear left invariant metric tensor field GfLIF is given by

GfLIF ∶= 1

(1 + β/C)2
(ξ2 (ω1 ⊗ ω1 + (ε−2 − 1) (ω1 ⊗ ω1)

−
+ 1

ζ2
ω2 ⊗ ω2) + ω3 ⊗ ω3) . (44)

In this expression, the parameters C, β, ζ and ξ have the same meaning and influence as explained in
model (43). However, we have one extra parameter; ε ∈ [0,1]. This parameter decides how strongly the
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Top View Left Side View Front View

Figure 17: Local plots of the control sets (see Definition 1.19 and Appendix B; balls in the tangent space rather
than the Lie group itself) on the curve (blue) acquired while backtracking. The underlying image is the same
as in Figure 5, and the tracking is obtained using the gauge frame. The red and green control sets correspond
to the left invariant and gauge frame respectively. The control sets are vertically plotted with respect to their
discrete orientation θd = θ

2π/Nθ
+ 1.

model has to adhere to the forward gear. Note that the case ε = 1 yields a Reeds-Shepp model which does
allow backwards motions [17].

• The (anisotropic) gauge frame metric tensor field GGF is given by

GGF ∶= 1

(1 + β/C)2
(χ1 ⊗ χ1 + 1

(1 − α)2
(χ2 ⊗ χ2 + χ3 ⊗ χ3)) =

3

∑
i,j=1

[GB]ij χ
i ⊗ χj . (45)

As explained in Section 1.4, the gauge frame is fitted to the line structures in the orientation score.
Therefore, this model often gives a better approximation of the blood vessels, than the left invariant
frame. This model has some parameters that are the same as for the left invariant frame, but also some
that are different. The implementation of the cost function C is the same as it was for both left invariant
frame metric tensor fields. The same holds for the parameter β. However, the anisotropy parameter has
changed to α ∈ [0,1). It penalizes vectors that are orthogonal to the line structure of the first gauge vector
B1. When α = 0, there is no penalization of the vectors orthogonal to B1. On the other hand, α → 1
results in high penalties for orthogonal vectors.

• Last, we introduce the (anisotropic) forward gear gauge frame metric tensor field GfGF. It is important
that we clearly define what “forward movement” is. In the left invariant frame, this was in the positive
direction of A1. However, in the gauge frame, we can both consider moving forward as moving in the
positive direction of either A1 or B1. We decide to use the convention that the forward direction, is the
direction of B1. Then, the metric tensor field GfGF is given by

GfGF ∶= 1

(1 + β/C)2
(χ1 ⊗ χ1 + (ε−2 − 1) (χ1 ⊗ χ1)

−
+ 1

(1 − α)2
(χ2 ⊗ χ2 + χ3 ⊗ χ3)) . (46)

In this expression, the cost function C and parameters β and α are defined in the same way as they were
in the anisotropic gauge frame metric tensor field (45). The new parameter ε ∈ [0,1] deices how strongly
the model has to adhere to the forward gear. Note that the case ε = 1 does allow backwards motion. On
the other hand, when ε→ 0, only in point rotations and forward movement are allowed.

Note that the way we defined forward movement (in the direction of B1) could mean that backwards motion
in the left invariant frame compared to the previous position is allowed, when the gauge frames are not
nicely aligned. However, in practice, we have not encountered any cases where this led to problematic
situations. This could be solved by defining forward movement in the direction of A1, but since this means
that we will have to be working with two different frames, we chose to not implement this.

We already explained that the gauge frame is able to adapt for curvature, whereas the left invariant frame is
not. We illustrate this in Figure 17. We see that the control sets corresponding to the gauge frame are always
aligned with the underlying vessel structure, whereas the control sets belonging to the left invariant frame,
rotate and support movement in all directions, depending on the orientation of the point p.
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3 Numerical Approach

In this section, we will provide more details of the numerical approach towards identifying where the vessels
are in the retina images. First, we give a general overview of the steps that need to be taken in order to find
the shortest path (geodesic), as you can find in Section 3.1. In Section 3.2 we focus on how to solve the eikonal
equation using both finite differences and fast marching. Then, we explain how we track the vessels (from their
end point to their start point) in Section 3.3. Lastly, we compare the results of the two numerical methods that
we discussed to the exact solution as one can read in Section 3.4.

3.1 General Approach

There are 5 steps that need to be followed when calculating the optimal geodesics in a manifold M. Let us
consider the procedure in a metric space (M, dF) where dF denotes the distance measure and where F represents
a Finsler metric.

[Step 1] Compute the dual Finsler function F∗. Note that the Finsler function itself, F , is known. Then, F∗
satisfies

F∗ (p, p̂) = sup
ṗ∈Tp(M)

⟨ṗ, p̂⟩
F (p, ṗ) , where p̂ ∈ T ∗p (M) .

[Step 2] Derive the eikonal system. That means that one needs to write out

⎧⎪⎪⎨⎪⎪⎩

F∗ (p,dU (p)) = 1 for all p ∈M/{pS}
U(pS) = 0.

(47)

where U = dF (pS , ⋅) denotes the distance map. In other words, we need to write Eq. (47) in function of
p and dU(p).

[Step 3] Obtain the distance map as the viscosity solution of the eikonal system.

[Step 4] Compute the derivative dF∗ of the dual Finsler function (w.r.t. 2nd entry),

dp̂F∗ (p, p̂) ∶= ∂

∂p̂
F∗ (p, p̂) .

[Step 5] Apply backtracking via an intrinsic gradient descent on the distance map. That means that we have
to calculate

⎧⎪⎪⎨⎪⎪⎩

γ̇(t) = −L dp̂F∗ (γ (t) ,dU (γ (t))) , L ∶= dF(p,pS)
γ (0) = p, γ (1) = pS .

where γ is a minimal geodesic from pS to some p ∈M.

In the setting that we will consider, we have a Riemannian metric. This means that the Finsler metric F is
induced by a metric tensor field G on Riemannian manifold (M,G), where the following relation holds

F (p, ṗ) =
√
G∣p (ṗ, ṗ).

3.2 Solving the Eikonal Equation in Riemannian Setting

In order to find the shortest curves between any end point (or tip) q and a starting point (or seed) pS , we need
to solve the eikonal equation. Let us introduce a distance function U = dG (pS , ⋅). This function is found by
solving the viscosity solution of the eikonal partial differential equation (PDE)

⎧⎪⎪⎨⎪⎪⎩

∥grad U∥G = 1

U(pS) = 0,
(48)

where U ∶M2 → R is the continuous viscosity function of Eq. (47). Here, the gradient grad U , which is defined
almost everywhere, is the vector reciprocal to the differential dU :

G (grad U, ⋅) = dU. (49)

The norm induced by the tensor metric field G is calculated as explained in Section 1.1.6.
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3.2.1 Finite Differences

First, we consider the finite difference approach in detail. We discuss the discretization schemes of all metric
tensor fields that were implemented as part of this project. For all metric tensors, both the “symmetric” and
“forward” gear versions are discussed.

Earlier, we explained that we consider the Eikonal equation (with U ∶M2 → R) given by

⎧⎪⎪⎨⎪⎪⎩

∥grad U(p)∥G = 1 ∀p ∈M2,

U(pS) = 0.

We are looking for the viscosity solution of this equation, as explained in [Step 3]. One approach to find this
viscosity solution, is by considering the Hamilton-Jacobi PDE (with W ∶ M2 × R+ → R). Let ε > 0 fixed,
r ∈ [rn, rn+1], rn ∶= nε with n ∈ N. Then, the Hamilton-Jacobi PDE is given by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂rW
ε
n+1(p, r) = 1 − ∥grad W ε

n+1(p, r)∥G ∀p ∈M2, r ≥ 0,

W ε
n+1(p, rn) =W ε

n(p, rn) ∀p ≠ pS ,

W ε
n+1(pS , rn) = 0,

(50a)

(50b)

(50c)

for n = 1,2, . . . , and for n = 0, we have

⎧⎪⎪⎨⎪⎪⎩

∂rW
ε
1(p, r) = 1 − ∥grad W ε

1(p, r)∥G ∀p ∈M2

W ε
1(p,0) = δMpS(p),

(51a)

(51b)

where δMpS is the morphological delta given by

δMpS(p) =
⎧⎪⎪⎨⎪⎪⎩

0 if p = pS ,

+∞ else.
(52)

We use the end condition of W ε
n(p, rn) of the nth evolution as an initial condition W ε

n+1(p, rn) of the (n+ 1)th
evolution. Only for p = pS , we have a different initial condition, being W ε

n+1(pS , rn) = 0. Then, the pointwise
limit W∞(p) is defined as

W∞(p) ∶= lim
ε→0

( lim
n→∞

W ε
n+1 (p, (n + 1)ε)) . (53)

It is important that each initial value problem solution W ε
n+1(p, r) is the unique viscosity solution of Eq. (50).

In that case, the viscosity property for the viscosity solutions of Eq. (53) carry over the viscosity solutions of
Eq. (47). So, we obtain W =W∞ as the unique viscosity solution of Eq. (48). More information on the limit in
Eq. (53) can be found in Appendix E of [6]. Here, it is also explained in detail why it is necessary to have two
limits. For an intuitive explanation, we turn to Figure 18. We see that, for ε > 0, we obtain staircasing (due to
a discrete rounding of the distance function). Taking the limit ε ↓ 0, the solution W∞(p) =W (p) is obtained.

Remark 3.1. The staircasing limit depicted in Figure 18 is similar to the basic eikonal boundary value problem
on R with solution d(x,0) = ∣x∣. On R the approach, described by Eq. (50), (51) and (53), provides the pointwise
limit

∣x∣ = lim
ε→0

∞

∑
m=0

rm+11[rm,rm+ε] (∣x∣) = lim
ε→0

⌈
∣x∣
ε ⌉

∑
m=0

rm+11[rm,rm+ε] (∣x∣) , (54)

with rm =mε [6].

Note that Eq. (53) is a limit that is independent of the PDE discretization. When taking ε > 0, we do discretize
the morphological convolution solving the PDE which explains the stairs in Figure 18.

Definition 3.1 (Morphological convolution). The morphological convolution ◻ of two functions f1 and f2 is
defined by

(f1 ◻ f2) (x) = inf
y∈Ω

{f1(x − y) + f2(y)} . (55)

Remark 3.2. Note that the morphological convolution where one of the functions is the morphological delta,
that we introduced in Eq. (52), for some function f and some point x in domain Ω, results in

(f ◻ δM0 ) (x) = inf
y∈Ω

{f(x − y) + δM0 (y)} = f(x);

(δM0 ◻ f) (x) = inf
y∈Ω

{δM0 (x − y) + f(y)} = f(x).
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Figure 18: Illustration of the pointwise limits in Eq. (53). Top: plot of p ↦W ε
n+1(p, rn+1) (from left to right,

for ε = 1, ε = 0.5 and ε ↓ 0. Along the red axis {(x,0,0)∣x ∈ R} we have x = d(p,e). Bottom: the corresponding
graph of x↦W ε

n1
((x,0,0), rn+1). As n grows the staircase grows; as ε→ 0 the size of the steps in the staircase

vanishes, and we see W∞ = d(p,e) in the rightmost column. Taken from [6].

Before, we move on to the actual discretization of the equation, we give an interpretation of the solution. When
we solve the Eikonal equation, we calculate the distances from the seed pS to every other point p ∈ SE(2).
It is useful to interpret these distances, and their corresponding distance function U , in terms of wavefront
propagation. The wave of a viscous fluid originates from the starting point p and propagates throughout the
domain. This explains the viscosity solution W , which needs to be calculated in [Step 3] of the introduced
approach. In the Eikonal equation, function values represent the distance from the seed to reach the specific
point. In the viscosity solution, these function value represents the time it takes for the wave to travel towards
the specific end value. The shortest path is found by tracking back along the path which was followed by the
wavefronts. [6]

Left Invariant Frame We start with the left invariant metric tensor field defined by Eq. (43). Let us recall

GLIF = C̃ (ξ2ω1 ⊗ ω1 + ξ2ζ−2ω2 ⊗ ω2 + ω3 ⊗ ω3) ,

where C̃ = 1
(1+β/C)2 is the mobility of the metric tensor. Let us denote

dW (p) = (A1∣pW ) ω1∣
p
+ (A2∣pW ) ω2∣

p
+ (A3∣pW ) ω3∣

p
, (56)

where ωi (i = 1,2,3) form the covector basis and Ai∣pW (i = 1,2,3) are the coefficients in R. Then, the norm
becomes

Gp (G−1
p ((A1∣pW ) ω1∣

p
+ (A2∣pW ) ω2∣

p
+ (A3∣pW ) ω3∣

p
) ,G−1

p ((A1∣pW ) ω1∣
p
+ (A2∣pW ) ω2∣

p
+ (A3∣pW ) ω3∣

p
))

= 1

C̃
( 1

ξ2
(A1∣pW )2 + ζ

2

ξ2
(A2∣pW )2 + (A3∣pW )2) , (57)

using Eq. (21) with a11 =
√
C̃ξ a22 =

√
C̃ξ/ζ and a33 =

√
C̃.

Since we want to calculate the eikonal PDE using finite differences, we need to find the correct discretization of
Eq. (57). Here, it is important to realize that Ai∣pW also contains derivatives (for i = 1,2,3) as we have seen
in Section 1.3, Eq. (25). We recall that these derivatives are given by

A1W (x, θ) = cos θ∂xW (x, θ) + sin θ∂yW (x, θ) = lim
h↓0

W (x + heθφ, θ) −W (x, θ)
h

; (58a)

A2W (x, θ) = − sin θ∂xW (x, θ) + cos θ∂yW (x, θ) = lim
h↓0

W (x + heθρ, θ) −W (x, θ)
h

; (58b)

A3W (x, θ) = ∂θW (x, θ) = lim
h↓0

W (x, θ + h) −W (x, θ)
h

, (58c)
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where eθφ = (cos θ, sin θ) and eθρ = (− sin θ, cos θ). Let there be a distance ∆r > 0 such that

A1W (x, θ) ≈
W (x +∆reθφ, θ) −W (x, θ)

∆r
; (59a)

A2W (x, θ) ≈
W (x +∆reθρ, θ) −W (x, θ)

∆r
; (59b)

A3W (x, θ) ≈ W (x, θ +∆θ) −W (x, θ)
∆θ

. (59c)

The discretization of the forward difference variant of these derivatives yields

(A1w
n
i,j,k)

f = (A1W (i∆x, j∆y, k∆θ))f ≈
W (x +∆reθφ, θ) −W (x, θ)

∆r
=
wn
i+∆r

∆x cos(k∆θ),j+∆r
∆y sin(k∆θ),k

−wni,j,k
∆r

;

(60a)

(A2w
n
i,j,k)

f = (A2W (i∆x, j∆y, k∆θ))f ≈
W (x +∆reθρ, θ) −W (x, θ)

∆r
=
wn
i−∆r

∆x sin(k∆θ),j+∆r
∆y cos(k∆θ),k

−wni,j,k
∆r

;

(60b)

(A3w
n
i,j,k)

f = (A3W (i∆x, j∆y, k∆θ))f ≈ W (x, θ +∆θ) −W (x, θ)
∆θ

=
wni,j,k+1 −wni,j,k

∆θ
. (60c)

where Alw
n
i,j,k represents the discretization ofAlW (i∆x, j∆y, k∆θ) for l = 1,2,3, and where the superscript f in-

dicates that we are considering the forward finite differences. Note that for example wn
i+∆r

∆x cos(k∆θ),j+∆r
∆y sin(k∆θ),k

does not necessarily lie on the grid that we use for the calculations. Hence, we use interpolation to estimate
those values that are not on the grid. The Lie-package that was developed for Mathematica assumes that
∆x = ∆y = ∆r = 1. That means that we consider the discretization scheme:

(Ã1w
n
i,j,k)

f = (Ã1W (x, θ))f ≈ (W (x + eθφ, θ) −W (x, θ)) = wni+cos(k∆θ),j+sin(k∆θ),k −wni,j,k; (61a)

(Ã2w
n
i,j,k)

f = (Ã2W (x, θ))f ≈ (W (x + eθρ, θ) −W (x, θ)) = wni−sin(k∆θ),j+cos(k∆θ),k −wni,j,k; (61b)

(Ã3w
n
i,j,k)

f = (Ã3W (x, θ))f ≈ 1

∆θ
(W (x, θ +∆θ) −W (x, θ)) =

wni,j,k+1 −wni,j,k
∆θ

, (61c)

where Ãlw
n
i,j,k represents the discrete version ofAlW (i∆x, j∆y, k∆θ) which was implemented in the Lie-package

for l = 1,2,3.

In the left invariant frame, the discretization of Eq. (50a), using forward differences, results in

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

wn+1
i,j,k = wni,j,k −∆t(C̃−1/2

√
ξ−2 (Ã1wni,j,k)

2
+ ξ−2ζ2 (Ã2wni,j,k)

2
+ (Ã3wni,j,k)

2
− 1)

wpS = 0,

where Ãlw
n
i,j,k = max{− (Ãlwni,j,k)

f
, (Ãlwni,j,k)

b
,0} for l = 1,2,3, and where wpS is the discretized representation

ofW (pS). Forward and backward finite differences are respectively denoted by superscripts f and b. This system
of equations can easily be solved using software like Matlab or Mathematica.

Forward Gear Left Invariant Frame When we consider the forward gear version of the left invariant
frame, we need to remark that the constraint only affects Ã1∣pW , which should always have a positive value

for ε = 1. Therefore, the discretization of Eq. (50a) for the forward gear left invariant frame leaves us with

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

wn+1
i,j,k = wni,j,k −∆t(C̃−1/2

√
ξ−2 ((Ã1wni,j,k)+)

2
+ ξ−2ε2 ((Ã1wni,j,k)−)

2
+ ξ−2ζ2 (Ã2wni,j,k)

2
+ (Ã3wni,j,k)

2
− 1)

wpS = 0,

where Ãlw
n
i,j,k is the discretized form of the derivatives as defined in (61) for l = 1,2,3.

Gauge Frame Now, we move on to the gauge frame metric tensor field with was given by Eq. (45). We recall

GGF ∶= C̃ (χ1 ⊗ χ1 + 1

(1 − α)2
(χ2 ⊗ χ2 + χ3 ⊗ χ3)) ,
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where C̃ = 1
(1+β/C)2 is the mobility of the metric tensor. Our goal is to express Eq. (50a) with respect to the

gauge frame.

Let us denote

dW (p) = (B1∣pW )χ1 + (B2∣pW )χ2 + (B3∣pW )χ3, (62)

where χi (i = 1,2,3) form the covector basis of the gauge frame and (Bi∣pW ) are coefficients in R for i = 1,2,3.
Then, the norm becomes

Gp (G−1
p ((B1∣pW )χ1 + (B2∣pW )χ2 + (B3∣pW)χ3) ,G−1

p ((B1∣pW )χ1 + (B2∣pW)χ2 + (B3∣pW )χ3))

= C̃−1 ((B1∣pW )2 + (1 − α)2 (B2∣pW )2 + (1 − α)2 (B3∣pW )2) , (63)

using Eq. (21) with a11 =
√
C̃ and a22 = a33 =

√
C̃/(1 − α).

In order to determine the discretization of Eq. (50a) in the gauge frame, we need to figure out how we determine

the correct expression for (Blwni,j,k)
f

and (Blwni,j,k)
b

for l = 1,2,3 and f and b indicating forward and backward
finite differences respectively and where Blw

n
i,j,k denotes the discretization of BlW (i∆x, j∆y, k∆θ) for l = 1,2,3.

We know that Bj is constructed as a weighted sum of Ai where i, j = 1,2,3 as introduced in Section 1.4, Eq.
(36) and (38). We recall that

Bl∣pW =
3

∑
m=1

cml Am∣pW,

where cml ∈ R. These constants also influence the forward and backward finite differences for the gauge frame.
We recall the definition of the first order upwind scheme.

Definition 3.2 (First order upwind scheme in R). We consider the ordinary differential equation

∂y

∂t
= a∂y

∂x
, a ∈ R.

Defining
a+ = max{a,0} , a− = min{a,0}

and

y−x =
yni − yni−1

∆x
, y+x =

yni+1 − yni
∆x

the first order upwind scheme is given by

yn+1
i = yni +∆t (a+y−x + a−y+x) .

The theory in Definition 3.2 translates for the left invariant derivatives and gauge derivatives to

(Blwni,j,k)
f =

3

∑
m=1

((cml )+ (Ãmwni,j,k)
f + (cml )− (Ãmwni,j,k)

b)

(Blwni,j,k)
b =

3

∑
m=1

((cml )− (Ãmwni,j,k)
f + (cml )+ (Ãmwni,j,k)

b) .

Then, the discretization of Eq. (50a) becomes

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

wn+1
i,j,k = wni,j,k −∆t(C̃−1/2

√
(B1wni,j,k)

2
+ (1 − α)2 (B2wni,j,k)

2
+ (1 − α)2 (B3wni,j,k)

2
− 1)

wpS = 0,

where Blw
n
i,j,k = max{− (Blwni,j,k)

f
, (Blwni,j,k)

b
,0} for l = 1,2,3.

Forward Gear Gauge Frame Lastly, we need to consider the forward gear gauge frame. In Eq. (46), we
introduced the metric tensor field for the forward gear variant of the gauge frame. We see that the only difference
compared to the symmetric gauge frame is that we are only considering the positive part and a rescaled negative
part of B1∣pW . Therefore, the discretization of Eq. (50a) becomes

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

wn+1
i,j,k = wni,j,k −∆t(C̃−1/2

√
((B1wni,j,k)+)

2
+ ε2 ((B1wni,j,k)−)

2
+ (1 − α)2 (B2wni,j,k)

2
+ (1 − α)2 (B3wni,j,k)

2
− 1)

wpS = 0,

where Blw
n
i,j,k = max{− (Blwni,j,k)

f
, (Blwni,j,k)

b
,0} for l = 1,2,3.
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3.2.2 (Hamiltonian) Fast Marching

An alternative method to calculate the distances from an arbitrary point p to a seed pS is called fast marching.
This is an efficient calculation method in which the shortest path can be found in one pass when the distance
map satisfies two conditions (monotony, causality) which will be discussed later on in this chapter. Therefore,
this method should be a lot faster than the earlier discussed finite differences, since it is not an iterative method;
not all values are updated every time step, but just a targeted group. We use the implementation written by
Jean-Marie Mirebeau [26]. However, we also need to know how this method works [27; 28]. First, we will give
an overview of the different steps, the code goes through. Thereafter, we will explain the different mechanisms
that are used.

The fast marching code follows a number of steps. Different theoretical aspects are used in order to calculate a
geodesic. They are presented in chronological order below.

1. Call the primal metric;

2. Calculate the dual metric using Lemma 3.1;

3. Use Selling’s algorithm to calculate Voronoi’s first reduction of quadratic forms of the dual metric. This
algorithm determines which points can be reached from each seed;

4. Discretize the eikonal PDE;

5. Calculate Fast Marching Algorithm 2.

We start off with introducing some notation. Just like before, we work on a discretized space. We will be using
the Cartesian grid space, denoted by L ∶= Zd, where d is the dimension of the position space. The Euclidean
space is denoted by E = Rd. In this report, we have d = 2. Then, the domain Ω ⊆ Rd needs to be discretized and
is denoted by

Ωh ∶= Ω ∩ hL, ∂Ωh = (E/Ω) ∩ hL,

where h > 0. We denote the dual vector space of E and L by E∗ and L∗ ∶= {p̂ ∈ E∗ ∶ ∀ṗ ∈ L, ⟨p̂, ṗ⟩ ∈ Z}
respectively, where ⟨⋅, ⋅⟩ denotes the duality bracket. Note that we have E ≅ E∗ and L ≅ L∗ since d <∞.

Let us denote S(E) ⊆ L(E,E∗), S+(E) and S++(E) as the space of symmetric linear maps, semi-definite
symmetric linear maps and positive definite symmetric linear maps respectively. Additionally, we introduce
GL(E) ⊆ L (E,E) which denotes the group of invertible linear transformations, and GL(L) ⊆ GL(E) the sub-
group of those which leave the Cartesian grid L invariant (i.e. their matrix has integer coefficients and de-
terminant ±1). In the fast marching code, we need to supply the primal metric with respect to the standard
frame. The function that we call transforms the primal metric to a dual metric. The python-script does this
transformation using Lemma 3.1 as introduced in [17].

Lemma 3.1. Let w ∈ Rn and let M ∈ Rn×n be symmetric, positive definite, where n = d(d + 1)/2. Define the
norm FM,w ∶ Rn → R+ by

FM,w (v) =
√

(Mv,v) + (w,v)2
−.

Then its dual norm

F∗M,w (v̂) =
√

(v̂, M̂ v̂) + (v̂, ŵ)2
+,

with M̂ = (M +w ⊗w)−1
and ŵ = M−1w

√
1+(w,M−1w)

.

More information on how the primal metric with respect to the standard, static frame is calculated, can be
found in Appendix A.

When one want to decompose an arbitrary tensor D ∈ S++(E) in the form

D = ∑
ė∈L/{0}

ρė(D) ė⊗ ė, where ∀ė ∈ L/{0}, ρė(D) ≥ 0, (64)

with finitely many nonzero coefficients ρė(D), while maximizing

∑
ė∈L/{0}

ρė(D),

one can use Voronoi’s first reduction of quadratic forms [27].
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Theorem 1 (Voronoi). Let us define

P ∶= {M ∈ S++ (R) ;∀ė ∈ L/{0}, ∥ė∥M ≥ 1} , L(D) ∶= inf
M∈P

Tr (MD) .

The linear problem L(D) is feasible, for any D ∈ S++(E∗), in the sense that the set of minimizers is non-empty
and compact. In addition, the convex polytope P ⊆ S(E) has a finite number of equivalence classes of vertices
under the action of GL(L) ⊆ GL (E).

In other words, the minimization problem is given by

minimize ⟪M,D⟫ subject to ⟪M, ė⊗ ė⟫ ≥ 1 for all ė ∈ L/{0}, (65)

where ⟪M,D⟫ ∶= Tr(MD).
Since we are considering dimensions d = 2, we can use Selling’s algorithm to solve Eq. (65). This algorithm
returns a superbase, of which we introduce the definition below.

Definition 3.3. [Superbase] A superbase of Zd is a (d + 1)-tuple b = (v0, . . . ,vd) ∈ (Zd)d+1
such that

∣det (v1, . . . ,vd)∣ = 1 and v0 + . . . + vd = 0. One also defines Mb ∶= 1
2 ∑

d
i=1 viv

T
i ∈ S++ (E) . A superbase is

said M -obtuse, where M ∈ S++ (E), iff ⟨ėi, ėj⟩M ≤ 0 for all 0 ≤ i < j ≤ d.

In Algorithm 1, we state Selling’s algorithm. Since Voronoi’s first reduction was feasible (Theorem 1), we know
that the algorithm will end. Selling’s algorithm returns a D-obtuse superbase (as defined in Definition 3.3). The
vertex Mb which is associated with this superbase b is optimal, and the corresponding Karush-Kuhn-Tucker
relations are given by

D = − ∑
0≤i<j≤d

⟨vi,Dvj⟩ eij ⊗ eij ,

where eij ∶= v⊥k with {i, j, k} = {0,1,2}.

Algorithm 1: Selling’s algorithm [27].

Input: matrix D and superbase b = (v0, . . . ,vd)
Define I ⊆ {1, . . . , d}, such that ⟨vi,Dvj⟩ > 0 for all i < j, i, j ∈ I.
while I ≠ ∅ do

Replace the superbase b by b′ = (−vi,vj ,vi − vj)
Redefine I ⊆ {1, . . . , d}, such that ⟨vi,Dvj⟩ > 0 for all i < j, i, j ∈ I.

Output: D-obtuse superbase, i.e. ⟨vi,Dvj⟩ ≤ 0 for all i ≠ j.

In Figure 19, one can see a visualization of the dual unit ball and different discretizations. The discretizations
are the offsets associated by Voronoi’s first reduction to a tensor D involved in the decomposition (Eq. (64)).
The points where the arrows end are considered to be having distance 1 from the center and are therefore within
reach. During the Fast Marching updates, the algorithm can reach these points from its center.

We create acute stencils when we use Selling’s algorithm and Voronoi’s theorem.

Definition 3.4 (Acuteness). Let F be an asymmetric norm on E. We say that two vectors u, v ∈ E/{0} form
an F−acute angle if

F(u + δv) ≥ F(u) and F(v + δu) ≥ F(v) for all δ ≥ 0.

We say that a finite conforming triangulation T is F−acute if

1. The union of triangles T ∈ T is a neighborhood of the origin.

2. The vertices of each T ∈ T lie on L, one of them is the origin 0 and T has area 1/2.

3. The non-zero vertices of each triangle T ∈ T form an F−acute angle.

When a stencil is acute, it is also causal.

Proposition 3.1 (Causality Property). Let F be an asymmetric norm on E, let u, v ∈ E be linearly independent,
and let du, dv ∈ R. Assume that u and v form an F−acute angle. Define

dw ∶= min
t∈[0,1]

tdu + (1 − t)dv +F(tu + (1 − t)v),

and assume that this minimum is not attained for t ∈ {0,1}. Then du < dw and dv < dw.
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Figure 19: Dual unit ball {ṗ; ∥ṗ∥D−1∥ ≤ 1}, and offsets associated by Voronoi’s first reduction to a tensor D,
involved in the decomposition in d = 2. Taken from [28].

This proposition is proved in [29]. When this causality property is satisfied and the resulting map is monotone,
the tracking can be solved in one pass.

An alternative definition of a causal map is given in Definition 3.5. We will use this definition to illustrate why
the our stencil is causal and provide more information on the updating process of fast marching.

Definition 3.5 (Monotony, causality). A numerical scheme on a finite set Z is a map H ∶ Z ×R ×RZ → R. It
is said

• Monotone iff H is non-decreasing w.r.t. the second and (each of the) third variables.

• Causal iff H only depends on the positive part of the third variable(s).

One denotes for any U ∶ Z → R and any p ∈ Z

H̃U(p) ∶=H(p, U(p), (U(p) −U(q))q∈Z)

In our case, we have H̃U(p) ∶= U(p) and Z = M2. Both properties automatically follow from inserting the
upwind finite differences in the dual which is of the form

F∗ (p, p̂)2 ≈ max
1≤k≤K

⎛
⎝ ∑1≤i≤I

αik⟨p̂, ėik⟩2+ + ∑
1≤j≤J

βjk⟨p̂, ḟjk⟩2
⎞
⎠
,

where p ∈ Ω and co-vector p̂ ∈ E∗. The integers I, J,K are meta-parameters which are fixed for each class of
metric, in contrast to αik, βjk ≥ 0 and the offsets ėik, ḟjk ∈ Zd implicitly depend on the current point p ∈X, and
where 1 ≤ i ≤ I, 1 ≤ j ≤ J and 1 ≤ k ≤K [28].

For simplification, we assume K = 1. The sets I and J remain arbitary. Then, we have

F∗ (p, p̂)2 ≈ ∑
1≤i≤I

αi (p) ⟨p̂, ėi⟩2+ + ∑
1≤j≤J

βj (p) ⟨p̂, ėj⟩2 .

The weights αi = αi(p) ≥ 0, βj = β (p) ≥ 0 and offsets ėi = ėi (p) ∈ Zd both depend on the point p ∈X in which
they are evaluated. The discretization scheme is given by

(FhU(p))2 ∶= h−2 ∑
1≤i≤I

αi (p)max{0, U(p) −U(p − hėi}2 + ∑
1≤j≤J

βj (p)max{0, U(p) −U(p − hėi, U(p) −U(p + hė)}2
,

where FhU − 1 = 0 should be satisfied. Without loss of generality, we can reduce this system to

(FhU(p))2 ∶= h−2 ∑
1≤i≤I

α̃i (p)max{0, U(p) −U(qi}2
,

where qi ∶= p − hėi (p) are the points which can be reached from point p and which are accepted. In addition
to that, α̃i = α̃i (p) is a linear combination of αi and βj , depending on the values of U(p) and U(qi). When
calculating the fast marching algorithm (Algorithm 2), it is important to know how the value of U(p) is updated.
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In the fast marching algorithm, we divide the points in three categories: Far, Trial and Accepted. During an
update, we only consider the set of “trial” points. After one of these points moves to the “accepted” set, one
redefines the set of “trial” points with points from the far set, which have become within reach of the accepted
points. Once a point p is tagged as “accepted”, its function value U(p) becomes frozen as well. When all the
points have moved to the “accepted” category, a geodesic can be easily calculated. The exact algorithm can be
found in Algorithm 2.

Algorithm 2: Fast Marching [28].

Pre-computed stencils (V [p])p∈X∪∂X , where V [q] ∶= {p ∈X;q ∈ V (p)}, with
V (p) ∶= {q = p − hėi (p) ; 1 ≤ i ≤ I,q is visible from p} ∩ (X ∪ ∂X).

Tag points of ∂X as Trial, and other points as Far.
Initialize U ∶X ∪ ∂X → (−∞,∞] to the value +∞ on X and the boundary condition on ∂X.
while there remain Trial points do

Find a Trial point q minimizing U .
Tag q as Accepted, and call Post-process(q).
for each neighbor p ∈ V [q], either Far or Trial do

if p is Far then
tag it as Trial, and call Pre-process (p).

Update U(p), taking into account the value U(q) of the last Accepted point.

Now, we take a closer look at the updating process of the values U(p). Let us consider a point p ∈ X that is
tagged as Trial, and which has value U(p). This point p needs to be updated w.r.t. the surrounding Accepted
points. Then, the value of U(p) needs to be replaced with the largest solution λ ∈ R to the following quadratic
equation:

h−2 ∑
1≤i≤I

α̃i (p)max{0, (λ −U (qi))}2 = 1. (66)

First, we note that we only consider the function values at locations qi, where qi ∈ V(p), so within reach of the
point p. In addition to that, we use that we have λ ≥ U(qi) for qi Accepted (due to the monotonicity property
of U). Therefore, we can rewrite Eq. (66) to

h−2∑
i∈Υ

α̃i (p) (λ −U (qi))2 = 1, where Υ ∶= {1 ≤ i ≤ I;qi ∈ V (p) ,qi is Accepted} . (67)

The neighbor points qi where i ∈ Υ are the points that are tagged as Accepted and which can be reached from
point p and are within the domain X ∪ ∂X. Eq. (67) always has two real roots. This holds because of the
ordering, causality and monotony of the stencils and is a consequence of the construction of the fast marching
algorithm [28].

When calculating the fast marching algorithm, the smallest root of Eq. (67) is a numerical artifact and therefore
not important when determining U(p). However, the largest root denoted by λ∗ satisfies by construction
λ∗ ≥ U(qi) for all i ∈ Υ, and defines the updated value of U(p). Note that

λ∗ =
∑i∈Υ α̃i (p)U(qi) +

√
(∑k∈Υ α̃k (p)U(qk))2 − (∑l∈Υ α̃l (p)) (∑m∈Υ α̃m (p)U(qm)2 − 1)

∑j∈Υ α̃j (p) . (68)

The updating process of value U(p) is also described in Algorithm 3.

Algorithm 3: Update of U(p) in CPU algorithm [28].

Input: U , p
Define:
Set Υ ∶= {1 ≤ i ≤ I;qi ∈ V (p) ,qi Accepted}.
Variables a = ∑i∈Υ α̃i (p), b = ∑i∈Υ α̃i (p)U(qi), c = ∑i∈Υ α̃i (p)U(qi)2 − 1.

Calculate λ∗ = b+
√
b2−ac
a

.
Output: Unew(p) = λ∗

Above, we described the CPU-implementation of Fast Marching. This is used when the discretization problem
is monotone and causal. However, when this is not the case, the GPU-implementation can be used. In that
case, Eq. (66) cannot be simplified to (67) since we do not know on beforehand which points are in the set of
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accepted points and consequently, we update the values simultaneously. Therefore, the updating works a little
bit differently. We consider all values in the surroundings of a point p. First, we sort all surrounding values
U(qi), and denote the ordered neighbor points by ui1 , ..., uiI . Then, we calculate the value of the point p,
represented by λ ∶= U(p) for the scenarios in which points ui1 up to uir are included (where 1 ≤ r ≤ I), denoted
by λr. We accept the value λr−1 for U(p) when λr−1 ≤ uir . This is also described in Algorithm 4.

Algorithm 4: Update of U(p) in GPU algorithm [30].

Variables a0 = 0, b0 = 0, c0 = −h2, λ =∞.
Sort the indices, so that ui1 ≤ . . . ≤ uiI .
for r from 1 to I: do

if λ ≤ uir then
break.

ar = ar−1 + αir ; br = br−1 + αiruir ; cr = cr−1 + αiru2
ir

λ = br+
√
b2r−arcr
ar

Return λ

3.3 Backtracking from Tip to Seed

Once we have found the distances from (all possible) tips to the seed, we need to determine the shortest curve
(geodesic).We know that the distances are defined (and calculated) in such a way that the distance from the
seed to the seed itself is 0. The further you move away from the location and orientation of the seed, the larger
the distance to the seed gets. Do note that this distance is not (necessarily) the Euclidean distance. We use
steepest descent to determine the shortest path from a given tip to the seed. First, we recall how the steepest
descent algorithm is defined.

Definition 3.6 (Directional Derivative). Let p ∈ M2 and ṗ ∈ TpM2. If (ṗ, ṗ)G = 1, then the directional
derivative Dṗf(p) is given by

Dṗf(p) = (∇f(p), ṗ)G .

Lemma 3.2 (Direction of Steepest Descent). The directional derivative Dṗf(p) = (∇f(p), ṗ)G where ∥ṗ∥G = 1

is minimal for Xp[f] = − ∇f(x)
∥∇f(x)∥G

. Therefore,

Xp[f] = −
∇f(x)

∥∇f(x)∥G
∈ Tp(M)

is also known as the direction of steepest descent.

Proof. By definition 3.6, we can write the directional derivative as

Dṗf(p) = (∇f(p), ṗ)G .

One of the properties of the inner product is that it is maximal when both vectors point into the same direction
(ṗ = ∇f(p)/ ∥∇f(p)∥). The inner product is minimal when both vectors point in opposite directions. Since we
have ∥ṗ∥G = 1, we know that the inner product is minimal for

Xp[f] = −
∇f(p)

∥∇f(p)∥G
.

Theorem 2 (Steepest Descent Algorithm). Let a point p(0) be given. The steepest descent algorithm is an
iterative method in which all points p(k) are defined by

p(k+1) = p(k) − tk
∇f(p(k))

∥∇f(p(k))∥
G

. (69)

where k denotes the iteration, and tk denotes the step size.

Next, we have to take a look at how we implement the steepest descent algorithm correctly for the different
frames that we use to calculate the shortest curves. First, we take a look at a general example to get a feeling
of how the the implementation of steepest descent should be implemented on different frames.
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Example 3.1. Let us consider the function

f(x, y, z) = 1

2
(ax2 + by2 + cz2) .

Calculating the direction of steepest descent w.r.t. the canonical frame, we find

Xp[f] = −
∇f(x, y, z)

∥∇f(x, y, z)∥ = −ax ∇x + by ∇y +∇z∥∇f(x, y, z)∥ , where ∇x =
⎛
⎜
⎝

1
0
0

⎞
⎟
⎠
, ∇y =

⎛
⎜
⎝

0
1
0

⎞
⎟
⎠

and ∇z =
⎛
⎜
⎝

0
0
1

⎞
⎟
⎠
.

When we want to calculate the steepest descent direction with respect to a different frame than the frame in
which f is expressed, let’s say (x̃, ỹ, z̃). This influences the direction of steepest descent, and it is given by

Xp[f] = −
ax ∇̃x + by ∇̃y + cz ∇̃z

∥∇f(x, y, z)∥ , where ∇̃x =
⎛
⎜
⎝

∂x̃x
∂ỹx
∂z̃x

⎞
⎟
⎠
.

3.3.1 Left Invariant Frame

First, we take a closer look at the steepest descent for the left invariant frame. Our goal is to determine an
expression which represents the direction of steepest descent such that we can use the steepest descent method
to estimate the geodesic (or shortest curve) from a given tip to the seed. We have the left invariant frame, given
by {A1,A2,A3} and the standard canonical frame defined by {∂x, ∂y, ∂θ}. As discussed in Section 1.3, the left
invariant frame can be described by

⎛
⎜
⎝

A1W (p)
A2W (p)
A3W (p)

⎞
⎟
⎠
=
⎛
⎜
⎝

cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎞
⎟
⎠

⎛
⎜
⎝

∂xW (p)
∂yW (p)
∂θW (p)

⎞
⎟
⎠
.

Considering the left invariant tensor field given in Eq. (43), we find the direction of steepest descent to be

Xp[W ] = − (1 + β/ C ∣p)
2
⎛
⎜
⎝
ξ−2 A1∣(x,y,θ)W

⎛
⎜
⎝

cos θ
sin θ

0

⎞
⎟
⎠
+ ζ2ξ−2 A2∣(x,y,θ)W

⎛
⎜
⎝

− sin θ
cos θ

0

⎞
⎟
⎠
+ A3∣(x,y,θ)W

⎛
⎜
⎝

0
0
1

⎞
⎟
⎠

⎞
⎟
⎠
. (70)

Taking Eq. (70) and implementing it in the steepest descent algorithm given in Eq. (69), we find

⎛
⎜
⎝

x(k+1)

y(k+1)

θ(k+1)

⎞
⎟
⎠
=
⎛
⎜
⎝

x(k)

y(k)

θ(k)

⎞
⎟
⎠
+ t̃k (1 + β/ C ∣p(k))

2
⎛
⎜⎜
⎝

ξ−2 cos θ(k) A1∣p(k)W − ζ2ξ−2 sin θ(k) A2∣p(k)W
ξ−2 sin θ(k) A1∣p(k)W + ζ2ξ−2 cos θ(k) A2∣p(k)W

A3∣p(k)W

⎞
⎟⎟
⎠
,

where t̃k = tk

∥X
p(k) [W ]∥

G
.

Forward Gear We also need to consider the effect of the forward gear to the backtracking such as in the
metric tensor field introduced in Eq. (44). In our models, that means that we only consider the positive part
of the dual of ω1 ⊗ ω1. We denote this by (A1∣pW)

+
= max{0, A1∣pW}. We know that taking the derivative

of ( 1
2
x)2

+
leaves us with (x)+. Therefore, we find the steepest descent algorithm to be

⎛
⎜
⎝

x(k+1)

y(k+1)

θ(k+1)

⎞
⎟
⎠
=
⎛
⎜
⎝

x(k)

y(k)

θ(k)

⎞
⎟
⎠
+ t̃k (1 + β/ C ∣p(k))

2
⎛
⎜⎜
⎝

ξ−2 cos θ(k) (A1∣p(k)W )
+
+ ε2ξ−2 cos θ(k) (A1∣p(k)W )

−
− ζ2ξ−2 sin θ(k) A2∣p(k)W

ξ−2 sin θ(k) (A1∣p(k)W )
+
+ ε2ξ−2 sin θ(k) (A1∣p(k)W )

−
+ ζ2ξ−2 cos θ(k) A2∣p(k)W

A3∣p(k)W

⎞
⎟⎟
⎠
,

where t̃k = tk

∥X+
p(k)

[W ]∥
G

and

X+
p[W ] = − (1 + β/ C ∣p)

2
⎛
⎜
⎝
ξ−2 (A1∣(x,y,θ)W)

+

⎛
⎜
⎝

cos θ
sin θ

0

⎞
⎟
⎠
+ ε2ξ−2 (A1∣(x,y,θ)W)

−

⎛
⎜
⎝

cos θ
sin θ

0

⎞
⎟
⎠

+ζ2ξ−2 A2∣(x,y,θ)W
⎛
⎜
⎝

− sin θ
cos θ

0

⎞
⎟
⎠
+ A3∣(x,y,θ)W

⎛
⎜
⎝

0
0
1

⎞
⎟
⎠

⎞
⎟
⎠
.
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3.3.2 Gauge Frame

Next, we investigate the backtracking in the gauge frame. Here, we have the gauge frame given by {B1,B2,B3}
as introduced in Section 1.4. We showed that we can denote the Gauge frame using the left invariant frame;

⎛
⎜
⎝

B1∣pW
B2∣pW
B3∣pW

⎞
⎟
⎠
=
⎛
⎜
⎝

c11 c21 c31
c12 c22 c32
c13 c23 c33

⎞
⎟
⎠

⎛
⎜
⎝

A1∣pW
A2∣pW
A3∣pW

⎞
⎟
⎠
.

When we calculate the steepest descent direction w.r.t. the canonical frame for Eq. (45), we find (using the
chain rule)

Xp[W ] = − (1 + β/ C ∣p)
2
⎛
⎜
⎝
(c11 B1∣pW + (1 − α)2 (c12 B2∣pW + c13 B3∣pW ))

⎛
⎜
⎝

cos θ
sin θ

0

⎞
⎟
⎠

+ (c21 B1∣pW + (1 − α)2 (c22 B2∣pW + c23 B3∣pW ))
⎛
⎜
⎝

− sin θ
cos θ

0

⎞
⎟
⎠

+ (c31 B1∣pW + (1 − α)2 (c32 B2∣pW + c33 B3∣pW ))
⎛
⎜
⎝

0
0
1

⎞
⎟
⎠

⎞
⎟
⎠
. (71)

Implementing Eq. (71) into the steepest descent algorithm given in Eq. (69) gives

⎛
⎜
⎝

x(k+1)

y(k+1)

θ(k+1)

⎞
⎟
⎠
=
⎛
⎜
⎝

x(k)

y(k)

θ(k)

⎞
⎟
⎠
+ t̃k (1 + β/ C ∣p(k))

2 (c11 B1∣p(k)W + (1 − α)2 (c12 B2∣p(k)W + c13 B3∣p(k)W ))
⎛
⎜
⎝

cos θ
sin θ

0

⎞
⎟
⎠

+ t̃k (1 + β/ C ∣p(k))
2 (c21 B1∣p(k)W + (1 − α)2 (c22 B2∣p(k)W + c23 B3∣p(k)W ))

⎛
⎜
⎝

− sin θ
cos θ

0

⎞
⎟
⎠

+ t̃k (1 + β/ C ∣p(k))
2 (c31 B1∣p(k)W + (1 − α)2 (c32 B2∣p(k)W + c33 B3∣p(k)W ))

⎛
⎜
⎝

0
0
1

⎞
⎟
⎠
,

where t̃k = tk
∥X

p(k) [W ]∥G
.

Forward Gear We also need to check what effect the “forward gear” has on the gauge frame. We will use
the forward gear gauge frame metric tensor field given in Eq. (46). Here, there is a constraint on B1∣p(k)W ,
of which we consider a rescaled negative part. The effects on the steepest descent algorithm are similar to the
effect of forward gear on the left invariant frame. Hence, we find the algorithm to be

⎛
⎜⎜
⎝

x(k+1)

y(k+1)

θ(k+1)

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

x(k)

y(k)

θ(k)

⎞
⎟⎟
⎠
+ t̃k (1 + β/ C ∣p(k))

2 (c11 (B1∣p(k)W )+ + c
1
1ε

2 (B1∣p(k)W )− + (1 − α)
2 (ε2c12 B2∣p(k)W + c13 B3∣p(k)W ))

⎛
⎜
⎝

cos θ(k)

sin θ(k)

0

⎞
⎟
⎠

+ t̃k (1 + β/ C ∣p(k))
2 (c21 (B1∣p(k)W )+ + c

2
1ε

2 (B1∣p(k)W )− + (1 − α)
2 (ε2c22 B2∣p(k)W + c23 B3∣p(k)W ))

⎛
⎜
⎝

− sin θ(k)

cos θ(k)

0

⎞
⎟
⎠

+ t̃k (1 + β/ C ∣p(k))
2 (c31 (B1∣p(k)W )+ + c

3
1ε

2 (B1∣p(k)W )− + (1 − α)
2 (ε2c32 B2∣p(k)W + c33 B3∣p(k)W ))

⎛
⎜
⎝

0
0
1

⎞
⎟
⎠
,

where t̃k = tk
∥X+

p(k)
[W ]∥G

and

X+
p[W ] = − (1 + β/ C ∣p)

2
⎛
⎜
⎝
(c11 (B1∣pW )

+
+ c11ε2 (B1∣pW )

−
+ (1 − α)2 (ε2c12 B2∣pW + c13 B3∣pW ))

⎛
⎜
⎝

cos θ
sin θ

0

⎞
⎟
⎠

+ (c21 (B1∣pW)
+
+ c21ε2 (B1∣pW)

−
+ (1 − α)2 (ε2c22 B2∣pW + c23 B3∣pW ))

⎛
⎜
⎝

− sin θ
cos θ

0

⎞
⎟
⎠

+ (c31 (B1∣pW )
+
+ c31ε2 (B1∣pW )

−
+ (1 − α)2 (ε2c32 B2∣pW + c33 B3∣pW))

⎛
⎜
⎝

0
0
1

⎞
⎟
⎠

⎞
⎟
⎠
.
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3.4 Comparison of Results to Exact Solution

In order to make sure that our calculated results correspond with the exact solution, we have compared them for
both the finite difference method and fast marching. If we know the exact solution to the differential problem
that we are considering, we can compare for which scaling of variables both solutions are the most alike in
shape, and where the deviation between them is as small as possible.

We compare the results for the both methods to the exact solutions. These exact solutions have been calculated
before, and an explanation on how they are obtained can be found in [31]. We note that the results of the exact
solutions are on a volume around zero. To be precise, they are given on [−6,6] × [−6,6] × [−π,π]. The results
for the PDE-solver are given on the interval [1,Nx] × [1,Ny] × [0,2π]. For the Fast Marching method, we can
choose on which interval we want the results to be calculated. In order to be able to compare all the answers,
we need to make sure that they are on the same interval. Here, we need to use the scaling homothety principle.
We will consider the metric tensor field given by

F0 (p, ṗ)2 ∶=
⎧⎪⎪⎨⎪⎪⎩

C2
1 (p) ∣ẋ ⋅ n∣2 + C2

2 (p) ∥ṅ∥2
if ẋ ∝ n

+∞ otherwise.
(72)

which includes relative cost-functions C1 and C2, and where ẋ ∝ n⇔ ∃λ ∈ R s.t. ẋ = λn, p ∶= (x,n), ṗ = (ẋ, ṅ).
In addition to that, we also introduce the spheres

SFR (pS) ∶= {p ∈M∣dF (pS ,p) = R} with F = F0. (73)

Lemma 3.3 (Scaling homothety). Consider pS ∶= (0,0,0) and d = 2. Let ξ > 0 denote the stiffness parameter
ξ−1 > 0 with physical dimension [Length].

Consider the metric tensor field given in Eq. (72). Let F0,ξ denote the special case where the Finsler function
is induced by constant relative costs: C1 = ξ > 0 and C2 = 1. Let dF0,ξ

be the metric induced by F = F0,ξ given

in Eq. (9). Consider the corresponding spheres SF0,ξ

R (pS) given in Eq. (73). Define a scaling operator on M
and the scaled output curve by

Φξ(x, y, θ) = (ξx, ξy, θ), Γ(⋅) = (X(⋅), Y (⋅),Θ(⋅)) = Φξ(γ(⋅)), (74)

respectively.

Then, we have for all t ∈ (0,1):
F0,ξ (γ (t) , γ̇ (t)) = F0,1 (Γ (t) , Γ̇ (t)) . (75)

The physical dimensions are consistent in this identity. In addition to that, we have for all R > 0,

SF0,ξ

R (pS) = Φ−1
ξ (SF0,1

R (pS)) . (76)

Proof. We divide the proof of the lemma in three parts:

1. Show that F0,ξ (γ (t) , γ̇ (t)) = F0,1 (Γ (t) , Γ̇ (t)) for all t ∈ (0,1).

2. Show that S
F0,ξ

R (pS) = Φ−1
ξ (SF0,1

R (pS)) for all R > 0.

3. Show that the physical dimensions match of F0,ξ (γ (⋅) , γ̇ (⋅)) and F0,1 (Γ (⋅) , Γ̇ (⋅)).

First, we show that Part 1 is true. We start with explicitely writing down both the left and right hand side of
Eq. (75). Let γ(t) ∶= (x(t),n(t)) and Γ(t) ∶= (X(t),N(t)). Then,

F0,ξ (γ(t), γ̇(t))2 =
⎧⎪⎪⎨⎪⎪⎩

ξ2 ∣ẋ(t) ⋅ n(t)∣2 + ∥ṅ(t)∥2
if ẋ(t)∝ n(t)

+∞ else.
(77)

=
⎧⎪⎪⎨⎪⎪⎩

∣ξẋ(t) ⋅ n(t)∣2 + ∥ṅ(t)∥2
if ẋ(t)∝ n(t)

+∞ else.
(78)

F0,1 (Γ(t), Γ̇(t))2 =
⎧⎪⎪⎨⎪⎪⎩

∣Ẋ(t) ⋅N(t)∣2 + ∥Ṅ(t)∥2
if Ẋ(t)∝ N(t)

+∞ else.
(79)
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We see that Eq. (78) and (79) are equal iff ∥ṅ(t)∥2 = ∥Ṅ(t)∥2
and Ẋ(t) = ξẋ(t). The last part automatically

follows from (74). The first part is easily proven by looking at the following:

n(t) = λ(cos θ(t)
sin θ(t)) , so ṅ = λ(− sin θ

cos θ
) , and hence ∥ṅ(t)∥ = λ;

N(t) = λ(cos Θ(t)
sin Θ(t)) , so Ṅ = λ(− sin Θ

cos Θ
) , and hence ∥Ṅ(t)∥ = λ.

So we find ∥ṅ(t)∥ = ∥Ṅ(t)∥. Therefore, we can conclude that Eq. (77) and (79) are equal. In other words, for
every t ∈ [0,1] and ẋ(t)∝ n(t), we have

F0,1 (Γ(t), dΓ

dt
(t)) = 1 ∣Ẋ(t) ⋅N(t)∣2 + ∣Θ̇(t)∣2

= ξ2 ∣ẋ(t) ⋅ n(t)∣ + ∣θ̇(t)∣2

= F0,ξ (γ(t), γ̇(t)) .

We move on to Part 2 of the proof. We start proving that the statement holds from left to right (⇒). Let

p =
⎛
⎜
⎝

x
y
θ

⎞
⎟
⎠
∈ SF0,ξ

R (pS).

Then, we have

dF0,ξ
(pS ,p) = R = ∫

1

0
F0,ξ (γm(t), γ̇m(t))dt,

where γm is a minimizing curve connecting pS and p. Now,

Γm(t) = Φξ (γm(t)) =
⎛
⎜
⎝

ξxm(t)
ξym(t)
θm(t)

⎞
⎟
⎠

satisfies
F0,1 (Γm(t), Γ̇m(t)) = F0,ξ (γm(t), γ̇m(t)) .

This holds because of what we have proven in Part 1 since it holds for all pairs (γ(t),Γ(t)). Then, Γm is also
the minimizing curve for

dF0,1 (Φξ(pS),Φξ(p)) = min
Γ(0)=pS ,

Γ(1)=Φξ(p)

∫
1

0
F1

0 (Γ(t), Γ̇(t))dt = R, pS = Φ(pS) since pS = (0,0,0) .

Hence, we can conclude that p ∈ SF0,ξ

R (pS) implies that

Φξ (p) =
⎛
⎜
⎝

ξx
ξy
θ

⎞
⎟
⎠
=
⎛
⎜
⎝

X
Y
Θ

⎞
⎟
⎠
∈ S +RF0,1(pS).

Rewriting this yields p ∈ Φ−1
ξ (SF0,1

R (pS)).

Next, we need to show that the reverse also holds (⇐). Let p ∈ Φ−1
ξ (SF0,1

R (pS)) be given. Then we have

Φξ (p) ∈ SF0,1

R (pS). That means that we find

dF0,1 (pS ,Φ(p)) = R = dF0,1 (Φ(pS),Φ(p)) = min
Γ(0)=pS
Γ(1)=p

∫
1

0
F0,1 (Γ(t), Γ̇(t))dt.

by the way S
F0,1

R is defined in Eq. (73). Using analogous argumentation as before, we find p ∈ SF0,1

R (pS).
Last, we show that the physical dimensions match, as Part 3 of this proof. We note that we have dimensions

[x] = Length; [y] = Length; [θ] = 1; [ξ] = Length−1.
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Therefore, we have

[X] = [ξx] = 1; [Y ] = [ξx] = 1; [Θ] = 1.

This results in

[F0,ξ (γ (⋅) , γ̇ (⋅))] = [∣ξẋ (t) ⋅ n( t )∣2 + ∥ṅ (t)∥2] = 1

[F0,1 (Γ (⋅) , Γ̇ (⋅))] = [∣Ẋ (t) ⋅N (t)∣2 + ∥Ṅ (t)∥2] = 1,

which finalizes our proof.

This means that we can compare the results of the different solution strategies (exact, PDE-solver and Fast
Marching). Now, we have given an elaborate explanation on how and why we are able to compare the different
results.

3.4.1 Comparison of Exact Solution and PDE-method

Before we are able to compare the solutions of the PDE-method to the exact solutions, we need to find a relation
between ξExact and ξPDE being the stiffness parameters of the exact solution and the PDE-method respectively.
We claim that the correct ratio is given by

ξPDE = ξExact∆r, (80)

where ∆r is the distance between two points in the discretization. In practice, we chose ∆r = ∆x = ∆y, so
therefore we have in the exact interval ∆r = xmax−xmin

Nx−1
, with Nx the number of pixels in the x-direction. This

claim is supported when we take a look at the discretization of the PDE. We recall the discretizations introduced
in Eq. (60) and Eq. (61). For the PDE-method, we implicitly assume that the distance between two pixels
equals 1. Then the corresponding finite difference formula is given by

wn+1
i,j,k = wni,j,k −∆t ⋅

⎛
⎜
⎝

¿
ÁÁÀ( 1

ξPDE
(Ã1wni,j,k))

2

+ ( ζ

ξPDE
(Ã2wni,j,k))

2

+ ((Ã3wni,j,k))
2
− 1

⎞
⎟
⎠
, (81)

as introduced in (61). However, we want our method to be able to handle situations in which the distance
between two grid points is not equal to one, but still have the same results. Therefore, we rewrite Eq. (81) to
the following system

wn+1
i,j,k = wni,j,k −∆t ⋅

⎛
⎜
⎝

¿
ÁÁÀ( 1

ξExact
(A1wni,j,k))

2

+ ( ζ

ξExact
(A2wni,j,k))

2

+ ((A3wni,j,k))
2
− 1

⎞
⎟
⎠

(82a)

= wni,j,k −∆t ⋅
⎛
⎜
⎝

¿
ÁÁÀ( 1

ξPDE
(Ã1wni,j,k))

2

+ ( ζ

ξPDE
(Ã2wni,j,k))

2

+ ((Ã3wni,j,k))
2
− 1

⎞
⎟
⎠

(82b)

⇔ ξPDE = ξExact∆r. (82c)

It is still important that we have ∆x = ∆y.

We support this claim by analysing the results for different parameter choices. First, we check whether the
results are the same for different ∆x = ∆y = 0.12 and ∆x = ∆y = 0.24 on the domain [−6,6] × [−6,6] × [0,2π)
with Nx = Ny = 101 and Nx = Ny = 51 respectively. We use Nθ = 32 for both simulations. The results are visible
in Figure 20. We see that the calculated solutions roughly follow the exact solution, which is what we hoped to
find. In addition to that, we see that the calculated solutions are the same for both choices of Nx = Ny. Due to
numerical approximation errors, some of the solutions differ from the exact solution. However, the calculated
curves are a decent match to the exact solutions.

Next, we take a look at the importance of the pixels being the same size, so ∆x = ∆y where ∆x is as defined
earlier, and ∆y = ymax−ymin

Ny−1
. Implicitly, we have assumed in our calculation that this is the case as we illustrated

in the calculation in Eq. (82), where it is assumed that the grid size equals 1. However, this grid size differs
when we try to approximate the solution on the domain [−6,6]× [−6,6]× [0,2π) with the same amount of grid
points. Rescaling our image, which used to be on the domain [1,Nx] × [1,Ny] × [1,Nθ], also means that we
have to rescale the length of the pixels in x-, y- and θ-direction. In Figure 21, we show that it is not possible
to rescale the solution to the PDE-method such that it fits the exact solution better for all solutions, either in
the x- or the y-direction.
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(a) Results for ξ = 0.3. Results for ξ = 0.7 with lower
right endpoint. (b) Results for ξ = 1.

(c) Results for ξ = 3.

Figure 20: Results of ξPDE for different numbers of pixels Nx = Ny and different values for ξExact.

Lastly, we illustrate that the importance to ensure that the ratio between the number of angles that are
considered and the number of pixels is large enough. In Figure 22, we show what happens for different numbers
of orientations. We see that for a low number of orientations, the tracking will move into one direction, do an
in place rotation and move towards the end point. For higher numbers of orientations, the calculation time
gets a lot higher. In addition to that, when the ratio Nx/Nθ is too small, we find that the simulation becomes
unstable. Therefore, we need to use a good ratio between Nx = Ny and Nθ.

Remark 3.3. We note that the computation time to build a volume and calculate the shortest path in
(Nx,Ny,Nθ) = (51,51,32), (Nx,Ny,Nθ) = (51,51,64) and (Nx,Ny,Nθ) = (51,51,128) are respectively 19.8s,37.0s
and 150.7s. These calculations have been performed in the left invariant frame. Calculation times for the gauge
frame are even higher.

3.4.2 Comparison of Exact Solution and Fast Marching

We end the comparison of calculated results and the exact solution with the fast marching method. The input
we need to give, is the metric itself, instead of the dual metric, which we used in the PDE-solver. Therefore,
we find that the relation between ξExact and ξFM is given by

ξFM = ξ−1
Exact. (83)

We check whether this is correct by comparing the results we find to the exact solution. In Figure 23, we see
that both solutions are of similar form. However, there are still some deviations, where the biggest deviations
appear in the tracking to the most right end point. We notice that with more orientations, these deviations
become smaller. That suggests that they are (partly) due to discretization errors. Therefore, we conclude that
Eq. (83) expresses the correct relation between ξExact and ξFM.

Remark 3.4. The computation times for the fast marching algorithm executed on (Nx,Ny,Nθ) = (51,51,32),
(Nx,Ny,Nθ) = (51,51,64) and (Nx,Ny,Nθ) = (51,51,128) are respectively approximately 3s, 5.7s and 11.1s.
The fast marching algorithm is approximately 6 to 12 times faster than the finite difference model. Similar
relations hold for the calculation times for the finite differences and fast marching in the gauge frame.
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(a) Results for ξ = 0.3. Results for ξ = 0.7 with lower
right endpoint. (b) Results for ξ = 1.

(c) Results for ξ = 3.

Figure 21: Results illustrating the importance that ∆x = ∆y in the calculations.

3.4.3 Conclusion

We have compared the finite difference and fast marching solutions to the exact solution. We concluded for the
finite differences and fast marching methods that the underlying relation to ξExact was given by

ξFM = ξ−1
Exact

ξPDE = ξExact∆r

respectively. That means that we find that the relation between ξFM and ξPDE is given by

ξPDE

∆r
= ξ−1

FM.

In addition to this relation between both weighting parameters, we found the following conclusions:

1. When using the finite difference approach:

(a) It is important that we have ∆r = ∆x = ∆y, otherwise the aforementioned relation does not hold
because of underlying assumptions in the Lie package for Mathematica. This is also illustrated in
Figures 20 and 21.

(b) It is essential that we consider sufficient angular directions, as illustrated by Figure 22. When we
consider a limited number of orientations, the result is less precise.

2. When using the fast marching algorithm:

(a) It is crucial that we use sufficient orientations. In Figure 23, we saw that using more orientations
results in more accurate tracking results.

3. The calculation times of the fast marching algorithm are much lower compared to the finite difference
approach. On the other hand, the finite difference approach is more accurate than the fast marching
algorithm. Therefore, we need to decide per experiment what is more important to us while calculating
the results; accuracy or calculation times.
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(a) Results for ξ = 0.3. Results for ξ = 0.7 with lower
right endpoint. (b) Results for ξ = 1.

(c) Results for ξ = 3.

Figure 22: Results for different ratios of the number of orientations Nθ and the number of pixels Nx = Ny = 51,
illustrating the importance of using sufficient angular directions.

(a) For dimensions (Nx,Ny,Nθ) = (51,51,64). (b) For dimensions (Nx,Ny,Nθ) = (51,51,128).

Figure 23: Comparisson of fast marching results (dash-dotted lines) with the exact solution (solid lines). The
red, orange, blue and green lines represent the results for the values ξ = 0.3, ξ = 0.7, ξ = 1 and ξ = 3 respectively.
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4 Vessel Tracking

In this section, we will discuss the results of the vessel tracking. First, we will give an overview of the different
parameters that play a role in the metric tensor fields as defined in Section 2 and how they are defined. Then,
we discuss the results for different experiments that we conducted.

4.1 Experimental Settings

We start with introducing different ways to construct a cost function. Thereafter, we define the values of the
different parameters that are used in the calculations for the different experiments.

4.1.1 Cost Function

There are different ways in which the cost function can be defined. Here, we will mention the different versions
that we implemented.

1. The first cost function that we implemented is the same as introduced in [6]. We define

C (x, y, θ) = 1

1+λ

RRRRRRRRRRRR

(A2
2
Uf )+(x,y,θ)

∥(A2
2
Uf )+∥∞

RRRRRRRRRRRR

p , (84)

where λ ≥ 0, p ∈ N, ∥ ⋅ ∥∞ the supremum-norm and Uf ∶ SE(2) → R is a lift of the image. We note that
C is bounded from below and above by δ = 1

1+λ
≤ C ≤ 1. The parameter λ increases the contrast in the

cost function, and the parameter p controls its steepness. Recall that the lift is done using real-valued
anisotropic wavelets ψ:

Uf(x, θ) = ∫
R2
ψ (R−1

θ (y − x)) f(y)dy.

Note that the cost function in Eq. (84) relies on the left invariant frame.

2. Since we are not always just considering the left invariant frame, we also implementend a cost function
that relies on the gauge frame. It is introduced by Zhang [32]. First, we introduce the second order
derivatives w.r.t. the Gauge Frame as

Φσs,σo2 (Uf) ∶= B22 (Gσs,σo ∗Uf) ,
Φσs,σo3 (Uf) ∶= B33 (Gσs,σo ∗Uf) ,

where B22 ∶= B2B2 and B33 ∶= B3B3 denote the second derivatives with respect to the second and third
Gauge frame vector respectively and where Gσs,σo (x, θ) ∶= Gσs(x) ⋅Gσo(θ) blurs the image resulting in
more smooth derivatives. Then, the cost function is calculated by

Cσs,σo (x, θ) = 1

1 + λ ∣ (−Φσs,σo2 (Uf )(x,θ))+
∥(−Φσs,σo2 Uf )+∥∞

∣
p . (85)

In addition to that, we also implemented the cost function

Cσs,σo (x, θ) = 1

1 + λ ∣ (−Φσs,σo2 (Uf )(x,θ)−Φσs,σo3 (Uf )(x,θ))+
∥(−Φσs,σo2 Uf−Φσs,σo3 Uf )+∥∞

∣
p . (86)

3. The last cost function that we introduce is based on the orientation scores of the Gauge Frame, and hence
are given by

C (x, θ) = 1

1 + λ ∣Sk(Uf) (x, θ)∣p
, (87)

where λ ≥ 0, p ∈ N, ∥ ⋅ ∥∞ the sup-norm, and where Sk(Uf) is as defined in Eq. (41). The main difference
with Eq. (86) is that we omitted the blurring of the lifted orientation scores.

The values of p and λ can be chosen freely, but in this section, we chose to use p = 2 and λ = 200 in order to get
the best results.
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ξ Nθ σs σo ε β k
Experiment 1 & 2 0.08 16 2.8 0.87sθ 0 5 1
Experiment 3 0.08 16 1.5 0.87sθ 0 5 1
Experiment 4 0.05 16 7 1.2sθ 0 5 1

Table 1: Values used for the different parameters in the experiments where sθ = 2π
Nθ

.

(a) The task is to trace the line starting in the
red arrow to the blue arrow with corresponding
orientations.

(b) Orientation Scores of the
image in Fig. 24a.

(c) Orientation Scores of the
image in Fig. 24a.

Figure 24: Experiment 1: setting and visualization of orientation scores.

4.1.2 Parameter settings

In the experiments, the parameters take the values as mentioned in Table 1, unless mentioned otherwise. In
addition to that, we speak of an isotropic metric tensor field when ζ = 1 and of an anisotropic metric tensor
field when ζ = 1/8. The values of α and β are mentioned per experiment.

4.2 Visualization Results

Before we show the results, we first explain how they are visualized. For each tracking, we show both the
distances to the seed, projected onto the image. We show them as level curves on with the original image as
background. In addition to that, we also show the tracking. Since our calculation are done in SE(2), and we
are considering an image in R2, the geodesics are also projected onto the image.

4.3 Experiments

4.3.1 Experiment 1

The goal of the first experiment is to get acquainted with the way different metrics work and the influence of
the different parameters. In Figure 24a, the setting of the experiment is clarified. For these experiments, we
have used the orientation scores of the Gauge Frame to construct the cost function as written down in Eq.
(87). We take a closer look at the two different frames that one can use and the influence of the parameter
β. The orientation scores of the image are visualized in Figure 24b and 24c. These orientation scores are used
while calculating the cost function used for Experiment 1 and 2 and the visualizations show how the different
orientations are separated in the position and orientation space.

Left Invariant Frame For the (forward gear) left invariant frame, we considered both an anisotropic (ζ =
0.125) and an isotropic (ζ = 1) frame. In Figure 25 and Figure 26, we see the results for both models (anisotropic
and isotropic respectively). Comparing the results for the same value of β, we note that the anisotropic left
invariant frame gives fronts that are more narrow and sharper at the end than the isotropic left invariant frame.
This is in line with our expectations when looking at the control sets, which are visualized in Figure 47. Here, we
see that for the isotropic left invariant frame, the range of points with distance 1 from the origin is comparable
to (half) a flattened ball. From the seed you can move the same distance (in the Euclidean frame) to the side
and forward, and a smaller distance in the angular direction. However, this is not the case for the anisotropic
frame. In that frame, the range of points with distance 1 from the origin is comparable to (half a) rugby ball.
In the Euclidean distance, you can walk further forward than sideways and in the angular direction. Therefore,
we expect the fronts to be pointier as well, which is the case.
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β = 1 β = 5 β = 10

Figure 25: Anisotropic forward gear left invariant frame where ζ = 0.125.

β = 1 β = 5 β = 10

Figure 26: Isotropic forward gear left invariant frame where ζ = 1.

Furthermore, we note that the vessel does not contain sharp turns. Therefore, we do not expect any cusps or
in place rotations. The tracking result is a smooth line that follows the shape of the vessel as we expected.

Gauge Frame In addition to the left invariant frame, we also consider the gauge frame. The latter one should
be able to follow line structures in a better way since it is able to bend along line structures as discussed in
Section 1.4 and Section 2. In Figure 27, we see the results of the same experiments as deduced in Figure 25 and
Figure 26, but now, using the gauge frame as the reference system. We see that it is harder to rotate in this
frame, since sideways movement costs the same amount of energy as angular movement. In the left invariant
frame, it was easier to move along the crossing vessels than it is in the gauge frame. This confirms that the
gauge frame adheres better to the forward direction of the vessel structure.

In addition to that, we see that the tracking does not contain any cusps or in place rotations. The results are
as expected.

Scaling parameter β Finally, we take a look at the influence of the parameter β in all three frames (isotropic,
anisotropic left invariant, anisotropic gauge frame). The parameter β determines how much the frame needs
to adhere to the cost function. In other words, this indicates how much it is punished for moving outside of
the vessel structure. We see that this coincides with the distances to reach specific points calculated by the
simulation. We see that the distance from the seed to a point between two vessels in higher for β = 5 than for
β = 1. In addition to that, we also see that for β = 10, the simulation has trouble building the volume (thus
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β = 1, α = 0.8 β = 5, α = 0.8 β = 10, α = 0.8

Figure 27: Anisotropic forward gear gauge frame.

(a) β = 1 (b) β = 5 (c) β = 10

Figure 28: Visualization of the cost function C̃ for different values of β, where the cost function is defined by

C̃ (x, θ) = 1 + β C(x,θ)−min{C(x,θ)}
max{C(x,θ)}−min{C(x,θ)}

with C as defined in Eq. (87). In these figures, black and white indicate

high and low values respectively.

calculating the distances) in the gauge frame metric since the simulation becomes unstable. This is most likely
due to using a too big step size in the integration step. In Figure 28, we see a visualization of the different
cost functions. We see that the light areas coincide with the vessel structure in the image. The locations in
these white areas have lower costs than the darker areas. Looking at the different solutions in Figure 25, Figure
26 and Figure 27 combined with the cosst function in Figure 28, we decide that β = 5 is the best fit for the
calculations.

4.3.2 Experiment 2

The second experiment uses the same image as Experiment 1. However, the start and end position are different,
as you can see in Figure 29. With this setup, it is possible to take a different route than what we would expect
(by making a turn at one of the intersections).

This experimental setting is ideal to show the influence of the forward gear. We expect that the forward
gear models are more likely to follow the line structure as one would expect (without taking unnecessary turns).
In addition to that, we expect the gauge frame to adhere more easily to the line structures, and therefore to
be more likely to return the correct geodesic. In Figure 30, we see a comparison between models where the
forward gear is and is not activated. We see that sometimes the model opts to use a “shortcut” by using the
reverse gear, such as in Figure 30c. When we deactivate this possibility and force the tracking to keep moving
forward, it is only possible that in place rotations take place.

In the isotropic left invariant frame, we see that the the tracking favours to take a wrong turn when the forward
gear is not activated. We do not see that the tracking moves backward. However, we do see that it takes a
shortcut. When the forward gear is activated, the tracking follows the line structure as expected. This can
be explained by looking at the distances to reach the seed from each point. In the symmetric variant of the
model, it is cheaper to opt for the left vessel, whereas in the forward gear variant, following the vessel structure
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Figure 29: The task is to trace the line starting in the red arrow to the blue arrow with corresponding orienta-
tions.

is favoured (since it has lower costs).

In the symmetric anisotropic left invariant frame, we see that the tracking “switches gears” at the first crossing.
Then, at the last crossing, it changes its moving direction again, after which it reaches its end point. In the
forward gear variant of the model, the tracking does not switch gears anymore. Instead of taking the wrong exit
at the first crossing, it follows the vessel structure. The tracking does not completely follow the correct path,
since it uses the wrong vessel structure at the final crossing. However, the tracking does not need to change
gears to complete the tracking.

In the symmetric anisotropic gauge frame, we see that the tracking uses the reverse gear at the first crossing,
and at the last crossing. Consequently, the tracking differs from what we expected. However, when we activate
the forward gear, we see that the tracking does not have an in place rotation at the place where the switching of
gears used to take place. Instead, the tracking follows the vessel structure and takes a turn at the last crossing.
This can be related to the functioning of the gauge frame. As we discussed before, the gauge frame adapts to
the vessel structure. In this specific case, the vessels are very curvy and where the vessels touch each other,
the frames adapt to the “wrong” vessel. Therefore, the tracking favours taking a slight turn at the last but one
crossing.

4.3.3 Experiment 3 - Low Resolution

It is important to test our methods on retina images as well, since these are not necessarily of the same quality
as the image that we used in the previous two experiments. Therefore, we first consider an image with a low
spatial resolution. There are two blood vessels parallel to each other. Consequently, it is possible to take a
different route to the end point, by opting for the lower vessel instead of the upper one, as you can see in Figure
31.

First, we take a closer look at the cost function that we will use. We note that, when we use the cost function
as defined in Eq. (87), the tracking is tempted to take the lower vessel. We saw that the tracking is not correct
in that case. This can be easily explained by looking at the cost function that we used. In Figure 32a and
Figure 32b, the cost functions created by Eq. (87) are visualized. We note that the width of the upper vessel
is quite small, which is a reasonable explanation for why the tracking favours the lower vessel. In addition to
that, the costs of moving here are higher. In an effort to boost the upper vessels accessibility, we temper the
costs at locations cheaper than the start or end point. We introduce the cost function given by

C (x, θ) = 1

1 + λ ∣Sk (Uf) (x, θ) ⋅ exp ((min{Sk (Uf) (x0, θ0) , Sk (Uf) (x1, θ1)} − Sk (Uf) (x, θ))−)∣
p , (88)

where Sk(Uf) is defined in Eq. (41).

Remark 4.1. We note that, by definition, we have Sk(V ) (p) ∈ [0,1] for all p ∈ M2. By taking the smallest
orientation confidence at the start and end position and subtracting the orientation confidence value at each
point, we determine where the orientation confidence is bigger and where it is smaller than this minimum value.
By only considering the negative values, we ensure that we only consider those locations that are better aligned
to the vessel structure. The exponential dampens the reaction. Finally, by multiplication to the original cost
function, we find a dampened orientation confidence, which we use to calculate a cost function.
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(a) Isotropic left invariant frame
with β = 5.

(b) Anisotropic left invariant frame
with β = 5.

(c) Anisotropic gauge frame with
β = 5, α = 0.8.

(d) Isotropic left invariant frame
with β = 5, forward gear activated.

(e) Anisotropic left invariant frame
with β = 5, forward gear activated.

(f) Anisotropic gauge frame with β =
5, α = 0.8, forward gear activated.

Figure 30: Comparison models with and without forward gear activated.

Figure 31: The task is to trace the line starting in the red arrow to the blue arrow with corresponding orienta-
tions.
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(a) Cost function satisfying Eq. (87)
for k = 1.

(b) Cost function satisfying Eq. (87)
for k = 4.

(c) Cost function satisfying Eq. (88)
for k = 1.

Figure 32: Visualization of different cost functions C̃, where C̃ (x, θ) = 1 + β C(x,θ)−min{C(x,θ)}
max{C(x,θ)}−min{C(x,θ)}

, where C is

defined in Eq. (87) for Figure 32a-32b, and where C is defined in Eq. (88) for Figure 32c. In these figures, black
and white indicate high and low values respectively.

(a) Isotropic left invariant frame
with β = 5.

(b) Anisotropic left invariant frame
with β = 5.

(c) Anisotropic gauge frame with
β = 5 and α = 0.8.

Figure 33: Results for different frames where β = 5. All simulations use Nθ = 16 and ξPDE = 0.08.

In Figure 32c, we see that using the alternative cost function introduced in Eq. (88) ensures that the upper
vessel is cheaper. Consequently, the tracking may be more likely to follow the upper vessel while calculating
the shortest route. Therefore, we use the cost function introduced in Eq. (88) where k = 1 for this experiment.

We study the tracking for the different frames. The results are visualized in Figure 33. First, we notice that
the tracking chose the correct vessel for all three frames. The tracking never moves backwards. The only thing
that is important to note is that the tracking in the isotropic left invariant frame is somewhat jittery (Figure
33a). This is most likely due to the fact that the tracking is allowed to make bigger steps to the sides, as we
can saw in the control sets (Figure 47).

4.3.4 Experiment 4 - High Tortuosity

Last, we consider an image containing a blood vessel that is highly tortuous. We are interested in knowing
whether the models are still able to follow the vessel structure. The exact experimental setting is given in Figure
34 along with the used cost function. We will also look at the influence of the number of orientations and the
value of the weighting parameter ξ in this experiment.

First, we take a look at the results for a reference case. In Figure 35, we have Nθ = 16 and ξ = 0.05. We see that
both the isotropic and anisotropic left invariant frame struggle following the line structure. They both take a
shortcut. In other words, they do not follow the vessel as one would expect. On the other hand, we have the
gauge frame, which is able to adapt to the line structure of the vessel very well. The tracking gives a good
approximation of the vessel. There are no in place rotations or cusps, but the tracking gives line that looks
continuous.

Number of orientations We want to know the influence of the number of orientations. We expect that
using less than 16 orientations leads to worse tracking results. We calculated the results for Nθ = 8 which are
visible in Figure 36. One can see immediately that the tracking results are less accurate than they were when
Nθ = 16 (in Figure 35). We see that the isotropic and anisotropic left invariant frame have trouble following
the curvature of the vessel. Instead of bending along its structure, they take a shortcut and move outside the
vessel, just like they did when we considered Nθ = 16.
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(a) The task is to trace the line starting in the red ar-
row to the blue arrow with corresponding orientations.

(b) Visualization of the used cost function introduced
in Eq. (87). Dark areas represent high costs, where
lighter areas represent lower costs.

Figure 34: Visualization of both the experimental setting and the used cost function

(a) Isotropic Left Invariant Frame (b) Anisotropic Left Invariant
Frame

(c) Anisotropic Gauge Frame with
α = 0.8.

Figure 35: Results for the different frames where β = 5. All simulations use Nθ = 16 and ξPDE = 0.05.
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Isotropic Left Invariant
Frame

Anisotropic Left Invariant
Frame

Gauge Frame where α = 0.8. Gauge Frame where α = 0.9.

Figure 36: Results for the different frames where β = 5. All simulations use Nθ = 8 and ξPDE = 0.05.

We consider the gauge frame using both α = 0.8 and α = 0.9. In the case where α = 0.8, we see that the tracking
does not give the correct result. The tracking is more dynamic, but it does not complete the tracking correctly.
This could be related to a relative domination of the B2 and B3 direction over the B1 direction. Therefore, we
check what happens when we consider α = 0.9, resulting in a relatively bigger component in the B1 direction. In
this case, we see that the tracking is able to follow the vessel structure better. Do note that it is not perfect; the
tracking is somewhat jittery and does not always stay within the vessel. However, this tracking is much better
than the one we found for α = 0.8. This also illustrates a big advantage of the gauge frames. In this specific
case, both left invariant frames were not able to calculate a correct tracking. However, using the anisotropic
gauge frames, we were able to find a value of α which did result in a correct tracking.

Weighting parameter ξ We investigate the effect of the weighting parameter ξ. We will show that, for high
values of ξ, the tracked vessel will be very flexible (like cooked spaghetti), where for low values of ξ, the tracked
vessel will be hard to bend and thus, act like steel. In Figure 37, we see the results for ξPDE = 0.01, which is a
low value compared to ξPDE = 0.05. In Figure 38, we see the results for ξPDE = 0.25, which is relatively high.

First, we discuss the results for a low value of ξ. In Figure 37, we see that the tracking results are different
from what we would expect. For the isotropic left invariant frame, we see that the tracking moves straight
ahead, rotates in one point, and then continuous to move straight ahead for some distance. We see a clear
difference between the symmetric model and the forward gear variant. In the first one, the tracking moves
backward towards the tip. In the forward gear variant of the model, this is not allowed. Therefore, we see that
the tracking changes. Instead, the tracking now moves from side to side inside the vessel structure, but does
not move backwards, as was the case in the symmetric model. In the anisotropic left invariant frame, we see
that the tracking results do not follow the vessel structure. However, the tracking makes fewer sharp angles,
and therefore seems to be smoother. Towards the seed, the forward gear variant of the model makes a sudden
movement, which appears to be backward. Most likely, an in place rotation takes place. In addition to that,
we see that when the tracking approaches the seed in the forward gear variant of the anisotropic left invariant
frame, it first passes the seed, after which it turns (using different smaller steps) in order to arrive at the correct
location. In the symmetric version of the same metric frame, we see that the tracking follows a smooth line
from tip to seed without passing the seed before arriving at the correct location. The last frame we consider,
is the anisotropic gauge frame where α = 0.8. In this model, we see that the tracking is very different for the
symmetric and forward gear variants of the model. In the symmetric variant, we see that initially, the tracking
follows the vessel structure better. However, before the vessel bends, the tracking finds a shorter way to reach
the seed and it crosses the vessel structures moving straight towards the seed. Towards the end of the tracking,
the tracking uses the reverse gear (at least) once. Therefore, this tracking cannot be found in the forward gear
variant of the model. When we consider the forward gear variant, we see that the tracking does not bend along
with the vessel structure, but takes a shortcut immediately. Towards, the end of the tracking, it has some
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trouble moving towards the seed, and it moves around it while searching for the exact location. The general
impression for the tracking results for a low value of ξ is that the tracking contains many angles and rotation
points. Overall, it has trouble following the vessel structures in a way that we would do it ourselves.

In Figure 38, we see the tracking results for a (relatively) high value of ξ. First, we take a closer look at the
isotropic left invariant frame. Here, we see that the tracking does not follow the vessel structure as expected.
However, we do see that the tracking results for the symmetric and forward gear model are very similar. Both
tracking results take a shortcut and do not follow the vessel structure along its hairpin bend. In the anisotropic
left invariant frame, we see that the tracking does not follow the vessel structure either. The tracking results for
the forward gear and symmetric variant are again very similar. There are small differences with the isotropic left
invariant frame. The most prominent difference is the way both trackings take their shortcut. In the isotropic
model, the model makes a somewhat sharper turn in the vessel, and it makes a small bend in between both
vessels. In the anisotropic model, the tracking seems to be making a more continuous turn. The last model we
consider is the anisotropic gauge frame where α = 0.8. We see a difference between the tracking of the symmetric
and the forward gear variants of this model. First, it is important to note that both tracking results do not
move outside of the vessel structure. However, we see some interesting behaviour where the vessel bends. In the
symmetric model, the tracking uses the reverse gear twice where the tracking runs into the edge of the vessel.
However, this is not possible in the forward gear. Here, we see that the both times the tracking meets the edge
of the vessel, the tracking makes a sharp turn or in place rotation in order to prevent using the reverse gear.
We can clearly see that the tracking results are more flexible than they where when ξ = 0.08. This confirms the
analogy to cooked spaghetti we made at the beginning of this paragraph.

4.4 Conclusion

In this chapter we discussed the tracking results for different experimental settings. Here, we summarize the
most important findings.

1. All experiments have illustrated the difference between the isotropic and the anisotropic metric tensor field
diagonalized in the left invariant frame. We have seen that the anisotropic metric tensor field discourages
the tracking to move sideways. Therefore, it favors angular movement and forward/backward movement.

2. The gauge frame follows the vessel structure better than the left invariant frame. This can be explained
since the first gauge vector is aligned with the underlying vessel structure. Therefore, the tracking is
stimulated (by design) to move into the direction of the vessel.

3. The forward gear model strongly discourages backward movement. The tracking does not switch gears
anymore. Since in-place rotations are often more expensive, there is only a limited number of keypoints.

4. The choice of the cost function is very important. When the cost function favours some vessels over others,
this will be visible in the tracking. In addition to that, the cost function has a high influence on where
the tracking goes, since it tries to find the shortest route, which is the optimal path.

5. The gauge frame needs a lower number of orientations to find a correct tracking, as we saw in Experiment 4
(Figure 36). Where the left invariant frame has trouble following the vessel structure with 16 orientations,
the gauge frame is able to find a correct tracking with only 8 orientations. This is in line with previous
findings [12].

6. The gauge frame adapts its direction to the underlying dominant vessel structure. We saw that this might
lead to problems at crossings (in the artificial image). We will investigate this in more detail in Section
5, and will give our corresponding conclusions there.

7. The parameter ξ denotes the bending stiffness and hence influences the flexibility of the tracking. When its
value is very low, the tracking is very stiff and therefore one could say that “the curves look like bended
steel”. However, when its value is relatively high, the tracking is able to rotate very easily and “the
tracking behaves like cooked spaghetti”.

Overall, we can conclude that when we consider an image containing only one wide vessel (consisting of a high
number of pixels/sample points), it is beneficial to use the gauge frame.
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Symmetric Isotropic Left Invariant
Frame.

Symmetric Anisotropic Left Invari-
ant Frame.

Symmetric Gauge Frame with α =
0.8.

Isotropic Left Invariant Frame with
Forward Gear.

Anisotropic Left Invariant Frame
with Forward Gear.

Gauge Frame with Forward Gear
where α = 0.8.

Figure 37: Results for the different frames where β = 5. All simulations use Nθ = 16 and ξPDE = 0.01
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Symmetric Isotropic Left Invariant
Frame.

Symmetric Anisotropic Left Invari-
ant Frame.

Symmetric Gauge Frame with α =
0.8.

Isotropic Left Invariant Frame with
Forward Gear.

Anisotropic Left Invariant Frame
with Forward Gear.

Gauge Frame with Forward Gear
where α = 0.8.

Figure 38: Results for the different frames where β = 5. All simulations use Nθ = 16 and ξPDE = 0.25
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5 Tracking Blood Vessels in Vascular Trees

In the previous section, we studied the tracking results in the situation where we consider one seed and one tip.
However, often there are multiple vessels in an image. It is interesting to study how the tracking behaves when
we consider multiple seeds and tips. We note that our implementation (PDE-method) has no trouble dealing
with one seed and multiple tips. In that case, the backtracking algorithm needs to be executed multiple times,
and no problems arise. However, when considering multiple seeds, we need to adapt our current implementation.
Since the algorithm written by Jean-Marie Mirebeau using Fast Marching is able to build a volume with multiple
seeds, we decide to use the Fast Marching code in this section. We will consider one image in which we track
multiple vessels. Beforehand, we indicate the seeds and tips for all vessels. Then, the Fast Marching script
is asked to calculate all geodesics. Once the results are known, we check whether the tracking has been done
correctly. If this is not the case, we adapt our model.

The script we use goes through the following steps for each processed image:

1. Load image and annotations (seeds, tips, vessel structures and more);

2. Down sample the image and its annotations (make sure the image has fewer pixels, but is still “the same
image” and the annotations are still in the same place) to improve calculation times;

3. Import the seeds and tips. This information is saved in the annotation data we imported in Step 1.

(a) Locations: tips are vessels that are not a parent vessel, start denotes the starting points of the vessels,
where seeds contain both the starting points of the vessels, and the bifurcations of vessels;

(b) Orientations: for each location, we compute the location exactly in the middle between the left and
right boundary of the vessel for the first n points (we use n = 10). Then, we compute the location
that is exactly in between two subsequent locations. Afterwards, we calculate the average location of
the n − 1 average points we just calculated. Last, we calculate the angle between the initial location
(the seed or tip that we identified before) and the calculated location on the vessel. This angle yields
the orientation of the vessel at the specific point. In formula’s, we did the following:

Consider the first n locations (xi, yi). Then calculate the locations exactly in the middle represented
by (x̃i, ỹi) by calculating

(x̃i, ỹi) = (xi + xi+1

2
,
yi + yi+1

2
) for i = 1, . . . , n − 1.

Next, we calculate the mean value of (x̃i, ỹi) for i = 1, . . . , n − 1, which is saved in (x, y):

(x, y) = ( 1

n − 1

n−1

∑
i=1

x̃i,
1

n − 1

n−1

∑
i=1

ỹi) .

Last, calculate the angle θ by

θ = arg (x + iy) = arctan(y
x
) ,

taking into account the quadrant in which (x, y) is located.

4. Select the part of the image you want to analyse (and the vessel structures, seeds and tips that are located
there). Do note that it can be the case that only parts of vessels are in this part of the image. Therefore,
it may be possible that for some vessels, only tips or seeds are included. Check this before calculating the
geodesics;

5. Set parameters for the geodesics (µ = 0.05, ε = 0.1, Nθ = 64, periodicity =2π, ∆θ = 2π/Nθ, ∆x = 1);

6. Calculate the orientation score transform;

7. From end points to starting points (not bifurcations) on lifted vessel tree

(a) Convert all coordinates to the correct notation. In the notebook, we use discrete notation for the
positions and the corresponding angles. That means that when we consider the continuous angle
θc = π, we use the discrete angle θd = θc

∆θ
+ 1 = 33 in the calculations. In addition to that, we make

sure that the coordinates are in the correct domain (by returning modulo Nx, Ny and Nθ) and all
are integers (rounding with 0 decimals). In addition to that, we also calculate all centerline positions
(notations before was (x̃i, ỹi)). For each position, we also calculate a corresponding angle. These
positions and orientations will be used to calculate the lift and cost function.
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(b) Create lift by placing delta peaks at the centerline position and orientations; we construct two different
lift functions V , which are used later on when we define the cost function. Both lift functions have
the same dimensions as the orientation scores.

The first lift function is based on the centerline positions. At all these positions, the lift function gets
value 1. Since the lift function should not only support movement in direction θi at location (xi, yi),
also the values in the lift function that correspond to orientation θi ± π at this location should get
function value 1. All other values of the lift function are 0.

The second lift function is an expansion of the first one. Again, we have an array with the same
dimension as the orientation score. The function values at the locations corresponding to the locations
and orientations of the centerlines and their rotations are 1. However, in this case, we support angular
movement at seeds. Therefore, the lift function is assigned value 1 for all orientations at the seeds.
This way, it is encouraged to visit the seeds.

Afterwards, a Gaussian filter is applied to the lift functions such that the function values are slightly
blurred and approach continuous behaviour better.

(c) Construct cost function: The costs C are defined by calculating

C (x, θ) = 1

1 + λV (x, θ)p , (89)

where λ = 400 and p = 2.

(d) Identify crossings: Last, we identified all crossings in the upper half of the image. For each location,
we identified the orientation of the crossing vessels as well. For now, we identified these locations
and orientations by hand.

8. Vessel tracking (building volume and backtracking). Depending on the frame in which our tracking takes
place, we calculate different metrics. As explained earlier, we use Jean-Marie Mirebeau’s Fast Marching
code to find the geodesics.

• Left Invariant Frame and Gauge Frame: Unfortunately, the function we use for the forward gear
gauge frame (“AsymmetricQuadratic3”) does not have the option to calculate the angular component
periodically. Therefore, we duplicate the metric and stack them on top of each other. We use 3 copies.
This way, the tracking is able to follow the vessel, and will not be limited by the non-periodicity of
the angular component. In an effort to make the computations more efficient, we duplicated the seeds
and tips to “each angular layer”. Note that using 3 copies is equivalent to using 5 copies without
copying the seed. In the end, we select the shortest path from all the equivalent tips. We determine
the metric, as explained in Appendix A, including the cost function, the dimensions of the domain,
the area of the domain, and the seeds and tips. When we consider the forward gear variant, we also
provide the forward direction, the number of copies that should be considered, and the variable ε.

• Mixed Frame: In Section 1.4, we discussed that the gauge frame is a good fit on the vessels, but not
necessarily at other locations. Therefore, we consider a (convex) linear combination of both frames.
When the cost function is small, it is cheap to move, so we are at a vessel structure. When we are
on a vessel, we want to use the gauge frame. The other way around, when the cost function is high,
it is expensive to move, so we are outside a vessel structure, and therefore, we want to use the left
invariant frame. That leads us to the following frame

G(f)Mixed = (1 − C)G(f)GF + CG(f)LIF, (90)

where C denotes the cost function.

The forward direction adapts according to the same scaling as the frame does.

Remark 5.1. We used the ground truth while identifying the cost function in Step 7b. The ground truth
contains all information on where the vessels are located in the image. Although we do not have this information
under normal circumstances, we can justify using this information. There are different neural network techniques
in which an accuracy up to 96% can be achieved [33].

The values of the different parameters in the experiments are given in Table 2. Note that using more orientations
would result in a better vessel tracking result. However, due to calculation capacity of the computer, we decided
to use Nθ = 64. Computations are a lot faster and use less memory when we choose to use a smaller Nθ. However,
the fast marching algorithm needs sufficient angular directions in order to find smooth results
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ξ ζ Nθ σs σa ε α
Cost function in Figure 40 0.1 0.1 64 3 or 7 (see text) 0.87 sθ 0.1 2/3
Cost function in Figure 44 0.1 1 32 1.5 0.6 0.1 2/3

Table 2: Values used for the different parameters in the experiment using different cost functions for vessel
tracking in a tree, with sθ = 2π

Nθ
.

(a) Image considered in Experi-
ment 1.

(b) Image with tips, seeds and start-
ing points indicated in red, cyan and
green respectively.

(c) Image with boundaries vessels
indicated in green.

Figure 39: Setting of Experiment 1 (tracking in vessel tree).

5.1 Experiment

The retina image that is used in Experiment 1 is shown in Figure 39. As mentioned before, we will track
multiple vessels at once. All geodesics need to find a way from each tip (red point) to a starting point (green
point). The cost functions belonging to this retina image (explained in both item 7b and 7c), are visualized in
Figure 40. We see that the cost function consists of cheap line segments that meet at bifurcation points. For the
cost function with elevators at the seeds, we see that all line segments are glued together at bifurcation points.
Since we want to stimulate the tracking to rotate (and connect different line segments) at these bifurcation
points, we will use the cost function with elevators. Note that we know the locations of bifurcation points for
this image. However, under normal circumstances, one does not have such a classification of points. Therefore,
it is important to look for a way to classify both points automatically.

First, we compare the tracking results of the left invariant frame and gauge frame for both the symmetric and
forward gear variants of the model. In Figure 41, we see the results of these tracking algorithms. We see that
the results of the tracking for the symmetric and forward gear left invariant frame are identical. That means
that the model did not have to switch gears in the symmetric model. We see that the tracking is performed
correctly for all vessels. Since we argued in the Section 4 that the gauge frame was better able to follow specific
structures in an image, we check how the tracking results are for the vessel tree given in this image. We see
that the tracking of symmetric anisotropic gauge frame switches to a different vessel from what was expected
twice. The first time, the tracking uses a crossing as a bifurcation point. This could be related to the alignment
of the gauge frame. The second time, the tracking switches vessels, the two vessels are located very close to
each other. When the gauge frame is not correctly aligned with the vessel, it is possible that the tracking is
stimulated to move towards a different vessel and continue its way there. This seems to be confirmed when we
look at the direction of the first gauge vector in Figure 42. For the forward gear anisotropic gauge frame, the
results are very similar to the symmetric case. Last, we consider the mixed frame as introduced in Eq. (90).
This frame uses the left invariant frame where the cost function is high, and the gauge frame where the cost
function is low. We see that the results for the symmetric and forward gear variants of this model are also
very similar. However, they do differentiate from what we found for the anisotropic left invariant frame and the
anisotropic gauge frame. In this model, two vessels move in a direction that we did not anticipate. We note
that the vessel that decided before to switch vessels at a point where the two vessels are very close together,
follows its own vessel structure correctly now. However, at the first crossing that it comes across, it treats the
crossing as a bifurcation, moving in a different direction from what we would expect. Another vessel first meets
a bifurcation point, where it does not move in the direction towards the seed, but towards the different tip.
Then, when it meets the same crossing as described before, it moves in the same direction as all other vessels.
This is different from what we would expect, since the it moves over a larger distance now.

We discussed that the mistakes in the tracking could be related to the gauge frame that was used to calculate
the results. Therefore, we take a closer look at the exponential curves belonging to the gauge frame. They are
plotted in Figure 42. We calculated the gauge frame for different variables, and see that the alignment of the
exponential curves to the vessel structure is the best in Figure 42c, where we use σs = 3 and wavelet size 5.
Therefore, we also consider the tracking results where the gauge frame is calculated with these variables.

The tracking results where the gauge frame is constructed using σs = 3 and wavelet size 5 are given in Figure
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(a) Projection of cost function to position space.
(b) Projection to position space of cost function with
elevators at seeds.

(c) Visualization of cost function.
(d) Visualization of cost function with elevators at
seeds

Figure 40: Cost function corresponding to Experiment 1 with the methods explained in items 7b and 7c.

43. In the symmetric anisotropic gauge frame tracking, we see that there are two locations where the tracking
goes wrong. These are the same as in the tracking where we used the gauge frame constructed with σs = 7 and
wavelet size 15. In the forward gear variant of this model, there is an extra location where the tracking does
not follow the vessel correctly. There is one vessel that contains several bends, which is not tracked correctly.
In the symmetric and forward gear mixed model the tracking is correct for the most part. The tracking only
switches vessels where they are very close together. Again, this could be related to the fitting of the gauge
frame. Looking at the image, it is understandable that it assumes that there is a crossing/bifurcation at this
location, since the orientation of the vessels is also very similar.

In conclusion, we see that the gauge frame needs to be fitted very well on the image that we are considering
in order to find good results. This is not trivial, since there are a lot of parameters that can be adapted in an
effort to find a better gauge frame. Unfortunately, we have not been able to find the ideal settings for the image
presented in Figure 39. This still requires more research.

We note that, due to our very strict cost function, the tracking rarely moves outside of the vessel structure.
Therefore, we consider the tracking for a different, less precise cost function as well. This cost function is inspired
by the cost function introduced in [34]. We implemented a single scale vesselness filter, instead of a multi-scale
version. The mobility, a.k.a. vesselness filter, uses an anisotropy measure R and a structure measure S. These
are based on the second order derivatives in the coordinate frame that we are considering. The convexity
criterion Q is chosen to select transversal vessel profiles. The vesselness filter V (Uf) ∶ SE(2)→ R+ is given by

V (Uf) =
⎧⎪⎪⎨⎪⎪⎩

0 if Q ≤ 0

exp (− R2

2σ2
1
) [1 − exp (− S

2σ2
)] if Q > 0.

(91)

In the above expression, variables σ1 and σ2 are always chosen to be 0.5 and 0.2 ∥S∥∞ respectively.

We use the left invariant frame while calculating the cost function. Then, the different measures are given by

R =
A2

1U
s,β
f

A2
2U

s,β
f

, S = (A2
1U

s,β
f )

2
+ (A2

2U
s,β
f )

2
, Q = A2

2U
s,β
f . (92)
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(a) Backtracking results for symmetric anisotropic left
invariant frame.

(b) Backtracking results for forward gear anisotropic
left invariant frame.

(c) Backtracking results for symmetric anisotropic
gauge frame with σs = 7, σa = 0.87sθ and wavelet size
15.

(d) Backtracking results for forward gear anisotropic
gauge frame with σs = 7, σa = 0.87sθ and wavelet size
15.

(e) Backtracking results for symmetric mixed frame
with σs = 7, σa = 0.87sθ and wavelet size 15.

(f) Backtracking results for forward gear mixed frame
with σs = 7, σa = 0.87sθ and wavelet size 15.

Figure 41: The tracking of the vessels is indicated in cyan and red (symmetric and forward gear respectively).
Blue circles are placed around the locations where the tracking behaves differently from what we expect. The
vessel boundaries are indicated in green. The used cost function was introduced in items 7b and 7c.

(a) σs = 7, wavelet size 15. (b) σs = 3, wavelet size 15. (c) σs = 3, wavelet size 5.

Figure 42: Exponential curves for gauge frame using different spatial blurring coefficients and wavelets sizes.
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(a) Backtracking results for symmetric anisotropic
gauge frame with σs = 3, σa = 0.87sθ and wavelet size
5.

(b) Backtracking results for forward gear anisotropic
gauge frame with σs = 3, σa = 0.87sθ and wavelet size
5.

(c) Backtracking results for symmetric mixed frame
with σs = 3, σa = 0.87sθ and wavelet size 5.

(d) Backtracking results for forward gear mixed frame
with σs = 3, σa = 0.87sθ and wavelet size 5.

Figure 43: The tracking of the vessels is indicated in cyan and red (symmetric and forward gear respectively).
Blue circles are placed around the locations where the tracking behaves differently from what we expect. The
vessel boundaries are indicated in green. The used cost function was introduced in items 7b and 7c.

Here, the superscripts s,β indicate Gaussian derivatives at spatial scale s = 1
2
σ̃s and angular scale 1

2
(βσ̃s)2

. In
this example, we chose β = 0.75/σ̃s, and σ̃s = 2.

We note that the retinal image in Figure 39 contains a black mask in the shape of a disk. The edge that arises
on the boundary between the image and the mask will be recognized as a vessel-structure. Therefore, we remove
this structure from the vesselness filter that we construct. We do so by calculating the vesselness filter for only
the mask (without the retinal image), and set all points where the vesselness filter of the mask goes under a
certain threshold (in our case 10−4) to zero. Since angular movement was better supported than we would like
it to be, we used erosion in the angular direction to limit angular movement. The result of the aforementioned
manipulations are saved in Ṽ, which is rescaled such that all values are in the interval [0,1]. Last, we suppose
that we know where the bifurcations are located. Here, we support movement in all directions. These points
are spatially blurred with a scale of 1.5, such that angular movement is also slightly supported close to the
bifurcation point. These values are rescaled such that they are in the interval [0,1]. The values are saved in
the Bifurcation Point Density B. Then, the mobility M is given by

M(x, θ) = max{Ṽ(x, θ),1/4 ⋅ B(x, θ)} .

Then, this mobility is rescaled to be in the interval [0,1]. The corresponding cost function is given by

CV (x, θ) = 1

1 + λ ⋅M(x, θ)p , (93)

where λ = 800 and p = 2. The visualization of this cost function is given in Figure 44. The tracking results
belonging to the cost function given in Figure 44 are visualized in Figure 45.

First, we discuss the results of the tracking in the left invariant frame. We see that the tracking is less accurate
compared to when we used the “exact cost function”. However, the tracking is still very decent. The blue circles
indicate where the tracking goes wrong. These are located at places where either crossings occur or where both
vessels are close to each other. Last, we note that there are no significant differences between the symmetric
and the forward gear left invariant trackings.

Next, we consider the gauge frame tracking. We see that this tracking is less accurate. Instead of discussing
all vessels, we highlight two of them which illustrate the recurring problems accurately. In Figure 46, we see
in both images that the tracking is better at adapting for curvature (in the white ovals). However, there are
also places where the tracking results are not that well fitted. This occurs at crossings of blood vessels. The
gauge frame was fitted such that it follows the vessel structure better. However, the gauge frame always prefers
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(a) Projection of alternative cost function to position
space. (b) Visualization of alternative cost function.

Figure 44: Visualizations of alternative cost function explained in Eq. (93) corresponding to Experiment 1.

(a) Backtracking results for symmetric left invariant
frame.

(b) Backtracking results for forward gear anisotropic
left invariant frame.

(c) Backtracking results for symmetric anisotropic
gauge frame with σs = 3, σa = 0.87sθ and wavelet size
75.

(d) Backtracking results for forward gear anisotropic
gauge frame with σs = 3, σa = 0.87sθ and wavelet size
75.

(e) Backtracking results for symmetric mixed frame
with σs = 3, σa = 0.87sθ and wavelet size 75.

(f) Backtracking results for forward gear mixed frame
with σs = 3, σa = 0.87sθ and wavelet size 75.

Figure 45: The tracking of the vessels is indicated in cyan and red (symmetric and forward gear respectively).
Blue circles are placed around the locations where the tracking behaves differently from what we expect. The
vessel boundaries are indicated in green. The used cost function is introduced in Eq. (93).
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(a) Tortuous vessel that runs into several crossings. (b) Tortuous vessel.

Figure 46: Backtracking results for symmetric mixed frame with σs = 1.5, σa = 0.6 and wavelet size 75. The
seeds and bifurcation points are indicated by the green points. The tips are indicated by the red points. The
vessel structure is visualized by the green boundaries. In the white ovals, the regions where the gauge frame is
better able to adapt to curvature compared to the left invariant frame are surrounded. At the blue circles, the
tracking opts for the wrong/unexpected blood vessel. The used cost function is introduced in Eq. (93).

the dominant structure. That means that at crossings, the gauge frame stimulates the tracking to follow the
dominant vessel. This is not always the vessel that we intend to track, as we can see in Figure 46a, where this
happens twice (see blue circles).

Last, we see in Figure 45 that the tracking results are a combination of the left invariant frame and the gauge
frame (as expected). We see that at the “highly tortuous vessels”, the left invariant frame tracking is used. At
these places, the cost function is less precise, and therefore the left invariant frame takes over when the tracking
moves outside the cheap areas of the cost function. We still see that at crossings (and places where the two
vessels are very close to each other), the tracking prefers the dominant vessel. The cost function could possibly
be improved by considering a gauge frame based variant of the vesselness function.

5.2 Conclusion

We discussed the results of the different tracking methods using different cost functions. We summarize our
main conclusions:

1. The choice of the cost function is very important. Choosing a very precise cost function (as suggested in
Figure 40), the tracking results will be very good. However, obtaining such a perfect lifted cost function
requires too much training in a deep learning approach. Geometrical methods provide reasonable crossing
preserving vesselness cost functions, but in cases where bifurcations or crossings are close to each other,
tracking errors start to occur. Using deep learning segmentations with basic forward networks provide
worse segmentations. In the future, we either must optimize/train the (geometric) crossing preserving
vesselness parameters, or enlarge the network architecture with state of the art computer science tech-
niques. In addition to that, prior classification (e.g. via deep learning) of crossings and bifurcations is
still desirable to achieve correct vessel tracking (without artifical keypoints and skeletons [35; 36]).

2. It is very important that the gauge frame is well-fitted to the retina image. When the gauge frame is not
fitted optimally, one can easily see this in the tracking results, which will become more jittery or leave the
vessel structure. This happens when the underlying frame encourages the tracking to move outside of the
vessel structure. The cost function discourages this movement, leading to a zigzag path. An alternative
explanation would be that the “main direction” of the gauge frame differs a lot per location. In that case,
it is also possible that the tracking is not smooth despite stabilization of the gauge frame [5].

3. The gauge frames main direction often bends into the direction with the highest response. However, at
crossings, this direction is not always the direction of the vessel that we are considering. Therefore, all
vessels arriving at a crossing are encouraged to start moving along the most dominant vessel. This is not
the vessel that all trackings should be following. Therefore, it is important to construct a cost function
which ensures cross-profile consistency. This possibly makes it less likely for trackings to change direction
at crossings. In addition to that, one should consider to use a different frame near crossings (e.g. left
invariant frame). One could implement this using the non-crossing conserving vesselness map, e.g. the
vesselness function of Frangi [37].

Since the fast marching algorithm needs a higher number of orientations to find a good tracking, the
advantage of using fewer orientations is not interesting anymore. The advantages of the reduced compu-
tation time are less, but they are still applicable, since the fast marching algorithm is a lot faster than the
finite difference method.
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6 Future Research

In this report, we discussed the implementation of the forward gear variant of the gauge frame model and
compared it to other existing models. Even though we have considered and implemented a lot of theory, there
are still aspects that need to be studied more closely. In this section, we will elaborate on them.

We have used two different solution strategies to solve the Eikonal PDE. The first one used a finite differences
approach. We implemented this such that it can track several tips to one single seed in one go. In practice,
we often need to track several tips, but it is not always clear beforehand which seeds correspond to the tips.
Therefore, it is important to ensure that the volume is built such that it can consider multiple seeds as well.
In practice, this means that we give all seeds pS value 0 in every iteration. Note that this has already been
implemented in the fast marching method of Jean-Marie Mirebeau [26].

While studying the finite differences approach, it is important to also do a stability analysis. Erik Franken has
already preformed this for the left invariant frame [11]. We used the same condition for the gauge frame, but
this may not always be the best condition to use, since we are considering a slightly different model. Therefore,
it would be good to have a close look at this stability condition and its validity. At the same time, it would
also be interesting to check the order of accuracy of the used scheme.

In some specific situations, there were a some problems with the tracking; it would reach a local minimum
before reaching the global minimum. These local minima were not located on grid points, but in between. We
used a list interpolation to construct a continuous function out of a discrete list. However, we also expect there
only to be minima at the seeds. When a local minimum is reached at a different point, this is not in line with
our expectations. Therefore, it is important to do some more research on why these local minima occur, and
how we can prevent them from occurring. One of the solution strategies would be adding Gaussian derivatives
while calculating the steepest descent algorithm. At this point in time, we solved the tracking problems by
slightly blurring only in the angular component.

In Section 5, we discussed vessel tracking in a vessel tree. We learned that it is very important that the constants
which are used to fit the gauge frame, are chosen correctly. If we want to automatize this algorithm in an
application, it is important that these constants can be chosen automatically, in an efficient manner. Therefore,
it is relevant to search for a “rule of thumb” which results in a well-fitted gauge frame. It was illustrated that
using a different gauge frame results in a different tracking, which might differ from the expected, correct result.

In Section 5, we discussed the best cost function. We concluded that, in order to find correct results, we need to
connect the cost function at bifurcation points. In order to do this correctly, we need to identify the bifurcations.
It is important to distinguish between crossings and bifurcations, since we do not want to stimulate rotation at
crossings. When we use this tracking in applications, it is crucial that it is possible to classify bifurcations and
crossings correctly. Therefore, it is valuable to work on an automated recognition of crossings and bifurcations
and their corresponding directions.

Throughout this thesis, we noted in several scenarios that the gauge frame is well able to adapt for curvature.
This is one of the main advantages of this frame. However, exactly this adaptation for curvature also leads
to crossings being interpreted as bifurcations. The gauge frame will in that case adapt towards the dominant
vessel, which is undesirable for the other, crossing, vessel which will most likely be tracked less well. Therefore,
it is important to come up with a way to use the gauge frame only when it is not near crossings. One of the
ways to do this, would be by identifying, besides the bifurcations, the crossings as well. A more automated way
to “identify crossings and bifurcations”, would be by using the Frangi-vesselness function on the image [37].
This cost function is weak at crossings and bifurcations, and therefore would be ideal to use in the mixed tensor
field as given in Eq. (90).

Last, the tracking results in the fast marching method are calculated with an algorithm that is very similar
to Dijkstra’s algorithm. In this thesis, we used this implemented algorithm to calculate the tracking results.
Therefore, the tracking is not smooth. There are different ways to resolve this. First, one can calculate the
weighted average of each point. By calculating xnew

i = xi−1+2xi+xi+1

4
, one finds a tracking result which will be

less jittery. Alternatively, one could use the steepest descent tracking that was used in the finite differences
method. This also leads to a smooth tracking result.
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A (Gauge Frame and Left Invariant) Metric Expressed with Re-
spect to Static Frame

In the Fast Marching code of Jean-Marie Mirebeau, we need to supply the metric with respect to the standard,
static frame. This means that we need to find Gε, where ε = {ε1, ε2, ε3} ∶= {dx,dy,dθ} denotes the standard
dual basis and e = {e1, e2, e3} ∶= {∂x, ∂y, ∂θ} denotes the standard basis. In Eq. (45), Gχ is expressed relative
to the gauge frame (recall that the gauge basis is given by χ = {χ1, χ2, χ3}). In order to find Gε, we first have
to express Gχ relative to the left invariant frame, which we denote by Gω (recall that the left invariant basis is
given by ω = {ω1, ω2, ω3}). Once, we have found an expression to do this, we still need to express Gω relative to
the standard basis, which we denote by Gε, and denotes the metric that we need to enter in the code. Writing
these steps as formulas, we get

G =
3

∑
i,j=1

[Gχ]ij χ
i ⊗ χj =

3

∑
i,j=1

[Gω]ij ω
i ⊗ ωj =

3

∑
i,j=1

[Gε]ij ε
i ⊗ εj (94)

First, we start by expressing Eq. (45) in terms of the left invariant basis. We recall that we have

[Gχ] =
⎛
⎜
⎝

1 0 0
0 (1 − α)−2 0
0 0 (1 − α)−2

⎞
⎟
⎠
. (95)

In addition to that, we recall that the gauge frame vectors Bi are constructed out of the left invariant frame
vectors Aj . More specifically, we have

Bi∣p =
3

∑
j=1

cji (p) Aj ∣p , χj ∣
p
=

3

∑
i=1

cji (p) ωi∣
p
.

We can rewrite this to

⎛
⎜
⎝

B1∣p
B2∣p
B3∣p

⎞
⎟
⎠
= Cp

⎛
⎜
⎝

A1∣p
A2∣p
A3∣p

⎞
⎟
⎠
,

⎛
⎜⎜
⎝

χ1∣
p

χ2∣
p

χ3∣
p

⎞
⎟⎟
⎠
= C

⊺

p

⎛
⎜⎜
⎝

ω1∣
p

ω2∣
p

ω3∣
p

⎞
⎟⎟
⎠
.

where

Cp ∶=
⎛
⎜
⎝

c11 (p) c21 (p) c31 (p)
c12 (p) c22 (p) c32 (p)
c13 (p) c23 (p) c33 (p)

⎞
⎟
⎠
, Cp ∶=

⎛
⎜
⎝

c11 (p) c21 (p) c31 (p)
c12 (p) c22 (p) c32 (p)
c13 (p) c23 (p) c33 (p)

⎞
⎟
⎠
. (96)

First, we need to identify the variables cij . Here, we use that for dual vectors, one should have ⟨χj ∣
p
, Bi∣p⟩ = δ

j
i in

the gauge frame, just like ⟨ωj ∣
p
, Ai∣p⟩ = δ

j
i in the left invariant frame. That means that we have, for i, j = 1,2,3

and for unknown cij

δji = ⟨χj ∣
p
, Bi∣p⟩ = ⟨

3

∑
k=1

cjk (p) ωk∣
p
,

3

∑
l=1

cli (p) Al∣p⟩

=
3

∑
k,l=1

cjk (p) cli (p) ⟨ωk∣
p
, Al∣p⟩ =

3

∑
k=1

cjk (p) cki (p) . (97)

We can rewrite the expression in Eq. (97) to

⎛
⎜
⎝

c11 (p) c21 (p) c31 (p)
c12 (p) c22 (p) c32 (p)
c13 (p) c23 (p) c33 (p)

⎞
⎟
⎠

⎛
⎜
⎝

c11 (p) c21 (p) c31 (p)
c12 (p) c22 (p) c32 (p)
c13 (p) c23 (p) c33 (p)

⎞
⎟
⎠
=
⎛
⎜
⎝

1 0 0
0 1 0
0 0 1

⎞
⎟
⎠

⇔
⎛
⎜
⎝

∑3
k=1 c

k
1 (p) c1k (p) ∑3

k=1 c
k
1 (p) c2k (p) ∑3

k=1 c
k
1 (p) c3k (p)

∑3
k=1 c

k
2 (p) c1k (p) ∑3

k=1 c
k
2 (p) c2k (p) ∑3

k=1 c
k
2 (p) c3k (p)

∑3
k=1 c

k
3 (p) c1k (p) ∑3

k=1 c
k
3 (p) c2k (p) ∑3

k=1 c
k
3 (p) c3k (p)

⎞
⎟
⎠
=
⎛
⎜
⎝

1 0 0
0 1 0
0 0 1

⎞
⎟
⎠

⇔ CpCp = I.

That means that we can easily calculate Cp by taking the inverse of Cp, so

Cp = C−1
p .

Department of Mathematics and Computer Science 62



Master Thesis

Next, we need to find out how we can calculate [Gω]. We do so by rewriting Eq. (94), which gives us

G =
3

∑
i,j=1

[Gχ]ij χ
i ⊗ χj

=
3

∑
i,j=1

[Gχ]ij (
3

∑
k=1

cik (p)ωk)⊗ (
3

∑
l=1

cjl (p)ωl) . (98)

Since we know the tensor product is a linear transformation, we can rewrite Eq. (98) to

G =
3

∑
i,j=1

[Gχ]ij
3

∑
k,l=1

cik (p) cjl (p)ωk ⊗ ωl

=
3

∑
k,l=1

⎛
⎝

3

∑
i,j=1

cik (p) [Gχ]ij c
j
l (p)

⎞
⎠
ωk ⊗ ωl

=
3

∑
k,l=1

⎛
⎝

3

∑
i,j=1

[Cp]ki [Gχ]ij [Cp]lj
⎞
⎠
ωk ⊗ ωl

=
3

∑
k,l=1

([CpGχC
⊺

p]
kl
)ωk ⊗ ωl

=
3

∑
k,l=1

[Gω]kl ω
k ⊗ ωl.

We can express [Gω] as a matrix product, being

[Gω] = Cp [Gχ]C
⊺

p = C−1
p [Gχ]C−⊺

p .

With similar calculations, we can express the metric in terms of the standard basis ε. That means that we need
to find the transformation matrices Qp and Qp such that

⎛
⎜
⎝

A1∣p
A2∣p
A3∣p

⎞
⎟
⎠
= Qp

⎛
⎜
⎝

e1∣p
e2∣p
e3∣p

⎞
⎟
⎠
,

⎛
⎜⎜
⎝

ω1∣
p

ω2∣
p

ω3∣
p

⎞
⎟⎟
⎠
= Q

⊺

p

⎛
⎜⎜
⎝

ε1∣
p

ε2∣
p

ε3∣
p

⎞
⎟⎟
⎠

is satisfied. That means that it is given by

Qp =
⎛
⎜
⎝

cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎞
⎟
⎠
, Qp = Q−1

p . (99)

Repeating the arguments above, we find

[Gε] = Qp [Gω]Q
⊺

p = Q−1
p C−1

p [Gχ]C−⊺
p Q−⊺

p = (CpQp)−1 [Gχ] (CpQp)−⊺ , (100)

where

G =
3

∑
m,n=1

[Gε]mn ε
m ⊗ εn.

The more extended arguments for the statement in Eq. (100) are

G =
3

∑
k,l=1

[Gω]kl ω
k ⊗ ωl

=
3

∑
k,l=1

[Gω]kl (
3

∑
m=1

[Qp]mk ε
m)⊗ (

3

∑
n=1

[Qp]nl ε
n)

=
3

∑
m,n=1

⎛
⎝

3

∑
k,l=1

[Qp]mk [Gω]kl [Q
⊺

p]
ln

⎞
⎠
εm ⊗ εn

=
3

∑
m,n=1

[QpGωQ
⊺

p]
mn

εm ⊗ εn.
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In addition to the metric, we also need to supply the directions in which one may only move forward or
backwards. In our case, the dual vectors are denoted by B1, so the primal vector is given by χ1. We need to
express this vector in the standard frame as well. That means that we have

χ1∣
p
=

3

∑
i=1

c1i (p) ωi∣
p
] =

⎛
⎜
⎝

c11 (p)
c12 (p)
c13 (p)

⎞
⎟
⎠
⋅
⎛
⎜⎜
⎝

ω1∣
p

ω2∣
p

ω3∣
p

⎞
⎟⎟
⎠
= [C⊺

p]
1,⋅

⎛
⎜⎜
⎝

ω1∣
p

ω2∣
p

ω3∣
p

⎞
⎟⎟
⎠
.

A.1 Conclusion

In conclusion, we found that we can express the gauge metric with respect to the static frame by

[Gε] = (CpQp)−1 [Gχ] (CpQp)−⊺ , (101)

where Cp denotes the relationship between Bi and Aj , and where Qp contains the relationship between Aj and
εk, which are given in Eq. (96) and Eq. (99) respectively. Furthermore, [Gχ] is based on the considered metric,
and is given in Eq. (95) for the metric tensor field introduced in Eq. (45).

The forward direction in the gauge frame is given by

χ1∣
p
= [C−⊺

p ]
1,⋅

⎛
⎜⎜
⎝

ω1∣
p

ω2∣
p

ω3∣
p

⎞
⎟⎟
⎠
= [C−⊺

p ]
1,⋅

Q−⊺
p

⎛
⎜⎜
⎝

ε1∣
p

ε2∣
p

ε3∣
p

⎞
⎟⎟
⎠
.

When we want to express the left invariant frame in terms of the static frame [Gε], we can still use the relations
in Eq. (101). In this special case, we have Cp = I, where I ∈ R3 denotes the identity matrix. The matrix [Gχ]
is replaced by [G̃ω] which is given by

[G̃ω] =
⎛
⎜
⎝

ξ2 0 0
0 ξ2/ζ2 0
0 0 1

⎞
⎟
⎠

for the metric tensor field introduced in Eq. (43). The forward direction of the left invariant frame is given by

ω1∣
p
= [Q−⊺

p ]
1,⋅

⎛
⎜⎜
⎝

ε1∣
p

ε2∣
p

ε3∣
p

⎞
⎟⎟
⎠
.
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B Control Sets

We discussed in Section 1.1.6 that the control sets need to be closed and vary continuously with respect to the
point p ∈ M2 in the sense of the Hausdorff distance. In [17], a proof is provided that the left invariant frame
meets these requirements. However, this still needs to be shown for the gauge frame. Here, we will give a short
summary of the needed theory and conclusions for the left invariant frame. Proofs can be found in Appendix
A of [17].

First, we introduce some general theory. Afterwards, we will elaborate on what is needed for the specific frames
that we are considering.

Definition B.1. Given a metric space E, let K(E) be the collection of non-empty compact subsets of E.

Given a normed vector space V , let C(V ) ⊂ K(V ) be the collection of non-empty compact subsets of V , which
are convex and contained in the unit ball.

We introduce the distance function dA and the Hausdorff distance H (A,B).
Definition B.2. Given a metric space E, let A,B ∈ K(E). Then, the distance function dA ∶ E → R+ and the
Hausdorff distance H(A,B) are defined respectively by

dA(x) ∶= inf
y∈A

d(x, y), H(A,B) ∶= max{sup
x∈B

dA(x), sup
x∈A

dB(x)} .

Definition B.3. A family of controls B on the set X is an element of the set B defined by

• If X ⊂ E an Euclidean vector space, then B ∶= C0 (X,C(E)).
• If X ⊂M a Riemannian maniforld, then B ∶= {B ∈ C0 (X,K(TM) ∣∀p ∈ X,B(p) ∈ C(TpM)}.

Definition B.4. A path γ is TB-admissible, where γ ∈ Γ, T ∈ R+ and B ∈B, iff for almost every t ∈ [0,1]

γ̇(t) ∈ TB (γ(t)) .

Definition B.5. For any B ∈B, p,q ∈ X, we let

TB (p,q) ∶= inf {T ≥ 0∣∃γ ∈ Γ, γ(0) = p, γ(1) = q and γ is TB-admissible} .

Proposition B.1. With the notations of Definition 1.19, the sets p ∈M↦ BG(p) form a family of controls on
(M, δ∥ ⋅ ∥). In addition for all p,q ∈M

dG (p,q) = TBG (p,q) .

B.1 Left Invariant Frame

In Section 2, we introduced the left invariant metric tensor fields GLIF and GfLIF. Both tensor fields are given by

GLIF ∶ = 1

(1 + β/C)2
(ξ2 (ω1 ⊗ ω1 + 1

ζ2
ω2 ⊗ ω2) + ω3 ⊗ ω3) .

GfLIF ∶ = 1

(1 + β/C)2
(ξ2 (ω1 ⊗ ω1 + (ε−2 − 1) (ω1 ⊗ ω1)

−
+ 1

ζ2
ω2 ⊗ ω2) + ω3 ⊗ ω3) .

Now, we will denote these metric tensor fields by Fε ∶=
√
GLIF and Ffε ∶=

√
GfLIF to stress the ε dependency of

the metric, and we choose ζ = ε. We note that we have

(F0)2 =
⎧⎪⎪⎨⎪⎪⎩

1
(1+β/C)2 (ξ2ω1 ⊗ ω1 + ω3 ⊗ ω3) if ẋ ∝ n,

+∞ else.

(Ff0 )
2
=
⎧⎪⎪⎨⎪⎪⎩

1
(1+β/C)2 (ξ2ω1 ⊗ ω1 + ω3 ⊗ ω3) if ẋ ∝ n and ẋ ⋅ n ≥ 0,

+∞ else.

Proposition B.2. The metrics Fε and Ffε are indeed metrics in the sense of Definition 1.19 for all 0 ≤ ε ≤ 1.
The associated control sets Bε ∶= BFε and Bfε ∶= BFfε depend continuously on the parameter ε ∈ [0,1], and satisfy

the inclusions Bε(p) ⊂ Bε′(p) and Bfε (p) ⊂ Bfε′(p) for any p ∈M and 0 ≤ ε ≤ ε′ ≤ 1.
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In order to prove Proposition B.2, we need the following two lemmas.

Lemma B.1. Let B be a compact subset of a metric space E, and let ϕ ∈ C0(B,E). Then

H (B,ϕ(B)) ≤ sup
x∈B

d (x,ϕ(x)) .

We identify the following similarities:

∥ẋ∥2 = (ω1∣
p
⊗ (ω1∣

p
) (ṗ, ṗ) + ((ω2∣

p
⊗ (ω2∣

p
) (ṗ, ṗ);

∣ẋ ⋅ n∣2 = ((ω1∣
p
⊗ (ω1∣

p
) (ṗ, ṗ);

∥ẋ ∧ n∥2 ∶= ∥ẋ∥2 − ∣ẋ ⋅ n∣2 = ((ω2∣
p
⊗ (ω2∣

p
) (ṗ, ṗ);

∥ṅ∥2 = ((ω3∣
p
⊗ (ω3∣

p
) (ṗ, ṗ).

Therefore, Lemma 6 from [17] states the same as Lemma B.2.

Lemma B.2. Let n1,n2 ∈ S1, let a1, a2, b1, b2 ≥ 1 and let ε1, ε2 ∈ [0,1]. For each i ∈ {1,2}, let Bi be the
collection of all (ẋ, ṅ) ∈ Rd ×Rd obeying

ṅ ⋅ ni = 0,

a2
i ∥ṅ∥2 + b2i (∣ẋ ⋅ ni∣

2 + ε−2
i ∥ẋ ∧ ni∥2) ≤ 1 if εi > 0

a2
i ∥ṅ∥2 + b2i ∣ẋ ⋅ ni∣

2 ≤ 1 and ẋ ∧ ni = 0 if εi = 0.

Then

H(B1,B2) ≤ ∣a−1
1 − a−1

2 ∣ + ∣b−1
1 − b−1

2 ∣ +
√

2 (1 − n1 ⋅ n2) + ∣ζε1 − ζε2∣ .

The same estimate holds for the sets Bfi , i ∈ {1,2}, defined by the inequalities

ṅ ⋅ ni = 0,

a2
i ∥ṅ∥2 + b2i ((ẋ ⋅ ni)

2
+ + ε

−2
i ∥ẋ ∧ ni∥2 + (ẋ ⋅ ni)2

−) ≤ 1 if εi > 0

a2
i ∥ṅ∥2 + b2i (ẋ ⋅ ni)

2
+ ≤ 1 and ẋ ∧ ni = 0, ẋ ⋅ ni ≥ 0 if εi = 0.

B.1.1 Visualization of the Control Sets

There are multiple ways in which we can calculate them. The first method uses that we know the expression
for an ellipsoid. For the (an)isotropic left invariant frame, using θ = 0, this is given by

(ξx)2 + (ξy
ζ

)
2

+ θ2 = 1.

In the visualization tool, we need to give the distance ri from the center to the surface for 162 different directions.
Therefore, we assume that we are looking in direction (xi, yi, θi). We assume that ∥(xi, yi, θi)∥2 = 1 such that
we have

r2x2
i + r2y2

i + r2θ2
i = r2.

Then, one should have

⎧⎪⎪⎨⎪⎪⎩

x̃2
i + ỹ2

i + θ̃2
i = r2

i ,

(ξx̃i)2 + ( ξỹi
ζ

)
2
+ θ̃2

i = 1,
(102)

where (x̃i, ỹi, θ̃i) = (rxi, ryi, rθi). Note that the first equation is always satisfied by definition. Rewriting the
second equation given in Eq. (102) results in

r = ±
¿
ÁÁÁÀ

1

(ξxi)2 + ( ξyi
ζ

)
2
+ θ2

i

. (103)
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Rotation of the axes over an angle θ gives

xnew = cos θx + sin θy, ynew = − sin θx + cos θy, θnew = θ.
Resulting in radii

r = ±
¿
ÁÁÁÀ

1

(ξ (cos θx1 + sin θy1))2 + ( ξ(− sin θx1+cos θy1)

ζ
)

2
+ θ2

1

. (104)

We note that we can express the radii using matrices

r = ±
⎛
⎜
⎝
(xi yi θi)

⎛
⎜
⎝

cos θ − sin θ
sin θ cos θ

1

⎞
⎟
⎠

⎛
⎜
⎝

ξ2

ξ2/ζ2

1

⎞
⎟
⎠

⎛
⎜
⎝

cos θ sin θ
− sin θ cos θ

1

⎞
⎟
⎠

⎛
⎜
⎝

xi
yi
θi

⎞
⎟
⎠

⎞
⎟
⎠

−1/2

= ±
⎛
⎜
⎝
(xi yi θi)Q−1

p [G̃ω]Q−⊺
p

⎛
⎜
⎝

xi
yi
θi

⎞
⎟
⎠

⎞
⎟
⎠

−1/2

, (105)

where Qp was defined in Appendix A and with

[G̃ω] =
⎛
⎜
⎝

ξ2

ξ2/ζ2

1

⎞
⎟
⎠
. (106)

The control sets of the (an)isotropic left invariant frame are visualized in Figure 47. We see that the Euclidean
distance to p is bigger when moving forward, than it is moving backward. In addition to that, moving forward
is encouraged over moving sideways or changing angular direction.

(a) Front view of the control set be-
longing to the anisotropic frame.

(b) Top view of the control set be-
longing to the anisotropic frame.

(c) Side view of the control set be-
longing to the anisotropic frame.

(d) Front view of the control set be-
longing to the isotropic frame.

(e) Top view of the control set be-
longing to the isotropic frame.

(f) Side view of the control set be-
longing to the isotropic frame.

Figure 47: Control sets for the isotropic and anisotropic left invariant frame (ξ = 0.1 and ζ = 0.1 or ζ = 1).
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B.2 Gauge Frame

We state that the control sets of the gauge frame are also continuous with respect to the Hausdorff distance
since the control sets are continuous deformations of the left invariant control sets. However, this is not formally
proven yet.

B.2.1 Visualization of the Control Sets

We can calculate the control sets of the gauge frame in a way similar to what we did in the left invariant frame.
Looking at the expression in Eq. (105), we realize that it is similar to Eq. (100). Generalizing this to the gauge
frame yields

ri =
⎛
⎜
⎝
(xi yi θi)Q−1

p C−1
p [Gχ]C−⊺

p Q−⊺
p

⎛
⎜
⎝

xi
yi
θi

⎞
⎟
⎠

⎞
⎟
⎠

−1/2

=
⎛
⎜
⎝
(xi yi θi) (CpQp)−1 [Gχ] (CpQp)−⊺

⎛
⎜
⎝

xi
yi
θi

⎞
⎟
⎠

⎞
⎟
⎠

−1/2

. (107)

An example of a visualization is given in Figure 48. Here, we used the gauge frame, where

Cp =
⎛
⎜
⎝

3.38282 −0.717793 −0.938303
2.07567 9.78221 0.
0.265325 −0.0562988 0.999632

⎞
⎟
⎠
, θ = π

8
.

We see that the control sets are a deformation of the control sets in the left invariant frame (Figure 47). The
control sets are better aligned with line structures in the image on which these control sets were based.

(a) Front view of the control set
belonging to the anisotropic frame
(α = 0.8).

(b) Top view of the control set be-
longing to the anisotropic frame (α =
0.8).

(c) Side view of the control set be-
longing to the anisotropic frame (α =
0.8).

(d) Front view of the control set be-
longing to the isotropic frame (α =
0).

(e) Top view of the control set be-
longing to the isotropic frame (α =
0).

(f) Side view of the control set be-
longing to the isotropic frame (α =
0).

Figure 48: Control sets for the isotropic and anisotropic left invariant frame for the gauge frame given by

⎛
⎜
⎝

3.38282 −0.717793 −0.938303
2.07567 9.78221 0.
0.265325 −0.0562988 0.999632

⎞
⎟
⎠

, using ξ = 0.1, ζ = 0.1 and α = 0 or α = 0.9 for the isotropic and anisotropic

frames respectively.
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Figure 49: The red control sets correspond to the left invariant frame, whereas the white control sets correspond
to the gauge frame. The control sets of the gauge frame are better aligned with the underlying vessel structure.
Figures received from R. Duits.

A visualization of both the left invariant and gauge frame can be found in Figure 49. We see that the control
sets of the gauge frame (white) are better aligned with the underlying vessel structure than those of the left
invariant frame (red). Therefore, the vessel tracking result in the gauge frame (green) is a more accurate than
the tracking result in the left invariant frame (red).
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C Cartan Connections

In this section, we give a short overview of Cartan connections and their influence on shortest and straight
curves. In Figure 50, we illustrate that short curves are not necessarily the same as straight curves, for which
we state the corresponding theorems in this section.

(a) Short curves in the Riemannian manifold. The geodesics are straight lines. Left: Geodesically equidistant surfaces
S1
t . Right: Riemannian geodesics for the isotropic Riemannian case ε = 1, C = 1.

(b) Straight curves. A set of horizontal exponential curves in SE(2) for which γ̇(τ) = c1 A1∣γ(τ)+c
3 A3∣γ(τ), with constant

tangent vector components c1 and c3. These curves are auto-parallel (‘straight curves’ in torqued and curved geometry
modeled by Lie-Cartan connection ∇[1].

Figure 50: Visualization of the difference between straight and short curves in the Riemannian manifold. Taken
from [38].

We will only consider the Hamiltonian on a Riemannian manifold. The theorems (and corresponding proofs)
of the sub-Riemannian case with the left invariant frame as reference frame can be found in [38]. We will
consider the Lie-Cartan connections in support of understanding Riemannian geometry when the Lie group G
is considered as a Riemann manifold (G,G) with a left-invariant Riemannian metric tensor field given by

G =
n

∑
i,j=1

gijω
i ⊗ ωj , (108)

with gij constant relative to the left-invariant co-frame ωi introduced in Section 1.3 such that [gij] ∈ Rn×n is
symmetric positive definite. We restrict ourselves to the diagonal case in Theorem 3, Theorem 4 and Theorem
5. The metric isomorphism between TM and T ∗M G is written as

G̃(X) = G(X, ⋅). (109)
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Before we state the theorems in the left invariant and gauge frame, we need to introduce some theory. We start
with the general definition of Cartan connections on a Lie group.

Definition C.1 (Cartan/canonical connection on Lie group). A Cartan (or canonical) connection on a Lie
group is a vector bundle connection with the following additional properties:

1. left invariance:

X,Y are left invariant vector field⇒ ∇XY is a left invariant vector field, (110)

2. for any a ∈ Te(G) the exponential curve and auto-parallel curve coincide:

∇γ̇(t)γ̇(t) = 0 where γ(t) = γ(0) exp(ta). (111)

C.1 Left Invariant Frame

Then, we consider the Lie-Cartan connection on the left invariant frame specifically.

Definition C.2 (Lie-Cartan Connection). Consider a Lie group with Lie brackets [⋅, ⋅] and structure constants
ckij ∈ R s.t. [Ai,Aj] = ∑k ckijAk. Then the Lie-Cartan connection indexed with ν ∈ R equals

∇[ν] ∶=
n

∑
i,k=1

ωi ⊗ (Ai ○ ωk(⋅))Ak +
n

∑
i,j,k=1

ωi ⊗ ωjνckijAk. (112)

Then the Lie-Cartan connection with covariant derivative of a field Y = ∑nk=1 y
kAk, along a smooth vector field

X = ∑ni=1 x
iAi, is given by

∇[ν]
X Y = ∇[ν](X,Y ) =

n

∑
k=1

⎛
⎝
ẏk +

n

∑
i,j=1

νckijx
iyj

⎞
⎠
Ak,

where ẏk(t) = d
dt
yk(γ(t)) which equals ẏk(t) = (Xyk)(γ(t)) and xi = γ̇(t) where xi∣

γ(t)
∶= γi(t) = ⟨ωi∣

γ(t)
, γ̇(t)⟩

along the flow-lines γ of smooth vector field X. A ‘flowline’ is a smooth curve γ satisfying γ̇(t) = Xγ(t). With
slight abuse of notation, we write

∇[ν]
γ̇ Y =

n

∑
k=1

⎛
⎝
ẏk +

n

∑
i,j=1

νckij γ̇
iγj

⎞
⎠
Ak.

The corresponding dual connection on the co-tangent bundle is given by

∇[ν],∗
γ̇ λ =

n

∑
i=1

⎛
⎝
λ̇i +

n

∑
k,j=1

νckijλkγ̇
j⎞
⎠
ωi,

where λ = ∑ni=1 λiω
i ∈ T ∗(G).

Next, we give the definition of Poisson brackets.

Definition C.3 (Poisson brackets). The Poisson bracket of two scalar functions f1, f2 ∈ C∞(T ∗M) is given by

{f1, f2} =
n

∑
i=1

(Aif2)
∂f1

∂λi
− ∂f2

∂λi
(Aif1) . (113)

Last, we introduce gij . These contravariant components are defined as

⎛
⎜
⎝

g11 . . . g1n

⋮ ⋱ ⋮
gn1 . . . gnn

⎞
⎟
⎠
∶=

⎛
⎜
⎝

g11 . . . g1n

⋮ ⋱ ⋮
gn1 . . . gnn

⎞
⎟
⎠

−1

.

Theorem 3 (Theorem 2 from [38]). The Hamiltonian on Riemannian manifold (G,G), with left-invariant
metric tensor field G introduced in Eq. (108) equals

h = 1

2

n

∑
i=1

λiλi =
1

2

n

∑
i,j=1

gijλiλj , λi =
n

∑
j=1

gijλj (114)
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and the corresponding Hamiltonian flow (generated by the Hamiltonian vector field
→

h) can be written as (recall
the definition of linear map G̃(X) ∶= G(X, ⋅))

v̇ =
→

h(v)⇔
⎧⎪⎪⎨⎪⎪⎩

G̃−1λ = γ̇ (horizontal part)

∇[1],∗
γ̇ λ = 0 (vertical part)

⇔
⎧⎪⎪⎨⎪⎪⎩

γ̇i = ui = λi ∶= ∑nj=1 g
ijλj (horizontal part)

λ̇i = {h, λi} = −∑nj,k=1 c
k
ijλku

j (vertical part)

with velocity controls ui ∶= γ̇i = ⟨ωi∣γ(⋅)γ̇⟩ and v(t) = (γ(t), λ(t)) a curve in the co-tangent bundle T ∗(G) where
the geodesics γ(t) ∈ G and the momentum along the geodesic λ(t) ∈ T ∗γ(t)(G), and with {⋅, ⋅} denoting Poisson

bracket as defined in Eq. (113).

This theorem is proven in [38].

In the last theorem, the difference between straight curves and shortest curves is shown. In this theorem, we
have an upper bound for the time in γ(t), denoted by tcut. This denotes the time one can move along a geodesics
until it reaches a point q which is in the cut locus of p. This means that there exist two length minimizers
joining p and q. In other words, there are multiple minimizing geodesics connecting point q to the end point
p [39] (Definition 8.52). The conjugate time tconj is the distance you can move along a geodesic until you meet
a conjugate point. The conjugate points are, roughly, all points p that can almost be joined by a 1-parameter
family of geodesics. These are the points where local optimality is lost. The exact definition can be found in
[39], Definition 8.43.

Example C.1. We consider two different manifolds where conjugate points do (not) exist.

• Consider a sphere. The north-pole and the south-pole can be connected by any median, and their distance
is always the same.

• Consider the plane R2. There are no conjugate points; there are not multiple geodesics connecting two
points.

The variable tcut denotes how far you can move along a geodesic until the Riemannian exponential curves loose
their optimality.

Theorem 4 (Theorem 1 from [38]). In a Riemannian manifold (G,T (G),G), with the tangent bundle T (G)
and metric tensor field G defined in Eq. (108) and induced metric dG defined in Eq. (9), and the Lie-Cartan
connection ∇[ν] for ν = 1 defined in Eq. (112), we have the following relations for “straight” curves:

γ is a ∇[1] − straight curve ⇔γ is an exponential curve

⇔∇[1]
γ̇ γ̇ = 0 ⇔γ has ∇[1] − auto parallel velocity,

and the following for “shortest” curves (minimizers in Eq. (9)), recall Eq. (109):

γ is a shortest curve ⇔γ is a minimizing curve in dG (115)

⇒
⎧⎪⎪⎨⎪⎪⎩

∇[1],∗
γ̇ λ = 0

γ̇ = G̃−1λ
⇔γ has ∇[1],∗ − parallel momentum. (116)

For a minimizing curve between g1 = γ(0) and g2 = γ(t) one must have 0 ≤ t ≤ tcut = min{tconj(λ(0)), tmax,1(λ(0))},
cf. [40; 41] for details. They are found by steepest descent:

γ(t) = γ(0) + ∫
t

0
gradGW (γ(s))ds, (117)

on distance maps W (g) = dG(g, e) that are viscosity solutions of the eikonal PDE

⎧⎪⎪⎨⎪⎪⎩

∥gradGW (g)∥ =
√
G∣g (gradGW (g), gradGW (g)) = 1,

W (e) = 0,
(118)

with (metric-intrinsic) gradient gradGW (g) = G̃dW (g), as this only gives global minimizing curves.
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C.2 Gauge Frame

We just discussed the difference between shortest curve and straight curve with the left invariant frame as
reference framework. Jelle Wemmenhove has worked on a the same theorem, but with the gauge frame as the
reference framework during his master thesis [13]. Here, we state the corresponding theorem (including the
corresponding notation).

Definition C.4. Given a gauge frame {Bi}di=1 with dual frame {χi}d
i=1

, we propose the family of connections

∇̂[ν] with ν ∈ R on T (M) given by

∇̂[ν]
X Y ∶=

d

∑
k=1

X(yk)Bk +
d

∑
i,j=1

xiyjν [Bi,Bj] , (119)

for vector fields X = ∑dj=1 x
jBj and Y = ∑dj=1 y

jBj .

Corollary C.1. The dual ∇̂∗ of the connection given in Eq. (119) is given by

∇̂[ν],∗
X λ =

d

∑
i=1

⎛
⎝
X(λi) +

d

∑
j,k=1

xjλkνC
k
ij

⎞
⎠
χi, (120)

for X = ∑dj=1 x
jBj , λ = ∑dj=1 λjχ

j and where CKij is defined by ∑dk=1C
k
ijBk = [Bi,Bj].

The proof of the corollary can be found in [13].

Theorem 5 (Theorem 20 from [13]). If γ is a shortest curve, i.e. it locally minimizes dG, then γ is the
horizontal part of a curve υ = (γ, p) in TM × T ∗(M) which has momentum p = G̃(γ̇) that is parallel w.r.t. the
dual connection ∇̂[1],∗:

∇̂[1],∗
γ̇ p = 0.

Furthermore, γ is a straight curve w.r.t. the connection ∇̂[1] if and only if its velocity γ̇ is a constant linear
combination of the basis {Bi}ni=1:

∇̂[1]
γ̇ γ̇ = 0 iff γ̇ =

n

∑
i=1

uiBi, where ui ∈ R.

The proof for this theorem can be found in [13].
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