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Chapter 1

Introduction

1.1 Introduction

Autonomous driving technology has the potential to reduce crashes, prevent injuries, and save
lives. It has been a challenging field of research since the middle 1980s. According to the report
from National Highway Traffic Safety Administration (NHTSA), approximately 94% of all serious
motor vehicle crashes are due to human error or choices [6], for example, distraction, emotional
driving, drowsy driving. Although fully autonomous vehicles are still in the research stage, the
autonomous vehicle manufacturers have already developed systems which act as assistance fea-
tures on a vehicle, i.e. advanced driver-assistance systems (ADAS). Many autonomous driving
assistance technologies have already been applied to vehicles in market, such as lane keeping as-
sist, adaptive cruise control, automatic parking, etc. Among these systems, the perception system
which is similar to the human vision, through the use of sensors and controllers to let the vehicle
fully understanding the surrounding environments. In this case, we focus on the camera-based
lane detection makes an important contribution to such environment perception.

(a) (b) (c)

Figure 1.1: Examples of ADAS, image source: [1], [2], [3]

Camera-based lane detection [7, 8, 9, 10, 11, 12] uses the image data from the camera to enable
the vehicle to recognize the lane markers, which could further allow the vehicle to properly po-
sition itself within the lanes. Figure 1.2 shows a general process of lane detection system [13],
including image pre-processing, feature extraction and model fitting. In the image pre-processing
stage, there are several operations, such as region of interest (ROI) selection, transferring color
image into grayscale image or a different color format, noise removal and blur, etc, which can
be applied to the raw image obtained from the camera to reduce clutter and enhance features of
interest. After pre-processing, lane features, such as colors and edge features can be extracted
and hence, can be detected based on these features. Traditional lane detection methods mostly
deal with simple road scenes which are prone to robustness issues due to the variation of the
environment, such as illumination variation, target occlusion, blurred road edges, etc. In addition,
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CHAPTER 1. INTRODUCTION

these highly specialized, handcrafted features fail to express the semantic features of the objects
in new scenes, resulting in insufficient detection accuracy that can hardly meet the safety require-
ments of autonomous vehicles. With the breakthroughs in deep learning, recent methods replace
the handcrafted feature detectors with deep neural network to learn pixel-wise lane segmentation
prediction through big data, allowing it to better adapt to complex environments and to gain a
better accuracy.

Figure 1.2: General lane detection system

Lane detection algorithm, as a data-driven computer vision algorithm, is extremely computation-
ally intensive [14]. It needs to extract features from an abundance of images, train models with
tremendous data samples and deploy those models on query images. [15] proves that a significant
redundancy in the parameterization of many CNNs. With less weight values for each feature,
the model can still accurately predict the remaining values. They trained several different ar-
chitectures by learning only a small number of weights and predicting the rest. In the best of
circumstances, they were able to predict more than 95% of the weights of a network without any
drop in accuracy. Therefore, in order to get a more efficient model, compressing neural network is
very essential. Quantization is one of the effective methods to compress model. Quantization in
general is a method that approximates a neural network, by converting floating-point numbers to
low bit-width numbers. This could extremely decrease the size of the model, whereas it will lose
a certain degree of accuracy.

1.2 Motivation

Lane detection algorithm has already been developed using deep learning techniques in recent
efforts. Various lane detection models have been proposed with high accuracies, such as PINet
[16], ENet-SAD [17], LaneNet [18] etc. This thesis will mainly focus on a model using convolutional
neural network (CNN). As shown in Figure 1.3 below, a typical CNN contains four main layers,
convolution layers, activation layers, pooling layers, and fully-connected layers.

Figure 1.3: An example of CNN architecture (image source: [4])

The convolution layer is the core building block of a CNN, which is the first layer to extract features
from the input image. When the input image is passed through a convolution layer, the features
are extracted by applying a 2D spatial convolution to the image. As Figure 1.4 illustrated, filtering
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CHAPTER 1. INTRODUCTION

is the primary step in this process. There is a two-dimensional array of weights, representing part
of the image, called kernel. It will move across the receptive fields of the image, checking whether
the feature is present or not. This means when the kernel is applied to an area of the image, a
dot product is calculated between the input pixels and the kernel, which will then be fed into an
output array. Afterwards, the kernel will shift by stride S, repeating the above step until it has
swept across the whole image. The final output array will be the output feature map.

Figure 1.4: Convolution layer structure

Since convolution is a linear operator, the activation layer is very essential between layers, adding
the non-linearities to the model. This could enable the network to learn complex functional
mappings between the inputs and response variables during the training stage. There are many
activation functions, such as Sigmoid, tanh, Rectified Linear Unit (ReLU), etc. Among them,
ReLU (ReLU(x) = max(0, x)) is the most common used activate function in most of the CNN.

(a) (b) (c)

Figure 1.5: Examples of some activation functions

The pooling layer may follow by the convolution layer after the activation function. It is responsible
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for reducing the spatial size of the feature map as well as minimizing the possibility of over-fitting.
The most common pooling methods are max pooling and average pooling. Max pooling will select
the maximum value of a set of pixels within 2D windows, while average pooling will take the
average value. An example is shown in Figure 1.6.

Figure 1.6: Example of max pooling and average pooling

The last few layers in CNN are fully-connected layers or classification. The layer combines all the
features extracted through the previous layers and classifies the input image. The layer structure
is as shown in Figure 1.7. Each node in the output layer will directly connect to the node in the
previous layer. Since the fully-connected layer is very memory-intensive, if possible, it should be
replaced by the convolution layer [19].

Figure 1.7: Example of fully-connected layer

Normally in a convolutional neural network (CNN), the convolutional layer is the most compute-
heavy which particularly requires the computation of large dot products between the network
parameters, i.e. the kernel weights and the feature map elements [20]. Assuming a convolutional
kernel with a size of K and a feature map depth of C channels, these dot products comprise K2 ·C
numeric multiplications for each application of a kernel over the width and height dimensions of
the input feature map. This process is illustrated in Figure 1.4. This will be further duplicated,
using the C ′ channels of the output feature map as the new input with the corresponding set
of kernel parameters. The challenges for a CNN inference engine are the enormous dot-product
compute. The challenge can be overcome by quantization.

Quantization is a method which changes the floating-point to fixed-point arithmetic eliminating
the unnecessary precision from the network parameters. It can therefore reduce the model size
and get a more efficient model. Even though the network will lose a certain degree of accuracy
after quantization, while using the certain method with fine-tuning, the accuracy loss could be
very low. Thus, quantization is an extremely effective method to make the model more efficient.
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CHAPTER 1. INTRODUCTION

1.3 Report Structure

The organization of this thesis is as follows: Chapter 1 introduces the project. Chapter 2 discusses
the related works and problems and contributions are listed in Chapter 3. Chapter 4 and 5
introduce the background information of LaneNet and the quantization of LaneNet. Chapter 6
introduces the experimental set up and the datasets. Chapter 7 shows the result of quantized
LaneNet with different datasets. Chapter 8 gives the conclusion and discusses the future works.
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Chapter 2

Related Work

2.1 ADAS

The LKAS, as the most relevant ADAS to lane detection algorithm, is a further development of
the modern lane-departure warning system (LDWS) that has the ability to support the driver
in staying within a lane. The first production LDWS in Europe was developed by the United
States company Iteris for Mercedes Actros commercial trucks [21] in 2000 and it is still available
on many new cars, SUV’s and trucks nowadays. In 2003, Honda launches its LKAS on the Inspire
[22], which provided up to 80% of steering torque to keep the vehicle in its lane on the highway
[23]. In the system, a camera mounted inside the upper front windshield applying the appropriate
input and the control unit figured out the appropriate assist steering torque and further control
the electric power steering (EPS) of vehicle. In 2006, Lexus presented a multi-mode LKAS on
the LS 460, which used stereo cameras and more sophisticated object- and pattern-recognition
processors [24]. In 2007, Audi began offering its Audi Lane Assist feature on the Q7 [25], which
will vibrate the steering wheel if the vehicle appears to be exiting its lane. Recently, Tesla Model
S [26] presented a advanced lane assistance system combining with a speed assist feature where
the front facing camera uses the technology of the computer vision character recognition system
to read the traffic speed limit and then transmit it to the car. While the traffic signs are absent
on road, the system will rely on the GPS data. When the car moves away from a lane at above
48 km/h, the system beeps and the steering wheel vibrate, alerting the driver of an unintended
lane change. Volvo [27] presented a Pilot Assistant working in conjunction with Adaptive Cruise
Control to provide steering assistance to help keep the vehicle in its lane at a set speed and dis-
tance (or time) interval as long as there are clear markings on the road.

In 2001, Nissan Motors presented a lane keeping support system which targeted at ’monotonous
driving’ situations (when the drivers feel tired after long hours of continuous expressway driving)
[28]. The system used a single CCD camera to estimate the road geometry and the host vehicle’s
position in the lane, a steering actuator to steer the front wheels and an electronic control unit to
calculate the steering torque needed to keep within the lane.

2.2 Lane Detection

2.2.1 Traditional lane detection algorithm

The traditional approaches can basically be classified into two categories, model-based [29] and
feature-based [30]. The model-based method believes that the lane can be represented by either
the straight line or the parabolic curve, so that the way to detect the lane can be transform to
calculate the model parameters. The feature-based method detects the lane by combining the
low-level features, such as lane edges. Both of these methods rely on highly-specialized and hand-
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crafted features likes color-based features [31] or shape-based features [32], and possibly combined
with detection and tracking techniques such as Hough transform [33] or Kalman filter [34]. Tran
et al. [31] proposed a lane marking detection method based on HSI color model. The method
changed the way that the HSI color model calculated intensity component, making the intensity
of pixels decrease. Hence, it became easier to apply the proper threshold to detect lane marking
of the road. Kluge et al. [32] presented the LOIS lane detection algorithm. It used a deformable
template approaches which formulated the lane detection problem in the form of finding the set
of lane edge parameters. Then it applied the Metropolis algorithm to maximize the likelihood
function which evaluated the quality of a given set of shape parameters matching the data in the
road image. Therefore, it could determine the best set of lane shape parameters for the given
image. Mariut et al.[32] introduced an algorithm that is able to detect lane marks, lane mark’s
characteristics and to determine the trend of vehicle’s traveling direction. The algorithm first used
a technique to estimate the mid-lane manually. Then, a magnitude image, highlighting the inner
margins of the lane marks, was processed based on the mid-lane estimation. This could ensure the
correctness of the detection by Hough transform. Borkar et al. [34] presented a night-time lane
detection system integrated with pixel remapping, outlier removal, and prediction with tracking.
The image would first be transformed to a bird’s-eye view by inverse perspective mapping, and
then be converted into a binary image by an adaptive threshold algorithm. After finding a set of
lane marker candidates, the RANSAC algorithm was performed to eliminate the outlier. Finally,
the method used the Kalman filter to track and smooth the lane estimation. Generally, these
methods, however, are not robust to road scene variations, for instance, sudden illumination
changes or weather conditions.

2.2.2 Lane detection algorithm with deep learning

With the successful development of deep learning, recent methods replace the hand-crafted feature
detectors with a deep network to learn pixel-wise lane segmentation prediction. Gopalan et al.[35]
proposed a learning based approach. It first used a pixel-hierarchy descriptor to model contextual
information shared by lane markings and the surrounding region. Then it trained a classifier on
the feature model using an outlier-robust boosting algorithms to learn relevant contextual features
for detecting lane markings. Finally, it implemented the particle filtering framework to track the
lane markings. A robust method based on the combined convolutional neural network (CNN)
with random sample consensus (RANSAC) algorithm was introduced by Kim and Lee [36]. The
method first applied a blurring and edge detection to removing the environment noises, as well
as a hat-shape kernel to strengthen lane information. Then it detected the lane using the CNN
combined with the RANSAC, in which the CNN works and provides the candidate of a road
line after the failure of RANSAC. However, in this two methods, the CNN is only be used to
detect lanes in complex real road with noisy environment, for instance, road side trees, fences
or intersections. Huval et al.[37] presented their research on how existing CNNs can be used in
vehicle and lane detection for real-time. They used a CNN based on Overfeat, converting the
CNN into a ”sliding window” detector. By providing a large resolution image, it could output an
object mask, and by performing bounding box regression, it could predict a single bounding box
for an object. He et al.[38] proposed a Dual-View CNN framework for lane detection. The method
first extracted the lane line candidates by a designed weighted hat-like filter. Simultaneously, they
utilized the front-view and top-view patches as the input to the DVCNN framework, in which the
former eliminated the inferences caused by the surrounding environments like moving vehicles,
barriers and curbs and the latter rejected non-club-shaped-structures such as ground arrows and
words. Also a novel global optimization strategy which considered lane line probabilities, length,
widths, orientations and the amount made the lane detection more accurate and robust. Li et
al.[39] developed two kinds of neural networks to detect lanes in a real traffic scene. One is
a CNN that simultaneously detects the lanes and the geometric attributes, i.e. location and
orientation of the lane with respect to the region of interest. The other one is a recurrent neuron
network (RNN) which can automatically detects lane boundaries. a multi-task CNN detecting the
geometric lane attributes such as location and orientation and a recurrent neural network (RNN)
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to infer the presence or absence of a lane over a sequence of image areas. Most recently, Neven et
al.[18] proposed a branches, multi-task network, consisting of a lane segmentation branch and a
lane embedding branch that can be trained end-to-end, casting the lane detection problem as an
instance segmentation problem. Tabelini et al.[40] proposed PolyLaneNet, a CNN for end-to-end
lane markings estimation.

2.3 Quantization

Deep learning has been proven to work well on tasks including image classification, Object detec-
tion, and natural language processing. With the increasing performance of the deep neural network
(DNN) model, the depth of the neural network is getting deeper and deeper, which leads to the
high storage and high power consumption of the model. This severely restricts the application of
DNNs in resource-limited application environments and real-time online processing applications,
especially intelligent mobile embedded devices, field programmable gate arrays (FPGA) and other
online learning and recognition tasks. For example, the 8-layer AlexNet is equipped with 6,000
nodes and 6.1 million parameters, which requires 240MB of memory storage and 72.9 billion
floating-point calculations (FLOPs) to classify a color image with a resolution of 224×224. At
the same time, as the depth of the DNNs deepens, the storage cost will become greater. For the
same image classification task mentioned above, using a VGGNet with 16 layers instead of the
8 layers AlexNet which has 150000 nodes and 144 million parameters, will cost 528MB memory
storage and 15 billion floating-point calculation times. And using the ResNet-152 equipped with
557 million parameters requires 230 MB of memory storage and 11.3 billion floating-point calcu-
lation times. For mobile terminal equipment, FPGA and other weak storage and low computing
power characteristics, it is impossible to directly store and run such a large deep network. On the
one hand, large-scale DNN store a lot of redundant information which do not play a decisive role
on the accuracy of the network. On the other hand, the performance of the simple DNNs cannot
approach which of the large-scale deep neural networks. Therefore, compressing the original DNN
and making it directly applied to the mobile embedded device will become an effective solution.

Quantization is one of the most commonly used model compressing approach. The main idea
of quantization is replacing the original 32 bit floating parameters (full-precision parameters) by
lower precision parameters. Gupta et al. [41] used 16 bit wide fixed-point arithmetic to present the
full-precision float-point parameters and implemented the stochastic rounding scheme in training
process, leading to a great improvement on the storage cost and computation performance. Using
the dynamic fixed point quantization on AlexNet could almost achieve lossless compression. For
instance, Ma et al. [42] quantized the weight and activation to 8 bit and 10 bit, respectively,
without fine-tuning. Afterwards, Gysel et al. [43] quantized both the weight and activation to 8
bit with fine-tuning.

In order to reduce the storage cost and the number of float point computations in CNN to a greater
extend, the idea that binarizing the network parameters has been widely proposed. BinaryConnect
[44] reduced the convolution computations by directly quantizing the weight to -1 or 1. Whereas
due to the network activation is still in full-precision, it couldn’t substantially speeds up the net-
work. Courbariaux et al. [45] presented BNN, which changed the original convolution calculation
into Bitcount and XNOR. It greatly accelerated and compressed the model, while leading to the
significantly reduction of the classification accuracy. For the purpose of reducing the precision loss,
Rastegari et al. [46] proposed Binary-weight-network and XNOR-Networks, which implemented
the scaling factor and kept the weight and input parameters of the first and last layer as 32-bit
float point. It meanwhile reversed the order of convolution and regularization. Accompanied
by these changes, BWN and XNOR-Net have achieved 0.8% and 11% increase in classification
error rates compared to the original AlexNet, respectively. In recent works, by increasing the
bit width of activation (greater than 1), and exploring combinations of different bit width of
weights and activations, the performance of quantized network on ImageNet dataset is improved.
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However, during training, there will be a gradient mismatch problem. Cai et al. [47] designed a
half-wave Gaussian quantizer and proposed the HWGQ-Net, which effectively solved this problem.

Since the weights are approximately distributed in a Gaussian distribution with a mean value of 0,
further considering 0 as the value after quantization may reduce the accuracy loss. Based on this,
ternary weight net (TWN) [48] has been introduced. It constrained the weights to be ternary-
valued: +w, 0 and -w. By changing the symmetrical w, trained ternary quantization (TTQ)
[49] introduced different quantization factor, making the classification error rate on AlexNet only
increase 0.6%. Figure 2.1 below shows the performance comparison of the above quantization
network and the corresponding results of the quantized bit width.

Figure 2.1: Comparison of methods to reduce precision on AlexNet, image source: [5]

Evaluation of Quantized LaneNet on Closed-loop System 9



Chapter 3

Problem Statement

3.1 Problem Statement

Lane detection algorithms have already been developed by using CNNs. It has been found that
the CNNs for large scale image recognition always face the issue of over-parameterized. The target
to compress the network is the convolution layer, in which the computation of large dot products
between the network parameters is required. Some researchers [50] have found that low-precision
computation is sufficient for the network. Quantization, converting the floating-point parameters
to a fixed-point representation is a potential solution to compress the network with a tolerable
accuracy penalty.

The main purpose of this thesis is to quantize the lane detection neural network with TuSimple
and custom datasets, respectively. Then the trade-off between the degree of quantization of CNN
and the performance of the network will be discussed.

3.2 Research Questions

The main research questions of this thesis are:

• Train/validate/test the lane detection model LaneNet with TuSimple and custom datasets

• Quantize the floating-point lane detection model LaneNet to fixed-point and evaluate the
performance.

• Analyse the trade-off between the degree of quantization of CNN and the performance model
of CNN.

10 Evaluation of Quantized LaneNet on Closed-loop System



Chapter 4

LaneNet

This chapter introduces the background of LaneNet, the neural network used for lane detection in
this project. The idea of this network comes from [18].

4.1 LaneNet

LaneNet is the neural network trained end-to-end for lane detection, in which the lane detection
is treated as an instance segmentation problem. Hence, each lane forms its own instance with lane
class. It can be split into two tasks, binary segmentation and instance segmentation. The binary
segmentation task classifies the input pixels into two categories: the lane and the background.
The instance segmentation further divides the segmented lane pixels into different lane instances.
Then each lane pixel is assigned the id of their corresponding lanes. Therefore, the power of both
tasks can be fully utilized without being distracted by other tasks, so that it eases the problem of
lane changes and number of lanes can be handled. The architecture of this network is shown in
Figure 4.1.

Figure 4.1: Lanenet architecture

4.1.1 Binary Segmentation

The binary segmentation branch is trained to output a binary segmentation map to indicate which
pixel belongs to the lane and which do not. In the output segmentation map, the ground-truth lane
points are connected together, which forms a connected line per lane. These lines cover through
the objects like cars, and also the absence part of the visual lane segment, such as dashed lane
and faded lane. By doing so, the network can learn to predict the location of the lane even when
the circumstances are adverse. The binary segmentation network is trained with the standard
cross-entropy loss function.
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CHAPTER 4. LANENET

4.1.2 Instance Segmentation

The embedding branch is trained with discriminative loss function proposed by Bert De Bra-
bandere el al [51] to output an embedding of each lane pixels, so that the distance between the
embedding which belongs to the same lane is small, conversely, the distance between the embed-
ding which belongs to the different lane is large. By doing this, the embeddings of the same lane
will cluster together.

To form these unique clusters, per lane, two terms are introduced. The first one is a variance
term (Lvar) which represents a pull-force drawing each embeddings towards the mean embedding,
i.e. the cluster center. The other one is a distance term (Ldist) which represents a push-force
pushing cluster centers away from each other. Both terms are hinged: the pull-force is only active
up when an embedding has a distance larger than δv from its cluster center and the push-force
between centers is only active up when they are closer than δd to each other. This is illustrated
in Figure 4.2. The total loss L can be written as follow:

Lvar = 1
C

∑C
c=1

1
Nc

∑Nc

i=1[‖µc − xi‖ − δv]2+

Ldist = 1
C(C−1)

∑C
cA=1

∑C
CB=1,cA 6=cB

[δd − ‖µcA − µcB‖]2+

L = Lvar + Ldist

(4.1)

where C is the number of clusters, Nc is the number elements in cluster c, xi is an embedding, µc

is the cluster center, ‖ . . . ‖ is the L2 distance, and [x]+ = max(0, x) is the hinge.

Figure 4.2: The intra-cluster pulling force pulls embeddings towards the cluster center, i.e. the
mean embedding of that cluster. The inter-cluster repelling force pushes cluster centers away from
each other.

After the network has converged, the embeddings of each lane pixels will be clustered together,
resulting in at least δd apart between each cluster and no more than δv between embeddings and
their cluster center.

4.1.3 Clustering

This part is finished by an iterative procedure. To select all embeddings belonging to the same
lane, one can repeat taking a random lane embedding and thresholding around it with a bandwidth
b = 2δv until all embeddings are assigned to a lane. In this case, thresholding means selecting
all embeddings that lie within a hypersphere with radius b around the cluster centre. In order to
avoid selecting an outlier to threshold around, mean shift is used first to shift closer to the cluster
centre and then do the thresholding.
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Chapter 5

LaneNet Quantization

This chapter introduces the quantization approach for the LaneNet. The key idea of this approach
is from [19].

5.1 Background

5.1.1 Fixed-point Number Format

The main computation of the LaneNet are the convolution layers which can be simplified to a
series of multiply-accumulate operations:

y =

K∑
i=1

widi (5.1)

where wi are the network parameters, di are data values, y is the output result of a single neuron
before activation, and K is the kernel size.

LaneNet is generally trained in single-precision floating-point. To optimize this model, a fixed-
point number representation which is a combination of Bit Width (BW ), Integer Length (IL),
Fractional Length (FL) and a sign bit:

BWx = ILx + FLx + 1 (5.2)

where x refers to a set of floating-point values that share the same fixed-point format.
A floating-point value x can be quantized to an integer by applying the follow formula:

Q(x) = round(x · 2FLx) (5.3)

It can be seen that the resolution of this format is 2−FLx . Then by scaling the integer value
back, the value after quantized can be get:

x̂ = Q(x) · 2−FLx (5.4)

which should be within the following range:

− 2ILx ≤ x̂ ≤ 2ILx − 2−FLx (5.5)

To further illustrate this process, here we give an example (Figure 5.1). We set a fixed-point
representation, in which BW = 8, IL = 3 and FL = 4. For this representation, it can represent
the number in the range -8 (1000.0000) to 7.9375 (0111.1111). From this range, we take the number
3.4 as an example. The fractional part of the original binary representation of 3.4 (11.011001...)
is apparently larger than 4. Therefore, after quantization, all the part that exceed the length limit
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Figure 5.1: Example of fixed-point representation

will be eliminated. Then the number 3.4 will become 3.375 after quantization. By Equation 5.3
and 5.4, we can easily get this 3.375 (round(3.4 · 24) · 2−4 = 3.375).

To increase the resolution of this fixed-point format, the fractional length should be maximized.
However, due to the bit width limited, this move will decrease the range. If data values fall outside
the range, overflow will happen. Hence, it needs to be ensured that the integer length is chosen
large enough to prevent overflow:

ILx = blog2(Rx)c+ 1 (5.6)

where range Rx is the absolute maximum value within the group value of x:

Rx = maxx∈x|x| (5.7)

For example, consider a fixed-point group with BW = 16 and max(|x|) = 1.154438, then the
minimum integer length should be ILx = blog2(1.154438)c + 1 = 1 and the maximum fractional
length is FLx = BWx − ILx − 1 = 14.

5.1.2 Constraint

As is mentioned before, the main computation of convolutional layer can be simplified to a series
of dot products, shown in equation 5.1. It may occur overflow between the multiplications and
additions between the input data and the weights. Like Figure 5.2 shows, the result after mul-
tiplying an input data 3.375 (BWd = 8) and a weight 0.625 (BWw = 5) requires more than BWd

and BWw to store it. Therefore, a constraint here need to be discussed.

Figure 5.2: Example of fixed-point multiply-accumulation

To prevent overflow in this computation, the required number of bits can be computed:

BWw×d = (ILw + ILd + 1) + (FLw + FLd) + 1 = BWW +BWd (5.8)

Excluding the case that the most negative values of both operands are multiplied i.e. −2ILd ·−2ILd

for gaining one bit of additional precision, the resulting bit width becomes:

BWw×d = BWw +BWd − 1 (5.9)
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This result is limited by the size of accumulation register which will be large enough to fit the
multiplication result without overflowing:

BWw +BWd − 1 ≤ BWacc (5.10)

Furthermore, to prevent overflow during kernel computation, the accumulation bit width must be
large enough to fit the final accumulation result. The worst-case required number of bits for K
accumulations of the product is:

(BWd +BWw − 1) + dlog2(K)e ≤ BWacc (5.11)

For example, if we have a kernel with 4 integer weights (BWd = BWw = 8): w1 = 99, w2 =
76, w3 = 38, w4 = 77. We cannot safely make assumptions about the magnitude and sign of
input data, other than the worst-case −2BWd−1. Therefore, the maximum output value would be
(99 + 76 + 38 + 77) × 27 = 37120 which requires 17 bit including the sign bit. This fits in the
constraint (8 + 8− 1) + log24 = 17.

5.2 Quantization Procedure

The basic procedure of quantization is depicted in Figure 5.3 below.

Figure 5.3: Quantization procedure

• Range Analysis
The first step is to analyse the parameter and input data range Rx to determine integer
lengths ILw and ILd. The precision FLw and FLd will be determined by the available bit
widths BWw and BWd (see Equation 5.2). Due to the different ranges of these two data
groups, using single format for both of them is not preferred. The input data range can be
estimated by forwarding a large batch of images from the test dataset through the network
and using Equation 5.6, the required integer length for input can be determined. And the
integer length for weights can be get at compiling time.

• Quantization
The next step is to perform a binary search to find the optimal number of bits for convolu-
tional weights and convolutional inputs. In this step, a certain network part is quantized,
while the rest remains in floating-point. Since the inputs and weights of convolutional layers
need independent bit widths, iteratively quantizing one network part can find the optimal
bit width for each part.

Algorithm 1 below illustrates this process in detail. It will first run forward a number of image
batches through the network, resulting in the group values of input xld, weight xlw and output

Evaluation of Quantized LaneNet on Closed-loop System 15



CHAPTER 5. LANENET QUANTIZATION

xlout by layers, as well as the baseline accuracy accref . Then, the maximum value of xld, xlw and
xlout can be got, and further, by the range analysis, the integer length of input illd, weight illw
and output illout can be calculated. After that, we set the initial quantized bit width of input
and weight, bwd and bww. Once we have the integer length and the total bit width, the fractional
length (flld, fllw) can be calculated by bw−ill−1. After getting the kernel size K, the accumulator
bit width can be set by bwd+bww−1+dlog2Ke. After we had all parameters required, the original
convolutional layers can be changed into the quantized convolution layers. By running forwards
numbers of image batches, the accuracy after quantization acc can be got. As long as the acc
is not lower than a certain level, the bit width of input and data will decrease by two and the
quantization process will be done again. When the resulting acc drop by a certain level that we
can not accept, the final bit width of input and weight (bestbwd, bestbww) can be found. Once
a good trade-off between small number representation and classification accuracy is found, the
resulting fixed-point network is obtained.

Figure 5.4: Simulate fixed-point convolution layer during forward pass

Figure 5.4 shows a simulation of a fixed-point data path with limited precision. Several quant-
ization operators are inserted before and after every convolution layer, making the reduction of
precision for a subset of layers very easy. These uniform quantizers map the high-precision input
data, weights and accumulator values to a discrete space. During the forward pass, these quant-
izers will reduce the precision of fixed-point groups according to Equation 5.4. Range of input
data and weight is clipped within representable range as in Equation 5.5 using the integer lengths
found during range analysis. Also to make sure the range of the layer output is sitting in Equation
5.5, as well as to prevent overflow, simply clipping the range may lead to serious error. Therefore,
a wrap-around operator, according to the BWacc calculated by Equation 5.11 above, is simulated
after layer output ŷ to ensure correct operation:

ŷwrap = ymin + (ymin + ŷ)%yrange (5.12)

in which ymin = −2BWacc−(FLd+FLw)−1, yrange = 2BWacc−(FLd+FLw), and the modulo operator
computes the remainder using floored division. Here we also take Figure 5.2 as an example. We
have the input data with BWd = 8 (FLd = 4) and the weight with BWw = 6 (FLw = 5). We
assume the BWacc here is 17. Then we can get the ymin = −217−(4+5)−1 = −27 = −128, and the
yrange = 217−(4+5) = 28 = 256. If we now have an output y sit outside the range, such as 29, then
it will be wrap around using the Equation 5.12 to 2−7.
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Algorithm 1 Quantization procedure to find the optimal number of bits for convolutional inputs
and weights. The LaneNet that is being quantized is denoted by net, which consists of a set of
layer l. For the quantization here, the convolution layer conv layer is the only considered layer.

Input: the network net, error margin error margin = 5, maximum bitwidth max bw = 16
Output: the best bitwidth for the input data and weight best bwd, best bww

1: Running forwards a number of image batches through net, get the baseline accuracy acc ref
and the group value of input xld, the group value of weight xlw, the group value of xlout

2: for all l ∈ conv layer do
3: get the absolute max value of the input data maxld ← maxxd∈xl

d
|xd|

4: set the integer length of the input data illd ← blog2(maxld)c+ 1
5: get the absolute max value of the weight maxlw ← maxxw∈xl

w
|xw|

6: set the integer length of the weight illw ← blog2(maxlw)c+ 1
7: get the absolute max value of the output data maxlout ← maxxout∈xl

out
|xout|

8: set the integer length of the output data illout ← blog2(maxlout)c+ 1
9: end for

10: set the initial quantized input data bitwidth bwd ← 16
11: while bwd > 0 do
12: for all l ∈ conv layer do
13: get the kernel size K
14: set the accumulator bitwidth bw acc← (2 ·max bw − 1) + dlog2(K)e
15: set the floating length of input data flld ← bwd − illd − 1
16: get the accuracy acc from forwarding image batches through validation dataset
17: end for
18: if acc+ error margin/100 < acc ref then
19: get the best bitwidth for the input data best bwd ← bwd + 2
20: break
21: bwd ← bwd − 2
22: end if
23: end while
24: set the initial quantized weight bitwidth bww ← 16
25: while bww > 0 do
26: for all l ∈ conv layer do
27: get the kernel size K
28: set the accumulator bitwidth bw acc← (2 ·max bw − 1) + dlog2(K)e
29: set the floating length of input data fllw ← bww − illw − 1
30: get the accuracy acc from forwarding image batches through validation dataset
31: end for
32: if acc+ error margin/100 < acc ref then
33: get the best bitwidth for the weight best bww ← bww + 2
34: break
35: end if
36: bww ← bww − 2
37: end while
38: return best bwd, best bww
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Chapter 6

Experimental Setup

6.1 Experimental Setup

Figure 6.1 depicts the inside sturcture of the LaneNet. LaneNet’s architecture is based on the
network VGG16 [52], which is consequently modified into a two-branched network. The last layer
of the embedding branch outputs an N-channel image, where the N is the embedding dimension.
The last layer of the segmentation branch outputs a one channel image (binary segmentation).
LaneNet is trained with an embedding dimension of 7, with δv = 0.5 and δd = 3. The images are
rescaled to 512 × 288 and the network is trained with a learning rate 1e − 2 until convergence.
The training process is based on Pytorch 1.5.0 with CUDA 10.0.

Figure 6.1: Structure of LaneNet
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6.2 Dataset

6.2.1 TuSimple

The network is trained using the TuSimple lane dataset [53] which is the only large scale data-
set for testing deep learning approaches on the lane detection task. The dataset consists of 3626
training and 2782 testing video clips, which are recorded on 2-lane/3-lane/4-lane/or more highway
roads at different day time, under different traffic condition and both good and medium weather
conditions. Each video clip contains total 20 image frames, which are not annotated. Figure 6.2
below shows some examples of the TuSimple dataset. The annotations are in a JSON file, indic-
ating the x-position of the lanes at a number of discretized y-position. When changing lane, there
can be an extra 5th lane added to avoid confusion. An example of the format of each line in the
JSON file is shown below. All the lanes on each image are around the center of sight, encouraging
the autonomous vehicle to focus on the current lane and left/right lanes.

{
’ r aw f i l e ’ : s t r . 20 th frame f i l e path in a c l i p .
’ l an e s ’ : l i s t . A l i s t o f l ane s . For each l i s t o f one lane , the e lements are

width va lue s on image .
’ h samples ’ : l i s t . A l i s t o f he ight va lue s cor re spond ing to the ’ l ane s ’ ,

which means l en ( h samples ) == len ( l ane s [ i ] )
}

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.2: Examples of TuSimple

6.2.2 Custom dataset

The network is also trained using the custom dataset which is created by [54] using Webots accord-
ing to the format of the TuSimple dataset. The images contain various environment scenarios. For
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instance, different types of lanes with various colors and forms, different layout of road, different
scenes or weathers. Figure 6.3, 6.4, 6.5 show some of the examples.

(a) White continue line (b) White dash line

(c) Yellow continue line (d) Yellow double line

Figure 6.3: Examples of different lane types in custom dataset

(a) Night with street light (b) Night without street light (c) Dawn

(d) Daytime (e) Dusk

Figure 6.4: Examples of different weathers in custom dataset
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(a) Straight (b) Right turn (c) Left turn

Figure 6.5: Examples of different road layout in custom dataset

6.2.3 Evaluation

To measuring the performance of the model, the accuracy is calculated as the average correct
number of points per image:

acc =
∑
im

Cim

Sim
(6.1)

where Cim is the number of correct points and Sim is the number of ground-truth points. A point
is correct when the difference between a ground-truth and predicted point is less than a certain
threshold.
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Results and Discussions

7.1 Quantization of the LaneNet with TuSimple dataset

In this section, the results of approximating 32-bit floating point LaneNet by condensed fixed point
model are presented. All classification accuracy were obtained running the respective network on
the whole TuSimple dataset. The baseline 32-bit floating point LaneNet is trained for 50 epoch
which has an accuracy of 89.412%. Figure 7.1 shows an example of the output of the trained
LaneNet testing with the TuSimple test dataset. Table 7.1 below shows the results of iteratively
quantizing only weight, only input data and both from 16 bit to 6 bit. Basically, the accuracy
is decreasing when reducing the bit width. Figure 7.4 below shows the comparison of the three
results It can be seen from the Pareto diagram that the bit width of 8 for both weight and input
data gives a good trade-off with an error of 1.97% between representation and accuracy. Therefore,
for the resulting fixed-point model, 8 bits is chosen to be the optimal bit width for both weights
and inputs.

Table 7.1: The result of iteratively quantizing weight and input data with TuSimple dataset

LaneNet with TuSimple dataset, 32-bit floating point accuracy: 89.412%
Only quantized weight Accuracy Only quantized input Accuracy Quantized both weight and input Accuracy

16 89.415% 16 89.406% 16 89.405%
14 89.413% 14 89.408% 14 89.409%
12 89.392% 12 89.373% 12 89.392%
10 89.336% 10 89.269% 10 89.100%
8 87.581% 8 85.515% 8 87.649%
6 56.897% 6 7.010% 6 1.877%

Figure 7.1: The output of the trained LaneNet with test TuSimple dataset
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Figure 7.2: The Pareto diagram of only quantized weight and only quantized input with TuSimple
dataset

7.2 Quantization of the LaneNet with custom dataset

In this section, the result of quantizing the LaneNet that trained by the custom dataset is shown in
Table 7.2. The baseline 32-bit floating point LaneNet, is trained for 30 epoch and has an accuracy
of 99.417%. Figure 7.2 shows an example of the output of the trained LaneNet testing with the
custom test dataset. The overall accuracy rate decreases as the number of bits decreases. It can
be seen that, from 16bit to 12bit, there is almost no change in the result, while starting from 6bit,
the accuracy rate drops sharply. Therefore, for the resulting fixed-point model, 8 bits is chosen to
be the optimal bit width for both weights and inputs. It has an acceptable accuracy of 98.774%
with an error of 0.65% comparing to the original floating point model.

Table 7.2: The result of iteratively quantizing weight and input data with custom dataset

LaneNet with custom dataset, 32-bit floating point accuracy: 99.417%
Only quantized weight Accuracy Only quantized input Accuracy Quantized both weight and input Accuracy

16 99.417% 16 99.416% 16 99.417%
14 99.417% 14 99.417% 14 99.417%
12 99.416% 12 99.417% 12 99.414%
10 99.422% 10 99.412% 10 99.421%
8 99.354% 8 98.592% 8 98.774%
6 57.109% 6 46.655% 6 31.966%

Evaluation of Quantized LaneNet on Closed-loop System 23



CHAPTER 7. RESULTS AND DISCUSSIONS

Figure 7.3: The output of the trained LaneNet with test custom dataset

Figure 7.4: The Pareto diagram of only quantized weight and only quantized input with custom
dataset
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7.3 The comparison of the results of two datasets

From both Figure 7.4 and Figure 7.2, it can be easily seen that the accuracy keeps a downward
tendency as the precision declines. From 16 bit to 10 bit, the accuracy almost remains the same
without much differences. However, in both figures, at 8 bit, there is a relatively significant drop
in accuracy and at 6 bit, a drastic decrease of the accuracy makes the model unable to complete
the classification tasks. Hence, in general, the limiting bit width of this quantization method for
LaneNet is 8 bit. Further, comparing the three results of only quantized weight, only quantized
input and quantized both input and weight, it can be seen that the accuracy of only quantized
weight is always the highest while the accuracy of quantized both input and weight is always the
lowest. This is probably because the number of parameters is much higher than the number of
input which enables it to have better robustness, leading to less reduction in accuracy. Whereas,
when the precision of both input and weight go down, it’s not hard to imagine that the accuracy
will drop the most. In conclusion, 8 bit is the limitation of this quantization method on LaneNet,
which has the best trade-off between accuracy and the degree of model compression.
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Conclusions and Future Works

8.1 Conclusion

Camera-based lane detection algorithms have already been developed by using CNNs, which re-
places the hand-crafted features leading to better robustness to the variation of the environments.
It has been found that the CNNs for large scale image recognition always face the issue of over-
parameterized. As to compress the network with a tolerable accuracy penalty, quantization,
converting the floating-point parameters to a fixed-point representation is a potential solution.

In this paper, we trained, validated and tested the lane detection model LaneNet with TuSimple
and custom datasets, getting the accuracy of 89.412% and 99.417% respectively. Then we quant-
ized the floating-point lane detection model LaneNet to fixed-point. The result of the network
trained by both datasets demonstrates that with the decrease of the precision of the network, the
accuracy always keeps a downward tendency. For both cases, 8 bit seems the best choice which
has the best trade-off between accuracy and the degree of model compression. In the TuSimple
case, the network at 8 bit achieved an accuracy of 87.649%, leading to a 1.97% error comparing
to the original baseline accuracy. And in the custom case, the network at 8 bit even reached an
accuracy of 99.354% with an error of 0.65% comparing to the base line accuracy.

8.2 Future work

There may be several works that can be done in the future.

• Except for the quantization method talked about in this paper, there are also other model
compression methods, such as parameter pruning, low-rank decomposition, knowledge distil-
lation, etc, which could be discussed. Maybe by comparing these methods or even combining
these methods, a more efficient model compression method can be found.

• Expect the accuracy, there are still other aspects influenced by the quantization, for instance
memory optimization and speed optimization, which could be discussed.
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